
SustaiNLP 2023

The Fourth Workshop on Simple and Efficient Natural
Language Processing

Proceedings of the Workshop

July 13, 2023

©2023 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-959429-79-1

i

Introduction

It is our great pleasure to welcome you to the fourth edition of SustaiNLP: Workshop on Simple and
Efficient Natural Language Processing.

The Natural Language Processing community has, in recent years, demonstrated a notable focus on im-
proving higher scores on standard benchmarks and taking the lead on community-wide leaderboards (e.g.,
GLUE, SentEval). While this aspiration has led to improvements in benchmark performance of (predo-
minantly neural) models, it has also came at a cost, i.e., increased model complexity and the evergrowing
amount of computational resources required for training and using the current state-of-the-art models.
Moreover, the recent research efforts have, for the most part, failed to identify sources of empirical gains
in models, often failing to empirically justify the model complexity beyond benchmark performance.

Because of these easily observable trends, we organized the SustaiNLP workshop with the goal of pro-
moting more sustainable NLP research and practices, with two main objectives: (1) encouraging develo-
pment of more efficient NLP models; and (2) providing simpler architectures and empirical justification
of model complexity. For both aspects, we encouraged submissions from all topical areas of NLP.

This year, we received 46 submissions, proposing a multitude of viable resource-efficient NLP methods
and spanning a wide range of NLP applications. We have selected 26 submissions for presentation at the
workshop, yielding an acceptance rate of 57%.

Many thanks to the SustailNLP program committee for their thorough and thoughtful reviews. We would
also like to thank to our panelists and invited speakers whose discussions and talks we strongly believe
will make the workshop exciting and memorable.

We are looking forward to the fourth edition of the SustaiNLP workshop!

SustaiNLP Organizers
June 2023

ii

Organizing Committee

Organizers

Nafise Sadat Moosavi, University of Sheffield
Iryna Gurevych, TU Darmstadt
Yufang Hou, IBM Research Ireland
Gyuwan Kim, UC Santa Barbara
Young Jin Kim, Microsoft Research
Tal Schuster, Google Research
Ameeta Agrawal, Portland State University

iii

Program Committee

Program Committee

Hadi Abdi Ghavidel, Bell Canada
Hend Al-khalifa, King Saud University
Ahmed Alajrami, The University of Sheffield
Abhinav Arora, Facebook
Sina Bagheri Nezhad, Portland State University
Mohaddeseh Bastan, Stony Brook University
Samuel Cahyawijaya, HKUST
Roman Grundkiewicz, Microsoft Research
Benjamin Heinzerling, RIKEN AIP and Tohoku University
Amr Hendy, Microsoft
Zhiqi Huang, Tencent AI Lab
Peter Izsak, Intel Labs
Sungho Jeon, Heidelberg Institute for Theoretical Studies
Rishabh Joshi, Google
Mihir Kale, Google
Lis Kanashiro Pereira, Ochanomizu University
Kartik Kannapur, Amazon Web Services
Md. Shahriar Karim, North South University
Constantinos Karouzos, University of Sheffield
Anne Lauscher, University of Hamburg
Ji-ung Lee, UKP, TU Darmstadt
Els Lefever, LT3, Ghent University
Florian Mai, Idiap Research Institute
Jonathan Mamou, Intel Labs
Ekata Mitra, Portland State University
Anhad Mohananey, Google
Yusuke Mori, The University of Tokyo
Marius Mosbach, Saarland University
Sergiu Nisioi, Human Language Technologies Research Center, University of Bucharest
Siddhesh Pawar, Google
Oren Pereg, Emergent AI Lab, Intel Labs
Vikas Raunak, Microsoft
Ines Rehbein, University of Mannheim
Hossein Rouhizadeh, University of Geneva
Edwin Simpson, University of Bristol
Pranaydeep Singh, LT3, University of Ghent
Marek Suppa, Comenius University in Bratislava
Danae Sánchez Villegas, University of Sheffield
Yufei Tao, Portland State University
Lovre Torbarina, doXray
Moshe Wasserblat, Intel Labs
Miles Williams, University of Sheffield
Genta Winata, Bloomberg
Tiezheng Yu, The Hong Kong University of Science and Technology

iv

Table of Contents

KwikBucks: Correlation Clustering with Cheap-Weak and Expensive-Strong Signals
Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew Mccallum, Deepak Ramachandran

and Mehran Kazemi . 1

Semantic-Oriented Unlabeled Priming for Large-Scale Language Models
Yanchen Liu, Timo Schick and Hinrich Schtze . 32

oBERTa: Improving Sparse Transfer Learning via improved initialization, distillation, and pruning
regimes

Daniel Campos, Alexandre Marques, Mark Kurtz and Cheng Xiang Zhai 39

Quick Dense Retrievers Consume KALE: Post Training KullbackLeibler Alignment of Embeddings for
Asymmetrical dual encoders

Daniel Campos, Alessandro Magnani and Chengxiang Zhai . 59

Lessons on Parameter Sharing across Layers in Transformers
Sho Takase and Shun Kiyono . 78

To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models for Improved Inference
Efficiency

Daniel Campos and Chengxiang Zhai . 91

Small is the New Big: Pre-finetuned compact models are better for Asynchronous Active Learning
Dantong Liu, Kaushik Pavani and Sunny Dasgupta . 110

ADEPT: Adapter-based Efficient Prompt Tuning Approach for Language Models
Aditya Shah, Surendrabikram Thapa, Aneesh Jain and Lifu Huang . 121

NLU on Data Diets: Dynamic Data Subset Selection for NLP Classification Tasks
Jean-michel Attendu and Jean-philippe Corbeil . 129

On the Interactions of Structural Constraints and Data Resources for Structured Prediction
Zhisong Zhang, Emma Strubell and Eduard Hovy . 147

Can we Pretrain a SotA Legal Language Model on a Budget From Scratch?
Joel Niklaus and Daniele Giofre . 158

Is a Video worth n n Images? A Highly Efficient Approach to Transformer-based Video Question An-
swering

Chenyang Lyu, Tianbo Ji, Yvette Graham and Jennifer Foster . 183

How to Unleash the Power of Large Language Models for Few-shot Relation Extraction?
Xin Xu, Yuqi Zhu, Xiaohan Wang and Ningyu Zhang . 190

Prompting language models improves performance in imbalanced setting
Jay Mohta . 201

KGQA Without Retraining
Nick Mckenna and Priyanka Sen. .212

MANER: Mask Augmented Named Entity Recognition for Extreme Low-Resource Languages
Shashank Sonkar, Zichao Wang and Richard Baraniuk . 219

v

Efficient and Interpretable Compressive Text Summarisation with Unsupervised Dual-Agent Reinforce-
ment Learning

Peggy Tang, Junbin Gao, Lei Zhang and Zhiyong Wang . 227

Exploring the Effect of Frequency Resolution in FNet
Gregory Szumel, Ghazal Khalighinejad, Rickard Stureborg and Sam Wiseman 239

Towards Adaptable and Interactive Image Captioning with Data Augmentation and Episodic Memory
Aliki Anagnostopoulou, Mareike Hartmann and Daniel Sonntag . 245

Corpus Complexity Matters in Pretraining Language Models
Ameeta Agrawal and Suresh Singh. .257

PersonaPKT: Building Personalized Dialogue Agents via Parameter-efficient Knowledge Transfer
Xu Han, Bin Guo, Yoon Jung, Benjamin Yao, Yu Zhang, Xiaohu Liu and Chenlei Guo 264

Small Character Models Match Large Word Models for Autocomplete Under Memory Constraints
Ganesh Jawahar, Subhabrata Mukherjee, Debadeepta Dey, Muhammad Abdul-mageed, Laks La-

kshmanan, V.s., Caio Mendes, Gustavo De Rosa and Shital Shah . 274

Query Encoder Distillation via Embedding Alignment is a Strong Baseline Method to Boost Dense
Retriever Online Efficiency

Yuxuan Wang and Lyu Hong . 290

Minimalist Entity Disambiguation for Mid-Resource Languages
Benno Kruit . 299

vi

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 1–31
July 13, 2023 ©2023 Association for Computational Linguistics

KwikBucks: Correlation Clustering with Cheap-Weak and
Expensive-Strong Signals

Sandeep Silwal†1, Sara Ahmadian2, Andrew Nystrom2, Andrew McCallum2,
Deepak Ramachandran∗2, Mehran Kazemi∗ 2

1 MIT, 2 Google Research
silwal@mit.edu, {sahmadian, nystrom, mccallum,

ramachandrand, mehrankazemi}@google.com

Abstract

For text clustering, there is often a dilemma:
one can either first embed each examples inde-
pendently and then compute pair-wise similar-
ities based on the embeddings, or use a cross-
attention model that takes a pair of examples
as input and produces a similarity. The for-
mer is more scalable but the similarities of-
ten have lower quality, whereas the latter does
not scale well but produces higher quality sim-
ilarities. We address this dilemma by devel-
oping a clustering algorithm that leverages the
best of both worlds: the scalability of former
and the quality of the latter. We formulate
the problem of text clustering with embedding-
based and cross-attention models as a novel
version of the Budgeted Correlation Cluster-
ing problem (BCC) where along with a lim-
ited number of queries to an expensive oracle
(a cross-attention model in our case), we have
unlimited access to a cheaper but less accurate
second oracle (embedding similarities in our
case). We develop a theoretically motivated al-
gorithm that leverages the cheap oracle to ju-
diciously query the strong oracle while main-
taining high clustering quality. We empirically
demonstrate gains in query minimization and
clustering metrics on a variety of datasets with
diverse strong and cheap oracles.

1 Introduction

Modern ML techniques have made incredible ad-
vances at the cost of needing resource-intensive
models (Sharir et al., 2020). Many recent ap-
proaches are so resource-intensive that despite
amazing accuracy, they are infeasible to be scaled
as-is in practical usage. The total effect of all such
deployments on energy usage is also a major sus-
tainability concern (Wu et al., 2022).

With the increased cost in querying ML models,
the cost of obtaining similarities between objects
of different types (texts, images, etc.) has also

∗Co-advised. †Work done while interning at Google.

substantially increased. In this paper, we aim to
answer a challenging question when working with
such costly similarity measure models: how can
we group similar objects together when similari-
ties of objects are obtained via expensive queries?
This problem can be naturally cast as a popular and
versatile clustering framework, named Correlation
Clustering (CC), which has been extensively stud-
ied over the past 15+ years (Bonchi et al., 2022):
given similarities between arbitrary objects repre-
sented as a graph, CC minimizes a natural objective
that attempts to cluster together similar vertices
while simultaneously separating dissimilar ones.
The high cost of querying large ML models moti-
vates the use of the Budgeted CC (BCC) setting
studied in (Bressan et al., 2019; García-Soriano
et al., 2020a) where relationships between nodes
are determined by making a limited number of
queries to an oracle, e.g. a large ML model.

We posit that in many practical settings, coarse
but efficient approximations of an expensive model
can be obtained through substantially cheaper but
weaker models. These weaker models can be used
as a guide to spend the query budget for the expen-
sive model more carefully. A motivating example,
which heavily inspires our work, is in text cluster-
ing where one wishes to obtain similarity signals
from the latest highly-accurate cross-attention (CA)
language models (e.g., (Brown et al., 2020; Thoppi-
lan et al., 2022)), but may be hindered by the com-
putational burden as obtaining each pair-wise simi-
larity between data points requires an inference call
to the model, giving rise to a worse case O(n2) in-
ference calls, where n is the number of data points.
Embedding based models (e.g., (Mikolov et al.,
2013; Devlin et al., 2018) can come to the rescue
as they require only O(n) inference calls to ob-
tain embedding vectors for each data point that
can then be used for fast similarity computation.
While embedding models typically produce sub-
stantially lower quality similarity signals than CA

1

models (see, e.g., (Menon et al., 2022)), they can
still provide a good approximation to guide where
the budget for the CA model should be spent.

Inspired by the above, we introduce a variant of
BCC where, along with a limited number of queries
to an expensive oracle, we also have unlimited ac-
cess to a cheaper but less accurate second oracle.
We develop an algorithm dubbed KwikBucks that
extends the well-known KwikCluster algorithm
to budgeted CC with cheap-weak and expensive-
strong signals. KwikBucks uses the weak sig-
nal as a guide to minimize the number of calls
to the strong signal. Under the assumption that
the weak signal returns a strict superset of the
strong signal edges, our algorithm approximately
matches the performance of KwikCluster, i.e., a
3-approximation, using a small number of queries
to the expensive model. In our experiments, we
strengthen our theoretical modelling with several
well-motivated optimizations and demonstrate that
KwikBucks manages to produce high quality clus-
terings with only a small number of queries to the
expensive oracle even when there is only a weak
correlation between the weak and strong signal.

We conduct extensive experiments with multiple
datasets to evaluate the performance of KwikBucks
over natural extensions of previous algorithms
for closely-related problems. KwikBucks recov-
ers the best clustering solution with a much smaller
strong signal budget than the alternatives, and it
finds asymptotically better solutions in many cases.
KwikBucks is also robust to the choice of weak
signal oracle across different dataset settings and
obtains significant improvements over five base-
lines — 64% relative improvement in clustering
quality (measured in terms of F1 score) when av-
eraging over 9 datasets, and over > 3.5x reduction
in query complexity compared to the best baseline.

1.1 Related Work

Our paper spans correlation clustering, clustering
with budget constraints, and learning from multiple
annotators. For brevity, we focus on the closely
related key works in these areas.

Correlation clustering is one of the most well
studied graph clustering problems and has been
actively researched over the past 15+ years (see
the book (Bonchi et al., 2022)). It has numerous
applications in ML and beyond, including spam
detection (Ramachandran et al., 2007; Bonchi et al.,
2014), social network analysis (Bonchi et al., 2015;

Tang et al., 2016), entity resolution (Getoor and
Machanavajjhala, 2012), and many others (Gionis
et al., 2005; Hassanzadeh et al., 2009; Cohen and
Richman, 2002; Kim et al., 2011). (Bansal et al.,
2004) introduced and gave the first constant factor
approximation for complete graphs (see Def. 1).
Variants include incomplete signed graph (Bansal
et al., 2004; Ailon et al., 2008), where the problem
is APX-Hard (Demaine et al., 2006), and weighted
graphs (Charikar et al., 2005), where it is Unique-
Games hard (Chawla et al., 2006).

Clustering under budget constraints studies
the problem of a limited number of pairwise simi-
larity queries. In this setting, a line of work looked
at spectral clustering on partially sampled matrices:
Fetaya et al. (2015) in general setting, and Shamir
and Tishby (2011) and Wauthier et al. (2012) for
bi-partitioning. The most relevant works to our
paper are those of García-Soriano et al. (2020a)
and Bressan et al. (2021) who devised algorithms
for correlation clustering that given a budget of Q
queries attain a solution whose expected number of
disagreements is at most 3· OPT +O(n

3

Q), where
OPT is the optimal cost for the instance. Another
closely related line of work studies “same-cluster"
queries for various clustering problems including
CC (Ailon et al., 2018; Saha and Subramanian,
2019). The differences between these works and
ours are (1) they assume all

(
n
2

)
similarity queries

are already known in advance whereas we must
query the strong signal to obtain similarities, (2)
their queries give access to the optimal clustering,
whereas we only query for edge signs.

Learning from multiple annotators considers
cost-effective learning from multiple annotators
where the cost of a labeler is proportional to its
overall quality. The most relevant work to our
setting is (Guha et al., 2015) as it considers hierar-
chical clustering which uses lightweight similarity
scores to identify candidate pairs with high similar-
ity (detailed comparison in Section A). Ensemble
approaches (Dietterich, 2000) are also relevant, but
they require knowing the similarities in advance
and do not apply to our budgeted setting. Lastly we
survey additional related works on learning from
multiple annotators as well as algorithms with pre-
dictions in Section A.

1.2 Preliminaries and Notation

The input of correlation clustering is a complete
undirected graph G = (V,E+ ∪ E−) on |V | = n

2

vertices. E+ and E− represent the partitions of
all possible

(
n
2

)
edges where an edge e = (u, v) ∈

E+ indicates that u and v are similar and e =
(u, v) ∈ E− indicates that u and v are dissimilar.
We simplify the notation to G = (V,E = E+) so
any present edge is a positive edge and any missing
edge is a negative edge. Additionally, we use m to
denote the size of |E| and Γ(v) = {u | (v, u) ∈ E}
to denote the neighborhood of vertex v.

A clustering is a partitioning C = {C1, C2, · · · }
of V into disjoint subsets. Let Cv,u denote the indi-
cator variable if the vertices v and u are assigned to
the same cluster. We study the min-disagreement
formulation of the correlation clustering problem
defined as follows (Bansal et al., 2004).

Definition 1 (Correlation Clustering (CC)). Given
a graph G = (V,E), the objective of correlation
clustering (CC) is to output a clustering C that
minimizes:

∑

e=(v,u)6∈E
Cv,u +

∑

e=(v,u)∈E
(1− Cv,u). (1)

KwikCluster (Ailon et al., 2008) is a well-
known CC algorithm which proceeds by succes-
sively picking a vertex p, called a pivot, uniformly
at random from the graph and forming a cluster
{p} ∪ Γ(p). The algorithm removes this cluster
and recurses on the remaining graph until all ver-
tices are assigned to clusters. Based on the fact that
the set of pivots is a maximal independent set con-
structed from a random order of vertices, Bonchi
et al. (2013) suggests an equivalent algorithm that
first constructs the independent set and then assigns
any non-pivot to its first neighbor in the indepen-
dent set. Both algorithms yield 3-approximation
in expectation, however the second algorithm is
more efficient as the assignment of non-pivots can
be performed in parallel.

Despite practicality and simplicity of
KwikCluster (and its variants), the algo-
rithm assumes access to the full similarity graph
G and is not feasible when similarity measures
are expensive to acquire. We consider budget CC
studied before by (García-Soriano et al., 2020b;
Bressan et al., 2019) where there is a limit (budget)
for the number of queries that can be made.

Definition 2 (Expensive / Strong Oracle). Given
an edge e, the queryOS(e) outputs whether e ∈ E,
i.e., e is a positive edge.

Following the motivations provided in Section 1,
we also introduce a second weaker oracle which is

cheaper to query.
Definition 3 (Cheap / Weak Oracle). Given any
vertex v, the query OW (v) outputs a similarity
score in R between v and every other vertex in V ,
where higher values indicate higher similarity

We frequently refer to G as the strong signal
graph and likewise a strong signal edge refers to
an edge in E. We interchangeably use the terms
signal or oracle, the terms strong and expensive
signal, and also the terms weak and cheap signal.

2 Theoretical Modelling

We introduce an algorithm that leverages the cheap
signal for strong signal query efficiency. Our
goals are twofold: (1) Design a flexible algo-
rithm paradigm which can adapt to incorporate
constraints necessitated by practice, i.e., limited ac-
cess to expensive queries, (2) Analyze the quality
of the produced solution with respect to the CC
objective (see equation 1). We first introduce a
modelling assumption for the weak oracle for the
purpose of theoretical analysis. While this results
in a different but related weak oracle formulation
compared to Definition 3, it lets us derive a robust
algorithm design which we subsequently adapt to
the more realistic setting of Definition 3.

First, we introduce a noise factor γ that deter-
mines the usefulness of a weak signal. γ = 0
corresponds to a perfect weak signal that exactly
matches the strong signal and γ = n corresponds
to a completely uninformative weak signal.
Assumption 1. For a fixed noise parameter γ > 0,
the query OγW (v) outputs a subset of V such that
Γ(v) ⊆ OγW (v) and |OγW (v)| ≤ (1 + γ)|Γ(v)|.

The existence of such a signal with a small γ,
say O(1/n) or γ < 1 might seem like a strong
assumption for most applications. However, our
experiments show that weak signal can actually
provide predictive hints about the true underlying
strong signal graph. More precisely, given vertex
v, we order V with respect to the weak signal,
and observe that true strong signal neighbors of v
are often ranked higher. Thus, returning the most
similar vertices for an input node captures many of
the true strong signal neighbors of v and mimics the
clean abstraction of Assumption 1 (See Appendix
F.6 for further empirical justification).

Using the above characterization, we next
explain the high level ideas of our algorithm
KwikBucks (Algorithm 1). It is inspired by a vari-
ant of KwikCluster (Bonchi et al., 2013) adapted

3

Algorithm 1 KwikBucks (Our Algorithm)

Require: A bound on sampled vertices, t, the
strong signal budget, Q.

1: P ← GetPivots(t, Q)
2: return AssignToClusters(P, V \ P,Q)

Algorithm 2 AssignToClusters(P,U,Q)

Require: List of pivots, P , a vertex set, U , remain-
ing strong signal budget, Q.

1: A← ∅ {the set of singletons}

2: Cp ← {p} {cluster for any pivot p ∈ P}

3: while Q > 0 and U 6= ∅ do
4: v ← extract first vertex of U
5: Nv ← WeakFilter(v, P)
6: p← FirstNeighbor(v,Nv, Q)
7: if p 6= ∅ then
8: Cp = Cp ∪ {v}
9: else

10: A← A ∪ {v}
11: A← A ∪ U
12: return ∪p∈PCp ∪v∈A {v}

to our two oracle setting. In this variant, we first
pick pivots by forming a maximal independent set
from a random ordering of vertices, and then assign
non-pivots to their first neighbor (which must exist
by maximality of the independent set). A naive
extension of this algorithm can result in Ω(n1.5)
queries to the strong signal (see 1). However, one
may argue that by using the weak signal, we can
prune the possible neighborhood of vertices which
results in fewer strong signal queries.

While the weak signal can help us make smarter
queries to the strong signal, we can still show that
even for a weak signal with a small error rate, i.e.,
γ = O(1), we still need Ω(n2) queries to the strong
signal when forming a maximal independent set
(see 2). To circumvent this difficulty, we consider
another modification of KwikCluster by Bonchi
et al. (2013) where instead of picking a maximal
independent set, we pick t vertices uniformly at ran-
dom and then pick an independent set from them.
The caveat of this approach is that some non-pivots
may not have any neighbor in the chosen pivot set,
and so these non-pivots are returned as singleton
clusters. This results in an algorithm which returns
a solution with cost at most 3OPT +O(n2/t). We
additionally modify this algorithm by incorporat-
ing the weak signal to further prune possible strong
signal queries. While this algorithm has an addi-

Algorithm 3 GetPivots(t, Q)

Require: A bound on the number of sampled ver-
tices, t, the remaining strong signal budget, Q.

1: {v1, . . . , vt} ← t sampled vertices
2: P ← {v1}
3: for i ≥ 2 do
4: Ni ← WeakFilter(vi, P)
5: if FirstNeighbor(vi, Ni, Q) = ∅ then
6: P ← P ∪ {vi}
7: return P

Algorithm 4 FirstNeighbor(v,N,Q)

Require: Input vertex, v, an ordered list of ver-
tices, N , the remaining strong signal budget,
Q.

1: while Q > 0 and N 6= ∅ do
2: u← extract first vertex from N
3: Q← Q− 1
4: if OS(v, u) = 1 then
5: return {u}
6: return ∅

tive error for correlation clustering cost, it helps us
direct our queries to “impactful" portions of graph.
We now have all the ingredients for describing our
algorithm, KwikBucks.
KwikBucks first picks all pivots via random sam-

pling as shown in GetPivots: each sampled vertex
is added to the pivot set if it is not connected to the
current subset of pivots that is trimmed down by
WeakFilter (which uses the weak signal). Then, it
continues to assign non-pivots to clusters, through
AssignToClusters, which finds the first vertex
(FirstNeighbor) in the subset of ordered pivots
trimmed down by the weak signal via WeakFilter.
If no such vertex exists, then the vertex is assigned
to its own cluster, i.e., a singleton cluster. Note that
having a small t (the number of sampled vertices)
helps query efficiency by functionally reducing the
set of vertices that the weak signal is applied to
(both when selecting pivots and when assigning to
pivots) and then further queried by the strong sig-
nal. This comes at the cost of a small additive error.
Our next theorem formally bounds the number of
queries and the effect of t (proof in Appendix B).

Theorem 1. Under Assumption 1, KwikBucks uses
n + t + 2γtm/n + 2γt2m/n2 queries to OS to
achieve approximation 3OPT + O(n2/t).

Our next corollary, considers the interesting case

4

Algorithm 5 WeakFilter(v, S)

1: Return OγW (v) ∩ S

of a constant-size pivot set, i.e., t = 1/ε, which will
incur an additive error of εn2. This can be thought
as the ‘right scale’ as we make a mistake on only
an ε fraction of all edges. We complement our
corollary by presenting a matching lower bound in
the appendix (Lemma 3) showing that Ω(n+dγ/ε)
strong signal queries are necessary to obtain the
guarantees of Corollary 1.

Corollary 1. Let d be the average degree of the
strong signal graph and suppose n is sufficiently
large (n > 1/ε). We can achieve approximation
3·OPT +εn2 with n+O(dγ/ε) queries to OS .

3 The Final Empirical Algorithm

We now extend the algorithm for the idealized
setting of Section 2 into a practical version of
KwikBucks for general weak signals, i.e. Definition
3. While this version does not satisfy Assumption
1 and hence does not have similar approximability
guarantees, it still retains some theoretical moti-
vation (sketched below), and is empirically very
successful (see Section 4).

The modifications we make for our practical al-
gorithm are based on the following natural induc-
tive bias: ‘similar’ edges according to the strong
signal are likely to have a high weak signal simi-
larity score. At a high level, we incorporate this
assumption throughout our algorithm design by
ranking potential queries to the strong signal ac-
cording to weak signal similarity values.
Weak Filter by Ranking The most noticeable
change occurs for WeakFilter: In our theoretical
modelling, it returns a subset of S which intersects
with the noisy neighborhood returned by the cheap
oracle. For the general weak signal version (Def-
inition 3), we update the WeakFilter function to
instead rank the vertices in S with respect to the
weak signal similarity to v and then output the top
k elements in S with the highest similarities (Al-
gorithm 6)). Intuitively, for a suitable parameter
k, the top k candidates capture many of the strong
signal neighbors of v in S. Indeed, we empirically
verify this in our experiments and show that pre-
dictive weak signals usually rank true strong signal
neighbors much higher compared to a random or-
dering. For our experiments we fix k = 100 and
perform ablation studies on this parameter.

Algorithm 6 WeakFilterByRanking(v, S, k)

Require: Input vertex v; set S ⊆ V
1: wi ← similarity of (v, ui) for all ui ∈ S as

computed by weak signal
2: Sort elements of S in decreasing wi values
3: Return First k elements of new sorted order

To better understand the effect of this modifica-
tion, consider AssignClusters where non-pivot
vertices attempt to connect to a pivot. In our theoret-
ical modeling and in the classical KwikCluster al-
gorithm, each non-pivot vertex checks for a strong
signal edge among the list of pivots in an order-
ing which is fixed for all vertices. This ordering
can be thought of as the ordering inherited from
GetPivots. In contrast, WeakFilterByRanking
introduces a data adaptive ordering step where
each non-pivot vertex can re-rank pivots based on
weak signal similarities. As shown in Section 4,
this has a sizeable impact on the empirical perfor-
mance of our algorithm. In Section D.1, we explain
these gains by introducing a natural data model that
makes some well-motivated assumptions about the
relationship between the strong and weak signal, as
well as the inherent clusterability of the underlying
graph. Under this model, we prove that the quality
of the clustering after re-ranking is strictly better
than for the unranked filter.
Further optimizations. We make three additional
enhancements to KwikBucks. The first one sim-
ply sorts the non-pivots based on the maximum
weak signal similarity to the pivots so that ‘eas-
ier’ non-pivots are assigned clusters first which
improves query efficiency. The second one mod-
ifies the WeakFilterByRanking function slightly
by increasing the weak signal similarity value be-
tween a non-pivot v and a pivot p if p has ‘many’
nearest neighbors (in weak signal similarity) of
v already in its cluster. Finally, the last enhance-
ment introduces a post-processing step where we
potentially merge some clusters after our algorithm
terminates. As shown in Section D.2, this opti-
mization is motivated by a theoretical worst-case
example for KwikCluster. The merging step pro-
ceeds by first curating a list of clusters to consider
for merging based on the average weak signal value
between the two clusters and we sample a small
number of strong signal edges between potential
clusters to merge to determine if the pair is suit-
able for merging. Each of these optimizations is
described in detail in Section C.

5

4 Experiments

Datasets. We use 9 datasets, 8 publicly available
and 1 proprietary internal. Each dataset exhibits
different properties such as varying strong signal
graph densities and diverse strong and weak signals
to demonstrate the versatility of our method. We
provide high-level descriptions here and refer to
Section E for more details.

Four public datasets are comprised of text inputs:
Stackoverflow (SOF) (Xu et al., 2017), SearchSnip-
pets (Phan et al., 2008), Tweet (Yin and Wang,
2016) and AgNews (Rakib et al., 2020). For Stack-
overflow and SearchSnippets, we use word2vec
embedding similarities (Mikolov et al., 2013) as
the cheap signal and a large cross-attention based
language model as the strong signal. For Tweet
and AgNews, BERT embedding similarities (De-
vlin et al., 2018) are the cheap signal; the strong
signal of an input pair is the indicator variable of
the two examples belonging to the same class plus
a small amount of i.i.d. noise to prevent the forma-
tion of disconnected connected components, which
is the ‘easy’ case for KwikCluster 1.

The other four public datasets are comprised of
attributed graphs: Cora (Sen et al., 2008), Ama-
zon Photos (Shchur et al., 2018), Citeseer (Sen
et al., 2008), and Microsoft Medicine (Shchur and
Günnemann, 2019). For Cora and Amazon photos,
node embedding (learned using deep graph info-
max (Velickovic et al., 2019)) similarities are the
cheap signal; the strong signal is generated simi-
larly to those of Tweet and AgNews. For Citeseer
and Microsoft Medicine, node attribute similarities
are the cheap signal and the existence/absence of
edges in the graph is the strong signal.

Moreover, we report results on a large propri-
etary dataset based on the shopping reviews of
a commercial website. We use internally devel-
oped (and finetuned) embedding based and cross-
attention based language models for the cheap and
expensive signals respectively; both models are
based on the publicly available language models
such as BERT and T5 (Raffel et al., 2020).

Baselines. Since our work is the first BCC algo-
rithm which utilizes both strong and weak signals,
we adapt algorithms from prior work, e.g. some
which only use a strong signal, to our setting. We
also propose several new algorithms as baselines.

Baseline 1: A variant of KwikBucks where we
1One can easily show that in such a case the classical

KwikCluster algorithm is able to recover OPT.

do not use the weak signal ordering computed in
Algorithm 6 when checking for a strong signal edge
between a node and a set of pivots. Rather we use
the the order the pivots were picked.

Baseline 2: Algorithm presented in (García-
Soriano et al., 2020b; Bressan et al., 2019). It
follows the KwikCluster algorithm and uses the
strong signal to query edges. If the query budget
is depleted, the algorithm is terminated and any
remaining vertices are returned as singletons.

Baseline 3 / 4: We compute a k-NN graph based
on the weak signal to narrow down the set of all
possible queries to a small set of relevant pairs.
Each edge of the k-NN graph is re-weighted (either
0 or 1) based on the strong signal. Baseline 3
runs the classic spectral clustering algorithm and
baseline 4 runs the vanilla KwikCluster algorithm
to completion on this graph.

Baseline 5: This baseline is inspired by the base-
line used in (García-Soriano et al., 2020b). We
pick k random vertices and query their complete
neighborhood using the strong signal. k is again
chosen as high as possible within the allotted query
budget. Instead of running an affinity propagation
algorithm, which was already shown in (García-
Soriano et al., 2020b) to be inferior to Baseline 2,
we run the vanilla KwikCluster algorithm.

Evaluation metrics. We evaluate our algorithm
and baselines based on the correlation clustering
objective (equation 1). For the purpose of evaluat-
ing metrics, we use all edges of the strong signal
graph in contrast to the duration of algorithm exe-
cution which we limit the access. In addition, we
compute the precision and recall of edges of the
strong signal graph. Given a clustering C, its preci-
sion is defined as the ratio between the number of
strong signal edges whose endpoints are together
in the same cluster and the total number of pairs
of vertices clustered together in C. The recall is
defined as the fraction of all strong signal edges
whose vertices are clustered together in some clus-
ter of C; see equation 2 and 3. We combine the
precision and recall into a single metric via the
standard F1 score

Parameter configurations. Our algorithm has
two main parameters to select: t in Algorithm 3
corresponding to the number of vertices we select
uniformly at random which is then pruned to form
the set of pivots, and k in Algorithm 6 correspond-
ing to the number of top vertices we select based
on the weak-signal similarity for the strong signal

6

Table 1: F1 values for a fixed budget of 3n to the expensive-strong signal, where n indicates the dataset size. For
Citeseer and Medicine, we use a budget of 50n as they have substantially sparse graphs. Winners are in bold and
second winners are underlined.

SOF Search Tweet AgNews Cora Photos Citeseer Medicine Internal Avg.

B1 .13±.02 .73±.15 .02±.00 .74±.01 .57±.08 .44±.01 .07±.01 .02±.00 .00±.00 .30
B2 .28±.10 .81±.12 .15±.07 .74±.01 .58±.13 .53±.13 .09±.01 .03±.01 .05±.04 .36
B3 .33±.07 .70±.04 .21±.03 .66±.04 .54±.02 .66±.05 .00±.00 .00±.00 - -
B4 .01±.00 .01±.00 .03±.00 .00±.00 .01±.00 .00±.00 .46±.01 .25±.00 .00±.00 .08
B5 .00±.00 .00±.00 .00±.00 .00±.00 .00±.00 .00±.00 .04±.01 .00±.00 .00±.00 .00

KwikBucks .72±.05 .92±.05 .28±.04 .87±.00 .82±.02 .83±.00 .41±.01 .29±.00 .14±.01 .59

to query. We pick both these parameters in a data-
driven manner. Thorough motivation and trade-offs
associated with both parameters are presented in
Section F.2; ablation studies of these parameters are
provided in our empirical results. Lastly, we always
reserve 10% of the query budget for performing the
merge post processing step. If the main algorithm
terminates with remaining budget, we correspond-
ingly increase the merge post processing budget to
incorporate this.

Results. We highlight key experimental themes
and defer additional details to Appendix F.

Superior performance over baselines: Table 1
shows that our algorithm outperforms the base-
lines in terms of the F1 metric: it consistently
has the highest F1 value for the fixed query bud-
get result displayed in Table 1. For example for
the SOF dataset, the best baseline has a 2.2x fac-
tor smaller F1 value. Figures 1(a),(b) show the
CC objective and F1 score as a function of the
query budget for the SOF dataset. It shows that
our algorithm achieves a higher F1 score and a
lower correlation clustering objective value with
only ≈ 7 · 103 queries whereas the baselines re-
quire at least 25 · 103 queries to match KwikBucks
with 7 · 103 queries, showing the efficacy of our
algorithm with a 3.6x reduction in query complex-
ity. Intuitively, the weak signal allows us to make
clustering progress much faster by directing the
query budget to impactful strong signal queries af-
ter filtering using the weak signal. The results for
other datasets are deferred to Figures 3 and 4 in
the appendix which display qualitatively similar
behaviour. The strong signal graphs of Citeseer
and Medicine are quite sparse. Therefore for these
datasets, the trivial clustering of all singletons al-
ready achieves a very low CC objective score. As
argued above, in these cases the F1 score is a much
more meaningful measure of cluster quality. As

shown in Figures 4, our algorithm achieves supe-
rior F1 values compared to the baselines. Lastly we
note that the performance of our algorithm stabi-
lizes once it has exploited sufficiently many strong
signal queries. We note that B3 is omitted from the
CC objective value plots for clarity as it always had
much higher objective value than other algorithms.

Relative performance of baselines is dataset de-
pendent: As shown in Table 1, for many datasets
such as Cora, Search, and AgNews, B2 is the best
among our five baselines. However this does not
generalize across all datasets. As shown in Figures
4, B3 is the best baseline (with respect to the F1

score) for the Tweet and Photos datasets while B4
is the best baseline for the Citeseer and Medicine
datasets. B4 can be a competitive baseline in the
case where the strong signal graph is extremely
sparse, such as in Citeseer (see Figure 4). This
is because the weak signal k-NN graph is able to
recover many relevant edges of the (sparse) graph
if the weak signal is informative.

Varying weak signal performance: We perform
addition weak signal ablation studies with the SOF
and Search datasets. We replace the Word2Vec
(W2V) embeddings used in our cheap oracle with
tf-idf embeddings and fix all other components of
the algorithm. Figure 1(c) and 7 show the perfor-
mance of our algorithm on these datasets and in
both cases, the algorithm’s performance noticeably
worsens. The intuitive answer for why this is the
case is because the alternative weak similarities
computed from tf-idf embeddings are worse than
W2V embeddings at ranking strong signal neigh-
bors. We empirically verify this claim. For every
vertex v in the SOF dataset, we rank all other ver-
tices in decreasing weak signal similarities to v.
The average rank of the true strong signal neigh-
bors of v is then computed and this value is plotted
in a histogram for all vertices v in Figure 1(d). A

7

500 6625 12750 18875 25000
Query Budget

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Co
rre

la
tio

n
Cl

us
te

rin
g

Ob
je

ct
iv

e 1e6 Stackoverflow

KwikBucks
B1
B2
B4
B5

(a)

500 6625 12750 18875 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Stackoverflow
KwikBucks
B1
B2
B3
B4
B5

(b)

500 6625 12750 18875 25000
Query Budget

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

co
re

Stackoverflow

W2V Weak Signal (KwikBucks)
tf-idf Weak Signal
Baseline 1

(c)

0 1000 2000 3000 4000
Average Rank of Strong Signal Neighbors

0

2

4

6

8

1e 4 Stackoverflow
W2V Weak Signal
tf-idf Weak Signal

(d)

500 6625 12750 18875 25000
Query Budget

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

co
re

Stackoverflow

KwikBucks
Without Merging
Without Neighborhood Stats
Without Ordering Non-Pivots

(e)

500 6625 12750 18875 25000
Query Budget

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

co
re

Stackoverflow

KwikBucks
Small Pivot Choice
Large Pivot Choice

(f)

Figure 1: (a) and (b) represent the CC objective and the F1-scores for the Stackoverflow dataset across various
query budgets. (c) compares performance across weak signals of various strength (Baseline 1 corresponds to a
random weak signal). (d) represents a (normalized) histogram showing average rank assigned to actual strong
signal neighbors by two different weak signals (lower is better). (e) represents an ablation study on some of the
main components of the algorithm. (f) represents a sensitivity analysis to the parameter corresponding to the
number of pivots selected.

‘good’ weak signal should rank actual strong sig-
nal neighbors much higher than non strong signal
neighbors. Indeed we observe this to be the case for
the W2V embeddings and this fact is qualitatively
captured the aforementioned figures which show
that W2V has superior F1 score plots. We also
observe that even the weaker tf-idf embeddings
still provide significant gains over not using a weak
signal. Overall, these experiments along with Base-
line B1 empirically verify that (1) the quality of the
weak signal correlates with the performance of the
algorithm, and (2) the two-oracle framework we
introduced is superior than the previously studied
single-oracle setting even when the cheap signal is
considerably weak.

Ablation studies. We perform ablation studies
on all tune-able parameters of our algorithm. A
sample of the ablation studies for SOF is shown in
Figure 1(e) and details of other results are presented
in Section F.4. We observe that removing any of the
main components of the algorithm (merging, order-
ing with respect to weak signal, and ordering with
respect to the statistics of the neighboring nodes)
deteriorates the performance of the algorithm, thus

all the introduced components are paramount in
KwikBucks. We also verify the role of the param-
eter t corresponding to the number of pivots we
select for our algorithm in Figure 1(f). We observe
that both large and small choices for this param-
eters can be harmful, but choosing larger values
is a safer option compared to smaller values as it
asymptotically offers a similar performance as the
optimal value.

5 Conclusion

We introduced and studied a novel variant of
the (budgeted) correlation clustering algorithm
where besides having a limited query budget to
an expensive-strong oracle, one also has access
to a readily available cheap-weak oracle. We de-
veloped an algorithm for this setting with strong
theoretical motivations and demonstrated its strong
practical performance for text clustering. We an-
ticipate the proposed framework could become a
standard building block, especially for text cluster-
ing strategies.

8

References
Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal.

2018. Approximate correlation clustering using
same-cluster queries. In LATIN 2018: Theoreti-
cal Informatics - 13th Latin American Symposium,
Buenos Aires, Argentina, April 16-19, 2018, Pro-
ceedings, volume 10807 of Lecture Notes in Com-
puter Science, pages 14–27. Springer.

Nir Ailon, Moses Charikar, and Alantha Newman.
2008. Aggregating inconsistent information: Rank-
ing and clustering. J. ACM, 55(5):23:1–23:27.

Keerti Anand, Rong Ge, Amit Kumar, and Debmalya
Panigrahi. 2022. Online algorithms with multiple
predictions.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn.
2018. Approximate nearest neighbor search in high
dimensions. In Proceedings of the International
Congress of Mathematicians: Rio de Janeiro 2018,
pages 3287–3318. World Scientific.

Antonios Antoniadis, Christian Coester, Marek Elias,
Adam Polak, and Bertrand Simon. 2020a. Online
metric algorithms with untrusted predictions. In In-
ternational Conference on Machine Learning, pages
345–355. PMLR.

Antonios Antoniadis, Themis Gouleakis, Pieter Kleer,
and Pavel Kolev. 2020b. Secretary and online match-
ing problems with machine learned advice. Ad-
vances in Neural Information Processing Systems,
33:7933–7944.

Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-
David. 2016. Clustering with same-cluster queries.
In Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 3216–3224.

Pranjal Awasthi, Avrim Blum, and Or Sheffet. 2012.
Center-based clustering under perturbation stability.
Inform. Process. Lett., 112(1-2):49–54.

Maria Florina Balcan and Yingyu Liang. 2012. Cluster-
ing under perturbation resilience. In International
Colloquium on Automata, Languages and Program-
ming.

Étienne Bamas, Andreas Maggiori, Lars Rohwedder,
and Ola Svensson. 2020a. Learning augmented en-
ergy minimization via speed scaling. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems, NeurIPS.

Étienne Bamas, Andreas Maggiori, and Ola Svensson.
2020b. The primal-dual method for learning aug-
mented algorithms. In Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on
Neural Information Processing Systems, NeurIPS.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004.
Correlation clustering. Machine learning, 56(1):89–
113.

Michael Barz and Daniel Sonntag. 2021. Incremental
improvement of a question answering system by re-
ranking answer candidates using machine learning.
In Increasing Naturalness and Flexibility in Spoken
Dialogue Interaction, pages 367–379. Springer.

Jo Bergum. 2022. Pretrained transformer language
models for search.

Francesco Bonchi, David García-Soriano, and
Francesco Gullo. 2022. Conclusions and open
problems. Correlation Clustering, pages 113–114.

Francesco Bonchi, David García-Soriano, and Kon-
stantin Kutzkov. 2013. Local correlation clustering.
CoRR, abs/1312.5105.

Francesco Bonchi, David Garcia-Soriano, and Edo Lib-
erty. 2014. Correlation clustering: From theory to
practice. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’14, page 1972, New York,
NY, USA. Association for Computing Machinery.

Francesco Bonchi, A. Gionis, Francesco Gullo, Char-
alampos E. Tsourakakis, and Antti Ukkonen. 2015.
Chromatic correlation clustering. ACM Trans.
Knowl. Discov. Data, 9:34:1–34:24.

Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi,
and Andrea Paudice. 2021. On margin-based cluster
recovery with oracle queries. Advances in Neural
Information Processing Systems, 34:25231–25243.

Marco Bressan, Nicolò Cesa-Bianchi, Andrea Paudice,
and Fabio Vitale. 2019. Correlation Clustering with
Adaptive Similarity Queries. Curran Associates Inc.,
Red Hook, NY, USA.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Moses Charikar, Venkatesan Guruswami, and Anthony
Wirth. 2005. Clustering with qualitative informa-
tion. Journal of Computer and System Sciences,
71(3):360–383.

Moses Charikar, Samir Khuller, David M. Mount, and
Giri Narasimhan. 2001. Algorithms for facility lo-
cation problems with outliers. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’01, page 642–651, USA. Soci-
ety for Industrial and Applied Mathematics.

Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yu-
val Rabani, and D Sivakumar. 2006. On the hardness
of approximating multicut and sparsest-cut. compu-
tational complexity, 15(2):94–114.

9

https://doi.org/10.1007/978-3-319-77404-6_2
https://doi.org/10.1007/978-3-319-77404-6_2
https://proceedings.neurips.cc/paper/2016/hash/9597353e41e6957b5e7aa79214fcb256-Abstract.html
https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-4/
https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-4/
http://arxiv.org/abs/1312.5105
https://doi.org/10.1145/2623330.2630808
https://doi.org/10.1145/2623330.2630808

Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin,
Shyam Narayanan, Ronitt Rubinfeld, Sandeep Sil-
wal, Tal Wagner, David P. Woodruff, and Michael
Zhang. 2022. Triangle and four cycle counting with
predictions in graph streams. In The Tenth Inter-
national Conference on Learning Representations,
ICLR.

William W Cohen and Jacob Richman. 2002. Learning
to match and cluster large high-dimensional data sets
for data integration. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 475–480.

Ofer Dekel, Claudio Gentile, and Karthik Sridharan.
2012. Selective sampling and active learning from
single and multiple teachers. The Journal of Ma-
chine Learning Research, 13(1):2655–2697.

Erik D Demaine, Dotan Emanuel, Amos Fiat, and
Nicole Immorlica. 2006. Correlation clustering in
general weighted graphs. Theoretical Computer Sci-
ence, 361(2-3):172–187.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos,
Ali Vakilian, and Nikos Zarifis. 2021. Learning on-
line algorithms with distributional advice. In Pro-
ceedings of the 38th International Conference on
Machine Learning, ICML, pages 2687–2696.

Thomas G Dietterich. 2000. Ensemble methods in ma-
chine learning. multiple classifier systems. Lecture
Notes in Computer Science, 1857:1–15.

Pinar Donmez. 2008. Proactive learning: Towards cost-
sensitive active learning with multiple imperfect or-
acles.

Talya Eden, Piotr Indyk, Shyam Narayanan, Ronitt
Rubinfeld, Sandeep Silwal, and Tal Wagner. 2021.
Learning-based support estimation in sublinear time.
In 9th International Conference on Learning Repre-
sentations, ICLR.

Derek Eder. 2022. [link].

Meng Fang, Xingquan Zhu, Bin Li, Wei Ding, and Xin-
dong Wu. 2012. Self-taught active learning from
crowds. In 2012 IEEE 12th international conference
on data mining, pages 858–863. IEEE.

Ethan Fetaya, Ohad Shamir, and Shimon Ullman. 2015.
Graph approximation and clustering on a budget. In
Artificial Intelligence and Statistics, pages 241–249.
PMLR.

David García-Soriano, Konstantin Kutzkov, Francesco
Bonchi, and Charalampos Tsourakakis. 2020a.
Query-efficient correlation clustering. In Proceed-
ings of The Web Conference 2020, pages 1468–
1478.

David García-Soriano, Konstantin Kutzkov, Francesco
Bonchi, and Charalampos Tsourakakis. 2020b.
Query-efficient correlation clustering. In Proceed-
ings of The Web Conference 2020, pages 1468–
1478.

Lise Getoor and Ashwin Machanavajjhala. 2012. En-
tity resolution: Theory, practice & open challenges.
Proc. VLDB Endow., 5:2018–2019.

A. Gionis, Heikki Mannila, and Panayiotis Tsaparas.
2005. Clustering aggregation. 21st International
Conference on Data Engineering (ICDE’05), pages
341–352.

Sreenivas Gollapudi and Debmalya Panigrahi. 2019.
Online algorithms for rent-or-buy with expert advice.
In Proceedings of the 36th International Conference
on Machine Learning, ICML, pages 2319–2327.

Ramanathan Guha, Vineet Gupta, Vivek Raghunathan,
and Ramakrishnan Srikant. 2015. User modeling for
a personal assistant. In Proceedings of the Eighth
ACM International Conference on Web Search and
Data Mining, pages 275–284.

Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and
Hyun Chul Lee. 2009. Framework for evaluating
clustering algorithms in duplicate detection. Proc.
VLDB Endow., 2(1):1282–1293.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakil-
ian. 2019. Learning-based frequency estimation al-
gorithms. In 7th International Conference on Learn-
ing Representations, ICLR.

Sheng-Jun Huang, Jia-Lve Chen, Xin Mu, and Zhi-Hua
Zhou. 2017. Cost-effective active learning from di-
verse labelers. In IJCAI, pages 1879–1885.

Panagiotis G Ipeirotis, Foster Provost, Victor S Sheng,
and Jing Wang. 2014. Repeated labeling using mul-
tiple noisy labelers. Data Mining and Knowledge
Discovery, 28(2):402–441.

Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and
David P. Woodruff. 2020. Learning-augmented data
stream algorithms. In 8th International Conference
on Learning Representations, ICLR.

Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli,
and Chang Yoo. 2011. Higher-order correlation clus-
tering for image segmentation. Advances in neural
information processing systems, 24:1530–1538.

Christopher H Lin, M Mausam, and Daniel S Weld.
2015. Reactive learning: Actively trading off larger
noisier training sets against smaller cleaner ones. In
Proceedings of the 32nd International Conference
on Machine Learning, Lille, France (ICML).

Christopher H Lin, Daniel S Weld, et al. 2014. To re
(label), or not to re (label). In Second AAAI confer-
ence on human computation and crowdsourcing.

10

https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/leaderboard/
https://doi.org/10.14778/1687627.1687771
https://doi.org/10.14778/1687627.1687771

Thodoris Lykouris and Sergei Vassilvitskii. 2018.
Competitive caching with machine learned advice.
In Proceedings of the 35th International Conference
on Machine Learning, ICML, pages 3302–3311.

Luigi Malago, Nicolo Cesa-Bianchi, and J Renders.
2014. Online active learning with strong and weak
annotators. In NIPS Workshop on Learning from the
Wisdom of Crowds.

Aditya Menon, Sadeep Jayasumana, Ankit Singh
Rawat, Seungyeon Kim, Sashank Reddi, and San-
jiv Kumar. 2022. In defense of dual-encoders for
neural ranking. In International Conference on Ma-
chine Learning, pages 15376–15400. PMLR.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Michael Mitzenmacher. 2018. A model for learned
bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems, NeurIPS, pages 462–471.

Kim Thang Nguyen and Christoph Dürr. 2021. Online
primal-dual algorithms with predictions for packing
problems. CoRR, abs/2110.00391.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu
Horiguchi. 2008. Learning to classify short and
sparse text & web with hidden topics from large-
scale data collections. In Proceedings of the 17th
international conference on World Wide Web, pages
91–100.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018.
Improving online algorithms via ML predictions. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems, NeurIPS, pages 9684–9693.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Md Rashadul Hasan Rakib, Norbert Zeh, Magdalena
Jankowska, and Evangelos Milios. 2020. Enhance-
ment of short text clustering by iterative classifica-
tion. In International Conference on Applications
of Natural Language to Information Systems, pages
105–117. Springer.

Anirudh Ramachandran, Nick Feamster, and Santosh S.
Vempala. 2007. Filtering spam with behavioral
blacklisting. In Proceedings of the 2007 ACM Con-
ference on Computer and Communications Security,
CCS 2007, Alexandria, Virginia, USA, October 28-
31, 2007, pages 342–351. ACM.

Radim Rehurek and Petr Sojka. 2011. Gensim–python
framework for vector space modelling. NLP Centre,
Faculty of Informatics, Masaryk University, Brno,
Czech Republic, 3(2).

Barna Saha and Sanjay Subramanian. 2019. Correla-
tion clustering with same-cluster queries bounded
by optimal cost. In 27th Annual European Sym-
posium on Algorithms, ESA 2019, September 9-
11, 2019, Munich/Garching, Germany, volume 144
of LIPIcs, pages 81:1–81:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008.
Collective classification in network data. AI maga-
zine, 29(3):93–93.

Ohad Shamir and Naftali Tishby. 2011. Spectral clus-
tering on a budget. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence
and Statistics, pages 661–669. JMLR Workshop and
Conference Proceedings.

Or Sharir, Barak Peleg, and Yoav Shoham. 2020. The
cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900.

Oleksandr Shchur and Stephan Günnemann. 2019.
Overlapping community detection with graph neural
networks. arXiv preprint arXiv:1909.12201.

Oleksandr Shchur, Maximilian Mumme, Aleksandar
Bojchevski, and Stephan Günnemann. 2018. Pitfalls
of graph neural network evaluation. arXiv preprint
arXiv:1811.05868.

Jiliang Tang, Yi Chang, Charu C. Aggarwal, and Huan
Liu. 2016. A survey of signed network mining in so-
cial media. ACM Computing Surveys (CSUR), 49:1
– 37.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
et al. 2022. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239.

Ruth Urner, Shai Ben David, and Ohad Shamir. 2012.
Learning from weak teachers. In Artificial intelli-
gence and statistics, pages 1252–1260. PMLR.

Petar Velickovic, William Fedus, William L Hamilton,
Pietro Liò, Yoshua Bengio, and R Devon Hjelm.
2019. Deep graph infomax. ICLR, 2(3):4.

Fabian L Wauthier, Nebojsa Jojic, and Michael I Jor-
dan. 2012. Active spectral clustering via iterative
uncertainty reduction. In Proceedings of the 18th

11

https://doi.org/10.1145/1315245.1315288
https://doi.org/10.1145/1315245.1315288
https://doi.org/10.4230/LIPIcs.ESA.2019.81
https://doi.org/10.4230/LIPIcs.ESA.2019.81
https://doi.org/10.4230/LIPIcs.ESA.2019.81

ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1339–1347.

Alexander Wei and Fred Zhang. 2020. Opti-
mal robustness-consistency trade-offs for learning-
augmented online algorithms. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS.

Jing Wong. 2022. Model-based candidate generation
for account recommendations.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta,
Bilge Acun, Newsha Ardalani, Kiwan Maeng, Glo-
ria Chang, Fiona Aga, Jinshi Huang, Charles Bai,
et al. 2022. Sustainable ai: Environmental implica-
tions, challenges and opportunities. Proceedings of
Machine Learning and Systems, 4:795–813.

Jiaming Xu, Bo Xu, Peng Wang, Suncong Zheng,
Guanhua Tian, and Jun Zhao. 2017. Self-taught con-
volutional neural networks for short text clustering.
Neural Networks, 88:22–31.

Yan Yan, Romer Rosales, Glenn Fung, and Jennifer G
Dy. 2011. Active learning from crowds. In ICML.

Yan Yan, Rómer Rosales, Glenn Fung, Faisal Farooq,
Bharat Rao, and Jennifer Dy. 2012. Active learning
from multiple knowledge sources. In Artificial Intel-
ligence and Statistics, pages 1350–1357. PMLR.

Jianhua Yin and Jianyong Wang. 2016. A model-based
approach for text clustering with outlier detection.
In 2016 IEEE 32nd International Conference on
Data Engineering (ICDE), pages 625–636. IEEE.

Taraneh Younesian, Dick Epema, and Lydia Y Chen.
2020. Active learning for noisy data streams us-
ing weak and strong labelers. arXiv preprint
arXiv:2010.14149.

Chicheng Zhang and Kamalika Chaudhuri. 2015. Ac-
tive learning from weak and strong labelers. Ad-
vances in Neural Information Processing Systems,
28.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710.

Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi
Li. 2017. Re-ranking person re-identification with
k-reciprocal encoding. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1318–1327.

A Additional Related Works

In the realm of learning from multiple annotators,
there is a long line of work studying these both
empirically and theoretically. Empirical work on
this can be divided into two main streams: (1) each
labeler is coming from a different generative model,

(2) each labeler is an expert over an unknown sub-
set of categories, (3) different labelers with quality
proportional to their cost. In the first case, the
learning algorithm focuses on learning parameters
of each labeler and then for each example decides
which labeler to query (Yan et al., 2011, 2012; Lin
et al., 2015, 2014; Fang et al., 2012). In the sec-
ond case, it uses data to measure the class-wise
expertise in order to optimally place label queries
(Ipeirotis et al., 2014; Donmez, 2008). In the last
case, empirical results comparing designed algo-
rithms to baselines are developed: active learning
from noisy data streams (Younesian et al., 2020),
active learning using diverse labelers (Huang et al.,
2017), and content segmentation for personal assis-
tants (Guha et al., 2015). Theoretical work looked
at the setting where the weak labeler made mis-
takes mostly in heterogeneous regions of space,
i.e., correct in label-homogeneous regions but may
deteriorate near classification boundaries. Differ-
ent formulations were considered in this setting:
non-parametric setting (Urner et al., 2012), fitting
classifiers in a hypothesis class (Zhang and Chaud-
huri, 2015), online selective sampling with appli-
cations in linear classifiers and robust regression
(Malago et al., 2014; Dekel et al., 2012).

The idea of judiciously utilizing an expensive
but accurate strong model with the help of cheaper
but noisier methods have already been success-
fully used in many practical and important do-
mains. In nearest neighbor search and informa-
tion retrieval, the dominant algorithmic paradigm
is to return multiple possible nearest neighbors us-
ing scalable methods and then re-rank the returned
points using exact distance calculations (which is
prohibitive to perform over the entire input)2. In
recommendation systems, the “standard practice
for machine learning-driven recommendations in
industry" (Wong, 2022) is driven by the two-step
procedure of cheaply retrieving a set of possible
candidates and iterating over them using a more
powerful but costlier ML models (Wong, 2022;
Bergum, 2022; Eder, 2022). Similar ideas are also
used in question answering and vision applications
(Zhong et al., 2017; Barz and Sonntag, 2021).

There has also been extensive work in incor-
porating additional predictions in algorithmic de-
sign for online algorithms (Bamas et al., 2020b;
Purohit et al., 2018; Lykouris and Vassilvitskii,

2We refer to http://ann-benchmarks.com/ for a large
collection of practical nearest neighbor search algorithms and
(Andoni et al., 2018) for a overview of theoretical works.

