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Abstract

Transformer-based pretrained language mod-
els (LMs) are ubiquitous across natural
language understanding, but cannot be applied
to long sequences such as stories, scien-
tific articles, and long documents due to
their quadratic complexity. While a myriad
of efficient transformer variants have been
proposed, they are typically based on cus-
tom implementations that require expensive
pretraining from scratch. In this work, we pro-
pose SLED: SLiding-Encoder and Decoder,
a simple approach for processing long se-
quences that re-uses and leverages battle-tested
short-text pretrained LMs. Specifically, we
partition the input into overlapping chunks,
encode each with a short-text LM encoder
and use the pretrained decoder to fuse infor-
mation across chunks (fusion-in-decoder). We
illustrate through controlled experiments that
SLED offers a viable strategy for long text
understanding and evaluate our approach on
SCROLLS, a benchmark with seven datasets
across a wide range of language understand-
ing tasks. We find that SLED is competitive
with specialized models that are up to 50x
larger and require a dedicated and expensive
pretraining step.

1 Introduction

Transformer-based pretrained language models
(Vaswani et al., 2017; Devlin et al., 2019; Lewis
et al., 2020; Raffel et al., 2020b; Brown et al.,
2020) have been widely successful across all ar-
eas of natural language understanding. However,
applying them over long texts (such as stories,
scripts, or scientific articles) is prohibitive due to
their quadratic complexity in the input length. To
bridge this gap, recent work has developed more
efficient transformer variants (Kitaev et al., 2020;
Beltagy et al., 2020; Zaheer et al., 2020a; Guo
et al., 2022) and applied them over long-range
language understanding tasks (Mehta et al., 2022;
Shaham et al., 2022).

However, most efficient transformers use
specialized architectures with custom implemen-
tations that are not guaranteed to scale as well as
vanilla transformers (Tay et al., 2022a). Moreover,
they require an expensive pretraining step and do
not exploit off-the-shelf pretrained LMs that were
trained for short texts. To date, their performance
on long texts has not matched the success of their
short-range counterparts.

In this work, we present SLED: SLiding-
Encoder and Decoder, a simple yet power-
ful method for applying off-the-shelf pretrained
encoder-decoder models on long text problems,
with a linear time and space dependency. Specifi-
cally (see Figure 2), we partition long documents
into overlapping chunks of tokens of constant
length and encode each chunk independently with
an already-pretrained encoder. Then, a pretrained
decoder attends to all contextualized input rep-
resentations to generate the output. Our main
assumption is that input tokens can be contex-
tualized through their local surrounding (using a
short-text LM), and any global cross-chunk rea-
soning can be handled by the decoder, similar
to fusion-in-decoder (FiD) (Izacard and Grave,
2021). Our approach can be readily applied to any
pretrained encoder-decoder LM such as T5 (Raffel
et al., 2020b) and BART (Lewis et al., 2020) (but
is not applicable to decoder-only [Brown et al.,
2020] or encoder-only models [Liu et al., 2019;
Conneau et al., 2020]).

We evaluate SLED on a wide range of language
understanding tasks. To substantiate SLED’s ade-
quacy for text processing, we perform controlled
experiments over modified versions of SQuAD
1.1 (Rajpurkar et al., 2016) and HotpotQA (Yang
et al., 2018) to show that SLED can (a) find
relevant information that is embedded within a
long text sequence and (b) fuse information from
chunks that were encoded separately.

Our main evaluation is over SCROLLS, a
recently-released benchmark that includes 7 long-
range tasks across Question Answering (QA),
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Figure 1: Models’ SCROLLS score (Shaham et al.,
2022) as a function of parameter count. Plugging
existing pretrained LMs into the SLED framework
dramatically improves their SCROLLS score (arrows
from blue circles to orange stars). Gray triangles in-
dicate models with dedicated pretraining for capturing
long-range dependencies. BARTlarge-SLED is compet-
itive with LongT5base (Guo et al., 2022) and UL2 (Tay
et al., 2022b) (which has 50x more parameters), and
slightly lags behind larger LongT5 models.

Summarization, and Natural Language Infer-
ence (NLI). We show (Figure 1) that taking
a pre-trained encoder-decoder model, such as
BART (Lewis et al., 2020) or T5 (Raffel et al.,
2020b), and embedding it into SLED’s framework
results in dramatic improvement in performance
(6 points on average across models). Moreover,
BARTlarge-SLED’s performance is comparable
to LongT5base (Guo et al., 2022), a model that was
specifically pretrained to handle long-range de-
pendencies, and surpasses UL2 (Tay et al., 2022b),
which contains 50x more parameters. Importantly,
SLED-based models can use any future pretrained
LM out-of-the-box without requiring additional
pretraining to further improve performance.

Due to its simplicity, SLED can also be used
as a diagnostic tool for analyzing long-range
benchmarks. We analyze the seven datasets
in SCROLLS through the lens of SLED and
show which datasets require the input to be
contextualized with remote tokens. Specifically,
we find that in QA and NLI tasks, relatively
local contextualization is sufficient for high
performance.

While SLED is similar to FiD from a techni-
cal standpoint, past usage of FiD has centered
around open-domain question answering (Izacard
and Grave, 2021), where unrelated passages
are naturally encoded independently. Here, we
test fusion-in-decoder on long documents, where

local encoding of chunks is a modeling assump-
tion that needs testing. In recent work, Vig et al.
(2022) proposed a similar architecture to tackle
long inputs from QMSum (Zhong et al., 2021),
but did not systematically analyze it. We stan-
dardize this methodology for the first time, and
extensively analyze the effectiveness of FiD for
encoding long documents across multiple tasks.

