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Abstract

Most work on modeling the conversation his-
tory in Conversational Question Answering
(CQA) reports a single main result on a com-
mon CQA benchmark. While existing models
show impressive results on CQA leaderboards,
it remains unclear whether they are robust to
shifts in setting (sometimes to more realis-
tic ones), training data size (e.g., from large
to small sets) and domain. In this work, we
design and conduct the first large-scale robust-
ness study of history modeling approaches for
CQA. We find that high benchmark scores
do not necessarily translate to strong robust-
ness, and that various methods can perform
extremely differently under different settings.
Equipped with the insights from our study, we
design a novel prompt-based history modeling
approach and demonstrate its strong robust-
ness across various settings. Our approach is
inspired by existing methods that highlight
historic answers in the passage. However, in-
stead of highlighting by modifying the passage
token embeddings, we add textual prompts
directly in the passage text. Our approach
is simple, easy to plug into practically any
model, and highly effective, thus we recom-
mend it as a starting point for future model
developers. We also hope that our study and
insights will raise awareness to the importance
of robustness-focused evaluation, in addition
to obtaining high leaderboard scores, leading
to better CQA systems.1

1 Introduction

Conversational Question Answering (CQA) in-
volves a dialogue between a user who asks
questions and an agent that answers them based
on a given document. CQA is an extension of the

∗Authors contributed equally to this work.
1Our code and data are available at: https://github

.com/zorikg/MarCQAp.

traditional single-turn QA task (Rajpurkar et al.,
2016), with the major difference being the pres-
ence of the conversation history, which requires
effective history modeling (Gupta et al., 2020).
Previous work demonstrated that the straightfor-
ward approach of concatenating the conversation
turns to the input is lacking (Qu et al., 2019a),
leading to various proposals of architecture com-
ponents that explicitly model the conversation
history (Choi et al., 2018; Huang et al., 2019;
Yeh and Chen, 2019; Qu et al., 2019a,b; Chen
et al., 2020; Kim et al., 2021). However, there is
no single agreed-upon setting for evaluating the
effectiveness of such methods, with the majority
of prior work reporting a single main result on
a CQA benchmark, such as CoQA (Reddy et al.,
2019) or QuAC (Choi et al., 2018).

While recent CQA models show impressive re-
sults on these benchmarks, such a single-score
evaluation scheme overlooks aspects that can be
essential in real-world use-cases. First, QuAC and
CoQA contain large annotated training sets, which
makes it unclear whether existing methods can re-
main effective in small-data settings, where the
annotation budget is limited. In addition, the eval-
uation is done in-domain, ignoring the model’s
robustness to domain shifts, with target domains
that may even be unknown at model training
time. Furthermore, the models are trained and
evaluated using a ‘‘clean’’ conversation history
between 2 humans, while in reality the history
can be ‘‘noisy’’ and less fluent, due to the in-
correct answers by the model (Li et al., 2022).
Finally, these benchmarks mix the impact of ad-
vances in pre-trained language models (LMs) with
conversation history modeling effectiveness.

In this work, we investigate the robustness
of history modeling approaches in CQA. We ask
whether high performance on existing benchmarks
also indicates strong robustness. To address this
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Training In-Domain Evaluation Out-Of-Domain Evaluation
Data source

QuAC QuAC QuAC-NH
CoQA DoQA

Domain children stories literature mid-high school news wikipedia cooking movies travel
# Examples 83,568 7,354 10,515 1,425 1,630 1,653 1,649 1,626 1,797 1,884 1,713
# Conversations 11,567 1,000 1,204 100 100 100 100 100 400 400 400

Table 1: Datasets statistics.

question, we carry out the first large-scale robust-
ness study using 6 common modeling approaches.
We design 5 robustness-focused evaluation set-
tings, which we curate based on 4 existing CQA
datasets. Our settings are designed to evaluate
efficiency in low-data scenarios, the ability to
scale in a high-resource setting, as well as robust-
ness to domain-shift and to noisy conversation
history. We then perform a comprehensive ro-
bustness study, where we evaluate the considered
methods in our settings.

We focus exclusively on history modeling, as it
is considered the most significant aspect of CQA
(Gupta et al., 2020), differentiating it from the
classic single-turn QA task. To better reflect the
contribution of the history modeling component,
we adapt the existing evaluation metric. First, to
avoid differences which stem from the use of dif-
ferent pre-trained LMs, we fix the underlying LM
for all the evaluated methods, re-implementing
all of them. Second, instead of focusing on final
scores on a benchmark, we focus on each model’s
improvement (Δ%) compared to a baseline QA
model that has no access to the conversation
history.

Our results show that history modeling meth-
ods perform very differently in different settings,
and that approaches that achieve high benchmark
scores are not necessarily robust under low-data
and domain-shift settings. Furthermore, we notice
that approaches that highlight historic answers
within the document by modifying the document
embeddings achieve the top benchmark scores,
but their performance is surprisingly lacking in
low-data and domain-shift settings. We hypothe-
size that history highlighting yields high-quality
representation, but since the existing highlighting
methods add dedicated embedding parameters,
specifically designed to highlight the document’s
tokens, they are prone to over-fitting.

These findings motivate us to search for
an alternative history modeling approach with
improved robustness across different settings.
Following latest trends w.r.t. prompting in NLP
(Liu et al., 2021) we design MarCQAp, a novel

prompt-based approach for history modeling,
which adds textual prompts within the grounding
document in order to highlight previous answers
from the conversation history. While our approach
is inspired by the embedding-based highlighting
methods, it is not only simpler, but it also shows
superior robustness compared to other evaluated
approaches. As MarCQAp is prompt-based, it can
be easily combined with any architecture, allow-
ing to fine-tune any model with a QA architecture
for the CQA task with minimal effort. Thus, we
hope that it will be adopted by the community as
a useful starting point, owing to its simplicity, as
well as high effectiveness and robustness. We also
hope that our study and insights will encourage
more robustness-focused evaluations, in addition
to obtaining high leaderboard scores, leading to
better CQA systems.

2 Preliminaries

2.1 CQA Task Definition and Notations

Given a text passage P , the current question qk
and a conversation history Hk in a form of a
sequence of previous questions and answersHk =
(q1, a1, . . . , qk−1, ak−1), a CQA model predicts the
answer ak based on P as a knowledge source. The
answers can be either spans within the passage P
(extractive) or free-form text (abstractive).