12

https://blog.twitter.com/engineering/en_us/topics/insights/2022/model-based-candidate-generation-for-account-recommendations
https://blog.twitter.com/engineering/en_us/topics/insights/2022/model-based-candidate-generation-for-account-recommendations
http://ann-benchmarks.com/

2018; Purohit et al., 2018; Gollapudi and Panigrahi,
2019), sublinear space and time algorithms (Chen
et al., 2022; Hsu et al., 2019; Eden et al., 2021),
and other algorithmic and data structural prob-
lems (Mitzenmacher, 2018; Bamas et al., 2020b,a;
Wei and Zhang, 2020; Jiang et al., 2020; Diakoniko-
las et al., 2021; Charikar et al., 2001; Antoniadis
et al., 2020a,b; Anand et al., 2022; Nguyen and
Dürr, 2021). We refer to the Algorithms-with-
Predictions website3 for comprehensive references.
The high level motivations of these works is to ap-
ply predictions to aid in beyond worst-case analysis
of algorithmic problems. The prototypical exam-
ples of predictions used in these works include algo-
rithm parameter settings (for example ‘warm starts’
or ‘seeds’ which can be constructed from past in-
puts). Thus a common underlying assumption is
that many similar inputs are given so that predic-
tions are meaningful and feasible. Furthermore in
many of these works, the predictions are modeled
after particular problem settings in mind and the
inputs are always fully specified. In contrast, our
predictions are inspired by a particular application
domain, e.g. text clustering, which we connect to
CC, rather than motivating the predictions from a
purely algorithmic problem perspective. Further-
more, our predictions (e.g. queries from the weak
signal) help us learn about the true underlying input
(e.g. the strong signal graph).

We also give a detailed comparision to the work
of (Guha et al., 2015). While at a high level both
(Guha et al., 2015) and our work aggregate infor-
mation across various signals, the two works differ
in terms of the generality of oracles considered, the
formal guarantees given, and the problems stud-
ied. The oracles used in (Guha et al., 2015) are
highly specialized to the datasets at hand; for ex-
ample, the cheap oracle used in (Guha et al., 2015)
is an inverted index model which heavily relies
on the specifics of the datasets used. In contrast,
we take a broader view of weak and strong oracles
and present theoretically founded algorithms which
only assume query access to the weak and strong
model and not any particular model idiosyncrasies.
Therefore, our algorithm has provable guarantees
on both the approximation quality and the query
complexity, making it broadly applicable across dif-
ferent oracles. In terms of problems, we study cor-
relation clustering while the focus of (Guha et al.,

3https://algorithms-with-predictions.github.
io/

2015) is not on a clustering problem. Rather, they
use hierarchical clustering as an intermediate prob-
lem to perform user modeling and do not consider
any specific clustering objective functions. The
strong signal queries made by our algorithm are
guided through formal reasoning and they exploit
the structure of the clustering problem we are study-
ing. In (Guha et al., 2015) the weak signal is used
at a more intuitive level and serves the informal
role of filtering possible strong signal queries with
no formal reasoning.

B Omitted Proofs of Section 2

Proposition 1. There exists a strong signal graph
G such that the KwikCluster algorithm makes
Ω(n1.5) strong signal queries.

Proof. Consider the case where the strong signal
graph consists of

√
n cliques, all of size

√
n. In

this case, every time KwikCluster picks a pivot, it
has to examine an existence of an edge from this
pivot to all the unassigned vertices. So for at least
the first

√
n/2 times KwikCluster picks a pivot, it

has to make at least n/2 calls to OS , resulting in
Ω(n1.5) calls to OS .

Proposition 2. Consider a variation of
KwikCluster, called KwikClusterγ , which
for a chosen pivot p from uncovered vertices V ′,
only queries V ′∩OγW (p) from strong signal. There
exists a graph G such that KwikClusterγ still
makes Ω(n2) strong signal queries in expectation
even when γ = O(1).

Proof. Consider the following strong signal graph:
the graph G is comprised a fully connected clique
on 0.9n nodes. The graph also has 0.1n nodes,
called ‘outside vertices’ which all connect to the
same 0.1n vertices in the fully connected clique but
have no edges between them. Suppose that OγW
returns the correct strong signal neighborhood for
vertices in the clique but for the outside vertices, it
returns an additional Ω(n) arbitrary vertices among
the outside vertices.

Now consider the simulation of KwikClusterγ

on G. With constant probability, the first time a
pivot is picked, it comes from the clique vertices
which have no neighbors among the outside ver-
tices. Condition on this event. Now the algorithm
still needs to run until the outside vertices have
been selected in a cluster. However, every time
each such vertex is picked as a pivot, we need to
check over Ω(n) erroneous vertices. Furthermore,

13

https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/

removing an outside vertex v and its neighborhood
Γ(v) does not remove any of the other outside ver-
tices. Thus it follows that the expected number of
queries made to OS , while still utilizing OγW in
this natural variant of KwikCluster, is Ω(n2) with
constant probability since there are Ω(n) outside
vertices, each which requires Ω(n) queries to OS .
Altogether, this natural algorithm can incur Ω(n2)
queries, a super linear amount.

Lemma 1. Let t be the parameter of GetPivots
(Algorithm 3). Algorithm 3 uses t + 2γt2m/n2

queries to OS .

Proof. Let T = {v1, . . . , vt} denote the set of t
sampled vertices in line 1 of Algorithm 3. Fix a ver-
tex v ∈ T , we show that there are O(γt|E|/n+ 1)
queries in expectation for such vertex. Let Pi de-
note the set of pivots right before we start scanning
vertex vi. When we check for the neighbors of ver-
tex vi, we immediately stop if a strong signal neigh-
bor in Pi is found. Let A(vi) = OγW (vi) \ Γ(vi)
be the vertices which OγW errs on for query vi and
can result in needless calls to OS . The number of
expected calls to the strong signal is exactly the ex-
pected number of unnecessary calls E[|A(vi)∩Pi|]
plus one call that may result in the early stoppage in
line 4 of Algorithm 4. So for each vi, the expected
number of calls to OS can be bounded by

1 + E[|A(vi) ∩ Pi|] ≤ 1 + E[|A(vi) ∩ T |]
= 1 + EviE[|A(vi) ∩ T | | vi]

≤ 1 + 2EviE
[
|A| · t

n
| vi
]

≤ 1 +
2tγ

n
Evi [|Γ(vi)|]

= 1 +
2tγm

n2
.

Summing over all t vertices in T results in the final
bound.

Lemma 2. Let P be the out-
put of GetPivots(t,Q), then
AssignToClusters(P, V \ P,Q) makes
n+ 2γtm/n queries to OS .

Proof. Consider a fixed vertex u ∈ V \ P . We
perform a similar analysis as in Lemma 1: ideally
S = OγW (u) ∩ P informs us the pivot which u
should connect to. However since the cheap or-
acle can be noisy, we can have many vertices in
(OγW (u)\Γ(u))∩P . The number of queries toOS

is at most |(OγW (u) \ Γ(u)) ∩ P | + 1. It remains
to calculate the following expected value:

E[|(OγW (u) \ Γ(u)) ∩ P |] ≤ γ |Γ(u)| · t
n
.

Thus the total expected number of queries for
non-pivot vertices is

∑

u∈V \P

(
1 + γ |Γ(u)| · t

n

)
=

|V \ P |+ γt

n

∑

u inV \P
|Γ(u)| ≤ n+

2γtm

n
.

Theorem 2 ((Bonchi et al., 2013)). Let T ′ be the
maximal independent set formed by scanning ran-
domly sampled t vertices of a graph G. Then the
expected number of edges of G not incident with
an element of T ′ union the neighborhood of T ′ in
G is at most n2/2t.

Proof. The bound on the number of queries to
OS . There are two tasks which require calls
to OS : forming the set of pivots in GetPivots
and assigning non-pivot vertices to a pivot in
AssignClusters. The expected number of queries
forGetPivots is handled by Lemma 1 and the ex-
pected number of queries for AssignClusters is
handled by Lemma 2.

We now need to bound the approximation guar-
antee. Consider the subgraph G′ of the strong sig-
nal graph which is the union of the pivots returned
by GetPivots and their neighborhood. Theorem 2
gives us that the number of edges not part of this
subgraph is at most O(n2/t) which can be charged
to the additive error incurred by our algorithm (all
vertices which do not have a strong signal edge to
any of the pivots are clustered as singletons). Now
on this subgraph note that we are exactly mimick-
ing the KwikCluster algorithm on G′. This is be-
cause the pivots of Get-Pivots are chosen from the
same distribution as the KwikCluster algorithm
since we ensure that all pivots chosen are not in the
neighborhood of previously chosen pivots. Thus
we obtain a 3· OPT guarantee on G′. To obtain the
final guarantee on the original strong signal graph,
note that the OPT clustering of G restricted to G′

cannot be better than the OPT correlation cluster-
ing of G′. The result follows from considering our
additive error as well.

14

We now show a lower bound on the query com-
plexity of our algorithm. First we recast the lower
bound result of (García-Soriano et al., 2020b) in
the language of strong and weak oracles. They
show that any algorithm which only has access to
the strong signal must make Ω(n3/(∆c2)) queries
to obtain a c· OPT +∆ correlation clustering objec-
tive guarantee. We can translate their lower bound
into our setting of strong and weak oracles by es-
sentially making the weak oracle useless through
a suitable choice of γ. The lower bound shows
that for constant ε and n large enough, Corollary
1 is optimal. First we formally state the guaran-
tees given by (García-Soriano et al., 2020b) in our
language of strong and weak signals.

Theorem 3 ((García-Soriano et al., 2020b)). For
any c ≥ 1 and ∆ such that 8n < ∆ ≤ n2

2048c2
, any

algorithm finding a clustering with expected cost at
most c· OPT +∆ must make at least Ω(n3/(∆c2))
adaptive strong signal queries.

Lemma 3. Let ε ≥ Ω(1/n) be sufficiently small.
In the worst case input, any algorithm must use at
least Ω(n+ dγ) strong signal queries to obtain a
3· OPT +O(εn2) approximation to the correlation
clustering objective.

Proof. We recall the lower bound example of
(García-Soriano et al., 2020b) (which is proved in
Theorem 4.1 in (García-Soriano et al., 2020b)). Let
k = n2/(32c∆) (note that k < n by design). Their
worst case strong signal graph example consists of
k equal sized cliques and all vertices have degree
Θ(n/k). Now we consider the case where the weak
oracle is completely useless and always returns the
entire set of vertices on any query. This corre-
sponds to the case where γ = Θ(k) (for γ defined
in Assumption 1). Now directly applying Theorem
4.1 of (García-Soriano et al., 2020b) gives us that
any algorithm which only has access to the strong
signal must make at least Ω(n3/(∆c2)) queries
to obtain a c· OPT +∆ correlation clustering ob-
jective guarantee. The theorem follows by noting
that if ∆ = εn2 then any algorithm must make
Ω(n/ε) = Ω(n+k ·n/k) = Ω(n+dγ) queries in
this worst case example, as desired. Note that the
valid range of ε here follows from the restriction
on ∆ so ε ≥ 8/n and cannot be larger than some
fixed constant.

C Additional Algorithmic Details for
Empirical Algorithm.

We provide additional details on the algorithm de-
sign of Section 3.

Algorithm 7 SortNonPivots(T, V \ T)

Require: T , the set of pivots; V \ T , vertices
which are not pivots

1: for vertices v ∈ V \ T do
2: wv ← Maximum weak signal similarity

between v and any vertex in T
3: Return V \ T sorted in decreasing wv values

Optimizing non-pivot order. Continuing on the
theme of ranking, once we curate the pivots, we
need to assign the non-pivots to a pivot. To do so,
we sort the non-pivots based on ‘easiness’ to assign
to a pivot. Hence we sort the non-pivots by the
maximum weak similarity to some pivot. This has
the effect of utilizing our query budget as efficiently
as possible as ‘easier’ non-pivots are checked first.
We re-rank the vertices V \ P in SortNonPivots
before calling AssignClusters in KwikBucks.
Utilizing Weak Signal Neighborhood. We can
use strong signal queries that we have already
made for vertices in the weak signal neighbor-
hood to further optimize the sorting of the pivots
in WeakFilterByRanking. The inductive bias we
are using is that if many vertices in the immediate
weak signal neighborhood of a vertex v connect
to the same pivot p, then the likelihood v having a
strong signal edge to p is high. Thus to better uti-
lize our expensive query budget, we should query
(v, p) earlier than later. To make the intuition more
precise, we simply update the similarities to piv-
ots computed by v in WeakFilterByRanking to
account for the inductive bias. The new similarity
score w′p of a pivot p is equal to wp, the similarity
score between v and p computed by the weak sig-
nal, plus a term for the number of vertices in the
k-weak signal neighborhood of v that are already
connected to p:

w′p = wp + λ(# of vertices in k-weak signal

neighborhood of v that are already

in p’s cluster)

This has the affect of ‘boosting’ some pivots to a
higher ranking. See Section F.2 for further details.

15

C.1 Details on Post-processing Merging

In this section we provide the details of our post-
processing merging strategy outlined in Section
3.

Let C1, . . . , Cr be the clusters outputted by our
algorithm. First we curate a list of cluster pairs to
consider for merging. Then we rank the pairs in
terms of suitability for merging. Finally we enu-
merate over the pairs in the order computed (until
we run out of any query budget) and determine if
the pair should be merged. Each of the three steps
is described in detail below.

1. Curating pairs of clusters. It is prohibitive
to consider all pairs of clusters (which might
be super linear if there are many clusters). We
again appeal to the weak signal and construct
a k-nn weak signal similarity graph on the
vertices for some small k, such as k = 20.
Then we only consider pairs of clusters which
are edges in the graph. More precisely, we
consider the pair (Ci, Cj) for merging if there
is some v ∈ Ci and u ∈ Cj such that (v, u) is
an edge in the k-nn graph. This narrows down
the number of pairs considerably.

2. Ranking pairs by suitability. For each pair
(Ci, Cj) of clusters from the prior step, we
compute the average weak signal value be-
tween vertices in Ci and Cj respectively. We
then rank the pairs in decreasing order based
on this value.

3. Determining if a pair should be merged. Fi-
nally, we enumerate over the pairs in the order
computed previously. Suppose we are decid-
ing if we want to merge the pair (Ci, Cj). We
must ensure the pair has a high number of
strong signal edges (more than 0.5 fraction).
To do so we simply sample a small number of
random pairs of vertices (say 20), one vertex
from each cluster, and estimate the fraction of
these random edges which are strong signal
edges.

D Theoretically Motivating Practical
Modifications of the Algorithm

In this section we provide theoretical justifications
for the practical modifications of our algorithm.

D.1 Theoretically motivating raking pivots
by weak signal

In the classical KwikCluster algorithm and our
query efficient variant in the two oracle model of
Section 2, it is imperative that the pivots are se-
lected in a random order to provide theoretical guar-
antees on the quality of the computed clustering.
Specifically, the worst case theoretical guarantees
dictate that vertices must connect to the first pivot
in the random order which they have a strong signal
edge to.

Nevertheless, in our data driven optimization of
the algorithm, we choose an adaptive ordering of
the pivots for each vertex where the order is based
on the weak-signal similarity scores. We empiri-
cally observed that this ordering is superior to the
random ordering and achieves a higher clustering
quality while utilizing a > 3.5x factor or more less
strong signal queries. The explanation behind this
improvement is two fold:

1. Increased query efficiency: fewer strong sig-
nal queries are used when a vertex attempts to
connect to a pivot.

2. Maintaining cluster quality: connecting to
pivots with larger weak signal similarities are
high quality pivots.

The positive effects of the first point are straight-
forward to explain. Indeed, making the natural
assumption that higher weak signal similarities are
more indicative of a strong signal edge, checking
pivots in the weak signal ordering leads to less
queries wasted when a vertex attempts to connect
to a pivot. In addition to the empirical results of
Section 4, this point is further expanded upon in
Figure 7 and Section F.6.

Thus the main goal of this section is to provide
an intuitive and theoretically motivated understand-
ing of the second point. While it may not be true
that re-ranking pivots according to the weak sig-
nal similarities maintains the worst case guarantees
proved in Section 2, we study a natural data set
model where such a re-ranking provably helps. We
wish to capture our data driven observations that
pivots with larger weak signal similarities are of
high quality and larger weak signal values indicate
better cluster relationships.

In our experiments, the weak signal scores are
mostly computed using distances between embed-
ding vectors. If a weak signal is useful, then it

16

must have be predicative of the strong signal val-
ues, even if the weak signal is noisy. To mimic this,
we consider the following general family of data
sets:

• Each vertex v has an associated vector pv ∈
Rd, representing it’s ‘true’ embedding repre-
sentation.

• The weak signal values are computed accord-
ing to an appropriate distance measure d on
the embedding vectors (for example cosine or
Euclidean distances) plus a random noise term
ξ (expanded upon shortly). This models the
setting where the weak signals are helpful but
noisy signals as they only have noisy access
to the ‘true’ representations.

• There exists a function f : R≥0 → [0, 1]
which gives the probability of a strong sig-
nal edge. More precisely, let pv and pu denote
the embedding of vertices v and u. Then the
probability of having the strong signal edge
(v, u) is given by f(d(v, u)). This is quite a
general formulation as it includes a wide array
of geometric or kernel similarity graphs for
appropriate choices of f and d.

For example, if f = exp(−x/σ) and d is the Eu-
clidean distance, then the true strong signal graph
is the Gaussian kernel similarity graph where σ is
the scale of the kernel. Intuitively, the closer u and
v are under the metric d, the higher probability f
assigns to the edge between u and v.

We additionally impose the following cluster-
ability assumptions on the data set. Our goal is
to capture a natural underlying cluster structure
which can be accessed via strong and weak sig-
nal queries. Vertices which are part of the same
underlying cluster should have higher weak sig-
nal similarity scores, even if the scores are noisy,
and the strong signal edges should be highly ac-
curate. Our model defined below satisfies these
intuitive criteria. Furthermore under our natural
model, there is a ‘true’ pivot for a vertex v, even
though v may have strong signal edges to other
pivots.

Our cluster assumptions on the data set is the
following.

1. The ‘true’ embedding vectors pv ∈ Rd can
be partitioned into k clusters such that all vec-
tors in a cluster are within distance R of each
other.

2. All embedding vectors in different clusters are
distance at least 2R from each other.

3. The probability of a strong signal edge is at
least 1 − p for distances at most 2R and at
most p for distances at least 2R. We think of
p < 1/2 as a small parameter close to 0.

4. Given inputs u, v, the weak signal outputs
d(pu, pv) + ξ where ξ is uniformly random in
[−R,R]. Thus smaller values are interpreted
as having higher weak signal similarity.

Note that we only have access to the strong and
weak signal values via queries and do not know
the true underlying embedding vectors pv. We now
argue that the above assumptions are motivated and
natural.

• The assumption (1) gives a cluster structure to
the data and allows us to compare the classical
KwikCluster algorithm and our re-ranking
modification under natural clusterability as-
sumptions. The exact formulation we are em-
ploying is inspired by the works of (Awasthi
et al., 2012; Balcan and Liang, 2012; Ashtiani
et al., 2016) which study clustering under sim-
ilar proximity assumptions. For example, it
can be easily checked that the ‘margin’ prop-
erty assumption of (Ashtiani et al., 2016) di-
rectly implies our assumptions (1) and (2).

• Our assumption (3) is a natural and necessary
assumption on the function f as it ensures the
true strong signal graph captures the underly-
ing cluster structure of the inputs. This also
corresponds to picking an appropriate scale
parameter if f is a kernel function, for exam-
ple picking σ in the Gaussian kernel. A judi-
cious choice of σ ensures that the underlying
kernel similarity graph, which corresponds to
the strong signal, is able to capture the cluster
structure of the data set. Thus our assumption
that p � 1 ensures that the similarity graph
has strong inter-cluster connectivity while hav-
ing sparse connectivity across different clus-
ters. Indeed in practice, the kernel scale pa-
rameter is often picked using the ‘median’ rule
and thus σ = Θ(R) is a natural choice which
ensures our choice of p.

• Our data set construction ensures that the
strong signal is ‘more powerful’ than the weak

17

signal. Indeed, the weak signal only has ac-
cess to the distances between the true em-
bedding vectors up to some additive noise as
stated in assumption (4). While the exact form
of the random noise is not very consequential,
we stick to the uniform noise model as it as
several desirable properties:

1. Given vertices v, u, w where u is in v’s
true cluster (according to the true em-
bedding vectors) and w is not, the weak
signal can potentially output a smaller
value on query (v, w) compared to (v, u).
Thus the weak signal incorrectly states w
is more similar to v than u due to the ad-
ditive noise. For example if d(v, u) = R
and d(v, w) = 2R, this happens with
probability 1/8. Therefore the weak sig-
nal accurately reflects our desired goal
of an indicative but noisy signal.

2. The weak signal can be modeled by
fast nearest neighbor search algorithms
which return noisy nearest neighbor es-
timates. On the other hand, we imag-
ine the strong signal as being expensive
since it needs the true distances among
the embedding vectors without any addi-
tive noise.

We believe that this natural graph model we ex-
amined for our algorithm modification helps ex-
plain and predict the strong empirical performance
of our method. Thus our goal is to show that un-
der the above data set modelling, re-ranking piv-
ots based on weak signal similarity values prov-
ably helps. Assume that we have picked a pivot
u from each of the k clusters of Assumption (1).
We permute them randomly to form an ordering
u1, . . . , uk. This corresponds to the random order-
ing used by the KwikCluster algorithm and our
theoretical algorithm of Section 2. Each non-pivot
vertex v re-ranks the pivots forming the ordering
uπv(1), . . . , uπv(k) where πv is a permutation de-
pending on the weak signal similarities from the
pivots to v. The weak signal similarities are cal-
culated as detailed above: the weak signal outputs
‘noisy’ distances based on the true embedding vec-
tors and smaller distances correspond to higher
similarities. Note that each non-pivot vertex v has
a ‘true’ pivot u corresponding to the pivot chosen
from the cluster that the true embedding vector
pv is part of. We say that a non-pivot vertex v is

correctly assigned by a clustering algorithm C if C
assigns v to its ‘true’ pivot. The following lemma
shows that assigning vertices to pivots based on
weak signal similarities strictly outperforms using
a random order.

Intuitively, if another pivot u′ is ranked higher
than u in the random ordering, our proposed medi-
cation of re-ranking asked on weak signal similari-
ties is likely to correct the ordering re-ranking u to
ahead. The lemma below provides theoretical justi-
fication of why this is sound and complements our
experimental evaluation which demonstrates the
empirical advantage of our re-ranking procedure.

Lemma 4. Consider the setting above. Let C be
the clustering where every non pivot vertex picks
the first pivot in this ordering that it has a strong
signal edge to. Let C′ be the clustering where each
non pivot vertex re-ranks the pivots using weak
signal similarities then picks the first pivot that it
has a strong signal edge to. Let A be the number
of non-pivot vertices that C correctly assigns and
similarly define B. We have E[A] < E[B].

Proof. Fix a non-pivot vertex v. Let X denote the
indicator variable for C correctly assigning v and
define Y similarly for C′. It suffices to show that
E[X] < E[Y]. The lemma then follows by linearity
of expectations and summing across all non-pivot
vertices v. Note here that the expectation of each
variable is with respect to the randomness used by
the respective algorithms.

Let u denote the true pivot of v. If v does not
have a strong signal edge to u (according to the
strong signal) then both algorithms will fail. Sim-
ilarly, if v only has a strong signal edge to u and
to no other pivots, then the performance of either
clustering is the same. Now consider the case that
v has at least two strong signal edges to pivots, one
to u and rest arbitrary. Then the probability that
v is correctly classified by the random ordering is
at most 1/2. This is because if there is at least 1
other pivot that v as a strong signal edge to, then
the probability that the random ordering places u
ahead of it is at most 1/2.

One the other hand, the probability that v is
correctly classified by the weak signal ordering
is strictly larger than 1/2. To see this, we calcu-
late the probability that u has the highest weak
signal similarity. Identically, it suffices to calcu-
late the probability that the weak signal outputs the
smallest noisy distance value for u. Recall the mod-
elling assumptions of the data set: we know that

18

d(v, u) ≤ R whereas d(v, u′) ≥ 2R for all other
pivots u′ that are not equal to u. The weak signal
outputs d(v, u′) plus a uniformly random value in
[−R,R]. Let ξu be the random value added for
d(v, u). With probability 1/2, this value is nega-
tive so the noisy distance computed by the weak
signal is strictly smaller for u than all other pivots
u′ (since in the best case, their distance is at least
2R − R = R). Furthermore, conditioning on the
additive noise being positive for u, there is a non-
zero probability that u has the smallest additive
noise (in absolute value) among all pivots. u is
again ranked the highest in this case. Altogether,
the probability that u is ranked the highest in terms
of the weak signal similarity is strictly larger than
1/2. It follows that E[X] < E[Y], as desired.

D.2 Explaining why merging helps

We consider a particular worst case example for
the KwikCluster algorithm which motivates why
a post processing merging step helps. At a high
level, it is possible to pick pivots which do not
have a strong signal edge but nevertheless ‘should’
belong to the same cluster. Then when we a cluster-
ing algorithm is run, these two pivots can possibly
lead to two disjoint clusters whereas that merging
them lowers the correlation clustering objective
and improves the overall clustering quality.

Concretely, consider the following example: we
have a complete graph on n vertices where every
edge is a strong signal edge except a single edge
(u, v) which is not. In the classical KwikCluster
algorithm, if u is picked as a pivot then we will
form two clusters, one consisting of all vertices be-
sides u and the the other cluster being the singleton
{u}. The same is true if we pick v to be the pivot.
Thus the expected correlation clustering objective
of the algorithm is

2

n
· (n− 1) +

(
1− 1

n

)
· 1→ 3.

On the other hand, clustering every vertex to be one
cluster has correlation clustering objective value
1. Thus in the case where there are two clusters
in the above example, a merging post-processing
improves the overall cluster quality. This crisply
captures our motivation.

While the above situation may not be represen-
tative, our merging post processing verifies that
a possible merge is sound (after ranking possible
cluster candidates to merge using the weak signal)

by querying a (small) number of strong single val-
ues and merging only if the average strong single
similarity is sufficiently high. Thus our post pro-
cessing merge routine can only help the overall
clustering.

D.3 Inherent Trade-offs Between Precision
and Recall

The goal of this section is to show that there is an
inherent tradeoff between precision and recall of
any clustering algorithm on graphs.We first restate
the definitions of precision and recall as defined in
our experimental section. Let G be an unweighted
(not necessarily complete) graph and let C be a clus-
tering of its vertices. The edges of G correspond
to the edges in the strong signal graph (i.e., the
edges are pairs of vertices the strong signal labels
as ‘similar.’). Correspondingly, the non-edges of G
represent the negative edges of the strong signal.

We first restate the definitions of precision and
recall as defined in our experimental section. The
recall of C is defined as the fraction of edges of
G which are together in some cluster given by C.
The precision of C is defined as the fraction whose
numerator is the number of edges of G which are
together in some cluster and the denominator is the
total number of pairs of vertices that are clustered
together.

We state a natural (random) graph dataset such
that with high probability, any clustering C has
either recall or precision bounded away from 1 by
a fixed constant. In particular, G will be sampled
from the standard G(n, 1/2) Erdos-Renyi graph
distribution. Note the order of the quantifiers: we
first generate a random graph. There is an event E
which G satisfies with high probability. Condition
on this event, any clustering of the vertices of G
will either have its precision or recall bounded away
from 1, including the OPT correlation clustering.

Note that we have not made an attempt to op-
timize the constants in the following lemma for
clarity. It is likely that one can optimize our proof
and obtain a smaller constant than 0.75.

Lemma 5. Let G be sampled from the G(n, 1/2)
distribution. With probability at least 1 −
1/poly(n), all clusterings of G have recall or pre-
cision at most 0.75.

Proof. Let C > 1 be a fixed constant. We first
consider the following event E : for any subset
S of vertices of size at least C log n, there are at

19

most 1.01|S|2/4 and at least 0.99|S|2/4 edges of
G within S.

We now show that E holds with probability at
least 1 − 1/poly(n). For a fixed subset S of k
vertices for k ≥ C log n, the expected number
of edges within S is

(
k
2

)
/2. Thus the probability

that there are more than 1.01k2/4 and less than
0.99k2/4 edges within S is at most exp(−ck2)
by a standard Chernoff bound for a fixed constant
c > 0. There are

(
n
k

)
such choices of S and thus

union bounding over all S and all k ≥ C log n, we
have that the probability there exists some set S
with |S| ≥ C log n vertices violating the required
number of edges is at most

∑

k≥C logn

(
n

k

)
exp(−ck2)

≤
∑

k≥C logn

2
(ne
k

)k
exp(−ε2k2/6)

=
∑

k≥C logn

exp(log 2 + k log(ne)− k log k − ck2)

≤ n · exp(−Ω(k2))

≤ 1

poly(n)

for k ≥ C log n for a sufficiently large constant C
and n large enough. Thus P(E) ≥ 1− 1/poly(n)
where we can make the polynomial arbitrarily large
by increasing C. We also condition on the fact that
G itself has at least 0.999n2/4 edges with also hap-
pens with inverse polynomial failure probability.

Now consider an arbitrary clustering C. If the
recall of C is at most 0.75 then we are done so
suppose the recall is at least 0.75. Given this, we
claim that there exist a cluster within C of size at
least 0.74n.

To see this, let C1, · · · , Cj be the clusters of C.
The clusters of size at most C log n have at most
n · (C log n)2/2 edges of G inside them. All other
clusters Ci have at most 1.01|Ci|2/4 edges of G
inside them. Altogether, the number of edges of G
inside some cluster is at most

n · (C log n)2/2 +
∑

|Ci|≥C logn

1.01|Ci|2
4

subject to the constraint that |Ci| ≤ 0.74n and∑
i |Ci| ≤ n. This is a convex function which is

maximized at its boundary, meaning the number of

edges of G inside some cluster of C is at most

n · (C log n)2/2 +
1

0.74
·1.01 · 0.742n2

4

� 0.75 · 0.999n2

2

which contradicts the fact that the recall of C is at
least 0.75. Thus there exists a cluster of C of size
at least 0.74n. Now given this, we show that the
precision must be at most 0.75.

Towards this end, letCi be the cluster of C of size
at least 0.74n. It has at most 1.01|Ci|2/4 edges of
G inside it and

(|Ci|
2

)
pairs of vertices. Let A be

the other edges of G not inside Ci and let B be the
total pairs of vertices where both of the vertices in
the pair lie outside of Ci. Then the precision of Ci
is bounded by

1.01|Ci|2/4 +A(|Ci|
2

)
+B

.

Since |Ci| ≥ 0.74n, one can easily verify that

B ≤ (0.26n)2

2
<

1

8
·
(|Ci|

2

)

and thus

1.01|Ci|2/4 +A(|Ci|
2

)
+B

≤ 1.01|Ci|2/4 +B(|Ci|
2

)
+B

≤ 1.01|Ci|2/4(|Ci|
2

) +
B(|Ci|

2

)
+B

≤ 0.51 +
B

9B
< 0.75,

as desired.

D.4 Motivating Using Weak Signal
Neighborhood Statistics.

In Figure 2, we plot the the fraction of times a
vertex v connects to a pivot p in the KwikBucks
algorithm as a function of the number of nearest
neighbors of v (in terms of the weak signal simi-
larity) which have already connected to the same
pivot p.. We see that the probability increases as a
function of the number of nearest neighbors, empir-
ically justifying our algorithmic design optimiza-
tion of ‘Utilizing Weak Signal Neighborhood’ in
Section C. Note that this optimization has the affect
of slightly boosting such pivots p (if they exist) to
a higher similarity (and thus a better ranking).

20

(a) (b) (c)

Figure 2: The propensity for a vertex v to connect to a pivot p given that k of v’s neighbors have already connected
to p.

E Details for Dataset & Weak/Strong
Signals

We provide a detailed description of the datasets
used in the paper as well as the weak and strong sig-
nals used for each of the datasets. Table 2 provides
a summary.

Stackoverflow (SOF) and SearchSnippets:
Stackoverflow and SearchSnippets are commonly
used for short-text clustering/classification. For
stackoverflow, we used a subset collected by (Xu
et al., 2017) consisting of of 20,000 question titles
associated with 20 different categories obtained
from a dataset released as part of a Kaggle chal-
lenge. For SearchSnippets, we used the dataset
from (Phan et al., 2008) which consists of 12,340
snippets (extracted from web search snippets) as-
sociated with 8 groups. For these two datasets, we
experimented with two different types of cheap
signals: word2vec embeddings (Mikolov et al.,
2013) and tf-idf embeddings. In both cases, we
trained/finetuned on the training set of the datasets.
We used the Gensim package (Rehurek and Sojka,
2011) for word2vec and sklearn (Pedregosa et al.,
2011) for tf-idf. Word2vec provides a vector rep-
resentation for each English word; to compute the
embedding for a sentence/document, we average
the embeddings of each of its words. For the strong
signal, for each dataset we finetuned a T5-1.1 XXL
model (11B parameters) (Raffel et al., 2020) on
the training data where given two examples, the
model was finetuned to predict if they belong to the
same cluster or not. In both cases, we sampled 10K
positive pairs and 50K negative pairs and finetuned
the model for 10 epochs on a 4x4 DragonFish TPU
architecture.

Twitter and AgNews: Twitter and News
data are commonly used for short-text cluster-

ing/classification. From Twitter, we use the dataset
created by (Yin and Wang, 2016) consisting of
2,472 tweets with 89 categories. From News, we
use the data from (Rakib et al., 2020) which is
a subset of the dataset from (Zhang and LeCun,
2015) containing 4 topics. For the cheap signal,
we use pretrained BERT embeddings (Devlin et al.,
2018) where we feed each example into the BERT
model, obtain contextual token embeddings, and
then average them (ignoring the [CLS] and [SEP]
tokens) to obtain the embedding for each example.
We use the 12-layer uncased BERT-Base model
for this experiment. For the strong signal, we first
created a graph by connecting two nodes if they
belong to the same category, then added noise to
the graph by flipping the existence/non-existence
of an edge for 5% of node pairs selected uniformly
at random (note that without adding noise, the prob-
lem becomes much easier as graph of the strong
signal becomes composed of multiple connected
components).

Internal: This is a vertical of a large, internal,
proprietary text dataset. The weak signal is em-
bedding similarity, and the strong is an indicator
variable from a cross-attention model.

Citeseer and Microsoft Medicine: Citeseer
(Sen et al., 2008) and Microsoft Medicine (Shchur
and Günnemann, 2019) are attributed graph
datasets. Citeseer is a citation network in which
nodes represent papers, edges represent citations,
and features are bag-of-word abstracts. Microsoft
Medicine is a subset of the Microsoft Academic
graph where the nodes represent authors, edges
represent co-authorship, and node features are a
collection of paper keywords from author’s papers.
For both datasets, we used the cosine similarity
between the node features as the weak signal and

21

we assume the edges of the graph correspond to the
strong signal.

Cora and Amazon Electronics Photos: Sim-
ilar to Citeseer and Microsoft Medicine, Cora
and Amazon Electronics Photos are also attributed
graph datasets. They are typically used for node
classification but here we adapt them to our prob-
lem. Cora (Sen et al., 2008) is a citation network
similar to the Citeseer dataset with the node labels
corresponding to paper topics. Amazon Electron-
ics Photos (Shchur et al., 2018) is a subgraphs of
the Amazon copurchase graph where the nodes
represent goods, an edge between two nodes repre-
sents that they have been frequently purchased to-
gether, node features are bag-of-word reviews, and
class labels are product categories. For these two
datasets, we used the deep graph infomax (DGI)
model (Velickovic et al., 2019) to learn unsuper-
vised node representations and used these repre-
sentations as the cheap signal. We also used noisy
labels as the strong signal similar to the Twitter
dataset.

Total cost analysis: Our work is mostly based
on the applications where the weak oracle values
are computed via distances based on embeddings
and the strong signal values are the output of a
large cross-attention transformer model. In this
case, there are three different factors that comprise
the total cost of the clustering algorithm: 1- the
cost of the queries to the strong signal, 2- the cost
of computing embeddings from the cheap signal,
and 3- the cost of geometric operations on the em-
beddings. So the total cost can be summarized as
follows:

Total Cost = ηSζS + ηEζE + ηGζG

where ηS represents the number of calls to the
strong signal, ζS represents the cost of making a
call to the strong signal, ηE represents the num-
ber of calls needed to compute embeddings, ζE
represents the cost of obtaining one embedding,
ηG represents the number of geometric operations
(cosine similarity in our case) we perform on the
embeddings, and ζG represents the cost of a single
geometric operation.

The number of calls ηE required to obtain em-
beddings is n (i.e. the number of data points) which
is smaller than ηS (which, in our case, is typically
a linear factor of n) and the cost ζE of obtaining
one embedding is significantly smaller than the
cost of obtaining one strong signal similarity ζS .
Therefore, ηEζE can be subsumed in ηSζS .

When using 32 TPU v3 chips for the strong sig-
nal and a CPU for the geometric operations, each
call to the strong signal was approximately 104

times slower (i.e. ζS ≈ 104ζG). This gap becomes
even more stark if we use fast geometric algorithms
such as nearest neighbor search or use TPUs for
geometric operations. It follows from the analysis
of our algorithm that ηG ∈ O(nk) where k is the
parameter defined in Algorithm 6. This is compara-
ble to ηS . Therefore, ηGζG is negligible compared
to ηSζS in our experiments.

Following the above justifications, as well as for
theoretical simplicity, in this paper we ignored the
cost of querying the weak signal in our analysis (i.e.
assume ηEζE + ηGζG ≈ 0). However, if future
work considers costlier operations for the cheap
signal, these extra terms should also be considered
in determining the total clustering cost.

F Additional Experimental Results

F.1 Precision and Recall
The precision and recall (with respect to a cluster-
ing C) definitions used in Section 4 are defined as
follows:

Precision(C,OS) =

∑
e=(i,j)Ci,jOS(e)
∑

e=(i,j)Ci,j
(2)

where Ci,j is the indicator for if vertices i, j are in
the same cluster.

Recall(C,OS) =

∑
e=(i,j)Ci,jOS(e)
∑

e=(i,j)OS(e)
. (3)

As stated in (García-Soriano et al., 2020b), while
our algorithm and baselines have been designed to
minimize the total correlation clustering objective,
it is important to consider precision and recall as
they are problem independent measures of cluster
quality. Furthermore in cases where the underlying
strong signal graph is extremely sparse, the corre-
lation cost objective might not be meaningful. For
example in such a case, returning all vertices as
singleton clusters already has low objective value
(equation 1). We use the entire strong signal graph
for the purposes of evaluating the experimental met-
rics, such as CC objective, precision, and recall.

F.2 Parameter Selection Details
We first describe how to select the value t in Algo-
rithm 3 and k in Algorithm 6, which selects the top

22

Table 2: Properties of datasets used in our experiments. n denotes the number of vertices and Non-zero entries
denotes the number of non-zero entries in the adjacency matrix of the strong signal graph (i.e. twice the number of
edges), both rounded to two significant digits.

Name Type Weak Signal Strong Signal n Non-zero entries

SOF Text W2V / tf-idf Cross-attention model 4.9 · 103 2.3 · 106

Search Text W2V / tf-idf Cross-attention model 3.3 · 103 2.0 · 106

Twitter Text BERT Embeddings Noisy label indicator 2.4 · 103 4.7 · 105

AgNews Text BERT Embeddings Noisy label indicator 8.0 · 103 1.8 · 107

Internal Text Embeddings Cross-attention model 1.0 · 105 9.5 · 107

Cora Attributed Graph DGI Embeddings Noisy label indicator 2.7 · 103 1.5 · 106

Photos Attributed Graph DGI Embeddings Noisy label indicator 7.7 · 103 1.2 · 107

Citeseer Attributed Graph Node Features Adjacency matrix 3.3 · 103 104

Med. Attributed Graph Node Features Adjacency matrix 6.3 · 104 1.6 · 106

k vertices in weak-signal similarity for the strong
signal to query.

The intuition in picking t is that it must be suffi-
ciently large so that only few vertices do not have a
pivot in their neighborhood (and thus contribute to
the additive error of Theorem 1). This parameter
naturally depends on the density of the underlying
strong signal graph: for sparser graphs, one must
pick a larger value of t since each vertex on average
has a small degree and is thus less likely to have a
pivot chosen in its neighborhood than a vertex with
a larger degree. We use the above intuition to de-
sign the following data-dependent method to select
t: we first sample a sublinear number of random
strong signal edges (

√
n strong signal edges to be

exact). This returns an estimate of the density of
the graph up to small additive error (for example
via standard Chernoff bounds). We then set t to be
10 times the inverse of the density. If the density is
extremely sparse, i.e. less than 1/1000 fraction of
possible edges exist, we simply set t to be equal to
n/2.

The second parameter we set is k in
WeakFilterByRanking. We can pick a value of
k � n because intuitively, a meaningful weak sig-
nal assigns a high similarity score to relevant pivots
relative to all other pivots and thus such pivots have
higher ranking. To understand the trade offs in se-
lecting k, consider the most prominent place where
it is used in our algorithm: when a vertex v attempts
to find a strong signal edge to one of the pivots by
iterating through them in the weak signal ordering.
The trade offs are the following: a smaller value of
k leads to better query efficiency as v is guaranteed
to only make k strong signal queries in this step.
However the clustering quality can suffer because

the first k pivots, for a small k, in the weak sig-
nal order might not have a strong signal edge to v.
Conversely a larger value of k leads to increased
exploration from v as it attempts to connect to a
pivot. However in the case that v is truly a sin-
gleton cluster, i.e. it has no strong signal edges to
any pivot, we potentially waste many strong signal
queries. To balance these trade offs, we pick an
‘intermediate’ value of k = 100 for all our exper-
iments. Ablation studies for both parameters are
given in Section F.

We also always set k = 10 when we use the
“Utilizing Weak Signal Neighborhood" optimiza-
tion of Section 3. We also always fix λ = 1/10
which appropriately normalizes the second term to
be between 0 and 1 (note the weak signal similar-
ity wp is between −1 and 1). The parameter 10
here is fairly robust and can likely be replaced by
any (small) reasonable value and we also perform
ablation studies on this optimization.

For spectral clustering, we always use k = 25
for the number of clusters. Higher values were
computationally prohibitive to use.

F.3 Results
We present additional experimental results in Fig-
ure 3 and 4 which show similar qualitative results
as Figure 1: our algorithm KwikBucks has superior
query complexity over the baselines as it achieves
a higher F1 value (and lower CC objective values)
while utilizing fewer strong signal queries than
baselines.

F.4 Additional Ablation Results
In our ablation experiments, we fix all parame-
ter settings except the component we are altering.
We perform ablation studies on 4 representative

23

Table 3: CC objective values are shown for a fixed budget of 3n. See Table 1 for the corresponding F1 values.
We normalize the smallest CC value to 1.0 so smaller quantities are desirable. See Figures 3 and 4 for results as a
function of query budget. For the sparser graph datasets of Citeseer, Med., and Internal we use the budget of 50n.
Due to their sparsity, the CC objective value is less meaningful than F1 values for these two datasets.

SOF Search Tweet AgNews Cora Photos Citeseer Medicine Internal

B1 1.9 2.5 1.2 2.0 2.0 2.5 1.3 1.1 1.01
B2 1.8 2.0 1.2 2.0 2.0 2.4 1.3 1.1 1.04
B3 6.4 4.0 6.3 2.5 2.5 2.2 745.1 2550.8 -
B4 2.0 6.0 1.1 4.1 3.0 3.2 1.0 1.0 1.01
B5 2.0 6.0 1.1 4.1 3.0 3.2 1.3 1.3 1.01

KwikBucks 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0

500 2875 5250 7625 10000
Query Budget

3

4

5

6

7

8

Co
rre

la
tio

n
Cl

us
te

rin
g

Ob
je

ct
iv

e

1e5 Cora

KwikBucks
B1
B2
B4
B5

500 2875 5250 7625 10000
Query Budget

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Cora
KwikBucks
B1
B2
B3
B4
B5

500 6625 12750 18875 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Cl

us
te

rin
g

Ob
je

ct
iv

e

1e6 Search

KwikBucks
B1
B2
B4
B5

500 6625 12750 18875 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Search

KwikBucks
B1
B2
B3
B4
B5

500 6625 12750 18875 25000
Query Budget

2

3

4

5

6

7

8

9

Co
rre

la
tio

n
Cl

us
te

rin
g

Ob
je

ct
iv

e

1e6 AgNews

KwikBucks
B1
B2
B4
B5

500 6625 12750 18875 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

AgNews
KwikBucks
B1
B2
B3
B4
B5

Figure 3: Empirical results for the Cora, Stackoverflow, Search, and News datasets.

24

datasets: Cora, Citeseer, Stackoverflow (SOF), and
Search. Our first observation is that the merge post
processing procedure can help return a higher qual-
ity clustering, for example for the Cora, SOF, and
Citeseer datasets; see Figures 5 and 6 for details
and Section D.2 for theoretical intuition of why
post processing merging helps.

Next we consider removing the SortNonPivots
step and replacing it with an using an arbitrary
ordering of non pivot vertices. We see that the pos-
itive benefits of removing this component are more
subdued compared to the merge post processing.
However, this change never hurts the quality of
the clustering. Overall, we view the different data-
driven components introduced in Section 3 and C
as having complementary benefits as each optimize
a different part of the algorithm.

We observe that one must choose a sufficiently
large value of t in GetPivots which is the initial
number of random vertices sampled which are later
processed to be pivots. As argued in Section F.2, it
is important to select a sufficiently large value of t
to limit the number of vertices which do not have a
pivot in their strong signal neighborhood (as cap-
tured by the additive error term in Theorem 1). For
our ablation studies, we consider two other settings
of t, one which is a factor of 10 smaller than the
choice used in our main experimental results and
one which is a factor of 10 larger. They represent
the ‘Small’ and ‘Large’ pivot choices respectively.
We see in Figures 5 and 6 for the Cora and Citeseer
datasets, that a smaller choice of t can lead to a
decrease in the performance of our algorithm. Nev-
ertheless, our data driven density based approach
outlined in F.2 hits the ‘sweet spot’ and performs
comparable to the best choice of pivots in all cases
as shown in Figures 5 and 6.

We also perform ablation experiments on the
choice of k in WeakSignalFilterPractice by
considering k = 10 and k = 1000 (a ‘small’ and
‘large’ choice respectively as before). Our abla-
tion experiments also show that a large choice of k
in WeakSignalFilterPractice can lead to many
queries wasted as argued in Section F.2. Indeed, we
see in the above figures that for the Citeseer dataset,
a large value of k leads to worse performance ini-
tially as we waste many strong signal queries on
vertices which have no strong signal edge to any of
the pivots. This is due to the sparse nature of the
Citeseer dataset. However as the query budget is
increased, the quality of the clustering improves.

The choice of k seems to have negligible impact on
the other datasets we tested on and our choice of
k = 100 (which we fixed in the main experimental
results) was always competitive.

F.5 Measuring the Quality of Weak Signals
We design a simple and informative experiment to
measure the quality of weak signals. For the Stack-
overflow (SO) dataset, we run KwikBucks where
we replace the weak signal with a linear interpola-
tion of the strong signal and a random matrix will
all entries i.i.d. from the uniform distribution in
[−1, 1]. The purpose of this experiment is to show
a higher quality weak signal gives better clustering
results than using a lower quality weak signal. In-
deed, Figure 8 shows that KwikBucks performs the
best if we replace the weak signal completely with
the strong signal, as naturally expected. As we vary
the amount of randomness in the weak signal, the
performance degrades and the case where the weak
signal is a fully random matrix performs the worst
as a function of query budget. It is also interest-
ing to consider the cases where the weak signal are
given by the (stronger) W2V model versus the com-
paratively weaker tf-idf model: the performance
of using the W2V embeddings for the weak signal
lies between the ‘half-random’ and ‘2/3 random’
case whereas the tf-idf plot lies between the ‘2/3
random’ and ‘fully random’ cases. The random in-
terpolated weak signal cases, while artificial, help
us qualitatively access the usefulness of a particular
real world weak signal instance.

F.6 Average Rankings of Strong Signal
Neighbors

In this Section we present additional experiments
in the similar spirit as the right figure of the sec-
ond row of Figure 1 for the Tweet, Med., and Cora
datasets. For every vertex v in these datasets, we
rank all the other vertices in decreasing weak signal
similarities to v. The average rank of the true strong
signal neighbors of v is computed and plotted as a
histogram (normalized to be a distribution). Intu-
itively, a good weak signal should have the property
that true strong signal neighbors have much higher
weak signal similarity scores (and thus better rank-
ings) than the an arbitrary vertex. Indeed, we see
that to be the case of the datasets in Figure 9 where
the distributions are much more left shifted and has
a much smaller mean compared to the case if the
weak signal was fully random. This validates the
connection between our empirical weak signal Def-

25

inition 3 and the theoretical assumption we made
for the weak oracle in Assumption 1. Indeed, Fig-
ure 9 gives empirical validation to the claim that
returning a top k most similar vertices to a vertex
v in terms of weak signal similarity captures many
actual true strong signal neighbors.

26

500 9125 17750 26375 35000
Query Budget

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Amazon Electronics
KwikBucks
B1
B2
B3
B4
B5

500 14125 27750 41375 55000
Query Budget

1.8

2.0

2.2

2.4

2.6

2.8

Co
rre

la
tio

n
Cl

us
te

rin
g

Ob
je

ct
iv

e

1e5 Tweet

KwikBucks
B1
B2
B4
B5

500 14125 27750 41375 55000
Query Budget

0.0

0.1

0.2

0.3

0.4

0.5

F1
 S

co
re

Tweet
KwikBucks
B1
B2
B3
B4
B5

0.050 0.537 1.025 1.512 2.000
Query Budget 1e6

3.5

4.0

4.5

5.0

5.5

Co
rre

la
tio

n
Cl

us
te

rin
g

Ob
je

ct
iv

e

1e3 Citeseer
KwikBucks
B1
B2
B4
B5

0.050 0.537 1.025 1.512 2.000
Query Budget 1e6

0.0

0.1

0.2

0.3

0.4

0.5

F1
 S

co
re

Citeseer

KwikBucks
B1
B2
B3
B4
B5

0.10 0.95 1.80 2.65 3.50
Query Budget 1e6

7.4

7.6

7.8

8.0

8.2

8.4

Co
rre

la
tio

n
Cl

us
te

rin
g

Ob
je

ct
iv

e

1e5 Microsoft Medicine

KwikBucks
B1
B2
B4
B5

0.10 0.95 1.80 2.65 3.50
Query Budget 1e6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F1
 S

co
re

Microsoft Medicine

KwikBucks
B1
B2
B3
B4
B5

Figure 4: Empirical results on the datasets omitted from Figure 3. The results are qualitatively similar to that of
Figure 3.

27

500 2875 5250 7625 10000
Query Budget

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Cora

KwikBucks
Without Merging
Without Neighborhood Stats
Without Ordering Non-Pivots

500 2875 5250 7625 10000
Query Budget

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Cora

KwikBucks
Small Pivot Choice
Large Pivot Choice

500 2875 5250 7625 10000
Query Budget

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Cora

KwikBucks (k=100)
k = 10
k = 1000

0.050 0.537 1.025 1.512 2.000
Query Budget 1e6

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

F1
 S

co
re

Citeseer

KwikBucks
Without Merging
Without Neighborhood Stats
Without Ordering Non-Pivots

0.050 0.537 1.025 1.512 2.000
Query Budget 1e6

0.1

0.2

0.3

0.4

0.5

F1
 S

co
re

Citeseer

KwikBucks
Small Pivot Choice
Large Pivot Choice

0.050 0.537 1.025 1.512 2.000
Query Budget 1e6

0.25

0.30

0.35

0.40

0.45

0.50

0.55

F1
 S

co
re

Citeseer

KwikBucks (k=100)
k = 10
k = 1000

Figure 5: Figures for ablation studies for Cora and Citeseer datasets.

28

500 6625 12750 18875 25000
Query Budget

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

co
re

Stackoverflow

KwikBucks
Small Pivot Choice
Large Pivot Choice

500 6625 12750 18875 25000
Query Budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
 S

co
re

Stackoverflow

KwikBucks (k=100)
k = 10
k = 1000

500 6625 12750 18875 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Search

KwikBucks
Without Merging
Without Neighborhood Stats
Without Ordering Non-Pivots

500 6625 12750 18875 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Search

KwikBucks
Small Pivot Choice
Large Pivot Choice

500 6625 12750 18875 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Search

KwikBucks (k=100)
k = 10
k = 1000

Figure 6: Figures for ablation studies for SOF and Search datasets.

29

0 5000 10000 15000 20000 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Search

W2V Weak Signal (Our Alg)
tf-idf Weak Signal
Baseline 1

0 500 1000 1500 2000 2500 3000
Average Rank of Strong Signal Neighbors

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
1e 3 Search

W2V Weak Signal
tf-idf Weak Signal

Figure 7: The figure shows a qualitatively similar result as the SOF results shown in Figure 1.

500 6625 12750 18875 25000
Query Budget

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Stackoverflow

W2V Weak Signal (KwikBucks)
tf-idf Weak Signal
Random Weak Signal
1/2 Random Weak Signal
Weak Signal = Strong Signal
2/3 Random Weak Signal

Figure 8: Interpolating the weak signal between uniformly random values and the strong signal.

30

500 1000 1500 2000
Average Rank of Strong Signal Neighbors

0

1

2

3

4

5 1e 3 Tweet
Weak Signal
Random Weak Signal

0 10000 20000 30000 40000 50000 60000
Average Rank of Strong Signal Neighbors

0

1

2

3

4

5 1e 4 MS Medical
Weak Signal
Random Weak Signal

500 1000 1500 2000 2500
Average Rank of Strong Signal Neighbors

0

1

2

3

4

5

6

7

8 1e 3 Cora
Weak Signal
Random Weak Signal

Figure 9: The average weak signal rank of actual strong signal neighbors is shown in orange. The blue curve shows
the average rank if the weak signal was fully random.

31

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 32–38
July 13, 2023 ©2023 Association for Computational Linguistics

Semantic-Oriented Unlabeled Priming for Large-Scale Language Models

Yanchen Liu1 Timo Schick2 Hinrich Schütze3
1Harvard University 2Meta AI Research 3LMU Munich

yanchenliu@g.harvard.edu, schick@meta.com

Abstract

Due to the high costs associated with finetuning
large language models, various recent works
propose to adapt them to specific tasks with-
out any parameter updates through in-context
learning. Unfortunately, for in-context learn-
ing there is currently no way to leverage unla-
beled data, which is often much easier to ob-
tain in large quantities than labeled examples.
In this work, we therefore investigate ways to
make use of unlabeled examples to improve the
zero-shot performance of pretrained language
models without any finetuning: We introduce
Semantic-Oriented Unlabeled Priming (SOUP),
a method that classifies examples by retrieving
semantically similar unlabeled examples, as-
signing labels to them in a zero-shot fashion,
and then using them for in-context learning. We
also propose bag-of-contexts priming, a new
priming strategy that is more suitable for our
setting and enables the usage of more examples
than fit into the context window.

1 Introduction

In recent years, there has been a trend in NLP to-
wards larger and larger language models (LMs)
(Radford et al., 2018, 2019; Raffel et al., 2020;
Brown et al., 2020; Fedus et al., 2021). Different
from prior pretrained LMs that are typically fine-
tuned for specific downstream tasks using labeled
training datasets (Devlin et al., 2019; Liu et al.,
2019), recent work proposes to use such large mod-
els in zero- or few-shot settings without any fine-
tuning (Brown et al., 2020; Sanh et al., 2021) due
to the often prohibitive costs associated with train-
ing, storing and deploying large models (Strubell
et al., 2019). In particular, Brown et al. (2020) pro-
pose priming where training examples are simply
provided as additional context together with test
examples; this in-context learning does not require
updating the parameters of the model.

In prior work on in-context learning, only la-
beled examples are used for priming (Brown et al.,

x = Not worth watching.

UD

E(x)

Not worth the time! The movie is [MASK].
p(good) = 0.3

p(bad) = 0.7

Not worth the time! The movie is bad.
Not worth watching. The movie is [MASK].

p(good) = 0.1

p(bad) = 0.9

Do not watch this movie. The movie is bad.
Not worth watching. The movie is [MASK].

p(good) = 0.3

p(bad) = 0.7

(1)

(2)

(3)

Figure 1: Schematic representation of the steps involved
in SOUP for binary sentiment classification of movie
reviews. (1) Semantic Search: For a given input x, we
retrieve semantically similar, unlabeled examples from a
set UD using a sentence encoder E. (2) Self-Prediction:
We obtain zero-shot predictions for all similar examples
using natural language prompts. (3) Bag-of-Contexts
Priming: We use the retrieved examples along with
their most probable labels one at a time as in-context
examples to obtain predictions for x; the resulting dis-
tributions over possible labels are finally averaged.

2020; Lu et al., 2021; Kumar and Talukdar, 2021;
Min et al., 2021; Jiang et al., 2021). But in many
settings, these are extremely scarce or even entirely
unavailable, while unlabeled examples can easily
be accessed. Unfortunately, there is currently no
way to leverage unlabeled examples for priming.
Other approaches for leveraging unlabeled data
such as domain-adaptive pretraining (Gururangan
et al., 2020) would again require finetuning.

Therefore, we investigate how we can make use
of unlabeled examples to improve the performance
of large-scale language models without requiring
changes to their parameters: We propose a self-
supervised method called Semantic-Oriented Unla-
beled Priming (SOUP), which uses unlabeled exam-
ples for in-context learning. Following the observa-
tion that semantically similar examples are better

32

candidates as in-context examples than dissimilar
ones (Gao et al., 2021a; Liu et al., 2021), we first
retrieve the semantically most similar unlabeled
examples as contexts for a given input; then, we
query the language model to obtain predictions for
these unlabeled examples, and finally provide them
along with their most likely labels as additional
context. Intuitively, this approach is particularly
helpful whenever the retrieved examples are easier
to classify then the actual input of interest.

Whereas in prior work, the in-context examples
and test example are usually concatenated to form a
single input that is provided to the LM, we propose
to use one in-context example at a time and com-
pute a weighted average of the so-obtained label
distributions to obtain a final prediction. Besides re-
sulting in much better performance, one benefit of
this methods is that we are no longer constrained by
the maximum sequence length of the used LM and
thus, more neighbors can be used for priming than
with the usual, concatenation-based approach. We
also investigate an iterative variant of our approach
where predictions for unlabeled examples are it-
eratively improved with SOUP. On four English
text classification datasets, we show that SOUP im-
proves performance of pretrained LMs.

2 Related Work

First proposed by Brown et al. (2020), in-context
learning has been studied by many recent works
(Lu et al., 2021; Kumar and Talukdar, 2021; Min
et al., 2021; Jiang et al., 2021). Concurrent with
our work, Min et al. (2021) also propose to perform
priming with individual examples and combine the
resulting predictions; however, they use a differ-
ent combination technique and, similar to all prior
work on in-context learning, only investigate set-
tings with labeled examples. Our approach is also
related to various approaches that leverage unla-
beled data in few- or zero-shot settings (Xie et al.,
2019; Gururangan et al., 2020; Schick and Schütze,
2021a), but all of them require finetuning the un-
derlying language model.