To summarize, our main contributions are:

1. We present SLED, a simple and effec-
tive approach for processing long texts that
leverages off-the-shelf encoder-decoder LMs
based on fusion-in-decoder.

2. We demonstrate SLED’s efficacy in both
controlled experiments, as well as on
the SCROLLS benchmark, which leads to
competitive results compared to special-
ized models that include up to 50x more
parameters.

3. We use SLED as a diagnostic tool for ana-
lyzing the long-range properties of datasets
in the SCROLLS benchmark.

4. We provide an open-source implementation
of SLED,1 seamlessly integrated into the
Transformers library (Wolf et al., 2020).

2 Background

Recent advances in natural language processing
have been by and large fueled by the transformer
architecture (Vaswani et al., 2017). A core compo-
nent of the transformer is the self-attention layer
where every input token ‘‘attends’’ to every other
token to produce its contextualized representation.
This results in quadratic time and space depen-
dency w.r.t. the length of the input, limiting the
ability of transformers to process long sequences.

This long-text limitation has sparked ample
interest in developing efficient transformer vari-
ants. One prominent family of methods is based
on sparse attention, where each token attends
to a constant number of other tokens, overcom-
ing the quadratic dependency. Tokens typically
attend either to their local surrounding (Zaheer
et al., 2020a; Beltagy et al., 2020; Ainslie et al.,
2020; Gupta and Berant, 2020) or to tokens that
are semantically similar (Kitaev et al., 2020; Roy
et al., 2021). Moreover, a constant number of
global tokens that attend to and are attended by

1https://github.com/Mivg/SLED.
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Figure 2: Overview of SLED. (a) Input tokens (t1, . . . , tn) are chunked into C overlapping chunks of length c
(here, c = 4). Each chunk is made of P := ρ×c

2 context padding tokens at the right and left edges of the chunk,
and (1 − ρ) × c effective chunk tokens in the middle (here, ρ = 0.5, P = 1). (b) We prepend the prefix tokens
(p1, . . . , pm) to each chunk (m � n). (c) Each chunk is encoded independently using the already pretrained
backbone encoder Menc. (d) We gather the encoded effective chunks tokens (yellow) and discard the context
padding tokens (pink) (e) We pass the encoded input to the decoder to generate the final output sequence
(o1, . . . , ok).

all input tokens are often added to each attention
sub-layer. Recent analyses (Xiong et al., 2022a)
have shown that sparse transformers with local
attention are competitive with other variants on
multiple language understanding tasks.

Our method, SLED, falls into the family
of local attention variants. However, unlike
prior work, SLED re-uses and extends existing
short-range encoder-decoder models, and does
not require specialized pretraining or dedicated
CUDA implementations.

In most local attention variants, for example,
LED (Beltagy et al., 2020), attention is local
per-layer, but the receptive field of tokens grows
across layers. In SLED, which we describe next,
tokens have access to the same number of tokens,
independent of a layer’s depth, which enables
better parallelization. For a survey on the families
of efficient transformers, see (Tay et al., 2020).
For an in-depth comparison of SLED and LED,
we refer to Appendix B.

3 Method

In this work, we propose a simple approach
for avoiding transformer’s quadratic complex-
ity, motivated by the Locality of information
assumption:

In an encoder-decoder architecture, the
encoder can effectively contextualize
input tokens with local context only,
leaving long-range dependencies to be
handled by the decoder.

SLED relies on said modeling assumption to
encode shorter chunks independently and perform

fusion of information in the decoder (Izacard and
Grave, 2021). We now describe the SLED model
in detail.

Input SLED uses a pretrained encoder-decoder
model M as a backbone. SLED receives a to-
kenized document of length n (blue squares in
Figure 2), and an optional short tokenized prefix
of length m � n, typically representing a ques-
tion about the document, an instruction to perform
some generation task, or a hypothesis (orange
squares in Figure 2). Unlike static task-specific
prefixes (e.g., ‘‘summarize’’), SLED supports also
sample-specific prefixes that are part of the input
(e.g., the question in QA datasets).

Steps SLED follows the following steps:

(a) Document tokens are split into C chunks
of length c (In Figure 2, c = 4). The mid-
dle (1 − ρ) × c tokens in each chunk are
contextualized from both the left and right by
P := ρ×c

2 tokens, where ρ ∈ [0, 0.5] (ρ = 0.5
in Figure 2). We call these middle tokens the
effective chunk, since they will constitute the
output of the encoder, and term the tokens on
each side by context padding.

(b) Each chunk is prepended by (optional) prefix
tokens (Figure 2(b)).

(c) Each chunk is encoded independently, using
the backbone encoder Menc (see Figure 2(c)).

(d) To create a contextualized representation for
each token, we keep from each chunk only
the tokens from the effective chunk, and
concatenate them (Figure 2(d)).
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(e) To give the decoder access to prefix to-
kens, we encode the prefix tokens with
Menc, and prepend the result to the con-
textualized representation (leftmost chunk in
Figure 2(a)-(d)).

(f) Finally, we generate the output with the
backbone decoder, Mdec, which uses stan-
dard cross-attention over the m+ n encoded
tokens (Figure 2(e)).

SLED requires handling a few edge cases,
namely, dealing with the first and last chunk
that do not have bidirectional context. We refer to
Appendix A for these details.