2.2 CQA Datasets

Full datasets statistics are presented in Table 1.

QuAC (Choi et al., 2018) and CoQA (Reddy
et al., 2019) are the two leading CQA datasets,
with different properties. In QuAC, the questions
are more exploratory and open-ended with longer
answers that are more likely to be followed up.
This makes QuAC more challenging and realistic.

We follow the common practice in recent work
(Qu et al., 2019a,b; Kim et al., 2021; Li et al.,
2022), focusing on QuAC as our main dataset,
using its training set for training and its vali-
dation set for in-domain evaluation (the test set
is hidden, reserved for a leaderboard challenge).
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We use CoQA for additional pre-training or for
domain-shift evaluation.

DoQA (Campos et al., 2020) is another CQA
dataset with dialogues from the Stack Exchange
online forum. Due to its relatively small size, it
is typically used for testing transfer and zero-shot
learning. We use it for domain-shift evaluation.

QuAC Noisy-History (QuAC-NH) is based on
a datatset of human-machine conversations col-
lected by Li et al. (2022), using 100 passages
from the QuAC validation set. While Li et al. used
it for human evaluation, we use it for automatic
evaluation, leveraging the fact that the answers
are labeled for correctness, which allows us to use
the correct answers as labels.

In existing CQA datasets, each conversa-
tion (q1, a1, .., qm, am) and the corresponding
passage P , are used to create m examples
{Ek}mk=1 = {(P,Hk, qk)}mk=1, where Hk =
(q1, a1, . . . qk−1, ak−1). ak is then used as a la-
bel for Ek. Since QuAC-NH contains incorrect
answers, if ak is incorrect we discard Ek to
avoid corrupting the evaluation set with incor-
rectly labeled examples. We also filtered out
invalid questions (Li et al., 2022) and answers
that did not appear in P .2

2.3 CQA Related Work

Conversation History Modeling is the major chal-
lenge in CQA (Gupta et al., 2020). Early work
used recurrent neural networks (RNNs) and vari-
ants of attention mechanisms (Reddy et al., 2019;
Choi et al., 2018; Zhu et al., 2018). Another
trend was to use flow-based approaches, which
generate a latent representation for the tokens in
Hk, using tokens from P (Huang et al., 2019;
Yeh and Chen, 2019; Chen et al., 2020). Modern
approaches, which are the focus of our work, lever-
age Transformer-based (Vaswani et al., 2017)
pre-trained language models.

The simplest approach to model the history with
pre-trained LMs is to concatenate Hk with qk and
P (Choi et al., 2018; Zhao et al., 2021). Alter-
native approaches rewrite qk based on Hk and
use the rewritten questions instead of Hk and qk
(Vakulenko et al., 2021), or as an additional train-
ing signal (Kim et al., 2021). Another fundamental
approach is to highlight historic answers within

2Even though Li et al. only used extractive models, a
small portion of the answers did not appear in the passage.

Pre-trained
Training Evaluation

LM Size

Standard Base QuAC QuAC

High-Resource Large CoQA + QuAC QuAC

Low-Resource Base QuAC smaller samples QuAC

Domain-Shift Base QuAC CoQA + DoQA

Noisy-History Base QuAC QuAC-NH

Table 2: Summary of our proposed settings.

P by modifying the passage’s token embeddings
(Qu et al., 2019a,b). Qu et al. also introduced
a component that performs dynamic history se-
lection after each turn is encoded. Yet, in our
corresponding baseline we utilize only the his-
toric answer highlighting mechanism, owing to its
simplicity and high effectiveness. A contempora-
neous work proposed a global history attention
component, designed to capture long-distance
dependencies between conversation turns (Qian
et al., 2022).3

3 History Modeling Study

In this work, we examine the effect of a model’s
history representation on its robustness. To this
end, we evaluate different approaches under sev-
eral settings that diverge from the standard
supervised benchmark (§3.1). This allows us to
examine whether the performance of some meth-
ods deteriorates more quickly than others in
different scenarios. To better isolate the gains
from history modeling, we measure performance
compared to a baseline QA model which has
no access to Hk (§3.2), and re-implement all
the considered methods using the same under-
lying pre-trained language model (LM) for text
representation (§3.3).

3.1 Robustness Study Settings

We next describe each comparative setting in our
study and the rationale behind it, as summarized
in Table 2. Table 1 depicts the utilized datasets.

Standard. Defined by Choi et al. (2018), this
setting is followed by most studies. We use a
medium-sized pre-trained LM for each method,
commonly known as its base version, then
fine-tune and evaluate the models on QuAC.

High-Resource. This setting examines the ex-
tent to which methods can improve their
performance when given more resources. To this

3Published 2 weeks before our submission.
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end, we use a large pre-trained LM, perform ad-
ditional pre-training on CoQA (with the CQA
objective), and then fine-tune and evaluate on
QuAC.

Low-Resource. In this setting, we examine the
resource efficiency of the history modeling ap-
proaches by reducing the size of the training set.
This setting is similar to the standard setting,
except that we fine-tune on smaller samples of
QuAC’s training set. For each evaluated method
we train 4 model variants: 20%, 10%, 5%, and 1%,
reflecting the percentage of training data retained.

Domain-Shift. This setting examines robust-
ness to domain shift. To this end, we use the
8 domains in the CoQA and DoQA datasets as
test sets from unseen target domains, evaluating
the models trained under the standard setting on
these test-sets.

Noisy-History. This setting examines robust-
ness to noisy conversation history, where the
answers are sometimes incorrect and the conver-
sation flow is less fluent. To this end, we evaluate
the models trained under the standard setting on
the QuAC-NH dataset, consisting of conversations
between humans and other CQA models (§2.2).
We note that a full human-machine evaluation
requires a human in the loop. We choose to eval-
uate against other models predictions as a middle
ground. This allows us to test the models’ behav-
ior on noisy conversations with incorrect answers
and less fluent flow, but without a human in the
loop.

3.2 Evaluation Metric
The standard CQA evaluation metric is the average
word-level F1 score (Rajpurkar et al., 2016; Choi
et al., 2018; Reddy et al., 2019; Campos et al.,
2020).4 Since we focus on the impact of history
modeling, we propose to consider each model’s
improvement in F1 (Δ%) compared to a baseline
QA model that has no access to the dialogue
history.

