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Abstract

Language models are typically evaluated on
their success at predicting the distribution
of specific words in specific contexts. Yet
linguistic knowledge also encodes relation-
ships between contexts, allowing inferences
between word distributions. We investigate the
degree to which pre-trained transformer-based
large language models (LLMs) represent such
relationships, focusing on the domain of ar-
gument structure. We find that LLMs perform
well in generalizing the distribution of a novel
noun argument between related contexts that
were seen during pre-training (e.g., the ac-
tive object and passive subject of the verb
spray), succeeding by making use of the
semantically organized structure of the em-
bedding space for word embeddings. However,
LLMs fail at generalizations between related
contexts that have not been observed dur-
ing pre-training, but which instantiate more
abstract, but well-attested structural general-
izations (e.g., between the active object and
passive subject of an arbitrary verb). Instead,
in this case, LLMs show a bias to gen-
eralize based on linear order. This finding
points to a limitation with current models and
points to a reason for which their training is
data-intensive.1

1 Introduction

Competent speakers of a language know how
likely a word w is to appear in a specific context
C, which we define as the sequence of words
that surrounds a certain position in a sentence.
Any speaker of English knows, for example, that
the word kids is reasonably likely to occur in the
context the hit the ball and that ball is likely
to appear in the context the kid hit the . We

1The code and datasets used for the experiments reported
here are available athttps://github.com/clay-lab
/structural-alternations.

call this kind of knowledge about specific words
in specific contexts ‘‘Type 0 knowledge.’’

Type 0 knowledge: For a specific word
w, w occurs with probability p in con-
text C.

By itself, such Type 0 knowledge is woefully in-
complete. Competent speakers need to be able
to generalize their knowledge of distributions
across certain pairs of contexts:

Type 1 knowledge: For all words w, if
w occurs in C, w can also occur in C ′.

Type 1 knowledge tells a speaker that appear-
ance in one context is predictive of appearance
in another. Not only do English speakers know
that kids or ball are likely to occur in the specific
contexts given above, they also know that occur-
rence in these contexts is predictive of occurrence
in others, where the determiner is changed, other
nouns are used, adverbs are added, etc., essen-
tially any other context in which the relation of
the predicted noun to the verb hit remains. The
relevant bit of Type 1 knowledge thus implicates
sensitivity to linguistic abstractions like gram-
matical role: A noun that is a likely subject of a
particular sentence with active transitive hit will
also be a likely subject of another sentence in
which it is also the subject of hit. In fact, Type 1
knowledge goes further still: Any noun that is a
likely object of an active transitive hit is a likely
subject of passive hit. One kind of Type 1 gen-
eralization can thus be characterized in terms of
thematic role: Both the object of active transitive
hit and the subject of passive hit are mapped to
the theme role of an hitting event, and this the-
matic role imposes certain selectional preferences
on the choice of noun. Similarly, both the sub-
ject of active transitive hit and the object of the
by-phrase in passive hit are mapped to the agent
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role, which gives rise to other selectional prefer-
ences that apply to both contexts.

(1) a. [Kids]AGENT hit [balls]THEME.

b. [Balls]THEME are hit by [kids]AGENT.

In this case, the relevant bit of Type 1 knowledge
says that contexts for a word that put it in the same
thematic role with respect to hit support Type 1
generalization.

In fact, a competent speaker has knowledge of
even more abstract generalizations over contexts:

Type 2 knowledge: For all contexts C
and C ′, if C and C ′ are appropriately
related, then for all w, if w can occur in
C, w can also occur in C ′.

Characterizing Type 2 knowledge requires defin-
ing what it means for two contexts to be
appropriately related, and for the purposes of this
paper we will focus on contexts in which the same
thematic role is assigned. The Type 1 knowledge
just discussed concerning the arguments of hit is
a specific instance of such a relation. The relevant
Type 2 knowledge is a meta-level generalization,
holding across argument positions in active and
passive sentences regardless of the specific verb
or the roles it assigns. For example, object experi-
encer verbs like bother show a thematic mapping
distinct from the one found with hit: Active transi-
tive subjects are the theme, while the object is the
experiencer (and hence necessarily animate). This
means that likely subjects and objects of active
experiencer verbs differ substantially from those
of verbs like hit. Nonetheless, when each type
of verbs is passivized, the same Type 2 gener-
alization holds: The role assigned to the passive
subject, and hence which nouns are likely sub-
jects, is the same as the role of the corresponding
active object.

The range of pairs of contexts that share the-
matic roles, and hence fall under the Type 2
generalization under discussion, goes well be-
yond voice alternations like active and passive.
For instance, in a cleft, any argument of a verb
may appear in a position to the left of its unmarked
(active) use.

(2) a. It is [kids]AGENT who hit [balls]THEME.

b. It is [balls]THEME that [kids]AGENT hit.

And once again, English speakers understand
that the argument out of its canonical position
bears the same thematic relation to the event, and
shows the same preferences for possible nouns. In
other words, speakers of a language understand
not only relationships between specific structures
with specific lexical items, but also higher level
productive relationships between structures.

Recent work has demonstrated that Large Lan-
guage Models (LLMs) exhibit sensitivity to a
wide range of subtle regularities of linguistic form
(Goldberg, 2019; Linzen et al., 2016; Marvin and
Linzen, 2018; Wilcox et al., 2018, inter alia). Yet
because of the vast quantities of data on which
LLMs are trained, it is difficult to determine the
degree to which these results derive from Type 0,
Type 1, or Type 2 knowledge. Given sufficient
quantities of training data, a LLM can behave as
though it abides by Type 1 or Type 2 knowledge,
so long as it has received explicit and consistent
evidence about each context. But in order to be
robust in the face of infrequent words and rare
constructions, true Type 1 and Type 2 knowl-
edge will be crucial. In this paper, we assess the
presence of Type 1 and Type 2 generalizations in
LLMs, specifically in the domain of the mapping
between structural position and thematic role as
diagnosed by selectional preferences.

Focusing on the BERT family of transformer-
based language models (BERT, Devlin et al.,
2019; DistilBERT, Sanh et al., 2020; and
RoBERTa, Liu et al., 2019), our strategy is
to introduce novel tokens into the models’ vo-
cabularies. We fine-tune pre-trained LLMs in a
single structural context that links each novel to-
ken to a specific participant role (cf. Kim and
Smolensky, 2021; Petty et al., 2022), and then
examine predictions in unobserved but related
structural contexts for the novel tokens. We con-
sider a different set of verbs and a wider range
of structural contexts than were investigated in
this previous work, and investigate what underlies
the models’ behavior in more detail by examining
the embeddings of the novel words. In addition,
while this work has focused on Type 1 knowl-
edge, we investigate Type 2 knowledge as well,
in experiment 2. Since the LLMs have no experi-
ence with the novel tokens we teach them in the
test contexts, whatever success they have must be
due to knowledge acquired during pre-training.
This allows us to address our general question
about LLMs’ knowledge of relationships between
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contexts by focusing on specific questions about
their knowledge of argument structure.

