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Abstract

Retrieval Augment Generation (RAG) is a
recent advancement in Open-Domain Ques-
tion Answering (ODQA). RAG has only been
trained and explored with a Wikipedia-based
external knowledge base and is not optimized
for use in other specialized domains such as
healthcare and news. In this paper, we evalu-
ate the impact of joint training of the retriever
and generator components of RAG for the task
of domain adaptation in ODQA. We propose
RAG-end2end, an extension to RAG that can
adapt to a domain-specific knowledge base by
updating all components of the external knowl-
edge base during training. In addition, we
introduce an auxiliary training signal to inject
more domain-specific knowledge. This auxil-
iary signal forces RAG-end2end to reconstruct
a given sentence by accessing the relevant in-
formation from the external knowledge base.
Our novel contribution is that, unlike RAG,
RAG-end2end does joint training of the re-
triever and generator for the end QA task and
domain adaptation. We evaluate our approach
with datasets from three domains: COVID-19,
News, and Conversations, and achieve sig-
nificant performance improvements compared
to the original RAG model. Our work has
been open-sourced through the HuggingFace
Transformers library, attesting to our work’s
credibility and technical consistency.

1 Introduction

Open Domain Question Answering (ODQA) (Lee
et al., 2019; Lewis et al., 2020c) is an important
task in natural language understanding. ODQA

∗The corresponding author - shamane@ahlab.org.

methods generally feature a two-stage pipeline: a
retriever that selects passages relevant to a given
question and a reader that generates the answers
from selected passages. Conventionally, these two
components are trained separately using ground
truth context passages relevant to question-answer
(QA) pairs. However, for many real-world scenar-
ios, it is hard to find explicitly annotated context-
question-answer triplets (Lee et al., 2019; Lewis
et al., 2020b; Guu et al., 2020).

Recently, Retrieval Augmented Models (RAGs)
have drawn considerable attention from re-
searchers. RAG consists of a state-of-the-art-
neural retriever called Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020) and BART seq2seq
language model (Lewis et al., 2020a). Compared
to the conventional two-staged ODQA pipelines,
RAG merges the retriever and reader stages into
one architecture. Moreover, unlike expensive lan-
guage models with billions of parameters (e.g.,
GPT-3 [Brown et al., 2020] and Megatrone-LM
[Narayanan et al., 2021]) where the model’s para-
metric memory represents the complete knowl-
edge, RAG can also extract knowledge from an
external knowledge base. Using both parametric
and non-parametric memory generally leads to
reduced hallucinations and higher interpretability
in tasks like question answering and summari-
zation (Xu et al., 2021; Komeili et al., 2021; Guu
et al., 2020; Lewis et al., 2020b).

In this work, we focus on exploring re-
trieval augmented architectures for the task of
domain-specific ODQA. Although there are sev-
eral similar retrieval augmented architectures,
such as REALM (Guu et al., 2020) and RETRO
(Borgeaud et al., 2021), we used RAG in our
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experiments due to its excellent open-source
documentation and availability.

When the RAG model is finetuned for down-
stream QA tasks, the original implementation
keeps the encoding of passages and the external
knowledge base fixed. This is because re-encoding
the external knowledge base is computationally
expensive and relies on a sophisticated imple-
mentation. Despite not finetuning the passage
encodings, the RAG model performs well for
datasets with Wikipedia-like knowledge bases
because the DPR retriever components have al-
ready been trained on Wikipedia-based datasets
(Kwiatkowski et al., 2019; Joshi et al., 2017).
However, the feasibility of adapting RAG to spe-
cific ODQA domains such as research papers
and news is not well understood. This is a criti-
cal research gap to address, as improved domain
adaptation can further improve the ODQA per-
formance of RAG.

This paper explores the feasibility of using
RAG in specialized domains for ODQA. In par-
ticular, we propose two modifications to the
original RAG to improve its domain adaptability.
Motivated by recent end2end retrieval augmented
mechanisms (Guu et al., 2020; Sachan et al.,
2021; Singh et al., 2021), we first propose a
method to finetune the RAG model with its neu-
ral retriever and update its knowledge encodings
asynchronously during training. We refer to this
as RAG-end2end since it allows us to update
all RAG components during training, including
the external knowledge base, the DPR model,
and the BART model. Secondly, we propose an
auxiliary training signal to help our model learn
more domain-specific knowledge. This took the
form of generating a concise and factual state-
ment about a document using a self-retrieved set
of passages from the provided domain-specific
knowledge base. These two modifications offer a
unique feature to RAG-end2end over RAG: joint
training of the retriever and generator for the end
QA task and domain adaptation. Although asyn-
chronous updates to the knowledge encoder have
been proposed before in the REALM, previous
work has not evaluated the effects of joint training
of the RAG’s retriever and the generator for the
domain adaptation in ODQA.

We evaluate our proposed approach on three
different datasets from three domains: COVID-19
research (Wang et al., 2020), Conversations (Wu
et al., 2021b), and News (Trischler et al., 2016).

The major finding of our work is that the adap-
tation of the retriever component plays a critical
role in overall domain adaptation performance
in RAG-like architectures. Updating only the
question encoder without updating the knowledge
base encoding could degrade performance. In-
stead of finetuning the DPR retriever separately,
our experiments show that finetuning it as a part
of the RAG-end2end mechanism gives better
overall results. Our results also show that using
the auxiliary signal improves both the retriever
component and the overall accuracy.

In addition, we open-source the implemen-
tation of RAG-end2end with the HuggingFace
Transformers (Wolf et al., 2019) Library,1 pro-
viding the opportunity for the scientific commu-
nity to use/test/build on our work.