3.3 Pre-trained LM
To control for differences which stem from the
use of different pre-trained LMs, we re-implement
all the considered methods using the Longformer
(Beltagy et al., 2020), a sparse-attention Trans-
former designed to process long input sequences.

4We follow the calculation presented in Choi et al. (2018).

It is therefore a good fit for handling the con-
versation history and the source passage as a
combined (long) input. Prior work usually utilized
dense-attention Transformers, whose input length
limitation forced them to truncate Hk and split
P into chunks, processing them separately and
combining the results (Choi et al., 2018; Qu et al.,
2019a,b; Kim et al., 2021; Zhao et al., 2021). This
introduces additional complexity and diversity in
the implementation, while with the Longformer
we can keep implementation simple, as this model
can attend to the entire history and passage.

We would also like to highlight RoR (Zhao
et al., 2021), which enhances a dense-attention
Transformer to better handle long sequences.
Notably, the state-of-the-art result on QuAC
was reported using ELECTRA+RoR with simple
history concatenation (see CONCAT in §3.4). While
this suggests that ELECTRA+RoR can outper-
form the Longformer, since our primary focus
is on analyzing the robustness of different his-
tory modeling techniques rather than on long
sequence modeling, we opt for a general-purpose
commonly used LM for long sequences, which
exhibits competitive performance.

3.4 Evaluated Methods

In our study we choose to focus on modern history
modeling approaches that leverage pre-trained
LMs. These models have demonstrated significant
progress in recent years (§2.3).

NO HISTORY A classic single-turn QA model
without access to Hk. We trained a Longformer
for QA (Beltagy et al., 2020), using qk and P as a
single packed input sequence (ignoring Hk). The
model then extracts the answer span by predicting
its start and end positions within P .

In contrast to the rest of the evaluated methods,
we do not consider this method as a baseline for
history modeling, but rather as a reference for
calculating our Δ% metric. As discussed in §3.2,
we evaluate all history modeling methods for their
ability to improve over this model.

CONCAT Concatenating Hk to the input (i.e.,
to qk and P ), which is (arguably) the most
straightforward way to model the history (Choi
et al., 2018; Qu et al., 2019a; Zhao et al.,
2021). Other than the change to the input, this
model architecture and training is identical to NO

HISTORY.
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REWRITE This approach was proposed in
Vakulenko et al. (2021). It consists of a pipeline
of two models, question rewriting (QR) and
question answering (QA). An external QR model
first generates a rewritten question q̃k, based on
qk and Hk. q̃k and P are then used as input to
a standard QA model, identical to NO HISTORY,
but trained with the rewritten questions. For the
external QR model we follow Lin et al. (2020),
Vakulenko et al. (2021), and Kim et al. (2021)
and fine-tune T5-base (Raffel et al., 2020) on the
CANARD dataset (Elgohary et al., 2019). We use
the same QR model across all the settings in our
study (§3.1), meaning that in the low-resource
setting we limit only the CQA data, which is used
to train the QA model.

REWRITEC Hypothesizing that there is useful in-
formation in Hk on top of the rewritten question
q̃k, we combine REWRITE and CONCAT, obtaining
a model which is similar to CONCAT, except that
it replaces qk with q̃k.

ExCorDLF Our implementation of the ExCorD
approach, proposed in Kim et al. (2021). Instead
of rewriting the original question, qk, at inference
time (REWRITE), ExCorD uses the rewritten ques-
tion only at training time as a regularization signal
when encoding the original question.

HAELF Our implementation of the HAE ap-
proach proposed in Qu et al. (2019a), which
highlights the conversation history within P . In-
stead of concatenating Hk to the input, HAE
highlights the historic answers {ai}k−1

i=1 within
P , by modifying the passage token embeddings.
HAE adds an additional dedicated embedding
layer with 2 learned embedding vectors, denoting
whether a token from P appears in any historic
answers or not.

PosHAELF Our implementation of the PosHAE
approach proposed in Qu et al. (2019b), which ex-
tends HAE by adding positional information. The
embedding matrix is extended to contain a vector
per conversation turn, each vector representing the
turn that the corresponding token appeared in.

3.5 Implementation Details

We fine-tune all models on QuAC for 10 epochs,
employ an accumulated batch size of 640, a weight
decay of 0.01, and a learning rate of 3 ·10−5. In the
high-resource setup, we also pre-train on CoQA

Original Work Original LM Original Result Our Impl.
CONCAT Qu et al. (2019a) BERT 62.0 65.8

REWRITE Vakulenko et al. (2021) BERT Not Reported 64.6

REWRITEC N/A (this baseline was first proposed in this work) 67.3

ExCorD Kim et al. (2021) RoBERTa 67.7 67.5

HAE Qu et al. (2019a) BERT 63.9 68.9

PosHAE Qu et al. (2019b) BERT 64.7 69.8

Table 3: F1 scores comparison between original
implementations and ours (using Longformer as
the LM), for all methods described in §3.4, in the
standard setting.

for 5 epochs. We use a maximum output length
of 64 tokens. Following Beltagy et al. (2020), we
set Longformer’s global attention to all the tokens
of qk. We use the cross-entropy loss and AdamW
optimizer (Kingma and Ba, 2015; Loshchilov and
Hutter, 2019). Our implementation makes use
of the HuggingFace Transformers (Wolf et al.,
2020), and PyTorch-Lightning libraries.5

For the base LM (used in all settings
except high-resource) we found that a Long-
former that was further pre-trained on SQuADv2
(Rajpurkar et al., 2018),6 achieved consistently
better performance than the base Longformer.
Thus, we adopted it as our base LM. For the large
LM (used in the high-resource setting) we used
Longformer-large.7

In §5, we introduce a novel method (MarCQAp)
and perform statistical significance tests (Dror
et al., 2018, 2020). Following Qu et al. (2019b),
we use the Student’s paired t-test with p < 0.05,
to compare MarCQAp to all other methods in each
setting.