We find that LLMs demonstrate relatively ro-
bust Type 1 knowledge: They generalize the
use of novel argument tokens across different
structures for existing verbs, suggesting that their
knowledge of position-role mappings is abstract
enough to recognize a notion of construction over
which generalizations can be stated. However,
deeper probing reveals that they do not exhibit
human-like Type 2 knowledge of generalization
across construction types. We show this by intro-
ducing a new verb into the models’ vocabulary
that has novel selectional preferences. Though
LLMs learned these novel preferences and gen-
eralized them to structures that are superficially
similar to those in the fine-tuning data, they failed
to consistently generalize them to other contexts
in a structurally defined, human-like manner. In-
stead, their generalizations were derived through
heuristics based on linear order, yielding high per-
formance in structures where the relative linear
order of arguments and main verb is preserved
(e.g., polar questions), and poor performance in
structures where the relative linear order of argu-
ments is reversed (e.g., canonical passives). We
conclude that the models represent abstract struc-
tures, but that the Type 2 generalizations they
seem to represent rely on surface properties of
the training data.

2 Experiment 1: Assessing Type 1
Generalization with Novel Nouns

Experiment 1 examines the degree to which LLMs
show evidence of Type 1 knowledge by exam-
ining position-role mappings/selectional prefer-
ences across constructions. We explore whether
fine-tuning on a novel noun, presented in a single
context, will allow the LLM to predict its ap-
pearance in a related context. Our primary type
of relation among contexts derives from argu-
ment structure alternations, where the same set
of thematic roles can be realized with distinct
structures. We adopt this strategy following Petty
et al. (2022), who examine Type 1 knowledge
with novel arguments of dative verbs. We focus
instead on the spray/load alternation. In (3) we
see that spray/load alternating verbs can occur
in a theme-object (TO) structure, with the theme
as the object and the goal as prepositional argu-
ment; or in a goal-object (GO) structure, with the

goal as the object and the theme as the prepo-
sitional argument.

(3) spray/load alternation:

a. I sprayed the THAX onto the door.

I sprayed the paint onto the GORX.

(theme-object (TO) structure)

b. I sprayed the door with the THAX.

I sprayed the GORX with the paint.

(goal-object (GO) structure)

We introduced a novel token that can appear
in each of the non-subject argument positions:
THAX for theme arguments and GORX for goal
arguments.2 We fine-tuned LLMs on a small set
of simple sentences containing spray/load verbs
in one of their alternating forms: TO or GO. All
of the sentences for a given run were headed by
one of two spray/load verbs: spray or load.

This meant that there were four distinct
fine-tuning sets, one for each combination of the
syntactic structure (TO or GO) and lexical verb.
Every example in these sets contained exactly
one novel token (as in (3)), with the remaining
arguments drawn from a small set of semanti-
cally plausible nouns. This yielded a total of 12
fine-tuning examples per set.3

Our validation set includes four subparts, whose
performance was averaged: the fine-tuning data-
set evaluated without dropout, sentences instan-
tiating the opposite form of the alternation (e.g.,
spray GO used spray TO in the validation set,

2For both Experiments 1 and 2, we added the novel tokens
to the LLMs’ vocabularies such that they were not split into
subword tokens during tokenization (verified during each
run). Our scripts also verified during each run that all training
and test sentences were tokenized identically when using
a tokenizer with the added tokens and the same tokenizer
without the added tokens (except in the position of the added
tokens).

3An anonymous reviewer notes that this makes our
fine-tuning sets quite small, which may affect their ability to
learn a good representation of the novel tokens. However,
we note that Kim and Smolensky (2021) find that LLMs
of the sort we investigate are able to glean relevant distri-
butional information from a fine-tuning set consisting of as
little as two short sentences. In addition, the models achieved
high levels of success in Experiment 1. For Experiment 2,
where less success is seen, our fine-tuning sets were larger
(288 sentences). Thus, we do not believe the small size of
the fine-tuning sets in Experiment 1 is likely to have had a
negative impact on our results.
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and vice versa), the dataset with the other fine-
tuning verb for that alternation (e.g., spray GO
used load TO in the validation set, and vice
versa), and the dataset in passive (e.g., active
spray GO used passive spray GO in the valida-
tion set, and vice versa). The validation set was
thus constructed to penalize overfitting to our
fine-tuning sentences at the expense of sentences
with various other structures compatible with
our verbs.

To assess an LLM’s sensitivity to Type 1 gen-
eralizations, our test set considered the fine-tuned
model’s predictions on sentences that differed
from the fine-tuning data along three structural
dimensions: (i) the argument structure alterna-
tion, (ii) passivization, and (iii) other syntactic
transformations, including clefting, polar and (ma-
trix/embedded) wh-question formation, negation,
raising, relative clause formation, and particle
shift. In contrast to Petty et al.’s (2022) test data,
which included only four test structures (cross-
ing the alternation and passivization), the way we
combined our three dimensions gave rise a much
broader range of 78 test structures. We show a
subset of these here, with the positions corre-
sponding to each novel word filled in with the
expected token.

(4) a. The man sprayed the THAX onto the

GORX. (TO active)

b. The GORX was sprayed with the

THAX. (GO passive)

c. It was the man that sprayed the THAX

onto the GORX. (cleft subj TO active)

d. It was the THAX that the GORX was

sprayed with.

(cleft P-obj GO passive)

e. Which THAX was the GORX sprayed

with? (matrix wh-P-obj GO passive)

f. I wonder which GORX the man seems

to have sprayed onto the THAX.

(emb wh-obj, emb raising TO active)

To examine generalization to sentences with verbs
distinct from those used in the fine-tuning data, but
which share their thematic roles and participate
in the alternation, we used the following verbs in
test data, grouped into relevant lexical semantic
subclasses (based on Pinker, 1989).

(5) Test verbs:

a. spray-type: spray, shower, dab, rub
b. load-type: load, stock, pack, stuff

Though the broad thematic roles of the verbs
within each class are shared, they differ to some
degree at a fine-grained level that will impact their
selectional preferences.4 This led to an evaluation
set of 5,616 sentences (78 structural contexts in-
stantiated with different non-target nouns and the
lexical verbs from (5)).

During evaluation, novel nouns were replaced
by a MASK token, and the predicted probabilities for
these positions were extracted from the LLM. A
prediction for a position was taken to be accurate
if the model assigns higher probability to the
expected novel token than the unexpected one.5

2.1 Setup and Hyperparameters

We used the HuggingFace transformers li-
brary (Wolf et al., 2020) to fine-tune the BERT
base uncased, DistilBERT base uncased, and
RoBERTa base models. Prior to fine-tuning, we
froze all model parameters except the embed-
dings of the novel tokens THAX and GORX, which
were randomly initialized for each run. We use
a masked language modeling objective, evaluated
at the positions associated with the masked novel
tokens. The learning rate for all runs was 0.001.
Batches contained the full set of 12 (spray or
load) sentences. We train until convergence on
validation set loss, using early stopping with a
patience of 30. Results are averages across five
different random initializations of the novel token
embeddings.