2 Background and Related Work

Open-domain QA systems (Yang et al., 2015;
Kwiatkowski et al., 2019) generally have a
two-stage pipeline: passage retrieval (i.e., finding
relevant text chunks related to an input question
from a knowledge base) and machine compre-
hension (i.e., generating an answer from a set
of selected documents). Traditionally sparse vec-
tor methods such as TF-IDF and BM25 are used
for document retrieval (Robertson and Zaragoza,
2009). Researchers have recently moved to use
dense text representations, which allows mod-
eling textual similarity more semantic level. A
recent example is the DPR (Karpukhin et al.,
2020), which generates embeddings for questions
and text passages using two BERT (Devlin et al.,
2018) models. The dot product of the embeddings
is used as a similarity score between a question
and a passage. DPR has demonstrated that higher
retrieval precision results in a higher end-to-end
QA accuracy. For the answer generation com-
ponent of QA systems, recent studies have used
either extractive language models like BERT or
generative language models like BART/GPT-2
(Min et al., 2021; Lewis et al., 2021).

2.1 Retrieval Augmented Architecture

Recently, Retrieval Augmented Architectures
(Lewis et al., 2020b; Guu et al., 2020) have drawn
considerable attention due to their explainable,

1Huggingface Transformers implementation.
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scalable, and adaptable nature. Unlike other open-
domain QA architectures, RAG (Lewis et al.,
2020b) combines the information retrieval stage
and answer generation stage in a differentiable
manner. It uses a combination of parametric
and non-parametric memory, where the para-
metric memory consists of a pre-trained seq2seq
BART (Lewis et al., 2019) generator, and the
non-parametric memory consists of dense vec-
tor representations of Wikipedia articles indexed
with the FAISS library (Johnson et al., 2017).
RAG first encodes a question into a dense rep-
resentation, retrieves the relevant passages from
an indexed Wikipedia knowledge base, and then
feeds them into the generator. The loss function
can finetune both the generator and the question
encoder at the same time. Lewis et al. (Lewis et al.,
2020b) highlight RAG’s ability to perform well
in Wikipedia-based general question-answering
datasets like Natural Questions (Kwiatkowski
et al., 2019). Other recent work also highlights
how the outputs generated from RAG models
are much more factual due to RAG being con-
ditioned on the retrieved documents, possibly
providing an answer to the hallucination prob-
lem of generative language models. Shuster, Kurt,
et al. (Shuster et al., 2021) also highlight how RAG
reduces hallucinations in knowledge-grounded
conversational tasks, where the task is to generate
responses to dialogues based on a large Wikipedia
knowledge base. Xu et al. (2021) illustrate the
effectiveness of RAG in chatbot frameworks and
highlight how RAG models are able to recall and
summarize conversations compared to standard
seq2seq models with only parametric memory.
This paper aims to understand how RAG could
be extended to an end2end model and adapted to
specific domains. To the best of our knowledge,
this is the first time RAG is being investigated on
domain adaptation for the task of ODQA systems.

2.2 REALM-like end2end Retrieval
Augment Architectures

REALM (Guu et al., 2020) is a similar Retrieval
Augmented model to RAG. REALM introduced
a novel masked language pre-training step that
involves an end-to-end trainable retriever. In the
REALM work, the authors first train the entire
model on the masked language prediction task
and then finetune it on question-answering tasks
(keeping the retriever frozen). In comparison

to REALM, the original RAG model uses an
already-trained DPR retriever and conducts par-
tial end-to-end training with a BART reader
model. Compared to REALM, RAG is less com-
putationally expensive, and its code is available
open-source. We explore and extend the origi-
nal RAG architecture for domain adaptation in
our work. We adapted some concepts of our
RAG-end2end extension from REALM. REALM
only updates its retriever during the pre-training
process that uses the masked language model-
ing (Devlin et al., 2018) task. Then during the
downstream finetuning task, REALM keeps its
retriever fixed. However, the REALM end-to-end
training code is not open-sourced, possibly due
to its computational complexity. Compared to
REALM, RAG is a combination of already pre-
trained language models where the users do not
need to go through a heavy pre-training stage.
Due to these engineering-friendly features and
high availability, we conducted our experiments
with RAG and extended RAG into an end-to-end
trainable retrieval augmentation model. It is also
important to highlight that none of the prior work
has explored the domain adaptation of retrieval
augment models for question answering; instead,
most focus on general question answering with
Wikipedia-based knowledge bases.

Similar to REALM’s end2end architecture, re-
cent work (Sachan et al., 2021) extended RAG
and highlighted that the retriever training could
improve the overall performance in question-
answering datasets like Natural Questions. Com-
pared to our work, the authors did not focus on
the domain adaptation of retrieval augment mod-
els. The authors mainly explore the ability to
train neural retrievers in an end-to-end way using
retrieval augment models. Similarly, another re-
lated work (Singh et al., 2021) extended retrieval
augmented architectures to an end-to-end model
and illustrated that it could improve the question
answering accuracy. Singh et al. (2021) mainly
focused on improving the document reading abil-
ity and answer generation rather than domain
adaptation.

3 Model Architecture and
Training Procedure

In this work, we extend RAG to finetune all
components, including the DPR retriever, and dy-
namically update the external knowledge base
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Figure 1: System Overview. Our RAG-end2end training architecture uses asynchronous processes to dynamically
re-encode and re-index the knowledge base while optimizing a joint QA and paraphrasing signal loss. The training
dataset consists of both reconstruction signals and QA pairs. The network learns to generate answers to questions
and useful statements jointly. The input to the BART reader is illustrated in Equation 3, where the model can
differentiate the answer generation task and statement reconstruction task with the use of a control token. During
the training, embeddings and the knowledge base index get updated asynchronously.

during training. We hypothesize that the use of
asynchronous updates helps with domain adapta-
tion. Figure 1 demonstrates the main workflow of
our model. In the following sections, we describe
our extensions and training signals.