In our re-implementation of the evaluated meth-
ods, we carefully followed their descriptions and
implementation details as published by the authors
in their corresponding papers and codebases. A
key difference in our implementation is the use
of a long sequence Transformer, which removes
the need to truncate Hk and split P into chunks
(§3.3). This simplifies our implementation and
avoids differences between methods.8 Table 3
compares between our results and those reported
in previous works. In almost all cases we achieved

5https://github.com/PyTorchLightning
/pytorch-lightning.

6https://huggingface.co/mrm8488
/longformer-base-4096-finetuned-squadv2.

7https://huggingface.co/allenai
/longformer-large-4096.

8The maximum length limit of Hk varies between dif-
ferent works, as well as how sub-document chunks are
handled.
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Setting Low-Resource Standard High-Resource

LM
Longformer-base Longformer-base Longformer-large

Pre-trained SQuAD Pre-trained SQuAD Pre-trained CoQA
Training set size 800 (1%) 4K (5%) 8K (10%) 16K (20%) Avg Δ% 80K (100%) 80K (100%)

NO HISTORY 45.0 50.0 52.9 55.4 – 60.4 65.6
concat 43.9 (-2.4%) 51.2 (+2.4%) 53.4 (+0.9%) 57.8 (+4.3%) +1.3% 65.8 (+8.9%) 72.3 (+10.2%)
REWRITE 46.5 (+3.3%) 54.0 (+8.0%) 56.4 (+6.6%) 59.2 (+6.9%) +6.2% 64.6 (+7.0%) 69.0 (+5.2%)
REWRITEC 42.3 (-6.0%) 54.4 (+8.8%) 57.2 (+8.1%) 60.6 (+9.4%) +5.1% 67.3 (+11.4%) 72.5 (+10.5%)
ExCorDLF 46.0 (+2.2%) 53.0 (+6.0%) 57.2 (+8.1%) 60.3 (+8.8%) +6.3% 67.5 (+11.8%) 73.8 (+12.3%)
HAELF 44.5 (-1.1%) 50.8 (+1.6%) 55.0 (+4.0%) 59.8 (+7.9%) +3.1% 69.0 (+14.2%) 73.2 (+11.4%)
PosHAELF 40.5 (-10.0%) 51.0 (+2.0%) 55.1 (+4.2%) 60.9 (+9.9%) +1.5% 69.8 (+15.6%) 74.2 (+12.9%)
MarCQAp (§5) 48.2 (+7.1%) 57.4 (+14.8%) 61.3 (+15.9%) 64.6 (+16.6%) +13.6% 70.2 (+16.2%) 74.7 (+13.7%)

Table 4: In-domain F1 and Δ% scores on the full QuAC validation set, for the standard, high-resource
and low-resource settings. We color coded the Δ% for positive and negative numbers.

a higher score (probably since Longformer out-
performs BERT), with the exception of ExCorD,
where we achieved a comparable score (proba-
bly since Longformer is actually initialized using
RoBERTa’s weights [Beltagy et al., 2020]).

4 Results and Analysis

We next discuss the takeaways from our study,
where we evaluated the considered methods across
the proposed settings. Table 4 presents the results
of the standard, high-resource, and low-resource
settings. Table 5 further presents the domain-shift
results. Finally, Table 6 depicts the results of the
noisy-history setting. Each method is compared
to NO HISTORY by calculating the Δ% (§3.2). The
tables also present the results of our method,
termed MarCQAp, which is discussed in §5.

We further analyze the effect of the conversa-
tion history length in Figure 1, evaluating models
from the standard setting with different limits on
the history length. For instance, when the limit is
2, we expose the model to up to the 2 most recent
turns, by truncating Hk.9

Key Findings A key goal of our study is to
examine the robustness of history modeling ap-
proaches to setting shifts. This research reveals
limitations of the single-score benchmark-based
evaluation adopted in previous works (§4.1), as
such scores are shown to be only weakly correlated
with low-resource and domain-shift robustness.
Furthermore, keeping in mind that history mod-
eling is a key aspect of CQA, our study also
demonstrates the importance of isolating the con-
tribution of the history modeling method from

9We exclude REWRITE, since it utilizes Hk only in the
form of the rewritten question. For REWRITEC , we truncate
the concatenatedHk for the CQA model, while the QR model
remains exposed to the entire history.

other model components (§4.2). Finally, we dis-
cover that while existing history highlighting
approaches yield high-quality input representa-
tions, their robustness is surprisingly poor. We
further analyze the history highlighting results
and provide possible explanations for this phe-
nomenon (§4.3). This finding is the key motivation
for our proposed method (§5).

4.1 High CQA Benchmark Scores do not
Indicate Good Robustness

First, we observe some expected general trends:
All methods improve on top of NO HISTORY, as
demonstrated by the positive Δ% in the standard
setting, showing that all the methods can leverage
information fromHk. All methods scale with more
training data and a larger model (high-resource),
and their performances drop significantly when
the training data size is reduced (low-resource)
or when they are presented with noisy history. A
performance drop is also observed when evaluat-
ing on domain-shift, as expected in the zero shot
setting.

However, not all methods scale equally well
and some deteriorate faster than others. This
phenomenon is illustrated in Table 7, where the
methods are ranked by their scores in each set-
ting. We observe high instability between settings.
For instance, PosHAELF is top performing in
3 settings but is second worst in 2 others.
REWRITE is second best in low-resource, but among
the last ones in other settings. So is the case
with CONCAT: Second best in domain-shift but
among the worst ones in others. In addition, while
all the methods improve when they are exposed
to longer histories (Figure 1), some saturate earlier
than others.
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Setting Domain-Shift

Domain
CoQA DoQA

Avg Δ%
Children Sto. Literature M/H Sch. News Wikipedia Cooking Movies Travel

NO HIST. 54.8 42.6 50.3 50.1 58.2 46.9 45.0 44.0 –

CONCAT 62.2 (+13.5%) 48.0 (+12.7%) 55.3 (+9.9%) 54.9 (+9.6%) 59.9 (+2.9%) 54.8 (+16.8%) 52.0 (+15.6%) 48.4 (+10%) +11.4%

REWRITE 60.1 (+9.7%) 47.7 (+12.0%) 55.0 (+9.3%) 54.8 (+9.4%) 60.9 (+4.6%) 44.6 (-4.9%) 43.2 (-4.0%) 40.9 (-7.0%) +3.6%

REWRITEC 62.7 (+14.4%) 49.0 (+15.0%) 56.7 (+12.7%) 55.2 (+10.2%) 59.4 (+2.1%) 52.0 (+10.9%) 49.1 (+9.1%) 46.4 (+5.5%) +10.0%