2.2 Results

All models were highly successful in learning the
distribution of the novel tokens in the fine-tuning

4The spray-type subclass of spray/load verbs typically
take themes that refer to substances (rather than discrete
entities) that are distributed over a surface, whether as a
particulate (spray, shower) or as a kind of paste (dab, rub).
The load-type subclass typically take themes that refer to
discrete countable entities and involve placing those upon or
inside the goal, with pack and stuff further specifying that
the goal is being filled against the limits of its capacity.

5We also repeated Experiment 1 using verbs that partici-
pate in the dative alternation and testing on our 78 structures
(though due to the lack of a preposition in the double object
dative structure, some of our test structures were ambiguous
with dative verbs). Results were comparable to those we
report for spray/load verbs.
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TO GO

RoBERTa
goal (GORX) 80.680.6 89.289.2
theme (THAX) 79.879.8 74.274.2

BERT
goal (GORX) 85.785.7 96.796.7
theme (THAX) 92.992.9 81.381.3

DistilBERT
goal (GORX) 82.182.1 96.696.6
theme (THAX) 90.190.1 61.861.8

Table 1: Mean conditional accuracy by model,
novel token thematic role, and fine-tuning struc-
ture. Chance performance is 50%.

datasets: average accuracy was 99.6% for Dis-
tilBERT, 100.0% for BERT, and 98.1% for
RoBERTa. On the test set, the models were again
fairly successful: 82.6% for DistilBERT, 89.2%
for BERT, and 81.0% for RoBERTa.6 The high
generalization accuracy points to the ability of
LLMs to do Type 1 generalizations: The distribu-
tion of a novel noun in one context can be extended
to a distinct context. Not all generalizations were
equally successful, however.

Consider first generalization performance by
thematic role, shown in Table 1. Here, we find that
RoBERTa shows an advantage for goal arguments
across all fine-tuning regimens. In contrast, BERT
and DistilBERT show a bias towards adjacent
objects: They predict objects that were adjacent to
the verb in the fine-tuning data more accurately
(i.e., THAX in TO and GORX in GO).

Next, we break down performance by move-
ment type, reported in Table 2.7 Long-distance

6The accuracies we report for test data are conditionalized;
we only consider those positions in which the prediction is
accurate for the related fine-tuning structure. Thus, for an
LLM that had been fine-tuned on theme object sentences,
only if the fine-tuned model is accurate in the THAX position
in (4a) would success in the THAX positions in the other
examples in (4) be included in the accuracy computation, and
similarly for the GORX positions. Our accuracy metric thus
reports the proportion of sentences in a particular condition
for which the LLM predicts the correct placement of the
novel token(s), provided it has learned how to place them
in the fine-tuning structure. Conditionalizing the accuracy
allows us to interpret it as a measure of generalization. While
the high level of training set accuracy makes this choice
of little importance for Experiment 1 (and does not affect
BERT at all), we use this measure to remain consistent with
Experiment 2, where it is of more consequence.

7An anonymous reviewer asks if there were other in-
teresting patterns that depend on the structure of the test
sentences. For reasons of space, we are unable to go into
details for each of the 78 structure types in our test set. Our

A-movement?
Ā-movement?

✓ ✗

RoBERTa
✓ 77.777.7 85.785.7
✗ 82.182.1 86.386.3

BERT
✓ 87.087.0 93.993.9
✗ 88.888.8 93.293.2

DistilBERT
✓ 79.379.3 89.389.3
✗ 82.182.1 90.090.0

Table 2: Mean conditional accuracy by model,
A-movement, and Ā-movement.

dependencies in transformational generative gram-
mar are modeled as a constituent ‘‘moving’’ from
one place in a syntactic structure to another.
Different subtypes of movement can be distin-
guished: A-movement refers to displacement of
a constituent into a canonical argument posi-
tion, such as passive and raising, which target
the subject position. Ā-movement (‘‘A-bar move-
ment’’) involves displacement of a constituent
into non-argument positions, including clefting,
wh-movement, relativization, and so on. The
worst performance occurs in sentences with both
movement types (e.g., which GORX was the THAX

sprayed onto?, which has passive A-movement,
and wh Ā-movement). This effect appears to be
superadditive.

A concern facing the LLMs we investigate is
that their pre-training data does not give them
direct access to structural generalizations beyond
those based on linear properties of strings. On the
other hand, human language use is characterized
by structure-dependence. While Lin et al. (2019),
Hewitt and Manning (2019), and Jawahar et al.
(2019) present evidence for the encoding of hier-
archical structure in transformer-based language
models, that work does not directly address the
question of generalization we explore here. To
get at that question, we break down accuracy by
the relative linear order of arguments compared
to the fine-tuning data in Table 3. Despite overall
high performance, all models perform somewhat
worse when the linear order of the novel tokens
differs from the order in which they occurred
in the fine-tuning sentences, as in the alternative

full set of results is publicly available at our GitHub
repo (https://github.com/clay-lab/structural
-alternations). Here, we present a breakdown that best
illustrates the most salient properties of our test set results.
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same reverse penalty

RoBERTa 83.283.2 78.778.7 4.54.5

BERT 92.592.5 85.885.8 6.76.7

DistilBERT 87.587.5 77.877.8 9.79.7

Table 3: Mean conditional accuracy by linear
order of arguments relative to the fine-tuning
data.

argument structure or certain questions or clefts.
Recall, though, that no fine-tuning sentence con-
tains both novel tokens, so even generalizations
based on the relative linear order of the arguments
must be based on knowledge acquired during
pre-training.

2.3 Word Embedding Analysis
Our results show that LLMs are able to gener-
alize the use of the novel arguments across a
broad range of lexical and syntactic contexts to an
overall high degree of accuracy, confirming the
generalizability of Petty et al.’s (2022) findings
to a broader set of alternations, structures, and
verbs. We now turn to the question of how the
LLMs achieve this generalization by investigat-
ing learned embeddings of the novel tokens, the
only part of the model updated during fine-tuning.

Figures 1 and 2 show plots from one rep-
resentative model and across multiple models,
respectively, of the cosine similarities (based on
the pre-contextual word embedding layer) of the
novel tokens to selected plausible themes and
goals. Following Cai et al. (2021) and Timkey and
van Schijndel (2021), we use all-but-the-top cor-
rection, removing the top 3 PCA dimensions, to
account for anisotropy in the embedding space.8

The learned embedding of THAX is more similar
to mass noun tokens that are plausible themes
than to count noun tokens that are plausible goals,
suggesting that the models have used information
from the verb and syntactic context to induce a
sensible meaning for the novel token. We see a
similar pattern for goals: GORX is more similar to
count nouns.