3.1 RAG Retriever and Generator

The retriever is a DPR (Karpukhin et al., 2020)
model pre-trained on Wikipedia-based question-
answering datasets (Kwiatkowski et al., 2019;
Joshi et al., 2017). It consists of two tower
BERT-based networks: the Question Encoder
(EQ) and the Passage Encoder (EP ). We use
their CLS token embeddings as representations
for questions and passages. The similarity be-
tween a question (q) and a passage (p) is cal-
culated by taking the dot product of the two
embeddings, as shown in Equation 1.

sim(p, q) ∝ EQ(q)
TEP (p). (1)

RAG’s generator consists of a pre-trained
BART (Lewis et al., 2019) seq2seq language
model. To train these retriever and genera-
tor components, RAG enhances the traditional
sequence-to-sequence cross-entropy loss function
by setting the retrieved passages as a latent
variable (Z) (Guu et al., 2020; Lewis et al.,

2020b). The loss value of generating each to-
ken is marginalized on the probability of selecting
documents given a context X (i.e., Document
Score p(Z|X)). The formula (RAG-Token-Loss)
can be written as illustrated in Equation 2.

PRAG−Token−Loss(y|x) =
n∏

i

∑

zεtop−kP (.|x)
Pη(z|x)Pθ(yi|x, z, y1:i−1). (2)

3.2 Indexing of the External Knowledge Base

Before the training phase, we need to encode all
passages in the external knowledge base usingEP .
Then we need to retrieve similar passages from
the external knowledge base given the output from
EQ. This process mainly involves dot product
calculation between input question embeddings
and encoded passages. The retrieval process will
likely result in a performance bottleneck during
the training since there are usually millions of
passages in the knowledge base. To address this
issue, RAG adopts the FAISS indexing approach
proposed in (Johnson et al., 2017). With the
help of the indexes, we can skip a consider-
able amount of repeated computation and signifi-
cantly accelerate the retrieval process.
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3.3 End-to-End Retriever Training

Although the DPR module makes use of two
BERT models (EP , Eq), the original RAG ar-
chitecture only finetunes the question encoder
EQ in the retriever. The passage encoder EP

and the external knowledge base’s encoding are
fixed during the training phase. In other words,
the pre-trained passage encoder of DPR is only
used once to encode the external knowledge base.
The RAG authors suggest that such a design per-
forms well for Wikipedia-based ODQA datasets
(Kwiatkowski et al., 2019; Joshi et al., 2017).
Such settings work because the DPR model was
also pre-trained with Wikipedia-based datasets,
and their experiment uses an external knowledge
base consisting of Wikipedia articles.

However, it may be beneficial to finetune all
the DPR components during RAG training for
domain adaptation since the model needs access
to different domain-specific external knowledge
bases. In this work, we introduce RAG-end2end,
where we augment RAG to be fully end-to-end
trainable. We finetune the passage encoder and
question encoder and then update the index of
the external knowledge base during the training
process.

It is straightforward to propagate gradients to
both the passage and question encoders with
RAG’s loss function because this loss function
employs the passage selection probability known
as doc-score (pη(z|x) term illustrated in Equa-
tion 2). However, for it to have a true effect on
the overall model training process, we have to it-
eratively update the embeddings with the updated
context encoder and then update the index of the
external knowledge base. In other words, we need
to re-encode and re-index the knowledge base
using the updated passage encoder. When the
external knowledge base possesses tens of mil-
lions of passages, the re-encoding and re-indexing
steps can be very time-consuming. Re-encoding
can take several GPU hours, and re-indexing
with FAISS can take several CPU hours, de-
pending on the size of the knowledge base. There
fore, it is inefficient to stall the training loop
while the re-encoding re-indexing steps are being
carried out.

To have an efficient training mechanism, we
designed our training framework into three main
processes: (1) The main training loop, which up-
dates the gradients, (2) Re-encoding processes
with several GPUs that update the knowledge-