ExCorDLF 62.7 (+14.4%) 51.5 (+20.9%) 58.2 (+15.7%) 57.0 (+13.8%) 63.6 (+9.3%) 53.7 (+14.5%) 51.1 (+13.6%) 48.6 (+10.5%) +14.1%

HAELF 61.8 (+12.8%) 50.5 (+18.5%) 56.6 (+12.5%) 55.4 (+10.6%) 60.9 (+4.6%) 45.0 (-4.1%) 45.1 (+0.2%) 45.1 (+2.5%) +7.2%

PosHAELF 56.6 (+3.3%) 47.4 (+11.3%) 55.4 (+10.1%) 52.7 (+5.2%) 61.7 (+6.0%) 45.6 (-2.8%) 45.8 (+1.8%) 44.7 (+1.6%) +4.6%

MarCQAp (§5) 66.7 (+21.7%) 56.4 (+32.4%) 61.8 (+22.9%) 60.8 (+21.4%) 67.5 (+16.0%) 53.3 (+13.6%) 51.8 (+15.1%) 50.1 (+13.9%) +19.6%

Table 5: F1 and Δ% scores for the domain-shift setting. We color coded the Δ% for positive and
negative numbers.

Setting Noisy-History
NO HISTORY 49.9
CONCAT 55.3 (+10.8%)
REWRITE 56.0 (+12.2%)
REWRITEC 58.5 (+17.2%)
ExCorDLF 56.8 (+13.8%)
HAELF 57.9 (+16.0%)
PosHAELF 60.1 (+20.4%)
MarCQAp (§5) 62.3 (+24.9%)

Table 6: F1 and Δ% scores for the noisy-history
setting.

We conclude that the winner does not take it
all: There are significant instabilities in meth-
ods’ performance across settings. This reveals
the limitations of the existing single-score bench-
mark evaluation practice, and calls for more
comprehensive robustness-focused evaluation.

4.2 The Contribution of the History
Modeling Method should be Isolated

In the high-resource setting, NO HISTORY reaches
65.6 F1, higher than many CQA results reported
in previous work (Choi et al., 2018; Qu et al.,
2019a,b; Huang et al., 2019). Since it is clearly
ignoring the history, this shows that significant
improvements can stem from simply using a better
LM. Thus comparing between history modeling
methods that use different LMs can be misleading.

This is further illustrated with HAELF ’s and
PosHAELF ’s results. The score that Kim et al.
reported for ExCorD is higher than Qu et al.
reported for HAE and PosHAE. While both au-
thors used a setting equivalent to our standard
setting, Kim et al. used RoBERTa while Qu
et al. used BERT, as their underlying LM. It is
therefore unclear whether ExCorD’s higher score
stems from better history representation or from
choosing to use RoBERTa. In our study, HAELF

Table 7: Per setting rankings of the methods evalu-
ated in our study (top is best), excluding MarCQAp.
C is CONCAT, R is REWRITE, RC is REWRITEC , Ex is
ExCorDLF , H is HAELF , and PH is PosHAELF .

and PosHAELF actually outperform ExCorDLF

in the standard setting. This suggests that these
methods can perform better than reported, and
demonstrates the importance of controlling for the
choice of LM when comparing between history
modeling methods.

As can be seen in Figure 1, CONCAT sat-
urates at 6 turns, which is interesting since
Qu et al. (2019a) reported saturation at 1
turn in a BERT-based equivalent. Furthermore,
Qu et al. observed a performance degradation
with more turns, while we observe stability. These
differences probably stem from the history trunca-
tion in BERT, due to the input length limitation of
dense attention Transformers. This demonstrates
the advantages of sparse attention Transformers
for history modeling evaluation, since the com-
parison against CONCAT can be more ‘‘fair’’. This
comparison is important, since the usefulness of
any method should be established by comparing it
to the straight-forward solution, which is CONCAT

in case of history modeling.
We would also like to highlight PosHAELF ’s

F1 scores in the noisy-history (60.1) and the
20% low-resource setting (60.9), both lower than
the 69.8 F1 in the standard setting. Do these
performance drops reflect lower effectiveness
in modeling the conversation history? Here the
Δ% comes to the rescue. While the Δ% de-
creased between the standard and the 20% settings
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Figure 1: F1 as a function of # history turns, for models
from the standard setup. The first occurrence of the
maximum F1 value (saturation point) is highlighted.

(15.6 → 9.9), it actually increased in the
noisy-history setting (to 20.4). This indicates
that even though the F1 decreased, the ability
to leverage the history actually increased.

We conclude that our study results support the
design choices we made, in our effort to better iso-
late the contribution of the history representation.
We recommend future works to compare history
modeling methods using the same LM (prefer-
ably a long sequence LM), and to measure a Δ%
compared to a NO HISTORY baseline.

4.3 History Highlighting is Effective in
Resource-rich Setups, but is not Robust

The most interesting results are observed for the
history highlighting methods: HAE and PosHAE.

First, when implemented using the Longformer,
HAELF and PosHAELF perform better than re-
ported in previous work, with 68.9 and 69.8 F1
respectively, compared to 63.9 and 64.7 reported
by Qu et al. using BERT. The gap between HAELF

and PosHAELF demonstrates the effect of the po-
sitional information in PosHAELF . This effect is
further observed in Figure 1: HAELF saturates
earlier since it cannot distinguish between dif-
ferent conversation turns, which probably yields
conflicting information. PosHAELF saturates at
9 turns, later than the rest of the methods,
which indicates that it can better leverage long
conversations.

PosHAELF outperforms all methods in the stan-
dard, high-resource, and noisy-history settings,10

demonstrating the high effectiveness of history
highlighting. However, it shows surprisingly poor

10We ignore MarCQAp’s results in this section.

Figure 2: Δ% as a function of # training examples.
Results taken from the standard and low-resource
settings.

performance in low-resource and domain-shift set-
tings, with extremely low average Δ% compared
to other methods. The impact of the training set
size is further illustrated in Figure 2. We plot the
Δ% as a function of the training set size, and
specifically highlight PosHAELF in bold red. Its
performance deteriorates significantly faster than
others when the training set size is reduced. In
the 1% setting it is actually the worst performing
method.