As an anonymous reviewer points out, we might
have expected no such consistency given our
use of two distinct verbs (spray and load) for
fine-tuning. The kinds of nouns that are appropri-

8We thank an anonymous reviewer for alerting us to the
problem of anisotropy in the embedding space of transformer
models, and the solution.

Figure 1: Cosine similarities of count and mass nouns
to novel tokens in a BERT model fine-tuned on TO
sentences with spray. The diagonal line indicates equal
similarity to both novel tokens; higher values on an
axis reflect greater similarity to that token. Ticks on
axis margins indicate group means and standard errors.

Figure 2: Mean cosine similarity of target groups of
words to the novel tokens across 60 models fine-tuned
with different verbs (spray, load) and structures (TO,
GO). Each point represents the mean for a single model
across words in the target group (count or mass). Bars
represent standard errors.

ate themes and goals of spray are different from
those that are appropriate themes and goals of
load. Despite this, it appears that the models have
instead learned rather general properties for the
novel tokens (mass vs. count) instead of mean-
ings that are idiosyncratic to particular verbs.
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2.4 Investigating Overgeneralization

The overall high accuracy for Experiment 1 in-
dicates that the models did not overgeneralize to
sentences with two positions for the novel ar-
gument nouns. However, there are other ways
in which overgeneralization might occur that our
test dataset did not check. For instance, consider
the following sentences:

(6) a. They loaded the hay with a pitchfork.

b. They sprayed the hay with bugs.

(e.g., using pesticide)

In these cases, the meaning of the with-phrase
noun discourages interpreting it as the theme
(though it is not impossible if a sufficiently fanci-
ful scenario is envisaged). And in (6b), the proper
passivization of this interpretation is even dis-
tinct from the goal-object passive.

(7) a. The hay with bugs was sprayed. �=
b. The hay was sprayed with bugs.

Given that our fine-tuning data is ambiguous be-
tween these different parses, as required by the
use of novel tokens whose meanings cannot dis-
tinguish different senses like meanings of existing
words that the models have seen in different con-
texts, an important question is how the models
predictions fare in contexts that disambiguate in
favor of one parse or another.

To examine this, we examined the models’
predictions for THAX and GORX in a variety of
sentences with two PPs, like those in (8), using all
of the 8 verbs we evaluated our test datasets on.

(8) a. The [MASK] with the [MASK] was

sprayed with the [MASK].

b. The [MASK] on the [MASK] was

sprayed on the [MASK].

In (8a), the first with-phrase must be interpreted
as an NP modifier, while the second with-phrase
is ambiguous between an instrument and a theme
interpretation. Given that even simple sentences
like I sprayed the wall with paint are technically
ambiguous between an NP modifier parse and a
theme parse, we compared predictions for THAX

and GORX in each mask position to the predictions
of the non-fine-tuned versions of the models for

Figure 3: Log probabilities of mass and count noun
tokens for baseline models (x-axis) vs. for THAX and
GORX for fine-tuned models (y-axis). Each point repre-
sents a single mask position in a particular sentential
context.

the mass and count nouns we used in the discus-
sion of cosine similarities in each position. Re-
sults are shown in Figure 3.

We find that baseline predictions for tokens that
the fine-tuned models consider similar to THAX and
GORX are highly correlated with their predictions
across a variety of these partially disambiguating
contexts (BERT: r = 0.77, p < 2.2× 10−16; Dis-
tilBERT: r = 0.79, p < 2.2 × 10−16; RoBERTa:
r = 0.78, p < 2.2× 10−16).

Thus, the models’ predictions for words that
serve as good themes or goals of spray/load verbs
pre-fine-tuning are highly similar to their predic-
tions for THAX and GORX post-fine-tuning. In other
words, the models do not seem to overgeneralize
THAX and GORX, but instead treat them like the
pre-existing words they come to consider them
similar to.

3 Experiment 2: Assessing Type 2
Generalization with Novel Verbs

The results of Experiment 1 show that LLMs
can generalize the use of novel tokens to related
structural contexts, demonstrating knowledge of
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position-role mappings that cuts across many
constructions. Our exploration of the learned em-
beddings of the novel tokens suggests that the
LLMs’ ability to generalize in this way may be
linked to semantic properties encoded in indi-
vidual token embeddings. If the model knows
that words represented in a certain embedding
subspace are compatible with multiple structural
contexts and it learns that a novel word’s repre-
sentation falls in that subspace, it will generalize
the distribution of a word learned in one context
to another. However, such a strategy does not
suffice for Type 2 generalization, which requires
the recognition of systematic relationships across
contexts, independent of the specific properties
of the contexts. A model could succeed in Exper-
iment 1 by learning preferences for each context
separately, so long as these are characterized by
the same embedding subspace. We would then
expect the syntactic complexity effect shown in
Table 2, as cases with more types of movement
will be less frequent in the training data and
have less robust representations of selectional
preferences.

Experiment 2 examines Type 2 generaliza-
tion more directly. We modify the Experiment
1 paradigm to introduce a novel verb token with
novel selectional preferences. This renders the
novel verb unlike existing ones, so the LLM
cannot succeed by assimilating the novel verb
to a known class of verbs with associated em-
bedding subspace, as it did with Experiment 1’s
novel nouns. Instead, success requires recognizing
regularities that cut across all verbs, which will
apply to the novel verb.

We are not aware of studies that explicitly
demonstrate a human capacity for this kind of
generalization, though the following thought ex-
periment suggests it would be possible. Suppose
we invent a new video game which includes an
action called blorking that can be done only to
an idiosyncratic set of objects—say mushrooms,
clocks, and starfish. If we expose new gamers to
sentences with BLORK only in the active voice as
in (9a), it seems clear that they will generalize
their knowledge of its selectional preferences
in the way that a Type 2 generalization would
suggest, for example preferring the appropriate
nouns in the passive subject position, as in (9b).

(9) a. I just BLORKED the mushroom!
b. The mushroom was just BLORKED!

Are LLMs capable of a similar feat?
Note that we are not saying that people do not

represent Type 0 and Type 1 generalizations—
they clearly do (e.g., Gleitman, 1990; Gleitman
et al., 2005). However, we believe people rep-
resent Type 2 generalizations, too. Our question
is simply whether models like BERT have such
generalizations, or whether they are limited to
the Type 0 and Type 1 generalizations we exam-
ined in Experiment 1.

Experiment 2 focuses specifically on the gen-
eralization from active to passive sentences
discussed above, where active transitive objects
are subject to the same preferences as passive
subjects, regardless of the specific choice of verb.
Our fine-tuning dataset consists of 8 sentences
with a novel verb used in the perfect, like the
following.

