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Abstract

In the last few years, the natural language pro-
cessing community has witnessed advances
in neural representations of free texts with
transformer-based language models (LMs).
Given the importance of knowledge available
in tabular data, recent research efforts extend
LMs by developing neural representations for
structured data. In this article, we present a
survey that analyzes these efforts. We first
abstract the different systems according to a
traditional machine learning pipeline in terms
of training data, input representation, model
training, and supported downstream tasks. For
each aspect, we characterize and compare the
proposed solutions. Finally, we discuss future
work directions.

1 Introduction

Many researchers are studying how to represent
tabular data with neural models for traditional
and new natural language processing (NLP) and
data management tasks. These models enable ef-
fective data-driven systems that go beyond the
limits of traditional declarative specifications built
around first order logic and SQL. Examples of
tasks include answering queries expressed in
natural language (Katsogiannis-Meimarakis and
Koutrika, 2021; Herzig et al., 2020; Liu et al.,
2021a), performing fact-checking (Chen et al.,
2020b; Yang and Zhu, 2021; Aly et al., 2021),
doing semantic parsing (Yin et al., 2020; Yu et al.,
2021), retrieving relevant tables (Pan et al., 2021;
Kostić et al., 2021; Glass et al., 2021), understand-
ing tables (Suhara et al., 2022; Du et al., 2021),
and predicting table content (Deng et al., 2020;
Iida et al., 2021). Indeed, tabular data contain an
extensive amount of knowledge, necessary in a
multitude of tasks, such as business (Chabot et al.,
2021) and medical operations (Raghupathi and
Raghupathi, 2014; Dash et al., 2019), hence, the
importance of developing table representations.

Given the success of transformers in developing
pre-trained language models (LMs) (Devlin et al.,
2019; Liu et al., 2019), we focus our analysis
on the extension of this architecture for producing
representations of tabular data. Such architectures,
based on the attention mechanism, have proven to
be successful as well on visual (Dosovitskiy et al.,
2020; Khan et al., 2021), audio (Gong et al.,
2021), and time series data (Cholakov and Kolev,
2021). Indeed, pre-trained LMs are very versa-
tile, as demonstrated by the large number of
tasks that practitioners solve by using these mod-
els with fine-tuning, such as improving Arabic
opinion and emotion mining (Antoun et al., 2020;
Badaro et al., 2014, 2018a,b,c, 2019, 2020). Re-
cent work shows that a similar pre-training strat-
egy leads to successful results when language
models are developed for tabular data.1

As depicted in Figure 1, this survey covers both
(1) the transformer-based encoder for pre-training
neural representations of tabular data and (2) the
target models that use the resulting LM to ad-
dress downstream tasks. For (1), the training data
consist of a large corpus of tables. Once the rep-
resentation for this corpus has been learned, it can
be used in (2) for a target task on a given (unseen
at pre-training) table, such as the population table,
along with its context, namely, relevant text infor-
mation such as table header and captions. In most
cases, the LM obtained from pre-training with
large datasets in (1) is used in (2) by fine-tuning
the LM with a labeled downstream dataset, for ex-
ample, a table with cells annotated as the answer
for the question in the context. Extensions on the
typical transformer architecture are applied to ac-
count for the tabular structure, which is different
and richer in some aspects than traditional free text.

1We refer to tabular ‘‘language’’ models with a slight
abuse of the name, as the LM captures properties and re-
lationships of the structured data rather than those of the
language.
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Figure 1: The overall framework for developing and consuming neural representations for tabular data. Wikipedia
Tables or WDC Web Table Corpus are typically used in the pre-training step (1). In (2), a table along with
its context (header, the additional question and the highlighted answer) are used for a Question Answering
downstream task. Both processes combine the serialized table data with natural language text in the context.

While all proposed solutions make contribu-
tions to the neural representation of tabular data,
there is still no systematic study to compare those
representations given the different assumptions
and target tasks. In this work, we aim to bring
clarity in this space and to provide suitable axes
for a classification that highlights the main trends
and enables future work to clearly position new
results. Our contributions are threefold:

1. We characterize the tasks of producing and
consuming neural representations of tabular
data in an abstract machine learning (ML)
pipeline. This abstraction relies on five as-
pects that are applicable to all proposals and
that are agnostic to methods’ assumptions
and final application (Section 2).

2. We describe and compare the relevant pro-
posals according to the characteristics of the
datasets (Section 3), the processing of the
input (Section 4), and the adaptations of
the transformer architecture to handle tabular
data (Section 5).

3. To show the impact of the proposed solutions,
we present six downstream tasks where they
have achieved promising results (Section 6)
and discuss how tabular language models are
used by systems in practice (Section 7).

We conclude the survey with a discussion of the
limitations of existing works and future research
directions (Section 8).

Related surveys. Some recent surveys cover the
use of deep learning on tabular data (Borisov et al.,
2021; Gorishniy et al., 2021; Shwartz-Ziv and
Armon, 2021). These surveys are different from
ours in multiple aspects. First, they investigate
how deep learning models (including non-

transformer-based) compare against classical ML
models (mainly gradient boosted trees) by pro-
viding empirical results with lack of details over
the changes to the model, while our work taxono-
mizes transformer-based models in depth. Second,
other works focus on standard classification and
regression tasks where the term ‘‘tabular data’’ is
used for labeled training data, representing data
points with columns consisting of features. Every
row is an input to the model together with a label
(e.g., predicting house prices) (Somepalli et al.,
2021). In contrast, we do not consider tabular data
necessarily as a training dataset with features and
labels, but rather as an input containing informa-
tion needed for prediction by a target model, such
as question answering on tables. For this reason,
while they focus on data generation and classifica-
tion, we relate design choices and contributions to
a large set of downstream tasks. A recent survey
(Dong et al., 2022) covers approaches for table
pre-training and usage of LMs in downstream
tasks with an overlap in terms of surveyed works.
In contrast with their work, we provide a more
detailed study of the extensions to the transformer
architecture and analyze in detail the relevant
datasets’ properties and pre-processing steps.