SLED’s Complexity SLED divides an input of
length n to C chunks of size c. Since ρ ∈ [0, 0.5],
it follows that C ∈

[
n
c ,

2n
c

]
. While the complexity

of encoding each chunk is quadratic in c due to
self-attention, c � n is constant and thus the
memory and compute dependency is linear in n.2

In particular, the complexity to encode the input
with a model of l attention layers is:

O
(
l × c2 × 2n

c

)
= O (l × c× n) .

Decoding is done as proposed by Vaswani et al.
(2017), thus requiring O(nk + k2) memory. As-
suming a constant output sequence length k � n,
this remains linear in n.

4 Efficacy of Fusion in Decoder

As mentioned (§3), SLED relies on the assumption
that chunks can be encoded independently and fu-
sion across them can be delegated to the decoder
(Locality of information assumption). This is simi-
lar to the Fusion-in-Decoder approach, introduced
by Izacard and Grave (2021) for open-domain
question answering (ODQA). However, there, the
encoder-decoder receives a set of independent
passages and needs to generate an answer that can
typically be extracted from a single passage. Here,
we extend the scope of FiD by applying it over
a single, long, and coherent input that potentially
requires global contextualization.

To demonstrate the viability of FiD for long
text language tasks, we design two controlled
experiments that quantify the extent to which
FiD can perform two operations at the heart

2We assume the prefix length (m) is negligible and thus
its effect on asymptotic complexity is negligible.

of long-text processing. First, can FiD find a
‘‘needle-in-a-haystack’’, that is, locate a piece of
short information embedded in long text, disre-
garding irrelevant information. Second, can FiD
‘‘piece the puzzle’’ and fuse two pieces of in-
formation that are encoded independently when
generating an output.

4.1 Needle in a Haystack

To check if SLED can ignore irrelevant text
and locate a single piece of information, we
cast SQuAD 1.1 (Rajpurkar et al., 2016) as
a sequence-to-sequence task with long input.
SQuAD is a question answering dataset, where
given a question-paragraph pair the goal is to gen-
erate the answer (which lies within the paragraph).
For each question-paragraph pair, we randomly
sample 9 other paragraphs from the the dataset
and concatenate them to form a long document.3

We then finetune and evaluate our models in two
settings: a) Ordered Distractors: the gold para-
graph is the first one, and all other distractors are
concatenated after it. b) Shuffled Distractors: we
randomly shuffle the order of all paragraphs so the
answer can be anywhere in the input document.
Since this is a QA task, the prefix is the question.

We use BARTbase (Lewis et al., 2020) as our
backbone model, M , throughout §4, and compare
SLED to an oracle BARTbase that is given the gold
paragraph only with no distractor paragraphs. this
is an oracle setup since BARTbase can take 1,024
tokens as input and all gold paragraphs are shorter.
If SLED can match the oracle performance, we
can infer that indeed the decoder can find a needle
in a haystack. In addition, we compare SLED
to BARTbase, which is given only the first 1K
tokens, and to LED (Beltagy et al., 2020), which
uses local sparse attention, similar to SLED (LED
has the same backbone BARTbase). However, as
explained in §2, the receptive field of LED layers
linearly grows with the number of layers, and
thus information can be fused in the encoder,
unlike SLED where cross-chunk fusion must be
delegated to the decoder. Last, for QA tasks, LED
defines the question tokens as global tokens, and
as an additional sanity test we evaluate LEDL, that
is, a local LED model where no global tokens are
used. For both LED and SLED we use a chunk
size c = 256.

3We only consider paragraphs that are not within the gold
document and do not contain the gold answer.
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Figure 3: F1 results on our modified SQuAD 1.1’s
(Rajpurkar et al., 2016) development set evaluation:
(a) the horizontal line gives the performance of an
oracle BARTbase given the gold paragraph only. SLED
matches oracle performance in both the ordered and
shuffled setting (see text). LED slightly underperforms
SLED in the shuffled setup. Both BART (given only the
first 1K tokens) and LED with no global tokens (LEDL)
perform poorly in the shuffled setup. (b) Ablations on
SLED’s architecture, see §4.3 for details.

Results Figure 3(a) shows the results of our
evaluation on the development set. SLED almost
matches the performance of an oracle BARTbase

that is not given any distractor paragraphs, reach-
ing an F1 score of 87.6 compared to the oracle F1

of 88.1 (horizontal line in the figure). LED also
achieves high performance (but lower than SLED
in the shuffled setup), showing both models learn
to ignore distracting information and find a needle
in a haystack. As expected, both LEDL and BART
suffer a significant drop in performance when the
passages are shuffled, as the gold paragraph is not
contextualized with the question.

4.2 Piecing a Puzzle
We now verify that SLED can fuse pieces of in-
formation from different chunks. To this end, we
modify HotpotQA (Yang et al., 2018), a multi-hop
question answering dataset, in which every ques-
tion relies on two pieces of information (located in
different paragraphs). While in the original setting,
each input in HotpotQA has two gold paragraphs

Figure 4:F1 results on our HotpotQA’s development set
(Yang et al., 2018). (a) SLED reaches an F1 that is close
to the oracle BARTbase (horizontal line), outperform-
ing a model with access to the paragraph that contains
the answer (‘‘second paragraph’’). This shows that
SLED effectively fuses information from two chunks.
See text for further explanation on each model. (b)
Ablations on SLED’s architecture, see §4.3 for details.

and 8 distractor paragraphs, we include only the
two gold paragraphs in our experiments. To en-
sure that SLED and LED encode the relevant two
pieces of information in separate chunks, we set
the chunk size to c = 128.