(10) The [subj] has always BLORKED the [obj].

Sentences differ only in the choice of preverbal
adverb and presence (or not) of a sentence-final
modifier. For each of BLORK’s argument positions,
[subj] and [obj], we select 6 nouns in the LLM
vocabulary as possible arguments. To ensure that
assimilation to the selectional properties of an
existing verb was not a viable strategy, we chose
nouns that did not exhibit a clear preference for
one position over the other prior to fine-tuning.9

During fine-tuning, sentences were presented
with both the novel verb and its argument nouns
masked, as this maximized performance. As val-
idation sets, we used the fine-tuning set with
dropout disabled, as well as perfect passive,
past-tense active, and past-tense passive sentences
with the novel verb. We use these validation set
subparts to ensure that the model did not over-
fit to active structures (via the inclusion of pas-
sive sentences), nor to perfect structures (via the

9We did this as follows: For each model we randomly
initialized the novel verb embedding. Across the set of 8
fine-tuning sentences as well as 5 more complex sentences,
we compared the model’s predictions in subject and ob-
ject positions for all nouns from the SUBTLEX corpus
(Brysbaert and New, 2009) of > 3 characters that were to-
kenized as a single token in all models. From this set of
predictions, we identified the 12 nouns with the lowest aver-

age sum of squared log odds ratios, i.e.,
∑

s

(
log p(sub=n|s)

p(obj=n|s)

)2

.
From these 12, we used nouns 0, 3, 4, 7, 10, and 11 as sub-
ject arguments, and the others as object arguments.

1384



inclusion of past tense sentences). We found fine-
tuning until convergence did not always produce
the best generalization, as overall validation loss
would decrease despite overfitting to one of our
validation set subparts. Instead, we fine-tuned for
a maximum of 260 epochs (= weight updates),
with a minimum of 100 epochs and a patience of
30, a regimen that yielded the most success for
BERT.10

Our test set consisted of a similar set of sentence
types to those from Experiment 1, which included
passive sentences containing the verb BLORK. To
form such sentences, we exploited the widely
attested homophony of English past and passive
participles in order to create passive sentences
using the same, fine-tuned, novel verb token for
BLORKED.

3.1 Setup and Hyperparameters
As in Experiment 1, we carried out fine-tuning
on BERT, RoBERTa, and DistilBERT models. In
order to investigate to what extent performance
was reflective of properties of the LLM archi-
tecture under study rather than randomness in
pre-training, we additionally fine-tuned 5 Multi-
BERT models. These are models whose archi-
tecture and pre-training regimen are like BERT,
but with different random initializations (Sellam
et al., 2022).

For fine-tuning, we initially attempted freezing
all parameters except the novel token embedding
as in Experiment 1. However, this prevented the
models from learning the unusual selectional pref-
erences of the novel verb even for the fine-tuning
data. This meant that a larger set of parameters

10An anonymous reviewer notes that such a lengthy period
of fine-tuning may be excessive, given the risk of overfitting,
despite our attempts to address this risk via the modified loss
term and the construction of our validation set. However,
Mosbach et al. (2021) evaluate BERT models’ stability over
fine-tuning, and ultimately recommend a ‘‘hard-to-beat base-
line’’ for fine-tuning BERT that relies on many iterations
and training until loss is (almost) zero. In addition, while we
fine-tuned for a maximum of 260 epochs, we always selected
the model state which performed best on the validation set
for evaluation, even if this was a state prior to 260 epochs
(or prior to 100 epochs). Figure 8 (discussed in more detail
later) shows mean validation accuracy from each validation
set subpart (perfect transitive (no dropout), perfect passive,
past transitive, past passive) for each weight update/epoch
over the course of fine-tuning until convergence. It is clear
that the model does not overfit to active sentences at the
expense of passive sentences; rather, its performance on pas-
sive sentences rises slowly but fails to achieve a high level
of success.

needed to be modified during fine-tuning. How-
ever, unfreezing model parameters opens up the
possibility of catastrophic forgetting (French, 1999;
McCloskey and Cohen, 1989), where a model’s
representations of existing tokens (i.e., the argu-
ment nouns) change to accommodate the fine-
tuning data and lose their predictive utility outside
of this data. For instance, if during fine-tuning
a model assimilated its representations of the
6 selected subject arguments to animate nouns
(even if they are inanimate), and its represen-
tations of the 6 selected object arguments to
liquids (even if they are not liquids), it could
succeed on the task by assimilating the novel verb
to the existing verb drink. However, this would
reflect only a Type 1 generalization that is spe-
cific to drink (and words like it). Such a strategy
would have a negative effect outside of the fine-
tuning dataset, as the selected subject and object
nouns would now be predicted in inappropriate
contexts.

We explored a number of strategies to counter
this kind of overfitting, while still allowing
the novel selectional preferences to be learned.
The most successful one involved unfreezing all
model parameters while introducing a modifica-
tion to the loss function, following Hawkins et al.
(2020a). To cross-entropy, we add a penalty for
Kullback-Leibler divergence between predictions
of the fine-tuned model M and those of the
baseline model B (i.e., post-pre-training but pre-
fine-tuning). We extract a different random sam-
ple S of 100 sentences from English Wikipedia
and the BooksCorpus at each update, for which
we calculate the summed KL divergence across
all token positions t in sentence s ∈ S.11

L = LCE + λ
∑

s∈S

∑

t∈s
DKL(pM (t)||pB(t))

We used λ = 2.5 as a scaling factor. Smaller
values did not adequately address overfitting;
larger ones prevented learning of the novel
selectional preferences during fine-tuning. Ex-
periment 2 used a learning rate of 0.0001 to ad-
dress instability found when unfreezing model

11Our random sample approximately matched the pro-
portion of sentences drawn from each corpus to BERT’s
pre-training regimen, with 68% drawn from English
Wikipedia and 32% drawn from the BooksCorpus. We used
the 20200501.en Wikipedia and BooksCorpus datasets
from HuggingFace’sdatasets library (Lhoest et al., 2021).
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Figure 4: DKL distributions for each fine-tuned model
type compared to its pre-trained version in Experiment
2, calculated on the basis of 100 examples randomly
chosen from 10,000 selected from English Wikipedia
and the BookCorpus. The left half of the plot shows
DKL distributions for each model with our modified
loss term, and the right half shows the DKL distri-
butions for each model when using only the default
cross entropy loss (LCE). Each model has three asso-
ciated distributions, one for each of the random seeds
used in Experiment 2.

parameters with the learning rate of 0.001 from
Experiment 1.