base encoding with the updated DPR’s context
encoder, and (3) A Re-indexing process that uses
FAISS to build an index with the updated en-
coding. Figure 1 illustrates these three processes.
Our implementation uses two asynchronous pro-
cesses to re-encode and re-index the external
knowledge base that runs independently to the
main training loop. We first distribute the external
knowledge base to a set of GPUs that are not
used in the main training loop. Then we encode
the passages with an updated passage encoder,
which we call the re-encoding process. Once the
re-encoding process has finished, we re-index the
knowledge base in another parallel process that
uses FAISS (re-indexing process). Inside the main
training loop, we ensure that the re-indexing pro-
cess always starts after finishing the re-encoding
process. Then as soon as the new index of the
external knowledge base is created, we load that
to the main training loop. Once the new index
loading is completed again, we start the re-
encoding process, which repeats the entire em-
bedding updating process. It is important to note
that the first re-encoding process should be fin-
ished, and new embeddings should get saved
to the hard disk, before the start of the FAISS
indexing process. If the knowledge base is
not entirely updated with the new embeddings,
the re-indexing process fails. We use Python
multiprocessing handles to keep the order, and
re-indexing and re-encoding processes are only
asynchronous with respect to the main training
loop process. The number of steps between each
re-encoding process depends on the size of the
dataset. To test the number of steps between the
knowledge-base updates, we experimented with a
knowledge base consisting of 250,000 passages
and used four dedicated GPUs for the re-encoding
process with a batch size of 32 each. Our com-
putation machine consists of 96 CPU cores. We
found that it takes an average of 750 updates.
However, the computation time can be easily im-
proved when using more GPUs for encoding and
using a machine with a higher number of CPU
cores (FAISS indexing process depends on the
number of CPU cores). These steps are repeated
throughout the training loop. Since the training
and knowledge base’s index update processes are
running asynchronously, it may result in stale
gradients. This, however, does not significantly
degrade the model performance according to
previous research (Guu et al., 2020).
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3.4 Statement Reconstruction
We explore the incorporation of statement recon-
struction as an auxiliary signal assuming that it
forces the model to gain more domain-specific
knowledge. As illustrated in Figure 1, we first
encode input statements using the input/question
encoder (EQ). Then the retriever retrieves the most
similar set of passages from the indexed external
knowledge base by conducting a similarity search.
Afterward, the final output generator attempts to
re-construct the input statements using only the
selected support set of documents. We ensure that
the external knowledge base does not contain the
input statement to prevent the model from over-
fitting on just the lexical content. To differentiate
the paraphrasing signal from the QA signal, we
prepend a special token < p > (represents pas-
sages) in front of the reconstruction statements,
which acts as a control token in the seq2seq lan-
guage modeling (Raffel et al., 2019; Keskar et al.,
2019). Concretely, when training the RAG archi-
tecture on QA pairs, the questions are prepended
to the retrieved passages before being fed to the
BART generator. As illustrated in Equation 3, for
the input reconstruction signal, we only prepend
the < p > token to the retrieved passages before
feeding them to the BART generator.

QA INPUT: 〈Question〉+ 〈Retrieved Passages〉
RECONSTRUCTION INPUT: 〈<p>〉+ 〈Retrieved Passages〉

(3)

4 Experiments and Results

4.1 Domain-specific Dataset Setup
In this work, our main intention is to explore the
adaptation of domain-specific retrieval augmen-
tation with regard to ODQA. As mentioned in
recent work (Lewis et al., 2020b), most ODQA
datasets like Natural Questions (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), Web-
Questions (Berant et al., 2013), and CuratedTrec
(Baudiš and Šedivỳ, 2015) are answered with
Wikipedia-based knowledge-bases. Since neural
retrievers like DPR are already trained with
Wikipedia-based datasets, it is hard for us to
explore the domain adaptation of RAG fairly in
this setting. Therefore, we selected three domain-
specific datasets for our experiment: COVID-19
QA, News QA, and Conversation QA. Since the
availability of domain-specific ODQA datasets is
minimal, in our work, we open-source all domain-

specific knowledge-bases and question-answer
pairs to support future research.2

COVID-19 QA Domain

Knowledge Base Generation: To create the ex-
ternal knowledge base, we use 5,000 full-text
scientific articles extracted from the CORD-19
(Wang et al., 2020) dataset. The external knowl-
edge base is created with 250,000 100-word pas-
sages. Each passage is pre-pended with the title
of the research paper.

Reconstruction Statement Generation: We use
sentences from the abstract section of research
articles for the reconstruction signal. We first
extract the abstract sections in 10K papers and
split them into sentences using the NLTK library
(Loper and Bird, 2002). We filter out the sen-
tences that are too short (less than 15 words) or
too long (more than 35 words). In this process,
approximately 50,000 abstract statements are
generated. It is important to note that when gen-
erating the knowledge base, we exclude the
abstract sections.

Synthetic QA Generation: In this domain, we
only use synthetic data for training and valida-
tion. Following prior work (Shakeri et al., 2020),
we use a BART seq2seq model trained on the
SQuAD dataset (Rajpurkar et al., 2016) to gen-
erate synthetic QA pairs given a passage. We
used the Squad dataset’s passages as the input
and corresponding question-answer pairs as the
expected output. We trained a BART-large check-
point for two epochs. Then, we followed round-
trip consistency (Alberti et al., 2019) to filter
synthetic QA pairs. Our final synthesized QA
dataset consisted of 225,000 QA pairs. We use
90% of these QA pairs as training data and 10% as
validation data. As the test data, we use 2000
human-labeled question-answer pairs from the
COVID-QA dataset (Moller et al., 2020).

News QA Domain

Knowledge Base Generation: We extract 85,000
100-word passages as the knowledge base using
10,000 news articles from the NewsQA dataset
(Trischler et al., 2016).

Reconstruction Statement Generation: We ex-
tract corresponding news summary sentences

2Domain-specific datasets.
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from the CNN/DM dataset (Hermann et al.,
2015) for the reconstruction signal. Every article
consists of more than one summary sentence.
However, we use the first sentence as the title
of the article, which we used in knowledge base
generation and the rest of the statements as recon-
struction statements. Our final dataset contains
35,000 summary statements.

QA Generation: The NewsQA dataset (Trischler
et al., 2016) consists of 100,000 human annotated
QA pairs from 10,000 news articles from the
CNN/DM dataset (Hermann et al., 2015). We use
the train (90,000), valid (5,000), and test (5,000)
splits given in the dataset to train and evaluate
our model. All questions in the NewsQA data-
set focus on the high-level content of articles.
So, to answer these questions, the model must
access a large span of passages to conduct the
reasoning process.

Conversation QA Domain

Knowledge Base Generation: We create the ex-
ternal knowledge base of 110,000 passages by
splitting the 10,000 conversations given in the
QAConv dataset (Wu et al., 2021b) into passages,
each with at most 100 words. We prepend the
identifier of each conversation (found in the orig-
inal dataset) as the title of the passages. We also
appended the speaker’s name, followed by the
‘‘:’’ symbol, to the starting position of each di-
alogue to keep each conversation connected to
its speakers.