Similar to §4.1, we compare SLED to an oracle
BARTbase with full attention over 1,024 tokens,4

to LED, and to LEDL. Finally, past work has
shown that many examples in HotpotQA can be
answered with access to the ‘‘second’’ gold para-
graph only, which contains the answer (Jiang and
Bansal, 2019). Thus, we also evaluate a BART
model that is given the second passage only.

Results Figure 4(a) shows that indeed, SLED’s
decoder can effectively fuse information from
two separately encoded chunks, reaching an F1

of 76.5, slightly lower than the oracle F1 of 78.6.
Notably, SLED substantially outperforms a BART
model with access to the entire second paragraph,
showing that information is fused by the decoder.
LED slightly outperforms SLED, but when denied
access to global tokens (LEDL) its performance
drops sharply. This shows that the large receptive
field of deep LED layers does not suffice for
information fusion and interaction between the
question and text is crucial for the decoder.

To summarize, our two controlled experiments
show that SLED can perform the operations
of retrieving and fusing information, which are
fundamental for long text language tasks.

4All examples have ≤1,024 tokens, including the prefix.
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4.3 Ablations of Design Choices

We leverage our controlled experimental setup to
further investigate the components of SLED.

Efficacy of the Encoder While §4.2 shows that
SLED can fuse separate pieces of information in
the decoder, it is not clear to what extent local
contextualization is necessary. To check whether
it is possible for all fusion to occur in the decoder,
we finetune SLED with a chunk size of c =
1, such that input tokens do not observe any
context in the encoder. As can be seen in the
leftmost bar(s) in Figure 3(b) and Figure 4(b),
removing local contextualization results in poor
performance, illustrating the importance of local
contextualization.

Contextualizing Chunks with a Prefix As
explained, SLED does not use global tokens,
but instead contextualizes each chunk with a
prepended prefix. To verify its necessity, we
finetune a SLED model that treats the prefix as
another chunk and does not prepend it to docu-
ment chunks.5 The second bar(s) in Figure 3(b)
and Figure 4(b) shows a significant drop in per-
formance for all settings, suggesting the prefix is
needed during encoding.

As expected, there is practically no difference
between the Ordered and Shuffled settings in
Figure 3(b). In contrast, LEDL, which is similar
in concept (due to the lack of global tokens),
shows a significant drop when paragraphs are
shuffled. This shows the possible effectiveness
of the increased receptive field in LED, but only
when the gold paragraph is relatively close to the
prefix.

Encoding the Prefix After showing that the
prefix is crucial for the encoder, we ask whether
the decoder needs direct access to the prefix or
whether relevant information from the prefix can
be infused into the chunk representations. To test
that, we finetune SLED as usual, but remove the
prefix tokens from the final representation given
to the decoder. The rightmost bar(s) in Figure 3(b)
and Figure 4(b) shows that providing the decoder
with prefix representations makes little difference
if any at all, suggesting that indeed the encoder can
infuse the important information from the prefix
into the encoded document tokens.

5We add masked padding after the prefix to ensure
chunking of the document remains identical.

5 Experiments

We evaluate SLED on SCROLLS (Shaham
et al., 2022), a recently proposed benchmark for
evaluating long text understanding. SCROLLS
contains seven datasets that span three different
language understanding tasks:

1. Summariazation: GovReport (Huang et al.,
2021) is a summarization task over reports
from the Congressional Research Service;
SummScreenFD (Chen et al., 2022) is a sum-
marization dataset over TV scripts; QMSum
(Zhong et al., 2021) is a query-based sum-
marization dataset over meeting transcripts
from various domains. While GovReport and
SummScreenFD do not contain a prefix, for
QMSum we consider the query as the prefix.

2. Question answering (QA): Qasper (Dasigi
et al., 2021) is a QA benchmark that contains
questions over NLP papers; NarrativeQA
(Kočiský et al., 2018) contains questions over
entire books and movie scripts; QuALITY
(Pang et al., 2022) is a multiple-choice QA
dataset over books and articles. For all QA
datasets, we set the question as the prefix.
For QuALITY, we consider the four answer
options part of the question.

3. Natural language inference: ContractNLI
(Koreeda and Manning, 2021) contains short
legal hypotheses (set as the prefix) and le-
gal documents as the premise. Models are
tasked to predict whether the premise en-
tails, contradicts or is neutral w.r.t. to the
hypothesis.

For each task, we use the official evaluation
metrics defined in SCROLLS, which are based on
the metrics from the original datasets.

5.1 Settings
We evaluate SLED with both BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020b) as backbone
models. For each backbone model, we compare
performance with SLED, which can consume long
sequences, vs. the backbone models alone that are
fed with the first 1,024 tokens. For comparison,
we also finetune LEDbase. In all SLED and LED
experiments, we use a maximal sequence length
of 16K tokens and chunk size of 256 to allow for
a fair evaluation.