This poor robustness could be caused by the
additional parameters added in the embedding
layer of PosHAELF . Figure 2 demonstrates that
properly training these parameters, in order to
benefit from this method’s full potential, seems
to require large amounts of data. Furthermore,
the poor domain-shift performance indicates that,
even with enough training data, this embedding
layer seems to be prone to overfitting to the source
domain.

We conclude that history highlighting clearly
yields a very strong representation, but the addi-
tional parameters of the embedding layer seem to
require large amounts of data to train properly and
over-fit to the source domain. Is there a way to
highlight historic answers in the passage, without
adding dedicated embedding layers?

In §5 we present MarCQAp, a novel history
modeling approach that is inspired by PosHAE,
adopting the idea of history highlighting. How-
ever, instead of modifying the passage embedding,
we highlight historic answers by adding textual
prompts directly in the input text. By leveraging
prompts, we reduce model complexity and remove
the need for training dedicated parameters, hoping
to mitigate the robustness weaknesses of PosHAE.
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5 MarCQAp

Motivated by our findings, we design MarCQAp,
a novel prompt-based history modeling approach
that highlights answers from previous conversa-
tion turns by inserting textual prompts in their
respective positions within P . By highlighting
with prompts instead of embedding vectors, we
hope to encode valuable dialogue information,
while reducing the learning complexity incurred
by the existing embedding-based methods. Thus,
we expect MarCQAp to perform well not only in
high-resource settings, but also in low-resource
and domain adaptation settings, in which prompt-
ing methods have shown to be particularly useful
(Brown et al., 2020; Le Scao and Rush, 2021;
Ben-David et al., 2022).

Prompting often refers to the practice of
adding phrases to the input, in order to en-
courage pre-trained LMs to perform specific
tasks (Liu et al., 2021), yet it is also used as
a method for injecting task-specific guidance
during fine-tuning (Le Scao and Rush, 2021;
Ben-David et al., 2022). MarCQAp closely re-
sembles the prompting approach from Ben-David
et al. (2022) since our prompts are: (1) discrete
(i.e., the prompt is an actual text-string), (2) dy-
namic (i.e., example-based), and (3) added to the
input text and the model then makes predictions
conditioned on the modified input. Moreover, as
in Ben-David et al., in our method the underlying
LM is further trained on the downstream task with
prompts. However, in contrast to most prompting
approaches, which predefine the prompt’s loca-
tion in the input (Liu et al., 2021), our prompts are
inserted in different locations for each example. In
addition, while most textual prompting approaches
leverage prompts comprised of natural language,
our prompts contain non-verbal symbols (e.g.,
"<1>", see Figure 3 and §5.1), which were proven
useful for supervision of NLP tasks. For instance,
Aghajanyan et al. (2022) showed the usefulness
of structured pre-training by adding HTML sym-
bols to the input text. Finally, to the best of our
knowledge, this work is the first to propose a
prompting mechanism for the CQA task.

5.1 Method

MarCQAp utilizes a standard single-turn QA
model architecture and input, with the input com-
prising the current question qk and the passage P .
For each CQA example (P,Hk, qk), MarCQAp

Figure 3: The MarCQAp highlighting scheme: Answers
to previous questions are highlighted in the grounding
document, which is then provided as input to the model.

inserts a textual prompt within P , based on in-
formation extracted from the conversation history
Hk. In extractive QA, the answer ak is typically a
span within P . Given the input (P,Hk, qk), Mar-
CQAp transforms P into an answer-highlighted
passage ˜Pk, by constructing a prompt pk and in-
serting it within P . pk is constructed by locating
the beginning and end positions of all historic
answers {ai}k−1

i=1 within P , and inserting a unique
textual marker for each answer in its respective
positions (see example in Figure 3). The input
( ˜Pk, qk) is then passed to the QA model, instead
of (P, qk).

In abstractive QA, a free form answer is gen-
erated based on an evidence span that is first
extracted from P . Hence, the final answer does
not necessarily appear in P . To support this set-
ting, MarCQAp highlights the historical evidence
spans (which appear in P ) instead of the generated
answers.

To encode positional dialogue information, the
markers for aj ∈ {ai}k−1

i=1 include its turn index
number in reverse order, that is, k − 1 − j. This
encodes relative historic positioning w.r.t. the cur-
rent question qk, allowing the model to distinguish
between the historic answers by their recency.

MarCQAp highlights only the historic answers,
since the corresponding questions do not appear
in P . While this might lead to information loss,
in §5.3 we implement MarCQAp’s variants that
add the historic questions to the input, and show
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that the contribution of the historic questions to
the performance is minor.11

A CQA dialogue may also contain unanswer-
able questions. Before inserting the prompts,
MarCQAp first appends a ‘NO ANSWER’ string
to P .12 Each historical ‘NO ANSWER’ is then
highlighted with prompts, similarly to ordinary
historical answers. For example see a4 in Figure 3.

MarCQAp has several advantages over prior
approaches. First, since it is prompt-based, it does
not modify the model architecture, which makes
it easier to port across various models, alleviat-
ing the need for model-specific implementation
and training procedures. Additionally, it naturally
represents overlapping answers in P , which was
a limitation in prior work (Qu et al., 2019a,b).
Overlapping answers contain tokens which relate
to multiple turns, yet the existing token-based em-
bedding methods encode the relation of a token
from P only to a single turn from Hk. Since
MarCQAp is span-based, it naturally represents
overlapping historic answers (e.g., see a2 and a3
in Figure 3).

5.2 MarCQAp Evaluation

We evaluate MarCQAp in all our proposed
experimental settings (§3.1). As presented in
Tables 4, 5, and 6, it outperforms all other methods
in all settings. In the standard, high-resource,
and noisy-history settings, its performance is
very close to PosHAELF ,13 indicating that our
prompt-based approach is an effective alterna-
tive implementation for the idea of highlighting
historical answers. Similarly to PosHAELF , Mar-
CQAp is able to handle long conversations and its
performance gains saturate at 9 turns (Figure 1).
However, in contrast to PosHAELF , MarCQAp
performs especially well in the low-resource and
the domain-shift settings.