Reconstruction Statement Generation: We use
the state-of-the-art abstractive conversation sum-
marization model3 (Wu et al., 2021a) to generate
one-sentence (TLDR) summary (approximately
45 words per conversation). We then use this as
the auxiliary signal. We only generate summaries
of conversations with more than 45 words. By
doing this, we collect 35,000 synthetic summary/
reconstruction statements.

QA Generation: We use the QAConv dataset
(Wu et al., 2021b), which contains 35,000 QA
pairs generated from 10,000 conversations that
involved two or more parties. We use the
train (25,000), valid (5,000), and test (5,000)
splits given in the dataset to train and evaluate
our model.

3Salseforce checkpoint.

4.2 Training and Evaluation Setup

We use the HuggingFace-Transformers (Wolf
et al., 2019) library to implement the RAG-
end2end architecture. We initialize the DPR and
BART models of using the open-source Hugging-
Face checkpoints.4 Prior to finetuning, we index
and encode the external knowledge base using
FAISS. We select HNSW FLAT as the indexing
mechanism (with 128 bi-directional links). We
use 100 words as the maximum passage length
as suggested by the prior RAG work (Lewis
et al., 2020a). During training, we use six Tesla
V100 GPUs with 32 GBs of memory. Four of
them are used for training, and two are used for
re-encoding. We train each RAG model variant
4.2 for ten epochs and select the final check-
point with the highest validation accuracy.

We use the Exact Match (EM), F1 score, and
Top-k retrieval accuracy as evaluation metrics.
The EM score computes the word-level exact
match between the predicted answer and the real
answer. The F1-score calculates the number of
words in the predicted answer that are aligned
with the real answer regardless of the order. The
Top-k retrieval accuracy is calculated by match-
ing the answer strings with the contents of the
retrieved k passages.

We compare RAG and RAG-end2end in the
following five scenarios.

1. RAG-original. This model is finetuned on
the natural question dataset (Kwiatkowski
et al., 2019) with the Wikipedia knowledge
base and serves as the non-domain adapted
baseline.5 This model is not finetuned with
domain-specific question-answer pairs, and
we report the zero-shot performance.

2. RAG-original-QA. This is the original RAG
model finetuned with only domain-specific
question-answer pairs.

3. RAG-end2end-QA. This is the RAG model
with our end2end retriever extensions
and finetuned only with domain-specific
question-answer pairs.

4. RAG-original-QA + R. This is the
RAG original model finetuned with both

4RAG-token-base checkpoint.
5Public RAG-token-nq checkpoint.
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Model Name EM F1 Top-5 Top-20

COVID-19 Domain

(1) RAG-original 0.0 4.73 10.56 15.69
(2) RAG-original-QA 2.95 12.01 12.29 18.43
(3) RAG-end2end-QA 8.08 18.38 19.85 26.91
(4) RAG-original-QA+R 3.66 12.20 12.79 18.45
(5) RAG-end2end-QA+R 8.32 19.57 23.05 31.23

News Domain

(1) RAG-original 4.33 7.92 19.46 30.33
(2) RAG-original-QA 7.26 14.26 22.86 34.55
(3) RAG-end2end-QA 8.39 16.31 28.89 41.20
(4) RAG-original-QA+R 8.62 16.46 27.28 39.56
(5) RAG-end2end-QA+R 14.08 23.7 39.67 50.95

Conversation Domain

(1) RAG-original 5.49 9.27 12.14 20.02
(2) RAG-original-QA 12.09 20.05 22.73 32.05
(3) RAG-end2end-QA 24.25 36.05 46.01 55.55
(4) RAG-original-QA+R 14.21 24.62 26.32 36.21
(5) RAG-end2end-QA+R 25.95 37.96 49.11 58.75

Table 1: Domain adaptation performance of dif-
ferent RAG models used in our experiments.
We illustrate the results related to all three do-
mains. Details about each model are described in
Section 4.2.

domain-specific question-answer pairs and
our reconstruction signal.

5. RAG-end2end-QA + R. This is the RAG
model with our end2end retriever extensions
and trained with both question-answer pairs
and our reconstruction signal.

We present the results of each scenario in Table 1.

4.3 Effect of End-to-End Retriever Training
on Domain Adaptation

We first test if finetuning both the passage
encoder and question encoder of the RAG’s re-
triever while updating the external knowledge
base would improve domain adaptation. We com-
pare the performance of RAG-original-QA and
RAG-end2end-QA, isolating any performance
improvement due to the reconstruction signal. The
results in Table 1 illustrate that RAG-end2end-
QA significantly outperforms RAG-original-QA
on all metrics—EM, F1, Top-5, and Top-20—
across all three domains. The improvements in
the EM score varied from 1.13 points in the
News domain to 12.16 points in the Conversa-
tion domain.

Evaluating the performance of passage re-
trieval using Top-5 and Top-20 scores, we see a

marked increase of around 25 points in the con-
versation domain, with the other domains show-
ing improvements of between 4.7 to 6.6 points.

Above all, these results suggest that finetun-
ing both the passage and question encoders of
the RAG’s retriever while updating the external
knowledge base can improve domain adaptation.

4.4 Effect of Adding the
Statement-Reconstruction
Auxiliary Task

In this experiment, we test our next hypothesis:
Adding the auxiliary training signal of statement
reconstruction along with QA pairs improves do-
main adaptation. We compare the performance
of RAG-end2end with and without the recon-
struction signal by comparing the performance of
RAG-end2end-QA + R and RAG-end2end-QA
in Table 1. This shows that RAG-end2end-
QA + R outperforms RAG-end2end-QA for all
three domains. The range of increases in the EM
scores varied from 1.7 points in the Conversation
domain to an 8.39 points increase in the News
domain. The top-20 retrieval accuracy also in-
creased in a range between 3.2 to 8 points.