For each model-dataset pair, we run hyperpa-
rameter tuning (detailed in Appendix C) based
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Model (Chunk/Input) #Params Avg GovRep SumScr QMSum Qspr Nrtv QALT CNLI
ROUGE-1/2/L ROUGE-1/2/L ROUGE-1/2/L F1 F1 EM-T/H EM

Development Scores
LEDbase (256/16K) 162M – 57.3/27.9/30.0 30.7/6.3/17.9 32.5/9.0/21.1 30.4 20.2 30.9 82.3
T5base (1K/1K) 220M – 32.8/11.7/20.2 22.2/3.7/15.3 26.1/6.6/19.8 13.2 14.9 35.1 76.8
T5base-SLED (256/16K) 220M – 47.0/20.2/25.2 25.3/5.0/16.6 29.9/8.7/21.4 38.2 18.2 34.6 82.4
BARTbase (1K/1K) 139M – 47.7/18.5/22.3 30.1/7.0/18.3 32.2/9.3/21.1 23.3 15.9 33.8 78.4
BARTbase-SLED (256/16K) 139M – 55.7/24.8/25.8 33.6/8.5/19.2 34.4/11.5/22.7 35.8 21.3 33.7 85.3
BARTlarge (1K/1K) 406M – 50.6/19.8/23.5 32.1/7.4/18.7 33.3/9.4/21.6 24.5 17.9 36.1 79.3
BARTlarge-SLED (256/16K) 406M – 57.4/26.3/27.5 35.3/8.8/19.5 36.3/12.2/23.3 42.5 23.6 37.2 85.3

Test Scores
LEDbase (256/16K) 162M 33.6 56.8/27.3/29.2 30.0/6.0/17.5 31.3/8.6/20.5 34.8 21.0 28.5/28.3 82.9
T5base (1K/1K) 220M 26.3 33.2/12.1/20.4 21.4/3.6/15.0 24.2/5.9/18.6 16.3 15.0 31.9/28.6 76.3
T5base-SLED (256/16K) 220M 33.3 46.6/20.1/25.1 24.5/4.6/16.5 28.4/8.7/20.5 43.0 18.9 31.2/29.4 81.4
BARTbase (1K/1K) 139M 30.6 48.0/19.1/22.7 30.1/6.6/18.1 31.2/9.1/20.3 27.6 16.0 32.5/31.6 77.1
BARTbase-SLED (256/16K) 139M 35.4 54.7/24.4/25.4 32.7/7.9/19.1 33.8/11.7/22.6 41.1 21.5 29.7/30.4 85.6
BARTlarge (1K/1K) 406M 32.1 50.7/20.1/23.5 31.6/6.8/18.5 32.0/9.1/20.8 29.2 18.3 34.8/33.9 79.7
BARTlarge-SLED (256/16K) 406M 38.0 57.5/26.3/27.4 35.2/8.7/19.4 34.2/11.0/22.0 46.9 24.1 34.8/34.8 87.3

LEDSCROLLS†
base (1K/16K) 162M 29.2 56.2/26.6/28.8 24.2/4.5/15.4 25.1/6.7/18.8 26.6 18.5 25.8/25.4 71.5

LongT5†base (255/16K) 220M 38.2 53.5/27.3/29.3 34.8/9.6/21.1 33.9/11.0/22.8 46.6 23.0 37.9/36.6 85.6
LongT5†large (255/16K) 770M 40.5 54.2/27.8/29.8 35.6/9.2/21.2 35.1/12.0/23.3 52.3 27.2 40.6/38.6 87.3
LongT5†XL (255/16K) 3B 41.9 54.7/28.2/30.2 35.8/9.6/21.1 34.9/11.8/23.5 53.1 29.3 46.0/42.1 88.2
UL2† (2K/2K) 20B 37.9 53.6/26.1/28.8 32.9/7.8/19.4 31.1/8.5/20.4 37.6 24.2 45.8/40.7 88.7

Table 1: Main results on the SCROLLS benchmark. Chunk/Input refers to the chunk size used (c) and
to the maximal input length (n). Avg is the average SCROLLS score as described in Shaham et al.
(2022). Development scores for QuALITY are only for the full set (T). † indicates reported results
from SCROLLS public leaderboard.6 LEDSCROLLS

base scores were reported by Shaham et al. (2022) and are
lower than our LEDbase implementation, presumably since our implementation uses all question tokens
for global attention rather than just the first one. The results for LongT5 and UL2 were submitted to the
SCROLLS leaderboard by their authors.

on the development set. Additionally, we sub-
mit generated predictions over the test set to
SCROLLS leaderboard,6 and compare to the re-
ported performance of other models at the time of
submission.

5.2 Results

Table 1 reports results over SCROLLS develop-
ment and test sets. Taking short-range pretrained
LMs like BART and T5 and casting them into
SLED’s framework allows them to process long
documents effectively, improving the average
SCROLLS score by 4.8-7 points. Examining
BARTbase-SLED, we see a large improvement
compared to LEDbase (33.6→35.4), and compet-
itive performance on multiple tasks compared to
LongT5base and UL2. Moreover, adding SLED
to BARTlarge results in a high-performing model
with results that are comparable to LongT5base
and outperforming UL2, despite UL2’s large
parameter count (50x larger), and with no
need for expensive pretraining geared towards

6https://www.scrolls-benchmark.com
/leaderboard.

long-range tasks. BARTlarge-SLED’s perfor-
mance is moderately lower than the larger LongT5
models.

Barring QuALITY, SLED significantly im-
proves performance across all tasks compared
to the corresponding backbone models. All sum-
marization datasets (GovReport, SummScreenFD
and QMSum) show impressive gains of up to
35% compared to their baseline scores, across all
metrics (Rouge-1/Rouge-2/Rouge-L [Lin, 2004])
and for all three backbone models. Similarly, on
ContractNLI (Koreeda and Manning, 2021) we
see large relative improvements. As the perfor-
mance of the baseline models was already high,
this boost in performance is even more significant.
Finally, the QA datasets Qasper and NarrativeQA
show the largest gains, improving by an average
of 60%.