We make use of different Transformer-based sen-
tence encoders (Reimers and Gurevych, 2019; Gao
et al., 2021b) and of textual instructions to im-
prove model performance, an approach that was
first proposed by Radford et al. (2019) and has
since been investigated extensively (Schick and
Schütze, 2021a,b,c; Gao et al., 2021a, i.a.).

3 Semantic-Oriented Unlabeled Priming

We introduce Semantic-Oriented Unlabeled Prim-
ing (SOUP), our approach for in-context learning
with unlabeled examples. To this end, let M be a
masked language model (Devlin et al., 2019) where
for some sequence of tokens t1, . . . , tk that con-
tains exactly one mask token, M(t | t1, . . . , tk)
denotes the probability that M assigns to t at the
masked position.1 Further, let E be a sentence
encoder where E(x) denotes the representation as-
signed to x by E, and DU be a set of unlabeled
examples. We consider a text classification setup
where for a given input x, a label y from a set Y
has to be predicted.

Obtaining predictions for x with SOUP consists
of the following steps:

1. Semantic Search: We search for unlabeled
examples that are semantically most similar
to x using the sentence encoder E.

2. Self-Prediction: We use M to obtain predic-
tions for these neighboring examples.

3. Bag-of-Contexts Priming: We use the neigh-
bors and their estimated labels as additional
context for priming M and compute an av-
erage of the resulting label distributions to
obtain a final prediction for x.

3.1 Semantic Search
Similar to prior work (Gao et al., 2021a; Liu et al.,
2021), the unlabeled examples xu ∈ DU are en-
coded to obtain vector representations E(xu); this
can be done in advance for the entire set DU . We
also compute the representation e(x) of our test ex-
ample and use semantic search to find the k nearest
neighbors of x according to a specific similarity
measure (e.g., cosine similarity). We denote the set
of neighbors as Nx = {x1, ..., xk} ⊆ DU .

3.2 Self-Prediction for Unlabeled Examples
We use M to predict the label distribution for each
xi ∈ Nx, which is done similar to prior work by
providing a short prompt and assigning meaning-
ful names to all labels (e.g., Radford et al., 2019;
Schick and Schütze, 2021a,c). We use the same
notation as Schick and Schütze (2021a,c) in that
we make use of a pattern P that converts inputs x
into cloze questions P (x) containing a single mask,

1We focus on masked language models, but our approach
can easily be transferred to autoregressive language models.

33

and a verbalizer v that maps each label y ∈ Y to
a single token v(y) representing its meaning. We
define the probability of y being the correct label
for x based on M (v(y) | P (x)), the probability
that M assigns to v(y) at the masked position in
P (x). We normalize this probability and set

p(y | x) ∝ M (v(y) | P (x))

M (v(y) | P (ε))
(1)

with ε denoting an empty sequence following prior
work (Brown et al., 2020).

3.3 Priming
Let N̂x = {(xi, ŷi)}ki=1 be the selected in-context
neighbors with their predicted labels. Based on
these semantically similar examples, we want to
obtain a prediction for x. In the following, let P̂ (xi)
denote P (xi) with the mask token replaced by ŷi.

Concatenation Priming Previous work usually
provides all in-context examples at a time to the
LM. That is, all examples are concatenated fol-
lowed by the test example to obtain the input
c = [P̂ (x1), P̂ (x2), ..., P̂ (xk), P (x)], which is
provided to the LM to get the final prediction. We
refer to this variant as CONCAT priming.

Bag-of-Contexts Priming We propose bag-of-
contexts (BOC) priming where instead, we only
use individual examples for priming and prediction
each time and then compute the average of the
resulting label distributions as the final prediction.
The key advantage of this method lies in the fact
that it allows us to use more examples than fit in
the context window of the used model.

For each in-context example xi ∈ N , we con-
struct a corresponding context ci = [P̂ (xi);P (x)],
similar to CONCAT with k = 1. For each ci, we
then use the LM to obtain a distribution qi(y) over
possible labels y ∈ Y for x, where we employ nor-
malization analogous to Eq. 1. Finally, we make
use of a weighting function w(xi) : N → R+ and
compute

qf (y) =
1

Z
·

k∑

i=1

w(xi) · qi(y) (2)

with Z =
∑k

i=1w(xi). We obtain the final predic-
tion for x as ŷ = argmaxy∈Y qf (y). We experi-
ment with the following two weighting functions.
uniform: w(xi) = 1. similarity-based: w(xi) is
the cosine similarity between xi and x.

3.4 Iterative SOUP

We also experiment with an iterative variant of
SOUP where the labels for the unlabeled examples
in DU are iteratively refined. To this end, we treat
each example xu ∈ DU as a test example: We
use SOUP to reclassify xu with DU \ {xu} as the
set of unlabeled examples. This means for each
example x, we select in-context neighbors from
DU \{xu} as priming contexts to allow us to refine
the prediction for x. We can repeat this process for
multiple iterations.

4 Experiments

Datasets We evaluate SOUP on four English
datasets: IMDb (Maas et al., 2011) and Yelp Re-
views (Zhang et al., 2015) for sentiment analy-
sis as well as AG’s News and Yahoo Questions
(Zhang et al., 2015) for text categorization. For
each dataset, we use one of the the patterns and ver-
balizers introduced by Schick and Schütze (2021a);
further details can be found in Appendix A. For
IMDb, the unlabeled in-context examples are se-
lected from the training set of SST-2 (Socher et al.,
2013) following Liu et al. (2021). For all other
datasets, the in-context examples are obtained from
the respective training sets.2

Experimental Setup For our main experiments,
we use ALBERT-xlarge-v2 (Lan et al., 2020) as
underlying LM and paraphrase-MiniLM-L6-v2
(Reimers and Gurevych, 2019) as sentence encoder.
As the context window of ALBERT is 512 tokens,
we truncate each example to 120 tokens for CON-
CAT. To enable a fair comparison between both
priming strategies, we also set the maximum to-
ken number for BOC to 120. We compare SOUP

to zero-shot performance using only the patterns
and verbalizers (“prompt only”), similar to Radford
et al. (2019) and Schick et al. (2021). We do not
compare to other baselines as we are not aware of
other approaches that enable leveraging unlabeled
data in zero-shot settings without finetuning. For
iterative SOUP, we use 3 iterations to improve the
labels assigned to unlabeled data.

Results As shown in Table 1, when using CON-
CAT with k = 3, our method clearly performs
worse than the prompt-only baseline. However, us-
ing our proposed BOC approach consistently out-

2To ensure a resource-friendly evaluation, we restrict both
the unlabeled sets and the test sets to a maximum of 10,000
randomly selected examples.

34

k w(xi) AG’s Yahoo IMDb Yelp

Prompt only – – 66.01 48.04 72.67 43.37
SOUP (CONC.) 3 – 43.88 21.96 54.71 29.56

SOUP (BOC)

3
unif. 68.18 45.64 68.30 40.43
sim. 68.18 45.57 68.31 40.43

10
unif. 69.64 49.93 71.03 44.05
sim. 69.74 49.98 71.01 43.93

50
unif. 69.70 52.67 72.97 46.21
sim. 70.00 52.56 72.95 46.20

iSOUP (BOC) 50 unif. 69.88 45.22 73.78 45.79

Table 1: Accuracy with zero-shot prompting, SOUP with
CONCAT and BOC as well as iterative SOUP (iSOUP)
using different numbers of neighbors (k) and both uni-
form (“unif.”) and similarity-based (“sim.”) weighting.

Size Method AG’s Yahoo IMDb Yelp

xlarge Prompt only 66.01 48.04 72.67 43.37
xlarge SOUP 69.70 52.67 72.97 46.21

xxlarge Prompt only 73.51 57.89 76.67 45.84
xxlarge SOUP 74.89 61.82 79.54 41.00

Table 2: Performance of a prompt-only baseline and
SOUP with k = 50 and uniform weighting using differ-
ent model sizes

performs not only priming with CONCAT by a large
margin, but also leads to consistent improvements
over our baseline on three out of four datasets for
k ≥ 10. Moreover, performance grows consis-
tently with the number of in-context examples, with
k = 50 resulting in improvements for each dataset
considered. On average, similarity-based weight-
ing leads to negligible gains over uniform weight-
ing. For our iterative variant of SOUP, we therefore
only experiment with uniform weighting; iterative
SOUP leads to slight improvements for two tasks,
but performs much worse than SOUP for Yahoo.

5 Analysis

We examine the influence of both increasing the
language model’s size and replacing the Sentence
Transformer with different encoders on the per-
formance of SOUP. We also briefly discuss the
efficiency of our method.

Model Size We first focus on the impact of model
size on the performance of SOUP; to this end, we
also evaluate our method (with k = 50 and uni-
form weighting) and the prompt-only baseline us-
ing ALBERT-xxlarge-v2 (Lan et al., 2020), a model
that is about four times as large as ALBERT-xlarge-
v2. As shown in Table 2, for our prompt-only base-
line performance consistently improves with model

Sentence Encoder AG’s Yahoo IMDb Yelp

paraphrase-MiniLM-L6-v2 69.70 52.67 72.97 46.21
msmarco-bert-base-dot-v5 69.93 53.04 74.47 45.82
unsup-simcse-roberta-large 69.76 52.40 73.90 45.19

Table 3: SOUP (ALBERT-xlarge-v2, k = 50, uniform
weighting) is robust to choice of sentence encoder.

size for both methods. With exception of ALBERT-
xxlarge-v2 on Yelp, for which our method surpris-
ingly leads to worse performance, SOUP consis-
tently outperforms the baseline method.

Sentence Encoder We also investigate the im-
pact of the sentence encoder on downstream task
performance. As paraphrase-MiniLM-L6-v2 was
trained on a mixture of tasks that has some over-
lap with the tasks we evaluate on, we additionally
consider msmarco-bert-base-dot-v5 (Reimers and
Gurevych, 2019), a model that was trained exclu-
sively on MS MARCO passages (Bajaj et al., 2018),
and unsup-simcse-roberta-large (Gao et al., 2021b),
an encoder that was trained in a fully unsupervised
fashion. As can be seen in Table 3, the choice
of sentence encoder has little influence on perfor-
mance, illustrating that performance improvements
do not come from the encoder being pretrained on
downstream task data.

Efficiency One disadvantage of our approach is
that the number of required forward passes grows
linearly with k. After precomputing encodings and
labels for UD, classifying a single example with
k = 3 took about 0.6s using a single NVIDIA
GeForce GTX 1080Ti; for k = 10 and k = 50,
the required times were 1.5s and 6.8s. However,
performance can be improved a lot with decoder-
only LMs (e.g., Radford et al., 2018, 2019; Brown
et al., 2020), as this enables the precomputation of
contextualized representations for each xu ∈ UD.

6 Conclusion

We have presented SOUP, a method for unlabeled
priming that classifies inputs by retrieving semanti-
cally similar unlabeled examples, classifying these
examples in a zero-shot fashion and providing them
as additional contexts for in-context learning. Be-
yond that, we have proposed a new priming strategy
that leads to much better performance and scales to
more than just a few examples. We have shown that
with sufficiently many retrieved examples, SOUP

consistently leads to improved performance.

35

References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. Ms marco: A human gener-
ated machine reading comprehension dataset.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Computing
Research Repository, arXiv:2101.03961.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021a.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
Simcse: Simple contrastive learning of sentence em-
beddings.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How Can We Know When Language
Models Know? On the Calibration of Language Mod-
els for Question Answering. Transactions of the As-
sociation for Computational Linguistics, 9:962–977.

Sawan Kumar and Partha Talukdar. 2021. Reorder-
ing examples helps during priming-based few-shot
learning. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
4507–4518, Online. Association for Computational
Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Interna-
tional Conference on Learning Representations.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? CoRR,
abs/2101.06804.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretrain-
ing approach. Computing Research Repository,
arXiv:1907.11692.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. Computing Research
Repository, arXiv:2104.08786.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2021. Noisy channel language
model prompting for few-shot text classification.
Computing Research Repository, arXiv:2108.04106.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. Technical report,
Open AI.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, Open AI.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

36

http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.18653/v1/2021.findings-acl.395
https://doi.org/10.18653/v1/2021.findings-acl.395
https://doi.org/10.18653/v1/2021.findings-acl.395
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/2108.04106
http://arxiv.org/abs/2108.04106
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak,
Debajyoti Datta, Jonathan Chang, Mike Tian-Jian
Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht
Sharma, Andrea Santilli, Thibault Fevry, Jason Alan
Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali
Bers, Thomas Wolf, and Alexander M. Rush. 2021.
Multitask prompted training enables zero-shot task
generalization. Computing Research Repository,
arXiv:2110.08207.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze questions for few shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, Kyiv, Ukraine
(Online). International Committee on Computational
Linguistics.

Timo Schick and Hinrich Schütze. 2021b. Few-shot
text generation with pattern-exploiting training. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021c. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for
reducing corpus-based bias in NLP. Transactions of
the Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V. Le. 2019. Unsupervised data aug-
mentation for consistency training. Computing Re-
search Repository, arXiv:1904.12848.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
649–657. Curran Associates, Inc.

37

http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2001.07676
https://arxiv.org/abs/2001.07676
https://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2012.11926
http://arxiv.org/abs/2012.11926
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://arxiv.org/abs/2103.00453
https://arxiv.org/abs/2103.00453
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1904.12848
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

A Dataset Details

For each task except IMDb, we use one of the
patterns and verbalizers introduced by Schick and
Schütze (2021a). In the following, we describe in
detail the patterns and verbalizers used.

IMDb For the IMDb Large Movie Review
Dataset (Maas et al., 2011), the task is to estimate
the binary sentiment of a movie review based on
the review’s text. We use the following pattern and
verbalizer for an input review a:

P (a) = a. The movie is [MASK].

v(0) = bad v(1) = good

Yelp For the Yelp Reviews Full Star dataset
(Zhang et al., 2015), the task is to estimate the
rating that a customer gave to a restaurant on a 1-to
5-star scale based on their review’s text. We use
the following pattern for an input text a:

P (a) = a. In summary, the restaurant is [MASK].

As a verbalizer v, we define:

v(1) = terrible v(2) = bad v(3) = okay
v(4) = good v(5) = great

AG’s News AG’s News (Zhang et al., 2015) is a
task to classify a news article as belonging to one
of the categories World (1), Sports (2), Business
(3) or Science/Tech (4). We define the following
pattern for an input news text a:

P (a) = a. News Category: [MASK].

Intuitively, we use a verbalizer that maps 1–4 to
“World”, “Sports”, “Business” and “Science”, re-
spectively.

Yahoo Yahoo Questions (Zhang et al., 2015) is a
text classification dataset. Given a question and an
answer, the text has to be classified to one of ten
possible categories. We make use of the following
pattern for a input question a and an answer b:

P (a, b) = a b. Question Category: [MASK].

Our verbalizer maps labels 1–10 to the tokens “So-
ciety”, “Science”, “Health”, “Education”, “Com-
puter”, “Sports”, “Business”, “Entertainment”,
“Relationship” and “Politics”.

38

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 39–58
July 13, 2023 ©2023 Association for Computational Linguistics

oBERTa: Improving Sparse Transfer Learning via improved initialization,
distillation, and pruning regimes

Daniel Campos 1, Alexandre Marques2, Mark Kurtz2, and ChengXiang Zhai1

1Department of Computer Science, the University of Illinois Urbana-Champaign
2Neural Magic Inc.

Abstract

In this paper, we introduce the range of
oBERTa language models, an easy-to-use set
of language models which allows Natural Lan-
guage Processing (NLP) practitioners to obtain
between 3.8 and 24.3 times faster models with-
out expertise in model compression. Specifi-
cally, oBERTa extends existing work on prun-
ing, knowledge distillation, and quantization
and leverages frozen embeddings, improves
distillation, and model initialization to deliver
higher accuracy on a broad range of transfer
tasks. In generating oBERTa, we explore how
the highly optimized RoBERTa differs from the
BERT for pruning during pre-training and fine-
tuning. We find it less amenable to compres-
sion during fine-tuning. We explore the use of
oBERTa on seven representative NLP tasks and
find that the improved compression techniques
allow a pruned oBERTa model to match the
performance of BERTbase and exceed the per-
formance of Prune OFA Large on the SQUAD
V1.1 Question Answering dataset, despite be-
ing 8x and 2x respectively faster in inference.
We release our code, training regimes, and as-
sociated model for broad usage to encourage
usage and experimentation. 1,2

1 Introduction

The massive improvement in contextual word rep-
resentations driven by the usage of the Transformer
architecture (Vaswani et al., 2017) has led to the
wide-scale deployment of language models. These
models are customized for various use cases and
tasks like question answering, sentiment analysis,
information retrieval, and document classification
and deployed into general domains and special-
ized domains such as financial, medical, and legal.
While these models are effective, they commonly

1https://github.com/neuralmagic/sparseml/
2https://sparsezoo.neuralmagic.com/

82 83 84 85 86 87 88 89 90 91 92
0
1

3

5

7

9

11

13

15

F1 Score on SQUAD v1.1

In
fe

re
nc

e
Sp

ee
du

p

Accuracy (F1) vs. Speedup on SQUAD v1.1

BERTbase
PruneBert
oBERTlarge
PruneOFA

oBERTa (Ours)

Figure 1: Performance of Sparse Language Models on
the SQUAD V1.1 (Rajpurkar et al., 2016a) compared to
an uncompressed BERTbase (Devlin et al., 2019) with re-
lation to realized inference improvements with regards
to mean latency with a batch size of 1.

contain hundreds of millions of parameters, which
can lead to slow inference times without using
specialized hardware accelerations like graphics
processing units (GPU) or Tensor Processing Units
(TPU). Without hardware acceleration, the infer-
ence on CPUs can be slow and impractical for
real-world deployments.
Approaches such as knowledge distillation (KD)
(Hinton et al., 2015), quantization (Zafrir et al.,
2019), and pruning (Kurtic et al., 2022) have been
leveraged to improve model efficiency and, when
paired with specialized inference engines3, it is
possible to accelerate inference times on CPUs
and GPUs significantly. While there has been sub-
stantial effort to create effective methods for com-

3https://github.com/neuralmagic/deepsparse

39

pression (Jiao et al., 2020; Sun et al., 2020) and
improved model performance (Liu et al., 2019),
general users of language models have been slower
to adopt these methods. Years after its release, the
original BERTbase uncased (Devlin et al., 2019) is
still the most popular language model 4, followed
by the slightly compressed DistilBERT (Sanh et al.,
2019a) for latency-sensitive deployments. To en-
able broad adoption, regular users must be able to
leverage more efficient language models without
additional compression steps or tuning.
We present a case study on how to compress a lan-
guage model for efficient CPU inference leverag-
ing KD, structured pruning, unstructured sparsity,
and quantization such that the compressed models
can be applied to a broad range of natural language
processing (NLP) tasks without expertise in com-
pression of language models.
As part of this study, we release a set of efficient
language models optimized to deliver the great-
est improvement in inference while minimizing
losses in accuracy. We then show how these mod-
els can be used for sparse transfer learning (Iofi-
nova et al., 2021; Zafrir et al., 2021) such that most
compression happens during the pre-training stage.
The pre-trained sparse models can be transferred
to various NLP tasks, preserving sparsity without
extensive optimization. Using these sparse trans-
fer models and the DeepSparse inference engine,
we show these sparse models can be fine-tuned to
produce task-specific sparse models with minimal
accuracy loss and result in greatly improved infer-
ence speeds with minimal accuracy loss.
As shown in Figure 1, oBERTa provides state-
of-the-art performance for sparse language mod-
els on the SQUAD v1.1 Question Answering
dataset. oBERTa variants exceed the perfor-
mance of BERTbase despite being eight times faster,
exceed the performance of Prune OFAlarge and
oBERTlarge while being two to five times faster.
In this paper, we focus on the following research
questions:

• RQ1: Is RoBERTa more sensitive to unstruc-
tured pruning than BERT?

• RQ2: What is the impact of using a larger
teacher for KD during the pruning of language

4Based on monthly downloads on the huggingface model
hub in march 2023

models?

• RQ3: Can frozen embeddings improve the
accuracy of pruned language models?

As part of our experimentation, we release the as-
sociated models and the training regimes to aid
reproducibility and encourage efficient inference
models.
In summary, our contributions are as follows:

• We provide a thorough case study on how
to compress a less studied language model5,
RoBERTa (Liu et al., 2019), and evaluate per-
formance on a set of seven NLP tasks finding
that it is possible to effectively compress a
language model without using its original pre-
training dataset.

• We demonstrate the impact of varying the size
of teachers in KD, freezing embeddings, and
variations in learning rates when applied to
sparse language models.

• We demonstrate that our compressed models
can be leveraged to deliver accuracy of over
91% on the popular SQUAD v1.1 (Rajpurkar
et al., 2016a) Question Answering Task with
nearly three times faster inference than the
previous state-of-the-art uses of unstructured
sparsity.

2 Background and Related work

While many methods to improve model efficiency
exist, the same goal generally underpins them:
given an original model θ with an accuracy of
acc(θ) and an inference cost of c(θ) minimize
the inference cost. While the methods used
for compression can be highly optimized and
specialized, they can commonly be used together
to deliver massive improvements in inference
speeds with minimal losses in accuracy.
Transformer Based Language Models such as
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) provide contextual language representations
built on the Transformer architecture (Vaswani
et al., 2017) which can be specialized and adapted
for specific tasks and domains (Lee et al., 2020).

5While the RoBERTa model was downloaded over 10m
times in May 2023 on the huggingface hub it has not a model
of focus for compression research.

2

40

Using these models, it becomes relatively easy
to excel at a broad range of natural language
processing tasks such as Question Answering,
Text Classification, and sentiment analysis.
Unstructured Pruning is a compression approach
that removes individual weights or groups of
weights in a model by applying a mask or setting
the weight values to 0. This compression approach
has been broadly studied in computer vision (Han
et al., 2015), and many methods can remove 70%
or more of model weights with little to no loss
in accuracy. Models pruned can be 20x smaller
in terms of pure model size and, when paired
with a sparsity-aware inference engine such as
DeepSparse (Magic, 2023), provide 3-5x speedups
in inference throughput.
Focused on language models, recent work has
shown that it is possible to prune models during
fine-tuning (Sanh et al., 2020) (Kurtić et al., 2022)
or during pre-training (Zafrir et al., 2021) and
transfer to novel domains (Campos et al., 2022)
and datasets.
Structured Pruning is a compression approach
that removes fundamental structural components
in a language model such as individual attention
heads (Voita et al., 2019) or entire model layers
such as transformer encoders (Sanh et al., 2019b).
Structural pruning has become one of the most
popular methods for inference optimization as it is
easy to estimate the speedups and implement.
Freezing Embeddings, as introduced by Devlin
et al. (Devlin et al., 2019), involves training the
embedding layer of a language model and then
toggling the ability to continue to optimize, or
not, the values of in the embeddings as training
continues.
Knowledge Distillation (Hinton et al., 2015) is a
training method where a model is not explicitly a
compression method but a training method where
a model, called the student learns to emulate a
teacher model which is commonly larger or better
performing. The loss extracted from the original
training data in KD is augmented or replaced by
KL divergence between the student and teacher
model.
KD leverages the hardness parameter h to control
the mixture of regular and distillation loss (with
a higher distillation favoring the KL divergence
loss) and a temperature parameter t to control the

softness of the distribution.
As applied to language models, the approach
has been used to improve the performance of
structurally pruned language models resulting in
models like DistilBERT (Sanh et al., 2019b) and
TinyBERT (Jiao et al., 2020).
Quantization reduces the precision for the model
weights and activations to lower the computa-
tional requirements of model execution. While
researchers have explored reducing representation
to binary representations (Pouransari and Tuzel,
2020), current hardware limits inference speedups
to 8 or 4-bit representations. Quantization
can be applied after the model is trained in
a one-shot fashion, but this can lead to large
losses in accuracy because of rounding errors.
To avoid this pitfall, quantization is applied as
quantization-aware training (QAT), where the
forward pass of the model is simulated with lower
precision. In contrast, the backward pass happens
in full precision. By using QAT models, learn
to be robust to rounding errors and can result in
quantization having little to no loss in accuracy. In
language models, research has produced quantized
language models such as Q8BERT (Zafrir et al.,
2019) and is commonly used in conjunction with
structured and unstructured pruning (Zafrir et al.,
2021) as a way of introducing compounding
compression.
Additional approaches such as early exiting
(Xin et al., 2020) or token pruning (Kim et al.,
2021) have also improved inference efficiency.
Still, the inference improvements can be very
dataset dependent and, as a result, out of our
experimentation frame. For a broader survey on
compression approaches, we recommend Treviso
et al. recent work (Treviso et al., 2022)

3 Improving Sparse Transfer Learning

While quantization and pruning have been well
studied as applied to language models, work has
studied the compression BERTbase or BERTlarge.
Despite existing research, we find that a clear case
study that explores how best to create a family of
compressed models is lacking, and this work seeks
to remedy that. As part of our research, we com-
pare the impact of varying pruning methods, prun-
ing stage, teachers for KD, and freezing portions

3

41

of the model as applied to the RoBERTa language
model.
While performing task-specific compression al-
lows NLP practitioners to broadly adopt improve-
ments in inference efficiency, having access to pre-
optimized models is key. We produce a family of
8 general purpose language models, collectively
called oBERTa, which progressively get smaller
and faster with minimal losses in accuracy.
The oBERTa models leverage a combination of
structured and unstructured pruning to provide a
set of compressed models which can meet a wide
set of latency needs. This compression approach
has not been extensively documented nor discussed.
Our approach to producing the oBERTA models
builds on prior explorations of the combination
of compression methods (Kurtić et al., 2022) and
addresses compression approaches in a staged man-
ner as shown in Figure 2.
First, we create three structural variants starting
with a RoBERTabase model. The base uses 12 trans-
former layers, the medium uses 6, and the small
uses 3. Following prior work, we select interleaved
layers for the 6-layer model and the first, middle,
and last layers for the 3-layer model. Then, each of
these 3 models is further pre-trained using masked
language modeling on the Wikipedia-Bookcorpus
text dataset, leveraging KD from a RoBERTalarge
teacher. After that, each model is pruned using
gradual magnitude pruning (GMP) to a desired
sparsity level (90% and 95%) during additional
pre-training based on masked language modeling,
similar to Zafir et al. (Zafrir et al., 2021). Further
background on the RoBERTA model and why we
did not prune using the WebText corpus can be
found in the appendix.
After pre-training, the sparsity profile is fixed, and
models are fine-tuned and quantized on their target
task with a small set of variable hyperparameters.
Experimentation on the impact of larger teachers,
frozen embeddings, and variations in pruning algo-
rithms are discussed in subsequent portions of this
work.

3.1 Downstream Compression

We explore the impact of introducing unstructured
sparsity during task-specific fine-tuning. We re-
peat each experiment with three different seeds
and report the average F1 and Exact Match (EM)

metrics in tables 2 and 3. Following a basic hyper-
parameter sweep, our baseline RoBERTabase model
achieves a performance of 83.95 EM and 91.13 F1
in the broadly used question-answering benchmark
SQUAD V1.1 (Rajpurkar et al., 2016a).
We also perform unstructured pruning varying the
sparsity 50-95% and the pruning method: GMP
and Optimal BERT Surgeon (OBS) (Kurtić et al.,
2022). We prune each model for eight epochs, fol-
lowed by an additional two epochs to allow the
network to stabilize and re-converge. Knowledge
distillation is used during training with the dense
baseline model as a teacher, hardness set to 1.0 and
temperature set to 5.0. Further hyperparameters
are in the appendix A.7.
Table 1 shows the impact of sparsity on BERTbase,
as reported by previous work. Comparing these
results with tables 2 and 3, we conclude that
RoBERTa is more sensitive to pruning than BERT,
although RoBERTabase pruned with OBS remains
substantially more accurate than BERTbase for the
same level of sparsity.
Table 2 shows that pruning RoBERTAbase to 90%
with OBS results in a relative drop in F1 of 1.59%,
which is three times the relative drop reported for
BERTbase with the same pruning algorithm. More-
over, table 3 shows that RoBERTAbase becomes
very sensitive to pruning with GMP for sparsities
above 85%, with the relative drop in F1 increasing
almost threefold between 85% and 90% sparsity.
We conjecture that RoBERTa is more sensitive to
pruning than BERT because the latter is relatively
under-trained (Liu et al., 2019), making the more
optimized RoBERTa more sensitive to the loss in
expressivity caused by pruning.

Model Sparsity F1 Impact
BERTbase (Devlin et al., 2019) 0 88.50 N/A
BERTlarge (Devlin et al., 2019) 0 90.9 N/A
RoBERTabase (Liu et al., 2019) 0 91.13 N/A
RoBERTAlarge (Liu et al., 2019) 0 94.60 N/A
PruneBertbase (Sanh et al., 2020) 90 84.90 -4.07 %
PruneOFAlarge (Zafrir et al., 2021) 90 87.25 -1.41 %
oBERTlarge (Kurtić et al., 2022) 90 87.98 -0.58%
GMP⋆ large (Kurtic and Alistarh, 2022) 90 86.7 -2.03%

Table 1: Performance of existing dense and sparse lan-
guage models on the SQUAD v1.1 Question Answering
Dataset

3.2 Upstream Compression

Based on our fine-tuning experiments, achieving a
high degree of sparsity on the RoBERTA model

4

42

Sparsity (%) EM Impact F1 Impact
50 84.80 1.01% 91.49 0.40%
60 84.64 0.82% 91.33 0.22%
70 84.42 0.56% 91.13 0.00%
80 84.64 0.82% 91.33 0.22%
85 82.89 -1.26% 90.12 -1.11%
90 82.48 -1.75% 89.68 -1.59%
95 79.01 -5.89% 87.05 -4.47%

Table 2: Impact of Sparsity introduced by OBS on the
F1 and EM scores of pruned RoBERTa models on the
SQUAD V1.1 Dataset

Sparsity (%) EM Impact F1 Impact
50 84.90 1.13% 91.46 0.36%
60 84.27 0.38% 90.91 -0.24%
70 83.37 -0.69% 90.30 -0.91%
80 81.64 -2.76% 88.86 -2.49%
85 81.64 -2.76% 88.86 -2.49%
90 76.51 -8.86% 84.90 -6.83%
95 69.39 -17.34% 79.35 -12.93%

Table 3: Impact of Sparsity introduced by GMP on the
F1 and EM scores of pruned RoBERTa models on the
SQUAD V1.1 Dataset

leads to improvements in performance, but there
are greater than expected losses in accuracy.
Additionally, such compression is task-specific
and non-amortizable, so we explore how best to
generate general pruned RoBERTa models. While
we eventually apply the winning set of training
combinations to all of our variants of oBERTa, we
first seek to answer the following questions: Does
GMP or OBS perform better during pretraining
pruning? Does Freezing the Embeddings during
pretraining pruning further improve performance?
Does the use of larger teachers further improve
performance?
We prune various models while varying individual
variables during pretraining to evaluate these ques-
tions. We experiment by pruning an oBERTabase
(12 layers) model to 90% and 95% sparsity on all
non-embedding layers. All pretraining pruning
happens using the Wikipedia-BookCorpus dataset,
where we train for five epochs using a learning
rate of 5e-5 and a batch size of 256 using 4 A100
GPUS. To evaluate the impact of these models,
we evaluate performance on the previously used
SQUAD v1.1 question-answering dataset, where
we train with a fixed training regime of 10 epochs
with a learning rate of 1.5e-4 based on the work
of Kurtic et al. We train without KD for each
finetuning run with an unpruned RoBERTabase

or an unpruned RoBERTalarge. Details for the
hyperparameters used to train all teacher models
can be found in the appendix A.5.
Comparing the use of OBS vs. GMP as shown

GMP OBS

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTa 90% No KD 88.34 -4.17% 80.19 -6.31% 87.72 -4.83% 79.35 -7.29%
oBERTa 90% RoBERTAbase KD 88.75 -3.72% 81.35 -4.95% 88.60 -3.88% 81.37 -4.93%
oBERTa 90% RoBERTAlarge KD 89.65 -2.75% 83.12 -2.88% 89.63 -2.76% 82.94 -3.09%
oBERTa 95% No KD 86.58 -6.07% 78.81 -7.92% 84.90 -7.90% 76.82 -10.25%
oBERTa 95% RoBERTAbase KD 86.99 -5.63% 79.41 -7.22% 86.14 -6.55% 78.63 -8.13%
oBERTa 95% RoBERTAlarge KD 87.60 -4.97% 80.44 -6.01% 86.14 -6.55% 79.84 -6.72%

Table 4: Impact on F1 of SQUAD V1.1 of using OBS
vs. GMP as the pruning method during pretraining.
Impact measures the relative loss in performance vs.
the unpruned RoBERTabase baseline.

in table 4, we can see that GMP consistently
outperforms OBS. This is the opposite of what is
seen when pruning downstream or, in prior work,
pruning BERT. Without access to the original
training corpus OBS is likely unable to leverage
the loss aware saliency importance as well as it
can when it has the original dataset.
Evaluating the impact of variations in the hardness

Hardness 0.5 Hardness 1.0

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTa 90% No KD 88.21 -4.31% 80.19 -6.31% 88.34 -4.17% 80.19 -6.31%
oBERTa 90% Base KD 89.19 -3.25% 81.74 -4.50% 88.75 -3.72% 81.35 -4.95%
oBERTa 90% Large KD 90.14 -2.21% 83.51 -2.43% 89.65 -2.75% 83.12 -2.88%
oBERTa-95 No KD 85.82 -6.90% 77.77 -9.14% 86.58 -6.07% 78.81 -7.92%
oBERTa-95 Base KD 86.98 -5.64% 79.23 -7.43% 86.99 -5.63% 79.41 -7.22%
oBERTa-95 Large KD 87.66 -4.91% 80.40 -6.07% 87.60 -4.97% 80.44 -6.01%

Table 5: Impact on F1 of SQUAD V1.1 by hardness in
KD during pretraining pruning. Impact measures the rel-
ative loss in performance vs. the unpruned RoBERTabase
baseline.

of KD as shown in table 5, there is a bit more
of a muted set of conclusions. The 95% sparse
models perform better with a hardness of 1.0,
while the 90% models do better with a hardness of
0.5. Given that our goal is to preserve most of the
RoBERTa model without actually using its large
dataset, we set our hardness to 1.0 as it keeps the
model from explicitly learning the new dataset.
When we evaluate the impact of freezing embed-

dings during pre-training, as shown in table 6, we
find strong evidence that using frozen embeddings
consistently leads to worse performance and, as
a result, does not freeze embeddings during our
model pruning. Looking at the impact of varying
the size of the teacher for pretraining KD as shown
in table 7, we unsurprisingly find clear evidence

5

43

Frozen Embeddings Trained Embeddings

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTabase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTabase 90% no KD 87.71 -4.85% 79.62 -6.98% 88.21 -4.31% 80.19 -6.31%
oBERTabase 90% RoBERTabase KD 89.7 -2.69% 81.74 -4.50% 89.19 -3.24% 83.07 -2.94%
oBERTabase 90% RoBERTalarge KD 89.59 -2.81% 82.98 -3.05% 90.14 -2.21% 83.51 -2.43%

Table 6: Impact on F1 of SQUAD V1.1 concerning
the use of frozen embeddings or not during pretraining
pruning. Impact measures the relative loss in perfor-
mance vs. the unpruned RoBERTabase baseline.

that using a larger teacher during pretraining
pruning leads to improvements in performance.
Using these experiments, we generate the recipe,

Base Upstream Teacher Large Upstream Teacher

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTa 90% no KD 88.34 -4.17% 80.59 -5.84% 88.1 -4.43% 80.06 -6.46%
oBERTa 90% Base KD 88.75 -3.72% 81.35 -4.95% 89.22 -3.21% 82.02 -4.17%
oBERTa 90% Large KD 89.65 -2.74% 83.12 -2.89% 89.98 -2.39% 83.14 -2.86%

Table 7: Impact on F1 of SQUAD V1.1 with respect
variation is the size of the teacher in KD during pre-
training pruning. Impact measures the relative loss in
performance vs. the unpruned RoBERTabase baseline.

which we then use to create the many variants of
oBERTa. We evaluate their performance in Table
17 where it is important to note that these results
are accuracy, loss, and perplexity relative to the
RoBERTa-large teacher, not the true dataset. The
compression recipe, as shown in Figure 2 is as
follows:

1. Starting with a pre-trained language model,
removing some portion of transformer layers
in an interleaved fashion.

2. Using Knowledge Distillation from a large
uncompressed model, pre-train the pruned
model with a hardness of 1.0 and without
freezing embeddings.

3. Using Knowledge Distillation from a large
uncompressed model, prune during further
pretraining using GMP where sparsity levels
are enforced at the parameter level. The re-
sulting model is the sparse-transfer-student.

4. Train an uncompressed large language model
on the desired NLP task’s dataset. This is the
sparse-transfer teacher.

5. Using the sparse-transfer teacher fine-tune the
sparse-transfer-student with knowledge distil-
lation to convergence. Experiment with the

use of frozen embeddings and various sizes
of sparse-transfer teachers.

6. Using the fine-tuned sparse-transfer student
and teacher, train with quantization-aware
training. If embeddings were frozen during
initial fine-tuning they should be unfrozen
here.

4 Experimental Results

Based on the aforementioned experiments, we gen-
erate 8 variants of oBERTa, each with a different
size and sparsity profile; details can be found in
table 18. Within this table, we report the impact
on the model size as measured by the raw and
compressed size of the ONNX 6 model file. Em-
beddings are unpruned and each layer is pruned to
the target sparsity profile independent of the rest of
the model. As a result, the overall sparsity profile
may vary as modules in the network may not be
able to reach exactly 90% or 95% sparsity.
Using these inference-optimized models, we evalu-
ate their sparse transfer performance by finetuning
these models on their target task using a fixed train-
ing regime and minor hyperparameter exploration.
For each task, we train them for 10 epochs or 20
(10 of which are Quantization Aware Training),
with the longer schedule being reserved for models
which are being quantized.
We evaluate performance on a benchmark of di-
verse NLP tasks ranging from question answer-
ing, sentiment analysis, document classification,
token classification, and text classification. For
question answering, we leverage the SQuAD v1.1
(Rajpurkar et al., 2016a) and SQuAD V2.0 (Ra-
jpurkar et al., 2018) datasets. We leverage the SST-
2 (Socher et al., 2013) dataset for sentiment analy-
sis. For text classification, we use the Quora Dupli-
cate Query Detection (QQP) (SambitSekhar, 2017)
and the MNLI (Williams et al., 2018) datasets. We
leverage the IMDB (Maas et al., 2011) dataset for
document classification and CONLL2003 (Tjong
Kim Sang and De Meulder, 2003) for token classi-
fication.
Looking at performance on question answering as
shown in table 8 and 9. Moving to text classifi-
cation on QQP and MNLI as shown in tables 11
and 10 Shifting focus to document classification

6https://onnx.ai/

6

44

Sparse Transfer Sparse Transfer With Quantization

model F1 Recovery EM F1 Recovery EM
oBERTabase 92.15 100.00% 85.78 93.18 101.11% 87.29
oBERTabase 90% 90.95 98.69% 84.42 89.46 97.08% 82.61
oBERTabase 95% 89.84 97.49% 83.08 89.23 96.83% 81.12
oBERTaMEDIUM 90.37 98.06% 83.84 83.77 90.91% 90.37
oBERTaMEDIUM 90% 89.26 96.86% 82.18 88.65 96.20% 81.88
oBERTaSMALL 84.87 92.09% 76.55 84.82 92.05% 76.77
oBERTaSMALL 90% 84.66 91.87% 76.18 82.18 92.18% 74.21

Table 8: Sparse Transfer performance of the oBERTA
family on the SQUAD V1.1 dataset. The sparse transfer
was performed over 10 epochs and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model F1 Recovery EM F1 Recovery EM
oBERTabase 82.77 100.00% 79.56 85.298 103.06% 82.347
oBERTabase 90% 81.33 98.26% 78.27 81.43 98.38% 78.92
oBERTabase 95% 77.98 94.22% 74.67 78.09 94.35% 74.82
oBERTaMEDIUM 77.51 93.65% 74.25 78.137 94.41% 75.179
oBERTaMEDIUM 90% 76.64 92.60% 73.34 76.24 92.11% 73.51
oBERTaSMALL 71.54 86.44% 67.93 71.591 86.50% 68.087
oBERTaSMALL 90% 70.79 85.53% 67.31 69.35 87.79% 65.21

Table 9: Sparse Transfer performance of the oBERTA
family on the SQUAD V2.0 dataset. The sparse transfer
was performed over 10 epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy(MM) Accuracy Recovery Accuracy(MM)
oBERTabase 87.88% 100.00% 87.57% 88.06% 100.20% 88.01%
oBERTabase 90% 85.17% 96.91% 84.73% 85.09% 96.83% 84.76%
oBERTabase 95% 84.32% 95.95% 84.08% 83.73% 95.28% 83.83%
oBERTaMEDIUM 85.29% 97.05% 85.17% 83.62% 95.15% 83.74%
oBERTaMEDIUM 90% 81.61% 92.87% 81.32% 82.37% 93.73% 81.79%
oBERTaSMALL 80.80% 91.95% 81.55% 81.10% 92.29% 81.51%
oBERTaSMALL 90% 79.23% 90.15% 79.24% 79.14% 90.06% 79.42%

Table 10: Sparse Transfer performance of the oBERTA
family on the MNLI dataset. Sparse transfer was per-
formed over 10 epochs and sparse transfer with quan-
tization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery F1 Combined Accuracy Recovery F1 Combined
oBERTabase 91.52% 100.00% 90.09% 88.66% 89.86% 98.18% 88.12% 86.73%
oBERTabase 90% 91.01% 99.44% 89.47% 87.92% 91.21% 99.66% 89.68% 88.16%
oBERTabase 95% 90.85% 99.26% 89.21% 87.58% 90.72% 99.12% 89.08% 0.87%
oBERTaMEDIUM 91.35% 99.81% 89.90% 88.44% 91.33% 99.79% 89.80% 88.28%
oBERTaMEDIUM 90% 90.48% 98.86% 88.85% 87.21% 90.60% 99.00% 89.01% 87.42%
oBERTaSMALL 90.72% 99.13% 89.21% 87.71% 89.74 98.06% 87.99 86.25
oBERTaSMALL 90% 89.74% 98.06% 87.99% 86.25% 89.73 98.04% 87.98 86.08

Table 11: Sparse Transfer performance of the oBERTA
family on the QQP dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

as shown in table 12 and sentiment analysis in 13
Finally, looking at performance on token classifi-
cation as shown in table 14

4.1 Inference Benchmark
To evaluate the performance of our inference-
optimized models, we benchmark performance us-

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy Recovery
oBERTabase 95.24% 100.00% 95.44% 100.21%
oBERTabase 90% 93.64% 98.32% 93.28 97.94%
oBERTabase 95% 93.48% 98.15% 92.80 97.23%
oBERTaMEDIUM 93.36% 98.03% 94.08 98.78%
oBERTaMEDIUM 90% 92.24% 96.85% 92.08 96.69%
oBERTaSMALL 93.04% 97.69% 92.52 97.15%
oBERTaSMALL 90% 91.60% 96.18% 91.28 95.84%

Table 12: Sparse Transfer performance of the oBERTA
family on the IMDB dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy Recovery
oBERTabase 94.60 100.00% 92.66 97.95%
oBERTabase 90% 92.78 98.08% 92.546 97.83%
oBERTabase 95% 91.51 96.74% 91.399 96.62%
oBERTaMEDIUM 92.89 98.19% 91.06 96.26%
oBERTaMEDIUM 90% 88.76 93.83% 89.91 95.04%
oBERTaSMALL 90.48 95.64% 91.28 96.49%
oBERTaSMALL 90% 89.34 94.44% 88.65 93.71%

Table 13: Sparse Transfer performance of the oBERTA
family on the SST-2 dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery F1 Accuracy Recovery F1
oBERTabase 99.26% 100.00% 95.51% 99.30% 100.05% 95.98%
oBERTabase 90% 99.11% 99.85% 94.98% 99.05% 99.79% 94.51%
oBERTabase 95% 98.89% 99.63% 93.32% 98.75% 99.48% 92.61%
oBERTaMEDIUM 99.04% 99.77% 94.39% 99.18% 99.92% 95.15%
oBERTaMEDIUM 90% 98.79% 99.53% 93.31% 98.73% 99.46% 92.70%
oBERTaSMALL 99.01% 99.75% 94.00% 98.98% 99.72% 94.13%
oBERTaSMALL 90% 98.47% 99.20% 91.13% 98.25% 98.98% 89.79%

Table 14: Sparse Transfer performance of the oBERTA
family on the CONLL-2003 dataset. The sparse transfer
was performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

ing the popular DeepSparse library version 1.3.2 7

and an Intel Xeon Gold 6238R Processor. Per-
formance is measured using models that have
been sparse-transferred to the SQuAD v1.1 dataset
and exported to a standard ONNX model format.
Benchmarks are run on 4 and 24 cores and a se-
quence length of 384 with batch sizes of 1, 16, and
64. For each model, the benchmark is run for 60
seconds with a warm-up period of 10 seconds, and
we report the throughput (items per second) and
the mean, median, and standard deviation per item
latency. We present a set of summary statistics
of relative speedup across batch sizes and infer-

7pip install deepsparse==1.3.2

7

45

24 Cores 4 Cores

Model BS 1 BS 16 BS 64 BS 1 BS 16 BS 64

BERTbase 1.00 1.00 1.00 1.00 1.00 1.00
oBERTabase 1.00 1.00 1.00 1.00 1.00 1.00
oBERTabase Quantized 3.10 4.29 4.46 4.09 4.31 4.32
oBERTabase 90% 3.29 3.80 3.80 3.60 3.34 3.40
oBERTabase 90% Quantized 4.12 7.05 7.37 7.67 7.59 7.40
oBERTabase 95% 8.72 4.56 4.65 4.12 3.85 4.37
oBERTabase 95% Quantized 4.73 8.22 8.56 9.41 9.06 8.68
oBERTaMEDIUM 1.96 1.99 1.99 1.96 1.99 2.02
oBERTaMEDIUM Quantized 6.20 8.04 8.44 8.43 8.33 8.45
oBERTaMEDIUM 90% 6.35 7.41 6.84 7.83 6.56 6.72
oBERTaMEDIUM 90% Quantized 8.94 12.86 13.65 14.99 14.81 14.95
oBERTaSMALL 3.89 3.96 3.99 3.95 3.97 4.03
oBERTaSMALL Quantized 12.47 14.12 14.08 15.50 15.48 15.70
oBERTaSMALL 90% 12.22 14.40 14.67 14.05 14.19 14.13
oBERTaSMALL 90% Quantized 16.21 21.35 23.96 29.77 27.14 27.58

Table 15: Latency reduction of the oBERTa family con-
cerning the unpruned oBERTabase as measured on 24
and 4 cores. Speedup is measured relative to the latency
reduction in MS/batch, and BS refers to batch size.

ence server configurations as shown in table 15.
Full inference performance results can be found
in the appendix. In analyzing performance, we
can see that the introduction of quantization to a
dense model delivers roughly a 4x speedup while
quantization on sparse models is closer to 2x. With
the introduction of sparsity, 90% leads to slightly
under 4x speedup, while 95% leads to slightly over
4x. The impact of structural pruning is roughly
equivalent to the size of the as a 6-layer model
is two times faster than a 12-layer, and a 3-layer
model is four times faster. Combing compression
forms is only partially additive, as a small (3-layer)
90% quantized model performance is 24x vs the
expected 32x (4x from structural pruning, 2x quan-
tization, 4x unstructured pruning.
Looking at the variation in a speedup by batch size
and the number of cores, we can see that allocat-
ing more cores leads to a smaller gap in inference
speedup, especially with small batches. From this,
we extract that compression is significant when
performing streaming inference (batch size 1) on
smaller CPUs.
Next, we go ahead and benchmark the oBERTa
model performance against existing sparse-transfer
models such as oBERT and PruneOFA using the
models that have been published 8 in Neural
Magic’s Sparse-Zoo 9. We run these models us-
ing four cores and a batch size of 1 and compare
their speedup (or slowdown) relative to their per-

8Since the PruneBERT model is not available in the
zoo, we extrapolate numbers using the performance of our
oBERTabase pruned 90% as both models feature 12 transformer
encoders and 90% sparsity.

9https://sparsezoo.neuralmagic.com/

formance on the SQUAD v1.1 question-answering
benchmark. Results can be found in table 16 and
full results in 45. Looking at the improvements
in accuracy and inference throughput, we find the
oBERTa models are 1.3 to 4 times better than mod-
els with approximately the same accuracy.

Looking at the competitive results, we find

Vs. BERTbase Vs. BERTlarge

Model F1 Recovery Speedup Recovery Speedup
oBERTabase 90% 91.00 102.77% 3.57 100.44% 20.21
oBERTlarge 95% Quantized 90.21 101.87% 3.41 99.57% 19.31

prunedOFAlarge 90% Quantized 89.96 101.59% 2.38 99.29% 13.47
oBERTabase 90% Quantized 89.46 101.03% 7.62 98.74% 43.07

oBERTaMEDIUM 90% 89.26 98.99% 7.78 96.75% 43.99
obertbase 90% Quantized 88.00 99.38% 6.96 97.13% 39.37

oBERTaSMALL 90% 84.66 90.97% 13.95 88.91% 78.91
pruneBERT 90% 84.90 95.88% 3.57 93.71% 73.82

Table 16: Speedups of the oBERTa-family compared to
existing published sparse models compared to the per-
formance of BERTbase and BERT-large. Speedup mea-
sures the reduction in latency of MS/batch. oBERTabase
90% exceeds the accuracy of oBERTlarge 95% quan-
tized despite being faster, oBERTabase 90% quantized
performs at the level of pruneOFAlarge 90% Quantized
despite being 3x faster, oBERTaMEDIUM 90% can out-
perform oBERTbase 90% Quantized despite being 30%
faster, and oBERTaSMALL 90% performs on par with
pruneBERT 90% despite being nearly four times faster.

that the oBERTa-* models can deliver significant
gains in performance (F1) relative to speedups.
The oBERTabasePruned 90% Quantized model
achieves an undertaking that nearly matches
pruneOFA-large 90% Quantized while deliver-
ing nearly 13x faster inference. Similarly, the
oBERTASMALL 90% model provides similar accu-
racy to PruneBERT despite being over four times
faster.

5 Discussion

Sparse Models require higher learning rates as
shown in the tables in A.8 sparse language mod-
els can be used as general-purpose contextual lan-
guage models but require the use of a much higher
learning rate. When using structurally pruned mod-
els like the 6-layer oBERTaMEDIUM and the 3-layer
oBERTaSMALL, the optimal learning rate does not
vary much within the same task despite the model
size. With the introduction of sparsity, the learning
rate needs to scale, usually by a factor of five or ten.
We find this counterintuitive as the sparse models
have fewer parameters to tune, so we would expect

8

46

them to prefer a much lower learning rate. We at-
tribute this to the loss of expressivity in the network
driven by its sparsity. Since the network has fewer
degrees of freedom to optimize the points which
can be optimized move much more than those that
cannot.
Larger models compress better as shown by the
gap between the sparse and dense models and the
gap between models and their quantized counter-
parts. While 12-layer models can receive 90 or 95
% sparsity and quantization with little to no loss in
accuracy, the three and 6-layer models see a much
bigger dip. This aligns with Li et al. 2020 (Li et al.,
2020) in which they demonstrate that larger models
are more robust to pruning and quantization. Em-
pirically, this makes sense as the smaller models
have fewer degrees of freedom, and other portions
of the network cannot counteract the reduction in
expressivity caused by pruning and quantization.
Bigger Teachers are not always better as shown
in the table in A.9 the introduction of larger teach-
ers does not always lead to improvements in accu-
racy. The impact is highly task and model depen-
dent as some datasets like MNLI or QQP see little
impact in using larger teachers, yet datasets like
SQUAD or SQUAD v2.0 see large impacts, which
are even more pronounced when the student model
is smaller.
Frozen embeddings can help, but not always. As
shown by A.10 the impact of freezing the embed-
dings is highly task-specific and inconsistent across
tasks or models. In question answering, freezing
leads to 1-2 point movement for unpruned mod-
els and 5-7 points for pruned models. In other
tasks like QQP and MNLI, the impact of frozen
embeddings tends to be minor or none.

6 Limitations

While our approach is effective at compressing
models, it is not the most efficient. In order to
discover the most optimal compression approaches
and evaluate their performance performed hun-
dreds of experiments. As a result, scaling our
approach to every novel language understanding
language model is not tractable. Another limita-
tion of our work is we did not track the complete
compute utilization of our entire experimentation
process but we can provide some estimates. Exper-
iments in pruning during fine-tuning leveraged a

single V100 16 GB GPU and took approximately
14 hours per experiment. The pre-training of struc-
turally pruned models with knowledge distillation
required 4 A100 40GB GPUs for approximately
72 hours. Pruning during pre-training with Knowl-
edge distillation required approximately 100 hours
on the same setup. Task-specific fine-tuning hap-
pened on a single V100 16GB GPU and depending
on the size of the task was anywhere from a few
minutes to 20 hours. Based on all of our exper-
iments we estimate 400 V100 hours of pruning
during fine-tuning, roughly 16,000 A100 hours10

for pretraining, and assuming an average of 10
V100 hours per sparse transfer run, a total of 4000
V100 hours for sparse-transfer and sparse-transfer
with quantization.

7 Conclusion and Future Work

References
Daniel Fernando Campos, Alexandre Marques, Tuan
Anh D. Nguyen, Mark Kurtz, and ChengXiang Zhai.
2022. Sparse*bert: Sparse models are robust. ArXiv,
abs/2205.12452.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Unsupervised cross-
lingual representation learning at scale.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL.

Wikimedia Foundation. 2021. Wikimedia downloads.

Song Han, Huizi Mao, and William J. Dally. 2015. A
deep neural network compression pipeline: Pruning,
quantization, huffman encoding. ArXiv.

Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. 2015.
Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531.

Eugenia Iofinova, Alexandra Peste, Mark Kurtz, and
Dan Alistarh. 2021. How well do sparse imagenet mod-
els transfer? 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 12256–
12266.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. Tiny-
bert: Distilling bert for natural language understanding.
ArXiv, abs/1909.10351.

104000 hours and 4 A100 GPUS per hour

9

47

https://doi.org/10.48550/ARXIV.1911.02116
https://doi.org/10.48550/ARXIV.1911.02116
https://dumps.wikimedia.org

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Joseph Hassoun, and Kurt Keutzer. 2021. Learned
token pruning for transformers. Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining.

Eldar Kurtic and Dan Alistarh. 2022. Gmp*: Well-
tuned global magnitude pruning can outperform most
bert-pruning methods. ArXiv, abs/2210.06384.

Eldar Kurtic, Daniel Fernando Campos, Tuan Nguyen,
Elias Frantar, Mark Kurtz, Ben Fineran, Michael Goin,
and Dan Alistarh. 2022. The optimal bert surgeon:
Scalable and accurate second-order pruning for large
language models. ArXiv, abs/2203.07259.

Eldar Kurtić, Daniel Fernando Campos, Tuan Nguyen,
Elias Frantar, Mark Kurtz, Ben Fineran, Michael Goin,
and Dan Alistarh. 2022. The optimal bert surgeon:
Scalable and accurate second-order pruning for large
language models. ArXiv, abs/2203.07259.

Zhen-Zhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019.
Albert: A lite bert for self-supervised learning of lan-
guage representations. ArXiv, abs/1909.11942.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language rep-
resentation model for biomedical text mining. Bioinfor-
matics, 36:1234 – 1240.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin,
K. Keutzer, D. Klein, and Joseph Gonzalez. 2020. Train
large, then compress: Rethinking model size for effi-
cient training and inference of transformers. ArXiv,
abs/2002.11794.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. ArXiv,
abs/1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 142–150, Portland, Oregon, USA.
Association for Computational Linguistics.

Neural Magic. 2023. [link].

Hadi Pouransari and Oncel Tuzel. 2020. Least
squares binary quantization of neural networks. 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 2986–2996.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits of

transfer learning with a unified text-to-text transformer.
ArXiv, abs/1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In Annual Meeting of the Association for
Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016a. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016b. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

SambitSekhar. 2017. First quora dataset release: Ques-
tion pairs.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019a. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019b. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. ArXiv, abs/2005.07683.

S. Shankar. 2017. Identifying quora question pairs
having the same intent. In QQP.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1631–1642,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited devices.
In ACL.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings
of the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003, pages 142–147.

Marcos Vinícius Treviso, Tianchu Ji, Ji-Ung Lee, Betty
van Aken, Qingqing Cao, Manuel R. Ciosici, Michael
Hassid, Kenneth Heafield, Sara Hooker, Pedro Hen-
rique Martins, André F. T. Martins, Peter Milder, Colin
Raffel, Edwin Simpson, Noam Slonim, Niranjan Bal-
asubramanian, Leon Derczynski, and Roy Schwartz.
2022. Efficient methods for natural language process-
ing: A survey. ArXiv, abs/2209.00099.

10

48

http://www.aclweb.org/anthology/P11-1015
https://neuralmagic.com/deepsparse/
https://www.kaggle.com/datasets/sambit7/first-quora-dataset
https://www.kaggle.com/datasets/sambit7/first-quora-dataset
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Elena Voita, David Talbot, F. Moiseev, Rico Sennrich,
and Ivan Titov. 2019. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the
rest can be pruned. In ACL.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages
1112–1122. Association for Computational Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy J. Lin. 2020. Deebert: Dynamic early exiting
for accelerating bert inference. In ACL.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. 2019
Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing - NeurIPS Edition (EMC2-
NIPS), pages 36–39.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen,
and Moshe Wasserblat. 2021. Prune once for all: Sparse
pre-trained language models. ArXiv, abs/2111.05754.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Rus-
lan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 19–27.

A Appendix

A.1 Model Generation Approach
oBERTa models are generated in a multi-stage ap-
proach with details found in figure 2

A.2 Roberta and Training Methodology
RoBERTa (Liu et al., 2019) is a language model
that can best be considered more robust and op-
timized for the popular BERT model. While the
models share architectures, their training differs as
RoBERTA uses a 160 GB corpus for 10 epochs
compared to the 4GB one used by BERT. As a
result, the training time of RoBERTA is about 100
times higher than its predecessor.
Given this high cost of training and the regular need
for longer training when pruning a model (Kurtić
et al., 2022), we focus on compressing RoBERTa
without following its expensive pre-training regime.