2 Terminology and Overview

We focus on tabular data that come in the form of
a table, as depicted in the two examples in Table 1.
Table kinds differ in terms of horizontal/vertical
orientation and with respect to the presence of
hierarchies. A relational table, which is the most
common kind, consists of rows, or records, and
columns that together identify cell values, or cells.
Columns represent attributes for a given table, and
each row represents an instance having those at-
tributes. This can be seen as a vertical orientation,
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Player Team FG% Player Carter

Carter LA 56 Team LA
Smith SF 55 FG% 55

Table 1: Examples of (vertical) relational table
and (horizontal) entity table. A label ‘Identity’
on a top row spanning ‘Player’ and ‘Team’
would make the relational table a spreadsheet,
similarly for the entity table with the same label
spanning the first two rows.

where all cells in a column share the same atomic
type, for example, the relational table in Table 1.
An entity table has the same properties, but with
a horizontal structure with only one entity whose
properties are organized as rows. Spreadsheets,
or matrix tables, are the most general kind with
information that can be organized both horizon-
tally and vertically, possibly with hierarchies in
the header and formatting metadata, such as in
financial tables.

Tables can have rich metadata, such as attribute
types (e.g., DATE), domain constraints, functional
dependencies across columns and integrity con-
straints such as primary keys. In the table sample
in Figure 1, column Country is a primary key.
Most systems focus on a single table, with or
without metadata. However, a few systems, such
as GTR (Wang et al., 2021a), GRAPPA (Yu et al.,
2021), and DTR (Herzig et al., 2021), consume
databases, which are collections of relational ta-
bles, possibly under referential constraints. We
identify as input the table(s) and its context. The
context is a text associated to the table. Depending
on the dataset and task at hand, it varies from table
metadata, the text surrounding the tables or their
captions up to questions, expressed in natural lan-
guage, that can be answered with the tabular data
(Badaro and Papotti, 2022).

The main advantage of the transformer archi-
tecture is its ability to generate a LM, a large
neural network, with self-supervised pre-training.
This pre-trained LM is then usually followed by
supervised fine-tuning to adapt it to the target task
with a small amount of training data. While trans-
formers have proven to be effective in modeling
textual content, tables have a rich structure that
comes with its own relationships, such as those
across values in the rows and attributes. New so-
lutions are therefore needed to jointly model the

characteristics of the table, its text content, and
the text in the table context. As shown in Figure 1,
we distinguish two main phases to spell out these
contributions. First, we focus on the development
of tabular LMs by using transformer-based deep
neural networks (1). Given a table and its context,
the goal is to learn a pre-trained representation of
the structured data (cell values, rows, attributes)
in a continuous vector space. We then discuss the
use of those representations in the downstream
tasks (2).

Figure 1 shows the reference pipeline and the
aspects that we propose to model existing systems.

• Training Datasets (Sec. 3): the datasets used
for pre-training and fine-tuning the models
toward specific tasks; datasets for the latter
case usually come with annotations and/or
labels.

• Input Processing (Sec. 4): the steps to pre-
pare the data for the model processing,
such as the transformation from the two di-
mensional tabular space to one dimensional
input.

• Transformer-based Encoder (Sec. 5): the
pre-training objectives and customization of
the typical transformer-based deep learning
architecture.

• Downstream Task Model (Sec. 6): the
models consuming the representations or
fine-tuning them to tackle downstream tasks.

• Tabular Language Model (Sec. 7): the out-
put representations, including at the token,
row, column, table level, and their usage.

For the tasks consuming the models, we report
on Table based Fact-Checking (TFC), Question
Answering (QA), Semantic Parsing (SP), Table
Retrieval (TR), Table Metadata Prediction (TMP),
and Table Content Population (TCP).

3 Training Datasets

We present both the datasets used for pre-training
and for fine-tuning in the downstream tasks.
Pre-training tables are not annotated, in some
cases scraped from the web, while data used for
fine-tuning have task-dependent annotation labels.
The datasets consist of tables and their context,
such as table metadata, surrounding texts, claims
or questions. To construct large pre-training
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datasets and in an attempt to reduce bias, mul-
tiple sources can be used, independently of the
target task at hand. For instance, unlike TAPAS

(Herzig et al., 2020), which only uses Wikipedia
Tables for QA, and TABULARNET (Du et al., 2021),
which only uses Spreadsheets for TMP, TABERT
(Yin et al., 2020) uses Wikipedia Tables and WDC
for SP; GRAPPA uses Wikipedia Tables, Spider,
and WikiSQL for SP; MMR (Kostić et al., 2021)
uses NQ, OTT-QA, and WikiSQL for TR; MATE
(Eisenschlos et al., 2021) uses Wikipedia Tables
and HybridQA for QA; and TUTA (Wang et al.,
2021b) uses Wikipedia Tables, WDC, and spread-
sheets for TMP. In general, it is recommended to
utilize different data sources for pre-training to
ensure covering different kinds and content, and
thus, improve the scope of representations. For
instance, Wikipedia tables has a large number of
relational tables (Bhagavatula et al., 2015), while
WDC and Spreadsheets include also entity tables
and spreadsheets with complex structure.

Table 2 summarizes the main characteristics
for the most common datasets. We mark the tasks
for which the dataset has been used by ✔ under
the column ‘‘Task’’. We note that the top four
datasets are mostly used for pre-training, while the
others can be used for fine-tuning as well since
they include annotations for the target task, for
example, questions/answers for QA. The column
‘‘Large Tables’’ is a binary indicator, where ✔

and ✘ indicate whether or not the tabular corpus
include large tables and hence whether or not some
pre-processing is needed to reduce table content
to meet the limits of the transformer architecture
(512 input tokens in most cases). Some works,
such as TABERT, TAPEX (Liu et al., 2021a), and
CLTR (Pan et al., 2021), apply filtering in any
case to reduce noisy input. Finally, the ‘‘Context’’
column describes additional text that come with
the tables. This can be text describing the table,
such as caption or title of the document containing
the table; table metadata, such as table orientation,
header row, and keys; or questions and claims that
can be addressed with the table.

4 Input Processing

As for the original text setting, transformers for
tabular data require as input a sequence of tokens.
However, in addition to the typical tokenization
executed before feeding the text to the neural net-
work (Lan et al., 2020), tabular data requires some

steps to be processed correctly. Some require-
ments come from the nature of the transformer,
such as the limitation on the input data size
(Section 4.1). Other requirements are due to the na-
ture of the tabular data, with structural information
expressed in two dimensions that need to be con-
verted into a one dimensional space (Section 4.2).
Finally, given a table, its data and its context must
be jointly fed to the transformer (Section 4.3).