QuALITY In stark contrast to other datasets
lies the multi-choice QA dataset QuALITY
(Pang et al., 2022). While the performance of
BARTlarge-SLED is above chance, it barely im-
proves the performance of its backbone model
(BARTlarge), which observes only the first 1K
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tokens, with a similar trend in other backbone
models. Analyzing test scores in Table 1, we see
that increasing model size consistently improves
performance (up to 46% exact match), but in-
creasing input length has a negligible effect. Since
reported human accuracy on QuALITY is high
(93.5%), this hints that QuALITY might require
commonsense reasoning and knowledge that are
absent from models with a lower parameter count.

Summary We have shown that taking off-
the-shelf pretrained LMs and embedding them
into SLED leads to competitive performance on
SCROLLS. Importantly, any future pretrained LM
can be easily plugged into SLED, without the need
for an expensive pretraining step.

5.3 Dataset Analysis

SLED’s simplicity and modularity allow it to
be used as a useful tool for dataset analyses.
Specifically, we can vary the chunk size, c, and
the number of tokens, n, across datasets to analyze
a) how local are individual pieces of relevant
information, and b) how far into the document
they are located.

Locality of Information SLED relies on an as-
sumption that information can be contextualized
locally at encoding time. To analyze locality, we
vary the chunk size, c, which defines the atten-
tion window, and measure the effect on SCROLLS
datasets with input length 16K. Figure 5 shows the
results of this experiment, where the y-axis shows
the relative improvement compared to BARTbase

on a target metric as a function of the chunk size
c for all datasets. We observe that in all datasets
the best performing chunk size is relatively small
(up to 256), and further increasing c even hurts the
performance in some cases. However, the sum-
marization datasets show a much larger gain in
performance when increasing c up to that thresh-
old. This coincides with a common hypothesis that
QA and NLI require relatively local context, and
thus increasing c can add noise and hurt optimiza-
tion, while summarization may require a more
high-level view of information.

Distance from Start of Document We now
analyze whether the entire document is indeed
required for tasks in SCROLLS by varying the
maximum document length, n. Figure 6 shows
the results of this experiment, where the y-axis
shows relative improvement of BARTbase-SLED

Figure 5: BARTbase-SLED relative improvement com-
pared to BARTbase results, when varying the SLED’s
chunk size (i.e., c), fixing the maximum input length
to 16K. Top: Summarization datasets. The y-axis
measures relative improvement of Rouge-2. Bottom:
QA and NLI datasets. The y-axis measures rela-
tive improvement of exact match for QuALITY and
ContractNLI and F1 for NarrativeQA and Qasper.

compared to BARTbase as a function of the first n
tokens from the document (chunk size c = 256).
As expected, all datasets (except QuALITY) show
a roughly monotonic improvement in performance
with n. This shows that (a) SLED is able to ef-
fectively use all of the information in a long
sequence (up to 16K tokens),7 and that (b) observ-
ing the entire inputs from SCROLLS improves
performance.

5.4 Effect of Context Padding

In all experiments thus far, we used a conserva-
tive padding value ρ = 0.5, resulting in effective
chunk size of c

2 and c
4 context padding tokens

on each side. Since both memory and, more im-
portantly, the number of forwards passes through
the encoder are linear in the number of chunks, a
natural question is how much padding and overlap
are necessary to achieve satisfactory results.

To explore this, we finetune BARTbase-SLED
on all six datasets where SLED showed gains

7For ContractNLI, the length of over 95% of the tokenized
examples is less than 8K.
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Figure 6: BARTbase-SLED relative improvement com-
pared to BARTbase results, when varying the input
length fed to SLED, fixing c = 256. Top: Summariza-
tion datasets compared w.r.t. Rouge-2. Bottom: QA
and NLI datasets. Relative improvment is measured
w.r.t. exact match for QuALITY and ContractNLI and
F1 for NarrativeQA and Qasper.

over its baseline model (i.e., all datasets except
for QuALITY), varying the value of ρ, and fixing
c = 256. Table 2 shows the results of this exper-
iment, where we compare relative gain compared
to BARTbase across different ρ values.

As expected, decreasing the padding factor and
consequently the number of chunks reduces train-
ing time. When ρ = 0.05 training can be faster
by up to 2x compared to ρ = 0.5 as the num-
ber of chunks drops to almost half. Moreover,
relative gain (i.e., improvement relative to the
baseline) is often close to or even higher with less
padding (perhaps due to better encoding or more
stable optimization). Nevertheless, there is no sin-
gle ρ value that consistently beats the conservative
choice of ρ = 0.5. In particular, in all six datasets,
setting ρ = 0.5 results in a top-2 performance,
often by a large margin and never considerably
worse then the best result. Thus, we conclude that
one may improve the efficiency and performance
of SLED by tuning the hyperparameter ρ for op-
timal behavior w.r.t. a specific task, and we fix
ρ = 0.5 in our experiments.