In the low-resource settings, MarCQAp out-
performs all methods by a large margin, with
an average Δ% of 13.6% compared to the best
baseline with 6.3%. The dramatic improvement
over PosHAELF ’s average Δ% (1.5% → 13.6%)
serves as a strong indication that our prompt-based

11Which is also in line with the findings in Qu et al.
(2019b).

12Only if it is not already appended to P , in some datasets
the passages are always suffixed with ‘NO ANSWER’.

13In the standard and high-resource MarCQAp’s improve-
ments over PosHAELF are not statistically significant.

Figure 4: An example of MarCQAp’s robustness in
the low-resource setting. Even though ExCorDLF ,
HAELF , and PosHAELF predict correct answers in the
standard setting, they fail on the same example when
the training data size is reduced to 10%. MarCQAp
predicts a correct answer in both settings.

approach is much more robust. This boost in ro-
bustness is best illustrated in Figure 2, which
presents the Δ% as a function of the training set
size, highlighting PosHAELF (red) and MarCQAp
(green) specifically. An example of MarCQAp’s
robustness in the low-resource setting is provided
in Figure 4.

In the domain-shift settings, MarCQAp is
the best performing method in 6 out of 8 do-
mains.14 On the remaining two domains (Cooking
& Movies), CONCAT is the best performing.15

Notably, MarCQAp’s average Δ% (19.6%) is
substantially higher compared to the next best
method (14.1%). These results serve as additional
strong evidence of MarCQAp’s robustness.

MarCQAp’s Performance Using Different
LMs In addition to Longformer, we evaluated
MarCQAp using RoBERTa (Liu et al., 2019)
and BigBird (Zaheer et al., 2020) in the stan-
dard setting. The results are presented in Table 8.
MarCQAp shows a consistent positive effect
across different LMs, which further highlights
its effectiveness.

14For the Travel domain MarCQAp’s improvement over
ExCorDLF is not statistically significant.

15The differences between CONCAT and MarCQAp for both
domains are not statistically significant.
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Model No History MarCQAp Δ%

RoBERTa 57.7 68.0 (+17.9%)
BigBird 57.6 66.3 (+15.1%)
Longformerbase 60.0 68.4 (+14.0%)
Longformersquad 60.4 70.2 (+16.6%)

Table 8: MarCQAp’s standard setting per-
formance across different Transformer-based
pre-trained LMs.

We note that since RoBERTa is a dense-
attention Transformer with input length limita-
tion of 512 tokens, longer passages are split into
chunks. This may lead to some chunks containing
part of the historic answers, and therefore partial
highlighting by MarCQAp. Our analysis showed
that 51% of all examples in QuAC were split
into several chunks, and 61% the resulted chunks
contained partial highlighting. MarCQAp’s strong
performance with RoBERTa suggests that it can
remain effective even with partial highlighting.

Official QuAC Leaderboard Results For com-
pleteness, we submitted our best performing
model (from the high-resource setting) to the
official QuAC leaderboard,16 evaluating its per-
formance on the hidden test set. Table 9 presents
the results.17 MarCQAp achieves a very competi-
tive score of 74.0 F1, very close to the published
state-of-the art (RoR by Zhao et al. [2021] with
74.9 F1), yet with a much simpler model.18

5.3 Prompt Design

Recall that MarCQAp inserts prompts at the begin-
ning and end positions for each historical answer
within P (Figure 3). The prompts are designed
with predefined marker symbols and include the
answer’s turn index (e.g., "<1>"). This design
builds on 3 main assumptions: (1) textual prompts
can represent conversation history information,
(2) the positioning of the prompts within P facil-
itates highlighting of historical answers, and (3)
indexing the historical answers encodes valuable
information. We validate our design assumptions
by comparing MarCQAp against ablated variants
(Table 10).

16https://quac.ai.
17The leaderboard contains additional results for mod-

els which (at the time of writing) include no descriptions
or published papers, rendering them unsuitable for fair
comparison.

18See §3.3 for a discussion of RoR.

BiDAF++ w/ 2-Context (Choi et al., 2018) 60.1
HAE (Qu et al., 2019a) 62.4
FlowQA (Huang et al., 2019) 64.1
GraphFlow (Chen et al., 2020) 64.9
HAM (Qu et al., 2019b) 65.4
FlowDelta (Yeh and Chen, 2019) 65.5
GHR (Qian et al., 2022) 73.7
RoR (Zhao et al., 2021) 74.9
MarCQAp (Ours) 74.0

Table 9: Results from the official QuAC leader-
board, presenting F1 scores for the hidden test set,
for MarCQAp and other models with published
papers.

To validate assumption (1), we compare Mar-
CQAp to MARCQAPC , a variant which adds Hk

to the input, in addition to ˜Pk and qk. MARC-
QAPC is exposed to information from Hk via two
sources: The concatenated Hk and the MarCQAp
prompt within ˜Pk. We observe a negligible ef-
fect,19 suggesting that MarCQAp indeed encodes
information from the conversation history, since
providing Hk does not add useful information on
top of ˜Pk.

To validate assumptions (2) and (3), we use
two additional MarCQAp’s variants. Answer Pos
inserts a constant predefined symbol ("<>"), in
each answer’s beginning and end positions within
P (i.e., similar to MarCQAp, but without turn
indexing). Random Pos inserts the same number
of symbols but in random positions within P .

Answer Pos achieves a Δ% of 12.7%, while
Random Pos achieves 1.7%. This demonstrates
that the positioning of the prompts withinP is cru-
cial, and that most of MarCQAp’s performance
gains stem from its prompts positioning w.r.t.
historical answers {ai}k−1

i=1 . When the prompts
are inserted at meaningful positions, the model
seems to learn to leverage these positions in
order to derive an effective history representa-
tion. Surprisingly, Random Pos leads to a minor
improvement of 1.7%.20 Finally, MarCQAp’s im-
provement over Answer Pos (a Δ% of 15.9%
compared to 12.7%), indicates that answer in-
dexing encodes valuable information, helping us
validate assumption (3).