4.1 Data Retrieval and Filtering

Filtering methods on the table content are applied
to stay within the size limits of the transformer
architecture, to reduce the model training time, and
to eliminate potential noise in the representation.

TABERT uses content snapshot to keep the
top-k most relevant rows in the table. Such content
is identified with the tuples with highest n-gram
overlap with respect to the given context (question
or utterance). TAPEX and the retrieval model in
FEVEROUS (Aly et al., 2021) randomly select rows
to limit the input size, while RCI (Glass et al.,
2021) down-samples rows using term frequency
inverse document frequency (TF-IDF) scores; the
frequency can also be used to summarize cells
with long text (Li et al., 2020). In addition to
keeping tables with number of columns below a
fixed threshold, TUTA and TABULARNET split large
tables into non-overlapping horizontal partitions.
Every partition contains the same header row and
it is processed separately by the model. While
effective, splitting is more demanding in terms of
computation cost.

In terms of table selection, whereas for sys-
tems like GTR and DTR the objective is to
retrieve tables that contain the answer to a given
question, others, such as CLTR, use a ranking
function, such as BM25 (Robertson et al., 1995),
to retrieve relevant tables prior to training, or to
generate negative examples, as in MMR. Regard-
less of the downstream task, most systems filter
and reduce the size of the input data to meet
the limits of transformers technology. However,
frequency-driven sampling, such as in RCI, is
more effective than random as it reduces noise
as well in data representations.

To summarize, one can group the different
content selection strategies based on the targeted
downstream task. For TFC, QA, and SP, a se-
lection strategy relying on n-gram overlap such
as content snapshot or TF-IDF is recommended,
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Dataset Reference Used for Task Number of Large Tables Context Application ExampleTFC QA SP TR TMP TCP Tables

Wikipedia Tables Wikipedia ✔ ✔ ✔ ✔ ✔ 3.2M ✔ Surrounding Text: table
caption, page title, page
description, segment title,
text of the segment.
Table Metadata:
statistics about number of
headings, rows, columns,
data rows.

TAPAS

WDC Web Table Corpus (Lehmberg
et al., 2016)

✔ ✔ ✔ 233M ✔ Table Metadata: Table
orientation, header row, key
column, timestamp before and
after table.
Surrounding Text: table caption, text
before and after table, title of HTML page.

TABERT

VizNet (Hu et al.,
2019)

✔ ✔ 1M ✘ Table Metadata: Column
Types. TABBIE

Spreadsheets (Dong et al.,
2019)

✔ 3,410 ✘ Table Metadata: Cell Roles
(Index, Index Name, Value
Name, Aggregation and Others).

TABULARNET

NQ-Tables (Herzig et al.,
2021)

✔ ✔ 169,898 ✔ Questions: 12K. DTR

TabFact (Chen et al.,
2020b)

✔ 16K ✘ Textual Claims: 118K. DECO

WikiSQL (Zhong et al.,
2017)

✔ ✔ ✔ 24,241 ✘ Questions: 80,654. MMR

TabMCQ (Jauhar et al.,
2016)

✔ ✔ 68 ✘ Questions: 9,092. CLTR

Spider (Yu et al.,
2018)

✔ 200 databases ✘ Questions: 10,181
Queries: 5,693.

GRAPPA

WikiTable Question
(WikiTQ)

(Pasupat and
Liang, 2015)

✔ ✔ 2,108 ✘ Questions: 22,033. TAPEX

Natural Questions (NQ) (Kwiatkowski
et al., 2019)

✔ ✔ 169, 898∗ ✔ Questions: 320K. MMR

OTT-QA (Chen et al.,
2021)

✔ ✔ 400K ✔ Surrounding Text: page title,
section title, section text
limited to 12 first sentences.
Questions: 45,841.

MMR

Web Query Table (WQT) (Sun et al.,
2019)

✔ 273,816 ✘ Surrounding Text: captions.
Queries: 21,113. GTR

HybridQA (Chen et al.,
2020c)

✔ 13K ✘ Questions: 72K.
Surrounding Text: first 12
sentences per hyperlink in
the table.

MATE

FEVEROUS (Aly et al.,
2021)

✔ 28.8K ✔ Textual Claims: 87K.
Surrounding Text: article title.
Table Metadata: row and
column headers.

FEVEROUS

Table 2: Datasets for the development and evaluation of neural representation models of tabular data.
The top four datasets are mostly used for pre-training models, the rest of the datasets also come with a
context and labels that are used in the downstream task for training and evaluation. For Large Tables,
✔/✘ denotes whether or not the dataset includes large tables and thus requiring pre-processing to meet
transformers’ limits. Application example refers to sample systems using the respective dataset. For
the task, we use the acronyms as follows. TFC: Table based Fact-Checking, QA: Question Answering,
SP: Semantic Parsing, TR: Table Retrieval, TMP: Table Metadata Prediction, TCP: Table Content
Population. ∗: the number of tables is derived from Herzig et al. (2021).

while for TR, BM25 is endorsed. In the cases of
TMP and TCP, where having the full content of
the table is required, such as relation extraction or
cell filling, splitting the tabular data without any
selection is adopted.

4.2 Table Serialization
A crucial step is the transformation from the two
dimensions of a table to its serialized version con-
sumable by the transformer. The methods for table

serialization can be grouped into four main types.
The first type consists of horizontally scanning
the table by row. Most systems achieve this task
with a flattened table with value separators, for
example, DTR, MMR, TURL (Deng et al., 2020),
TAPAS, MATE, and DECO (Yang and Zhu, 2021).
For the table in Figure 1, it corresponds to a se-
quence such as [CLS] Population in Million by
Country | Country | Capital | Population | Australia
| Canberra | 25.69 . . . Bolivia | La Paz | 11.67.
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Figure 2: Examples of context (table caption, in italic)
concatenated with row and column data linearization.