ρ
Relative Gain

GovRep SumScr QMSum Qspr Nrtv CNLI

50% 34.1% 21.0% 22.8% 53.7% 34.2% 8.9%
25% 28.5% 19.0% 17.9% 54.7% 29.4% 10.1%
5% 18.7% 15.9% 23.5% 52.0% 31.9% 7.4%
0% 27.1% 9.5% 11.5% 46.1% 29.2% 6.9%

Table 2: BARTbase-SLED relative improve-
ment compared to BARTbase when varying
the padding percentage (ρ). In all cases the
maximum input length is 16K and c = 256.
Relative gain is measured w.r.t. Rouge-2 for
GovReport, SummScreenFD, and QMSum, F1

for Qasper and NarrativeQA and exact match for
ContractNLI. In each column, boldface marks
the top performing value and underline the
second-best.

Moreover, Table 2 demonstrates the importance
of having chunks at least partially overlapping.
In all six dataset, using non-overlapping chunks
(ρ = 0) results in a drop of at least 10% gain
compared to the best setting, where in some cases
this gap grows to over 50%. This supports our
hypothesis that chunking inputs with no overlap
may lead to crucial loss of information.

6 Related Work

Efficient Transformers Many efficient atten-
tion variants were proposed in recent years, to
alleviate the quadratic complexity of dense at-
tention (Tay et al., 2020; Fournier et al., 2021).
Among those are clustering vectors to distinct
buckets, calculating attention only within each
one (Kitaev et al., 2020), attending only to a fixed
number of hidden vectors (Ma et al., 2021), us-
ing random features to approximate the attention
matrix (Choromanski et al., 2021; Peng et al.,
2021), and using low-rank factorizations (Wang
et al., 2020). Despite achieving respectable perfor-
mance when finetuning these models on the Long
Range Arena benchmark (Tay et al., 2021), many
of them were not yet proven to work well as a
backbone for pretrained language models. In fact,
recent work (Xiong et al., 2022b) on encoder-only
models found many do not outperform a sim-
ple local attention sliding window on downstream
language tasks. We discuss such methods next.

Sparse Attention Variants A popular and sim-
ple solution for allowing attention-based models
to process long sequences is to use local attention,
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where each token attend to a local window around
it. Longformer (Beltagy et al., 2020), GMAT
(Gupta and Berant, 2020), and ETC (Ainslie
et al., 2020) use short windows of full attention,
combined with full attention to a small number of
predefined global input tokens. BigBird (Zaheer
et al., 2020b) shares the local and global features,
and, additionally, randomly samples tokens to
attend to. Finally, the recently proposed LongT5
(Guo et al., 2022) extends T5 (Raffel et al., 2020a)
with local and global attention components based
on ETC, relieving the need to manually spec-
ify global tokens. In this work, we demonstrate
that a simple sliding window with off-the-shelf
models without any modifications is a strong al-
ternative for multiple generative tasks that require
processing long documents.

Beyond Transformers As an alternative to
transformers for processing long sequences, Gu
et al. (2021) proposed the Structured State
Space (S4) architecture showing dramatic gains
over transformers on the LRA benchmark (Tay
et al., 2021). State space models are now an ac-
tive research field (Gupta, 2022; Mehta et al.,
2022), but their efficacy on long-range language
understanding tasks has not been tested yet.

Fusion-in-Decoder Izacard and Grave (2021)
proposed to encode multiple independent pas-
sages separately, and concatenate the encodings
prior to the decoding phase. Despite encouraging
empirical evidence (Amouyal et al., 2022; Yavuz
et al., 2022), we are the first (to our knowledge)
to analyze FiD’s feasibility and limitations in a
controlled setting. Importantly, we test FiD on
long-range tasks over a single long document,
rather than a collection of independent passages.

Pretrained Models with Sliding Windows
Wrapping a BERT encoder within a sliding win-
dow was proposed by Cui and Hu (2021) in the
context of a specialized architecture for summa-
rization. Wang et al. (2019) showed that sliding
BERT across text improves performance on sev-
eral QA datasets. In this work, we propose a sliding
window approach that can be easily plugged into
any existing encoder-decoder model without ad-
ditional parameters or task-specific training, and
show its efficacy for long-range text understand-
ing. Most similar to SLED, is the SEGENC approach
proposed by Vig et al. (2022). By dividing inputs
from QMSum into overlapping chunks, encoding

them separately, and then performing FiD (using
two representations for every input token), the
authors were able to achieve state-of-the-art re-
sults. However, Vig et al. (2022) were focused on
summarization and did not perform a systematic
analysis of this type of architecture.

7 Limitations

We present SLED as a simple and effective
method to extend the capabilities of pretrained
short-text models to long-text tasks. Despite its
impressive empirical performance on SCROLLS,
SLED suffers from two disadvantages which may
limit its applicability to some long-range tasks.

Long Output To obtain linear complexity,
SLED assumes the output length k is con-
stant. This is because the decoder uses quadratic
self-attention over the output, on top of O(nk)
cross-attention between the output and input.
While most current long-text tasks follow this
assumption, future tasks, such as academic re-
ports or script writing, may require long text
generation. This limitation is not unique to SLED
and affects other long-range transformers includ-
ing LongT5 and LED. Aside from finetuning, this
also affects pretraining models on long inputs with
self-supervised losses such as span-corruption
(Raffel et al., 2020b) or denoising (Lewis et al.,
2020), which require the decoder to process an
output that is linear in the length of the input.