Our research leverages the popular open-source
compression library SparseML11 to implement un-
structured pruning, structured pruning, and quanti-
zation via quantization-aware training. In all our
experiments, we prune each network component
independently using either GMP or OBS (Kurtic et
al.). One exception is the embeddings layer, which
we do not prune.

Table 17: Pretraining performance using knowledge
distillation from a RoBERTa large model.

Model ACC Loss Perplexity
oBERTabase 0.580 3.775 43.593
oBERTabase 90% 0.506 4.448 85.420
oBERTabase 95% 0.439 4.734 113.702
oBERTamedium 0.533 4.296 73.391
oBERTamedium 90% 0.631 1.896 6.662
oBERTasmall 0.465 4.561 95.670
oBERTasmall 90% 0.404 4.669 106.614

A.3 Model Details

Model details can be found in table 18

A.4 Dataset Details

Dataset statistics are detailed in Table 19.

A.5 Teacher models

Performance of the RoBERTabaseand
RoBERTalarge models on our sparse transfer
datasets. We explore the optimal hyperparameters
relative to performance in published results as
shown in table 20 and 21

A.6 Upstream Pruning

Following the findings that more extensive teach-
ers distill better (Liu et al., 2019) and our experi-
ments, we use both RoBERTabaseand RoBERTalarge
as teachers eventually find the large model works
better. Using this teacher, we use the parameters
shown in table 22 to prune the models for oBERTa.
This same set of parameters is applied to the struc-
turally pruned models, but there is no induced spar-
sity.

11https://github.com/neuralmagic/sparseml

11

49

http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

Figure 2: The set of oBERTa language models follows a compounding compression approach. First models are
structurally pruned and further pre-trained using KD and a RoBERTalarge teacher. Next, each model is pruned during
additional pre-training to a target sparsity. After pruning, the sparsity pattern is locked, and models are fine-tuned
with KD on specialized NLP tasks. During fine-tuning, models may be quantized for additional improvements in
inference efficiency.

Model Parameters Prunable Sparse Sparsity size (MB) Compression GZIP size (MB) Compression
oBERTabase 124,647,170 85,526,016 1,539 0.0% 474 1.00 435 1.00
oBERTabase Quantized 124,647,170 85,526,016 1,539 0.0% 119 3.98 85 5.12
oBERTabase 90% 124,647,170 85,526,016 76,442,738 89.4% 474 1.00 183 2.38
oBERTabase 90% Quantized 124,647,170 85,526,016 76,442,738 89.4% 119 3.98 42 10.36
oBERTabase 95% 124,647,170 85,526,016 80,689,466 94.3% 474 1.00 163 2.67
oBERTabase 95% Quantized 124,647,170 85,526,016 80,689,466 94.3% 119 3.98 37 11.76
oBERTaMEDIUM 82,119,938 43,058,688 1,538 0.0% 312 1.52 289 1.51
oBERTaMEDIUM Quantized 82,119,938 43,058,688 1,538 0.0% 78 6.08 53 8.21
oBERTaMEDIUM 90% 82,119,938 43,058,688 38,222,138 88.8% 312 1.52 161 2.70
oBERTaMEDIUM 90% Quantized 82,119,938 43,058,688 38,222,138 88.8% 78 6.08 33 13.18
oBERTaSMALL 60,856,322 21,825,024 1,538 0.0% 233 2.03 214 2.03
oBERTaSMALL Quantized 60,856,322 21,825,024 1,538 0.0% 60 7.90 39 11.15
oBERTaSMALL 90% 60,856,322 21,825,024 19,111,068 87.6% 233 2.03 149 2.92
oBERTaSMALL 90% Quantized 60,856,322 21,825,024 19,111,838 87.6% 60 7.90 30 14.50

Table 18: Description of the oBERTa model family and their sparsity and size. Prunable parameters are the sum of
all non-embedding parameters in the model. Since sparsity profiles are assigned at a module level, overall sparsity
profiles do not perfectly match the target 90% or 95% which are targeted.

A.7 Sparse Transfer Hyper-parameters

Our work aims not to produce the highest possible
performance of a sparse language model. Instead,
we aim to make light language models that perform
well on various tasks with minimal hyperparameter
optimization. As a result, in all of our experiments,
we leverage the parameters shown in 23 and 24
and perform a grid search over them.

A.8 Learning Rate

In our exploration of sparse transfer learning, we
perform a wide study on the impact of the optimal
learning rate for each task and each model in the
oBERTa family. The results as shown in table 25

A.9 Knowledge Distillation

In our exploration of sparse transfer learning, we
perform a wide study on the impact of knowledge
distillation. Across tasks, we look at the impact
using no teacher, RoBERTabaseand RoBERTalarge

12

50

Dataset Train Eval

SQuAD v1.1 (examples) 87599 10570
SQuAD v2.0 (examples) 130319 11873

MNLI (examples) 392702 19628

QQP (examples) 363,846 40,430

IMDB (examples) 25000 25000

CONLL2003 (examples) 14041 3250

SST2 (examples) 67349 872

Wikipedia (words) 6078422 -

TBC (words) 74004228 -

Table 19: Statistics for training and evaluation datasets

as shown in tables 26,27,28,29,30,31

A.10 Freezing Embeddings

In our exploration of sparse transfer learning, we
perform a wide study on the impact of freezing
the embeddings during finetuning. Across tasks,
we look at the impact of frozen and unfrozen em-
beddings as shown in tables 32,33,34,35,36, and
37. Besides question answering, we do not find
a strong trend with the impact of frozen embed-
dings. In some tasks, sparse and dense models
perform better with frozen embeddings while not
for others. Focusing on question answering, by
using frozen embeddings dense models see large
losses in F1 score and the opposite can be seen for
pruned models.

A.11 Inference Benchmarks

We provide full results for our experiments
in benchmarking the impact of compression
on inference efficiency as shown in tables
45,43,42,38,40,39,44,44

A.12 Limitations

While much of our work has focused on show-
casing the broad usability of compressed language
models, they are not without fault. While our exper-
iments focus on the compression of RoBERTa, the
size of its training dataset makes complete explo-
ration of the ability of pruning during pretraining
somewhat limited. The work in the paper shows
the ability to compress RoBERTa on a smaller pre-
training dataset but does not contrast it with the
impact of compression on the full dataset.

A second limitation of our work is the high com-
putational demand required for creating public do-
main sparse language models. Despite amortiz-
ing the cost of compression to a few pretraining
training regimes, the reduction of other language
models like ALBERT (Lan et al., 2019) or XLM-
R (Conneau et al., 2019) require completely new
training, pruning, and transfer experiments.

A.13 Responsible NLP Research -
Reproducibility Checklist

A.13.1 Scientific Artifacts

Datasets. We experiment with well-established
benchmarks with usage in many broad domains.
We do not perform any modification or augmenta-
tion in any dataset. Since datasets are not modified,
we did not look for any personal or sensitive con-
tent.
In our pre-training experiments, we leverage the
Toronto Book Corpus (TBC) (Zhu et al., 2015)12

and the Wikipedia (Foundation, 2021)13. For fine-
tuning we make use of SQuAD v1.1 (Rajpurkar
et al., 2016b) 14, SQuAD v2.0 (Rajpurkar et al.,
2018) 15, Quora Duplicate Question Dataset (QQP)
(Shankar, 2017)16, and Multi-Genre Natural Lan-
guage Inference (MNLI) (Williams et al., 2018)
17, Large Movie Review Dataset (IMDB) (Maas
et al., 2011)18, Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013)19, and the shared task
of CoNLL-2003 concerns language-independent
named entity recognition (CONLL-2003) (Tjong
Kim Sang and De Meulder, 2003)20datasets.

Models. The model used as a starting point for
all of our experiments is RoBERta, publicly avail-
able via HuggingFace Hub 21. All other models
presented in this paper will be released in openly-
available repositories along with their compression
recipes, training metrics, and hyper-parameters.

12https://huggingface.co/datasets/bookcorpus
13https://huggingface.co/datasets/wikipedia
14https://huggingface.co/datasets/squad
15https://huggingface.co/datasets/squadv2
16https://huggingface.co/datasets/glue
17https://huggingface.co/datasets/glue
18https://huggingface.co/datasets/imdb
19https://huggingface.co/datasets/glue
20https://huggingface.co/datasets/conll2003
21https://huggingface.co/bert-base-uncased

13

51

Model Training Epochs Batch Size Learning Rate Weight Decay Warmup Target Metric Target Score Actual Recall
SQUAD V1.1 3 16 1.00E-05 0 0 F1 90.40 92.15 101.94%
SQUAD V2.0 3 16 3.00E-05 0 0 F1 82.91 83.53 100.74%
QQP 5 16 2.00E-05 0 0 ACC 91.90 91.52 99.59%
MNLI 3 16 1.00E-05 0 0 ACC 87.60 87.88 100.31%
SST-2 3 16 2.00E-05 0 0 ACC 94.80 94.61 99.80%
CONLL2003 3 16 3.00E-05 0 0 ACC 99.10 99.29 100.19%
IMDB 3 16 1.00E-05 0 0 ACC 94.67 95.24 100.60%

Table 20: Training parameters along with performance metrics and the recovery vs. the published performance of
the same model for the RoBERTa base model

Model Training Epochs Batch Size Learning Rate Weight Decay Warmup Target Metric Target Score Actual Recall
SQUAD V1.1 3 16 1.00E-05 0 0 F1 94.50 94.62 100.12%
SQUAD V2.0 3 16 1.00E-05 0 0 F1 89.40 89.14 99.71%
QQP 3 16 1.00E-05 0 0 ACC 92.20 91.76 99.52%
MNLI 3 16 1.00E-05 0 0 ACC 90.20 90.61 100.45%
SST-2 3 16 1.00E-05 0 0 ACC 96.40 96.22 99.81%
CONLL2003 3 16 3.00E-05 0 0 ACC 99.10 99.39 100.29%
IMDB 3 16 1.00E-05 0 0 ACC 94.67 96.12 101.53%

Table 21: Training parameters along with performance metrics and the recovery vs. the published performance of
the same model for the RoBERTa large model

A.13.2 Computational Experiments
Upstream. During upstream pruning due to the
large size of language models and their associ-
ated teachers we leverage 4x A100 40GB NVIDIA
GPUs. We train for 5 epochs and an entire train-
ing and pruning run takes approximately 72 hours.
Since the cost of such a large compute instance
is high, these experiments were only run with a
single seed and without major hyper-parameter ex-
ploration.
Sparse-Transfer Our experimentation on finetun-
ing our compressed models uses the workhorse
16GB V100. Our sparse-transfer datasets vary
greatly in size and as a result, so do experiments.
Finetuning for CONL2003 takes less than 10 min-
utes while larger datasets like QQP take about 24
hours. Due to the number of datasets which we
evaluate and the number of models in the oBERTa
family, we only perform experimentation with a
single fixed seed.
DeepSparse inference. We pair our compressed
models with DeepSparse (Magic, 2023) a publicly-
available sparsity-aware CPU inference engine. All
models are exported using the standard ONNX22

format. For our competitive benchmarking against
existing compressed language models, we leverage
the model representations shared in the SparseZoo
23. This approach means that some older mod-

22https://onnx.ai/
23https://sparsezoo.neuralmagic.com/

els such as oBERT may have had less optimized
ONNA exports. We believe this difference in ex-
portation causes the nearly 4x improvement in the
performance of oBERTa base vs bert-base.

A.13.3 Computational Packages
All of our experimentation is done using public
libraries and datasets to ensure extensibility and
reproducibility. Our experimentation is done using
NeuralMagic’s SparseML 24 which has specialized
integration with HuggingFace’s Transformers 25

and Datasets 26 libraries.

24https://github.com/neuralmagic/sparseml
25https://github.com/huggingface/transformers
26https://github.com/huggingface/datasets

14

52

5 Epochs

Datasets BookCorpus & English Wikipedia

Batch size 256

Initial learning rate 5e-4
Learning rate schedule linear decay with rewinds
Learning rate rewinds periodic every 0.5 epochs

Max sequence length 512
Weight decay 0.01

Knowledge Distillation
(hardness, temperature) (1.0, 5.5)

Student model dense oBERTa-* model
Teacher model RoBERTalarge

Pruning frequency 100x per epoch

Initial Sparsity 0.7 for 12 layer model, 0.5 for the 6-layer, and 0.3 for the 3-layer

Table 22: Upstream pruning hyper-parameters.

10 Epochs

Initial learning rate 2.1e-4,1.9e-4,1.7e-4,1.5e-4,1.3e-4,1.1e-4,9e-5,7e-5,5e-5,3e-5,2e-5,1e-5
Learning rate schedule linear decay to 0

Batch size 12

Weight Decay 0.0, 0.01, 0.05, 0.1

Knowledge Distillation hardness 1.0, 0.0

Frozen Embeddings 1.0, 0.0

Knowledge Distillation temperature 7.0

Knowledge Distillation Teacher RoBERTabase, RoBERTalarge

Table 23: Sparse-transfer learning hyper-parameters used to fine-tune upstream-pruned models at downstream tasks.
Each Experiment tunes this set of parameters to find a task-specific optimal combination.

20 Epochs

Initial learning rate 2.1e-4,1.9e-4,1.7e-4,1.5e-4,1.3e-4,1.1e-4,9e-5,7e-5,5e-5,3e-5,2e-5,1e-5
Learning rate schedule linear decay to 0. Rewind to 5e-5 for QAT at epoch 10

Freeze Batch Norm Epoch 18

Batch size 12

Weight Decay 0.0, 0.01, 0.05, 0.1

Knowledge Distillation hardness 1.0, 0.0

Frozen Embeddings 1.0, 0.0

Frozen Embeddings Schedule Frozen until epoch 10, unfrozen for QAT

Knowledge Distillation temperature 7.0

Knowledge Distillation Teacher RoBERTabase, RoBERTalarge

Table 24: Sparse-transfer learning with Quantization hyper-parameters used to fine-tune upstream-pruned models
at downstream tasks. Each Experiment tunes this set of parameters to find a task-specific optimal combination.

15

53

Optimal Learning Rate
model SQUAD SQUAD V2 MNLI QQP IMDB SST2 CONLL2003
RoBERTabase 1.00E-05 3.00E-05 1.00E-05 2.00E-05 1.00E-05 2.00E-05 3.00E-05
RoBERTalarge 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 3.00E-05
oBERTabase 1.00E-05 1.00E-05 1.00E-05 2.00E-05 1.00E-05 2.00E-05 3.00E-05
oBERTabase 90% 1.50E-04 1.50E-04 7.00E-05 1.70E-04 1.30E-04 9.00E-05 1.50E-04
oBERTabase 95% 1.50E-04 1.30E-04 9.00E-05 2.10E-04 1.30E-04 9.00E-05 5.00E-05
oBERTaMEDIUM 5.00E-05 5.00E-05 2.00E-05 3.00E-05 3.00E-05 2.00E-05 3.00E-05
oBERTaMEDIUM 90% 1.50E-04 1.30E-04 1.50E-04 1.50E-04 5.00E-05 1.50E-04 1.50E-04
oBERTaSMALL 1.50E-04 1.50E-04 3.00E-05 5.00E-05 3.00E-05 5.00E-05 3.00E-05
oBERTaSMALL 90% 1.50E-04 1.50E-04 2.10E-04 2.10E-04 1.50E-04 2.10E-04 1.90E-04

Table 25: Sparse-transfer learning with Quantization hyper-parameters used to fine-tune upstream-pruned models
at downstream tasks. Each Experiment tunes this set of parameters to find a task-specific optimal combination.

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 91.97 92.78 92.55
oBERTabase 95% 91.40 91.17 91.514
oBERTaMEDIUM 90.94 91.86 91.78
oBERTaMEDIUM 90% 87.16 87.16 89.56
oBERTaSMALL 89.56 88.65 90.83
oBERTaSMALL 90% 85.58 89.22 89.45

Table 26: Impact of knowledge distillation on the accu-
racy (matched) MNLI Dataset across model sizes for
the various sizes of oBERTa as compared to the regu-
larly trained baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52 N/A N/A
oBERTabase 90% 63.18 91.01 90.93
oBERTabase 95% 90.46 90.45 90.72
oBERTaMEDIUM 90.75 90.96 90.96
oBERTaMEDIUM 90% 89.93 90.41 89.82
oBERTaSMALL 86.63 87.34 87.65
oBERTaSMALL 90% 88.72 89.40 87.50

Table 27: Impact of knowledge distillation on the ac-
curacy QQP Dataset across model sizes for the various
sizes of oBERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52 N/A N/A
oBERTabase 90% 91.97 92.78 92.55
oBERTabase 95% 91.4 91.17 91.514
oBERTaMEDIUM 90.94 91.86 91.78
oBERTaMEDIUM 90% 87.16 87.16 89.56
oBERTaSMALL 89.56 88.65 90.83
oBERTaSMALL 90% 85.58 89.22 89.45

Table 28: Impact of knowledge distillation on the accu-
racy SST-2 Dataset across model sizes for the various
sizes of oBERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 99.17 99.08 99.11
oBERTabase 95% 98.89 98.47 97.51
oBERTaMEDIUM 99.21 99.16 99.19
oBERTaMEDIUM 90% 99.01 98.8 98.79
oBERTaSMALL 99.05 98.95 98.94
oBERTaSMALL 90% 98.88 98.55 98.55

Table 29: Impact of knowledge distillation on the ac-
curacy on the CONLL2003 Dataset across model sizes
for the various sizes of oBERTa as compared to the
regularly trained baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 89.01 90.86 90.92
oBERTabase 95% 87.06 89.84 89.21
oBERTaMEDIUM 84.36 88.20 85.74
oBERTaMEDIUM 90% 84.71 89.26 88.61
oBERTaSMALL 82.00 80.77 77.08
oBERTaSMALL 90% 73.31 84.66 83.13

Table 30: Impact of knowledge distillation on the F1
SQUAD v1.1 Dataset across model sizes for the various
sizes of oBERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 75.57852204 80.25256971 81.32561567
oBERTabase 95% 72.61 77.67 77.98
oBERTaMEDIUM 69.42634 70.97328 71.55996
oBERTaMEDIUM 90% 68.25281 76.02975 76.64135
oBERTaSMALL 66.8281 62.9573 63.1224
oBERTaSMALL 90% 55.3959 70.0796 70.7913

Table 31: Impact of knowledge distillation on the F1
SQUAD v2.0 Dataset across model sizes for the various
sizes of oBERTa as compared to the regularly trained
baseline

16

54

model Frozen Unfrozen
oBERTabase (Target) N/A 87.88%
oBERTabase 90% 84.50 83.81
oBERTabase 95% 83.91 83.41
oBERTaMEDIUM 84.37 83.32
oBERTaMEDIUM 90% 81.61 77.00
oBERTaSMALL 80.24 80.36
oBERTaSMALL 90% 78.46 74.25

Table 32: Impact of frozen vs trained embeddings on
the accuracy (matched) MNLI Dataset across model
sizes for the various sizes of oBERTa as compared to
the uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 90.93% 90.99%
oBERTabase 95% 90.72% 90.85%
oBERTaMEDIUM 90.96% 91.35%
oBERTaMEDIUM 90% 89.82% 90.48%
oBERTaSMALL 90.59% 90.72%
oBERTaSMALL 90% 89.40% 89.74%

Table 33: Impact of frozen vs trained embeddings on
the accuracy on QQP across model sizes for the various
sizes of oBERTa as compared to the uncompressed
baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 92.55 91.74
oBERTabase 95% 91.514 91.4
oBERTaMEDIUM 91.78 92.89
oBERTaMEDIUM 90% 89.56 88.76
oBERTaSMALL 90.83 90.48
oBERTaSMALL 90% 89.45 89.34

Table 34: Impact of frozen vs trained embeddings on
the accuracy SST2 Dataset across model sizes for the
various sizes of oBERTa as compared to the uncom-
pressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 97.51 98.55
oBERTabase 95% 99.11 99.13
oBERTaMEDIUM 99.19 99.18
oBERTaMEDIUM 90% 98.79 98.9
oBERTaSMALL 98.94 98.94
oBERTaSMALL 90% 98.55 98.69

Table 35: Impact of frozen vs trained embeddings on the
accuracy on CONLL2003 Dataset across model sizes
for the various sizes of oBERTa as compared to the
uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 90.92 83.99
oBERTabase 95% 89.21 87.08
oBERTaMEDIUM 85.74 89.95
oBERTaMEDIUM 90% 88.61 86.63
oBERTaSMALL 77.08 84.64
oBERTaSMALL 90% 83.13 77.43

Table 36: Impact of frozen vs trained embeddings on
SQUAD v1.1 F1 across model sizes for the various sizes
of oBERTa as compared to the uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 71.56 78.05
oBERTabase 95% 81.33 78.45
oBERTaMEDIUM 77.98 76.86
oBERTaMEDIUM 90% 76.64 72.77
oBERTaSMALL 71.32 63.12
oBERTaSMALL 90% 70.79 59.38

Table 37: Impact of frozen vs trained embeddings on the
SQUAD v2.0 Dataset across model sizes for the various
sizes of oBERTa as compared to the uncompressed
baseline

17

55

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 16.69 1.00 59.90 59.82 1.02
oBERTabase Quantized 51.68 3.10 19.34 19.28 0.58
oBERTabase 90% 54.87 3.29 18.21 18.15 0.31
oBERTabase 90% Quantized 68.70 4.12 14.55 14.50 0.20
oBERTabase 95% 145.57 8.72 6.86 6.86 0.11
oBERTabase 95% Quantized 78.90 4.73 12.66 12.68 0.31
oBERTaMEDIUM 32.78 1.96 30.49 30.44 1.19
oBERTaMEDIUM Quantized 103.47 6.20 9.65 9.60 0.57
oBERTaMEDIUM 90% 106.01 6.35 9.42 9.34 0.28
oBERTaMEDIUM 90% Quantized 149.25 8.94 6.69 6.65 0.42
oBERTaSMALL 64.93 3.89 15.39 15.31 0.66
oBERTaSMALL Quantized 208.09 12.47 4.80 4.78 0.28
oBERTaSMALL 90% 203.95 12.22 4.89 4.86 0.33
oBERTaSMALL 90% Quantized 270.63 16.21 3.69 3.68 0.25

Table 38: Inference performance of the oBERTa model family using a batch size of 1, 24 cores, and a sequence
length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 19.55 1.00 818.23 811.93 15.52
oBERTabase Quantized 83.92 4.29 190.65 189.55 4.21
oBERTabase 90% 74.29 3.80 215.35 214.31 2.47
oBERTabase 90% Quantized 137.83 7.05 116.07 115.43 2.56
oBERTabase 95% 89.07 4.56 179.62 178.92 3.19
oBERTabase 95% Quantized 160.68 8.22 99.56 98.91 2.63
oBERTaMEDIUM 38.95 1.99 410.73 408.13 6.11
oBERTaMEDIUM Quantized 157.12 8.04 101.82 101.27 2.21
oBERTaMEDIUM 90% 144.95 7.41 110.37 109.62 1.56
oBERTaMEDIUM 90% Quantized 251.32 12.86 63.65 63.40 1.76
oBERTaSMALL 77.49 3.96 206.46 205.75 2.07
oBERTaSMALL Quantized 276.10 14.12 57.94 57.43 1.63
oBERTaSMALL 90% 281.57 14.40 56.81 56.73 0.64
oBERTaSMALL 90% Quantized 417.35 21.35 38.32 38.01 1.55

Table 39: Inference performance of the oBERTa model family using a batch size of 16, 24 cores, and a sequence
length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 19.02 1.00 3365.11 3352.63 29.49
oBERTabase Quantized 84.80 4.46 754.73 749.38 18.69
oBERTabase 90% 72.22 3.80 886.13 881.75 10.65
oBERTabase 90% Quantized 140.14 7.37 456.67 453.59 11.03
oBERTabase 95% 88.35 4.64 724.41 720.43 10.85
oBERTabase 95% Quantized 162.76 8.56 393.21 390.45 12.15
oBERTaMEDIUM 37.94 1.99 1686.85 1685.03 8.09
oBERTaMEDIUM Quantized 160.48 8.44 398.80 396.47 9.27
oBERTaMEDIUM 90% 130.02 6.84 492.22 486.90 9.64
oBERTaMEDIUM 90% Quantized 259.51 13.64 246.61 244.54 7.13
oBERTaSMALL 75.81 3.99 844.15 841.30 8.72
oBERTaSMALL Quantized 267.70 14.07 239.06 237.86 7.02
oBERTaSMALL 90% 278.93 14.67 229.43 228.41 3.43
oBERTaSMALL 90% Quantized 455.71 23.96 140.43 139.81 5.40

Table 40: Inference performance of the oBERTa model family using a batch size of 64, 24 cores, and a sequence
length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 4.89 1.00 204.65 204.93 1.82
oBERTabase Quantized 20.01 4.09 49.95 49.88 0.66
oBERTabase 90% 17.60 3.60 56.82 56.70 0.72
oBERTabase 90% Quantized 37.50 7.67 26.66 26.61 0.38
oBERTabase 95% 20.15 4.12 49.62 49.60 0.54
oBERTabase 95% Quantized 46.02 9.41 21.72 21.70 0.31
oBERTaMEDIUM 9.59 1.96 104.28 104.33 0.90
oBERTaMEDIUM Quantized 41.23 8.43 24.25 24.18 0.33
oBERTaMEDIUM 90% 38.30 7.83 26.10 26.05 0.41
oBERTaMEDIUM 90% Quantized 73.28 14.99 13.64 13.60 0.19
oBERTaSMALL 19.31 3.95 51.78 51.74 0.35
oBERTaSMALL Quantized 75.81 15.50 13.18 13.18 0.19
oBERTaSMALL 90% 68.70 14.05 14.55 14.50 0.20
oBERTaSMALL 90% Quantized 145.57 29.77 6.86 6.86 0.11

Table 41: Inference performance of the oBERTa model family using a batch size of 1, 4 cores, and a sequence
length of 384

18

56

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 5.14 1.00 3113.07 3113.92 19.89
oBERTabase Quantized 22.14 4.31 722.72 719.24 11.40
oBERTabase 90% 17.15 3.34 932.97 931.21 5.76
oBERTabase 90% Quantized 39.03 7.59 409.90 408.71 4.64
oBERTabase 95% 19.80 3.85 808.16 806.80 4.15
oBERTabase 95% Quantized 46.54 9.06 343.75 342.75 4.12
oBERTaMEDIUM 10.24 1.99 1563.00 1557.90 16.53
oBERTaMEDIUM Quantized 42.82 8.33 373.61 372.88 4.05
oBERTaMEDIUM 90% 33.69 6.56 474.88 474.25 3.64
oBERTaMEDIUM 90% Quantized 76.10 14.81 210.24 209.41 2.45
oBERTaSMALL 20.41 3.97 783.81 782.99 6.59
oBERTaSMALL Quantized 79.57 15.48 201.07 200.60 2.12
oBERTaSMALL 90% 72.92 14.19 219.40 218.84 2.53
oBERTaSMALL 90% Quantized 139.50 27.14 114.68 114.45 1.53

Table 42: Inference performance of the oBERTa model family using a batch size of 16, 4 cores, and a sequence
length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 5.06 1.00 12655.34 12680.81 57.78
oBERTabase Quantized 21.88 4.32 2924.89 2921.95 31.78
oBERTabase 90% 17.18 3.40 3724.72 3724.23 15.27
oBERTabase 90% Quantized 37.44 7.40 1709.44 1699.64 26.97
oBERTabase 95% 22.13 4.37 2892.15 2893.08 22.94
oBERTabase 95% Quantized 43.94 8.68 1456.53 1451.76 20.45
oBERTaMEDIUM 10.21 2.02 1567.70 1562.90 14.53
oBERTaMEDIUM Quantized 42.74 8.45 374.35 373.15 4.00
oBERTaMEDIUM 90% 33.99 6.72 470.67 469.99 3.58
oBERTaMEDIUM 90% Quantized 75.64 14.95 211.53 210.80 2.61
oBERTaSMALL 20.42 4.03 783.67 783.29 5.16
oBERTaSMALL Quantized 79.44 15.70 201.40 201.43 2.90
oBERTaSMALL 90% 71.50 14.13 223.77 223.41 1.78
oBERTaSMALL 90% Quantized 139.55 27.58 114.65 114.48 1.53

Table 43: Inference performance of the oBERTa model family using a batch size of 64, 4 cores, and a sequence
length of 384

Model Throughput (items/sec) Speedup vs BERT-Base Speedup vs BERT-Large Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
bertbase 4.923 1.00 5.65 203.1165 202.7077 1.3646
bert-large 0.8706 0.18 1.00 1148.6105 1145.145 9.5526
oBERTabase 4.89 0.99 5.61 204.65 204.93 1.82
oBERTabase Quantized 20.01 4.07 22.99 49.95 49.88 0.66
oBERTabase 90% 17.60 3.57 20.21 56.82 56.70 0.72
oBERTabase 90% Quantized 37.50 7.62 43.07 26.66 26.61 0.38
oBERTabase 95% 20.15 4.09 23.14 49.62 49.60 0.54
oBERTabase 95% Quantized 46.02 9.35 52.86 21.72 21.70 0.31
oBERTaMEDIUM 9.59 1.95 11.01 104.28 104.33 0.90
oBERTaMEDIUM Quantized 41.23 8.37 47.36 24.25 24.18 0.33
oBERTaMEDIUM 90% 38.30 7.78 43.99 26.10 26.05 0.41
oBERTaMEDIUM 90% Quantized 73.28 14.89 84.18 13.64 13.60 0.19
oBERTaSMALL 19.31 3.92 22.18 51.78 51.74 0.35
oBERTaSMALL Quantized 75.81 15.40 87.07 13.18 13.18 0.19
oBERTaSMALL 90% 68.70 13.95 78.91 14.55 14.50 0.20
oBERTaSMALL 90% Quantized 145.57 29.57 167.21 6.86 6.86 0.11
pruneOFA-large 80% Quantized 12.7315 2.59 14.62 78.5322 78.3961 0.4826
prunedOFA-large 90% Quantized 11.7265 2.38 13.47 85.2647 85.1616 0.4292
obert-large 0.876 0.18 1.01 1141.5707 1138.5756 9.0121
obert-large 95% 7.508 1.53 8.62 133.1785 132.9672 1.0091
obert-large 95% Quantized 16.8077 3.41 19.31 59.4828 59.322 0.6445
pruneBERT 17.60 3.57 20.21 56.82 56.70 0.72
obert-large 97% 8.0414 1.63 9.24 124.3431 124.1421 1.0249
obert-large 97% Quantized 15.8631 3.22 18.22 63.0278 62.9979 0.6018
obertbase 90% 18.2881 3.71 21.01 54.6688 54.5896 0.5476
obertbase 90% Quantized 34.2797 6.96 39.37 29.1616 29.0977 0.3156
obertbase 95% 25.1818 5.12 28.92 39.6997 39.5986 0.5805
obertbase 95% Quantized 40.6387 8.25 46.68 24.5986 24.5222 0.3231

Table 44: Inference performance of the other sparse models using a batch size of 1, 4 cores, and a sequence length
of 384 comparing the oBERTa models to previous sparse language models such as pruneOFA (Zafrir et al., 2021)
PruneBERT (Sanh et al., 2020) and oBERT (Kurtić et al., 2022)

19

57

Vs. BERT-Base Vs. BERT-Large
Model F1 Recovery Speed up Recovery Speed up
BERTbase 88.55 100.00% 1.00 97.74% 5.65
BERT-large 90.60 102.32% 0.18 100.00% 1.00
oBERTabase 92.20 104.12% 0.99 101.77% 5.61
oBERTabase Quantized 93.18 105.23% 4.07 102.85% 22.99
oBERTabase 90% 91.00 102.77% 3.57 100.44% 20.21
oBERTabase 90% Quantized 89.46 101.03% 7.62 98.74% 43.07
oBERTabase 95% 89.84 101.46% 4.09 99.16% 23.14
oBERTabase 95% Quantized 88.40 99.83% 9.35 97.57% 52.86
oBERTaMEDIUM 90.36 102.04% 1.95 99.74% 11.01
oBERTaMEDIUM Quantized 90.37 102.06% 8.37 99.75% 47.36
oBERTaMEDIUM 90% 89.26 100.80% 7.78 98.52% 43.99
oBERTaMEDIUM 90% Quantized 86.93 98.17% 14.89 95.95% 84.18
oBERTaSMALL 84.87 95.84% 3.92 93.68% 22.18
oBERTaSMALL Quantized 84.82 95.79% 15.40 93.62% 87.07
oBERTaSMALL 90% 84.66 95.61% 13.95 93.45% 78.91
oBERTaSMALL 90% Quantized 78.71 88.89% 29.57 86.88% 167.21
pruneOFA-large 80% Quantized 90.30 101.98% 2.59 99.67% 14.62
pruneOFA-large 90% Quantized 89.96 101.59% 2.38 99.29% 13.47
oBERT-large 95% 90.19 101.85% 1.53 99.55% 1.01
oBERT-large 95% Quantized 90.21 101.87% 3.41 99.57% 8.62
pruneBERT 84.90 95.88% 3.41 93.71% 19.31
oBERT-large 97% 90.18 101.84% 13.05 99.54% 73.82
oBERT-large 97% Quantized 90.13 101.78% 1.63 99.48% 9.24
oBERTbase 90% 88.47 99.91% 3.22 97.65% 18.22
oBERTbase 90% Quantized 88.00 99.38% 3.71 97.13% 21.01
oBERTbase 95% 88.19 99.59% 6.96 97.34% 39.37
oBERTbase 95% Quantized 88.11 99.50% 5.12 97.25% 28.92

Table 45: Speedups of the oBERTa-family as compared to existing published sparse models as compared to the
performance of BERTbase and BERT-large. Speedup measures the reduction in latency of MS/batch.

20

58

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 59–77
July 13, 2023 ©2023 Association for Computational Linguistics

Quick Dense Retrievers Consume KALE: Post Training Kullback–Leibler
Alignment of Embeddings for Asymmetrical dual encoders

Daniel Campos ∗1, Alessandro Magnani2, and ChengXiang Zhai1

1Department of Computer Science, the University of Illinois Urbana-Champaign
2Walmart Labs

Abstract

In this paper, we consider the problem of
improving the inference latency of language
model-based dense retrieval systems by in-
troducing structural compression and model
size asymmetry between the context and query
encoders. First, we investigate the impact
of pre and post-training compression on the
MSMARCO, Natural Questions, TriviaQA,
SQUAD, and SCIFACT, finding that asymme-
try in the dual-encoders in dense retrieval can
lead to improved inference efficiency. Know-
ing this, we introduce Kullback–Leibler Align-
ment of Embeddings (KALE), an efficient and
accurate method for increasing the inference ef-
ficiency of dense retrieval methods by pruning
and aligning the query encoder after training.
Specifically, KALE extends traditional Knowl-
edge Distillation after bi-encoder training, al-
lowing for effective query encoder compres-
sion without full retraining or index generation.
Using KALE and asymmetric training, we can
generate models which exceed the performance
of DistilBERT despite having 3x faster infer-
ence.

1 Introduction

A bi-encoder-based retrieval, often called dense
retrieval, is a retrieval function that leverages the
vector representation of queries and documents as
a proxy for relevance. Using two encoders, one
for the query and one for the document, the input
data is mapped into a common latent space where
closeness becomes a proxy for relevance.
Dense retrievers have become increasingly popular
due to their ability to capture the semantic relation-
ships between query and document terms. How-
ever, bi-encoder-based models can also be com-
putationally expensive, particularly when dealing

∗ Corresponding author: dcampos3@illinois.edu

1 2 3 4 5

0

−0.25
−0.5
−0.75
−1

−1.25
−1.5
−1.75
−2

Speedup

Im
pa

ct
to

R
ec

al
lA

cc
ur

ac
y

Retrieval Accuracy vs. Speedup

BERTBASE
DistilBERT

BERTBASE-KALE-6layer (ours)
BERTBASE-KALE-3layer (ours)
BERTBASE-KALE-2layer (ours)

Figure 1: Using KALE and asymmetric training on the
lead to when measuring QPS vs. Recall at 100 on the
NQ dataset. Using Asymmetry and KALE, it is possible
to 3x QPS with nearly no loss in accuracy and 4.5x with
under 2% loss in accuracy. We calculate QPS as the
mean number of queries per second with a batch size
of 1 and a max sequence length of 32 on a T4 GPU.
Impact on retrieval accuracy is measured by the relative
drop in retrieval accuracy at 100

with large datasets. As a result, there has been a
growing interest in methods for compressing these
models to reduce their computational complexity
without sacrificing performance.
While the use of smaller models (Wang et al., 2020)
has provided a path to improving model perfor-
mance, compression cannot be adjusted to suit
varying latency needs. In other words, a model
must match latency requirements before it can be
experimented with. Additionally, since bi-encoders
require a complete index generation to evaluate
performance iteratively compressing models and

59

retraining them can be very expensive. Seeing the
bottleneck caused by trying to train compressed
models for retrieval we explore approaches to com-
press models after training. By doing so it becomes
cheaper to evaluate the impact of compression of
retrieval and generate variants of many sizes.
In this paper, we explore the role of asymmetry
in the size of query and document encoders that
leverage language models. Through experiments
on several benchmarks, we demonstrate that our
approach can significantly reduce the number of
parameters in the bi-encoder model without sacri-
ficing performance.
As shown in figure 1, the combination of asymmet-
ric bi-encoders and post-training KALE allows for
3x more QPS than an uncompressed bi-encoder
with less than 1% loss in accuracy and nearly 5x
with less than 2%.
Building on the favorable implications of asym-
metry for efficient inference, we introduce a
compression mechanism called Kullback-Leibler
Allingment of Embeddings (KALE). KALE uses
an alignment of representations to compress mod-
els without requiring any form of retraining or in-
dex regeneration.
To ground our approaches, we evaluate the effec-
tiveness of KALE and asymmetry on several bench-
mark datasets and compare the results to existing
efficient inference approaches.
The following research questions drive our work:

• Is the performance of dense retrieval meth-
ods more driven by the query or document
encoder size?

• Is it possible to compress query encoders with-
out retraining and index regeneration?

• How can dense retrieval asymmetry and post-
training alignment be leveraged to improve
query encoder latency?

It is in answering these questions that we deliver
the following contributions:

• We present the first robust studies on the
role of document-query encoder symmetry,
demonstrating that the size of the document
encoder dominates performance.

• We introduce and demonstrate the effective-
ness of KALE, a post-training compression

and alignment approach demonstrating its ef-
fectiveness and

• We empirically demonstrate on various bench-
marks how Asymmetric Compression can
lead to 4.5 better QPS with 1% loss in recall
accuracy at 100.

2 Related Work

Transformer Based Language Models such as
BERT (Devlin et al., 2019) provide contextual lan-
guage representations built on the Transformer ar-
chitecture (Vaswani et al., 2017) which can be spe-
cialized and adapted for specific tasks and domains
(Lee et al., 2020). Using contextual word repre-
sentations, it becomes relatively easy to excel at a
broad range of natural language processing tasks
such as Question Answering, Text Classification,
and sentiment analysis.
Bi-Encoders, commonly called dual-encoders or
dense retrievers, decompose ranking by leveraging
the inner product of query and document represen-
tations to produce a relevance score for query docu-
ment pairs. While not as accurate at cross-encoders
(Reimers and Gurevych, 2019), they are more effi-
cient for inference and easier to deploy. Bi-encoder
document representations are query invariant, al-
lowing them to be pre-computed and loaded into
an Approximate Nearest Neighbor (ANN) such as
FAISS (Johnson et al., 2019).
At runtime, a query is an encoder into a latent
space, and the k documents are retrieved us-
ing a nearest neighbor algorithm such as HNSW
(Malkov and Yashunin, 2016). Since the entire doc-
ument index has already been created the retrieval
latency is limited to a single call of the query en-
coder.
Bi-encoders commonly leverage LLM such as
BERT (Devlin et al., 2019) to retrieve short pas-
sages of text leading to the task descriptor of Dense
Passage Retrievers (DPR) (Karpukhin et al., 2020).
Driven by their efficiency in deployment and
relevance performance, DPR-based models have
rapidly become the building blocks for systems do-
ing product search (Magnani et al., 2022), open do-
main question answering (Karpukhin et al., 2020)
and customer support (Mesquita et al., 2022).
Efficient Inference study methods and models
which decrease the model execution cost while

2

60

minimizing the losses to model performance.
Knowledge Distillation (Hinton et al., 2015) is a
training method where a model, called the student,
learns to emulate a teacher model, which is com-
monly larger or better performing than the student.
Unstructured pruning removes individual weights
or groups of weights in a model by applying a mask
or setting the weight values to 0. When paired with
a sparsity-aware inference engine, it is possible to
gain 3-5x speedups in inference throughput with
little to no loss in accuracy (Kurtić et al., 2022).
Structured pruning removes fundamental structural
components in a language model, such as individ-
ual attention heads (Voita et al., 2019) or entire
model layers (Sanh et al., 2019). Removing en-
tire model layers is one of the most pervasive ap-
proaches, as latency gains are easy to realize, and
pruning is straightforward.
While their training regimes may differ, models
like DistilBERT (Sanh et al., 2019) and TinyBERT
(Jiao et al., 2020), and MiniLM (Wang et al., 2020)
leverage structural pruning as ways of generation
2-10x speedups.
Methods like quantization (Pouransari and Tuzel,
2020) (Zafrir et al., 2019), early exiting (Xin et al.,
2020) or token pruning (Kim et al., 2021) have
been effective in other NLP tasks. Still, our work
primarily focuses on structured pruning and its re-
lationship with asymmetry. We leave studying the
impacts of asymmetry on these compression meth-
ods to future work.
Asymmetrical deep learning broadly refers to
any non-uniformity in shape or attribute of mod-
els. Traditional modeling approaches favor unifor-
mity as it is preferable for optimization algorithms
(Mihaylova and Martins, 2019), and using models
for inference should match training as closely as
possible (Ranzato et al., 2015) as improvements
in training loss during optimization result in im-
provements in model performance during infer-
ence. However, this does not account for cost
or latency asymmetries during usage. Kasai et
al. demonstrated how the sequence-to-sequence
encoder depth dominates language model perfor-
mance for machine translation (Kasai et al., 2020).
Tay et al. 2021 extend this work by finding a Deep-
Narrow which shows that for broad language mod-
eling, it is possible to have 50% fewer parameters
and a 40% faster inference with no loss in accu-

racy.
Embedding Distillation Concurrent to our work
on bi-encoder compression, Kim et al. 2023 study
how distillation in embeddings leads to general
compression of bi-encoders and cross-encoders
(Kim et al., 2023). Our work differs from theirs as
we focus on the role of asymmetry between query
and document encoders and how to leverage it for
improved inference efficiency.

3 Method

The use of representation models for retrieval
begins with a document space d and a query
space q where each of which is generated by
some model m. Models do not need to share
the same initialization, shape, or size, but their
representation vectors must share size without
some projection. These two models learn a notion
of relevance by training to minimize the distance
of positive query-document pairs as shown in
equation 1 where x is a query vector and y is a
document vector, and · denotes the dot product of
the vectors.

L = 1− x · y
|x||y| (1)

The query and document encoder models are
commonly initialized with a pre-trained language
model such as BERT. Then, using pairs of labels
for positive relevance scores for queries and doc-
uments, the models are trained to minimize the
distance between queries and their relevant docu-
ments (Karpukhin et al., 2020)
While it is common practice to initialize the query
encoder and document encoder with identical lan-
guage models, this ignores the cost asymmetry
of the usage patterns. The document encoder is
usually only used once during a large-scale batch
generation of the index. Index generation happens
in a latency-insensitive environment and can easily
leverage many GPUs and large batch sizes to im-
prove efficiency.
The query encoder runs every time a user issues
a query, which can be irregular and sporadically.
The query encoder responds to each user query
independently. Thus, query encoders often use
a batch size of 1 and commonly leverage small
inference-optimized hardware like the T4 GPU or
small CPUs.

3

61

1236912

0

−10

−20

−30

Query Encoder Layers

Im
pa

ct
to

R
et

ri
ev

al
A

cc
ur

ac
y

Encoder layers Vs. Impact on Retrieval Accuracy

12 document layers
9 document layers
6 document layers
3 document layers
2 document layers
1 document layer

Figure 2: Measuring the impact on recall at 20 on the NQ retrieval dataset by varying the number of transformer
layers for the query encoder and document encoder

Since the document encoder does not run very of-
ten, any improvement in latency produces a single
fixed gain utterly dependent on the corpus size
and index refresh cycle. The query encoder’s user-
facing nature means latency improvements occur
whenever a user queries.

3.1 Role of model symmetry with Bi-encoders

Since the query encoder runs many times online
and the document encoder runs once, offline, we
question: Is there some form of asymmetry be-
tween the query encoder and the document encoder
that can be exploited? Do the two encoders need
to be compressed symmetrically?
To answer this question, we explore the impact on
the performance of pruning the query and docu-
ment encoders on the NQ passage retrieval dataset
(Kwiatkowski et al., 2019). Using a BERT-base
uncased model with 12 transformer encoder lay-
ers, we generate structurally pruned models with
9,6,3,2 and 1 layer. We also further pre-train the
three and six-layer models using knowledge dis-
tillation, represented as 6KD and 3KD, from a 12-
layer model on the Wikipedia-book corpus similar
to distilBERT (Sanh et al., 2019).
Then, using each of these seven models, we train
dense retrieval models on the NQ passage retrieval
dataset with variations of query and document mod-
els resulting in 72 variants. With each of these

models, we generate a full index and evaluate re-
trieval performance on the development portion
of the dataset. We do not tune any parameters to
avoid overfitting and to explore asymmetry without
overoptimizing. Each model’s retrieval accuracy
is evaluated with retrieval sets of depth 20, 100,
and 200. We compare the impact of varying the
encoders to the uncompressed baseline and a dis-
tilBERT model (denoted by 6db).
Looking at the impact of symmetric compression

Table 1: Impact of Structural pruning before fine-tuning
on Retrieval Accuracy on NQ passage retrieval dataset

Layers enc Top 20 Impact Top 100 Impact Top 200 Impact
12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%
6db 73.88% -7.49% 84.74% -1.29% 87.26% -1.31%
9 73.41% -8.08% 83.68% -2.51% 86.51% -2.16%
6KD 75.04% -6.04% 85.15% -0.80% 87.45% -1.10%
6 71.69% -10.23% 83.30% -2.96% 86.04% -2.69%
3KD 73.32% -8.19% 83.43% -2.80% 86.20% -2.51%
3 66.93% -16.20% 80.61% -6.09% 84.49% -4.45%
2 66.87% -16.27% 80.42% -6.32% 83.85% -5.17%
1 54.96% -31.18% 71.88% -16.26% 76.73% -13.22%

as shown in table 1, we see that the impact of com-
pression is more pronounced with a small recall
set as retrieval accuracy impact at 20 is 3x that
of at 200. As shown in table 1 we observe major
accuracy gains by fine-tuning the pruned model
with a 4% gap between 6 and 6KD and a 8% gap
between 3 and 3KD with a 4% gap for recall at 20
on the NQ dataset.
Looking at the impact of asymmetry of the depth

4

62

of encoders as shown in table 2 and figure 2 we
find there is the size of the query and document en-
coders cause similar impacts on retrieval accuracy.
A retriever with 3 layers in the query encoder and
12 in the document encoder loses 11.9% of its re-
trieval accuracy and 12.55% when the sizes of the
document encoder and query encoders are flipped.
These asymmetric retrievers perform better than
the symmetric 3-layer models, which lose 16.2%
which highlights the ability to improve retrieval
performance by having non-uniform compression.
It is worth noting that having a larger document en-
coder is preferable to a larger query encoder which
supports the notion that the document encoder is
more important than the query encoder (Li and Lin,
2021).// Similar results can be seen with the intro-
duction of fine-tuned three and 6-layer models as
shown in table 6. Unsurprisingly, KD-optimized
language models outperform non-distilled mod-
els, and any asymmetrical variant that leverages a
distilled model outperforms the un-distilled vari-
ant. Without further optimization, a model with
a distilled 3-layer query encoder and a 12-layer
document encoder will outperform a model with
symmetrical 6-layer models despite being 2x faster.

3.2 Inference Benchmarks

To evaluate the impact of structural pruning, we
benchmark inference speeds of query encoding
while varying the number of transformer layers.
We perform benchmarking using an Intel Xeon
Gold 6238R Processor and a T4 Nvidia GPU. For
each model, we evaluate the performance on encod-
ing 6500 queries with a batch size of one and a max
context length of 32. For CPU inference, we eval-
uate the performance of models using the ONNX
library 1, and for GPU inference, we evaluate na-
tive Pytorch inference. We repeat each run five
times to ensure consistency and report the mean.
Summary statistics can be found in table 3 and full
results, including percentile, standard deviation,
and confidence intervals, can be found in the ap-
pendix .5.

Table 2: Impact of Structural pruning before fine-tuning
on Retrieval Accuracy on NQ passage retrieval dataset

layersq layersd Top 20 Impact Top 100 Impact Top 200 Impact
12 12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%

9 12 74.27% -7.00% 84.40% -1.67% 86.95% -1.66%
6 12 73.63% -7.80% 84.27% -1.83% 86.79% -1.85%
3 12 69.83% -12.55% 82.58% -3.80% 85.35% -3.48%
2 12 69.67% -12.76% 82.19% -4.25% 84.68% -4.23%
1 12 59.00% -26.12% 75.37% -12.19% 81.00% -8.39%

12 9 74.21% -7.07% 84.40% -1.67% 87.06% -1.53%
9 9 73.41% -8.08% 83.68% -2.51% 86.51% -2.16%
6 9 71.63% -10.30% 83.05% -3.25% 85.98% -2.76%
3 9 67.89% -14.98% 80.94% -5.71% 84.79% -4.10%
2 9 67.15% -15.92% 80.53% -6.19% 83.66% -5.39%
1 9 56.04% -29.83% 73.35% -14.55% 78.12% -11.65%

12 6 72.22% -9.57% 83.41% -2.83% 85.84% -2.91%
9 6 71.61% -10.33% 83.30% -2.96% 85.93% -2.82%
6 6 71.69% -10.23% 83.30% -2.96% 86.04% -2.69%
3 6 66.93% -16.20% 80.28% -6.48% 83.96% -5.04%
2 6 66.12% -17.20% 80.33% -6.42% 83.49% -5.58%
1 6 59.53% -25.46% 75.37% -12.19% 79.83% -9.71%

12 3 70.36% -11.90% 81.72% -4.80% 84.60% -4.32%
9 3 68.67% -14.01% 80.47% -6.25% 84.46% -4.48%
6 3 67.92% -14.95% 80.06% -6.74% 83.85% -5.17%
3 3 66.93% -16.20% 80.61% -6.09% 84.49% -4.45%
2 3 63.30% -20.74% 78.37% -8.71% 83.02% -6.11%
1 3 59.53% -25.46% 75.68% -11.84% 80.08% -9.43%

12 2 69.56% -12.90% 81.33% -5.25% 84.49% -4.45%
9 2 67.92% -14.95% 80.75% -5.93% 84.32% -4.64%
6 2 67.53% -15.43% 80.33% -6.42% 83.82% -5.20%
3 2 66.90% -16.23% 80.36% -6.38% 84.24% -4.73%
2 2 66.87% -16.27% 80.42% -6.32% 83.85% -5.17%
1 2 60.06% -24.80% 75.29% -12.29% 79.75% -9.80%

12 1 57.40% -28.13% 73.24% -14.68% 78.56% -11.15%
9 1 57.51% -27.99% 73.24% -14.68% 77.87% -11.94%
6 1 57.26% -28.30% 73.52% -14.35% 78.34% -11.40%
3 1 57.04% -28.58% 73.93% -13.87% 78.39% -11.34%
2 1 56.57% -29.17% 73.71% -14.13% 77.98% -11.81%
1 1 54.96% -31.18% 71.88% -16.26% 76.73% -13.22%

layers size compressed size method QPS Speedup
12 418 387 GPU 105.852 1.00
9 337 212 GPU 139.494 1.32
6 256 236 GPU 172.338 1.63
3 175 161 GPU 299.45 2.83
2 148 136 GPU 441.422 4.17
1 121 111 GPU 660.64 6.24
12 418 387 CPU 47.278 1.00
9 337 212 CPU 63.24 1.34
6 256 236 CPU 90.386 1.91
3 175 161 CPU 166.012 3.51
2 148 136 CPU 229.666 4.86
1 121 111 CPU 378.534 8.01

Table 3: Variation in model throughput according to the
serving method and the number of transformer layers.
Structural pruning can lead to a 6 and 8-layer perfor-
mance increase on GPU and CPU and pruning a model
to 3 layers allows a CPU to offer better inference per-
formance than the GPU.

Table 4: Impact of structural pruning with and without
KALE on Accuracy at 100 across various datasets.

Layers KALE NQ TriviaQA MSMARCO SCIFACT SQUAD
12 N/A 85.84% 85.84% 88.77% 90.70% 77.16%
9 N 79.97% 79.97% 82.01% 71.07% 71.38%
9 Y 84.90% 84.90% 86.16% 84.87% 73.54%
6 N 68.20% 68.20% 72.68% 22.98% 59.97%
6 Y 83.68% 83.68% 84.68% 85.13% 69.87%
3 N 43.88% 43.88% 11.39% 40.80% 34.42%
3 Y 81.14% 81.14% 82.11% 82.57% 64.37%
2 N 46.90% 46.90% 31.46% 42.66% 37.01%
2 Y 81.94% 81.94% 81.96% 82.57% 63.72%
1 N 12.22% 12.22% 0.00% 3.17% 11.66%
1 Y 71.33% 71.33% 54.36% 66.83% 51.39%

5

63

4 KL Alignment of Embeddings

While training asymmetric models can improve
latency, it requires novel training regimes and
experimentation, and existing workloads need
to regenerate their entire index to take advan-
tage of any inference speedups. Generation of
the passage index can take longer than model
training (Karpukhin et al., 2020), which makes
regenerating a new index and retraining a model to
meet changing latency requirements an inefficient
experimentation pathway.
Moreover, coupling asymmetry into training
makes generating query encoder variants more
difficult, as each encoder requires its own index
and document encoder.
Motivated by this bottleneck, we introduce
Kullback-Leibler Allingment of Embeddings
(KALE), a simple method of improving bi-encoder
latency by aligning the embeddings of compressed
models. KALE is applied after model training and
leverages large batch sizes to make compression
computationally inexpensive and independent
of training. A single V100 GPU KALE can
produce a compressed query encoder in less than 5
minutes.
First, a bi-encoder model trains with separate
query and document encoders. When training
is complete, the document encoder, edocument,
is frozen, and using the query encoder, eq, a
structurally pruned copy, eq′ , is made. Then, using
a sample of queries, the eq′ model is fine-tuned
to minimize the KL divergence of their query
representations as shown in equation 2. While
the KL divergence is a measure of differences
in probability distributions it has been applied
successfully for representation alignment (Kim
et al., 2023). To leverage it, we treat each of the
representation vectors as a probability over a set of
logits.

DKL(eq′ ∥ eq) =
∑

x∈X
eq′(x) log

(
eq′(x)

eq(x)

)
. (2)

We explored the use of various distance functions
such as cosine similarity, Manhattan distance, and
the KL divergence but found little sensitivity in
any metric besides KL divergence. We believe this
is due to us freezing the document representations,

1https://onnx.ai/

and as a result, cosine distance allows the query
embeddings to drift more than probability distribu-
tion matching methods. To explore this further, we
experiment with tuning the temperature for the KL
divergence and add a loss scaling factor but find a
temperature of one and a scaling factor of ten to be
most optimal.
Additionally, we explored using a contrastive loss
with random negative and hard negatives mined
from the trained encoder but found no positive
impact for either method. We leave further explo-
ration of training objective improvement for future
work.

4.1 Experimental Results

We evaluate the effectiveness of KALE by tak-
ing uncompressed BERTBASE models and pruning
them with and without KALE on a variety of well-
established passage retrieval benchmarks. First,
models are trained, and indexes are generated us-
ing un-optimized BERTBASE models. Next, the
document encoders are frozen, and the query en-
coders are structurally pruned to have 9,6,3,2 or
1 transformer layer. Finally, query encoders are
aligned using KALE, and we compare the perfor-
mance of compressed models by comparing the
impact on retrieval accuracy at 20,100, and 200.
To aid reproducibility, each model is trained using
the Tevatron (Gao et al., 2022) 2 library, which
makes use of hugginface’s transformers to pro-
vide a simple interface for exploring neural rank-
ing models. Our experiments focus on the plain
BERTBASE-uncased 12-layer transformer model.
While never more capable models exist, the unal-
tered BERT model is widely used in production
workloads, which our experiments seek to emulate.
Our work aims not to produce the highest possi-
ble retrieval accuracy for a dense encoder. Instead,
our goal is to find the role of asymmetry in bi-
encoder models. As a result, we leverage the well-
established parameters in all of our experiments
without using an advanced methodology like con-
trastive or curriculum learning.
There are fewer parameters for using KALE, and
we deliberately do not optimize on anything but
the loss between eq and eq′ . In general, higher
degrees of pruning require longer training with
smaller batches.