Another option is a flattened table with special
token separators to indicate the beginning of a
new row or cell (TAPEX, TUTA, [FORTAP (Cheng
et al., 2022)]), as in the first example in Figure 2.
Finally, few methods flatten the table representing
each cell as a concatenation of column name, col-
umn type, and cell value (TABERT), for example,
Country | String | Australia [SEP]; or just the row
of column headers (GRAPPA).

The second linearization type scans the table
by column, again either by simple concatenation
of column values or by using special tokens as
separators, as in DODUO (Suhara et al., 2022). A
column serialization for the country population
table is the second example in Figure 2.

The third linearization type consists of com-
bining the output from both types of serialization
by using element-wise product (RCI, CLTR), av-
erage pooling and concatenation (TABULARNET),
or the average of row and column embeddings
(TABBIE (Iida et al., 2021)). In a context outside
of our framework, which focuses on transformers,
it has also been proposed to transform the in-
put relation table in a graph and perform random
walks on the latter to ultimately produce node
embeddings (Cappuzzo et al., 2020).

The fourth type consists of using a text tem-
plate to represent the tabular data as sentences
(Chen et al., 2020b; Suadaa et al., 2021; Chen
et al., 2020a). Instead of using predefined tem-
plates, natural sentences are generated out of the
tabular data, by fine-tuning sequence to sequence
language models such as T5 (Raffel et al., 2020) or
GPT2 (Radford et al., 2019), as in DRT (Thorne
et al., 2021; Neeraja et al., 2021). The gener-
ation can rely on models for this table-to-text
task, such as TOTTO (Parikh et al., 2020), PYTHIA

(Veltri et al., 2022; 2023), TABLEGPT (Gong et al.,
2020), LOGIC2TEXT (Chen et al., 2020d), UNIFIED-
SKG (Xie et al., 2022), or other efforts (Suadaa

et al., 2021; Chen et al., 2020a,e). However,
most of these methods show limitations for ta-
bles with prevalence of numerical attributes and
with missing table context. Within the efforts for
table-to-text, graph traversal algorithms have been
explored for linearization such as relation-biased
breadth first search (Li et al., 2021). While
table-to-text generation is an important and chal-
lenging task, most methods rely on fine-tuning
existing pre-trained language models.

While it is still not clear which table serializa-
tion method should be used for a given task, few
papers performed ablation studies. For instance,
TABFACT (Chen et al., 2020b) does not report
any significant difference in performance when
comparing row and column encoding. TABERT
reports that both (i) adding type information for
cell values and (ii) phrasing the input as a sentence
improve results. The most promising approach is
to incorporate several aspects by appending col-
umn headers to cell content, combining row and
column encoding, or by adding structure-aware
indicators as the positional embeddings discussed
in Section 5. Finally, there is evidence that textual
templates to represent table content is a valid
solution when one directly fine-tunes existing
pre-trained language models, without performing
pre-training on tabular data (Suadaa et al., 2021).

4.3 Context and Table Concatenation
When available, the table context is concatenated
with the table content. Most systems (TABERT,
TAPAS, DTR, GRAPPA, and DECO) combine the
context by concatenating it in the serialization be-
fore the table data, while TAPEX appends it. The
authors of UNIFIEDSKG found that placing con-
text before the tabular knowledge yields to better
results in their setting. In some cases, including
CLTR, MMR, and RCI, the table and the context
are encoded separately and then are combined at
a later stage in the system.

Some works do not include context in their
pre-training input besides the column headers
(TABBIE, TABULARNET, DODUO, GRAPPA). Typi-
cally, the decision is based on the target down-
stream task. A richer context is used when the
tasks are closer to the corresponding NLP task
applied on free text. For instance, all models for
QA use table captions or descriptions as context.
To summarize, including context is crucial for
TFC, QA, SP, TR, while it can be excluded for
TMP and TCP. In case the context is needed,
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prepending or appending it to the table content
does not modify the performance of the model.

5 Adaptation of Transformers

To account for structured tables in the input,
several pre-trained transformer-based LM and
systems have been developed. Vanilla LMs are
customized to make the model more ‘‘data
structure-aware’’, thus rendering a modified
transformer-based encoder to be utilized on other
tasks. These encoders, depicted in part (1) of
Figure 1, capture both structure and semantic in-
formation. To exploit such resources and build
applications, as in part (2) of Figure 1, several
systems build on top of the encoder, usually with
more modules and fine-tuning. In a different ap-
proach, other systems use the encoder as part of a
bigger architecture in a more task-oriented fash-
ion rather than encoder-oriented. We first briefly
revise the vanilla transformer architecture, then
discuss customizations to LMs.

5.1 Vanilla Transformer

The vanilla transformer (Vaswani et al., 2017) is
a seq2seq model (Sutskever et al., 2014) consist-
ing of an encoder and a decoder, each of which
is a stack of N identical modules. The encoder
block is composed of a multi-head self-attention
module and a position-wise feed-forward network.
Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions. Residual connec-
tions and layer-normalization modules are also
used. Decoder blocks consist of cross-attention
modules between the multi-head self-attention
modules and the position-wise feed-forward net-
works, where masking is used to prevent each
position from attending to subsequent positions.

The transformer architecture can be used as
an encoder-decoder (Vaswani et al., 2017; Raffel
et al., 2020), an encoder-only (Devlin et al., 2019;
Liu et al., 2019), or decoder-only (Radford et al.,
2019; Brown et al., 2020) model. The choice
of the architecture depends on the final task.
Encoder-only models are mainly used for clas-
sification and are the most popular choice for
extensions for tabular data. In this case, pre-
training is done with a masked language model-
ing (MLM) task, whose goal is to predict masked
token(s) of an altered input. The encoder-decoder

architecture is used for models that focus on
sequence generation tasks (RPT, TAPEX).

5.2 LM Extensions for Tabular Data

To properly model the structure of data in tables,
the vanilla transformers are extended and updated
by modifying components at the (i) input, (ii)
internal, (iii) output, and (iv) training-procedure
levels. We discuss each of them in the following.
A summary of the extensions is provided as a
taxonomy in Figure 3. We note that since the en-
coder and decoder modules of a transformer share
similar structure, most of these modifications can
be applied to both.