Finally, since textual prompts allow for easy
injection of additional information, we make

19The difference is not statistically significant.
20The difference is statistically significant, we did not

further investigate the reasons behind this particular result.
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NO HISTORY 52.9
Random Pos 53.8 (+1.7%)
Answer Pos 59.6 (+12.7%)
Full Q 59.2 (+11.9%)
Word from Q 60.4 (+14.2%)
Word from Q + Index 60.7 (+14.8%)
MARCQAPC 61.5 (+16.3%)
MarCQAp 61.3 (+15.9%)

Table 10: F1 and Δ% scores for MarCQAp’s
ablated variants, in the 10% setup of the
low-resource setting.

several initial attempts in this direction, inject-
ing different types of information into our textual
prompts. In Word from Q, the marker contains
the first word from the historic answer’s corre-
sponding question, which is typically a wh-word
(e.g., ‘‘<what>’’). In Word from Q + Index we
also add the historic answer’s turn index (e.g.,
‘‘<what 1>’’). In Full Q, we inject the entire
historic question into the prompt. Word from Q
and Word from Q + Index achieved comparable
scores, lower than MarCQAp’s but higher than
Answer Pos’s.21 This suggests that adding se-
mantic information is useful (since Word from Q
outperformed Answer Pos), and that combining
such information with the positional information
is not trivial (since MarCQAp outperformed Word
from Q + Index). This points to the effects of the
prompt structure and the information included:
We see that ‘‘<1>’’ and ‘‘<what>’’ both outper-
form ‘‘<>’’, yet constructing a prompt by naively
combining these signals (‘‘<what 1>’’) does not
lead to complementary effect. Finally, Word from
Q outperformed Full Q. We hypothesize that
since the full question can be long, it might sub-
stantially interfere with the natural structure of
the passage text. This provides evidence that the
prompts should probably remain compact symbols
with small footprint within the passage. These ini-
tial results call for further exploration of optimal
prompt design in future work.

5.4 Case Study

Figure 5 presents an example of all evaluated
methods in action from the standard setting. The
current question ‘‘Did he have any other crit-
ics?’’ has two correct answers: Alan Dershowitz
or Omer Bartov. We first note that all methods

21Both differences are statistically significant.

Figure 5: Our case study example, comparing answers
predicted by each evaluated method in the standard
setting. We provide a detailed analysis in §5.4.

predicted a name of a person, which indicates that
the main subject of the question was captured cor-
rectly. Yet, the methods differ in their prediction
of the specific person.

REWRITE and CONCAT predict a correct answer
(Alan Dershowitz), yet CONCAT predicts it based on
incorrect evidence. This may indicate that CONCAT

did not capture the context correctly (just the fact
that it needs to predict a person’s name), and was
lucky enough to guess the correct name.

Interestingly, REWRITEC predicts Daniel Gold-
hagen, which is different from the answers
predicted by CONCAT and REWRITE. This shows that
combining both methods can yield completely dif-
ferent results, and demonstrates an instance where
REWRITEC performs worse than REWRITE and CON-
CAT (for instance in the 1% low-resource setting).
This is also an example of a history modeling flaw,
since Daniel Goldhagen was already mentioned
as a critic in previous conversation turns.

This example also demonstrates how errors
can propagate through a pipeline-based system.
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The gold rewritten question is ‘‘Did Norman
Finkelstein have any other critics aside from
Peter Novick and Daniel Goldhagen?’’,22 while
the question rewriting model generated ‘‘Besides
Peter Novick, did Norman Finkelstein have any
other critics?’’, omitting Daniel Goldhagen. This
makes it impossible for REWRITE to figure out
that Daniel Goldhagen was already mentioned,
making it a legitimate answer. This reveals that
REWRITE might have also gotten lucky and provides
a possible explanation for the incorrect answer
predicted by REWRITEC .

ExCorDLF , HAELF , and PosHAELF not only
predict a wrong answer, but also seem to fail
to resolve the conversational coreferences, since
the pronoun ‘‘he’’, in the current question ‘‘Did
he have any other critics?’’, refers to Norman
Finkelstein.

MarCQAp predicts a correct answer, Omer
Bartov. This demonstrates an instance where Mar-
CQAp succeeds while HAELF and PosHAELF

fail, even though they are all history-highlighting
methods. Interestingly, MarCQAp is the only
model that predicts Omer Bartov, a non-trivial
choice compared to Alan Dershowitz, since Omer
Bartov appears later in the passage, further away
from the historic answers.

6 Limitations

This work focuses on a single-document CQA
setting, which is in line with the majority of the
previous work on conversation history model-
ing in CQA (§2.3). Correspondingly, MarCQAp
was designed for single-document CQA. Apply-
ing MarCQAp in multi-document settings (Qu
et al., 2020; Anantha et al., 2021; Adlakha et al.,
2022) may result in partial history representation,
since the retrieved document may contain only
part of the historic answers, therefore MarCQAp
will only highlight the answers which appear in
the document.23

In §5.3 we showed initial evidence that Mar-
CQAp prompts can encode additional informa-
tion that can be useful for CQA. In this work we
focused on the core idea behind prompt-based an-
swer highlighting, as a proposed solution in light
of our results in §4. Yet, we did not conduct a com-

22As annotated in CANARD (Elgohary et al., 2019).
23We note that this limitation applies to all highlighting

approaches, including HAE and PosHAE (Qu et al., 2019a,b).

prehensive exploration in search of the optimal
prompt design, and leave this for future work.

7 Conclusion

In this work, we carry out the first compre-
hensive robustness study of history modeling
approaches for Conversational Question Answer-
ing (CQA), including sensitivity to model and
training data size, domain shift, and noisy history
input. We revealed limitations of the existing
benchmark-based evaluation, by demonstrating
that it cannot reflect the models’ robustness to
such changes in setting. In addition, we proposed
evaluation practices that better isolate the contri-
bution of the history modeling component, and
demonstrated their usefulness.

We also discovered that highlighting historic
answers via passage embedding is very effective
in standard setups, but it suffers from substantial
performance degradation in low data and domain
shift settings. Following this finding, we design
a novel prompt-based history highlighting ap-
proach. We show that highlighting with prompts,
rather than with embeddings, significantly im-
prove robustness, while maintaining overall high
performance.

Our approach can be a good starting point for
future work, due to its high effectiveness, robust-
ness, and portability. We also hope that the insights
from our study will encourage evaluations with
focusonrobustness,leading tobetterCQAsystems.
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