2https://github.com/texttron/tevatron

6

64

1236912

−10
−20
−30
−40
−50
−60
−70
−80
−90

Query Encoder Layers

Im
pa

ct
to

R
et

ri
ev

al
A

cc
ur

ac
y

Query Encoder layers Vs. Impact on Retrieval Accuracy on NQ

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

1236912

−10
−20
−30
−40
−50
−60
−70
−80
−90

Query Encoder Layers
Im

pa
ct

to
R

et
ri

ev
al

A
cc

ur
ac

y

Query Encoder layers Vs. Impact to Retrieval Accuracy on TriviaQA

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

1236912

−10
−20
−30
−40
−50
−60
−70
−80
−90

Query Encoder Layers

Im
pa

ct
to

R
et

ri
ev

al
A

cc
ur

ac
y

Query Encoder layers Vs. Impact to Retrieval Accuracy on MSMARCO

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

1236912

−10
−20
−30
−40
−50
−60
−70
−80
−90

Query Encoder Layers

Im
pa

ct
to

R
et

ri
ev

al
A

cc
ur

ac
y

Query Encoder layers Vs. Impact on Retrieval Accuracy on SQUAD

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

1236912

−10
−20
−30
−40
−50
−60
−70
−80
−90

Query Encoder Layers

Im
pa

ct
to

R
et

ri
ev

al
A

cc
ur

ac
y

Query Encoder layers Vs. Impact on Retrieval Accuracy on SCIFACT

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

Figure 3: Impact of structural pruning with and without KALE on the NQ, MSMARCO, TriviaQA, SciFACT, and
SQuAD Passage Retrieval dataset with the recall set sizes of 20,100, and 200. Across datasets, we see a consistent
trend where KALE is effective but most effective when the network is heavily pruned and recall set sizes are small.
When the model is pruned to 2 or 1 layer with a recall set size of 20, the difference between using KALE or not can
be up to 10 times the loss in recall accuracy

7

65

Datasets We use a wide variety of standard dense
retrieval benchmarks, including MSMARCO V1.1
3 (Campos et al., 2016), NQ Passage Ranking 4

(Kwiatkowski et al., 2019), SciFact Passage Rank-
ing 5 (Wadden et al., 2020), TriviaQA passage
Ranking 6 (Joshi et al., 2017), and SQUAD Pas-
sage Ranking 7 (Rajpurkar et al., 2016).
For each dataset, we evaluate performance by mea-
suring the recall accuracy with retrieval depths of
20,100, and 200. Additionally, for the MSMARCO
dataset, we also report MRR@10; for Scifact, we
also report NDCG @10 and RR@10.
Computational Experiments Our experimenta-
tion on fine-tuning our compressed models uses
a 16 GB V100 GPU. Experiments in bi-encoder
model training leverage 1 V100 for the MS-
MARCO and 4 for each other experiment. Due
to the vast number of models and datasets we train
on, each experiment happens with the same fixed
seed.

4.2 Evaluating KALE

We compare the performance of using KALE for
post-training compression in figure 3 across the
five datasets and see a fairly consistent trend. When
the recall set is small and the query encoders are
pruned to a high degree, the impact of KALE is
most visible, often driving over 50 improvements
in retrieval accuracy. Additionally, using KALE
allows the models to have a steady and gradual
drop in recall accuracy relative to speedup instead
of the sharp drop shown by the regular usage of
structural pruning. Without KALE, post-training
compression causes a 20-50% loss in retrieval ac-
curacy. With the use of KALE, these losses are
cut to 1-10%. In practice, this allows using one or
2-layer encoder models running with CPU-based
inference with minor impacts on accuracy.
We also notice a surprising performance improve-

ment between 3 and 2-layer query encoders with
and without KALE. We believe this shows the phe-
nomena studied elsewhere: the first and last layers

3https://huggingface.co/datasets/Tevatron/msmarco-
passage

4https://huggingface.co/datasets/Tevatron/wikipedia-nq
5https://huggingface.co/datasets/Tevatron/scifact
6https://huggingface.co/datasets/Tevatron/wikipedia-

trivia
7https://huggingface.co/datasets/Tevatron/wikipedia-

squad

Model Layers KALE MSMARCO NQ TriviaQA SQUAD SCIFACTS
BERTBASE 12 N 88.77% 85.84% 85.03% 77.16% 90.70%

BERTBASE 6 Y 84.68% 83.68% 83.01% 69.87% 85.13%
6kd − 6kd 6 N 88.19% 85.15% 84.96% 71.94% 91.23%
6db − 6db 6 N 88.35% 84.74% 84.83% 71.69% 89.37%
6kd − 3kd 6 N 86.50% 85.37% 84.04% 70.89% 89.20%

BERTBASE 3 Y 82.11% 81.14% 81.67% 64.37% 82.57%
3kd − 3kd 3 N 86.13% 83.66% 84.11% 71.98% 89.40%
3kd − 6kd 3 N 84.79% 85.76% 83.91% 67.85% 88.63%
6kd − 3kd 3 Y 82.95% 83.43% 82.33% 63.77% 90.37%
6kd − 6kd 3 Y 86.75% 80.78% 83.48% 64.14% 91.70%

BERTBASE 2 Y 81.96% 81.94% 81.23% 67.00% 82.57%
3kd − 3kd 2 Y 84.23% 82.71% 83.02% 67.02% 91.33%
3kd − 6kd 2 Y 85.57% 84.27% 82.90% 62.75% 88.37%
6kd − 3kd 2 Y 83.24% 83.02% 82.13% 62.52% 89.93%
6kd − 6kd 2 Y 85.77% 80.39% 83.32% 52.74% 91.93%

BERTBASE 1 Y 48.05% 71.33% 75.40% 51.39% 66.83%
3kd − 3kd 1 Y 66.69% 77.17% 80.82% 55.62% 76.03%
3kd − 6kd 1 Y 72.13% 79.81% 80.23% 52.26% 78.67%
6kd − 3kd 1 Y 71.26% 76.57% 78.65% 50.88% 77.07%
6kd − 6kd 1 Y 70.70% 74.71% 80.31% 52.74% 77.89%

Table 5: Impact of model asymmetry and use of KALE
for structural pruning on the Retrieval at 100 accuracies
across various datasets. Layers refer to the number of
transformer encoder layers in the query encoder.

do most of the work (Oh et al., 2022).

4.3 Aiding Asymmetry with KALE

Seeking to optimize compression further, we com-
bine KALE with asymmetrical finetuning and eval-
uate the results similarly to our earlier experiments.
Results on the impact of KALE and asymmetry
on the five datasets on the recall accuracy at 100
can be found in table 5 where 3kd − 6kd denotes a
three-layer query encoder and six-layer document
encoder, 3kd − 3kd denotes dual three layer en-
coders. Full results and metrics for each task can
be found in the appendix section .4.

First, it is immediately observable that post-
training compression via KALE performs worse
than models natively designed for that size. We
believe this is due to the convergence of the KALE
models to have some distance from the uncom-
pressed model because of dropout. We experi-
mented with not using dropout in KALE, but model
performance quickly suffered.
Looking at the best retrieval accuracy vs. the model
speedups shown in figure 4, we can see a substan-
tial variation in the impact of compression across
datasets. In tasks like SCIfacts, it is possible to get
over 4x speedup while improving accuracy, while
on tasks like SQuAD, even minor speedups lead
to major losses in accuracy. We believe this vari-
ation is driven by the relative difficulty of each
dataset, where easier tasks are more compressible
than harder tasks.
We believe these variations in results highlight the
utility of post-training compression methods like
KALE. Given the task variability in the impact of

8

66

100 200 300 400 500 600

60

70

80

90

Queries Per Second

R
et

ri
ev

al
A

cc
ur

ac
y

Inference Speed (GPU) Vs.Retrieval Accuracy @100

MSMARCO
NQ

TriviaQA
SQUAD
SCIfacts

Figure 4: The impact on retrieval accuracy of the
best combinations of asymmetrical training and KALE
across the NQ, MSMARCO, TriviaQA, SQUAD, and
SCIfacts retrieval datasets

compression, iteration speed and cost are essential
to effectively tuning model inference speed and
accuracy.

5 Limitations

While our work makes a broad study on how to
improve model efficiency our scope is limited. Our
work is limited to the usage of BERT-base and it
is not clear how our compression approaches scale
to more varied architectures like the sequence-to-
sequence models used by DocT5 (Lee et al., 2022)
or more optimized models like RoBERTa (Liu
et al., 2019) or compressed models like MiniLM
(Wang et al., 2020).

6 Conclusion and Future Work

In this work, we have demonstrated how the use
of asymmetry between the query and document
encoders in bi-encoder models can be leveraged
for improved inference efficiencies across CPUs
and GPUs. Using our post-training compression
framework, KALE, we can compress models up
to 6x with little loss in accuracy. Compressing
models without regenerating the document index
or the document encoder makes it practical to have
many query encoders tailored to each use case’s
latency needs.

In the future, we wish to study how asymmetry in
retrieval can be implemented with models which
are widely different and may have different hidden
sizes, such as using MiniLM for the query model
and RoBERTA-Large for the document model.

References
Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg,

Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, Li Deng, and Bhaskar Mitra. 2016. Ms
marco: A human generated machine reading compre-
hension dataset. ArXiv, abs/1611.09268.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL.

Luyu Gao, Xueguang Ma, Jimmy J. Lin, and Jamie
Callan. 2022. Tevatron: An efficient and flexible
toolkit for dense retrieval. ArXiv, abs/2203.05765.

Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. 2015.
Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. ArXiv, abs/1909.10351.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Yu Wu, Sergey Edunov, Danqi
Chen, and Wen tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. ArXiv,
abs/2004.04906.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A. Smith. 2020. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In International Conference on Learning
Representations.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Joseph Hassoun, and Kurt Keutzer. 2021.
Learned token pruning for transformers. Proceed-
ings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining.

9

67

Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer,
Sadeep Jayasumana, Veeranjaneyulu Sadhanala, Wit-
tawat Jitkrittum, Aditya Krishna Menon, Rob Fergus,
and Surinder Kumar. 2023. Embeddistill: A geomet-
ric knowledge distillation for information retrieval.
ArXiv, abs/2301.12005.

Eldar Kurtić, Daniel Fernando Campos, Tuan Nguyen,
Elias Frantar, Mark Kurtz, Ben Fineran, Michael
Goin, and Dan Alistarh. 2022. The optimal bert
surgeon: Scalable and accurate second-order pruning
for large language models. ArXiv, abs/2203.07259.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc V. Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:453–466.

Chia-Hsuan Lee, Aditya Siddhant, Viresh Ratnakar, and
Melvin Johnson. 2022. DOCmT5: Document-level
pretraining of multilingual language models. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 425–437, Seattle, United
States. Association for Computational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36:1234–1240.

Minghan Li and Jimmy J. Lin. 2021. Encoder adap-
tation of dense passage retrieval for open-domain
question answering. ArXiv, abs/2110.01599.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Alessandro Magnani, Feng Liu, Suthee Chaidaroon,
Sachin Yadav, Praveen Reddy Suram, Ajit Puthen-
puthussery, Sijie Chen, Min Xie, Anirudh Kashi,
Tony Lee, and Ciya Liao. 2022. Semantic retrieval
at walmart. Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing.

Yu A. Malkov and Dmitry A. Yashunin. 2016. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 42:824–836.

Tiago Mesquita, Bruno Martins, and Mariana Almeida.
2022. Dense template retrieval for customer support.
In COLING.

Tsvetomila Mihaylova and André F. T. Martins. 2019.
Scheduled sampling for transformers. ArXiv,
abs/1906.07651.

Dongsuk Oh, Yejin Kim, Hodong Lee, Huimin Huang,
and Heu-Jeoung Lim. 2022. Don’t judge a language
model by its last layer: Contrastive learning with
layer-wise attention pooling. ArXiv, abs/2209.05972.

Hadi Pouransari and Oncel Tuzel. 2020. Least squares
binary quantization of neural networks. 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 2986–
2996.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR,
abs/1511.06732.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
ArXiv, abs/1908.10084.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. ArXiv, abs/2005.07683.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Elena Voita, David Talbot, F. Moiseev, Rico Sennrich,
and Ivan Titov. 2019. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the
rest can be pruned. In ACL.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verify-
ing scientific claims. In EMNLP.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020. Minilm: Deep
self-attention distillation for task-agnostic compres-
sion of pre-trained transformers. arXiv preprint
arXiv:2002.10957.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy J. Lin. 2020. Deebert: Dynamic early exiting
for accelerating bert inference. In ACL.

10

68

https://doi.org/10.18653/v1/2022.findings-naacl.32
https://doi.org/10.18653/v1/2022.findings-naacl.32

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. 2019
Fifth Workshop on Energy Efficient Machine Learn-
ing and Cognitive Computing - NeurIPS Edition
(EMC2-NIPS), pages 36–39.

.1 Asymmetrical Dense Retrieval

the impact of structural pruning with asymmetrical
dense retrieval can be found in table 6. Similar to
other works studying the use of knowledge distilla-
tion found (Sanh et al., 2020), the use of distillation
improves performance by a non-negligible level.

Table 6: Impact of Structural pruning with knowledge
distilled variants before fine-tuning on Retrieval Accu-
racy on NQ passage retrieval dataset

layersq layersd Top 20 Impact Top 100 Impact Top 200 Impact
12 12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%

6distilbert 6distilbert 73.88% -7.49% 84.74% -1.29% 87.26% -1.31%
6KD 12 73.99% -7.35% 84.32% -1.77% 86.65% -2.00%
6KD 9 71.63% -10.30% 83.16% -3.12% 85.82% -2.94%
6KD 6 71.00% -11.10% 82.35% -4.06% 85.48% -3.32%
6KD 3 68.42% -14.32% 80.94% -5.71% 84.24% -4.73%
6KD 2 68.39% -14.36% 80.58% -6.13% 84.02% -4.98%
6KD 1 56.62% -29.10% 72.24% -15.84% 77.81% -12.00%

3KD 12 71.72% -10.20% 83.21% -3.06% 85.90% -2.85%
3KD 9 68.95% -13.66% 81.75% -4.77% 84.79% -4.10%
3KD 6 68.09% -14.74% 81.52% -5.03% 84.76% -4.13%
3KD 3 65.84% -17.55% 79.58% -7.29% 83.41% -5.67%
3KD 2 66.81% -16.34% 79.50% -7.38% 82.71% -6.45%
3KD 1 54.46% -31.81% 71.44% -16.77% 76.59% -13.38%

12 6KD 78.78% -1.35% 85.84% 0.01% 87.45% -1.10%
9 6KD 77.26% -3.26% 85.18% -0.77% 87.34% -1.22%
6 6KD 76.45% -4.26% 84.96% -1.03% 87.06% -1.53%
6KD 6KD 75.04% -6.03% 85.15% -0.80% 87.45% -1.10%
3 6KD 74.49% -6.73% 84.24% -1.87% 86.54% -2.13%
3KD 6KD 77.01% -3.57% 85.76% -0.09% 87.42% -1.13%
2 6KD 74.43% -6.80% 83.68% -2.51% 86.32% -2.38%
1 6KD 68.09% -14.74% 79.22% -7.71% 83.19% -5.92%

12 3KD 76.45% -4.26% 84.49% -1.58% 86.70% -1.94%
9 3KD 76.12% -4.68% 84.29% -1.80% 86.26% -2.44%
6 3KD 75.15% -5.89% 83.43% -2.80% 86.45% -2.22%
6KD 3KD 77.40% -3.09% 85.37% -0.54% 87.48% -1.06%
3KD 3KD 73.32% -8.18% 83.43% -2.80% 86.20% -2.51%
3 3KD 71.88% -9.99% 83.66% -2.54% 86.37% -2.32%
2 3KD 72.22% -9.56% 81.93% -4.55% 85.08% -3.77%
1 3KD 67.31% -15.71% 79.25% -7.67% 82.77% -6.39%

.2 Dense Retrieval and KALE
Hyperparameters

Our experiments focus on minimal hyperparameter
optimization. For training of the dense retrievers,
we use the datasets described in 7 where the shorter
training lengths and smaller batch sizes correspond
to MSMARCO while the other datasets leverage
the longer and larger training. For the use of KALE
we perform task-specific grid search using the pa-
rameters described by 8.

.3 KALE

As shown in table 9, we explore the impact of
KALE for the NQ dataset, in table 10, we explore
the impact on TriviaQA, in table 11, we evaluate

Parameter Possible Values

Training Length 3,40 Epochs
Initial learning rate 1e-5, 5e-5, 5e-6
Learning rate schedule Linear

Batch size 8,128,

Negative Passages 1,8

Table 7: Hyperparmaters used to train bi-encoder mod-
els for retrieval

Parameter Possible Values

Training Length 1,10,100 Epochs
Initial learning rate 5e-5, 5e-4, 5e-6
Learning rate schedule constant

Batch size 4,64,256

Loss Temperature 1, 10

Table 8: Hyperparmaters used by KALE for aligning the
embeddings of a pruned model with its uncompressed
target.

the MSARCO passage retrieval, in table 12 we ex-
plore Scifacts, and in table 13 we explore SQUAD.
The impact of pruning and KALE is fairly con-
sistent across datasets, but there are larger losses
on some smaller datasets, such as SCIfacts and
SQUAD.

.4 KALE and Asymmetric Training
Building on the impact of asymmetry and KALE,
we explore comparing them across various datasets
as shown in 14, 15,16, 17, 18.

.5 Inference Benchmarks
Evaluation of inference on GPU can be found in
25,26,27,28 ,29,30 while CPU results can be found
in 19, 20, 21, 22, 23, 24.

11

69

Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%
9 N 68.70% -13.97% 79.97% -6.84% 83.55% -5.51%
9 Y 77.40% -3.08% 84.90% -1.10% 87.04% -1.56%
6 N 50.69% -36.53% 68.20% -20.55% 73.52% -16.85%
6 Y 75.51% -5.45% 83.68% -2.52% 86.18% -2.53%
3 N 27.34% -65.77% 43.88% -48.88% 51.19% -42.11%
3 Y 72.69% -8.98% 81.14% -5.48% 84.76% -4.14%
2 N 27.81% -65.18% 46.90% -45.36% 54.54% -38.32%
2 Y 71.83% -10.06% 81.94% -4.54% 84.54% -4.39%
1 N 4.57% -94.28% 12.22% -85.76% 15.87% -82.05%
1 Y 58.86% -26.30% 71.33% -16.90% 75.65% -14.44%

Table 9: Impact of structural pruning with and without KALE on the NQ retrieval dataset

Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 79.43% 0.00% 85.84% 0.00% 86.63% 0.00%
9 N 71.16% -10.41% 79.97% -5.35% 83.13% -4.04%
9 Y 77.46% -2.48% 84.90% -1.28% 85.95% -0.78%
6 N 53.98% -32.04% 68.20% -18.91% 74.05% -14.52%
6 Y 75.37% -5.11% 83.68% -2.38% 85.25% -1.59%
3 N 28.99% -63.50% 43.88% -43.84% 55.62% -35.80%
3 Y 73.17% -7.88% 81.14% -3.95% 84.04% -2.99%
2 N 33.98% -57.22% 46.90% -39.29% 58.52% -32.45%
2 Y 72.39% -8.86% 81.94% -4.47% 83.64% -3.45%
1 N 3.15% -96.03% 12.22% -90.02% 12.49% -85.58%
1 Y 63.04% -20.63% 71.33% -11.33% 79.23% -8.54%

Table 10: Impact of structural pruning with and without KALE on the TriviaQA retrieval dataset

Layers KALE MRR@10 Impact Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 32.47% 0.00% 70.47% 0.00% 88.77% 0.00% 93.84% 0.00%
9 N 27.68% -14.74% 62.97% -10.65% 82.01% -7.62% 87.62% -6.63%
9 Y 30.38% -6.43% 67.21% -4.64% 86.16% -2.94% 91.85% -2.12%
6 N 20.86% -35.75% 52.66% -25.27% 72.68% -18.12% 79.20% -15.60%
6 Y 28.71% -11.57% 65.44% -7.14% 84.68% -4.60% 90.74% -3.30%
3 N 1.49% -95.42% 5.10% -92.76% 11.39% -87.17% 15.16% -83.85%
3 Y 26.56% -18.19% 62.36% -11.51% 82.11% -7.50% 88.51% -5.68%
2 N 3.48% -89.28% 13.55% -80.77% 31.46% -64.56% 38.71% -58.75%
2 Y 26.10% -19.61% 61.68% -12.48% 81.96% -7.67% 88.41% -5.79%
1 N 0.00% -100.00% 0.00% -100.00% 0.00% -100.00% 0.00% -100.00%
1 Y 13.16% -59.47% 34.64% -50.84% 54.36% -38.77% 62.82% -33.05%

Table 11: Impact of structural pruning with and without KALE on the MSMARCO retrieval dataset

12

70

Layers KALE RR@10 Impact recall 10 Impact NDCG@10 Impact Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 59.11% 0.00% 78.71% 0.00% 62.55% 0.00% 82.38% 0.00% 90.70% 0.00% 93.77% 0.00%
9 N 25.30% -57.20% 39.66% -49.61% 27.46% -56.10% 45.43% -44.85% 71.07% -21.64% 79.03% -15.72%
9 Y 59.76% 1.10% 74.86% -4.89% 62.26% -0.46% 79.63% -3.34% 84.87% -6.43% 89.90% -4.13%
6 N 8.67% -85.33% 15.06% -80.87% 9.16% -85.36% 21.75% -73.60% 22.98% -74.66% 30.17$ -67.83%
6 Y 54.99% -6.97% 72.53% -7.85% 58.22% -6.92% 77.07% -6.45% 85.13% -6.14% 87.70% -6.47%
3 N 9.00% -84.77% 16.00% -79.67% 9.72% -84.46% 22.40% -72.81% 40.80% -55.02% 51.56% -45.01%
3 Y 55.18% -6.65% 77.22% -1.89% 58.30% -6.79% 76.73% -6.86% 82.57% -8.96% 86.90% -7.33%
2 N 9.65% -83.67% 16.93% -78.49% 10.39% -83.39% 24.26% -70.55% 42.66% -52.97% 51.49% -45.09%
2 Y 54.45% -7.88% 71.72% -8.88% 57.71% -7.74% 76.07% -7.66% 82.57% -8.96% 85.90% -8.39%
1 N 0.30% -99.49% 13.30% -83.10% 0.49% -99.22% 1.50% -98.18% 3.17% -96.50% 4.23% -95.49%
1 Y 40.52% -31.45% 55.25% -29.81% 43.23% -30.89% 59.00% -28.38% 66.83% -26.32% 70.22% -25.11%

Table 12: Impact of structural pruning with and without KALE on the SCIFACTS retrieval dataset

Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 63.82% 0.00% 77.16% 0.00% 81.06% 0.00%
9 N 56.16% -12.00% 71.38% -7.49% 76.41% -5.74%
9 Y 58.74% -7.96% 73.54% -4.69% 78.51% -3.15%
6 N 42.79% -32.95% 59.97% -22.28% 66.63% -17.80%
6 Y 53.51% -16.15% 69.87% -9.45% 75.03% -7.44%
3 N 18.67% -70.75% 34.42% -55.39% 42.02% -48.16%
3 Y 47.62% -25.38% 64.37% -16.58% 69.89% -13.78%
2 N 20.82% -67.38% 37.01% -52.03% 45.01% -44.47%
2 Y 46.60% -26.98% 63.72% -17.42% 69.53% -14.22%
1 N 5.30% -91.70% 11.66% -84.89% 15.88% -80.41%
1 Y 34.72% -45.60% 51.39% -33.40% 58.01% -28.44%

Table 13: Impact of structural pruning with and without KALE on the SQUAD retrieval dataset

Model Layers KALE MRR@10 Impact Top 20 Impact Top 100
BERT-base 12 N 32.47% 0.00% 70.47% 0.00% 88.77%
BERT-base 6 Y 28.71% -11.57% 65.44% -7.14% 84.68%
6kd − 6kd 6 N 32.21% -0.78% 69.94% -0.75% 88.19%
6db − 6db 6 N 32.13% -1.02% 70.37% -0.14% 88.35%
6kd − 3kd 6 N 30.44% -6.24% 67.82% -3.76% 86.50%
BERT-base 3 Y 26.56% -18.19% 62.36% -11.51% 82.11%
3kd − 3kd 3 N 30.01% -7.56% 67.42% -4.33% 86.13%
3kd − 6kd 3 N 29.60% -8.82% 66.53% -5.59% 84.79%
6kd − 3kd 3 Y 28.19% -13.16% 64.00% -9.19% 82.95%
6kd − 6kd 3 Y 30.40% -6.37% 67.62% -4.05% 86.75%
BERT-base 2 Y 26.10% -19.61% 61.68% -12.48% 81.96%
3kd − 3kd 2 Y 28.57% -12.00% 65.67% -6.81% 84.23%
3kd − 6kd 2 Y 29.52% -9.09% 66.16% -6.12% 85.57%
6kd − 3kd 2 Y 28.07% -13.54% 64.28% -8.78% 83.24%
6kd − 6kd 2 Y 30.00% -7.58% 66.91% -5.06% 85.77%
BERT-base 1 Y 10.87% -66.53% 29.80% -57.71% 48.05%
3kd − 3kd 1 Y 19.09% -41.21% 47.56% -32.51% 66.69%
3kd − 6kd 1 Y 21.74% -33.04% 52.29% -25.80% 72.13%
6kd − 3kd 1 Y 20.82% -35.88% 50.92% -27.75% 71.26%
6kd − 6kd 1 Y 20.67% -36.33% 51.81% -26.49% 70.70%

Table 14: Impact of model asymmetry and use of KALE for structural pruning on the MSMARCO retrieval dataset

13

71

Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 79.86% 0.00% 85.84% 0.00% 88.42%
BERT-base 6 Y 75.51% -5.45% 83.68% -2.52% 86.18%
6kd − 6kd 6 N 75.04% -6.03% 85.15% -0.80% 87.45%
6db − 6db 6 N 73.88% -7.49% 84.74% -1.29% 87.26%
6kd − 3kd 6 N 77.40% -3.09% 85.37% -0.54% 87.48%
BERT-base 3 Y 72.69% -8.98% 81.14% -5.48% 84.76%
3kd − 3kd 3 N 71.88% -9.99% 83.66% -2.54% 86.37%
3kd − 6kd 3 N 77.01% -3.57% 85.76% -0.09% 87.42%
6kd − 3kd 3 Y 74.16% -7.14% 83.43% -2.81% 85.62%
6kd − 6kd 3 Y 69.28% -13.25% 80.78% -5.89% 84.10%
BERT-base 2 Y 71.83% -10.06% 81.94% -4.54% 84.54%
3kd − 3kd 2 Y 70.08% -12.25% 82.71% -3.65% 85.60%
3kd − 6kd 2 Y 75.40% -5.58% 84.27% -1.83% 86.81%
6kd − 3kd 2 Y 73.49% -7.98% 83.02% -3.29% 85.76%
6kd − 6kd 2 Y 68.42% -14.33% 80.39% -6.35% 83.57%
BERT-base 1 Y 58.86% -26.30% 71.33% -16.90% 75.65%
3kd − 3kd 1 Y 62.69% -21.50% 77.17% -10.10% 81.33%
3kd − 6kd 1 Y 68.14% -14.68% 79.81% -7.02% 82.94%
6kd − 3kd 1 Y 63.82% -20.09% 76.57% -10.80% 80.33%
6kd − 6kd 1 Y 60.03% -24.83% 74.71% -12.97% 78.64%

Table 15: Impact of model asymmetry and use of KALE for structural pruning on the NQ retrieval dataset

Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 79.43% 0.00% 85.03% 0.00% 86.63%
BERT-base 6 Y 75.37% -5.11% 83.01% -2.38% 85.25%
6kd − 6kd 6 N 79.44% 0.01% 84.96% -0.08% 86.60%
6db − 6db 6 N 78.96% -0.59% 84.83% -0.23% 86.61%
6kd − 3kd 6 N 77.31% -2.67% 84.04% -1.17% 85.62%
BERT-base 3 Y 73.17% -7.88% 81.67% -3.95% 84.04%
3kd − 3kd 3 N 77.80% -2.05% 84.11% -1.09% 85.96%
3kd − 6kd 3 N 77.52% -2.40% 83.91% -1.31% 85.72%
6kd − 3kd 3 Y 74.98% -5.60% 82.33% -3.18% 84.35%
6kd − 6kd 3 Y 76.76% -3.36% 83.48% -1.82% 85.40%
BERT-base 2 Y 72.39% -8.86% 81.23% -4.47% 83.64%
3kd − 3kd 2 Y 76.48% -3.71% 83.02% -2.36% 85.16%
3kd − 6kd 2 Y 75.98% -4.34% 82.90% -2.50% 85.00%
6kd − 3kd 2 Y 74.60% -6.08% 82.13% -3.41% 84.44%
6kd − 6kd 2 Y 76.56% -3.61% 83.32% -2.01% 85.49%
BERT-base 1 Y 63.04% -20.63% 75.40% -11.33% 79.23%
3kd − 3kd 1 Y 71.66% -9.78% 80.82% -4.95% 83.56%
3kd − 6kd 1 Y 71.13% -10.45% 80.23% -5.65% 82.86%
6kd − 3kd 1 Y 68.11% -14.25% 78.65% -7.50% 81.89%
6kd − 6kd 1 Y 70.91% -10.73% 80.31% -5.55% 83.05%

Table 16: Impact of model asymmetry and use of KALE for structural pruning on the TriviaQA retrieval dataset

14

72

Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 63.82% 0.00% 77.16% 0.00% 81.06%
BERT-base 6 Y 53.51% -16.15% 69.87% -9.45% 75.03%
6kd − 6kd 6 N 54.80% -14.14% 71.94% -6.77% 77.73%
6db − 6db 6 N 54.60% -14.45% 71.69% -7.08% 77.23%
6kd − 3kd 6 N 52.97% -17.00% 70.89% -8.13% 76.68%
BERT-base 3 Y 47.62% -25.38% 64.37% -16.58% 69.89%
3kd − 3kd 3 N 55.05% -13.74% 71.98% -6.72% 77.76%
3kd − 6kd 3 N 48.86% -23.43% 67.85% -12.06% 74.04%
6kd − 3kd 3 Y 44.65% -30.04% 63.77% -17.35% 70.79%
6kd − 6kd 3 Y 45.36% -28.93% 64.14% -16.87% 71.07%
BERT-base 2 Y 48.43% -24.11% 67.02% -13.14% 73.19%
3kd − 3kd 2 Y 48.43% -24.11% 67.02% -13.14% 73.19%
3kd − 6kd 2 Y 43.45% -31.92% 62.75% -18.68% 69.74%
6kd − 3kd 2 Y 42.90% -32.78% 62.52% -18.97% 69.47%
6kd − 6kd 2 Y 35.08% -45.03% 52.74% -31.65% 59.93%
BERT-base 1 Y 34.72% -45.60% 51.39% -33.40% 58.01%
3kd − 3kd 1 Y 36.19% -43.29% 55.62% -27.92% 62.92%
3kd − 6kd 1 Y 34.75% -45.55% 52.26% -32.27% 59.35%
6kd − 3kd 1 Y 32.18% -49.58% 50.88% -34.06% 58.52%
6kd − 6kd 1 Y 35.08% -45.03% 52.74% -31.65% 59.93%

Table 17: Impact of model asymmetry and use of KALE for structural pruning on the SQUAD retrieval dataset

Model Layers KALE recip_rank Impact NDC@10 Impact Recall 20
BERT-base 12 N 59.11% 0.00% 62.55% 0.00% 82.38%
BERT-base 6 Y 54.99% -6.97% 58.22% -6.92% 77.07%
6kd − 6kd 6 N 65.52% 10.84% 67.87% 8.51% 83.92%
6db − 6db 6 N 66.25% 12.08% 67.81% 8.41% 82.16%
6kd − 3kd 6 N 61.90% 4.72% 65.30% 4.40% 82.48%
BERT-base 3 Y 55.18% -6.65% 58.30% -6.79% 76.73%
3kd − 3kd 3 N 65.32% 10.51% 67.51% 7.93% 84.36%
3kd − 6kd 3 N 62.78% 6.21% 64.86% 3.69% 79.80%
6kd − 3kd 3 Y 62.07% 5.01% 64.73% 3.49% 82.57%
6kd − 6kd 3 Y 61.82% 4.58% 65.41% 4.57% 82.41%
BERT-base 2 Y 54.45% -7.88% 57.71% -7.74% 76.07%
3kd − 3kd 2 Y 61.78% 4.52% 64.78% 3.57% 82.76%
3kd − 6kd 2 Y 61.41% 3.89% 63.61% 1.69% 82.46%
6kd − 3kd 2 Y 61.82% 4.58% 64.80% 3.60% 82.51%
6kd − 6kd 2 Y 62.09% 5.04% 65.27% 4.35% 81.51%
BERT-base 1 Y 40.52% -31.45% 43.23% -30.89% 59.00%
3kd − 3kd 1 Y 42.93% -27.37% 44.19% -29.35% 61.06%
3kd − 6kd 1 Y 42.33% -28.39% 44.03% -29.61% 63.33%
6kd − 3kd 1 Y 42.72% -27.73% 45.68% -26.97% 65.81%
6kd − 6kd 1 Y 45.60% -22.86% 48.83% -21.93% 69.11%

Table 18: Impact of model asymmetry and use of KALE for structural pruning on the SCIFACTS retrieval dataset

15

73

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 44.890 80.414 2.17E-02 2.92E-02 2.09E-02 1.97E-02 3.07E-02
Run 2 48.370 74.628 2.01E-02 2.11E-02 2.00E-02 1.96E-02 2.22E-02
Run 3 47.290 76.334 2.06E-02 2.19E-02 2.04E-02 1.96E-02 2.28E-02
Run 4 48.260 74.810 2.01E-02 2.13E-02 2.00E-02 1.95E-02 2.22E-02
Run 5 47.580 75.872 2.04E-02 2.14E-02 2.03E-02 1.98E-02 2.28E-02
average 47.278 76.412 2.06E-02 2.30E-02 2.03E-02 1.96E-02 2.41E-02
stdev 1.410 2.348 6.46E-04 3.49E-03 3.65E-04 1.04E-04 3.68E-03
CI 1.236 2.058 5.66E-04 3.06E-03 3.20E-04 9.14E-05 3.23E-03
Lower 46.042 74.353 2.00E-02 1.99E-02 2.00E-02 1.96E-02 2.09E-02
High 48.514 78.470 2.12E-02 2.60E-02 2.06E-02 1.97E-02 2.74E-02

Table 19: Inference Benchmark for 12-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 63.200 57.808 1.54E-02 1.65E-02 1.52E-02 1.49E-02 2.20E-02
Run 2 63.570 56.787 1.52E-02 1.60E-02 1.50E-02 1.48E-02 1.70E-02
Run 3 62.740 57.537 1.54E-02 1.64E-02 1.52E-02 1.48E-02 1.76E-02
Run 4 63.440 56.908 1.52E-02 1.59E-02 1.51E-02 1.48E-02 1.70E-02
Run 5 63.250 57.077 1.53E-02 1.60E-02 1.51E-02 1.48E-02 1.69E-02
average 63.240 57.223 1.53E-02 1.62E-02 1.51E-02 1.48E-02 1.81E-02
stdev 0.316 0.433 1.16E-04 2.49E-04 6.48E-05 6.69E-05 2.20E-03
CI 0.277 0.380 1.02E-04 2.18E-04 5.68E-05 5.86E-05 1.93E-03
Lower 62.963 56.844 1.52E-02 1.59E-02 1.51E-02 1.48E-02 1.62E-02
High 63.517 57.603 1.54E-02 1.64E-02 1.52E-02 1.49E-02 2.00E-02

Table 20: Inference Benchmark for 9-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 91.090 39.631 1.04E-02 1.11E-02 1.03E-02 1.02E-02 1.19E-02
Run 2 90.990 39.677 1.04E-02 1.11E-02 1.03E-02 1.01E-02 1.22E-02
Run 3 91.290 39.547 1.04E-02 1.11E-02 1.03E-02 1.01E-02 1.22E-02
Run 4 89.420 40.372 1.06E-02 1.24E-02 1.02E-02 1.01E-02 1.51E-02
Run 5 89.140 40.499 1.07E-02 1.21E-02 1.03E-02 1.01E-02 1.49E-02
average 90.386 39.945 1.05E-02 1.16E-02 1.03E-02 1.01E-02 1.32E-02
stdev 1.020 0.452 1.23E-04 6.03E-04 3.95E-05 4.27E-05 1.61E-03
CI 0.894 0.396 1.08E-04 5.29E-04 3.47E-05 3.74E-05 1.41E-03
Lower 89.492 39.549 1.04E-02 1.10E-02 1.03E-02 1.01E-02 1.18E-02
High 91.280 40.342 1.06E-02 1.21E-02 1.03E-02 1.02E-02 1.47E-02

Table 21: Inference Benchmark for 6-layer Query encoder on a CPU using ONNX

16

74

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 166.340 21.704 5.47E-03 5.84E-03 5.40E-03 5.35E-03 6.34E-03
Run 2 164.830 21.902 5.53E-03 6.14E-03 5.40E-03 5.31E-03 7.35E-03
Run 3 167.570 21.544 5.43E-03 5.87E-03 5.34E-03 5.30E-03 6.42E-03
Run 4 165.370 21.830 5.51E-03 6.11E-03 5.39E-03 5.30E-03 6.96E-03
Run 5 165.950 21.755 5.49E-03 5.92E-03 5.40E-03 5.32E-03 6.54E-03
average 166.012 21.747 5.49E-03 5.98E-03 5.39E-03 5.32E-03 6.72E-03
stdev 1.043 0.136 3.58E-05 1.41E-04 2.49E-05 2.20E-05 4.23E-04
CI 0.914 0.119 3.14E-05 1.23E-04 2.18E-05 1.93E-05 3.71E-04
Lower 165.098 21.628 5.45E-03 5.86E-03 5.37E-03 5.30E-03 6.35E-03
High 166.926 21.867 5.52E-03 6.10E-03 5.41E-03 5.33E-03 7.09E-03
BERT-base 2 Y 54.45% -7.88% 57.71% -7.74% 76.07%

Table 22: Inference Benchmark for 3-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 228.690 15.786 3.85E-03 4.53E-03 3.72E-03 3.67E-03 5.29E-03
Run 2 230.420 15.668 3.81E-03 4.24E-03 3.74E-03 3.65E-03 4.72E-03
Run 3 228.800 15.779 3.84E-03 4.23E-03 3.77E-03 3.73E-03 4.68E-03
Run 4 230.530 15.661 3.81E-03 4.23E-03 3.74E-03 3.68E-03 4.63E-03
Run 5 229.890 15.704 3.82E-03 4.25E-03 3.75E-03 3.70E-03 4.64E-03
average 229.666 15.720 3.83E-03 4.29E-03 3.74E-03 3.69E-03 4.79E-03
stdev 0.876 0.060 1.72E-05 1.32E-04 1.84E-05 3.00E-05 2.81E-04
CI 0.768 0.053 1.51E-05 1.16E-04 1.61E-05 2.63E-05 2.47E-04
Lower 228.898 15.667 3.81E-03 4.18E-03 3.73E-03 3.66E-03 4.55E-03
High 230.434 15.772 3.84E-03 4.41E-03 3.76E-03 3.71E-03 5.04E-03

Table 23: Inference Benchmark for 2 layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 378.680 9.534 2.14E-03 2.39E-03 2.10E-03 2.08E-03 2.88E-03
Run 2 378.950 9.528 2.14E-03 2.31E-03 2.11E-03 2.08E-03 2.66E-03
Run 3 377.750 9.558 2.13E-03 2.30E-03 2.12E-03 2.06E-03 2.67E-03
Run 4 376.560 9.588 2.16E-03 2.35E-03 2.12E-03 2.06E-03 2.74E-03
Run 5 380.730 9.483 2.14E-03 2.30E-03 2.11E-03 2.08E-03 2.66E-03
average 378.534 9.538 2.15E-03 2.33E-03 2.11E-03 2.07E-03 2.72E-03
stdev 1.543 0.039 7.46E-06 3.64E-05 8.72E-06 9.49E-06 9.64E-05
CI 1.353 0.034 6.54E-06 3.19E-05 7.65E-06 8.31E-06 8.45E-05
Lower 377.181 9.504 2.14E-03 2.30E-03 2.11E-03 2.06E-03 2.64E-03
High 379.887 9.572 2.15E-03 2.36E-03 2.12E-03 2.08E-03 2.81E-03

Table 24: Inference Benchmark for 1 layer Query encoder on a CPU using ONNX

17

75

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 103.16 35.00 9.22E-03 9.33E-03 9.16E-03 9.08E-03 1.20E-02
Run 2 111.51 32.36 8.50E-03 8.61E-03 8.47E-03 8.42E-03 8.73E-03
Run 3 114.02 31.66 8.31E-03 8.41E-03 8.28E-03 8.22E-03 8.60E-03
Run 4 90.39 39.94 1.06E-02 1.07E-02 1.05E-02 1.04E-02 1.25E-02
Run 5 110.18 32.77 8.62E-03 8.74E-03 8.58E-03 8.51E-03 9.06E-03
average 105.85 34.35 9.04E-03 9.15E-03 9.00E-03 8.93E-03 1.02E-02
stdev 9.54 3.37 9.17E-04 9.19E-04 9.04E-04 9.02E-04 1.92E-03
CI 8.36 2.95 8.04E-04 8.06E-04 7.92E-04 7.91E-04 1.68E-03
Lower 97.49 31.40 8.24E-03 8.35E-03 8.21E-03 8.14E-03 8.50E-03
High 114.21 37.30 9.85E-03 9.96E-03 9.79E-03 9.73E-03 1.19E-02

Table 25: Inference Benchmark for 12-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 140.35 25.72 6.69E-03 6.78E-03 6.66E-03 6.61E-03 6.94E-03
Run 2 148.25 24.35 6.31E-03 6.52E-03 6.26E-03 6.22E-03 6.64E-03
Run 3 147.04 24.55 6.37E-03 6.47E-03 6.32E-03 6.28E-03 7.19E-03
Run 4 116.15 31.08 8.14E-03 8.25E-03 8.09E-03 8.01E-03 1.09E-02
Run 5 145.68 24.78 6.44E-03 6.50E-03 6.39E-03 6.35E-03 8.83E-03
average 139.49 26.10 6.79E-03 6.91E-03 6.74E-03 6.69E-03 8.11E-03
stdev 13.39 2.84 7.70E-04 7.62E-04 7.66E-04 7.52E-04 1.79E-03
CI 11.74 2.49 6.75E-04 6.68E-04 6.72E-04 6.59E-04 1.57E-03
Lower 127.75 23.61 6.11E-03 6.24E-03 6.07E-03 6.04E-03 6.54E-03
High 151.23 28.58 7.46E-03 7.57E-03 7.42E-03 7.35E-03 9.67E-03

Table 26: Inference Benchmark for 9-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 163.72 22.05 5.67E-03 5.75E-03 5.62E-03 5.56E-03 7.75E-03
Run 2 161.90 22.30 5.74E-03 5.81E-03 5.70E-03 5.63E-03 6.17E-03
Run 3 165.07 21.87 5.62E-03 5.70E-03 5.58E-03 5.51E-03 6.86E-03
Run 4 189.71 19.03 4.84E-03 4.92E-03 4.82E-03 4.77E-03 5.07E-03
Run 5 181.29 19.91 5.07E-03 5.92E-03 4.94E-03 4.88E-03 6.68E-03
average 172.34 21.03 5.39E-03 5.62E-03 5.33E-03 5.27E-03 6.51E-03
stdev 12.43 1.47 4.07E-04 3.99E-04 4.17E-04 4.11E-04 9.85E-04
CI 10.89 1.29 3.56E-04 3.50E-04 3.65E-04 3.61E-04 8.63E-04
Lower 161.44 19.75 5.03E-03 5.27E-03 4.97E-03 4.91E-03 5.64E-03
High 183.23 22.32 5.74E-03 5.97E-03 5.70E-03 5.63E-03 7.37E-03

Table 27: Inference Benchmark for 6-layer Query encoder on a T4 GPU

18

76

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 269.73 13.39 3.28E-03 3.30E-03 3.26E-03 3.20E-03 3.87E-03
Run 2 282.90 12.76 3.12E-03 3.38E-03 3.23E-03 2.65E-03 4.39E-03
Run 3 268.47 13.45 3.30E-03 3.31E-03 3.28E-03 3.25E-03 3.76E-03
Run 4 318.47 11.34 2.74E-03 2.79E-03 2.72E-03 2.69E-03 3.17E-03
Run 5 357.68 10.09 2.43E-03 2.50E-03 2.41E-03 2.39E-03 2.69E-03
average 299.45 12.21 2.97E-03 3.05E-03 2.98E-03 2.84E-03 3.58E-03
stdev 38.31 1.45 3.78E-04 3.90E-04 3.93E-04 3.75E-04 6.58E-04
CI 33.58 1.27 3.31E-04 3.42E-04 3.45E-04 3.29E-04 5.77E-04
Lower 265.87 10.93 2.64E-03 2.71E-03 2.64E-03 2.51E-03 3.00E-03
High 333.03 13.48 3.30E-03 3.40E-03 3.33E-03 3.16E-03 4.16E-03

Table 28: Inference Benchmark for 3-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 465.83 7.75 1.78E-03 1.83E-03 1.76E-03 1.74E-03 2.53E-03
Run 2 435.46 8.29 1.92E-03 2.01E-03 1.91E-03 1.89E-03 2.04E-03
Run 3 471.01 7.67 1.77E-03 1.84E-03 1.75E-03 1.74E-03 1.95E-03
Run 4 413.49 8.73 2.02E-03 2.06E-03 2.00E-03 1.96E-03 2.61E-03
Run 5 421.32 8.57 1.98E-03 2.05E-03 1.96E-03 1.94E-03 2.07E-03
average 441.42 8.20 1.89E-03 1.96E-03 1.88E-03 1.86E-03 2.24E-03
stdev 25.94 0.48 1.15E-04 1.12E-04 1.15E-04 1.07E-04 3.07E-04
CI 22.73 0.42 1.00E-04 9.83E-05 1.01E-04 9.34E-05 2.69E-04
Lower 418.69 7.78 1.79E-03 1.86E-03 1.78E-03 1.76E-03 1.97E-03
High 464.16 8.62 1.99E-03 2.05E-03 1.98E-03 1.95E-03 2.51E-03

Table 29: Inference Benchmark for 2-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 627.64 5.75 1.22E-03 1.26E-03 1.21E-03 1.20E-03 1.28E-03
Run 2 673.96 5.36 1.13E-03 1.18E-03 1.12E-03 1.11E-03 1.22E-03
Run 3 651.45 5.54 1.18E-03 1.24E-03 1.17E-03 1.16E-03 1.28E-03
Run 4 677.99 5.33 1.12E-03 1.19E-03 1.11E-03 1.10E-03 1.22E-03
Run 5 672.16 5.37 1.13E-03 1.18E-03 1.12E-03 1.11E-03 1.22E-03
average 660.64 5.47 1.15E-03 1.21E-03 1.14E-03 1.14E-03 1.24E-03
stdev 21.12 0.18 4.28E-05 3.74E-05 4.44E-05 4.25E-05 3.30E-05
CI 18.51 0.16 3.75E-05 3.27E-05 3.89E-05 3.72E-05 2.89E-05
Lower 642.13 5.31 1.12E-03 1.18E-03 1.11E-03 1.10E-03 1.21E-03
High 679.15 5.63 1.19E-03 1.24E-03 1.18E-03 1.17E-03 1.27E-03

Table 30: Inference Benchmark for 1-layer Query encoder on a T4 GPU

19

77

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 78–90
July 13, 2023 ©2023 Association for Computational Linguistics

Lessons on Parameter Sharing across Layers in Transformers

Sho Takase∗ Shun Kiyono
LINE Corporation

{sho.takase, shun.kiyono}@linecorp.com

Abstract

We propose a novel parameter sharing method
for Transformers (Vaswani et al., 2017). The
proposed approach relaxes a widely used tech-
nique, which shares the parameters of one layer
with all layers such as Universal Transform-
ers (Dehghani et al., 2019), to improve the
efficiency. We propose three strategies: SE-
QUENCE, CYCLE, and CYCLE (REV) to assign
parameters to each layer. Experimental results
show that the proposed strategies are efficient
in terms of the parameter size and computa-
tional time in the machine translation task. We
also demonstrate that the proposed strategies
are effective in the configuration where we use
many training data such as the recent WMT
competition. Moreover, we indicate that the
proposed strategies are also more efficient than
the previous approach (Dehghani et al., 2019)
on automatic speech recognition and language
modeling tasks.

1 Introduction

Transformer-based methods have achieved notable
performance in various NLP tasks (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020). In
particular, Brown et al. (2020) indicated that the
larger parameter size we prepare, the better perfor-
mance the model achieves. However, the model
which is composed of many parameters occupies
a large part of a GPU memory capacity. Thus, it
is important to explore a parameter efficient way,
which achieves better performance than a basic
model with the same parameter size.

Parameter sharing is a widely used technique as
a parameter efficient way (Dehghani et al., 2019;
Dabre and Fujita, 2019; Lan et al., 2020). De-
hghani et al. (2019) proposed Universal Trans-
former which consists of parameters for only one
layer of a Transformer-based encoder-decoder, and
uses these parameters N times for an N -layered

∗ A part of this work was done when the author was at
Tokyo Institute of Technology.

Input

1st layer

2nd layer
Share

M=3, N=6の場合

3rd layer

4th layer

5th layer

6th layer

Share

Share

SEQUENCE

Input

1st layer

2nd layer

Share

3rd layer

4th layer

5th layer

6th layer

Share

Share

CYCLE

Input

1st layer

2nd layer
Share

3rd layer

4th layer

5th layer

6th layer

Share

Share

CYCLE (REV)

Figure 1: Examples of three parameter assignment
strategies proposed in this study when we set M = 3
and N = 6.

encoder-decoder. Dabre and Fujita (2019) and
Lan et al. (2020) also used such parameter shar-
ing across layers for their Transformers.

Dehghani et al. (2019) reported that Universal
Transformer achieved better performance than the
vanilla Transformer in machine translation if the
parameter sizes of both models are (almost) the
same. However, when we prepare the same num-
ber of parameters for Universal Transformer and
vanilla Transformer, the dimension sizes of each
layer in Universal Transformer are much larger
than ones in the vanilla Transformer. Thus, Univer-
sal Transformer requires much more computational
time since its weight matrices are larger. For exam-
ple, Universal Transformer requires twice as much
training time as the vanilla Transformer in WMT
English-to-German dataset, which is a widely used
machine translation dataset (see Table 1).

In this paper, we propose a new parameter shar-
ing method that is faster than using the same param-
eters for all layers such as Universal Transformers.
Universal Transformers raise their expressiveness
power by increasing the size of weight matrices
for each layer. On the other hand, stacking (more)
layers is another promising approach to raise ex-
pressiveness power of neural methods (He et al.,
2016). Thus, the most straight-forward way to

78

make Universal Transformers faster is stacking lay-
ers with smaller weight matrices for each layer.
However, the approach using the same parameters
for all layers limits the improvement of stacking
layers (Dabre and Fujita, 2019). Therefore, in-
stead of preparing parameters for only one layer,
we prepare parameters for M layers to construct an
N -layered encoder-decoder, where 1 ≤ M ≤ N .
In other words, the proposed method relaxes the
parameter sharing strategy in previous studies (De-
hghani et al., 2019; Dabre and Fujita, 2019; Lan
et al., 2020). Because this relaxation addresses the
above limitation of improvement by stacking lay-
ers, the proposed method can be fast by stacking
layers with using small weight matrices for each
layer. For the actual parameter assignment strate-
gies, we provide several simple examples (Figure 1)
and investigate their performance empirically. The
main focus of this study is to demonstrate that such
simple strategies can be a better alternative to the
existing parameter sharing strategy used in Univer-
sal Transformers.

We mainly conduct experiments on machine
translation datasets. Experimental results show that
the proposed method achieves slightly better scores
to the previous method, that assigns parameters of
one layer to all layers, with smaller computational
time. In addition, we indicate that the proposed
method outperforms the previous parameter shar-
ing method when we spend almost the same train-
ing time. Moreover, we conduct experiments on au-
tomatic speech recognition and language modeling
tasks (Section 4 and Appendix A). Experimental re-
sults on these tasks also indicate that the proposed
method are also efficient in these situations.

2 Proposed Method

As described in Section 1, we use parameters
for M layers in the construction of an N -layered
Transformer-based encoder-decoder. We provide
three examples for the parameter assignment: SE-
QUENCE, CYCLE, and CYCLE (REV). This section
describes these parameter assignment strategies.

Figure 1 shows examples of three parameter as-
signment strategies for an encoder side when we
set M = 3 and N = 6. Let enci be the i-th layer
of an encoder. Figure 2 describes the algorithm to
assign each parameter to each layer of the encoder.
For the decoder side, we assign each parameter
with the same manner.

Algorithm Encoder Construction
Input: the total number of layers N , number of

independent layers M , sharing strategy TYPE

∈ {SEQUENCE, CYCLE, CYCLE (REV)}
Output: enc1, ..., encN

1: for i in [1, ..., N] do
2: if i == 1 then
3: enci ← CreateNewLayer
4: else if TYPE == SEQUENCE then
5: if (i− 1) mod ⌊N/M⌋ == 0 then
6: enci ← CreateNewLayer
7: else
8: enci ← enci−1

9: else if TYPE == CYCLE then
10: if i ≤M then
11: enci ← CreateNewLayer
12: else
13: enci ← enc((i−1) mod M)+1

14: else if TYPE == CYCLE (REV) then
15: if i ≤M then
16: enci ← CreateNewLayer
17: else if i ≤ (M × (⌈N/M⌉ − 1)) then
18: enci ← enc((i−1) mod M)+1

19: else
20: enci ← encM−((i−1) mod M)

Figure 2: Proposed parameter assignment strategies for
encoder construction. CreateNewLayer is a function
that creates a new encoder layer.

2.1 SEQUENCE

The simplest strategy is to assign the same param-
eters to sequential ⌊N/M⌋ layers. We name this
strategy SEQUENCE. For example, when we set
M = 3 and N = 6, two sequential layers share
their parameters as illustrated in Figure 1.

2.2 CYCLE

In CYCLE, we stack M layers whose parameters
are independent from each other. Then, we repeat
stacking the M layers with the identical order to
the first M layers until the total number of layers
reaches N . When we set M = 3 and N = 6, we
stack 3 layers twice as illustrated in Figure 1.

2.3 CYCLE (REV)

Liu et al. (2020) and Takase et al. (2022) reported
that higher decoder layers tends to obtain larger

79

gradient norms1. Their report implies that higher
layers require more degrees of freedom than lower
layers for their expressiveness. In other words,
lower layers probably have redundant parameters
compared to higher layers. Thus, we propose the
CYCLE (REV) strategy reusing parameters of lower
layers in higher layers.

In this strategy, we repeat stacking M layers in
the same manner as CYCLE until M ∗(⌈N/M⌉−1)
layers. For the remaining layers, we stack M layers
in the reverse order. When we set M = 3 and
N = 6, we stack 3 layers and then stack the 3
layers in the reverse order as in Figure 1. Thus, the
lowest layer and highest layer share parameters.

3 Experiments on Machine Translation

We investigate the efficiency of the proposed pa-
rameter sharing strategies. In detail, we indicate
that our proposed strategies are faster than Uni-
versal Transformers while achieving comparable
(or better) performance when we use the same pa-
rameter size. In this section, we conduct experi-
ments on machine translation datasets. First, we
focus on the English-to-German translation task
because this task is widely used in the previous
studies (Vaswani et al., 2017; Ott et al., 2018; De-
hghani et al., 2019; Kiyono et al., 2020). We con-
duct comparisons based on following aspects: (i)
comparison with Universal Transformers in terms
of efficiency and (ii) comparison with models with-
out parameter sharing across layers to investigate
whether our proposed strategies can achieve com-
parable (or better) performance to the models with
larger memory footprint.

In addition to the widely used training data, we
conduct experiments on a large amount of train-
ing dataset in the English-to-German translation
task. Then, we investigate if our findings are con-
sistent in other language direction (i.e., German-
to-English) and other language pair (i.e., English-
to-French and French-to-English). We describe
details in the following subsections.

3.1 Standard Setting

3.1.1 Datasets
We used the WMT 2016 training dataset, which
is widely used in previous studies (Vaswani et al.,

1In particular, this property is observed during warm-up
when we use the post layer normalization (Post-LN) setting,
which is originally used in Vaswani et al. (2017) and widely
used in machine translation.

2017; Ott et al., 2018; Takase and Kiyono, 2021).
This dataset contains 4.5M English-German sen-
tence pairs. Following previous studies, we con-
structed a vocabulary set with BPE (Sennrich et al.,
2016b) in the same manner. We set the number of
BPE merge operations at 32K and shared the vocab-
ulary between the source and target languages. We
measured case-sensitive detokenized BLEU with
SacreBLEU (Post, 2018)2.

3.1.2 Methods

For the proposed parameter assignment strategies,
we fixed M = 6 and set N = 12, 18 based on
the Vanilla configuration below. We compare the
proposed strategies with the following baselines.
Vanilla: This is the original Transformer (base)
setting in (Vaswani et al., 2017). To stabilize the
training, we applied Admin (Liu et al., 2020). See
Section 5 for more details of Admin.
Universal: As the parameter sharing strategy
in previous studies such as Universal Transform-
ers (Dehghani et al., 2019), we set M = 13. In
this setting, we increased the dimensions of each
layer for a fair comparison in terms of the num-
ber of parameters. This configuration corresponds
to the Universal Transformer base setting in (De-
hghani et al., 2019). Moreover, we prepared the
model using twice as many layers to investigate the
effect of stacking many layers in Universal Trans-
formers. We call this setting Universal (deep). In
addition, we prepared Universal (small) whose
dimension sizes are the identical to ones of Trans-
former (base).

Furthermore, we prepare two models that consist
of a large number of parameters for reference.
Vanilla (big): This is the original Transformer (big)
setting in (Vaswani et al., 2017).
Vanilla (deep): We stacked layers until N = 18 in
the Vanilla configuration.

2The BLEU score computed by SacreBLEU is often lower
than the score obtained by the procedure of Vaswani et al.
(2017) as reported in Ott et al. (2018). In fact, when we used
the same procedure as Vaswani et al. (2017), SEQUENCE of
M = 6, N = 12 in Table 1 achieved 29.40 in the averaged
BLEU score in newstest2014 and the best model in Table 2
achieved 35.14 in the averaged BLEU score in newstest2014.
However, since Post (2018) encouraged using SacreBLEU for
the compatibility of WMT results, we used SacreBLEU.

3The original Universal Transformers (Dehghani et al.,
2019) use the sinusoidal positional encoding for each layer
and adaptive computation time technique (Graves, 2017) but
we omitted them in this study to focus on the difference among
parameter sharing strategies.