5.2.1 Input Level
Modifications on the input level are usually desig-
nated with additional positional embeddings to
explicitly model the table structure. TABERT and
TAPAS show how such embeddings improve per-
formance on structure-related tasks. For example,
embeddings that represent the position of the cell,
indicated by its row and column IDs, are common
for relational tables, for example, in TABERT,
TAPAS, and TABBIE. TABLEFORMER (Yang et al.,
2022) drops row and column ids to avoid any po-
tential row and column biases and they instead use
per cell positional embeddings similar to MATE.
For tables without a relational structure, such as
entity tables and spreadsheets, including complex
financial tables, TUTA introduces tree-based posi-
tional embeddings to encode the position of a cell
using top and left embeddings of a bi-dimensional
coordinate tree. Other supplementary embeddings
include those that provide relative positional in-
formation for a token within a caption/header
(TURL) or a cell (TUTA). For tasks such as QA,
segment embeddings are used to differentiate be-
tween the different input types, question and table,
for example, in RPT (Tang et al., 2021) and
TAPAS. Finally, TUTA introduces embeddings for
numbers when discrete features are used.

While row/column positional embeddings can
better map context and table content, such as in QA
or TFC tasks, it cannot overcome the challenge
of empty cells, nested row headers, or descriptive
cells in complex spreadsheets such as financial
tables. In this case, tree-based positional embed-
dings are required. Aside from new positional
embeddings encoding the structure of a token in
a table, original, vanilla positional embeddings
can also be modified for a better representation of
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Figure 3: Taxonomy of extensions to transformer-based LMs for handling tabular data. We report as leaves a
representative system for every extension.

tokens within table cells. For example, TABERT
employs a pre-training task that explicitly uses
positional embeddings, alongside a cell represen-
tation, for the goal of recovering a cell value. In
this case, the original positional embeddings help
better model multiple tokens in a cell.

5.2.2 Internal Level
Most of the modifications on the internal
level are applied to make the system more
‘‘structure-aware’’. Specifically, the attention
module is updated to integrate the structure of
the input table. For example, in TABERT verti-
cal self-attention layers are produced to capture
cross-row dependencies on cell values by per-
forming the attention module in a vertical fashion.
Empirical results in TUTA show that employ-
ing row-wise and column-wise attention, instead

of having additional positional embeddings for
rows and columns, hurts model performance for
cell-type classification tasks, but it is not the case
for table-type classification tasks.

Other systems, such as TURL, employ a masked
self-attention module, which attends to struc-
turally related elements such as those in the same
row or column, thus ignoring the other elements,
unlike the traditional transformer where each ele-
ment attends to all other elements in the sequence.
Moreover, for categorical data, named entities,
such as city names, can be identified in the cell
values. In TURL and TUTA, masking such entities
helps the models capture the factual knowledge
embedded in the table content as well as the asso-
ciations between table metadata and table content.
Ablation studies showed the positive impact of
these two modifications on model performance.
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Other modifications address the input size con-
straint of attention modules, where large tables
are often neglected. Sparse attention methods are
proposed to cope with this issue (Tay et al., 2020).
For instance, MATE sparsifies the attention matrix
to allow transformer heads to efficiently attend to
either rows or columns.

Modifications to the input level, by additional
input embeddings to encode cell positions (TAPAS),
help in tasks requiring information at the cell level,
such as QA and cell type classification. However,
tasks requiring understanding of table structure,
such as table type classification, benefit more from
modifying the attention module (TABERT). Sys-
tems modifying both, such as TUTA, seem to be the
best option. However, modifying the internal level
is more effective, as removing such modification
leads to the larger decrease in performance.

5.2.3 Output Level
Additional layers can be added on top of the
feed-forward networks (FFNs) of the LM de-
pending on the task at hand. Tasks such as cell
selection (TAPAS), TFC (TABFACT), TMP (DODUO),
and QA (TAPAS) require to train one or more addi-
tional layers. Classification layers for aggregation
operations and cell-selection are used to support
aggregating cell values (GRAPPA, MATE, DODUO,
DECO, RCI). In TAPEX, aggregation operations are
also ‘‘learned’’ end-to-end in a seq2seq task.

5.2.4 Training-Procedure Level
Modifications on the training-procedure level can
be attributed to the pre-training task and objective.
Pre-training Tasks. Systems are either trained
end-to-end or fine-tuned after some pre-training
procedure. Almost all pre-training tasks fall un-
der the category of reconstruction tasks, where
the idea is to reconstruct the correct input from
a corrupted one. Rather than applying traditional
token-level MLM on the serialized tabular data, ef-
fectively treating it as natural language sequences,
most pre-training tasks are designed to consider
the information about the table structure.

Typically, traditional masking of the tokens is
used for both, the textual context surrounding the
table and the table cells (e.g., TAPAS 15%, TURL
20%) with some novelties for table cells such as
masked columns (TABERT) and masked entities
(TURL). Specifically, TAPAS follows the strategy
to mask the whole cell table whenever a token in
that cell is randomly masked. Inspired by TAPAS,

TUTA masks 15% of the cells by randomly select-
ing those that consist mainly of text, rather than
numerical values. Among these selected cells,
30% are masked completely, while for 70% only
a single token within the cell is masked. Mask-
ing column names and data types for relational
tables encourages the model to recover the meta-
data, while masking tokens and whole cell values
ensure that data information is retained across
the different vertical self-attention layers. Indeed,
masking at the entity level enables the model to
integrate the factual knowledge embedded in the
table content and its context.

In TABBIE and RPT, the pre-training tasks
detect if a cell/tuple is corrupted or not. While
corruption has been shown to outperform MLM
for standard textual LMs (Clark et al., 2020), it
is not clear if the benefit generalizes to tabular
setting. In TUTA, text headers of tables are used to
learn representations of tables in a self-supervised
manner, i.e., a binary classification task where
a positive example is the table and its associ-
ated header, and a negative example is any other
header.

While most systems pre-train for the purpose of
learning initial tabular representations, performing
aggregations and numerical operations is usually
adapted by fine-tuning a classifier for predicting
cells and operations, e.g., in TAPAS. However,
systems such as GRAPPA and TAPEX pre-train
with SQL queries. In GRAPPA, the pre-training task
enables the discovery of suitable fragments for SP
by pre-training on a large number of queries, with
SQL logic grounding to each table, which might
help generalize to other similar queries. Empirical
results show a decrease in performance without
this pre-training task. TAPEX enforces the LM to
emulate a SQL engine by pre-training on sampled
tables and synthesized queries. This pre-training
task gives (i) the LM a deeper understanding of
the tables, as the system encounters operations
such as selection and aggregation rendering its
representations ‘aware’ of such operations, and
(ii) improves the performance in QA.