We further compare the effect of adding the re-
construction signal to RAG-original by comparing
RAG-Original-QA with RAG-Original-QA + R.
We find that even without the end2end extension,
the reconstruction signal improves the perfor-
mance moderately. This improvement in the EM
score ranged from 0.84 points in the COVID-19
domain and 3.12 points in the Conversation
domain.

Finally, we highlight the overall improve-
ment of our contributions by comparing RAG-
Original-QA with RAG-end2end-QA+ R. As the
most significant improvement; we highlight the
13-point improvement of EM score for the Con-
versation domain. For retrieval performance, we
highlight the 27-point improvement in the top 5
and 16 improvements in the top 20 for the Con-
versation domain.

To demonstrate the reconstruction statement
generation, we provide an example of the gen-
erated reconstruction output of given a statement
for each domain using the RAG-end2end-QAR +
R model in Table 2. The second column contains
the input statements with the special token < p >,
the third column shows a snapshot of retrieved
top-5 documents, and the final column shows
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Domain Input Statement Most Similar Retrieved Document Reconstructed Statement

COVID-19 <p>Cough (82.5%),
fever (75%), and malaise
(58.8%) were the most
common symptoms, and
crepitations (60%), and
wheezes (40%) were the
most common signs.

Most common signs and symptoms on
admission included fever and cough.
Of all children, 32% had complaint
of difficulty in respiration. Other
symptoms observed were myalgia,
headache and vomiting. On examina-
tion, 66% cases had crepitations and
42% had wheezing. Hypoxemia was
observed in 31% cases at admission

The most common signs
and symptoms on ad-
mission were fever and
cough, and 32% had
complaint of difficulty
breathing

News <p>Capsule was carry-
ing South Korea’s first
astronaut.

MOSCOW, Russia Russian space of-
ficials say the crew of the Soyuz space
ship is resting after a rough ride back
to Earth. A South Korean bioengi-
neer was one of three people on board
the Soyuz capsule. The craft carrying
South Korea’s first astronaut landed
in northern Kazakhstan on Saturday,
260 miles off its mark, they said.

Soyuz capsule carrying
South Korea’s first astro-
naut lands 260 miles off
its mark.

Conversation <p>The Supreme Court
will hear the case on the
grounds of First Amend-
ment protection of free
speech.

(PETITIONER): Yes, Your Honor.
Mr. Tory, who was appearing pro se
in the trial court, from the very out-
set objected that he was being held
liable for speech protected by the First
Amendment. <end>$

Justice Souter and MR.
CHEMERINSKY are ar-
guing that the injunction
in the case of Tory should
not be applied

Table 2: Examples of reconstructed statements. Reconstructions generally capture the context of the
retrieved documents and are similar to the input statement but are not always factually 100% correct
(e.g., COVID-19 example). Input statement column shows the input to the model with the special <p>
token. The Retrieved Documents shows a snap-shot of the top-retrieved document used to re-construct
the statement.

the re-constructed statements. As the reconstruc-
tion statements demonstrate, we highlight that
the model can generate statements close enough
to the input.

4.5 Retriever’s Domain Adaptation with
RAG-end2end

An important part of our RAG-end2end extension
is updating the entire DPR retriever during train-
ing. Previous work (Ma et al., 2020) has explored
the importance of the domain adaptation of neural
retrievers and highlighted the performance gains
in domain-specific retrieval tasks. We argue,
based on our above-mentioned RAG end2end’s
retriever performances and prior work, that when
adapting RAG to various domains, having a
domain-specific retriever plays a key role in
achieving good performance. However, this
end-to-end RAG finetuning can get computation-
ally costly, especially with the number of passages
in the external knowledge base where they should
get re-encoded and re-indexed. Instead of fine-

tuning DPR as a part of RAG-end2end, an alter-
native approach is to finetune DPR on
domain-specific data separately on its vector
similarity-based loss function (Karpukhin et al.,
2020) and then initializing the RAG architecture
prior to finetuning with the QA data. We explore if
RAG-end2end can perform on par if we initialize a
RAG model with an independent domain-adopted
DPR model. This helps us further understand the
ability of the RAG-end2end extension to finetune
the retriever with domain-specific data.

Standalone DPR Finetuning with
Domain-specific Data

The standalone DPR can be finetuned if we
have access to gold-standard passages that con-
tain the answers for given questions and hard
negative passages that consist of similar details
to the question but not the exact answers. DPR
uses a dot-product-based similarity loss, captur-
ing the similarity between the correct passage
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for the question while comparing with some
hard-negative examples (Karpukhin et al., 2020)
(which are lexically similar but do not contain
the answer) (Karpukhin et al., 2020). We use
the deep-haystack framework6 to finetune DPR
for each domain using domain-specific data. We
created finetuning datasets for all three domains.
First, for the COVID-19 domain, we utilized the
synthetic question-answer pairs and their rele-
vant passages that consist of 100 words. The use
of domain-specific synthetic QA pairs for DPR
finetuning has already shown permanence im-
provements (Ma et al., 2020). For hard-negative
examples, we used BM-25 lexical matching search
as mentioned by the DPR authors, where we re-
trieved passages that do not contain the answer
based on their lexical similarity with the ques-
tion. Although for the News domain and the Con-
versation domain, we have a supervised dataset
where we can map questions into the correct pas-
sage, we did not get better results after finetuning
the original DPR using the supervised data. The
main reason for the degradation of performance
is the length of the correct passage related to
the question. In both News and Conversation do-
mains, most of the questions come from longer
passages, whereas the pre-trained DPR only ac-
cepts 100-word passages. To mitigate this issue,
we generated synthetic question-answer pairs with
the external knowledge bases of news and Conver-
sation domains similar to the COVID-19 domains
by following the same procedure mentioned in
Section 4.1. Then the hard-negative examples
were also mined according to the above-mentioned
BM-25 lexical matching method. After training,
we evaluate the DPR retrieval accuracy using the
test dataset and external knowledge base for each
domain, similar to the RAG’s retrieval evaluation
we conducted in Section 4.2.