Figures 4 and 5 show the effect of using our
modified loss term, which greatly reduced DKL

compared to using only LCE (the default), for
randomly chosen positions of randomly chosen
sentences (Figure 4) and for positions of the sub-
ject and object argument nouns of BLORKED in
randomly selected corpus sentences containing
these words (Figure 5). The range of mean KL
divergences (for Figure 4) was [0.578, 1.12] for
models with the KL divergence loss term, and
[5.29, 14.6] without. (In both cases, this range
does not include the mean KL divergence for
RoBERTa, which was an outlier with means 5.53
and 38.3, respectively.) For comparison, we cal-
culated the DKL of the BERT base uncased
and DistilBERT base uncased models using the
same methodology on the basis of our full
10,000 example mini-dataset, which yielded a
value of 0.9.

This value constitutes a strong baseline as
DistilBERT’s pre-training objective is to approx-
imate BERT’s predicted probability distributions
(Sanh et al., 2020). The fact that post-fine-tuning
DKL is comparable to this value suggests fine-
tuning has not substantially disrupted the LLMs’
linguistic knowledge.12

12An anonymous reviewer suggests applying a simi-
lar penalty term for each layer, following ideas from the

Figure 5: DKL distributions for each fine-tuned model
type compared to its pre-trained version in Experi-
ment 2, calculated on the basis of 120 examples (10
per argument noun) randomly chosen from English
Wikipedia that contained the nouns used as argu-
ment nouns for BLORKED in Experiment 2. Each model
has three associated distributions, one for each of the
random seeds used in Experiment 2.

3.2 Results

We evaluated model performance using accuracy
as described in Experiment 1. However, rather
than comparing the probability of different nouns
in the same position as in Experiment 1, we in-
stead compared the probability assigned to each
of the twelve selected nouns across positions in a
sentence: If noun n is assigned higher probability
in the appropriate position P than in the other
position P ′, it is counted as correct. This elim-
inates the potential confound of high-frequency
nouns being assigned higher probability overall.
Comparing a single token’s probability in differ-
ent contexts reveals the extent to which the model
has learned to distinguish BLORKED’s different ar-
gument positions. We also computed a confidence
score as a more fine-grained assessment of model
performance.

Confidence(n) = log p(n|P )− log p(n|P ′)

knowledge distillation literature that Gou et al. (2021) call
feature-based knowledge transfer. We attempted such an
addition, but it did not warrant extended investigation: It
impeded the network’s success on the training data and did
not improve generalization to the test data.
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For presentational purposes, we use ‘‘subject’’
and ‘‘object’’ to refer to the underlying roles of
the arguments. Though this introduces potential
confusions, as the surface subject of a passive is
labeled as its object, it has the advantage of col-
lapsing across positions in which identical pre-
dictions should be made for possible nouns.

An important concern here regards the fairness
of this task (raised by an anonymous reviewer).
Just because a novel verb occurs with a particular
noun in object position, this does not necessarily
license the inference that the noun is less likely
to occur in subject position, or that it may only
occur in object position. Many verbs allow the
same/similar arguments to occur in either subject
or object position (meet, like, etc.). A lack of
a learned preference might indicate not that the
LLMs have failed to generalize, but rather that
they have instead displayed a reasonable conser-
vatism, not generalizing from appearance in one
context to non-appearance in another. It would
thus be unfair to penalize the models for having
failed to generalize if they displayed no prefer-
ence. But in fact, almost all of our models display
clear preferences for the appearance of our target
nouns in both simple actives and simple passives.
Thus, we can use these preferences to evaluate
whether the models are generalizing correctly.

The left column of Table 4 reports accuracy
on the fine-tuning data. Though the models do
not succeed on the fine-tuning data to the same
degree as in Experiment 1, they perform con-
siderably better than chance, indicating that they
have learned an asymmetrical generalization for
sentences like the fine-tuning data. Other columns
report generalization accuracy by voice (active vs.
passive) and linear order of BLORK’s arguments:
subject preceding object (SO) or object preced-
ing subject (OS).13 Simple active sentences (most
like the fine-tuning data) are SO, while simple
passives are OS. Voice and argument order are
decoupled in sentences like Which [obj] has the
[subj] BLORKED? (active OS) and Which [subj]
was the [obj] BLORKED by? (passive SO). While
the models generalize fairly well to active SO

13For reasons of space, we do not discuss how additional
structural factors affected generalization in experiment 2. In
fact, we found that the patterns seen in active/passive gener-
alization were similar to the patterns seen with generalization
across other kinds of structural contexts. All of our data is
publicly available via our GitHub repo (https://github
.com/clay-lab/structural-alternations).

Fine-tune Active Passive

acc. SO OS SO OS
RoBERTa 79.279.2 66.766.7 53.653.6 44.844.8 39.539.5

BERT 86.186.1 75.575.5 54.254.2 54.454.4 55.755.7

DistilBERT 88.988.9 74.874.8 49.449.4 51.951.9 39.939.9

MultiBERT 00 80.680.6 63.963.9 50.850.8 48.748.7 40.840.8

MultiBERT 05 84.784.7 80.480.4 49.849.8 51.051.0 21.421.4

MultiBERT 10 82.682.6 70.170.1 55.255.2 44.144.1 42.742.7

MultiBERT 15 76.476.4 68.868.8 49.749.7 53.353.3 43.643.6

MultiBERT 20 79.279.2 66.466.4 65.265.2 41.041.0 43.043.0

Table 4: Mean conditional accuracy by model,
voice, and relative linear order of argument types.
Non-conditional accuracy on the fine-tuning data
structure is included in the leftmost column. ‘‘Sub-
ject’’ and ‘‘object’’ arguments are defined relative
to canonical active structures. SO = subject argu-
ments linearly precede object arguments (as in
simple actives); OS = object arguments linearly
precede subject arguments (as in simple passives).
Fine-tuning data for Experiment 2 uses SO order
with actives.

sentences, performance is lower for other sen-
tence types. In almost all cases, the choice of a
position for a given noun is at or below chance.
The exception is BERT, where generalization to
other sentence types is slightly above chance,
though not nearly at the level of the fine-tuning
or active SO cases.

We found little difference across the Multi-
BERT models, which failed to consistently gen-
eralize in all but active SO sentences. Indeed, in
passive sentences, most models displayed below
chance performance, most consistent not with a
lack of preference, but rather with a preference to
place arguments in the opposite of their correct
positions. While chance performance on its own
could have been due to problems with our task,
the preferences in simple actives and simple
passives indicate that the models have learned
preferences, but not always the ones that accord
with the correct mapping between active and pas-
sive structures.

Generalization seems to be guided by the rela-
tive linear order of the arguments and the verb: If
the subject argument occurs before the verb, which
in turn precedes the object, as in the fine-tuning
data, generalization is quite good. In both active
and passive sentences, conditional accuracy al-
ways decreases for sentences with OS argument
order, as well as passive SO sentences, where
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Figure 6: A single BERT’s performance on perfect ac-
tive transitive (e.g., The [subj] has always BLORKED the
[obj].) and perfect passive (e.g., The [obj] has always
been BLORKED by the [subj].) sentences. Fine-tuning
data for Experiment 2 consisted of perfect transitive
sentences. The diagonal line indicates equal confidence
(i.e., perfect generalization) across sentence types.

both subject and object precede the passive verb.
We hypothesize that this pattern of performance
results from the models’ using a linear heuristic
to generalize across sentence types.