According to (Chang et al., 2020), a pre-training
task should be cost-efficient, ideally not requir-
ing additional human supervision. As manually
annotating queries with tables is costly, using sur-
rounding information, such as the table header or
caption, as a query acts as a self-supervised signal,
helping the system learn better representations for
the tables. It is the case for TR systems, such
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System

Module Level (Pre-)Training

Input: Internal: Output: FFN Task Objective

Addition. Pos. Emb. Attention Encod. Level Task-Orien Mask Corrupt Oth Cls Rnk

Ro Co Tr Nu Fr Vrt Sp Tr Vi Ro Co Tb Ce To CP Nli Sp Ag To Ce Co TC Tu Ce Nse CE PR

TUTA X X X X X X X X X
TURL X X X X X X
TABERT X X X X X X X X
TABBIE X X X X X X X
MATE X X X X X X X X X X X
RCI X X
GRAPPA X X X
TAPEX X X X X
DODUO X X X
TABFACT X X X X
RPT X X X X X X
TAPAS X X X X X X X X
GTR X X X

Table 3: Transformer customizations for every system. The acronyms from left to right follow the same
order of the leaves of the taxonomy tree in Figure 3 from top to bottom.

as DTR and GTR, where performance improves
when using a pre-training task rather than when
training from scratch.

To summarize, token-level masking is the base
for all the systems and it can be sufficient for
TFC and TR tasks, while cell or entity masking
are also recommended for QA, TMP, such as cell
role classification, and TCP, such as cell filling.
Column masking is additionally suggested for
SP since it helps in identifying the columns to
formulate the logical queries.

Pre-training Objectives. The objective of the
majority of the systems is to minimize cross-
entropy loss for a certain classification task. GTR
utilizes a point-wise ranking objective for end-
to-end training after pre-training, where multiple
tables are ranked according to a relevance score
given a certain query.

Table 3 reports a summary of the transformer
customizations adopted by every system. Overall,
a tabular LM requires modifications to the input
level, through additional embeddings, and to the
internal level, through adjustments of the atten-
tion module. Pre-training on table-related tasks,
such as masking or corrupting table cells, also
enhances encoding capabilities for structured data
on fine-tuned tasks. Modifications on the output
level are more task specific and have less im-
pact on making the LM ‘‘understand’’ the data
structure.

6 Downstream Tasks

Using neural representations for tabular data show,
improvements in performance in several down-
stream tasks. In this section, we describe the
tasks and define their input and output. While
they all consume tables, settings can be quite
heterogeneous, with systems exploiting different
information, even for the same task. A summary
of the covered tasks along their input, output, and
some representative systems addressing them is
shown in Table 4. We detail next the mandatory
input elements and the different contexts.

Table-based Fact-Checking (TFC): Similar to
text-based textual entailment (Dagan et al., 2013;
Korman et al., 2018), checking facts with tables
consists of verifying if a textual input claim is
true or false against a trusted database (TAPEX,
DECO, TABFACT), also provided as input. Some
fact-checking systems, such as FEVEROUS, also
output the cells used for verification as evidence
(Nakov et al., 2021; Karagiannis et al., 2020).

Question Answering (QA): In the free text set-
ting, QA aims at retrieving passages that include
the answer to a given question. In the tabular data
setting, it consists of returning as output the cells
that answer an input consisting of a question and
a table. One can distinguish two levels of com-
plexity. Simple QA involves lookup queries on
tables (DTR, CLTR), while a more complex QA
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Task ID Task Label Tasks Coverage Input Output System Examples

TFC Table-based
Fact-Checking

Fact-Checking Text
Refusal/Entailment

Table + Claim
True/False
Refused/Entailed
(Data Evidence)

DECO

TABFACT

TAPEX

QA Question
Answering

Retrieving the Cells
for the Answer

Table + Question Answer Cells
TAPAS

MATE
DTR

SP Semantic Parsing Text-to-SQL Table + NL Query Formal QL
TABERT
GRAPPA

TAPEX

TR Table Retrieval Retrieving Table that
Contains the Answer Tables + Question Relevant Table(s) GTR

CLTR

TMP Table Metadata
Prediction

Column Type Prediction
Table Type Classification
Header Detection Cell
Role Classification Column
Relation Annotation Column
Name Prediction

Table

Column Types
Table Types
Header Row
Cell Role
Relation between Two Cols
Column Name

DODUO

TABULARNET

TURL
TUTA

TCP Table Content
Population

Cell Content Population Table with Corrupted
Cell Values

Table with Complete
Cell Values

TURL
TABBIE
RPT

Table 4: List of tasks utilizing neural representations for tables.

task involves aggregation operations and numeri-
cal reasoning (TAPAS, MATE, RCI, DRT, TAPEX).
Most of the systems in this survey aim at improv-
ing accuracy in QA with respect to hand-crafted
embeddings.

Semantic Parsing (SP): In the tabular data set-
ting, given a question and a table as input, SP
generates a declarative query in SQL over the
table’s schema to retrieve the answer to the ques-
tion. While in QA the interest is in directly getting
the answer, SP produces the (interpretable) query
to obtain it (TABERT, GRAPPA, TAPEX).

Table Retrieval (TR): Given a question and a
set of tables as inputs, TR identifies the table that
can be used to answer the question. TR is helpful
when trying to reduce the search space for a QA
task (GTR, DTR, MMR). It is a challenging task
given the limited input size of transformers, that
is, their constraint to sequences of 512 tokens.

Table Metadata Prediction (TMP): Given an
input table with corrupted or missing metadata,
the TMP objective is to predict inter-table meta-
data, such as column types and headers, cell
types, table types, and intra-tables relationships,
such as equivalence between columns and entity
linking/resolution. Relevant efforts focus both on
spreadsheets (TUTA, TABULARNET) and relational
tables (TURL, DODUO).