80

Method M N #Params Speed 2010 2011 2012 2013 2014 2015 2016 Avg.
Vanilla 6 6 61M ×2.02 24.14 21.93 22.25 26.14 27.05 29.59 34.23 26.48
Universal 1 6 63M ×1.00 24.37 22.33 22.70 26.40 27.65 30.24 34.60 26.90
Universal (deep) 1 12 63M ×0.52 24.42 22.30 22.61 26.52 27.76 29.75 34.01 26.77
Universal (small) 1 6 24M ×2.52 22.89 21.11 21.29 24.75 24.71 28.16 32.81 25.10
SEQUENCE 6 12 61M ×1.31 24.65 22.32 22.83 26.98 27.88 30.27 34.99 27.13
CYCLE 6 12 61M ×1.31 24.51 22.43 22.69 26.61 27.91 30.37 34.77 27.04
CYCLE (REV) 6 12 61M ×1.31 24.66 22.47 22.87 26.68 27.72 30.37 34.81 27.08
SEQUENCE 6 18 61M ×0.98 24.53 22.44 22.73 26.59 27.73 30.30 34.80 27.02
CYCLE 6 18 61M ×0.98 24.74 22.60 23.04 26.89 28.14 30.54 34.79 27.25
CYCLE (REV) 6 18 61M ×0.98 24.93 22.77 23.09 26.88 28.09 30.60 34.84 27.31

Methods consisting of a large number of parameters for reference
Vanilla (big) 6 6 210M ×0.81 24.31 22.21 22.75 26.39 28.28 30.35 33.40 26.81
Vanilla (deep) 18 18 149M ×0.96 24.54 22.30 22.75 26.57 28.03 30.24 34.19 26.94

Table 1: The number of layers, number of parameters, computational speeds based on the Universal configuration,
BLEU scores on newstest2010-2016, and averaged scores when we trained each method on widely used WMT 2016
English-to-German training dataset. Scores in bold denote the best results for each set. The results of our proposed
strategies are statistically significant (p < 0.05) in comparison with Universal. The lowest part indicates results of
methods consisting of a large number of parameters for reference.

3.1.3 Results
Table 1 shows BLEU scores on newstest2010-2016
for each method. We trained three models with
different random seeds, and reported the averaged
scores. Table 1 also shows the total number of
parameters and computational speeds4. The com-
putational speed is based on the speed of Universal.

(i) Comparison with Universal in terms of effi-
ciency In the comparison between Universal and
Vanilla, Universal achieved better scores although
their parameter sizes are almost the same. This
result is consistent with the report in (Dehghani
et al., 2019). However, the training time of Uni-
versal is more than twice as much as the one of
Vanilla. In addition, Universal (deep) didn’t im-
prove the performance from Universal, and thus
stacking many layers have small effect on BLEU
scores when the model shares parameters of one
layer with all layers.

In contrast, the proposed strategies (SEQUENCE,
CYCLE, and CYCLE (REV)) were faster and
achieved slightly better scores than Universal when
we set M = 6 and N = 12. Thus, our proposed
parameter sharing strategies are more efficient than
Universal in terms of the parameter size and com-
putational time.

In comparison among Universal (small) and the
proposed strategies, Universal (small) was faster5

4We regard processed tokens per second during the training
as the computational speed.

5We used the same dimension sizes for Vanilla and Uni-
versal (small) but their training speeds are different from each
other. Since Universal (small) consists of small parameters,
the computational time for updating is smaller than Vanilla.

but the configuration drastically sacrificed BLEU
scores. These results imply that the strategy in
Universal Transformer, which shares parameters of
one layer with all layers, damages computational
time or the quality of output sequences. In com-
parison with those Universal configurations, our
proposed strategies improved both of the computa-
tional speed and BLEU scores.

Figure 3 illustrates the negative log-likelihood
(NLL) values on newstest2013 for each training
step. In this figure, we used M = 6 and N = 12
for our proposed strategies. This figure shows that
Universal achieved better NLL values in the be-
ginning of the training but the proposed strate-
gies outperformed others when the training step
is larger than 15,000. When we have finished train-
ing, the proposed strategies achieved better NLL
values than Universal (and Vanilla). This result
also indicates that the proposed strategies achieved
better performance. We emphasize that the pro-
posed strategies reached this better performance
with small computational time in comparison with
Universal because the proposed strategies are faster
as in Table 1.

(ii) Comparison with models without parameter
sharing across layers The lowest part of Table
1 indicates results when we prepared more param-
eters. We trained these models to investigate the
performance of models without parameter sharing
across layers. In other words, the purpose of these
settings are comparison with models using larger
memory footprint. As shown in Table 1, the pro-
posed strategies achieved better performance than

81

0 10000 20000 30000 40000 50000
The number of updates

2.0

2.1

2.2

2.3

2.4

2.5
Va

lid
 lo

ss
 (N

LL
)

Vanilla
Universal
Sequence
Cycle
Cycle (Rev)

Figure 3: Negative log-likelihood (NLL) of each method
on newstest2013. For our proposed parameter sharing
strategies, we used M = 6 and N = 12.

models consisting of a large number of parame-
ters in the averaged BLEU scores of newstest2010-
2016. This result implies that the proposed parame-
ter sharing strategies are not only efficient but also
effective in constructing better encoder-decoder
models.

3.2 High Resource Setting

3.2.1 Datasets
In the high resource setting, we constructed 44.2M
translation sentence pairs as a training dataset with
the procedures of (Kiyono et al., 2020) which
achieved the best result in the WMT 2020 news
translation task. In addition, we augmented the
training data by using the back-translation tech-
nique (Sennrich et al., 2016a) in the same manner
as (Kiyono et al., 2020). We obtained 284.3M
pairs as synthetic training data. For evaluation,
we add newstest2018 and 2019 to the set used in
Section 3.1 to because (Kiyono et al., 2020) used
these two test sets. In the same as Section 3.1, we
measured case-sensitive detokenized BLEU with
SacreBLEU.

3.2.2 Methods
We used the original Transformer (big) set-
ting (Vaswani et al., 2017) as our baseline in using
genuine training data. We call this setting Vanilla
in this experiment. Moreover, we also prepared
Universal, which shares the parameters with all
layers, namely, M = 1, N = 6. We increased the
dimensions of each layer in Universal to make their
parameter size almost the same as others. For the
proposed strategies, we used M = 6 and N = 12.

In using both of the genuine and synthetic (back-
translated) datasets, we applied CYCLE (REV) to

the BASE setting in (Kiyono et al., 2020) because
CYCLE (REV) achieved the best BLEU scores on
most test sets in Table 1. We also used M = 6
and N = 12 in this configuration. We compare the
reported scores of the best model in (Kiyono et al.,
2020). Their model is composed of 9 layers (i.e.,
M = 9 and N = 9); thus, it contains considerably
more parameters than ours.

3.2.3 Results
Table 2 shows BLEU scores of each method on
each test set. Similar to the experiments in Section
3.1, we reported the averaged scores of three mod-
els trained with different random seeds. Table 2
also shows the total number of parameters6.

Table 2 shows that the proposed strategies
achieved better BLEU scores than Vanilla and Uni-
versal when we prepared almost the same number
of parameters. This result indicates that the pro-
posed strategies are also parameter efficient in the
high resource setting. In addition, since we used
M = 6 and N = 12 for proposed strategies, they
are also more efficient than Universal in terms of
computational time (see Table 1).

When we used additional synthetic data for train-
ing in the same manner as (Kiyono et al., 2020),
CYCLE (REV) achieved comparable BLEU scores
to the best system of (Kiyono et al., 2020) except
for newstest20197 even though the parameter size
of CYCLE (REV) was smaller than theirs. This re-
sult indicates that CYCLE (REV) is also efficient in
the construction of models for recent competitive
tasks. In addition, this result implies that our pro-
posed strategies can be used in the configuration
where we train many parameters with a tremendous
amount of data such as recent pre-trained language
models, e.g., GPT series (Brown et al., 2020). We
investigate the effect of the proposed strategies on
language models in Appendix A.

3.3 Other Direction and Language Pair
3.3.1 Datasets
We conduct experiments on the other direction and
language pair. For the German-to-English training
dataset, we used the identical data in Section 3.1.
For English-to-French and French-to-English, we

6The parameter sizes of Vanilla (big) in Table 1 and Vanilla
in Table 2 are different from each other due to the difference
of sharing embeddings. Following (Kiyono et al., 2020), we
did not share embeddings in the high resource setting.

7For newstest2019, synthetic data might harm the quality
of a model because models trained with only genuine data
outperformed those trained with both data.

82

Method #Params 2010 2011 2012 2013 2014 2015 2016 2018 2019 Avg.
Genuine training data

Vanilla 242M 26.53 24.09 24.51 28.51 31.40 33.52 39.08 47.11 42.80 33.06
Universal 249M 27.00 24.20 24.96 28.94 31.73 33.53 39.38 47.54 43.11 33.38
SEQUENCE 242M 27.31 24.24 24.86 29.15 31.90 33.84 39.93 48.15 43.12 33.61
CYCLE 242M 27.23 24.45 25.13 29.12 32.10 34.04 39.82 48.11 43.19 33.69
CYCLE (REV) 242M 27.37 24.46 25.14 29.16 32.06 33.98 40.28 48.34 43.43 33.80

+ Synthetic (back-translated) data
Kiyono et al. (2020) 514M - - - - 33.1 - - 49.6 42.7 -
CYCLE (REV) 343M 28.29 24.99 25.98 30.01 33.54 34.93 41.37 49.55 42.18 34.54

Table 2: BLEU scores on newstest2010-2016, 2018, and 2019. We add newstest2018 and 2019 to the set in the
standard setting to compare the top system on WMT 2020 (Kiyono et al., 2020).

German-to-English English-to-French French-to-English
Method M N 2013 2014 2013 2014 2013 2014
Vanilla 6 6 30.48 30.96 33.41 38.41 33.48 36.06
Universal 1 6 31.06 31.32 33.58 38.84 33.83 37.11
SEQUENCE 6 18 31.31 31.97 34.49 40.18 34.26 37.45
CYCLE 6 18 31.46 32.18 34.50 40.17 33.97 37.59
CYCLE (REV) 6 18 31.32 32.12 34.67 40.13 34.16 37.32

Table 3: The number of layers and BLEU scores on each dataset. Each method is composed of almost the same
number of parameters.

used the WMT 2014 training dataset. We applied
the same pre-processing as in (Ott et al., 2018), and
used 35.8M English-French sentence pairs. Each
configuration, we used newstest2013 and new-
stest2014 as valid and test sets, respectively. We
also measured case-sensitive detokenized BLEU
with SacreBLEU in these experiments.

3.3.2 Methods
We compare our proposed strategies with baselines
used in Section 3.1. We used the Transformer
(base) setting with Admin as Vanilla and prepared
Universal which is M = 1, N = 6 with large
dimension sizes for each internal layer. For the pro-
posed strategies, we used M = 6 and N = 18. In
these configurations, the training time of proposed
strategies are almost the same as one of Universal
as described in Table 1.

3.3.3 Results
Table 3 shows BLEU scores of each method on
each dataset. This table indicates that Universal
outperformed Vanilla in all datasets. The proposed
parameter sharing strategies (SEQUENCE, CYCLE,
and CYCLE (REV)) achieved better scores than Uni-
versal in all datasets. These results are consistent
with results in Table 1. These results also indicate
that the proposed strategies are more efficient than
Universal, which shares parameters of one layer
with all layers, because they achieved better per-
formance with almost the same parameter size and

computational time.
In the comparison among the proposed strate-

gies, CYCLE and CYCLE (REV) outperformed SE-
QUENCE on German-to-English but it is difficult
to conclude that CYCLE and CYCLE (REV) are
superior to SEQUENCE on English-to-French and
French-to-English. This result implies that the best
strategy might depend on a language pair8. How-
ever, we emphasize that our proposed strategies out-
performed Universal. For applying our proposed
parameter sharing strategies to other datasets, we
recommend using SEQUENCE as a first step be-
cause it is the easiest to implement.

4 Experiments on Automatic Speech
Recognition

4.1 Datasets

To investigate the effect of our proposed strate-
gies on other modality, we conduct comparisons
on the automatic speech recognition (ASR) task.
We used the de-facto standard English ASR bench-
mark dataset: LibriSpeech (Panayotov et al., 2015).
The dataset contains 1,000 hours of English speech
from audiobooks. We used the standard splits of
LibriSpeech; used all available training data for
training and two configurations (clean and other)
of development and test sets for evaluation. We

8Section 4 and Appendix A imply that a sort of task and
Transformer architectures also have an influence on the per-
formance of proposed strategies.

83

Enc Dec Dev Test
Method M N M N #Params Speed clean other clean other
Vanilla 6 6 6 6 52M ×2.94 3.98 9.06 4.18 9.18
Universal 1 6 1 6 54M ×1.00 3.73 8.85 4.14 8.80
SEQUENCE 8 16 4 8 50M ×1.41 3.16 7.84 3.32 7.71
CYCLE 8 16 4 8 50M ×1.41 3.28 7.86 3.57 7.97
CYCLE (REV) 8 16 4 8 50M ×1.41 3.11 8.10 3.60 8.11

Table 4: The parameter sizes, computational speeds based on the Universal configuration, and word error rates of
each method. For word error rates, lower is better. Scores in bold denote the best results for each set.

applied the same pre-processing as in (Wang et al.,
2020). We measured word error rate on each set.

4.2 Methods

We also compare our proposed strategies with base-
lines in Section 3. As the base architecture, we
used Transformer based speech-to-text model (T-
Md) described in (Wang et al., 2020). In contrast
to the Post-LN architecture, which is the original
Transformer architecture (Vaswani et al., 2017), the
Transformer in T-Md consists of the Pre-LN config-
uration. We prepared 6 layers for the encoder and
decoder in Vanilla and Universal. For proposed
strategies, we stacked more layers for the encoder
side in the same as in (Wang et al., 2020). We pre-
pared N = 16 and M = 8 for the encoder side,
and N = 8 and M = 4 for the decoder side.

4.3 Results

Table 4 shows word error rates of each method
on each dataset. This table indicates that Univer-
sal outperformed Vanilla in all sets. The proposed
parameter sharing strategies (SEQUENCE, CYCLE,
and CYCLE (REV)) achieved better scores than Uni-
versal in all sets even though they are faster than
Universal. These results are consistent with results
in machine translation experiments in Section 3.
Thus, the proposed strategies are also more effi-
cient in the ASR task.

In contrast to machine translation experiments,
SEQUENCE outperformed CYCLE and CYCLE

(REV) in the ASR task. We consider that this re-
sult might be caused by the difference of tasks.
In addition, the cause might be the difference of
layer normalization positions in the Transformer
architecture. We used Post-LN based method (Ad-
min) (Liu et al., 2020) in machine translation exper-
iments, but Pre-LN based method in this ASR task.
Liu et al. (2020) and Takase et al. (2022) demon-
strated that the position of the layer normalization

has a strong effect on the property of Transform-
ers. The experimental results in language modeling
(Appendix A) also imply that SEQUENCE is more
appropriate when we use the Pre-LN based Trans-
former. The main focus of this study is empirical
comparisons to the widely used parameter sharing
strategy, Universal (Dehghani et al., 2019), but we
will address theoretical analyses on the training
dynamics in the future to understand the relation
between parameter sharing strategies and Trans-
former architectures.

5 Related Work

Parameter Sharing In the past decade, various
studies reported that a large amount of training data
improve the performance in NLP tasks (Suzuki and
Isozaki, 2008; Brants et al., 2007; Mikolov et al.,
2013; Sennrich et al., 2016a; Edunov et al., 2018).
Moreover, recent studies indicated that the larger
parameter size we prepare, the better performance
the model achieves when we have a large amount
of training data (Devlin et al., 2019; Brown et al.,
2020). In fact, the best system on the WMT 2020
news translation task is composed of about 10 times
as many parameters as the widely used Transformer
(base) setting (Kiyono et al., 2020). However, due
to the limitation on a GPU memory capacity, we
have to explore a parameter efficient way, which
achieves better performance while saving the pa-
rameter size.

Parameter sharing is a widely used technique as
a parameter efficient way (Dehghani et al., 2019;
Dabre and Fujita, 2019; Xia et al., 2019; Lan et al.,
2020). Dehghani et al. (2019) proposed Universal
Transformer. Their method requires parameters
for only one layer (i.e., M = 1) of a Transformer-
based encoder-decoder, and shares these parame-
ters with N layers. Dabre and Fujita (2019) in-
vestigated the effectiveness of Transformer sharing
parameters of one layer across all layers on various

84

translation datasets. Lan et al. (2020) used this pa-
rameter sharing strategy to construct a parameter
efficient model. As reported in these studies, we
can achieve better performance by the Transformer
sharing parameters of one layer across all layers
when we use the same parameter size as the original
Transformer. However, this strategy requires much
more computational time as described in Table 1
because weight matrices for each layer are much
larger. To solve this problem, we propose a new
parameter sharing strategies that prepare parame-
ters for M layers and assign them into N layers,
where 1 ≤ M ≤ N . Experimental results show
that our proposed strategies are more efficient than
the method sharing parameters of one layer with
across layers (Dehghani et al., 2019; Dabre and
Fujita, 2019; Lan et al., 2020). In addition, experi-
mental results imply that the proposed parameter
sharing strategies are effective to improve the per-
formance. In fact, in language modeling, previous
studies demonstrated that the parameter sharing is
useful to improve the performance (Melis et al.,
2018; Merity et al., 2018; Takase et al., 2018),

Xia et al. (2019) proposed an encoder-decoder
which shares parameters of the encoder part and de-
coder part. Xiao et al. (2019) proposed the method
to share the attention weights to make the compu-
tation of Transformers fast. These techniques are
orthogonal to our proposed method. Thus, we can
combine them to improve the efficiency of parame-
ters and computational time.

Training Acceleration In this study, we explore
a parameter efficient method. On the other hand,
recent studies proposed method to accelerate the
training. Li et al. (2020) proposed a training strat-
egy for a deep Transformer. Their strategy trains a
shallow model and then stacks layers to construct a
deep model. They repeat this procedure until the de-
sired deep model. They indicated that their strategy
was faster than the training of whole parameters
of a deep Transformer. Takase and Kiyono (2021)
compared regularization methods in terms of train-
ing time. Their experimental results show that the
simple regularizations such as word dropout are
more efficient than complex ones such as adver-
sarial perturbations. We can use those findings to
accelerate the training of our proposed strategies.

Deep Transformers To raise expressiveness
power of Transformers, we stack many layers
in the proposed method. The stability of train-

ing deep Transformers depends on their architec-
tures (Nguyen and Salazar, 2019; Xiong et al.,
2020; Liu et al., 2020). Transformer architectures
can be categorized into two types based on the
position of layer normalizations: Post-LN and Pre-
LN. Most of recent studies used the Pre-LN set-
ting when they stacked many layers (Wang et al.,
2019; Brown et al., 2020) because Pre-LN makes
the training process more stable than the Post-
LN setting, which is used in the original Trans-
former (Nguyen and Salazar, 2019; Xiong et al.,
2020). On the other hand, several studies proposed
methods to stabilize the training of Post-LN based
Transformers (Liu et al., 2020; Takase et al., 2022).
In this study, we used Admin (Liu et al., 2020) in
machine translation experiments because it stabi-
lizes the training of Post-LN based Transformers
while keeping the advantages of Post-LN in the ma-
chine translation task. For other experiments, we
used the Pre-LN configuration based on the imple-
mentations of baselines. These experiments show
that our proposed strategies are effective in major
two architectures: Post-LN and Pre-LN.

6 Conclusion

We proposed three parameter sharing strategies:
SEQUENCE, CYCLE, and CYCLE (REV), for the
internal layers in Transformers. In contrast to the
previous strategy, which prepares parameters for
only one layer and shares them across layers such
as Universal Transformers (Dehghani et al., 2019),
the proposed strategies prepare parameters for M
layers to construct N layers. The proposed strate-
gies stack layers whose weight matrices are smaller
than ones of Universal Transformers to raise expres-
siveness power while saving computational time.

Experimental results in the standard machine
translation setting show that the proposed strate-
gies achieved slightly better BLEU scores to those
of Universal with a small computational time when
we prepared almost the same parameters for each
method (M = 6 and N = 12). In addition, the
proposed strategies outperformed Universal under
the same computational budgets (M = 6 and
N = 18). Thus, the proposed strategies are ef-
ficient in terms of the parameter size and compu-
tational time. Through additional experiments, we
indicated that the proposed strategies are also more
efficient than Universal in the high resource set-
ting, other language pairs, and another modality
(speech-to-text).

85

Limitations

As described in Section 1, the purpose of this study
is to relax the existing parameter sharing strategy
which shares the parameters of one layer with all
layers (Dehghani et al., 2019; Dabre and Fujita,
2019; Lan et al., 2020). Experimental results in-
dicate that the proposed simple parameter sharing
strategies can be a better alternative to the existing
method. As many studies on neural methods, this
study also depend on empirical observations. In
other words, this study lacks theoretical justifica-
tions for proposed parameter sharing strategies.

We conducted experiments on various situations.
We mainly focused on sequence-to-sequence tasks
and trained each model from scratch. Our con-
ducted experiments indicated the efficiency of the
proposed strategies but we did not conduct experi-
ments on the pre-training and then fine-tuning con-
figuration such as comparison with BERT (Devlin
et al., 2019) due to the limitation of our computa-
tional budgets. Thus, it is difficult to claim that the
proposed strategies are also more efficient in such
configuration. In addition, we have to investigate
the effectiveness in a more realistic situation. For
example, we will investigate the performance of
the combination of our proposed method, which is
the parameter efficient way for internal layers, and
a parameter efficient embedding such as Takase
and Kobayashi (2020).

Through experiments in various configurations,
it is difficult to conclude which strategy is the
best. Experimental results imply that the best strat-
egy depends on the task and Transformer architec-
ture (Post-LN or Pre-LN). Such phenomena are
reported in previous studies (Press et al., 2020; Gu-
lati et al., 2020). In fact, the architecture explored
by Press et al. (2020) is better in the language mod-
eling task but ineffective in the machine transla-
tion task. Since it is intractable to investigate a
tremendous amount of possible parameter assign-
ment way due to the limitation of computational
budgets, there might be a superior way to three sim-
ple strategies proposed in this paper. However, we
emphasize that all our proposed strategies are more
efficient than the Universal configuration. Because
the purpose of our experiments is not to detect the
best parameter sharing strategy but to indicate that
our proposed parameter sharing strategies are more
efficient than the Universal configuration, we con-
sider that our conducted experiments are sufficient
to verify our claims.

Ethics Statement

As discussed in Strubell et al. (2019), recent neural
models require substantial energy consumption. To
address this issue, we explore a parameter efficient
way for Transformers in this study. We believe that
our proposed strategies are effective to reduce the
energy consumption.

On the other hand, we spent a large amount of
computational costs to investigate the usefulness of
our proposed strategies in various situations. Ap-
pendix B indicates our used GPUs and the number
of updates that correspond to the computational
costs.

Acknowledgements

We thank the anonymous reviewers for their insight-
ful suggestions. A part of this work was supported
by JSPS KAKENHI Grant Number JP21K17800
and JST ACT-X Grant Number JPMJAX200I.

References
Alexei Baevski and Michael Auli. 2019. Adaptive input

representations for neural language modeling. In
Proceedings of ICLR.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J.
Och, and Jeffrey Dean. 2007. Large language models
in machine translation. In Proceedings of EMNLP-
CoNLL, pages 858–867.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In NeurIPS,
pages 1877–1901.

Raj Dabre and Atsushi Fujita. 2019. Recurrent stack-
ing of layers for compact neural machine translation
models. Proceedings of AAAI, 33:6292–6299.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Łukasz Kaiser. 2019. Universal
transformers. In Proceedings of ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

86

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of EMNLP, pages 489–500.

Alex Graves. 2017. Adaptive computation time for
recurrent neural networks.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruom-
ing Pang. 2020. Conformer: Convolution-augmented
transformer for speech recognition. In Proceed-
ings of the 21st Annual Conference of the Interna-
tional Speech Communication Association (INTER-
SPEECH), pages 5036–5040.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In Proceedings of CVPR, pages 770–778.

Shun Kiyono, Takumi Ito, Ryuto Konno, Makoto Mor-
ishita, and Jun Suzuki. 2020. Tohoku-AIP-NTT at
WMT 2020 news translation task. In Proceedings of
WMT, pages 145–155.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite bert for self-supervised learn-
ing of language representations. In Proceedings of
ICLR.

Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du,
Tong Xiao, Huizhen Wang, and Jingbo Zhu. 2020.
Shallow-to-deep training for neural machine transla-
tion. In Proceedings of EMNLP, pages 995–1005.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. 2020. Understanding the difficulty
of training transformers. In Proceedings of EMNLP,
pages 5747–5763.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. Proceedings of ICLR.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and Optimizing LSTM
Language Models. In Proceedings of ICLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In Proceedings of ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In NIPS, volume 26.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In Proceedings of IWSLT.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling neural machine translation. In
Proceedings of WMT, pages 1–9.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. In ICASSP,
pages 5206–5210.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of WMT, pages 186–191.

Ofir Press, Noah A. Smith, and Omer Levy. 2020. Im-
proving transformer models by reordering their sub-
layers. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 2996–3005.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation models
with monolingual data. In Proceedings of ACL, pages
86–96.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of ACL, pages
1715–1725.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 3645–3650.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-
word scale unlabeled data. In Proceedings of ACL,
pages 665–673.

Sho Takase and Shun Kiyono. 2021. Rethinking per-
turbations in encoder-decoders for fast training. In
Proceedings of NAACL-HLT, pages 5767–5780.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun
Suzuki. 2022. B2t connection: Serving stability and
performance in deep transformers. arXiv preprint
arXiv:2206.00330.

Sho Takase and Sosuke Kobayashi. 2020. All word em-
beddings from one embedding. In Advances in Neu-
ral Information Processing Systems 33 (NeurIPS),
pages 3775–3785.

Sho Takase, Jun Suzuki, and Masaaki Nagata. 2018.
Direct output connection for a high-rank language
model. In Proceedings of EMNLP, pages 4599–4609.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of AACL-IJCNLP, pages 33–39.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of ACL, pages
1810–1822.

87

http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1603.08983
https://arxiv.org/abs/2206.00330
https://arxiv.org/abs/2206.00330

Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and
Tao Qin. 2019. Tied transformers: Neural machine
translation with shared encoder and decoder. Pro-
ceedings of AAAI, 33(01):5466–5473.

Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and
Tongran Liu. 2019. Sharing attention weights for
fast transformer. In Proceedings of IJCAI, pages
5292–5298.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer
normalization in the transformer architecture. In Pro-
ceedings of ICML.

88

A Experiments on Language Modeling

A.1 Dataset

We focused Transformer-based encoder-decoders
in the main experiments of this paper. However, re-
cent studies often employed the decoder side only
as a pre-trained model. Thus, we conduct exper-
iments on the language modeling task to investi-
gate the efficiency of our proposed strategies when
we use the decoder side only. We used Wikitext-
103 (Merity et al., 2017) which contains a large
amount of training data. We measured perplexity
of validation and test sets.

A.2 Methods

We used the Transformer with adaptive in-
puts (Baevski and Auli, 2019) as the base archi-
tecture. In the same as in Baevski and Auli (2019),
the Transformer in the language modeling consists
of the Pre-LN configuration. We set N = 6 for
Vanilla and Universal. For the proposed strategies,
we set N = 12 and M = 6.

A.3 Results

Table 5 shows perplexities of each method. This
table indicates that Vanilla achieved better perfor-
mance than Universal. Thus, the sharing param-
eters of one layer with all layers might not be
suitable for a large-scaled language modeling task.
In contrast, the proposed strategies outperformed
Vanilla. This result indicates that our proposed
strategies are also more efficient than Universal in
the language modeling.

Through the comparison among proposed strate-
gies, SEQUENCE achieved the best perplexity. As
described in Section 4, SEQUENCE might be more
appropriate to the Transformer with the Pre-LN
configuration. To explore the reason, we believe
that we have to conduct the theoretical analysis of
the Transformer during its training. We address
this issue in the future study.

The lower part of Table 5 shows the reported
score of Baevski and Auli (2019), our reproduced
score, and SEQUENCE with more parameters. This
part indicates that SEQUENCE achieved better per-
plexities than others even though the parameter size
of SEQUENCE is smaller. Therefore, SEQUENCE is
also efficient when we prepare a large amount of
parameters for a language model.

Method #Params Valid Test
Vanilla 121M 20.39 21.13
Universal 121M 22.75 23.84
SEQUENCE 121M 18.97 19.69
CYCLE 121M 19.00 19.69
CYCLE (REV) 121M 19.60 20.24

Models with more parameters
Baevski and Auli (2019)† 247M 18.53 19.24
Baevski and Auli (2019) 247M - 18.7
SEQUENCE 234M 17.71 18.55

Table 5: The parameter sizes and perplexities of each
method. The lower part indicates scores reported in
Baevski and Auli (2019) and the score of SEQUENCE
with more parameters. Scores in bold denote the best
results for each set. † represents our re-run of Baevski
and Auli (2019).

B Details of Experimental Settings

We used NVIDIATesla V100 GPUs for all exper-
iments. Table 6 shows the hyper-parameters for
training in each task. The descriptions in our code
also help to understand configurations in this study.

89

Params Machine Translation ASR Language Model
Leaning rate 0.001 0.001 0.001
Scheduler inverse sqrt inverse sqrt inverse sqrt
Adam β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Warmup updates 4k 4k 2k
Max updates 50k 150k 50k

Table 6: Hyper-parameters used in our experiments.

90

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 91–109
July 13, 2023 ©2023 Association for Computational Linguistics

To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence
Models for Improved Inference Efficiency ∗

Daniel Campos1,2 and ChengXiang Zhai1

1Department of Computer Science, the University of Illinois Urbana-Champaign
2Neeva Inc.

Abstract

Sequence-to-sequence language models can be
used to produce abstractive summaries which
are coherent, relevant, and concise. Still, model
sizes can make deployment in latency-sensitive
or web-scale implementations difficult. This
paper studies the relationship between model
size, structured pruning, inference efficiency,
and summarization accuracy on widely used
summarization datasets. We show that model
accuracy is tied to the encoder size while in-
ference efficiency is connected to the decoder.
Using asymmetric pruning can lead to nearly
3x improvement in inference latency with 1
point loss in Rouge-2. Moreover, we find both
the average degradation and the role of asym-
metry to be consistent across model sizes and
variations in datasets. We release our code1,
training regimes, and associated model 2 for
broad usage to encourage usage and experimen-
tation.

1 Introduction

The application of sequence-to-sequence lan-
guage models has become an important tool
for natural language processing tasks such as
machine translation (Sutskever et al., 2014),
audio transcription (Radford et al., 2022), and
abstractive summarization (Raffel et al., 2020).
Sequence-to-sequence models effectively turn
each of these aforementioned tasks into two-step
problems: extraction and generation, and heavily
condition the generation on the input.
Besides ensuring on-topic responses sequence to
sequence models have the added benefit of being
able to map inputs to targets with varying lengths

∗ Corresponding author: dcampos3@illinois.edu
1https://github.com/spacemanidol/Efficient-Web-Scale-

Absractive-Summarization
2https://huggingface.co/spacemanidol

1 2 3

−30

−20

−10

0

Inference Speedup

%
D

eg
ra

da
tio

n
in

R
ou

ge
-2

Accuracy vs. Inference Speed

Prune Decoder
Prune Encoder

Prune Both

Figure 1: Impact of Asymmetrical Pruning on inference
speedups and ROUGE-2 degradation on Query Indepen-
dent Web Summarization. Inference Time is the mean
inference time for a batch size of 1 on an A10 GPU over
seven iterations.

and modalities in ways encoder or decoder-only
systems cannot.
When used for abstractive summarization,
sequence-to-sequence modeling has two steps,
extraction using the encoder and generation using
the decoder, which usually involves repeated
execution until an end-of-sequence token is
emitted. Since the encoder runs once on the input
(Sutskever et al., 2014) its cost of execution is
proportional to the batch size. The cost of decoder
execution can be highly variable based on the
generation length (Tay et al., 2021). Despite the
broad study of sequence-to-sequence models
(Raffel et al., 2020) and how they compress (Li
et al., 2022), the role of model symmetry as
applied to inference efficiency and model accuracy

91

is lacking.
Recent advances in scaling language models have
led to a wide study on scaling laws as applied
to language model performance (Kaplan et al.,
2020), training data size (Hoffmann et al., 2022),
machine translation (Henighan et al., 2020), and
even reinforcement learning (Neumann and Gros,
2022).
We build on this work and study the impact of
scaling on abstractive summarization and what
role model asymmetry has in it. This asymmetry
can manifest in various ways, such as the number
of layers and hidden units in the encoder and
decoder and the type of attention mechanisms
used.
In this paper, we explore the role of asymmetry in
the number of layers in encoder-decoder language
modeling for summarization and its impact on
the performance of these models. As shown in
Figure 1, the symmetry of pruning drives the
impact on accuracy and inference speedups for
sequence-to-sequence models.
The following research questions drive our work:

• What scaling laws can be observed in abstrac-
tive summarization?

• What impact does encoder-decoder asymme-
try have on abstractive summarization accu-
racy?

• What impact does encoder-decoder asymme-
try have on abstractive summarization infer-
ence efficiency?

• What is asymmetries impact on accuracy
and inference efficiency does scale have in
encoder-decoder models for abstractive sum-
marization?

It is in answering these questions that we deliver
the following contributions:

• We present the first robust study on scaling
laws applied to the compression of sequence-
to-sequence modeling.

• We demonstrate that the asymmetric inference
cost of sequence-to-sequence models leads
to asymmetric pruning for optimal inference
efficient compression.

• We empirically demonstrate on a wide variety
of benchmarks how Asymmetric Compres-
sion can lead to a 2.7x inference speedup with
no loss in accuracy on the XSUM dataset.

2 Related Work

Transformer Based Language Models such as
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) provide contextual language representations
built on the Transformer architecture (Vaswani
et al., 2017) which can be specialized and adapted
for specific tasks and domains (Lee et al., 2020).
Using these models, it becomes relatively easy to
excel at a broad range of natural language process-
ing tasks such as question answering, text classifi-
cation, and sentiment analysis.
Scaling Laws has become an increasingly impor-

tant area of study as models’ size and training data
grows. Performance of the transformer-based lan-
guage model improves with the relation to model
size (Radford, 2018) and that larger models outper-
form smaller models (Brown et al., 2020) on most
NLP tasks. Increasing the training corpus size can
lead to large improvements in performance, and
model sizes can have a optimal training data size
(Hoffmann et al., 2022). Li et al. (2020) (Li et al.,
2020) explore the relationship between model size
and training efficiency finding larger models train
faster and are more robust to pruning and quantiza-
tion (Na et al., 2022).
Asymmetrical in sequence-to-sequence models
broadly refers to non-uniformity between encoder
and decoder model shape or attributes. Training
and inference procedures should match as closely
as possible (Ranzato et al., 2015) (Mihaylova
and Martins, 2019) as improvements in training
loss during optimization result in improvements
in model performance during Inference. While
this may lead to the best model performance, it
ignores the variable inference cost of sequence-to-
sequence models.
During Inference, latency is dominated by the
asymmetric execution of the language model. The
auto-encoding encoder executes once over the en-
tire input sequence, while the auto-regressive de-
coder executes iteratively until an end-of-sequence
token is produced.
Kasai et al. demonstrated how the sequence-to-
sequence language model performance for ma-

2

92

Table 1: Information about the architecture and attributes of the FLAN-T5 models

Model Size(MBs) Parameters Encoder Layers Parameters Encoder Decoder Layers Parameters decoder Ratio End:Dec Hidden Size
Flan-t5-small 3 146 60511616 8 35332800 8 41628352 0.849 512
Flan-t5-base 4 472 222903552 12 109628544 12 137949312 0.795 768
Flan-t5-large 5 1500 750251008 24 341231104 24 441918976 0.772 1024

chine translation is dominated by the encoder depth
(Kasai et al., 2020). Tay et al. 2021 extend this
work by finding a DeepNarrow which shows that
for broad language modeling, it is possible to have
50% fewer parameters and a 40% faster inference
with no loss in accuracy (Tay et al., 2021).
Efficient Inference for language modeling is a
growing area of study that broadly focuses on re-
ducing the inference cost without losses in accu-
racy.
Unstructured Pruning has been broadly studied
(Han et al., 2015) (Sanh et al., 2020) (Kurtić et al.,
2022) (Zafrir et al., 2021) (Campos et al., 2022)
but realizing speedups can be difficult.
Structured Pruning removes fundamental structural
components in a language model such as individ-
ual attention heads (Voita et al., 2019) or entire
model layers such as transformer encoders (Sanh
et al., 2019). Rosenfeld et al. 2020 demonstrate
that unstructured pruning impacts follow scaling
laws (Rosenfeld et al., 2020) where larger models
can be pruned with greater ease.
Compressing Sequence-to-sequence is a grow-
ing area of study where approaches from regular,
efficient Inference has shown some transfer abil-
ity. Shleifer et al. show that it is possible to gain
1.93x speedup on a BART summarization model
by applying structural pruning (Shleifer and Rush,
2020) but find compression approaches differ in
their success depending on the dataset. Leveraging
semi-structured pruning, Lagunas et al. can gain
a 1.19 speedup (Lagunas et al., 2021) for minor
losses in accuracy. While they find that the en-
coder is easier to prune than the decoder, they do
not use this evidence of asymmetry to speed up
performance further.
Li et al. investigate how to enable quantization,
finding that without specialized distillation dur-
ing quantization, performance collapses (Li et al.,
2022). Leveraging that generation occurs itera-
tively, and some tokens are easier to generate than
other CALM (Schuster et al., 2022) apply early
exiting to improve inference speed by 1.4x. While

existing work has found interest in asymmetry, it
has not been studied directly, nor has relationships
in model scale been explored.
While there are other approaches such as knowl-
edge distillation (Hinton et al., 2015) (Sanh et al.,
2019) (Jiao et al., 2020), quantization (Zafrir et al.,
2019), early exiting (Xin et al., 2020) and token
pruning (Kim et al., 2021) these are not the fo-
cus on our work as understanding the impact of
many variables together limits the depth of our ex-
ploration. We leave further study of the interplay
between summarization and quantization, unstruc-
tured pruning, structured pruning, and knowledge
distillation for future work.

3 Scale and Abstractive Summarization

3.1 Background

Sequence-to-sequence language models such as
BART (Lewis et al., 2021), T5 (Raffel et al., 2020),
and PEGASUS (Zhang et al., 2020) combine trans-
former encoders and decoders to produce models
which can adapt to novel tasks and reach top perfor-
mance on tasks ranging from information retrieval
(Nogueira et al., 2020) to summarization (Raffel
et al., 2020).
We focus on the instruction-tuned FLAN-T5 mod-
els (Wei et al., 2021) as their performance is com-
petitive and they feature wide variations in model
size ranging from 60 million to 11 billion parame-
ters and given the cost of training the larger vari-
ants, focus on the small, base, and large variants.
Details on model size and architecture can be found
in table 1.
Abstractive summarization is a method of se-
quence compression where a source document D
is transformed into a target document dsum, which
is shorter but faithful to the input.
Datasets of use are a combination of public
and academic benchmarks and a proprietary web
search dataset. The CNN/DailyMail (CNNDM)
(See et al., 2017) and XSUM (Narayan et al., 2018)
datasets are based on the summarization of English
new language models. The Query Independent

3

93

0 100 200 300 400 500 600 700 800

0

10

20

30

40

Model Parameters (millions)

%
G

ai
n

in
R

ou
ge

-2
(v

s.
Sm

al
l)

Summarization Accuracy vs. Model Size

QIWS
CNN/DM (See et al., 2017)

XSUM (Narayan et al., 2018)

Figure 2: Model Size vs. Gain to summarization accu-
racy as measured by the relative Gain in rouge-2 vs. the
small model.

Web Summary (QIWS) is a proprietary corpus of
abstractive summaries of web pages that are used
to create informative contextual snippets for search
engine users. It is important to note the differ-
ences in compression factor in each dataset as each
impact how decoder-driven inference latency is.
Further information on the makeup of each dataset
can be found in table 11.

Metrics For each dataset, we evaluate model
performance by measuring the ROUGE-1 (R-1),
ROUGE-2 (R-2), ROUGE-L (R-L), RougeSum-
L (RSL) 6 (Lin, 2004), and Generation Length
(GenL) on the test portion of the dataset. To aid
the reproducibility and extension of our work, we
experiment using HuggingFace’s Transformers 7,
release our training and pruning scripts 8 and model
variants for datasets that are publicly available
datasets 9.

3.2 Scaling Laws for Abstract Summarization

To study the role of scale in abstractive summariza-
tion, we train small, base, and large models of the
three datasets mentioned above. We do not study

6Rouge-L is sentence level vs. RougeSum-L is summary
level

7https://github.com/huggingface/transformers
8https://github.com/spacemanidol/Efficient-Web-Scale-

Absractive-Summarization
9https://huggingface.co/spacemanidol

the XL (3B) and XXL (11B) as they are expensive
and slow to train.
For all of our experiments, we train on various
hardware but fix the batch size to 64 using gradient
accumulation and leverage the hyperparameters
in 12. While further hyperparameter optimization
and instruction tuning would likely lead to further
gains in accuracy, our work is not focused on
absolute Gains but on the relative relation of scale.

As shown in 2, 13, 14, and 15, there is a substan-
tial role between scale and performance, but there
is a substantial variation across datasets.
Datasets with short candidate summaries, such as
XSUM, see nearly three times the impact compared
to the long summaries of QIWS and CNNDM. Dur-
ing qualitative evaluations, the role of scale can eas-
ily be observed as smaller models generate more
short keyword summaries while introducing scale
makes responses more natural.

3.3 Inference Benchmark

To evaluate the impact of asymmetry on inference,
we run experiments on the throughput of each
model. Using an A10 GPU and the models from
our QIWS datasets, we evaluate performance with
a max sequence length of 1024, a max summary of
256, and batch sizes 1, 8, and 16 using native infer-
ence in PyTorch. We report the mean and standard
deviation of timings on seven runs.
In comparing the impact of scale on R-2 vs. the
effects on latency across batch sizes in 2, 4, 3 it
becomes clear that larger models are more expen-
sive to execute significantly as batch sizes increase.
This is because of potential differences in output
length within a batch as the batch completes when
all sequences have produced an EOS token. To
alleviate this issue bottleneck, improved stream-
ing methods for improved batching have been pro-
posed (Yang et al., 2020) but can be challenging to
manage.

4 To Asymmetry and Beyond

While prior work has studied how to improve in-
ference and tangentially explored the asymmetry
between the encoder and decoder, we study that
explicitly and across model scales. We focus our
studies on structural pruning as inference gains
are easy to realize, and this approach is highly

4

94

Table 2: Impact of scale on inference throughput for abstractive summarization models trained on the XSUM
dataset. Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model R-2 Gain BS 1 Latency Impact BS 8 Latency Impact BS 16 Latency Impact
small 17.55 0.00% 138 1 230 1 330 1
base 19.77 12.63% 199 1.44 550 2.39 931 2.82
large 21.15 20.51% 445 3.22 1480 6.43 2700 8.18

Table 3: Impact of scale on inference throughput for abstractive summarization models trained on the QIWS dataset.
Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model R-2 Gain BS 1 Latency Impact BS 8 Latency Impact BS 16 Latency Impact
small 29.03 0 524 1 653 1 729 1
base 34.19 17.77% 746 1.42 1060 1.62 1310 1.80
large 37.37 28.72% 1,430 2.73 2240 3.43 3320 4.55

Table 4: Impact of scale on inference throughput for abstractive summarization models trained on the CNNDM
dataset.Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model R-2 Gain BS 1 Latency Impact BS 8 Latency Impact BS 16 Latency Impact
small 11.09 0 171 1.00 252 1.00 344 1.00
base 15.69 41.50% 255 1.49 550 2.18 845 2.46
large 16.34 47.41% 525 3.07 1370 5.44 2300 6.69

Table 5: Relation between scale and asymmetry on
model performance on the QIWS dataset. As shown by
the results in bold pruning only the decoder leads to
less degradation than just the encoder or both, across
all scales.

Small Base Large
lenc ldec R-2 R R-2 R R-2 R
6 6 29.03 100.00% 34.19 100.00% 37.37 100.00%
6 5 28.90 99.55% 34.00 99.44% 37.59 100.59%
6 4 28.56 98.40% 34.50 100.91% 36.56 97.84%
6 3 27.94 96.24% 33.70 98.58% 35.74 95.64%
6 2 24.85 85.61% 31.93 93.38% 35.13 94.01%
6 1 15.41 53.08% 28.05 82.03% 33.69 90.15%

5 6 27.92 96.17% 33.57 98.18% 36.39 97.38%
4 6 27.75 95.60% 33.06 96.69% 35.90 96.07%
3 6 25.20 86.82% 32.23 94.28% 34.22 91.58%
2 6 23.67 81.55% 27.47 80.35% 33.42 89.43%
1 6 18.23 62.79% 25.57 74.78% 30.31 81.11%

5 5 26.82 92.38% 32.88 96.18% 36.32 97.20%
4 4 26.62 91.72% 32.81 95.96% 35.98 96.29%
3 3 23.12 79.64% 28.70 83.95% 33.00 88.31%
2 2 19.14 65.92% 26.53 77.60% 30.78 82.38%
1 1 6.09 20.99% 19.64 57.43% 22.77 60.94%

compatible with other methods like quantization
and unstructured pruning. We do not study how
asymmetry is impacted by unstructured pruning or
quantization as these methods are difficult to com-
bine optimized libraries like FasterTransformers10.
Following Shleifer et al., we adopt the "Shink and
then fine" (STF) tune approach for compression.
First, a model is trained until convergence on a
fine-tuning summarization task. Then, entire lay-
ers are removed from the encoder, decoder, or both,
and the model is further fine-tuned until it has re-

10https://github.com/NVIDIA/FasterTransformer

converged. We do not study the use of knowledge
distillation to avoid the additional training over-
head without guaranteed improvements following
Shleifer et al.’s results.
Each model we study has a uniform number of
encoder and decoder layers, so we prune only the
encoders, decoders, and a symmetric combination
of the two combinations. We used our three scales
of uncompressed models (small, base, large), and
we pruned the model in multiples of 1 on the en-
coder, the decoder, and both. After pruning, mod-
els are fine-tuned again and evaluated. This means
that for each dataset, we have 16 variants for each
model size leading to 48 models per dataset and
144 models overall.
Given the wide number of models and the cost
of multiple seeds or model-specific optimization,
we train each model once and do not optimize the
parameters for each model. While this leads to a
worse-than-ideal performance, our goal is not to
hyper-optimize models but explore where there is
high sensitivity. To save space, we use the short-
hand lenc and ldec to refer to the number portion of
transformer encoder and decoder layers (out of 6),
and R refers to the percentage performance recall
vs. uncompressed baseline. Detailed results have
been moved to the A.3 to save space.

5

95

Table 6: Relation between scale and asymmetry on
model performance on the CNNDM dataset. As shown
by the results in bold as the model size grows the impact
of pruning becomes more muted

Small Base Large
lenc ldec R-2 R R-2 R R-2 R
6 6 17.55 100.00% 19.77 100.00% 21.15 100.00%
6 5 17.68 100.74% 19.92 100.76% 21.30 100.69%
6 4 17.27 98.36% 19.85 100.42% 21.32 100.81%
6 3 16.40 93.43% 18.85 95.37% 21.08 99.66%
6 2 15.35 87.42% 18.68 94.51% 20.67 97.73%
6 1 11.33 64.57% 16.48 83.38% 19.49 92.12%

5 6 17.69 100.81% 19.92 100.76% 21.13 99.88%
4 6 17.35 98.84% 19.67 99.50% 20.83 98.47%
3 6 16.80 95.70% 18.85 95.37% 20.53 97.06%
2 6 15.54 88.51% 18.22 92.14% 19.74 93.33%
1 6 13.31 75.83% 17.06 86.27% 18.68 88.31%

5 5 17.07 97.23% 19.72 99.74% 21.23 100.34%
4 4 16.20 92.28% 19.17 96.99% 20.90 98.81%
3 3 14.91 84.95% 17.46 88.29% 20.13 95.16%
2 2 11.97 68.17% 15.87 80.26% 18.47 87.30%
1 1 6.05 34.45% 12.23 61.88% 15.51 73.32%

Table 7: Scale and Pruning on XSUM dataset

Small Base Large
lenc ldec R-2 R R-2 R R-2 R
6 6 11.09 100.00% 15.69 100.00% 16.34 100.00%
6 5 11.61 104.74% 15.27 97.35% 19.80 121.16%
6 4 11.43 103.12% 14.91 95.03% 19.30 118.09%
6 3 11.24 101.36% 15.40 98.17% 18.92 115.77%
6 2 10.53 94.98% 15.19 96.82% 17.96 109.93%
6 1 6.03 54.42% 13.73 87.53% 16.47 100.76%

5 6 11.18 100.82% 15.92 101.47% 19.43 118.88%
4 6 10.61 95.68% 14.10 89.91% 18.33 112.16%
3 6 10.11 91.16% 13.84 88.21% 16.90 103.39%
2 6 8.59 77.52% 12.10 77.12% 14.97 91.61%
1 6 7.70 69.43% 10.27 65.47% 12.52 76.63%

5 5 10.73 96.76% 15.72 100.22% 19.18 117.38%
4 4 10.19 91.96% 14.30 91.15% 17.56 107.43%
3 3 9.50 85.69% 12.44 79.32% 15.89 97.21%
2 2 7.31 65.91% 10.67 68.05% 12.15 74.34%
1 1 4.00 36.09% 7.74 49.35% 8.96 54.86%

4.1 Scale and Pruning

Looking at abridged results in 5, 6, and 7, there
is a clear scaling law as smaller models see much
larger drops in performance when compressed
to the same degree. For example, on the QIWS
dataset, compression to 1

6 of the layers on the
encoder and decoder cause an 80% drop in R-2 on
a small model but only 40% on the larger model.
This scale comparison is 65% to 26% on CNNDM
and 64% to 45% on XSUM datasets.

Similar scaling results hold with encoder or
decoder pruning, where compressing large models
lead to a 5x lower loss in performance than small
models. As the model’s size grows, the impact of
decoder vs. encoder-only pruning becomes more
muted. On the CNNDM dataset, the gap between
the decoder only and encoder only pruned to 1

6 is
10% with the FLAN-T5 small but only 4% with
the large variant. When comparing asymmetric
and symmetric, the gap is even further pronounced
where the small gap is 30% while the large is 20%.

0 1 2 3 4 5

10

15

20

Portion of Model Pruned (Out of Six)

R
ou

ge
-2

Role of scale and compression on CNNDM

smallencoder
smalldecoder

smallboth

0 1 2 3 4 5

10

15

20

Portion of Model Pruned (Out of Six)

R
ou

ge
-2

Role of scale and compression on CNNDM

baseencoder
basedecoder

baseboth

0 1 2 3 4 5

10

15

20

Portion of Model Pruned (Out of Six)

R
ou

ge
-2

Role of scale and compression on CNNDM

largeencoder
largedecoder

largeboth

Figure 3: Relationship between model compression,
model size, and summarization accuracy measured by
rouge-2 vs. Number Layers. smallencoder refers to a
FLAN-T5 small which has only pruned the encoder,
smalldecoder for only the decoder, and smallboth for the
encoder and decoder

6

96

As shown in Figure 3, the impact of compression
becomes more muted as the model size grows. In
other words, larger models are more compressible
and amenable to asymmetry in this compression.
The impact of asymmetry is easiest to understand
as it is not surprising that complete pruning of a
model leads to higher losses than partial pruning
across datasets and model sizes. While this finding
is not immediately surprising, evaluating the
inference costs becomes important.

4.2 Inference Benchmarks

We evaluate the impact of asymmetry in a similar
method to our scale experiments. Using an A10
GPU, we evaluate performance for summarization
on a portion of each model’s respective evaluation
datasets with a max sequence length of 1024, a
max summary length of 256, and batch sizes 1, 8,
and 16. We choose these batch sizes to represent
streaming workloads (batch size 1), real-time re-
sults for the top results from a search query (batch
size 8i), and max throughput given the A10’s mem-
ory budget (batch size 16)

QIWS CNN/DailyMail XSUM

lenc ldec Impact Speedup Impact Speedup Impact Speedup
6 3 -4.36% 1.80 -0.34% 1.65 15.77% 1.64
6 2 -5.99% 2.44 -2.27% 2.03 9.93% 2.07
6 1 -9.85% 3.83 -7.88% 2.70 0.76% 2.71

3 6 -8.42% 1.04 -2.94% 1.14 3.39% 1.16
2 6 -10.57% 1.04 -6.67% 1.19 -8.39% 1.21
1 6 -18.89% 1.06 -11.69% 1.27 -23.37% 1.30

3 3 -11.69% 1.91 -4.84% 1.94 -2.79% 2.06
2 2 -17.62% 2.20 -12.70% 2.78 -25.66% 2.83
1 1 -39.06% 2.44 -26.68% 4.96 -45.14% 4.84

Table 8: Relationship between accuracy and speedup
of encoder only, the decoder only, encoder and de-
coder pruning on FLAN-T5 Large models on CNN/DM,
XSUM, and QIWS. Speedup is measured by compar-
ing the improvements in latency for batch size one vs.
the uncompressed baseline. The impact is the relative
loss of Rouge-2 of compressed models vs. the uncom-
pressed baseline.

Looking at the focused set of results for large mod-
els across datasets in table 8 on the impact of R-2
vs. inference speedup, we can see a clear relation-
ship between asymmetry and inference efficiency.
While detailed inference results can be found in
the appendix A.4 on this focused set of results,
we can see that pruning only the encoder leads to
no more than 30% improvement in inference effi-
ciency at a sizable loss in accuracy. Pruning the

model symmetrically leads to realizable inference
improvements of up to 5x at the expense of sum-
marization accuracy.
Alternatively, when only the decoder is pruned, it is
possible to see most of the inference speedups seen
during constant pruning with a substantially lower
impact on accuracy. On the CNN/DM dataset,
constant pruning leads to 8% better inference but
losses nearly four times the performance of non-
uniform compression.

Small Base Large

lenc ldec Impact Speedup Impact Speedup Impact Speedup
6 6 -3.76% 1.79 -1.42% 1.76 -4.36% 1.80
6 6 -14.39% 2.69 -6.62% 2.13 -5.99% 2.44
6 6 -46.92% 3.97 -17.97% 3.69 -9.85% 3.83

3 3 -13.18% 1.02 -5.72% 1.04 -8.42% 1.04
2 2 -18.45% 1.02 -19.65% 1.05 -10.57% 1.04
1 1 -37.21% 1.03 -25.22% 1.06 -18.89% 1.06

3 3 -20.36% 1.40 -16.05% 1.86 -11.69% 1.91
2 2 -34.08% 1.30 -22.40% 2.48 -17.62% 2.20
1 1 -79.01% 3.91 -42.57% 3.95 -39.06% 2.44

Table 9: Relationship between accuracy and speedup
of encoder only, decoder only, encoder and decoder
pruning on FLAN-T5 models on QIWS concerning
model size. Speedup is measured by comparing the
improvements in latency for batch size one vs. the un-
compressed baseline. The impact is the relative loss of
Rouge-2 of compressed models vs. the uncompressed
baseline.

lenc ldec Impact Speedup (BS1) Speedup (BS8) Speedup (BS16)
6 3 -0.34% 1.65 1.18 1.15
6 2 -2.27% 2.03 1.25 1.22
6 1 -7.88% 2.70 1.36 1.29

6 3 -2.94% 1.14 1.48 1.54
6 2 -6.67% 1.19 1.68 1.89
6 1 -11.69% 1.27 2.21 2.43

3 3 -4.84% 1.94 1.96 1.97
2 2 -12.70% 2.78 2.88 2.92
1 1 -26.68% 4.96 5.54 5.64

Table 10: Relationship between accuracy and speedup
of encoder only, decoder only, encoder and decoder
pruning on FLAN-T5 large models on CNN with vari-
ation in inference batch size. Speedup is measured by
comparing the improvements in latency vs. the uncom-
pressed baseline at various batch sizes. The impact is
the relative loss of Rouge-2 of compressed models vs.
the uncompressed baseline.

5 Discussion

5.1 Scale, Inference, and Pruning

As shown in table 9, the gains found by pruning are
extremely consistent independently with scaling.

7

97

0 1 2 3 4 5

60

65

70

75

80

Portion of Model Pruned (Out of Six)

G
en

er
at

io
n

L
en

gt
h

(t
ok

en
s)

Genl vs. Model Pruning on CNNDM

smallencoder
smalldecoder

smallboth
baseencoder
basedecoder

baseboth
largeencoder
largedecoder

largeboth

Figure 4: Role of scale and compression on generation
length

Pruning only the encoder leads to a 4-6% improve-
ment in latency, and pruning just the decoder leads
to 400%, as does uniform compression. This is
expected as structural pruning removes a constant
portion of the network, which leads to consistent
latency gains irrespective of model scale.

5.2 Scale, Pruning and Generated length

Despite expecting a significant trend in the role of
scale and pruning in a generation, we do not see
any noticeable trends. As shown in figures 6 and
4, there is no discernible trend of the Role of scale
and pruning in generation length. There is a minor
jump in generation length from FLAN-T5 small
to FLAN-T5 base across all datasets but no such
jump from FLAN-T5 base to FLAN-T5 large. We
believe this is because the smaller models are less
fluent and need more tokens to ensure accurate cov-
erage. As models scale, this is no longer needed,
and the models converge to a uniform summary
length.

5.3 Asymmetry with large batches

Despite the allures of asymmetrical pruning, it is
not without fault. As shown in table 10 and Fig-
ure 5, the improvements in inference efficiency
are heavily influenced by the batch size. When
the batch size is minimal, the difference in the
type of non-uniformity has a significant impact

1 8 16
1

2

3

4

5

Batch Size
Sp

ee
du

p

Impact of batch size on inference speedups

6enc − 3dec
6enc − 2dec
6enc − 1dec
3enc − 6dec
2enc − 6dec
1enc − 6dec
3enc − 3dec
2enc − 2dec
1enc − 1dec

Figure 5: Relationship between inference batch size
and realized inference speedup with uniform and no
uniform pruning of FLAN-T5 large on CNNDM

0 100 200 300 400 500 600 700 800
20

30

40

50

60

70

Model Parameters (millions)

G
en

er
at

io
n

L
en

gt
h

(t
ok

en
s)

Genl vs. Model Size

QIWS
CNN/DM

XSUM

Figure 6: Role of scale on generation length

8

98

on inference efficiency. As batches scale, the
speedup from encoder only or decoder only be-
comes much closer and becomes minor when com-
pared to uniform methods. This indicates why
further work on improving generative inference
methods is highly relevant, as this problem im-
pacts other efficiency-driven processes like CALM
(Schuster et al., 2022).

6 Conclusion and Future Work

In this work, we explore the role of symmetry in
the pruning of sequence-to-sequence models for ab-
stractive summarization, finding that pruning asym-
metrically can lead to inference speedups with low
losses in accuracy. Our work also explores the rela-
tionship between model scale and the sensitivity to
pruning, finding that larger models see lower losses
when pruned. This compresses FLAN-T5 models
to deliver 3x inference gains with a 1 Rouge-2
point loss.
In future work, we seek to study how pseudo la-
beling, early exiting, and quantization can be com-
bined to improve further the inference efficiency
of sequence-to-sequence models.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Daniel Fernando Campos, Alexandre Marques, Tuan
Anh D. Nguyen, Mark Kurtz, and ChengXiang Zhai.
2022. Sparse*bert: Sparse models are robust. ArXiv,
abs/2205.12452.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL.