Table 3 compares (1) DPR-original, which
is the publicly available checkpoint7 trained
on Wikipedia, with (2) DPR-domain-adapted,
which is the finetuned model with DPR’s orig-
inal loss function. The (3) DPR-RAG-end2end
is the retrieval part of RAG-end2end-QA + R
from Table 1 for comparison. We include the
DPR-RAG-end2end model to highlight the im-
provement of the DPR model as a result of

6deepset-ai.
7DPR-checkpoint.

Model Name Top-5 Top-20

COVID-19 Domain

(1) DPR-original 9.39 14.72
(2) DPR-domain-adapted 13.66 20.01
(3) DPR-RAG-end2end 20.64 28.21

News Domain

(1) DPR-original 20.95 31.04
(2) DPR-domain-adapted 20.98 31.92
(3) DPR-RAG-end2end 39.67 50.95

Coversation Domain

(1) DPR-original 15.15 23.95
(2) DPR-domain-adapted 23.15 34.53
(3) DPR-RAG-end2end 49.11 58.75

Table 3: Comparison of DPR models finetunned
on domain specific data against publicly available
DPR checkpoint, which is trained on Wikipedia
domain for all three domains.

RAG-end2end training with both training sig-
nals. When comparing the DPR-RAG-end2end
model with the other variants in Table 1, we
observe that the RAG-end2end architecture sig-
nificantly improves the DPR’s domain adaptation
for all three domains. Therefore, in future work,
RAG-end2end could be used as a way to train
a neural retriever, which could benefit even for
retrieval-only applications.

As shown in Table 3, we observe that finetun-
ing DPR models on the original DPR loss function
using domain-specific data improves the overall
retrieval performance for each domain. For the
COVID-19 and Conversation domains, there’s a
clear improvement in the top-5 and top-20 re-
trieval accuracies. We observed almost the same
results for the News domain compared to the
original DPR. This could be due to similar
kinds of data in Wikipedia, which were originally
used to train the DPR and CNN/DM text.

Overall, as illustrated in Table 3, we highlight
the fact that the RAG-end2end’s loss function has
the ability to adapt the DPR to specific domains
better than finetuning the DPR with the passages
and question pairs for each domain. The improve-
ments for all three domains in top-5 and top-20
retrieval accuracies of DPR-RAG-end2end com-
pared to DPR-original and DPR-domain-adapted
is noticeable. These results further highlight the
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Model Name EM score F1 Score Top-5 Top-20

COVID-19 Domain

(1) RAG-original-QA+R 3.66 12.12 12.79 18.45
(2) RAG-original-QA+R (DPR-adapted) 7.36 17.91 22.39 30.87
(3) RAG-end2end-QA+R 8.32 19.51 23.05 31.23

News Domain

(1) RAG-original-QA+R 8.62 16.46 27.28 39.56
(2) RAG-original-QA+R (DPR-adapted) 10.92 19.44 30.72 41.9
(3) RAG-end2end-QA+R 14.08 23.7 39.67 50.95

Conversation Domain

(1) RAG-original-QA+R 14.21 24.62 26.32 36.21
(2) RAG-original-QA+R (DPR-adapted) 15.78 25.47 29.01 40.03
(3) RAG-end2end-QA+R 25.95 37.96 49.11 58.75

Table 4: Comparing the effect of RAG-end2end
extension, against initializing RAG-original mod-
els with domain adapted DPR models prior to
the finetuning (please review Table 1). We use
the independently domain-adapted DPR models
illustrated in Table 3.

ability of RAG-end2end to finetune or improve
its retriever.

Initializing RAG with Domain-adapted
DPR Prior to Finetuning

Next, we investigate the performance of RAG
models when initialized with a domain-adapted
DPR. We initialize RAG’s question encoder and
the passage encoder with DPR-domain-adapted
(from trained models illustrated in Table 3) and
finetune RAG with the settings of RAG-original-
QA+R. The objective is to compare how the
RAG models initialized with domain adopted
DPR models perform in comparison to using
the RAG-end2end extension.

Table 4 demonstrates results from four
models. (1) RAG-original-QA+R and (3) RAG-
end2end-QA+R are taken from the main re-
sults (Table 1). The (2) RAG-original-QA+R
(DPR-adapted) model was first initialized with
a domain-adopted DPR model (from Table 3)
before being finetuned with domain-specific QA
pairs and re-construction signals with the RAG-
original settings.

The results in Table 4 indicate that for all
domains, finetuning the RAG-original with a
domain-adapted DPR gives higher performance
than finetuning the RAG-original with the usual
DPR model checkpoint (compare (1) and (2) in
Table 4). We highlight the performance improve-
ments for both answer generation accuracy and
retrieval recall scores, where the COVID-19 do-

main has the largest improvements. We also
compare the finetuning RAG-end2end model with
the RAG-original model, which was first ini-
tialized with the domain-adapted DPR models
(compare (2) and (3) in Table 4). This compari-
son shows that RAG-end2end training mechanism
can outperform the RAG-original mechanism
that uses a domain-adapted DPR. The results
further highlight the importance of the RAG-
end2end mechanism in domain adaptation where
we do not need to train the DPR model separately.