Table Content Population (TCP): Unlike
TMP, where the table metadata is noisy or miss-
ing, TCP deals with corrupted cell content. Given
an input table with missing cell values, the ob-
jective is to impute the respective values (RPT,
TABBIE, TURL).

We observe that most tasks can be seen as tradi-
tional NLP problems where structured data replace
free text, such as the case of QA where answers
are located in tabular data instead of documents
(Gupta and Gupta, 2012). TFC involves retriev-
ing cells that entail or refute a given statement,
whereas on free text the corresponding objective
is to select sentences as evidence (Thorne et al.,
2018). SP is the task of converting natural lan-
guage utterance into a logical form (Berant and
Liang, 2014), which in this setting is expressed as
a declarative query over a relational table. TR on
tabular data corresponds to passage retrieval on
free text (Kaszkiel and Zobel, 1997). TCP is anal-
ogous to predicting missing words or values in a
sentence (Devlin et al., 2019). Finally, TMP can be
related to syntactic parsing in NLP (Van Gompel
and Pickering, 2007), where relationships between
different tokens are depicted.

We conclude this section with an analysis of
the performance of the systems over the different
downstream tasks. For every task, we selected
datasets for which at least two systems have re-
ported results. All datasets reported in Table 5 are
described in Table 2, with the exception of WCC
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System (size)
TFC QA SP TR TMP TCP

TabFact HybridQA WikiTQ WikiSQL Spider WQT WCC VizNet EntiTab
accu. accu./F1 accu. accu. MAP MAP F1 F1 MAP

TABERT (367M) 53.5* 70.9* 65.2 63.4 83.6* 97.2* 33.1*
TAPAS (340M) 81.2* 62.7/70.0 48.8 86.4
MATE (340M) 81.4 62.8/70.2 51.5
TAPEX (406M) 84.2 57.5 89.5
TABBIE (170M) 96.9 37.9
RCI (235M) 89.8
GRAPPA (355M) 52.1* 69.6
DODUO (110M) 94.3
DECO (1454 M) 82.7
TUTA (134M) 87.6
GTR (117M) 73.7

Table 5: Performance table of results reported from the original system papers for every downstream
task and different datasets. Metrics (accuracy, F1 measure, MAP) change across datasets. Results repro-
duced by follow-up papers are denoted with *. Reported sizes are for the largest model of every system.

(Ghasemi-Gol and Szekely, 2018), which contains
web tables annotated with their type (relational,
entity, matrix, list, and non-data), and EntiTab
(Zhang and Balog, 2017), which contains web ta-
bles annotated with possible header labels for the
column population task. Table 5 also contains the
size, expressed as number of parameters, of the larg-
est model used by every system. As some sys-
tems are not comparable on any shared datasets,
we report here their size: TABFACT (110M), MMR
(87M), TURL (314M), RPT (139M), and CLTR
(235M). Larger models do not correlate with
better performance across different systems for
the same task, but a larger model always brings
higher scores for the same system, as expected.
Execution times for training and testing de-
pend on the size of the model and the comput-
ing architecture.

The results in the table show that some tasks,
such as TFC and TMP, can already be han-
dled successfully by the systems, while some
tasks, such as TCP, TR, and SP, are harder.
QA is the task supported by most systems and
the quality of the results vary depending on
the dataset at hand. Differences in performance
can be explained with different improvements
across the systems. For example, MATE has bet-
ter performance with respect to TAPAS in two
tasks because of its mechanism to deal with
larger input tables. Similarly, TUTA improves
over TABERT because it handles tabular data

beyond relational tables. Finally, TABERT and
TAPAS are the systems that show most cover-
age in terms of tasks, with multiple papers using
them as baselines in their experiments. For the sys-
tems that are not reported in Table 5, we notice that
TURL obtains similar F1 results for column type
prediction, but on a dataset different from VizNet;
TURL, TABBIE, and TABERT also report com-
parable MAP results for the row population task
(not in Table 5) over different datasets.

7 Using the Language Model

The initial neural representations of tabular data
are the result of the pre-training. Systems use the
output LM in different ways. It can be fine-tuned
or used ‘‘as-is’’—for example, by using its repre-
sentations as features in traditional ML algorithms
(Section 7.1). However, as pre-trained LMs can
act as encoders of the input, they are also used as
a module in bigger systems (Section 7.2).

7.1 Encoder Output and its Usage

The alternative systems expose different gran-
ularity of the output table representation as
embeddings. Almost all systems provide token
and cell output embeddings. Most of them also
expose column and row embeddings, while few
provide table and pairwise column (DODUO) or
pairwise table (DECO) embeddings. When a spe-
cial separator token separates the context and the
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table content, a representation of the context is
also provided (TABFACT, CLTR, DTR, MMR).

These representations can be used in an arbi-
trary ML program simply as features or directly
by the systems creating them to tackle a given task
(Section 6). Indeed, aswe discussed in Section 5.2.3,
most systems use the pre-trained embeddings for
further fine-tuning to tackle the tasks. We observe
a relationship between the granularity of the output
representations and the target downstream tasks.
For instance, table representations are used for the
TR task, while column-pairs representations are
used for the TMP task to support columns rela-
tion annotation. Cell representations are used for
the QA task, since the cells including the answer
should be returned. Finally, column representa-
tions are used for the SP task, as columns are
needed to formulate the output query.

Most pre-trained models, such as TAPAS, are
usually available out-of-the-box, while in some
cases, such as in TURL, MATE, and CLTR, the
users have to retrain the models. For such systems,
the code and the dataset are available, but the users
need to run the training on their side to generate
the representations (no checkpoints available).

7.2 Encoder as a Module

Several systems, such as TUTA and TURL, add
layers on top of the LMs, which are then fine-tuned
for a task. While this is a common use of pre-
trained LMs, other works employ LMs as compo-
nents in a larger system. In these cases, the system
not only needs to learn how to encode properly,
but also to adjust its representations to a certain
task by training end-to-end together multiple com-
ponents, such as the ones that (individually) gen-
erate the embeddings for tables and text with the
one for scoring similarity of textual and tabular
embeddings.