We investigated this behavior at a more fine-
grained, individual structure level as well. Figure 6
compares confidence for one representative BERT
model between perfect transitive sentences (i.e.,
sentences that match the fine-tuning structure)
and corresponding perfect passive sentences. Al-
though the model has learned the correct positions
of the arguments in perfect transitive sentences
(almost all points are positive on the x-axis), it
fails to generalize this to corresponding passive
sentences (points are not systematically positive
on the y-axis), though generalization performance
on objects is noticeably better than on subjects
(conditional subject acc.: 35.0%; conditional ob-
ject acc.: 65.0%; overall: 50.0%).

Figure 7 zooms out a bit, with each point en-
coding the confidence scores of a single pre-
trained model with one of three random seeds.
The performance of each pre-trained model is
represented by two points, one for subjects and
one for objects, averaged across distinct nouns for
each argument type and a set of perfect and pas-

Figure 7: Mean performance from 24 models (BERT;
DistilBERT; RoBERTa; MultiBERT 00, 05, 10, 15,
20 × 3 distinct model-specific argument sets) on per-
fect transitive and perfect passive sentences. Each point
is the mean confidence score for an argument type
taken across individual argument tokens and sentences
of that type for a given model run. Bars are standard
errors.

sive sentences. We see, once again, no tendency to
generalize systematically from active to passive.

We might also detect Type 2 generalizations
through the course of learning: Changes in the
confidence of argument predictions should run in
parallel across structures that are linked by a Type
2 generalization. To test for this, we tracked mean
confidence scores for different sentence and argu-
ment types over the course of fine-tuning for each
weight update. Figure 8 gives a representative
plot for a BERT model tuned until convergence.
Perfect and past tense actives move together. In
contrast, perfect and past passives show little
improvement for objects, and only a tiny improve-
ment for subjects that stabilizes below actives
(around 0, indicating chance performance).

3.3 Investigating Over- and
Undergeneralization

Experiment 2’s results show that LLMs appear
to overgeneralize, in that they generalize linearly
to from active transitives to passives; and under-
generalize, in that they fail to generalize from ac-
tive SO sentences to active OS and passive SO
sentences.

1388



Figure 8: Mean confidence during fine-tuning for tran-
sitive (active) and passive sentences for each argument
type. Perfect transitive is the fine-tuning data with
dropout disabled; others are validation set subparts.
While performance on actives increases substantially,
performance on passives increases only a little over the
entire course of fine-tuning.

There is a caveat regarding the failure of over-
generalization: Not all verbs that appear in SVO
active sentences can passivize.14

(11) a. *A car is had by a driver.

b. *Five dollars are cost by five tickets.

c. *The boy is resembled by the girl.

While there are relatively fewer verbs like these
than verbs that do passivize, they represent an
important confound. This is because, in the ab-
sence of explicit positive evidence that BLORKED

can passivize, the models may have instead come
to treat it as belonging to the class of unpassiviz-
able verbs like have, cost, resemble, etc. If this
were the case, we would be testing the models on
apparently ungrammatical sentences, where it is
not clear what the ‘‘correct’’ behavior should be.

To investigate this, we extracted predictions
from the baseline versions of the models used
in Experiment 2 for the argument positions of
simple passive sentences like those in (11) and
their (grammatical) simple active counterparts for
a variety of good subject and good object nouns.
We determined good subject and object nouns
using the iWeb corpus by searching for par-
tial strings matching the active versions of our
sentences (e.g., "A NOUN has a" and "has a

14We thank an anonymous reviewer for raising this point.

NOUN ."). We chose from among the 2000 most
frequent nouns for one argument that did not ap-
pear among the 2000 most frequent nouns for
the other argument that were tokenized as whole
words. We then extracted predictions for each to-
ken for each position from the models for active
and passive sentences for have and cost, to see
what the models’ predictions were for sentences
with unpassivizable verbs. If these predictions
differ from the predictions for the arguments of
BLORKED, we could tentatively conclude that the
models did not treat BLORKED as unpassivizable.
We report ‘‘accuracy’’ in Figure 9, where being
correct is defined as though the verbs were pas-
sivizable; a prediction was accurate if the token
was more probable in the expected position than
in the alternative position.

We notice a clear difference between an unpas-
sivizable verb like have, which the models seem
to treat as passivizable; and an unpassivizable
verb like cost, for which the models general-
ize in the linear fashion we saw with BLORKED.
This unfortunately leaves us with an unclear re-
sult: perhaps the models are treating BLORKED as
belonging to the subset of unpassivizable verbs
like cost, rather than to the subset of those like
have. We note that a possible reason that the
models may treat unpassivizable uses of have
as passivizable is that there are some passive
uses of have, such as A good time was had by
all, despite this being restricted to particular con-
texts (compare (11a)).

We thus cannot decisively say that the models
have failed in their treatment of BLORKED in pas-
sives: One could consider this a case of learning
an incorrect linear generalization about the distri-
bution of BLORKED’s arguments; but on the other
hand, it is also possible that the model has instead
learned that BLORKED is an unpassivizable verb
like cost, and thus the apparent failure is actually
conservatism in the face of ambiguous evidence.

Despite this complication, we still do not con-
sider this to compromise our overall view that
these LLMs in general fail to represent Type 2
knowledge. In particular, we did not only con-
sider passives in Experiment 2, but also, crucially,
active OS sentences involving Ā-movement like
clefting, wh-movement, etc. As far as we know,
no verb disallows such movement of its argu-
ments, even unpassivizable verbs: e.g., It is a car
that a driver has, It was five dollars that five tick-
ets cost). But in Table 4 we saw that the models
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Figure 9: ‘‘Accuracy’’ across argument tokens for active and passive sentences with unpassivizable verbs. We
define ‘‘accuracy’’ as making the predictions expected if the verbs could passivize. Bars are 95% CIs.

typically failed to generalize to active OS sen-
tences, with performance hovering around chance.
Even if we do not want to consider the results for
passive OS sentences to represent overgeneraliza-
tion in light of Figure 9, we consider the results
for active OS sentences to represent undergener-
alization, in that they display no knowledge of
Type 2 generalizations that relate active SO and
active OS sentences.