5 Discussion

5.1 Role of Retriever in Domain Adaptation

As the results suggest, the retriever plays an es-
sential role in domain adaptation for open-domain
QA. It is clear that RAG-end2end training im-
proves the results since it can update the
embeddings and the indexing of the knowledge
base. Compared with the original RAG finetun-
ing, RAG-end2end improves the performance in
all datasets. The main reason for this could be
that neural retrievers such as DPR, which are
trained on public datasets, struggle to perform
well on domain-specific datasets. Our results also
highlight an important aspect related to the per-
formance of the stand-alone DPR for document
retrieval. It shows that RAG-end2end can im-
prove the domain adaptation of DPR better that
finetuning the DPR on its own mechanism.

5.2 Cost of end2end Retriever Adaptation

It is important to note that RAG-end2end fine
tuning can be expensive if the number of passages
in the external knowledge base is large. If there
are millions of passages, it would be beneficial to
have a dedicated number of GPUs that complete
the re-encoding process. Re-indexing with the
FAISS library also depends on the number of
cores in the CPUs. When having access to strong
enough computational power, it is better to use
RAG-end2end since we can directly use passages
in a knowledge base and question-answer pairs to
train both the retriever and the reader. Then we
also do not need to generate synthetic question-
answer pairs related to passages that are required
to train the DPR.

Although the RETRO (Borgeaud et al., 2021)
authors claim that frozen BERT embedding is
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Model Name EM F1 Top-5 Top-20

SQUAD Open-Domain

(1) RAG-original 28.12 39.42 59.64 72.38
(2) RAG-end2end 40.02 52.63 75.79 85.57

Table 5: Open-Domain performance comparison
between RAG-original and RAG-end2end. We
used SQAD dataset in ODQA manner to conduct
our experiments.

sufficient for retrieval augmented models, our re-
sults suggest that for domain-specific models to
perform well, a domain-adapted retriever com-
ponent is beneficial. In future work, it will be im-
portant to explore how the models like RETRO
(Borgeaud et al., 2021) perform on domain-
specific scenarios going beyond general-purpose
datasets.

5.3 Comparing the RAG-original with
RAG-end2end on an In-domain Dataset

Although our work is mainly focused on the do-
main adaptation of RAG for specific domains,
we also explored whether the end2end training
would improve the overall results of an in-domain
dataset. Since the original RAG model uses a DPR
model that is trained on a Wikipedia-based Natu-
ral Questions dataset, we consider this in-domain.
Although the SQUAD (Rajpurkar et al., 2016)
dataset is a machine comprehension dataset, we
adapted the SQUAD dataset to perform ODQA.
First, we extracted the contexts related to each
question-answer pair and created an external
knowledge base. Then we split the knowledge
base into 100-word passages. Our final knowl-
edge base consists of 30K passages. As illustrated
in Table 5, we compared the performance of
RAG-original and RAG-end2end on the tasks of
answer generation and retrieving correct doc-
uments. As the results suggest, RAG-end2end
performs better than RAG-original even in other
Wikipedia-based datasets. This could be due to
RAG-end2end updating the context encoder and
embeddings during the training process.

6 Conclusion and Future Work

In this paper, we proposed a novel extension
of RAG: RAG-end2end, which, unlike RAG,

does joint training of the retriever and genera-
tor for the end QA task and domain adaptation.
We showed that RAG-end2end could improve
DPR performance better than finetuning the
DPR independently. This allows for the train-
ing of DPR models with QA pairs and eliminates
the need for gold-standard passages related to
questions. We also highlighted that the addi-
tion of a re-construction auxiliary signal further
improves both the retriever and the final an-
swer generation accuracies. We evaluate our
approach with three datasets from different do-
mains (COVID-19, News, and Conversations),
showing that RAG-end2end achieves significant
performance improvements in all three domains
compared to the original RAG implementation.
In addition, we conducted several other experi-
ments to validate our approach comprehensively.
Overall, our results show that our approach is
stable and generalizable across different domains.
Our experiments highlight the importance of the
RAG’s retriever component in domain-specific
question answering.

Based on our findings, we suggest three di-
rections for future research in domain adaptation
of RAG models. First, we consider it worthwhile
to explore RAG-end2end on other tasks like fact
checking (Lewis et al., 2020b), summarization
(Shuster et al., 2021), and conversational response
generation (Xu et al., 2021) where the original
RAG has shown interesting results. Second, it
is important to explore generative capabilities
with qualitative metrics (Figure 2 in the appendix
illustrates retrieved text and answers generated
by rag-end2end and rag-original). This could be
aligned with research areas like measuring fac-
tual consistency (Kryściński et al., 2019; Cao
et al., 2022) and hallucinations (Cao et al., 2022;
Shuster et al., 2021; Nie et al., 2019) of genera-
tive language models. Future work could explore
whether updating the retriever and document em-
beddings during the training phase could improve
factual consistency and reduce hallucinations in
final generations. Third, the improvement of RAG
with our extension (RAG-end2end) highlights the
importance of the retriever in the RAG architec-
ture, which motivates us to improve the retriever
part further in future work. Also, as the statement
re-construction signal acts as a good auxiliary
signal, we encourage exploring other auxiliary sig-
nals, which could improve the overall performance
of RAG models.
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A Appendix

Figure 2: Predicted answers and retrieved passages for a set of questions from the conversational domain
(Wu et al., 2021b).
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