Co-reference Resolution and Fact Retention
An assumption at the heart of SLED is the Local-
ity of information assumption. When the input text
is long, this assumption may break if distant entity
resolution or factual knowledge are required. For
example, a chapter in a book may mention ‘‘they
were walking into the room’’ when knowledge of
what room or who walked is located a few chapters
back. In such cases, the encoder used by SLED
will not be able to access this information, moving
more responsibility to the decoder and reducing
the effectiveness of the contextual encoding. Sim-
ilarly, in multi-hop questions (Yang et al., 2018),
attending to one part of the context is necessary in
order to fully understand the question and encode
a second piece of information correctly. As the
encoder will not have access to the first context
that leads to better question understanding, here
as well more responsibility is delegated to the
decoder.
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8 Conclusions

In this work we present SLED, a simple approach
for modeling long texts that slides a pretrained
short-range encoder over a long input document
and then generates an output by attending to the
encoded tokens. We show SLED can perform
core operations that are important for long text
understanding, such as finding relevant pieces of
information and fusing them at decoding time,
and demonstrate competitive performance on the
SCROLLS benchmark compared to larger models
and models that employ a dedicated and expensive
pretraining step.

One of SLED’s most attractive features is that it
can be readily used with any short-range pretrained
LM. Thus, any future encoder-decoder model can
be flexibly plugged into it to achieve further gains
in performance on SCROLLS, some of its tasks,
or any other long-range task.

We open source SLED and hope it encourages
the research community to easily extend to longer
inputs and push the borders of natural language
understanding models’ applicability in real-world
use-cases.
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A SLED Implementation Details

While §3 details SLED’s method it leaves out
dealing with the edge tokens for brevity. Encoding
the first and last ρ×c

2 input tokens requires special
attention, as they lack bidirectional context. To
preserve as much commonality between chunks,
all first (2−ρ)×c

2 tokens are considered the effective
chunk tokens in the first chunk. To account for
the final tokens, the last chunk will always start at
token tn−c+1 so it would contain exactly c tokens,
and its effective chunk tokens will be defined as all
tokens that were not part of any previous effective
chunk.

B Chunking vs. Local-attention

Both LED and SLED are long-range models built
on top of the same short-text model (BART), and
employ local attention. However, SLED relies on
chunking, while LED uses per-layer local atten-
tion. In this section, we now discuss in more detail
the relation between the two approaches.

Implementation One of SLED’s biggest ad-
vantages is that it is agnostic to the backbone
encoder-decoder model, and can extend any ex-
isting model without additional implementation
overhead. In contrast, The attention mechanism in
Longformer, and subsequently LED, was imple-
mented by Beltagy et al. (2020) with a specialized
CUDA kernel that is coupled to the architecture
and implementation of BART. This makes LED
more efficient, but extending it to new architec-
tures incurs significant engineering overhead. This
is since LED uses a ‘‘diagonal’’ local-window
attention across layers, for which a naı̈ve imple-
mentation is inefficient. Conversely, SLED uses
chunking, which allows to simply wrap an existing
encoder-decoder model.

Contextualization The most significant dif-
ference between LED and SLED from a
conceptual point of view is their contextualiza-
tion mechanism. While SLED splits the input
into (overlapping) chunks and encodes each of
them independently, LED performs local at-
tention per-layer. This results in an effective
receptive field that grows linearly with the en-
coder depth, potentially allowing it to perform
more ‘‘global’’ contextualization. Our results in
§4 suggest that such global contextualization
is beneficial, and a similar conclusion can be
reached when observing that LEDbase, which uses
all prefix tokens as global tokens, outperforms
LEDSCROLLS

base , which uses only a single token for
global contextualization.

Positional Information SLED’s chunking
mechanism means that it utilizes the positional
encoding of the underlying model independently
in each chunk, and is thus agnostic to the posi-
tional embedding technique used by the backbone
model. Moreover, it potentially allows SLED to
generalize to arbitrary input lengths. In contrast,
LED utilizes BART’s absolute embeddings,
duplicating them 16 times to support 16K-long
sequences. This limits its ability to generalize
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to longer inputs, and potentially induces a
requirement for significant amounts of long-input
samples to properly tune those new parameters
(Shaham et al., 2022). This is evident in Table 1
when comparing tests scores of LEDbase against
BARTbase-SLED and considering the number
for training samples. In NarrativeQA and Gov-
Report, which contain ∼71K and ∼19K samples
respectively, LED is comparable to SLED and
even slightly outperforms it on some metrics. In
ContractNLI (∼10K examples), it does slightly
worse. In all other datasets, where the training
data is small, LED is significantly worse than
SLED.

Complexity We analyzed the complexity
analysis of SLED’s encoder (§3), which is
O (l × c× n). A similar analysis of LED yields
that in each layer, LED considers O(n) windows
of length c, where in each window only the
middle token attends to its local neighborhood,
resulting in O (l × c× n) memory complexity
as well. However, due to SLED’s use of overlap
and full self-attention within each chunk, SLED’s
encoding may require up 2x more memory
compared to LED when ρ = 0.5.

C Experimental Details

Our experimental setup is based on the SCROLLS
official repository.8 The dataset inputs and
splits remained as suggested by the authors of
SCROLLS as well as the suggested number of
epochs per dataset. To perform model selection,
for each model-dataset pair we finetuned 9 models
with LINEAR learning rate scheduling, AdamW
optimizer with the default settings, and setting
the learning rate to one of {2e−5, 5e−5, 1e−4}
and the effective batch size to one of {8, 16, 32}.
Warmup was fixed at 10% and weight decay
at 0.01. All code, data, Python environment
requirements, hyperparameters, and scripts re-
quired to reproduce our results are available at
https://github.com/Mivg/SLED.
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