3.4 Discussion

Experiment 2’s results suggest the LLMs un-
der study do not encode Type 2 generalizations
that cut across active and passive sentences for a
novel verb seen only in active sentences. How-
ever, these LLMs do show signs of generalizing
across structures, from the fine-tuning structure
to other active SO sentences (Table 4). This re-
quires a Type 2 generalization that links, e.g.,
perfect and past-tense sentences, positive and
negative sentences, or declaratives and polar ques-
tions. However, this generalization need not be
structure-sensitive, unlike Type 2 generalizations
found in natural language. Rather, LLMs’ favored
generalizations appear to collapse contexts based
on a linear template—in this case, N1 ≺ V ≺ N2.
In passive OS sentences, this leads to the wrong
prediction: the initial noun is predicted to have
the same distributional constraints as active sub-
jects, while the by-phrase noun, interpreted as
N2, has the distributional constraints of active
objects, yielding below chance performance in
almost all cases. Active OS and passive SO sen-
tences, with N1 ≺ N2 ≺ V order do not match the
template, so fine-tuning provides no useful guid-
ance, leading to chance performance.

The preference for linear generalizations recalls
previous findings about transformers’ inductive

bias (Petty and Frank, 2021), but conflicts with
more recent results with large pre-trained sequence-
to-sequence models (Mueller et al., 2022). Carry-
ing out Type 2 generalizations goes beyond the
inductive bias necessary for structure-sensitive
mappings, as it requires drawing inferences in-
dependent of lexical content.

4 Related Work

Past work has probed token embeddings for
knowledge of argument structure (Kann et al.,
2019; Pavlick, 2022; Sasano and Korhonen, 2020;
Tenney et al., 2019a,b; Warstadt et al., 2020;
Zhu and de Melo, 2020). Other work has focused
on neural networks’ ability to predict the likeli-
hood of a verb or noun in forms of an argument
structure alternation (Chowdhury and Zamparelli,
2019; Hawkins et al., 2020b; Loáiciga et al.,
2021; Metheniti et al., 2020; Petty et al., 2022;
Warstadt and Bowman, 2020; Yoshida and Oseki,
2022), and whether LLMs distinguish plausible
from implausible argument-role mappings in
role-reversal sentences (Ettinger, 2020). Though
revealing of Type 0 knowledge, that work does not
address whether LLMs can apply such knowledge
productively, which is what drives our study. Ex-
periment 1 adapts Petty et al.’s (2022) approach to
probe Type 1 knowledge, but we consider differ-
ent verbs in a wider range of structures, allowing
us to assess this knowledge in a more refined
way along dimensions such as linear order and
movement type. However, our work extends these
previous investigations by considering in more
detail than this work how the models achieved
success by examining the learned embeddings of
the novel words, finding that the possibility of
assimilation seemed to underlie success, and by
examining Type 2 knowledge directly.
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Thrush et al. (2020) found BERT predicted un-
seen in-group pairings of novel verbs with novel
nouns to be more likely than unseen out-group
pairings, showing BERT can generalize selec-
tional preferences across verbs. They also showed
BERT can generalize the use of novel verbs that
occurred in contexts compatible with one form
of an argument structure alternation to the other
context (e.g., a novel verb V in a DO context
to V in a PD context). While this work also fo-
cuses on the generalization of selectional prefer-
ences, we examine structures beyond the argument
structure alternation itself, giving us a better
assessment of BERT’s abilities with Type 2 gen-
eralization over structurally defined relations be-
tween contexts.

Methodologically, Lasri et al.’s (2022) work
is most similar to ours. They reinvestigate
Goldberg’s (2019) claim that BERT can general-
ize its knowledge of subject-verb number agree-
ment in English to novel structures and lexical
items. Lasri et al. (2022) show that Goldberg’s re-
sults hold only for simple sentences and those
whose lexical patterns match naturally occur-
ring data. BERT fails to generalize correctly to
grammatical but nonsensical sentences in more
complex structures, where as little as a single
attractor noun intervenes between the correct
agreement target and the verb. Newman et al.
(2021) came to similar conclusions on the basis
of a different approach to subject-verb agreement,
finding that models were less likely to predict
correct agreement morphology for verbs that were
improbable in particular contexts. This work pro-
vides a distinct but complementary perspective
regarding our interpretation of our results, given
our observation that models seem to do well
only when they can assimilate novel words to
existing words (Experiment 1, but not Experi-
ment 2). This suggests that a general reliance on
surface-level similarities to the pre-training data
underlies success in generalization. Lasri et al.
(2022) show that this is true of the morphological
fact of subject-verb agreement, and we show it is
true for the structural fact of argument structure
alternations (and movement more generally).

5 Conclusion

We investigated the performance of transformer-
based language models on two tasks requiring
structural generalization.

Experiment 1 revealed that LLMs were gener-
ally able to succeed at predicting novel arguments
to known verbs in correct positions in structures
different from those in the fine-tuning data. An
investigation of the learned embeddings of the
novel tokens showed that the LLMs can use a
syntactic bootstrapping strategy (Gleitman, 1990;
Gleitman et al., 2005), where information about
syntactic distribution is used to inform hypotheses
about meaning. Specifically, LLMs assimilate the
embeddings of novel tokens to those of existing
words that share their distribution. If an LLM
constrains distributions on the basis of embed-
ding subspaces, the distribution of the novel token
in a previously observed context in which it has
not appeared can thereby be driven by its sim-
ilarity to other tokens, giving rise to successful
Type 1 generalization.

Experiment 2 found that, when this strategy
was unavailable, models were able to generalize
successfully only when the relative linear order
of the novel verb’s arguments matched in the
fine-tuning and test data, but degraded noticeably
for reversed orders. We conclude that the models
we investigated can represent Type 2 knowledge
across structural contexts, but that the kind of
Type 2 knowledge they represent is based on sur-
face level properties like the relative linear order
of corresponding elements.

While this study focuses on one microscopic
aspect of linguistic knowledge, the lessons it
offers about what LLMs are capable of are sig-
nificant. Impressive as their performance on a
wide range of downstream tasks is they appear to
have limited ability to generalize in a human-like
structure-sensitive fashion. Appearances to the
contrary may stem from the separate learning of
distributional properties across multiple contexts.
The necessity for such redundant learning im-
poses a high demand on the amount of training
data that is required for LLMs, which we expect
can be satisfied for only a very few high resource
languages.
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Lysandre Debut, Stas Bekman, Pierric Cistac,
Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf.
2021. Datasets: A community library for
natural language processing (version 2.0.0). In
Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184,
Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021
.emnlp-demo.21

Yongjie Lin, Yi Chern Tan, and Robert Frank.
2019. Open sesame: Getting inside BERT’s

linguistic knowledge. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP,
pages 241–253, Florence, Italy. Association
for Computational Linguistics. https://doi
.org/10.18653/v1/W19-4825

Tal Linzen, Emmanuel Dupoux, and Yoav
Goldberg. 2016. Assessing the ability of
LSTMs to learn syntax-sensitive dependencies.
Transactions of the Association for Computa-
tional Linguistics, 4:521–535. https://doi
.org/10.1162/tacl_a_00115

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. RoBERTa: A robustly op-
timized BERT pretraining approach. CoRR,
abs/1907.11692v1.
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