Song Han, Huizi Mao, and William J. Dally. 2015. A
deep neural network compression pipeline: Pruning,
quantization, huffman encoding. ArXiv.

T. J. Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris
Hallacy, Benjamin Mann, Alec Radford, Aditya
Ramesh, Nick Ryder, Daniel M. Ziegler, John Schul-
man, Dario Amodei, and Sam McCandlish. 2020.
Scaling laws for autoregressive generative modeling.
ArXiv, abs/2010.14701.

Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. 2015.
Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and L. Sifre. 2022. Training compute-optimal large
language models. ArXiv, abs/2203.15556.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. ArXiv, abs/1909.10351.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv,
abs/2001.08361.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A. Smith. 2020. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In International Conference on Learning
Representations.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Joseph Hassoun, and Kurt Keutzer. 2021.
Learned token pruning for transformers. Proceed-
ings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining.

Eldar Kurtić, Daniel Fernando Campos, Tuan Nguyen,
Elias Frantar, Mark Kurtz, Ben Fineran, Michael
Goin, and Dan Alistarh. 2022. The optimal bert
surgeon: Scalable and accurate second-order pruning
for large language models. ArXiv, abs/2203.07259.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander M. Rush. 2021. Block pruning for faster
transformers. ArXiv, abs/2109.04838.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36:1234–1240.

9

99

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-
ervini, Heinrich Küttler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021. PAQ: 65
million probably-asked questions and what you can
do with them. Transactions of the Association for
Computational Linguistics, 9:1098–1115.

Zheng Li, Zijian Wang, Ming Tan, Ramesh Nallapati,
Parminder Bhatia, Andrew O. Arnold, Bing Xiang,
and Dan Roth. 2022. Dq-bart: Efficient sequence-
to-sequence model via joint distillation and quanti-
zation. In Annual Meeting of the Association for
Computational Linguistics.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin,
K. Keutzer, D. Klein, and Joseph Gonzalez. 2020.
Train large, then compress: Rethinking model size
for efficient training and inference of transformers.
ArXiv, abs/2002.11794.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Tsvetomila Mihaylova and André F. T. Martins. 2019.
Scheduled sampling for transformers. ArXiv,
abs/1906.07651.

Clara Na, Sanket Vaibhav Mehta, and Emma Strubell.
2022. Train flat, then compress: Sharpness-aware
minimization learns more compressible models.
ArXiv, abs/2205.12694.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. ArXiv, abs/1808.08745.

Oren Neumann and Claudius Gros. 2022. Scaling
laws for a multi-agent reinforcement learning model.
ArXiv, abs/2210.00849.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy J. Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. ArXiv, abs/2212.04356.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. ArXiv, abs/1910.10683.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR,
abs/1511.06732.

Jonathan S. Rosenfeld, Jonathan Frankle, Michael
Carbin, and Nir Shavit. 2020. On the predictabil-
ity of pruning across scales. ArXiv, abs/2006.10621.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. ArXiv, abs/2005.07683.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa De-
hghani, Dara Bahri, Vinh Quang Tran, Yi Tay, and
Donald Metzler. 2022. Confident adaptive language
modeling. ArXiv, abs/2207.07061.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Sam Shleifer and Alexander M. Rush. 2020. Pre-trained
summarization distillation. ArXiv, abs/2010.13002.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fe-
dus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Don-
ald Metzler. 2021. Scale efficiently: Insights from
pre-training and fine-tuning transformers. ArXiv,
abs/2109.10686.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Elena Voita, David Talbot, F. Moiseev, Rico Sennrich,
and Ivan Titov. 2019. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the
rest can be pruned. In ACL.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. 2021. Finetuned language mod-
els are zero-shot learners. ArXiv, abs/2109.01652.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy J. Lin. 2020. Deebert: Dynamic early exiting
for accelerating bert inference. In ACL.

10

100

https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

Kevin Yang, Violet Yao, John DeNero, and Dan Klein.
2020. A streaming approach for efficient batched
beam search. In Conference on Empirical Methods
in Natural Language Processing.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. 2019
Fifth Workshop on Energy Efficient Machine Learn-
ing and Cognitive Computing - NeurIPS Edition
(EMC2-NIPS), pages 36–39.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen,
and Moshe Wasserblat. 2021. Prune once for
all: Sparse pre-trained language models. ArXiv,
abs/2111.05754.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. ArXiv,
abs/1912.08777.

A Appendix

A.1 Training Details
In all of our experiments, we leverage the parame-
ters shown in 12 on the datasets shown in 11

A.2 Scale and Abstractive summarization
The role of model scale on performance on the
QIWS, CNN/DM, and XSUM datasets can be
found in tables 14,13, and 15

A.3 Asymmetry in Summarization
The role of the model scale, structural pruning,
and asymmetry on performance on the QIWS,
CNN/DM, and XSUM datasets can be found in
tables 22,23,24,16,17,18,19,20, and 21.

A.4 Inference Benchmarks
Detailed variations in latency measurements across
batch size, scale, structural pruning, and asymme-
try on performance on the QIWS, CNN/DM, and
XSUM datasets can be found in tables 25,26, 27,
28,29, 30, 33, 31, and 32.

A.5 Responsible NLP Research -
Reproducibility Checklist

A.5.1 Scientific Artifacts
Datasets. We perform our experimentation on
well-established benchmarks using many broad
domains and a proprietary web summarization
dataset. We do not perform any modification or
augmentation on public benchmarks in any dataset.

Models. The model used as a starting point for all
of our experiments is the family of flan-t5 models,
publicly available via HuggingFace Hub 13. All
other models presented in this paper are openly-
available in the hugging face hub.

A.5.2 Computational Experiments
Our experimentation on finetuning our compressed
models uses a single 40GB A100. Finetuning time
varies across datasets ranging from 1 hour for T5-
small to 24 hours for T5-Large.

A.5.3 Computational Packages
All of our experimentation is done using public
libraries and datasets to ensure extensibility and
reproducibility. Our investigation is done using
HuggingFace’s Transformers 14 and Datasets 15.

13https://huggingface.co/bert-base-uncased
14https://github.com/huggingface/transformers
15https://github.com/huggingface/datasets

11

101

Table 11: Statistics for the abstractive summarization datasets which we study. Source and Summary refer to the
number of words in each, and the compression factor is the ratio between the two on the train portion of the dataset.

Dataset Train Validation Test Source Summary Compression
CNNDM 11 287,113 13,368 11,490 691.87 51.57 14.80
XSUM 12 204,045 11,332 11,334 373.86 21.09 18.70
QIWS 10000 1000 1000 1410.12 73.78 19.11

HyperParameter Value

Training Length 3,10 Epochs

Initial learning rate 1e-4
Learning rate schedule constant

Batch size 64

Weight Decay 0.01, 0.05, 0.1

Table 12: Training Hyperparameters for summarization
experiments

12

102

Model R-1 Impact R-2 Impact RSL Impact R-L Impact Genl Impact
small 50.22 0.00% 29.03 0.00% 45.87 0.00% 40.19 0.00% 62.79 0.00%
base 54.84 9.20% 34.19 17.77% 50.38 9.83% 44.68 11.18% 62.91 0.19%
large 57.81 15.11% 37.37 28.72% 53.14 15.84% 48.16 19.84% 62.85 0.10%

Table 13: Impact of Scale on summarization performance on QIWS dataset

Model R-1 Impact R-2 Impact RSL Impact R-L Impact Genl Impact
small 39.31 0.00% 17.55 0.00% 36.50 0.00% 27.97 0.00% 77.62 0.00%
base 42.14 7.20% 19.77 12.63% 39.32 7.75% 30.15 7.80% 71.86 -7.42%
large 43.99 11.90% 21.15 20.51% 41.12 12.68% 31.64 13.11% 71.01 -8.51%

Table 14: Impact of Scale on summarization performance on CNNDM dataset

Model R-1 Impact R-2 Impact RSL Impact R-L Impact Genl Impact
small 33.2675 0.00% 11.09 0.00% 26.17 0.00% 26.17 0.00% 28.01 0.00%
base 38.7782 16.56% 15.69 41.45% 31.14 19.01% 31.15 19.04% 25.92 -7.48%
large 39.7125 19.36% 16.34 47.36% 31.72 21.21% 31.72 21.23% 26.74 -4.54%

Table 15: Impact of Scale on summarization performance on XSUM dataset

Table 16: The relation between pruning asymmetry and symmetry for a FLAN-T5 small model on the
CNN/DailyMail Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
8 8 39.31 0.00% 17.55 0.00% 36.50 0.00% 27.97 0.00% 77.62 0.00%
8 6 39.33 0.04% 17.68 0.74% 36.54 0.13% 28.21 0.87% 76.46 -1.49%
8 5 38.75 -1.42% 17.27 -1.64% 36.01 -1.32% 27.91 -0.23% 78.63 1.31%
8 4 37.18 -5.42% 16.40 -6.57% 34.46 -5.58% 27.22 -2.70% 75.69 -2.48%
8 2 35.47 -9.76% 15.35 -12.58% 32.78 -10.17% 26.28 -6.06% 75.08 -3.27%
8 1 29.27 -25.55% 11.33 -35.43% 26.97 -26.09% 22.33 -20.18% 67.99 -12.40%
6 8 39.59 0.71% 17.69 0.81% 36.80 0.83% 28.08 0.39% 77.81 0.25%
5 8 39.12 -0.47% 17.35 -1.16% 36.38 -0.31% 27.73 -0.88% 76.22 -1.80%
4 8 38.57 -1.87% 16.80 -4.30% 35.79 -1.92% 27.15 -2.92% 78.13 0.67%
2 8 36.82 -6.32% 15.54 -11.49% 34.00 -6.84% 25.79 -7.78% 77.77 0.20%
1 8 33.58 -14.58% 13.31 -24.17% 30.96 -15.16% 23.72 -15.19% 70.79 -8.79%
6 6 38.59 -1.82% 17.07 -2.77% 35.80 -1.91% 27.55 -1.52% 77.93 0.41%
5 5 37.31 -5.08% 16.20 -7.72% 34.60 -5.19% 26.83 -4.07% 79.83 2.85%
4 4 35.28 -10.25% 14.91 -15.05% 32.54 -10.85% 25.74 -7.98% 74.61 -3.88%
2 2 30.79 -21.66% 11.97 -31.83% 28.03 -23.19% 22.88 -18.19% 78.53 1.18%
1 1 21.30 -45.80% 6.05 -65.55% 19.57 -46.39% 16.62 -40.56% 60.03 -22.66%

Table 17: The relation between pruning asymmetry and symmetry for a FLAN-T5 base model on the
CNN/DailyMail Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
12 12 42.14 0.00% 19.77 0.00% 39.32 0.00% 30.15 0.00% 71.86 0.00%
12 10 42.49 0.84% 19.92 0.76% 39.62 0.75% 30.27 0.40% 74.38 3.51%
12 8 42.28 0.34% 19.85 0.42% 39.48 0.41% 30.35 0.64% 70.74 -1.56%
12 6 41.30 -1.99% 18.85 -4.63% 38.44 -2.25% 29.16 -3.28% 74.76 4.04%
12 4 40.31 -4.34% 18.68 -5.49% 37.71 -4.10% 29.45 -2.33% 67.52 -6.04%
12 2 36.75 -12.80% 16.48 -16.62% 34.22 -12.97% 27.61 -8.43% 67.67 -5.82%
10 12 42.49 0.84% 19.92 0.76% 39.62 0.75% 30.27 0.40% 74.38 3.51%
8 12 42.27 0.31% 19.67 -0.50% 39.41 0.22% 29.99 -0.52% 74.34 3.45%
6 12 41.30 -1.99% 18.85 -4.63% 38.44 -2.25% 29.16 -3.28% 74.76 4.04%
4 12 40.51 -3.86% 18.22 -7.86% 37.66 -4.23% 28.42 -5.75% 77.04 7.21%
2 12 39.03 -7.38% 17.06 -13.73% 36.15 -8.08% 27.23 -9.69% 73.36 2.09%
10 10 42.19 0.13% 19.72 -0.26% 39.38 0.14% 30.12 -0.11% 73.56 2.37%
8 8 41.64 -1.18% 19.17 -3.01% 38.83 -1.26% 29.60 -1.84% 74.59 3.80%
6 6 39.33 -6.67% 17.46 -11.71% 36.67 -6.74% 28.07 -6.92% 72.27 0.57%
4 4 36.99 -12.23% 15.87 -19.74% 34.43 -12.43% 26.63 -11.68% 69.08 -3.87%
2 2 30.99 -26.45% 12.23 -38.12% 28.43 -27.71% 23.28 -22.79% 66.70 -7.18%

13

103

Table 18: The relation between pruning asymmetry and symmetry for a FLAN-T5 large model on the
CNN/DailyMail Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
24 24 43.99 0.00% 21.15 0.00% 41.12 0.00% 31.64 0.00% 71.01 0.00%
24 20 44.15 0.37% 21.30 0.69% 41.31 0.46% 31.73 0.31% 71.20 0.26%
24 16 44.10 0.27% 21.32 0.81% 41.29 0.39% 31.83 0.60% 70.19 -1.16%
24 12 43.74 -0.57% 21.08 -0.34% 40.97 -0.38% 31.60 -0.13% 69.99 -1.44%
24 8 43.35 -1.45% 20.67 -2.27% 40.58 -1.32% 31.29 -1.11% 72.88 2.63%
24 4 41.42 -5.84% 19.49 -7.88% 38.78 -5.69% 30.35 -4.06% 70.39 -0.89%
20 24 44.10 0.26% 21.13 -0.12% 41.28 0.38% 31.58 -0.17% 71.04 0.04%
16 24 43.76 -0.52% 20.83 -1.53% 40.92 -0.49% 31.22 -1.31% 71.59 0.80%
12 24 43.33 -1.50% 20.53 -2.94% 40.43 -1.68% 30.82 -2.58% 73.28 3.20%
8 24 42.46 -3.48% 19.74 -6.67% 39.64 -3.60% 29.98 -5.23% 73.47 3.46%
4 24 41.25 -6.23% 18.68 -11.69% 38.30 -6.86% 28.78 -9.04% 76.05 7.08%
20 20 44.10 0.25% 21.23 0.34% 41.25 0.32% 31.65 0.05% 70.90 -0.16%
16 16 43.69 -0.67% 20.90 -1.19% 40.86 -0.64% 31.30 -1.06% 71.85 1.18%
12 12 42.81 -2.67% 20.13 -4.84% 39.97 -2.80% 30.58 -3.33% 72.81 2.53%
8 8 40.57 -7.78% 18.47 -12.70% 37.82 -8.04% 28.96 -8.46% 73.39 3.34%
4 4 36.11 -17.91% 15.51 -26.68% 33.48 -18.59% 26.30 -16.88% 68.58 -3.43%

Table 19: The relation between pruning asymmetry and symmetry for a FLAN-T5 small model on the Query
Independent Web Snippets Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
8 8 50.22 100.00% 29.03 100.00% 45.87 100.00% 40.19 100.00% 62.79 100.00%
8 6 50.20 99.96% 28.90 99.55% 45.80 99.83% 40.45 100.65% 62.81 100.03%
8 5 49.74 99.04% 28.56 98.40% 45.55 99.30% 40.27 100.20% 62.68 99.83%
8 4 48.59 96.74% 27.94 96.24% 44.65 97.33% 39.27 97.70% 62.67 99.82%
8 2 45.36 90.32% 24.85 85.61% 41.38 90.21% 36.92 91.87% 62.68 99.84%
8 1 34.47 68.64% 15.41 53.08% 31.00 67.58% 27.68 68.88% 61.68 98.24%
6 8 49.32 98.21% 27.92 96.17% 44.72 97.48% 39.10 97.28% 62.90 100.18%
5 8 49.08 97.72% 27.75 95.60% 44.29 96.56% 38.76 96.45% 62.87 100.13%
4 8 46.40 92.39% 25.20 86.82% 41.81 91.14% 36.71 91.34% 62.74 99.93%
2 8 45.08 89.77% 23.67 81.55% 40.44 35.31% 35.31 87.85% 62.82 100.06%
1 8 39.81 79.26% 18.23 62.79% 35.39 77.14% 29.97 74.56% 62.83 100.07%
6 6 48.47 96.51% 26.82 92.38% 43.88 95.66% 38.38 95.49% 62.81 100.04%
5 5 47.55 94.68% 26.62 91.72% 43.13 94.02% 37.99 94.51% 62.67 99.81%
4 4 42.33 84.28% 23.12 79.64% 39.89 86.95% 33.39 83.08% 62.71 99.88%
2 2 39.69 79.02% 19.14 65.92% 35.49 77.36% 30.90 76.89% 62.79 100.00%
1 1 22.98 45.75% 6.09 20.99% 20.52 44.74% 18.36 45.69% 61.90 98.58%

Table 20: The relation between pruning asymmetry and symmetry for a FLAN-T5 base model on the Query
Independent Web Snippets Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
12 12 54.84 0.00% 34.19 0.00% 50.38 0.00% 44.68 0.00% 62.91 0.00%
12 10 55.02 0.33% 34.00 -0.56% 50.20 -0.35% 44.67 -0.02% 62.79 -0.19%
12 8 55.97 2.05% 34.50 0.91% 51.12 1.48% 44.90 0.48% 62.75 -0.24%
12 6 54.54 -0.55% 33.70 -1.42% 49.94 -0.87% 44.19 -1.11% 62.81 -0.16%
12 4 52.64 -4.01% 31.93 -6.62% 47.28 -6.16% 42.98 -3.81% 62.85 -0.09%
12 2 49.02 -10.61% 28.05 -17.97% 44.98 -10.71% 40.36 -9.68% 62.89 -0.02%
10 12 54.23 -1.11% 33.57 -1.82% 49.93 -0.89% 44.00 -1.52% 62.87 -0.05%
8 12 54.02 -1.50% 33.06 -3.31% 49.49 -1.76% 43.80 -1.96% 62.85 -0.09%
6 12 48.74 -11.13% 32.23 -5.72% 48.74 -3.26% 42.92 -3.95% 62.82 -0.14%
4 12 47.93 -12.61% 27.47 -19.65% 46.21 -8.28% 39.77 -11.00% 62.79 -0.19%
2 12 47.45 -13.48% 25.57 -25.22% 43.20 -14.26% 37.69 -15.66% 62.77 -0.22%
10 10 54.25 -1.08% 32.88 -3.82% 49.51 -1.72% 43.24 -3.23% 62.82 -0.13%
8 8 53.89 -1.73% 32.81 -4.04% 49.32 -2.10% 43.77 -2.04% 62.82 -0.14%
6 6 50.26 -8.34% 28.70 -16.05% 45.62 -9.45% 40.05 -10.37% 62.82 -0.13%
4 4 47.77 -12.89% 26.53 -22.40% 43.34 -13.97% 37.85 -15.29% 62.84 -0.10%
2 2 39.59 -27.80% 19.64 -42.57% 35.80 -28.95% 31.38 -29.78% 62.85 -0.09%

14

104

Table 21: The relation between pruning asymmetry and symmetry for a FLAN-T5 large model on the Query
Independent Web Snippets Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
24 24 57.81 100.00% 37.37 100.00% 53.14 100.00% 48.16 100.00% 62.85 100.00%
24 20 58.21 100.69% 37.59 100.59% 53.44 100.58% 48.46 100.62% 62.80 99.91%
24 16 57.25 99.04% 36.56 97.84% 52.71 99.19% 47.71 99.06% 62.83 99.97%
24 12 56.78 98.21% 35.74 95.64% 52.34 98.49% 46.81 97.18% 62.78 99.88%
24 8 56.19 97.19% 35.13 94.01% 51.59 97.08% 45.68 94.85% 62.79 99.90%
24 4 54.53 94.32% 33.69 90.15% 50.00 94.10% 44.65 92.71% 62.83 99.97%
20 24 57.34 99.19% 36.39 97.38% 52.66 99.10% 47.28 98.18% 62.81 99.93%
16 24 56.26 97.33% 35.90 96.07% 51.04 96.04% 46.82 97.22% 62.81 99.93%
12 24 55.31 95.67% 34.22 91.58% 50.60 95.23% 45.11 93.66% 62.88 100.04%
8 24 54.80 94.79% 33.42 89.43% 49.95 94.00% 44.11 91.59% 62.70 99.76%
4 24 51.40 88.92% 30.31 81.11% 46.49 87.48% 41.12 85.38% 62.70 99.75%
20 20 56.81 98.28% 36.32 97.20% 52.21 98.25% 46.82 97.21% 62.69 99.74%
16 16 56.10 97.05% 35.98 96.29% 51.05 96.07% 45.89 95.28% 62.71 99.76%
12 12 54.16 93.70% 33.00 88.31% 49.58 93.31% 44.80 93.02% 62.77 99.87%
8 8 51.77 89.55% 30.78 82.38% 47.31 89.03% 41.32 85.79% 62.73 99.81%
4 4 45.70 79.06% 22.77 60.94% 41.36 77.84% 36.09 74.94% 62.70 99.76%

Table 22: The relation between pruning asymmetry and symmetry for a FLAN-T5 small model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
8 8 33.27 0.00% 11.09 0.00% 26.17 0.00% 26.17 0.00% 28.01 0.00%
8 6 33.79 1.56% 11.61 4.74% 26.73 2.14% 26.74 2.18% 27.79 -0.78%
8 5 33.47 0.61% 11.43 3.12% 26.64 1.81% 26.65 1.83% 27.40 -2.18%
8 3 33.04 -0.69% 11.24 1.36% 26.26 0.36% 26.27 0.38% 28.08 0.26%
8 2 31.48 -5.36% 10.53 -5.02% 25.39 -2.99% 25.38 -3.01% 26.58 -5.13%
8 1 23.16 -30.39% 6.03 -45.58% 19.02 -27.32% 19.02 -27.33% 36.68 30.93%
5 8 33.31 0.13% 11.18 0.82% 26.16 -0.04% 26.16 -0.06% 28.31 1.08%
5 8 32.55 -2.15% 10.61 -4.32% 25.50 -2.55% 25.50 -2.55% 28.35 1.19%
3 8 31.82 -4.36% 10.11 -8.84% 24.92 -4.78% 24.92 -4.77% 28.43 1.50%
2 8 29.65 -10.87% 8.59 -22.48% 23.02 -12.02% 23.02 -12.03% 27.90 -0.39%
1 8 28.46 -14.46% 7.70 -30.57% 22.09 -15.60% 22.09 -15.59% 27.87 -0.50%
6 6 32.50 -2.29% 10.73 -3.24% 25.67 -1.90% 25.68 -1.88% 28.07 0.19%
5 5 31.77 -4.50% 10.19 -8.04% 25.14 -3.94% 25.14 -3.95% 28.09 0.29%
3 3 30.42 -8.57% 9.50 -14.31% 24.16 -7.66% 24.16 -7.67% 27.91 -0.38%
2 2 26.71 -19.70% 7.31 -34.09% 21.38 -18.30% 21.38 -18.31% 26.35 -5.93%
1 1 19.54 -41.26% 4.00 -63.91% 16.00 -38.86% 16.00 -38.87% 35.73 27.54%

Table 23: The relation between pruning asymmetry and symmetry for a FLAN-T5 base model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
12 12 38.78 0.00% 15.69 0.00% 31.14 0.00% 31.15 0.00% 25.92 0.00%
12 10 38.46 -0.83% 15.27 -2.65% 30.70 -1.43% 30.71 -1.42% 26.72 3.11%
12 8 38.11 -1.72% 14.91 -4.97% 30.34 -2.59% 30.34 -2.60% 27.64 6.65%
12 6 38.55 -0.58% 15.40 -1.83% 30.87 -0.87% 30.88 -0.87% 27.42 5.80%
12 4 38.04 -1.91% 15.19 -3.18% 30.63 -1.64% 29.65 -4.82% 26.40 1.85%
12 2 35.39 -8.74% 13.73 -12.47% 28.96 -7.02% 28.96 -7.03% 27.55 6.32%
10 12 39.04 0.68% 15.92 1.47% 31.22 0.24% 31.23 0.25% 26.89 3.75%
8 12 37.05 -4.45% 14.10 -10.09% 29.29 -5.95% 29.30 -5.93% 27.68 6.82%
6 12 36.45 -6.01% 13.84 -11.79% 28.96 -7.02% 28.96 -7.02% 27.21 4.99%
4 12 34.32 -11.48% 12.10 -22.88% 26.99 -13.35% 26.99 -13.34% 27.20 4.94%
2 12 31.88 -17.78% 10.27 -34.53% 24.85 -20.21% 24.85 -20.22% 28.22 8.88%
10 10 38.80 0.05% 15.72 0.22% 31.07 -0.25% 31.08 -0.23% 26.92 3.88%
8 8 37.21 -4.04% 14.30 -8.85% 29.55 -5.13% 29.54 -5.15% 27.40 5.72%
6 6 34.92 -9.95% 12.44 -20.68% 27.56 -11.51% 27.57 -11.50% 27.72 6.96%
4 4 32.48 -16.24% 10.67 -31.95% 25.49 -18.15% 25.50 -18.14% 27.98 7.98%
2 2 27.44 -29.23% 7.74 -50.65% 21.95 -29.51% 21.96 -29.52% 29.38 13.38%

15

105

Table 24: The relation between pruning asymmetry and symmetry for a FLAN-T5 large model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
24 24 39.71 0.00% 16.34 0.00% 31.72 0.00% 31.72 0.01% 26.74 0.00%
24 20 43.18 8.74% 19.80 21.17% 35.21 11.01% 35.22 11.04% 25.91 -3.10%
24 16 42.73 7.59% 19.30 18.10% 34.76 9.58% 34.76 9.59% 26.40 -1.29%
24 12 42.34 6.61% 18.92 15.78% 34.52 8.84% 34.53 8.87% 25.49 -4.68%
24 8 41.30 4.00% 17.96 9.94% 33.73 6.34% 33.75 6.39% 25.02 -6.45%
24 4 39.55 -0.40% 16.47 0.77% 32.25 1.66% 32.25 1.68% 26.30 -1.64%
20 24 42.77 7.71% 19.43 18.90% 34.83 9.82% 34.84 9.83% 26.18 -2.09%
16 24 41.55 4.63% 18.33 12.17% 33.64 6.05% 33.65 6.07% 26.33 -1.53%
12 24 39.95 0.61% 16.90 3.40% 32.13 1.29% 32.14 1.31% 27.14 -100.00%
8 24 37.57 -5.39% 14.97 -8.38% 29.94 -5.61% 29.94 -5.60% 25.99 -100.00%
4 24 34.81 -12.35% 12.52 -23.36% 27.32 -13.86% 27.32 -13.86% 27.61 -100.00%
20 20 42.48 6.98% 19.18 17.39% 34.62 9.13% 34.62 9.13% 25.84 -3.36%
16 16 40.78 2.69% 17.56 7.44% 32.99 4.00% 33.00 4.02% 26.47 -1.00%
12 12 38.94 6.98% 15.89 -2.78% 31.21 -1.61% 31.22 -1.58% 26.59 -0.57%
8 8 34.65 -12.75% 12.15 -25.65% 27.36 -13.76% 27.36 -13.73% 28.16 5.30%
4 4 29.82 -24.91% 8.96 -45.14% 23.59 -25.62% 23.60 -25.60% 28.10 5.09%

Table 25: Role of model symmetry in inference efficiency on FLAN-T5 small model on the QIWS dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
8 8 29.03 0.00% 524 3.95 1.00 653 2.49 1.00 729 5.12 1.00
8 6 28.90 -0.45% 406 1.28 1.29 514 5.02 1.27 583 2.47 1.25
8 5 28.56 -1.60% 348 2.34 1.51 455 1.6 1.44 527 1.85 1.38
8 4 27.94 -3.76% 293 3.35 1.79 394 6.32 1.66 469 2.65 1.55
8 2 24.85 -14.39% 195 1.61 2.69 353 3.38 1.85 426 6.38 1.71
8 1 15.41 -46.92% 132 0.959 3.97 211 2.82 3.09 389 2.94 1.87
6 8 27.92 -3.83% 512 5.15 1.02 626 4.19 1.04 684 2.81 1.07
5 8 27.75 -4.40% 508 3.56 1.03 617 4.91 1.06 666 4.16 1.09
4 8 25.20 -13.18% 514 3.55 1.02 603 4.52 1.08 639 2.08 1.14
2 8 23.67 -18.45% 514 514 1.02 585 5.36 1.12 608 4.45 1.20
1 8 18.23 -37.21% 510 5.81 1.03 574 4.21 1.14 595 7.06 1.23
6 6 26.82 -7.62% 407 5.26 1.29 496 8.77 1.32 548 1.97 1.33
5 5 26.62 -8.28% 346 6.84 1.51 430 3.54 1.52 480 12.4 1.52
4 4 23.12 -20.36% 375 4.25 1.40 441 6.92 1.48 478 10.6 1.53
2 2 19.14 -34.08% 402 2.05 1.30 452 9.84 1.44 476 8.29 1.53
1 1 6.09 -79.01% 134 6.2 3.91 527 3.03 1.24 549 13.4 1.33

Table 26: Role of model symmetry in inference efficiency on FLAN-T5 base model on the QIWS dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
12 12 34.19 0.00% 746 11 1.00 1060 2.84 1.00 1310 6.8 1.00
12 10 34.00 -0.56% 625 3.27 1.19 943 4.69 1.12 1200 4.8 1.09
12 8 34.50 0.91% 523 2.19 1.43 814 4.23 1.30 1070 5.34 1.22
12 6 33.70 -1.42% 425 1.92 1.76 652 3.39 1.63 970 4.79 1.35
12 4 31.93 -6.62% 350 1.32 2.13 510 3.1 2.08 815 2 1.61
12 2 28.05 -17.97% 202 1.41 3.69 451 2.92 2.35 762 0.911 1.72
10 12 33.57 -1.82% 710 6.2 1.05 995 2.74 1.07 1290 4.2 1.02
8 12 33.06 -3.31% 690 5.72 1.08 953 5.72 1.11 1270 4.3 1.03
6 12 32.23 -5.72% 716 8 1.04 944 7.22 1.12 1080 5.29 1.21
4 12 27.47 -19.65% 710 1.75 1.05 911 10.1 1.16 1,000 8.84 1.31
2 12 25.57 -25.22% 706 5.4 1.06 862 7.11 1.23 921 7.04 1.42
10 10 32.88 -3.82% 633 11.6 1.18 915 11 1.16 1120 5.51 1.17
8 8 32.81 -4.04% 512 4.98 1.46 737 9.78 1.44 911 4.98 1.44
6 6 28.70 -16.05% 401 3.16 1.86 572 4.73 1.85 702 1.57 1.87
4 4 26.53 -22.40% 301 2.92 2.48 415 3.01 2.55 509 0.997 2.57
2 2 19.64 -42.57% 189 1.98 3.95 312 2.88 3.40 389 0.892 3.37

16

106

Table 27: Role of model symmetry in inference efficiency on FLAN-T5 large model on the QIWS dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
24 24 37.37 0.00% 1430 6.08 1.00 2240 4.81 1.00 3320 1.02 1.00
24 20 37.59 0.59% 1210 4.73 1.18 1990 6.89 1.13 3010 2.63 1.10
24 16 36.56 -2.16% 1000 2.70 1.43 1750 5.92 1.28 2710 1.57 1.23
24 12 35.74 -4.36% 795 6.61 1.80 1510 10.40 1.48 2400 1.59 1.38
24 8 35.13 -5.99% 585 4.99 2.44 1260 7.14 1.78 2090 7.17 1.59
24 4 33.69 -9.85% 373 1.16 3.83 1030 10.50 2.17 1790 1.72 1.85
20 24 36.39 -2.62% 1410 3.66 1.01 2130 10.90 1.05 3090 5.98 1.07
16 24 35.90 -3.93% 1395 3.52 1.03 2060 9.89 1.09 2880 3.32 1.15
12 24 34.22 -8.42% 1380 5.20 1.04 1900 9.65 1.18 2630 0.81 1.26
8 24 33.42 -10.57% 1370 5.49 1.04 1790 19.00 1.25 2400 1.34 1.38
4 24 30.31 -18.89% 1350 7.33 1.06 1670 5.30 1.34 2170 2.79 1.53
20 20 36.32 -2.80% 1200 5.37 1.19 1880 7.89 1.19 2780 1.15 1.19
16 16 35.98 -3.71% 1020 3.49 1.40 1530 5.62 1.46 2230 1.80 1.49
12 12 33.00 -11.69% 749 5.30 1.91 1160 2.94 1.93 1710 0.89 1.94
8 8 30.78 -17.62% 650 3.32 2.20 970 2.78 2.31 1550 0.79 2.14
4 4 22.77 -39.06% 585 2.23 2.44 890 3.21 2.52 1450 0.92 2.29

Table 28: Role of model symmetry in inference efficiency on FLAN-T5 small model on the CNNDM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
8 8 17.55 0.00% 138 5.05 1.00 230 7.61 1.00 330 3.71 1.00
8 6 17.68 0.74% 133 0.292 1.04 211 0.425 1.09 300 0.954 1.10
8 5 17.27 -1.64% 116 0.196 1.19 193 0.448 1.19 279 0.537 1.18
8 4 16.40 -6.57% 98.1 0.242 1.41 174 0.153 1.32 259 0.424 1.27
8 2 15.35 -12.58% 63.2 0.207 2.18 137 0.1 1.68 218 0.303 1.51
8 1 11.33 -35.43% 45.7 0.106 3.02 118 0.0827 1.95 198 0.148 1.67
6 8 17.69 0.81% 166 0.303 0.83 230 1.42 1.00 303 1.06 1.09
5 8 17.35 -1.16% 165 0.267 0.84 219 0.521 1.05 283 1.13 1.17
4 8 16.80 -4.30% 164 0.185 0.84 211 0.89 1.09 265 1.85 1.25
2 8 15.54 -11.49% 162 332 0.85 191 0.332 1.20 226 625 1.46
1 8 13.31 -24.17% 161 0.626 0.86 180 0.423 1.28 206 0.55 1.60
6 6 17.07 -2.77% 131 0.617 1.05 192 0.247 1.20 261 0.768 1.26
5 5 16.20 -7.72% 113 0.306 1.22 164 0.642 1.40 220 1.36 1.50
4 4 14.91 -15.05% 95.1 0.0955 1.45 135 0.21 1.70 182 0.268 1.81
2 2 11.97 -31.83% 57.8 0.27 2.39 78.9 0.078 2.92 103 0.238 3.20
1 1 6.05 -65.55% 39.1 0.136 3.53 50.2 0.132 4.58 63.4 0.0845 5.21

Table 29: Role of model symmetry in inference efficiency on FLAN-T5 base model on the CNNDM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
12 12 19.77 0.00% 199 3.74 1.00 550 3.81 1.00 931 2.09 1.00
12 10 19.92 0.76% 179 3.31 1.11 524 16.2 1.05 889 4.41 1.05
12 8 19.85 0.42% 155 4.50 1.28 493 14 1.12 884 3.61 1.05
12 6 18.85 -4.63% 126 1.95 1.58 449 5.88 1.22 800 4.59 1.16
12 4 18.68 -5.49% 99.2 1.02 2.01 405 1.41 1.36 737 5.06 1.26
12 2 16.48 -16.62% 75.3 0.85 2.64 372 1.98 1.48 697 4.55 1.34
10 12 19.92 0.76% 198 4.75 1.01 495 14.5 1.11 811 1.18 1.15
8 12 19.67 -0.50% 196 3.72 1.02 441 7.82 1.25 715 4.39 1.30
6 12 18.85 -4.63% 187 4.81 1.06 396 13.3 1.39 613 9.45 1.52
4 12 18.22 -7.86% 183 3.54 1.09 330 5.04 1.67 509 2.1 1.83
2 12 17.06 -13.73% 176 3.52 1.13 272 1.79 2.02 400 3.25 2.33
10 10 19.72 -0.26% 171 3.21 1.16 462 11.9 1.19 776 4.62 1.20
8 8 19.17 -3.01% 141 2.97 1.41 37 12.1 14.86 628 6.48 1.48
6 6 17.46 -11.71% 109 1.71 1.83 281 2.61 1.96 478 3.55 1.95
4 4 15.87 -19.74% 82.5 1.24 2.41 198 1.71 2.78 329 0.74 2.83
2 2 12.23 -38.12% 50.7 1.30 3.93 112 2.59 4.91 178 0.557 5.23

17

107

Table 30: Role of model symmetry in inference efficiency on FLAN-T5 LARGE model on the CNNDM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
24 24 21.15 0.00% 445 2.35 1.00 1480 20.1 1.00 2700 7.22 1.00
24 20 21.30 0.69% 390 33.7 1.14 1390 4.24 1.06 2590 7.7 1.04
24 16 21.32 0.81% 335 13.9 1.33 1330 7.7 1.11 2470 7.42 1.09
24 12 21.08 -0.34% 270 3.28 1.65 1250 11 1.18 2340 6.68 1.15
24 8 20.67 -2.27% 219 8.67 2.03 1180 8.17 1.25 2220 4.25 1.22
24 4 19.49 -7.88% 165 1.81 2.70 1090 6.6 1.36 2090 9.15 1.29
20 24 21.13 -0.12% 418 13.8 1.06 1320 15.3 1.12 2400 7.26 1.13
16 24 20.83 -1.53% 421 16.8 1.06 1150 16 1.29 2080 6.07 1.30
12 24 20.53 -2.94% 391 12.5 1.14 1000 21.7 1.48 1750 8.18 1.54
8 24 19.74 -6.67% 373 13.1 1.19 882 6.92 1.68 1430 4.79 1.89
4 24 18.68 -11.69% 350 4.32 1.27 670 15 2.21 1110 3.21 2.43
20 20 21.23 0.34% 359 4.3 1.24 1240 15.3 1.19 2260 6.73 1.19
16 16 20.90 -1.19% 1289 2.5 0.35 994 21.6 1.49 1820 4.27 1.48
12 12 20.13 -4.84% 229 12.1 1.94 756 12.6 1.96 1370 4.6 1.97
8 8 18.47 -12.70% 160 31.8 2.78 513 2.55 2.88 926 7.24 2.92
4 4 15.51 -26.68% 89.7 0.588 4.96 267 2.14 5.54 479 4.3 5.64

Table 31: Role of model symmetry in inference efficiency on FLAN-T5 small model on the XSUM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
8 8 11.09 0.00% 135 2.73 1.00 227 3.51 1.00 332 1.91 1.00
8 6 11.61 4.74% 108 1.70 1.25 196 1.94 1.16 303 7.95 1.10
8 5 11.43 3.12% 94.1 3.02 1.43 183 3.43 1.24 281 6.77 1.18
8 4 11.24 1.36% 82.7 2.66 1.63 168 2.33 1.35 263 2.24 1.26
8 2 10.53 -5.02% 55.8 1.72 2.42 141 1.53 1.61 234 5.01 1.42
8 1 6.03 -45.58% 41.1 0.64 3.28 124 0.414 1.83 215 4.69 1.54
6 8 11.18 0.82% 133 3.51 1.02 204 3.63 1.11 295 5.72 1.13
5 8 10.61 -4.32% 134 3.42 1.01 193 3.76 1.18 273 10.4 1.22
4 8 10.11 -8.84% 130 2.77 1.04 185 13.6 1.23 245 6.45 1.36
2 8 8.59 -22.48% 126 4.77 1.07 163 6 1.39 203 4.1 1.64
1 8 7.70 -30.57% 126 3.38 1.07 148 2.02 1.53 180 2.85 1.84
6 6 10.73 -3.24% 104 0.45 1.30 178 3.24 1.28 254 2.37 1.31
5 5 10.19 -8.04% 91.6 2.10 1.47 151 1.78 1.50 219 10.3 1.52
4 4 9.50 -14.31% 79 3.38 1.71 124 2.42 1.83 178 1.59 1.87
2 2 7.31 -34.09% 49.5 2.56 2.73 74.8 1.9 3.03 101 0.719 3.29
1 1 4.00 -63.91% 32 1.25 4.22 48.7 2.11 4.66 61.9 1.81 5.36

Table 32: Role of model symmetry in inference efficiency on FLAN-T5 base model on the XSUM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
12 12 15.69 0.00% 205 3.81 1.00 546 8.7 1.00 917 4.72 1.00
12 10 15.27 -2.65% 171 2.79 1.20 508 6.39 1.07 876 3.02 1.05
12 8 14.91 -4.97% 150 1.32 1.37 476 2.82 1.15 830 1.08 1.10
12 6 15.40 -1.83% 129 4.33 1.59 450 9.33 1.21 789 3.73 1.16
12 4 15.19 -3.18% 101 2.16 2.03 411 5.27 1.33 744 1.71 1.23
12 2 13.73 -12.47% 76 1.76 2.70 380 3.43 1.44 706 8.13 1.30
10 12 15.92 1.47% 200 6.37 1.03 494 2.45 1.11 818 1.72 1.12
8 12 14.10 -10.09% 195 5.47 1.05 445 20.8 1.23 713 1.71 1.29
6 12 13.84 -11.79% 190 3.89 1.08 396 9.79 1.38 612 4.64 1.50
4 12 12.10 -22.88% 185 2.24 1.11 337 3.09 1.62 505 1.96 1.82
2 12 10.27 -34.53% 180 2.08 1.14 282 4.03 1.94 399 2.85 2.30
10 10 15.72 0.22% 174 4.09 1.18 475 18.5 1.15 772 1.79 1.19
8 8 14.30 -8.85% 140 1.95 1.46 373 2.21 1.46 625 1.51 1.47
6 6 12.44 -20.68% 112 1.71 1.83 290 6.77 1.88 480 3.5 1.91
4 4 10.67 -31.95% 84.2 3.75 2.43 201 1.58 2.72 330 4.43 2.78
2 2 7.74 -50.65% 51.5 3.01 3.98 112 1.02 4.88 179 0.894 5.12

18

108

Table 33: Role of model symmetry in inference efficiency on FLAN-T5 large model on the XSUM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
24 24 16.34 0.00% 447 19.4 1.00 1480 23 1.00 2700 16.1 1.00
24 20 19.80 21.16% 374 4.84 1.20 1410 17.5 1.05 2580 7.52 1.05
24 16 19.30 18.09% 327 19.4 1.37 1320 8.18 1.12 2460 7.19 1.10
24 12 18.92 15.77% 272 7.91 1.64 1240 7.06 1.19 2340 7.5 1.15
24 8 17.96 9.93% 216 7.81 2.07 1170 11.4 1.26 2210 6.49 1.22
24 4 16.47 0.76% 165 3.11 2.71 1090 3.66 1.36 2080 7.17 1.30
20 24 19.43 18.88% 406 21.5 1.10 1310 11.5 1.13 2390 7.76 1.13
16 24 18.33 12.16% 412 20.3 1.08 1140 6.88 1.30 2080 7.01 1.30
12 24 16.90 3.39% 384 18.8 1.16 986 11 1.50 1750 686 1.54
8 24 14.97 -8.39% 369 8.87 1.21 822 15.5 1.80 1420 15.5 1.90
4 24 12.52 -23.37% 345 4.41 1.30 649 3.26 2.28 110 5.96 24.55
20 20 19.18 17.38% 357 11.8 1.25 1230 13.2 1.20 2260 2.16 1.19
16 16 17.56 7.43% 288 5.91 1.55 995 9.41 1.49 1820 5.33 1.48
12 12 15.89 -2.79% 217 3.09 2.06 748 3.25 1.98 1370 6.59 1.97
8 8 12.15 -25.66% 158 6.04 2.83 511 9.62 2.90 920 2.06 2.93
4 4 8.96 -45.14% 92.3 2.88 4.84 267 1.51 5.54 481 1.69 5.61

19

109

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 110–120
July 13, 2023 ©2023 Association for Computational Linguistics

Small is the New Big: Pre-finetuned Compact Models are Better for
Asynchronous Active Learning

Dantong Liu
Amazon.com, Inc

Sunnyvale, United States
lidanton@amazon.com

Kaushik Pavani
Amazon.com, Inc

Seattle, United States
sripava@amazon.com

Sunny Dasgupta
Amazon.com, Inc

Seattle, United States
sunnyd@amazon.com

Abstract

We examine the effects of model size and pre-
finetuning in an active learning setting where
classifiers are trained from scratch on 14 binary
and 3 multi-class text classification tasks. We
make an important observation that, in realistic
active learning settings, where the human anno-
tator and the active learning system operate in
asynchronous mode, a compact pre-finetuned
1-layer transformer model with 4.2 million pa-
rameters is 30% more label efficient when com-
pared to the larger 24-layer 84 million param-
eter transformer model. Further, in line with
previous studies, we note that pre-finetuning
transformer models on related tasks improves
label efficiency of downstream tasks by 12%-
50%. The compact pre-finetuned model does
not require GPUs, making it a viable solution
for large-scale real-time inference with cheaper
CPU options.

1 Introduction

Active learning is a popular approach used to re-
duce the manual labeling effort required to train a
classifier. In active learning, we iteratively acquire
labels from an annotator and use them to train a
classifier.

Most existing academic literature (Huang and
Zhou, 2013; Shao et al., 2019) on active learning
assumes that manual labeling process can only hap-
pen after the model update is complete, making
the active learning loop ‘synchronous’. In practice,
this implies that human annotators have to wait un-
til an active learning iteration (training on labeled
data and inference on all unlabeled data) process
is complete before they can provide more labels.
As pointed out by (Huang et al., 2021), in realistic
production settings, ‘synchronous’ active learning
will significantly decrease annotators’ productiv-
ity. To this end, typical production systems such as
Sagemaker GT (sag) employ ‘asynchronous’ active
learning setup where the human annotators contin-

uously provide annotations while the training and
inference happen in the background.

Pre-finetuning proposed by Aghajanyan et al
(2021) is a stage after pre-training to further refine
representations before end-task finetuning. The
purpose of the pre-finetuning step is to increase
the similarity between data used for pre-training
and downstream finetuning tasks (Phang et al.,
2018; Pruksachatkun et al., 2020; Gururangan et al.,
2020). Aghajanyan et al pose pre-finetuning as a
Multi-task learning (MTL) problem on 47 tasks,
and their experiments show that incorporating pre-
finetuning to RoBERTa and BART models yields
consistent improvements in downstream task fine-
tuning, particularly in the low data regime.

In this work, we examine the effects of model
size and pre-finetuning in a realistic asynchronous
active learning setting on a diverse set of 14 bi-
nary and 3 multi-class text classification tasks. Our
contributions are three-fold:

1. We present evidence that a small transformer
model is ideal for use in large scale environ-
ments with asynchronous active learning set-
ting. With a given training and inference in-
frastructure, large models, counter-intuitively,
can increase the number of labeled data re-
quired to achieve precision/recall targets set
by customers because of their slow train-
ing/inference speeds.

2. We conduct an extensive study surrounding
the label efficiency of standard pre-trained rep-
resentations and their respective pre-finetuned
counterparts. We show empirical evidence
that pre-finetuning helps to reduce the number
of labeled data required to build transformer-
based classifiers.

3. We present evidence that pre-finetuning can
be formulated as a large-scale multi-label clas-
sification problem, which enables us to pre-
finetune on a large corpus of 2664 classifi-
cation tasks. This technique helps us learn

110

Figure 1: Besides standard pre-training (Stage 1) and then finetuning (Stage 3), our training procedure includes an
intermediate pre-finetuning step (Stage 2) where we create ProdNet by training transformer model on data curated
from thousands of existing classifiers.

from thousands of tasks simultaneously. To
the best of our knowledge, this is the first work
to realize the gain of pre-finetuning under a
restricted latency budget in a large-scale asyn-
chronous active learning setting.

2 Pre-Finetuning

2.1 Transformer Models

The details of various transformer architectures
used in this study are shown in Table 2 in Appendix
A.1. We perform pre-finetuning on BERT-variants
models on e-commerce product classification tasks
to create ProdNet variants (ProdNet-1L, ProdNet-
2L, ProdNet-4L, ProdNet-6L, and ProdNet-24L-
P). For example, we pre-finetune BERT-6L to cre-
ate ProdNet-6L. The training process for creating
ProdNet-based classifiers is illustrated in Fig. 1.
We note the model parameters, training speed, and
inference latency of various transformer models
used in the study in Table 1. Note, the ProdNet vari-
ants have the same model architecture with the cor-
responding non-pre-finetuned counterparts (BERT
variants). One major difference between BERT-
24L-P model and the other BERT variants is that
BERT-24L-P is unsupervised pre-trained using in-
ternal e-commerce product data while other BERT
variants are pre-trained using public datasets. For
the sake of readability, most of experiment results
only include the results of 3 model pairs (under-
scored in Table 1), and we have verified that our
conclusions hold for all 5 model pairs.

2.2 Pre-finetuning Datasets

To pre-finetune transformers, we selected 2664 pro-
prietary binary classifiers created from Feb’20 to
Sep’21 to classify the e-commerce products. We
leverage human labeled training data from the se-
lected binary classifiers, and aggregate all training
samples from 2664 binary classifiers. Note that one
instance may be a member of multiple binary clas-
sifiers. For e.g., a bundle instance with an ‘eraser’
and a ‘ruler’ may be a member of both ‘eraser’ and
‘ruler’ classifiers. Appendix A.2 shows the details
of data used for pre-finetuning.

For each instance (product data), we use the
item_name and product_description both for pre-
finetuning and finetuning. We focused on the text
attributes in this work, and the idea of creating
ProdNet is readily generalized to image and multi-
modal attributes.

2.3 Methodology

In the existing literature, a common approach for
pre-finetuning is multi-task learning (MTL), and
the number of tasks used has been fairly limited,
e.g., 49 tasks were used in (Aghajanyan et al.,
2021). Even at this scale, scientists have reported
‘negative transfer’, where the learning from up-
stream tasks can reduce accuracy of downstream
tasks. Since we aim to learn from a large set
of 2664 binary classification tasks, the traditional
MTL approach does not scale. To this end, we for-
mulate the pre-finetuning as a large multi-label clas-
sification problem using multi-label softmax loss

111

Models→ BERT-1L BERT-2L BERT-4L BERT-6L BERT-24L-P
Parameters ↓ ProdNet- 1L ProdNet- 2L ProdNet-4L ProdNet-6L ProdNet- 24L-P

Trans. layers 1 2 4 6 24
Hidden layer size 128 128 312 768 256
Attention head 2 2 12 12 16
Parameters (MM) 4.2 4.4 14.5 66 84
CPU infer. latency 1.09 2.02 15.3 86 100
GPU infer. latency 0.16 0.18 0.4 8.6 10.6
GPU training time 28 32 54 197 233

Table 1: Inference latency (reported in milli-seconds) is the inference latency per instance computed on CPU
(ml.c5.2xlarge) and GPU (ml.g4dn.xlarge) instances with batch size as 32 and max sequence length as 128. Training
time is reported in seconds on a GPU (ml.g4dn.xlarge) instance with 2000 labeled data. We focus on three model
pairs (underscored) for most of our experiments: BERT-1L vs. ProdNet-1L, BERT-2L vs. ProdNet-2L, and
BERT-24L-P vs. ProdNet-24L-P.

function recommended by Mahajan et al (2018).
While the solution is not generic to all multi-task
problems with heterogeneous tasks, it is ideal for
our use case since all our tasks of interest are bi-
nary classification tasks, which can be combined
to create a multi-label dataset. The details about
multi-label softmax loss and our experiments are
shown in Appendix A.3.

3 Finetuning

We perform asynchronous active learning experi-
ments on the selected finetuning tasks to examine
the effects of model size and pre-finetuning in an
active learning setting.

3.1 Active Learning

To measure the label efficiency of a classifier, we
employ pool-based active learning setting (detailed
in Appendix A.4) (Lewis and Gale, 1994; Settles,
2009; Gal et al., 2017). In each active learning it-
eration, we perform two operations: 1) judiciously
select a subset of unlabeled instances for the data
pool and send them to the annotator, and 2) train
a classifier using new and the previously labeled
instances. We continue active learning until con-
vergence criteria are achieved. We use two con-
vergence criteria for experiments which exactly
mimics a production setup: 1) the estimated re-
call/precision for each class-of-interest should be
no smaller than the business-specified targets, and
2) predictions on unlabeled data should have stabi-
lized (Bloodgood and Vijay-Shanker, 2014).

For experiments, we use a bot (in lieu of a human
annotator) to do the labeling job. To simulate real-
istic production scenario, we adopt asynchronous

active-learning and labeling i.e., the bot keeps pro-
viding labels regardless of the progress of training
/inference/query acquisition process in the active
learning loop. Throughout our experiments, the bot
provides 3000 labels per day to mimic the labeling
speed of a human annotator.

3.2 Finetuning Datasets

The finetuning datasets were sourced from propri-
etary binary and multi-class e-commerce product
classification tasks created from Oct’21 to Mar’22.
We deliberately selected classification tasks cre-
ated after Oct’21 to 1) simulate real-world scenario
where the pre-finetuned model will be used for new
classification tasks, and 2) avoid any overlap with
the datasets used for pre-finetuning. We selected 14
diverse binary classification tasks with the positive
class prevalence ranging from 0.13 to 0.88. We
also selected 3 multi-class classification datasets
with class cardinalities 10, 8, and 3, respectively.
The datasets have a long-tail distribution in terms
of class sizes. Since we use a bot for the label-
ing job to avoid the human-in-the-loop, we need
fully-labeled datasets of the finetuning tasks as the
source of labels used by the bot, and we also need
to compute metrics on data pool, which acts as the
test data for active learning experiments. To curate
fully-labeled datasets, we employed trained human
annotators to manually label all instances in data
pool. Note the data pool size of the 17 selected
finetuning tasks are ranging from 8M to 17K.

3.3 Metrics

The key metric of interest is the number of labeled
data required for the active learning process to

112

converge, since our goal is to require as few hu-
man annotations as possible to build a classifier
which satisfies precision/recall targets set by cus-
tomers. For each active learning experiment, we
track the progression of class-level recall, and pre-
cision computed on data pool. We summarize the
class-level metrics by reporting macro-recall and
macro-precision. We choose macro over micro
averaging because performance of each class is
equally important for our use-case.

4 Experiments Results

Results on binary and multi-class classification
tasks: Fig. 2 (a), and (b) show the relative number
of labeled data required for active learning experi-
ments to converge averaged across 14 binary classi-
fication tasks and 3 multi-class classification tasks,
respectively. The results of individual task (includ-
ing the targeted/achieved precision/recall and num-
ber of required labels) are reported in Table 7 and
8 in Appendix A.7. We observed that

(a)

(b)

Figure 2: Average relative number of labeled data re-
quired for active learning experiments to converge (a)
14 binary classification tasks, and (b) 3 multi-class clas-
sification tasks.

• On average ProdNet-1L requires the least
number of labeled data for model convergence
among all the benchmarking models, increas-
ing the label efficiency by 40% and 30% com-
pared with ProdNet-2L and ProdNet-24L-P,

respectively.
• The pre-finetuned models (ProdNet) consis-

tently reduces the number of labeled data re-
quired for model convergence compared to the
non-pre-finetuned counterparts. On average,
ProdNet-1L requires 51% of labels required
by BERT-1L classifier. Similarly, ProdNet-
2L requires 50% of the labels that BERT-2L
needs, and ProdNet-24L-P requires 88% of
labels that BERT-24L-P model takes.

• The gain of pre-finetuning BERT-24L-P
model is smaller when compared with the
gain of pre-finetuning BERT-1L and BERT-
2L. This is intuitive as BERT-24L-P model
is unsupervised pre-trained using our internal
product data, and it has already learnt inter-
nal product related information. In contrast,
BERT-1L and BERT-2L are pre-trained using
public corpora without the product specific
information.

• Interestingly, even without the effect of pre-
finetuning, BERT-1L is more label efficient
than BERT-2L, which demonstrates the im-
portance of smaller model size in the asyn-
chronous active learning setting.

Do bigger models mean fewer labels? Fig.
3 illustrates the relative number of labeled data
required for active learning experiments to con-
verge versus number of parameters in the model
on FEE dataset. The results show an interest-
ing phenomenon that the number of labeled data
required for active learning experiments to con-
verge increases with the rising model parameter
size. This is counter-intuitive, as larger models
are usually better than smaller models for cases
where the training and test datasets are fixed in
academic settings. However, in an asynchronous
active learning setting, larger models take longer
to train and infer (e.g., ProdNet-24L-P is ∼ 100
times slower than ProdNet-1L in CPU inference),
thereby forcing human annotators to label ‘stale’
data. As such, larger models miss the opportu-
nity to assist query acquisition module to select
unlabeled instances effectively, and unnecessarily
accumulate excessive labeled data from annotators.
Smaller models, especially when pre-finetuned on
1000s of previously authored classifiers, provide a
viable alternative with fast classifier authoring-time
and low inference-cost. In addition, the compact
pre-finetuned model does not require GPUs for in-
ference, making it a viable solution for real-time

113

Figure 3: Relative number of labeled data required for
active learning experiments to converge with model
sizes on FEE dataset. e.g., ProdNet-1L classifier re-
quires x labels to converge while ProdNet-2L needs
1.06x labels to converge.

large-scale inference with cheaper CPU options.
Why does ProdNet learn faster than the non-

pre-finetuned counterpart? Although researchers
have cautioned against using attention as a reli-
able means of model interpretability (Serrano and
Smith, 2019; Jain and Wallace, 2019), several re-
cent works use attention weights to partially ex-
plain what words/tokens that are most influential to
the model (Galassi et al., 2019; Letarte et al., 2018;
Vashishth et al., 2019; Clark et al., 2019). To get
an intuitive understanding if pre-finetuning helps,
we illustrate attention weights1 of the [CLS] token
in the last layer for pre-finetuned (ProdNet-2L) and
non-pre-finetuned (BERT-2L) models as shown in
Fig.4. We choose to visualize [CLS] token since
in downstream task finetuning, we pass the last
layer [CLS] representation to a task-specific feed-
forward layer and train the classifier end-to-end. It
is worth mentioning that we visualize the attention
of [CLS] token in the original ProdNet-2L (Stage
2 in Fig 1) and BERT-2L (Stage 1 in Fig 1) models
without downstream tasks finetuning. Our rationale
is that if a model is able to pay attention to the key
information in downstream tasks before finetuning,
then the model might learn faster when finetuned
with the downstream task data (few-shot learning).
The input text Veterinary Formula Flea and
Tick Spray for Dogs is from the downstream task
PetCare which aims to classify pet-care products
designed to treat fleas, ticks, ringworm, or other
parasites. The orange and blue color demonstrate
the 2 attention heads of ProdNet-2L and BERT-2L.
The darker color indicates more attention. In this
example, we can observe that ProdNet-2L is able

1We used BertViz for attention visualization
https://github.com/jessevig/bertviz.