Most of these larger systems focus on the re-
trieval of tables from an input natural language
query. DTR answers a natural language ques-
tion from a corpus of tables in two steps. First,
it retrieves a small set of candidate tables (TR),
where encoding of questions and tables are learned
through similarity learning. The similarity score is
obtained through an inner product between ques-
tions and table embeddings. Then, it performs the
standard answer prediction (QA) with each can-
didate table in the input. A recent study (Wang
et al., 2022) claims that table-specific models may

not be needed for accurate table retrieval and that
fine-tuning a general text-based retriever leads to
superior results compared to DTR. MMR stud-
ies a multi-modal version of DTR using both
tables and text passages by proposing several
bi-encoders and tri-encoders. Similarly, CLTR in-
troduces an end-to-end system for QA over a table
corpus, where the retrieval of candidate tables
is performed by a coarse-grained BM25 module,
followed by a transformer-based model that con-
catenates the question with the row/column and
classifies whether the associated row/column con-
tains the answer. Other systems, as GTR, support
retrieval of tables, where tables are represented by
graphs. In this setting, stacked layers of a variant
of Graph Transformers (Koncel-Kedziorski et al.,
2019) are employed for obtaining node features
that are combined with query embeddings. These
combined embeddings are then aggregated with
the BERT embeddings of the table context and
query, and a relevance score is finally obtained.

8 Future Directions

Tabular LMs effectively address some of the
challenges that arise with classical ML models
(Borisov et al., 2021), such as transfer learning
and self-supervision. However, several challenges
remain unaddressed.

Interpretability. Only a few systems expose a
justification of their model output, for example,
TAPAS, CLTR, and MATE, thus model usage
remains a black box. One direction is to use
the attention mechanism to derive interpretations
(Serrano and Smith, 2019; Dong et al., 2021).
Looking at self-attention weights of particular lay-
ers and layer-wise propagation with respect to the
input tokens, we can capture the influence of each
cell value/tuple on the output through back-
propagation (Huang et al., 2019). For instance,
in TFC, providing explanation is crucial when the
decision is derived from aggregating several cells,
such as sum or average operation. In this case, a
basic explanation would be to show all the cells
that led to the final true/false decision.

Error Analysis. Most studies focus on the
downstream evaluation scores rather than going
through manual evaluation of errors. In the down-
stream task level, this analysis could trace back
misclassified examples to get evidence of issues
in the tabular data representation. For example,
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in a QA task with wrong answers, there could be
a pattern that explains how these errors are all
due to the system confusing two columns with
similar meaning (e.g., max value and last value
for a stock), thus returning the wrong cell value in
several cases.

Complex Queries and Rich Tables. Several
systems, such as TAPEX and MATE, handle
queries with aggregations by adding classifica-
tion layers. However, such methods fail short with
queries that join tables. As most works assume
a single table as input, a much needed direction
is to develop models that handle multiple tables,
for example, with classification layers predicting
when a join is required. Also, as tables might
contain heterogeneous types and content, such
as non-uniform units (e.g., kg and lbs), systems
should be able to handle such differences, which
are abundant in practice. Moreover, an interesting
direction is to conduct a study to show where tab-
ular LMs can be successfully applied and where
they fail in querying data.

Model Efficiency. Transformer-based ap-
proaches are computationally expensive and
some approaches try to approximate the costly
attention mechanism by using locality-sensitive
hashing to replace it (Kitaev et al., 2020), approxi-
mating it by a low-rank matrix (Wang et al.,
2020), or applying kernels to avoid its compu-
tational complexity (Katharopoulos et al., 2020;
Choromanski et al., 2020). While there exist
methods to make transformers more efficient for
long context (Tay et al., 2020), all optimizations
consider an unstructured textual input. We believe
more traction is needed for efficient transformers
on structured data, with ideas from the textual
counterpart, such as limiting attention heads to
rows/columns, which can be obtained naturally
from the structured input (Eisenschlos et al.,
2021), or exploring prompt learning and delta
tuning (Ding et al., 2022).

Benchmarking Data Representations. There
are no common benchmark datasets where re-
searchers can assess and compare the quality
of their data representations in a level playing
field. Current evaluation is extrinsic, that is, at
the downstream task level, where each work has
its own assumptions. Intrinsic methods to eval-
uate the quality of the representations, such as

those for word embeddings (Bakarov, 2018), can
include predicting table caption given table repre-
sentation or identifying functional dependencies.
A set of precise tests can be designed to assess
data-specific properties, such as the ability of the
transformer-based models, designed to model se-
quences, to capture that row and attributes are
sets in tables. Also, it is not clear whether the
model representations are consistent with the table
structure, effectively capturing their relationships.
For example, given two cell values in the same
row/column, are their embeddings closer than val-
ues coming from different rows/columns? For
this, following the lines of CheckList for text
LMs (Ribeiro et al., 2020), basic tests should be
designed to measure the consistency of the data
representation.

Data Bias. It is recognized that LMs incorporate
bias in the model parameters in terms of stereo-
types, race, and gender (Nadeem et al., 2021; Vig
et al., 2020). The bias is implicitly derived from the
training corpora used to develop LMs. Therefore,
there is a need to develop methods to overcome
this drawback by, for instance, pre-filtering the
training data or by correcting the tabular LMs,
similarly to the ongoing efforts for text LMs (Liu
et al., 2021b; Bordia and Bowman, 2019).

Green LMs. The use of large-scale transformers
for learning LMs requires considerable com-
putation, which contributes to global warming
(Strubell et al., 2020; Schwartz et al., 2020).
Therefore, it is important to consider enhance-
ments or potentially new techniques that limit the
carbon footprint of tabular language models with-
out a significant decrease in the performance in the
downstream tasks. One enhancement can be at the
level of the size of the training data by removing
redundant, or less informative, tuples and tables.
How to identify such data is a key challenge.

9 Conclusion

We conducted a survey on the efforts in develop-
ing transformer-based representations for tabular
data. We introduced a high level framework to
categorize those efforts and characterized each
step in terms of solutions to model structured
data, with special attention to the extensions to the
transformer architecture. As future work, we envi-
sion a generic system to perform an experimental
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study based on our framework. The first part of the
system would develop tabular data representations
with alternative design choices, while the second
part would evaluate them in downstream tasks.
This work would help identifying the impact of
alternative techniques on the performance in the
final applications.
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