(a)

(b)

Figure 4: Attention visualization of (a) ProdNet-2L, and
(b) BERT-2L

to pay more attention to flea and tick compared
with BERT-2L. We hypothesize that pre-finetuning
on relevant e-commerce product classification data
helps the model understand potentially important
words for the downstream task, thereby allowing
the model to learn the downstream task faster.

Appendix A.8 shows additional results on the
attention analysis.

5 Conclusion

In this paper, we present empirical evidence on 14
binary and 3 multi-class text classification tasks
that compact transformer models consistently re-
duce number of labeled data required to build new
classifiers in realistic asynchronous active learning
settings when compared to larger models. Smaller
models take less time for training and inference,
and allow active learning query acquisition module
to select next batch of informative instances more
frequently, thereby allowing the classifier to learn
fast. Further, we conclude that pre-finetuning helps
compact models to learn even faster.

114

References
Use amazon sagemaker ground truth to label data

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html.
In Amazon Web Services.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. CoRR, abs/2101.11038.

Michael Bloodgood and K. Vijay-Shanker. 2014. A
method for stopping active learning based on stabi-
lizing predictions and the need for user-adjustable
stopping. CoRR, abs/1409.5165.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of bert’s attention. CoRR,
abs/1906.04341.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017.
Deep bayesian active learning with image data. In In-
ternational Conference on Machine Learning, pages
1183–1192. PMLR.

Andrea Galassi, Marco Lippi, and Paolo Torroni. 2019.
Attention, please! A critical review of neural atten-
tion models in natural language processing. CoRR,
abs/1902.02181.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.

Sheng-Jun Huang and Zhi-Hua Zhou. 2013. Active
query driven by uncertainty and diversity for incre-
mental multi-label learning. In 2013 IEEE 13th In-
ternational Conference on Data Mining, pages 1079–
1084.

Sheng-Jun Huang, Chen-Chen Zong, Kun-Peng Ning,
and Hai-Bo Ye. 2021. Asynchronous active learning
with distributed label querying. In Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pages 2570–2576. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main Track.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not explanation. CoRR, abs/1902.10186.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling BERT for natural language un-
derstanding. CoRR, abs/1909.10351.

Gaël Letarte, Frédérik Paradis, Philippe Giguère,
and François Laviolette. 2018. Importance of
self-attention for sentiment analysis. In Black-
boxNLP@EMNLP.

David D Lewis and William A Gale. 1994. A sequential
algorithm for training text classifiers. In SIGIR’94,
pages 3–12. Springer.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens van der Maaten. 2018. Ex-
ploring the limits of weakly supervised pretraining.
In Proceedings of the European Conference on Com-
puter Vision (ECCV).

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. CoRR,
abs/1811.01088.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R. Bow-
man. 2020. Intermediate-task transfer learning with
pretrained models for natural language understand-
ing: When and why does it work?

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Sofia Serrano and Noah A. Smith. 2019. Is attention
interpretable? CoRR, abs/1906.03731.

Burr Settles. 2009. Active learning literature survey.

Jingyu Shao, Qing Wang, and Fangbing Liu. 2019.
Learning to sample: an active learning framework.
CoRR, abs/1909.03585.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh
Tomar, and Manaal Faruqui. 2019. Attention inter-
pretability across NLP tasks. CoRR, abs/1909.11218.

115

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
http://arxiv.org/abs/2101.11038
http://arxiv.org/abs/2101.11038
http://arxiv.org/abs/1409.5165
http://arxiv.org/abs/1409.5165
http://arxiv.org/abs/1409.5165
http://arxiv.org/abs/1409.5165
http://arxiv.org/abs/1906.04341
http://arxiv.org/abs/1906.04341
http://arxiv.org/abs/1902.02181
http://arxiv.org/abs/1902.02181
http://arxiv.org/abs/2004.10964
http://arxiv.org/abs/2004.10964
https://doi.org/10.1109/ICDM.2013.74
https://doi.org/10.1109/ICDM.2013.74
https://doi.org/10.1109/ICDM.2013.74
https://doi.org/10.24963/ijcai.2021/354
https://doi.org/10.24963/ijcai.2021/354
http://arxiv.org/abs/1902.10186
http://arxiv.org/abs/1902.10186
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1811.01088
http://arxiv.org/abs/1811.01088
http://arxiv.org/abs/2005.00628
http://arxiv.org/abs/2005.00628
http://arxiv.org/abs/2005.00628
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1906.03731
http://arxiv.org/abs/1906.03731
http://arxiv.org/abs/1909.03585
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1909.11218
http://arxiv.org/abs/1909.11218

A Appendix

A.1 Transformer models in study
Table 2 introduces the transformer models used in
this study. We choose the BERT based models in
our study as they are well-established models, and
we focus on investigating the impact of different
model sizes in the asynchronous active learning
settings. The study can be easily extended to other
transformer based models (e.g, RoBERTa)

A.2 Pre-finetuning dataset
Table 3 illustrates the dataset that we used to pre-
finetune transformers.

Table 4 shows dataset statistics for the super-
vised pre-finetuning.

A.3 multi-label softmax
Due to the multi-label property of the pre-
finetuning data, we formulate the pre-finetuning
as a multi-label classification problem using multi-
label softmax loss function recommended by Ma-
hajan et al (Mahajan et al., 2018). multi-label soft-
max loss computes probabilities over all labels in
the label space using a softmax activation and is
trained to minimize the cross-entropy between the
predicted softmax distribution and the target distri-
bution of each instance. The target is a vector with
k non-zero entries, each set to 1/k corresponding
to the k ≥ 1 labels for the instance. We exper-
imented both the conventional per-class sigmoid
outputs with binary cross entropy loss and multi-
label softmax. Results show using multi-label soft-
max loss function improves the top-1 accuracy by
20% compared with the model using per-class sig-
moid outputs with binary cross entropy loss.

A.4 Active learning strategy
To measure the label efficiency of a classifier
M, we employ pool-based active learning set-
ting (Algorithm 1) (Lewis and Gale, 1994)(Settles,
2009)(Gal et al., 2017), consisting of a seed set of
labeled instances (x, y) ∈ Dseed (|Dseed| = 100) to
initialize the classifierM in the first iteration, an
unlabeled pool of data Dpool, and a query acquisi-
tion function A(x,M) that ranks the next set of
unlabeled instance x ∈ Dpool to be sent to the anno-
tator. In each active learning iteration, we perform
two operations: 1) judiciously select a subset of
unlabeled instances and send them to the annotator,
and 2) train a classifier using new and the previ-
ously labeled instances. To pick the next set of unla-

Algorithm 1: Active learning setup used in
production and for experiments.

1 Input: Pool of unlabeled data Dpool, Batch
size B, Initial labeled dataset S (could be
empty), Business targets on precision and
recall

2 Output: Trained classifierM that meets
business targets

3 while convergence criteria are not met do
4 Rank instances from Dpool using query

strategy A(x,M).
5 Label top-ranked B instances, add them

to S . (Comment: In production, human
annotators provide labels, while in
experiments a bot does the labeling
job)

6 Remove S from unlabeled data
Dpool ← Dpool \ S .

7 (asynchronous process) Train the
classifierM on S.

8 (asynchronous process) Predict Dpool
using the classifier.

9 (asynchronous process) Estimate current
precision/recall using out-of-fold
scores (k-fold cross validation)

10 end

beled instances for annotation, we take the trained
classifier to perform inference on all instances in
unlabeled data pool, rank them based on entropy
score (calculated from the model prediction score)
and select instances which have high entropy score
(these are confusing instances that are most likely
to increase the accuracy of the classifier in the next
active learning iteration). We continue active learn-
ing until convergence criteria are achieved. We use
two convergence criteria for experiments which ex-
actly mimics a production setup: 1) the estimated
recall/precision for each class-of-interest should be
equal to or greater than the corresponding business-
specified targets, and 2) predictions on unlabeled
data should have stabilized (Bloodgood and Vijay-
Shanker, 2014).

A.5 Data distribution in multi-class datasets

Table 5 presents the data distribution of the three
multi-class datasets.

116

Architecture Description

BERT-
24L-P

It is a internal BERT-based language model (84 million parameters). It is pre-trained on
multilingual, multi-locale and multimodal (text + structured fields) e-commerce product
data, and then pre-finetuned using the multi-task soft labels generated from the previously
pre-trained teacher model with 500 million parameters.

BERT-6L It is widely known as DistilBERT (Sanh et al., 2019), which is a 6-layer transformer model
unsupervised pre-trained using English Wikipedia and Toronto Book Corpus.

BERT-4L It is known as TinyBERT (Jiao et al., 2019). We used the 4 layer TinyBERT, which is
distilled from the 12-layer BERT teacher model unsupervised pre-trained using English
Wikipedia and Toronto Book Corpus.

BERT-2L It is a 2-layer transformer model (Turc et al., 2019) unsupervised pre-trained with a masked
language modeling objective on Book Corpus and English Wikipedia.

BERT-1L In order to minimize the model size and investigate the impact of small transformer model,
we extracted the first transformer layer from the BERT-2L and made it as a BERT-1L
model.

Table 2: Various transformer models under study (The model artifacts of BERT-6L, BERT-4L, BERT-2L used in
this study are available in HuggingFace.).

Classifier→ C1 C2 C3 . . . C2664
product
instance↓
A1 1 0 0 . . . 0
A2 0 1 1 . . . 0
.
An 1 0 0 . . . 0

Table 3: Illustration of dataset used to pre-finetune transformers. The rows of the table represent product instances,
and the columns represent the 2664 binary classifiers used in our pre-finetuning. Each cell represents the membership
of an product instance to a class. For example, if the class “C1” was created to identify “Face Masks”, then product
instance A1 was classified as a FaceMask and product instance A2 was not.

117

L ntrn nval ntst n̄ L̄

2664 4,607,904 918,894 820,839 2,383 2.62

Table 4: Statistics of the supervised pre-finetuning dataset. L is number of classification tasks. ntrn, nval, and ntst

refer to number of instances in training, validation and test dataset, respectively. n̄ is average number of instances
per classification task and L̄ is average number of labeled data per instance (product data)

Table 5: Multi-class datasets (HS, FEE, and AB) have
long-tail distribution in terms of class sizes. S denotes
the relative size of each class. E.g., the class HS-2 has
41.88% of 1.15M products in HS dataset.

HS (1.15M) FEE (750K) AB (8.4M)

Class S(%) Class S(%) Class S(%)

HS-0 0.52 T-0 50.56 A-0 18.39
HS-1 0.36 T-1 6.36 A-1 46.58
HS-2 41.88 T-2 30.84 - -
HS-3 25.81 T-3 10.69 - -
HS-4 0.30 T-4 0.53 - -
HS-5 0.44 T-5 0.62 - -
HS-6 2.36 T-6 0.28 - -
HS-7 11.10 - - - -
HS-8 14.65 - - - -
not-in-
k

2.59 not-in-
k

0.12 not-in-
k

35.03

A.6 Hyperparameters
Table 6 is the hyperparameters used in pre-
finetuning and finetuning various transformer mod-
els.

A.7 Per-task experiment results
Table 7 and Table 8 shows 1) the relative number of
labeled data required for various active learning ex-
periments to converge, and 2) the relative (macro)
recall/(macro) precision of the models measured on
data poolDpool, in the 14 binary classification tasks
and 3 multi-class classification tasks, respectively.

A.8 Why does ProdNet learn faster than the
non-pre-finetuned counterpart?

To obtain a global understanding if pre-finetuning
helps, we aggregate attention weights computed on
500 positive examples for four classification tasks
(listed in Table 7). Specifically, we calculate the
average attention for the key phrases a human ex-
pert deemed most critical to the classification task.
For example, for PetCare products, the key phrases
identified are flea, tick, worm, and parasites. The
results are shown in Table 9. We observe that in

Hyperparameters Pre-
finetuning

Finetuning

Loss function Multi-label
softmax

Softmax

Train batch size 32 32
Val batch size 32 -
Dropout factor 0.1 0.3
Max seq length 128 128
Optimizer AdamW AdamW
Learning rate 2e−5 2e−5 /1e−4

Weight decay 0.01 0.01
Early stopping True False
Max training epoch 10 5

Table 6: Hyperparameters we used in the pre-finetuning
and finetuning stages to train various transformer mod-
els. In downstream task finetuning, we use learning rate
2e−5 for BERT-6L and ProdNet-6L, and learning rate
1e−4 for rest of benchmarking transformer models. In
order to fully utilize the labeled data for training, we do
not use validation dataset in downstream task finetun-
ing.

general ProdNet-2L is able to pay more attention
to the key tokens than BERT-2L. We hypothesize
that pre-finetuning on relevant e-commerce prod-
uct data helps the model understand potentially
important words for the downstream task, thereby
allowing the model to learn the downstream task
faster.

118

Models→ ProdNet-1L BERT-1L ProdNet-2L BERT-2L ProdNet-24L-P BERT-24L-P

Tasks ↓ Top: relative number of labeled data
(R/P target) Bottom: relative recall(R)/precision(P) computed on data pool

Speakers x 2.56x 2.33x 2.57x 1.76x 2.7x
(r/p) 1.11r/p 1.10r/1.02p 1.11r/1.01p 1.07r/p 1.11r/1.02p 1.11r/1.03p

Pillows x 1.43x 1.09x 2.05x 1.08x 1.74x
(r/p) 1.09r/1.01p 1.1r/1.01p 1.07r/1.01p 1.02r/1.02p 1.11r/1.02p 1.11r/1.03p

Plants x 1.80x 2.12x 5.87x 1.32x 1.47x
(r/p) 1.01r/1.02p r/1.03p r/1.03p r/1.04p r/1.03p 1.01r/1.03p

Bottle x 1.74x 1.52x 2.94x 1.10x 1.28x
(r/p) 1.34r/1.01p 1.38r/1.01p 1.28r/p 1.32r/1.01p 1.32r/p 1.3r/1.03p

Jackets x 1.32x 1.79x 2.40x 0.99x 1.20x
(r/p) 1.07r/1.02p 1.06r/1.04p 1.08r/1.02p 1.08r/p 1.1r/p 1.13r/1.01p

Belt x 1.34x 2.01x 3.85x 1.66x 1.75x
(r/p) 1.06r/1.01p 1.05r/1.02p 1.06r/1.02p 1.05r/1.02p 1.06r/1.04p 1.06r/1.03p

Postcard x 1.37x 2.10x 3.10x 1.47x 1.55x
(r/p) 1.16r/1.01p 1.16r/1.01p 1.17r/p 1.15r/1.02p 1.16r/1.02p 1.16r/1.03p

PetCare x 1.57x 1.25x 2.12x 1.74x 2.17x
(r/p) 1.12r/1.02p 1.12r/1.03p 1.12r/1.01p 1.12r/1.02p 1.12r/1.04p 1.12r/1.04p

T39253 x 2.21x 1.45x 2.31x 1.72x 1.78x
(r/p) 1.06r/p 1.07r/1.01p 1.04r/p 1.05r/p 1.08r/1.01p 1.08r/1.02p

FireStarter x 2.98x 1.22x 2.01x 1.89x 2.32x
(r/p) 1.08r/1.02p 1.08r/1.03p 1.08r/1.01p 1.08r/1.02p 1.08r/1.03p 1.08r/1.04p

Batteries x 1.65x 0.92x 5.15x 0.81x 1.52x
(r/p) 1.25r/p 1.24r/1.01p 1.14r/1.01p 1.24r/1.01p 1.28r/1.01p 1.28r/1.03p

Radio x 1.95x 1.55x 2.55x 1.34x 1.40x
(r/p) 1.04r/1.04p 1.01r/1.04p 1.03r/1.04p r/1.04p 1.02r/1.04p 1.03r/1.04p

GDevices x 2.02x 0.96x 2.40x 1.29x 1.45x
(r/p) 1.12r/1.01p 1.13r/1.02p 1.09r/1.01p 1.13r/1.01p 1.13r/1.02p 1.13r/1.02p

Extg x 2.37x 1.27x 3.51x 1.34x 1.46x
(r/p) 1.06r/1.01p 1.07r/1.03p 1.02r/1.01p 1.05r/1.02p 1.07r/1.03p 1.07r/1.03p

Table 7: For each classification task in the first column, we report the relative number of labeled data required to
converge the active learning process by various classifiers. We also report the relative recall and precision measured
on data pool Dpool as “recall/precision”. For each classification task, we denoted the recall/precision targets set by
customers as (r/p), and the number of labeled data required to converge with ProdNet-1L classifier as x. (Note:
different classification tasks may have different recall/precision targets, and they require different number of labeled
data to converge the experiments with ProdNet-1L classifier. Since we do not compare performance across different
classification tasks, we use the same letters for the denotation of different tasks.) For example, on Speakers dataset
the recall/precision targets are set as (r/p), the ProdNet-1L classifier achieved 1.11r recall at p precision when
the active learning experiment converged at x labels, while the BERT-1L classifier achieved 1.10r recall at 1.02p
precision when the active learning experiments converged at 2.56x labels. For each classification task, we highlight
the least number of labeled data required for convergence in bold.

119

Models→ ProdNet-1L BERT-1L ProdNet-2L BERT-2L ProdNet-24L-P BERT-24L-P

Tasks ↓ Top: relative number of labeled data
(R/P
target)

Bottom: relative macro-recall/macro-precision computed on data pool

HS x 2.71x 2.30x 3.48x 1.08x 1.09x
(r/p) 1.15r/1.13p 1.16r/1.17p 1.13r/1.12p 1.13r/1.11p 1.16r/1.17p 1.16r/1.17p

FEE x 1.84x 1.06x 3.12x 1.32x 1.35x
(r/p) 1.06r/1.07p 1.05r/1.08p 1.05r/1.07p 1.05r/1.06p 1.06r/1.07p 1.05r/1.08p

AB x 1.60x 2.39x 3.89x 2.44x 2.73x
(r/p) 1.08r/p 1.12r/p 1.04r/p 1.08r/p 1.08r/1.01p 1.05r/1.02p

Table 8: For each multi-class classification task in the first column, we report the relative number of labeled data
required to converge the active learning process by various classifiers. We also report relative macro-recall and
macro-precision measured on data pool Dpool. For example, on HS dataset the macro-recall/macro-precision targets
are set as (r/p), the ProdNet-1L classifier achieved 1.15r (macro-recall) at 1.13p (macro-precision) when the active
learning experiment converged at x labels, while the BERT-1L classifier achieved 1.16r (macro-recall) at 1.17p
(macro-precision) when the active learning experiment converged at 2.71x labels. For each classification task, we
highlight the least number of labeled data required for convergence in bold.

Models→ ProdNet-2L BERT-2L

Class rationale ↓ Key token Average
attention

Token
ranking

Average
attention

Token
ranking

Task: PetCare

To classify pet-care products
designed to prevent fleas, ticks,
ringworm, or other parasites.

flea 0.45 15% 0.36 50%
worm 0.44 16.7% 0.42 37.7%
tick 0.43 17.4% 0.39 44.3%
parasites 0.38 24.2% 0.33 56.2%

Task: Speakers

To classify wireless battery
operated portable speakers.

blue 0.70 4.9% 0.39 52.6%
portable 0.60 11.2% 0.37 57.2%
speaker 0.40 35.3% 0.30 69.7%
wireless 0.29 52.1% 0.48 34.7%

Task: Pillow

To classify pillows and cushions
with feather fillings or inserts.

cushion 0.42 23.1% 0.25 68.4%
pillow 0.60 24.0% 0.25 65.9%
feather 0.13 75.1% 0.45 32.0%

Task: Seed

To classify seeds which are
used for growing plants.

seed 0.61 13.0% 0.31 50.4%
plant 0.60 13.6% 0.47 19.6%
fruits 0.42 36.0% 0.38 36.1%
vegetable 0.27 63.4% 0.24 64.8%

Table 9: Global aggregation of attention values for key phrases of a classification task. We take 500 positive samples
to the original ProdNet-2L and BERT-2L models without downstream task finetuning. We calculate the average
attention of each token that the [CLS] token pays to in the last transformer layer. The average attention (higher the
better) received by the identified key tokens is noted in the column Avg. attention. We also rank all the tokens in
the 500 positive samples based on their average received attention, and calculate the rank of identified key tokens
(smaller the better). Key tokens were identified by a trained expert who provided the labeled data required to train
the classifiers.

120

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 121–128
July 13, 2023 ©2023 Association for Computational Linguistics

ADEPT: Adapter-based Efficient Prompt Tuning
Approach for Language Models

Aditya Shah, Surendrabikram Thapa, Aneesh Jain, Lifu Huang
Department of Computer Science, Virginia Tech

{aditya31, surendrabikram, aneeshj, lifuh}@vt.edu

Abstract

Fine-tuning large pre-trained models for down-
stream tasks can be really expensive. In the
past, researchers have proposed various alter-
natives like adapter and prompt-based meth-
ods for tuning these large language models us-
ing minimal parameters. However, applying
prompt-tuning for smaller language models has
not been effective so far and not much work
is done in pushing forward soft prompting for
these smaller models. To improve the train-
ing efficiency of the language models and re-
duce the size of tuned parameters, we propose
a novel Adapter-based Efficient Prompt Tun-
ing approach (ADEPT). In this paper, we show
that tuning the parameters of soft prompts with
adapter modules while keeping the rest of the
model frozen can be a promising method to
optimize smaller language models for down-
stream tasks. Our method achieves up to 98%
performance of full fine-tuning while using only
0.02% of total model parameters.

1 Introduction

With the rapid advancement in computational fa-
cilities and the research in the field of Natural
Language Processing (NLP), pre-trained language
models (Peters et al., 2018; Conneau et al., 2018;
Devlin et al., 2019; Yang et al., 2019; Raffel et al.,
2020; Qiu et al., 2020; Xue et al., 2021; Dodda-
paneni et al., 2021) have been used widely in var-
ious tasks. These models use different statistical
and probabilistic methods to decide the likelihood
of a given sequence of words occurring in a sen-
tence. To efficiently use the language models, re-
searchers fine-tune these pre-trained language mod-
els on downstream tasks. With the conventional
practices of fine-tuning the models, new parame-
ters are generally introduced for every downstream
task. However, this approach of fine-tuning lan-
guage models becomes difficult especially when
there are a lot of trainable parameters. With lan-
guage models becoming larger and larger (Brown
et al., 2020), we can often anticipate challenges
related to maintaining multiple copies of model
parameters for inference, training time, and lack
of necessary computing power. The concept of

Figure 1: Prompt-based tuning using discrete prompt.
The prompt “Experience was” with a [MASK] is
prepended to the input text.

prompt-tuning was introduced to improve parame-
ter efficiency in the downstream tasks. In prompt
tuning, there’s no need for new parameters as we
convert our problem into a language modeling task.
This method can be promising, especially when
there are very few training examples for e.g. few
shot learning (Gao et al., 2021), where the standard
fine-tuning would not be efficient.

A prompt is usually a sequence of words or pa-
rameters that are appended or prepended to the
input so that the given downstream task can be
constructed as a language modeling problem (Liu
et al., 2021a). An example is shown in Figure 1.
In order to classify the sentiment of a given text,
like an amazon product review “The delivery was
bad. The items were broken.”, we can prepend
a prompt, such as “Experience was” or “It was”,
with a [MASK] to the sentence and anticipate the
language model to predict a negative adjective such
as “awful” for the [MASK] position.

As shown by Lester et al. (2021); Kim et al.
(2021), soft prompt-tuning for smaller language
models do not perform well when compared
to traditional fine-tuning. This approach only
works for significantly larger models (BERTlarge,
RoBERTalarge , etc). In this paper, we propose a
novel approach to leverage soft prompt tuning for
smaller language models. We insert adapter mod-
ules in the language model, then jointly fine-tune
the parameters of this adapter module along with
soft prompts while keeping the rest of the model
frozen. Through empirical results on 3 benchmark
datasets from SuperGLUE (Wang et al., 2019) and
4 text classification datasets, we demonstrate the
effectiveness of our proposed approach for these

121

smaller LM models (RoBERTa (Liu et al., 2019)
and BERT (Devlin et al., 2019)). Our method opti-
mizes only 0.02% of total model parameters during
training and yet achieves better performance than
other tuning strategies while being competitive to
fine-tuning.

Our main contributions can be summarised as
follows:

• a new Adapter-based Efficient Prompt Tuning
(ADEPT) approach to leverage soft prompts
for smaller language models - "roberta-base"
and "bert-base-cased".

• analyze the effectiveness of our approach with
respect to other soft prompt-tuning and fine-
tuning methods.

• an ablation study to investigate the importance
of the number of prompt tokens and adapter
hidden size.

2 Related Work

The effectiveness of prompt tuning was demon-
strated by (Brown et al., 2020) where the authors
showed that GPT-3 model could handle wide va-
riety of tasks using only a few training examples.
The use of prompts was first proposed by (Radford
and Narasimhan, 2018). The authors showed that
language models can perform well in few-shot and
zero-shot settings through these natural language
prompts. More recently, Jiang et al. (2020) pro-
posed an approach to automatically discover bet-
ter prompts in order to improve the factual knowl-
edge retrieval from these language models. More-
over, Schick and Schütze (2021) introduced Pattern
Exploiting Training (PET) which uses cloze-style
phrases and achieves state-of-the-art performance
on few supervised and semi-supervised tasks -
classification on Yelp Reviews, AG’s News, Ya-
hoo Questions (Zhang et al., 2015) and MNLI
(Williams et al., 2018). This work was further
improved by (Tam et al., 2021) for few-shot natural
language understanding without using any unla-
beled data. In all of these approaches, prompts
were manually designed in the form of discrete
tokens. Thus, in such scenarios, it is important
to design appropriate prompts based on different
downstream tasks. The importance of prompt en-
gineering and the complete paradigm of prompt
tuning is summarized in Liu et al. (2021a).

In contrast to discrete prompts (Shin et al., 2020;
Hambardzumyan et al., 2021; Gao et al., 2021;

Reynolds and McDonell, 2021), soft prompts are
randomly initialized vectors that are prepended
or appended to the input text. The parameters
of the entire language model are fixed and only
the prompt parameters are fine-tuned. Liu et al.
(2021b) showed that automatically searching bet-
ter prompts in the continuous space gives com-
petitive performance for natural language under-
standing. Soft prompts were initially proposed by
Zhong et al. (2021) where OptiPrompt was pro-
posed and outperformed discrete prompts on knowl-
edge probing tasks. Li and Liang (2021) and Qin
and Eisner (2021) used a similar idea for generation
tasks where they prepended task-specific prompts
in the input text and achieved comparable perfor-
mance as the original model fine-tuning. Han et al.
(2021) proposed prompt-tuning with rules (PTR)
which significantly outperformed state-of-the-art
baselines for relation classification tasks. The ef-
fectiveness of soft prompt-tuning was further lever-
aged by Lester et al. (2021) where they applied
soft prompts on the T5 model and achieved a good
performance on the SuperGLUE benchmark. Fur-
thermore, Su et al. (2021); Vu et al. (2022) studied
the transferability of prompt tuning across different
tasks and models. They showed that soft prompts
can be transferred to similar tasks without training
and can be a good initialization for the underlying
language model.

3 Approach

We propose a novel adapter-based prompt-tuning
architecture for downstream classification tasks.
Figure 2 shows an overview of the model. We
use the pre-trained BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) from Hugging Face as
the encoder. For soft prompt-tuning, we append
soft prompt embedding in the input text using the
same approach as Lester et al. (2021). Given an
input text X = [x1, ..., xn], where xi is the i−th
token in the text and n is the length of the sequence,
we append prompt tokens [p1, p2, ... pm] where m
is the number of prompt tokens. We initialize these
prompt tokens with embeddings obtained from ran-
dom words in the vocabulary and update them dur-
ing training, which shows better performance on
downstream tasks than initializing them with ran-
dom vectors. We found that initializing prompt
tokens with random word embeddings instead of
random vectors helps the model converge better
on downstream tasks. The resulting input to the

122

model becomes: [p1, ..., pm, x1, ..., xn]. We do not
use any separator token between prompt vectors
and tokens.

Figure 2: Overview of the ADEPT model. The adapter
module is inserted between encoder layer 8 and layer 9.
Parameters of prompt embeddings and this adapter mod-
ule are tuned while the rest of the complete model and
input text embeddings are frozen. ADEPT approach us-
ing RoBERTa/BERT tunes only 28K parameters (0.02%
of 123M total parameters)

Inspired by the work of Bapna and Firat (2019);
Houlsby et al. (2019); Pfeiffer et al. (2021); Rücklé
et al. (2021); He et al. (2021), we insert adapter
modules in the form of Multi-Layer Perceptron
(MLP) between the encoder layers of the base trans-
former model. To reduce the number of parameters,
we choose a bottleneck architecture for the adapter
module. In a bottleneck architecture, the hidden
layer also called as bottleneck size is much smaller
than the input layer. If d is the input size (number
of neurons) of the MLP layer and b is the bottle-
neck size (adapter hidden size), then the bottleneck
architecture would require 2·d·b+d+b parameters
. When b << d, the total parameters are greatly
reduced compared to a general MLP layer with
d · d+ d parameters. If the embedding dimension
size is e and the prompt length is m, then the train-
able parameters for prompt embeddings is m . e.

So the total trainable parameters for the ADEPT
model are just [2 · d · b + (d + b)] + m · e. We
use one adapter module with hidden size b = 8
and prompt length m = 20 in our implementation
which is inserted between the 8th and 9th encoder
layer 1. For RoBERTa and BERT models, we have
d = e = 768. So, total trainable parameters for
the ADEPT model is only 28k while in standard
fine-tuning, we update all the parameters (123M
parameters for roberta-base model.)

4 Experimental Setup

We conduct experiments on four classification
datasets - IMDB (Maas et al., 2011), AG’s News
(Zhang et al., 2015) , Yahoo Answers (Zhang et al.,
2015), Yelp - 5 (Zhang et al., 2015) and three
datasets from SuperGLUE benchmark - Boolq
(Clark et al., 2019), CommitmentBank (de Marn-
effe et al., 2019), and Recognizing Textual Entail-
ment (RTE) . More details on data statistics and
implementation details are described in Appendix
A

To show the efficiency of our adapter-based
prompt tuning approach, we compare it with sev-
eral other training paradigms:

• Prompt-tuning (PT): fine-tune soft prompt
embeddings while keeping the entire model
frozen. The randomly initialized parameters
of the classification head are also fixed.

• Head-tuning (HT): only fine-tune the classi-
fication head. The base transformer model is
frozen.

• Prompt + Head-tuning (PHT): fine-tune soft
prompt embeddings along with the parame-
ters of the classification head. The base trans-
former model is frozen.

• Fine-tuning (FT): traditional fine-tuning
where the entire model along with the clas-
sification head is trained.

1We experimented with different positions for the adapter
module: between layer 4 and 5; between layer 6 and 7; be-
tween layer 8 and 9; between layer 10 and 11. We achieved
the best results when the adapter module was inserted between
layer 8 and layer 9. It stands out to the reason that the lower
layers of BERT account for sentence and coarse linguistic
structure while the higher layers are more domain-specific and
help to learn task-specific parameters (Rogers et al., 2020).
Attaching an adapter module between higher layers helps the
adapter module parameters to converge better to downstream
tasks

123

Model Method IMDB AG’s News Yahoo Yelp-5 BoolQ CB RTE

BERT

Prompt (PT) 0.91 0.86 0.66 0.57 0.62 0.66 0.47
Head (HT) 0.89 0.88 0.67 0.60 0.61 0.72 0.53

Prompt + Head (PHT) 0.92 0.92 0.70 0.63 0.67 0.71 0.54
Fine-tune (FT) 0.94 0.94 0.72 0.69 0.73 0.83 0.61

Adapter + Prompt (ADEPT) 0.92 0.93 0.71 0.67 0.69 0.80 0.58

RoBERTa

Prompt (PT) 0.90 0.87 0.65 0.59 0.62 0.64 0.50
Head (HT) 0.91 0.90 0.68 0.61 0.63 0.70 0.54

Prompt + Head (PHT) 0.94 0.93 0.72 0.66 0.64 0.71 0.55
Fine-tune (FT) 0.96 0.95 0.73 0.71 0.80 0.86 0.71

Adapter + Prompt (ADEPT) 0.95 0.94 0.72 0.68 0.71 0.77 0.60

Table 1: Performance on all evaluation tasks. Each experiment is run for 3 trials and the average result is
reported. For text classification tasks (IMDB, AG’s News, Yahoo, Yelp-5), we report the test F-score; for Boolq,
CommitmentBank (CB), and Recognizing Textual Entailment (RTE), we report the test accuracy. ADEPT approach
results in better performance than Head-tuning (HT) and Prompt + Head-tuning (PHT) while using significantly
lower parameters and is competitive to standard fine-tuning

• Adapter + Prompt-tuning (ADEPT): fine-
tune soft prompt embeddings and adapter
module parameters that are inserted in the en-
coder layer. The rest of the model and the
randomly initialized parameters of the classi-
fication head are kept fixed.

5 Results

Table 1 shows the F-score and accuracy on all eval-
uation tasks under different training settings. Ta-
ble 2 compares the model parameters and training
metrics. We can see that ADEPT outperforms all
the other methods which just tune the prompt or
head layers using significantly lower parameters.
By just tuning 0.02% parameters, ADEPT shows
comparable performance as the method that fine-
tunes all the parameters, demonstrating its signif-
icance in improving the training efficiency. It is
interesting to see that although Head-tuning (HT)
and Prompt + Head-tuning (PHT) methods have
larger parameters to be optimized, the ADEPT
method still achieves better results on the Super-
GLUE dataset and requires lesser training time
compared to the standard fine-tuning approach. We
also observe that standard prompt-tuning requires
about 2.5 times more steps to converge compared
to fine-tuning approach and does not perform well
for multi-class classification. A similar result was
reported by Lester et al. (2021), where the authors
claim that soft prompt based-tuning does not per-
form well for smaller language models.

Overall, attaching adapter modules between the
encoder layers helps to retain the knowledge from
pre-trained LMs and efficiently learn the required
parameters to further improve the performance on
downstream tasks. This helps the language model

to better adapt to downstream tasks using minimal
parameters. It achieves comparable performance
as standard fine-tuning while being highly param-
eter efficient and requiring much lower training
time. All these demonstrate the effectiveness of
our proposed approach in improving the training
and resource efficiency of language models.

Method # params % params time Convergence

PT 13K 0.01% 0.9 t 2.5 x steps
HT 600K 0.48% 0.5 t 2 x steps
PHT 620K 0.49% 0.8 t 2 x steps
FT 123M 100% t x steps

ADEPT 28K 0.02% 0.7 t 1.5 x steps

Table 2: Model parameters and training metrics. t and
x refer to training time and training steps respectively
as required by standard fine-tuning. # params denotes
the number of trainable parameters for every method.
% params denotes % of parameters to be optimized
compared to standard fine-tuning.

6 Conclusion

We proposed a novel adapter-based prompt-tuning
approach for fine-tuning language models. Our re-
sults demonstrate the effectiveness of the approach
on seven benchmark datasets. ADEPT achieves
a significant performance boost over PT, HT, and
PHT approaches and is comparable to the standard
fine-tuning while using only 0.02% of the model
parameters. Since adapter modules learn the re-
quired parameters for various NLU tasks, they help
in retaining the knowledge of the pre-trained LM
model when the encoder is frozen. Our work aims
to facilitate the further research direction of using
adapter-based prompt methods for tuning LMs.

124

Limitations

Due to the limited resources, we could not experi-
ment with this approach for larger language models
such as roberta-large and bert-large. It would be in-
teresting to investigate the performance of ADEPT
with larger LMs.

In addition, we only evaluate the ADEPT ap-
proach on seven downstream tasks. It would also be
interesting to test it on more broad natural language
processing tasks, such as information extraction,
natural language generation, question answering,
and so on.

Broader Impact

As discussed earlier, fine-tuning large pre-trained
models for downstream tasks can be really expen-
sive. The ADEPT approach can help AI practition-
ers to assess the abilities of LM without using a
lot of resources. This approach of prompt tuning
can also help smaller end users to take advantage
of harnessing the power of LM with the minimal
resources they have. It can be used by social sci-
entists, Non-profit organizations, etc. to create a
positive impact in society in spite of limited com-
puting resources.

Reproducibility

The code and resources for this work are available
at our GitHub repository2. The code for training,
testing, and producing plots are made available.
The details on the model and hyperparameters are
given in Appendix A.2. A brief introduction to the
dataset used in this paper is given in Appendix A.1.
Our implementation approach specific to all the
dataset used are also explained.

References
Ankur Bapna and Orhan Firat. 2019. Simple, scal-

able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538–
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,

2https://github.com/Aditya-shahh/ADEPT

Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sumanth Doddapaneni, Gowtham Ramesh, Mitesh M.
Khapra, Anoop Kunchukuttan, and Pratyush Kumar.
2021. A primer on pretrained multilingual language
models.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4921–4933, Online. Association for
Computational Linguistics.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. Ptr: Prompt tuning with rules
for text classification.

125

https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2107.00676
https://doi.org/10.48550/ARXIV.2107.00676
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
http://arxiv.org/abs/2105.11259
http://arxiv.org/abs/2105.11259

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing, and
Luo Si. 2021. On the effectiveness of adapter-based
tuning for pretrained language model adaptation.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know?

Boseop Kim, HyoungSeok Kim, Sang-Woo Lee,
Gichang Lee, Donghyun Kwak, Jeon Dong Hyeon,
Sunghyun Park, Sungju Kim, Seonhoon Kim, Dong-
pil Seo, Heungsub Lee, Minyoung Jeong, Sungjae
Lee, Minsub Kim, Suk Hyun Ko, Seokhun Kim,
Taeyong Park, Jinuk Kim, Soyoung Kang, Na-Hyeon
Ryu, Kang Min Yoo, Minsuk Chang, Soobin Suh,
Sookyo In, Jinseong Park, Kyungduk Kim, Hiun
Kim, Jisu Jeong, Yong Goo Yeo, Donghoon Ham,
Dongju Park, Min Young Lee, Jaewook Kang, Inho
Kang, Jung-Woo Ha, Woomyoung Park, and Nako
Sung. 2021. What changes can large-scale language
models bring? intensive study on HyperCLOVA:
Billions-scale Korean generative pretrained trans-
formers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3405–3424, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
understands, too. CoRR, abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan
Shao, Ning Dai, and XuanJing Huang. 2020. Pre-
trained models for natural language processing: A
survey. Science China Technological Sciences,
63(10):1872–1897.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Laria Reynolds and Kyle McDonell. 2021. Prompt
programming for large language models: Beyond the
few-shot paradigm.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how bert works.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural

126

http://arxiv.org/abs/2106.03164
http://arxiv.org/abs/2106.03164
https://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/1911.12543
http://arxiv.org/abs/1911.12543
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.48550/ARXIV.2102.07350
https://doi.org/10.48550/ARXIV.2102.07350
https://doi.org/10.48550/ARXIV.2102.07350
https://doi.org/10.48550/ARXIV.2002.12327
https://doi.org/10.48550/ARXIV.2002.12327
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626

Language Processing, pages 7930–7946, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze questions for few shot text classification and
natural language inference.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou,
Maosong Sun, and Jie Zhou. 2021. On transferability
of prompt tuning for natural language understanding.

Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank
Srivastava, and Colin Raffel. 2021. Improving and
simplifying pattern exploiting training.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5039–5059, Dublin, Ireland. Association
for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. CoRR, abs/1509.01626.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [mask]: Learning vs. learning to
recall.

A Appendix

A.1 Dataset

The data statistics along with number of examples
and labels is shown in Table 3.

Dataset # train # val # test # labels

IMDB 40,000 5,000 5,000 2
AG’s News 102,000 18,000 7,600 4
Yahoo 1,300,000 60,000 100,000 10
Yelp-5 520,000 130,000 50,000 5
Boolq 9,427 3,270 3,245 3
CB 250 57 250 3
RTE 2,500 278 300 2

Table 3: Data statistics

IMDB: It is a binary sentiment analysis dataset
that has a movie review and its respective label.
The dataset consist of 2 labels - “positive“ and

“negative“.

AG’s News: A news classification dataset where
every example consists of a headline h, a text body
b, and a label associated with it. The dataset con-
sist of 4 labels - “World“, “Sports“, “Business“,
and “Science/Tech“. For our implementation, we
concatenate the headline and body - [h : b] and use
the concatenated text for the prediction.

Yahoo Answers: A topic classification dataset
that consists of a question q, an answer a, and a
label associated with it. The dataset consists of 10
labels - “Society“, “Science“, “Health“, “Educa-
tion“, “Computer“, “Sports“, “Business“, “En-
tertainment“, “Relationship“, and “Politics“. For
our implementation, we concatenate the question
and answer - [q : a] and use the concatenated text
for the prediction.

Yelp-5 A review classification dataset where ev-
ery example consists of a review and a label associ-
ated with it. The dataset consists of 5 labels in the
form of numbers - (1 to 5).

Boolq Boolq is a question answering dataset for
yes/no questions from the SuperGLUE benchmark.
Each example is a triplet of (question, passage, and

127

http://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2001.07676
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
http://arxiv.org/abs/2111.06719
http://arxiv.org/abs/2111.06719
http://arxiv.org/abs/2103.11955
http://arxiv.org/abs/2103.11955
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/2104.05240
http://arxiv.org/abs/2104.05240

(a) Varying adapter size (b) Varying # of prompt tokens

Figure 3: Test F-scores on the classification datasets using RoBERTa with ADEPT model In (a), number of prompt
tokens is kept fixed (m) = 20 and adapter hidden size is varied. In (b), the adapter hidden size is kept fixed (d) = 8
and number of prompt tokens is varied.

answer). For our implementation, we concatenate
the question and passage - [q : p] and use the
concatenated text for the prediction. The dataset
consist of 2 labels - “yes“ and “no“

CB CommitmentBank (CB) is a three-class tex-
tual entailment dataset from the SuperGLUE bench-
mark. Each example is a triplet of (premise, hy-
pothesis, and label). For our implementation, we
concatenate the premise and hypothesis - [p : h]
and use the concatenated text for the prediction.
The dataset consist of 3 labels - “contradiction“,

“neutral“, and “entailment“.

RTE Recognizing Textual Entailment (RTE) is
a binary textual entailment dataset from the Su-
perGLUE benchmark. Each example is a triplet of
(premise, hypothesis, and label). For our implemen-
tation, we concatenate the premise and hypothesis -
[p : h] and use the concatenated text for the predic-
tion. The dataset consist of 2 labels - “entailment“
and “not_entailment“.

A.2 Implementation details

We use roberta-base and bert-base-cased from
Hugging Face3. For our experiment, the adapter
module is inserted between the 8th encoder layer
and 9th encoder layer of both models. We run
each experiment for 3 trials and the average re-
sult is reported. The learning rate is 8e − 4
for ADEPT, prompt-tuning (PT), prompt-tuning
+ head (PHT), head-tuning (HT), and 2e − 5 for
fine-tuning method. The batch size is 16 for all
the methods. We train fine-tuning method for 10

3https://huggingface.co/

epochs, the ADEPT model for 15 epochs, prompt-
tuning + head and head-tuning for 20 epochs, and
prompt-tuning for 25 epochs. We use AdamW op-
timizer and linear scheduler with 6% warmup steps
for all the methods. For the ADEPT model, we
use an adapter hidden size of 8 and the number
of prompt tokens is 20 for ADEPT, PT, and PHT
methods.

A.3 Ablation Study
We analyze RoBERTa with the ADEPT model to
show the impact of adapter hidden size and number
of prompt tokens. We conduct two sets of exper-
iments Figure 3a - for different adapter sizes and
Figure 3b - for different prompt tokens.

Adapter Hidden Size: We train the ADEPT
model for varying adapter sizes - (4, 8, 32, 64, 128),
and the number of prompt tokens is kept as 20. As
Figure 3a shows, the F-score is slightly improved
as we increase the adapter size. Simpler data like
IMDB do not benefit much from the increase in
adapter size. Increasing adapter size beyond 32
brings 2 to 3% improvement for Yahoo and Yelp-5
dataset

Number of Prompt Tokens: We train the
ADEPT model by varying the number of prompt
tokens - (10, 20, 50, 100, 200) and keep the adapter
hidden size fixed as 8. When the number of prompt
tokens is beyond 50, the performance is decreased,
indicating that adding trainable parameters in the
input does not help much beyond a certain point.

128

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 129–146
July 13, 2023 ©2023 Association for Computational Linguistics

NLU on Data Diets:
Dynamic Data Subset Selection for NLP Classification Tasks

Jean-Michel Attendu∗ and Jean-Philippe Corbeil∗
Nuance Communications

{jattendu,jcorbeil}@microsoft.com

Abstract

Finetuning large language models inflates the
costs of NLU applications and remains the bot-
tleneck of development cycles. Recent works
in computer vision use data pruning to re-
duce training time. Pruned data selection with
static methods is based on a score calculated
for each training example prior to finetuning,
which involves important computational over-
head. Moreover, the score may not neces-
sarily be representative of sample importance
throughout the entire training duration. We
propose to address these issues with a refined
version of dynamic data pruning, a curricu-
lum which periodically scores and discards
unimportant examples during finetuning. Our
method leverages an EL2N metric that we ex-
tend to the joint intent and slot classification
task, and an initial finetuning phase on the full
train set. Our results on the GLUE benchmark
and four joint NLU datasets show a better time-
accuracy trade-off compared to static methods.
Our method preserves full accuracy while train-
ing on 50% of the data points and reduces com-
putational times by up to 41%. If we tolerate
instead a minor drop of accuracy of 1%, we
can prune 80% of the training examples for a
reduction in finetuning time reaching 66%.

1 Introduction

State-of-the-art natural language understanding
(NLU) systems rely on finetuning large language
models (LLMs) with considerable amounts of
human-labelled examples. Such overparametrized
models succeed at learning to classify nearly all
training samples correctly. However, not all train-
ing examples are created equal: proper classifica-
tion of out-of-distribution outliers requires more
iterations for the model to converge. Moreover,
many examples are correctly learned after only a
few epochs of training and could be ignored further
on without impacting test accuracy.

∗ Equal contributions.

Figure 1: a. Model f is trained for τ epochs with full
train set. b. Importance function χ̂ assigns score to
each training example (xi, yi). c. Training examples
are sorted according to their scores. d. Proportion of
train set (1− ρ) is retained to train model over a cycle
of T epochs. e. Resulting model is used to calculate a
forward pass. f. Full training set is re-scored for the next
cycle until completion.

This raises a question about data efficiency: can
we remove a proportion of training examples to
reduce the number of calculations during finetun-
ing while preserving accuracy at inference? Since
finetuning LLMs is computationally intensive and
represents a bottleneck in time and costs of develop-
ment cycles of NLU applications, such an approach
appears promising.

Previous works in computer vision suggest that
an important fraction of training examples, up to
50% for some datasets, can be removed without sig-
nificant loss in accuracy (Toneva et al., 2018; Paul

129

et al., 2021; Raju et al., 2021). Assuming total train
steps increase proportionally with the number of
samples, this represents a considerable reduction of
training costs while being completely compatible
with other existing strategies to make finetuning
more efficient (Gupta et al., 2015; Micikevicius
et al., 2018; Zhang and He, 2020; Zaheer et al.,
2020; Xiong et al., 2021). The core idea is to score
each training example (xi, yi) with an importance
metric, and to remove a proportion of the samples
based on ranked scores: the most important exam-
ples are kept, whereas others are discarded.

In this work, we expand the analysis of such a
method to text classification across various datasets.
In agreement with Raju et al. (2021), we observe
that many examples have low importance when
evaluated at early training but with high variability
further on. Thus, a single evaluation often fails at
predicting their impact on the loss at a later stage.
To address this problem, we also adopt a curricu-
lum in which pruning is performed periodically at a
fixed number of epochs. The model is first trained
with all examples for a few epochs before ranking
is performed with respect to metric χ̂. Then, a pro-
portion ρ of the samples with the lowest scores is
set aside, and the model is trained with the retained
subset for a cycle of T epochs. All examples are
re-scored at every cycle’s end to obtain an updated
subset. New cycles are computed until training
is complete. Since χ̂ is cheap to compute, the
overhead of periodic calculations for a new pruned
subset remains low. Figure 1 provides an overview
of our proposed method.

Our contributions are as follows:

• We investigate the effectiveness of data pruning
methods applied to text classification in reduc-
ing finetuning time while maintaining accuracy,
including experimental results on six datasets
from the GLUE benchmark and four joint NLU
datasets.

• We improve the dynamic pruning method with
a key initial training phase on the full train set
and novel application of the EL2N score in a
dynamic setting.

• We extend the EL2N importance score to multi-
output text classifications supported by mathe-
matical derivations, specifically for joint intent
classification and slot filling.

• We release an open source version of our imple-

mentation1 built around the transformers library
(Wolf et al., 2020).

2 Related Work

Previous works have investigated data pruning
methods based on metrics calculated from train-
ing characteristics. Toneva et al. (2018) propose
to score examples based on their number of transi-
tions from correct to incorrect classification over
the course of training. They observed that training
accuracy is not considerably affected by remov-
ing a significant proportion of the rarely forgotten
training examples. Nevertheless, this method is
not directly applicable to efficiency improvements
since evaluating forgetting scores requires a full
round of finetuning. Coleman et al. (2020) ad-
dress this issue by conducting data selection us-
ing a small proxy model. However, this involves
supporting an additional model, which makes the
process more complex. Paul et al. (2021) derives
GraNd and EL2N scores as approximations to sam-
ple importance (Alain et al., 2015; Katharopoulos
and Fleuret, 2018). They observe that expecta-
tion over 10 initializations improves metric quality
when evaluated early in training. Although this
represents a considerable computational cost, they
show that they can prune large proportions of low-
importance samples without test accuracy reduc-
tions. Others have applied GraNd/EL2N scores to
text datasets, notably in natural language inference
(Fayyaz et al., 2022) and to reduce gender bias (Za-
yed et al., 2022). Sorscher et al. (2022) criticize
previous work for experimenting only on two com-
puter vision datasets: CIFAR-10 and CIFAR-100.
Other metrics have been proposed (Sorscher et al.,
2022; Mindermann et al., 2022; Yang et al., 2022),
but they all involve further computations.

Raju et al. (2021) and Swayamdipta et al. (2020)
observe that training dynamically separates exam-
ples in three categories: easy-to-learn, hard-to-
learn and ambiguous. Ambiguous samples are
characterized by higher variability across training,
and an early evaluation of their importance met-
ric can incorrectly predict late training behaviour.
To address this, a curriculum is proposed to train
on dynamically selected subsets, leading to better
performance than EL2N-based static pruning and
random subset selection at high pruning rates.

Other related topics also include coreset selec-
tion (Har-Peled and Kushal, 2005; Munteanu et al.,

1github.com/jpcorbeil-nuance/nlu_data_diets

130

github.com/jpcorbeil-nuance/nlu_data_diets

2018; Campbell and Broderick, 2018), active learn-
ing (Ash et al., 2019; Kim, 2020; Park et al.),
dataset size reduction (Mishra and Sachdeva, 2020)
and curriculum learning (Bengio et al., 2009; Ku-
mar et al., 2010; Platanios et al., 2019; Wan et al.,
2020; Christopoulou et al., 2022).

3 Methods

3.1 Estimating Training Example Importance

Importance refers to the degree to which a partic-
ular training example affects the model’s perfor-
mance at learning to correctly classify other exam-
ples, as formally defined in Paul et al. (2021). A
low-importance sample has little impact on training
and can be removed without much effect.

We consider supervised classification, with train-
ing set S composed of training examples (xi, yi)
with i ∈ [1, N] and N ∈ N, drawn i.i.d. from an
unknown data distribution. Here, xi ∈ Rd are the
input vectors of dimension d ∈ N and yi ∈ {0, 1}K
are one-hot labels with K classes. Model f , com-
posed of weights w ∈ W ⊆ RD with D ∈ N,
produces probability vector p = f(xi) ∈ [0, 1]K ,
and is trained to estimate yi using the cross-entropy
loss:

Li = −yTi · log(f(xi)). (1)

Paul et al. (2021) showed that the norm of the
gradient of Li is an upper bound to the importance
of sample (xi, yi). They also introduced a compu-
tationally more efficient approximation known as
the EL2N score:

χ(xi, yi) = E||f(xi)− yi||2, (2)

where the expectation is taken over the randomly
initialized weights w of model f .

3.1.1 Extending EL2N to NLU
For the joint NLU task, each training example has
sequence-level intent labels yintenti and M ∈ N
word-level slot labels ysloti,m with m ∈ {1,M}. The
loss for sample i is expressed as:

Lnlui = Lintenti +
M∑

m=1

Lsloti,m , (3)

where intent and slot losses are calculated from
eq. 1 with yintenti and ysloti,m respectively.

In order to estimate joint NLU sample impor-
tance, we extend the EL2N formulation to a such
case in Appendix A. We provide a derivation for the

EL2N score in three contexts: EL2N for sequence-
level classification:

χ̂intent(xi, yi) = ||f(xi)− yintenti ||2, (4)

EL2N for multiple-output classifications, which
introduces a second ℓ2 norm over the sequence
length:

χ̂slot(xi, yi) =

√√√√
M∑

m=1

||f(xi)− ysloti,m ||22, (5)

and for joint tasks, e.g. joint intent detection and
slot filling:

χ̂nlu(xi, yi) =
√
χ̂intent(xi, yi)2 + χ̂slot(xi, yi)2.

(6)

3.1.2 Averaging χ̂ Over Time
Averaging EL2N over multiple initializations im-
proves importance approximation, but increases
compute costs. Instead, following Raju et al.
(2021), we consider an exponential moving average
(EMA) over time to evaluate χ̂:

χ̂ema(x, y)←α · χ̂nlu(x, y)

+(1− α) · χ̂ema(x, y)
(7)

This is possible since dynamic pruning is per-
formed periodically over multiple cycles. Because
importance estimation for some examples varies
significantly across train steps, EMA provides an
adequate trade-off between emphasizing the cur-
rent estimate and leveraging previous evaluations.

3.2 Dynamic Pruning
With dynamic pruning, the model is trained for
τ epochs, then, we train for cycles of T epochs
until training is complete. At the beginning of
each cycle, we score all training examples with
eq. 7, and the proportion with the highest scores is
selected. In algorithm 1, we present pseudo-code
for the proposed method, where S′ is the retained
training subset and E is the number of training
epochs.

4 Experimental Details

4.1 Experimental Setup
In our experiments, we compare five methods:

• Full Train Set: baseline approach with standard
training using the full train set.

131

Algorithm 1: Dynamic Pruning
Inputs: S, f , ρ, T , τ , E
S′ ← {};
χ̂ema ← {};
cycle← 1;
for epoch in τ do

train f with S;
end
while cycle < ⌊(E−τ)/T ⌋ do

χ̂ema ← αχ̂nlu + (1− α)χ̂ema;
sort S with respect to χ̂ema, ↓ order;
S′ ← top (1− ρ) elements from S;
cycle← cycle+ 1;
for epoch in T do

train f with S′;
end

end

• Static Pruning: method from Paul et al. (2021).
The training subset is obtained from EL2N
scores averaged over 10 randomly initialized
models trained for 10 epochs, and finetuning
is then performed on the fixed subset.

• Single Pruning: training is performed on the
full trainset for τ epochs, followed by a single
subset selection using EL2N. Finetuning is then
performed on the fixed subset.

• Dynamic Pruning: proposed method which
trains on the full trainset for τ epochs, fol-
lowed by periodic data pruning using χ̂ema as
described by algorithm 1.

• Dynamic Random Pruning: same as dynamic
pruning, but the subset selection is random.

For the full train set method, we finetune the
model for E epochs. We assume that E and τ
correspond to constant numbers of training steps
defined from the full training set size. For the other
four methods, all experiments are performed over
E epochs, to which we remove a number of train
steps equivalent to ρ · (E − τ). We do not report
results for the full train set method with reduced
training steps as they are comparable to those of the
dynamic random pruning method. The number of
epochs E is set to 10 for GLUE following Liu et al.
(2019) and to 40 for the joint NLU tasks following
Chen et al. (2019).

4.2 Datasets

We present two series of experiments to address
text classification problems with either a single out-
put or multiple outputs. For the single output case,
we consider six datasets from the GLUE bench-
mark (Wang et al., 2019): COLA, MNLI, MRPC,
QQP, RTE, and SST2. We exclude STS-B since it
is a regression task, WNLI because it has a very
small train set, and QNLI as it is an artificially built
dataset.

For the multi-output case, we use four open-
source joint NLU datasets: ATIS (Price, 1990; Tur
et al., 2010), SNIPS (Coucke et al., 2018), SLURP
(Bastianelli et al., 2020) and MTOP (Li et al., 2021)
— English version only. All examples from these
datasets are labelled with an intent (sequence-level
class) and entity tags (token-level class). ATIS fo-
cuses on the airline travel domain, and the other
three datasets represent voice assistants across vari-
ous domains, such as music, weather, and calendar,
among others. We use the original versions of these
datasets without any modification.

Tables 2 and 3 in Appendix D provide the gen-
eral characteristics of these datasets. Overall, they
cover a large diversity of train set sizes and tasks.
For the joint NLU tasks, we have a variety of do-
mains, intents and entities.

4.3 Model Architecture

We use the pre-trained transformer model
RoBERTa base (Liu et al., 2019). For the GLUE
datasets, we use single sequences or concatenations
of two sequences as model inputs for paraphrase de-
tection and natural language inference (NLI) tasks.
For the joint NLU tasks, we use the JointBERT
approach (Chen et al., 2019). To handle entities,
we apply a mask on special tokens as well as sub-
sequent subwords if a word is decomposed into
multiple subword tokens. Additionally, we reini-
tialize the last layer of the encoder (Kovaleva et al.,
2019; Tamkin et al., 2020), which can improve the
final performance.

4.4 Accuracy Evaluation

We evaluate the performance of our models on the
GLUE datasets following the original instructions.
Since the test sets are not publicly available, we
report the averaged results on the development sets
following previous approaches from (Devlin et al.,
2019; Liu et al., 2019). Specifically, we report the
accuracy metric for RTE and SST2, accuracy on the

132

Table 1: Median performances on 5 runs for the dev set of the GLUE benchmark for pruning rate of 50%. Static
pruning is done with scores averaged on 10 runs of 10 epochs over 10 GPUs. All datasets are using τ = 1 and
T = 2, except for RTE set to τ = 3 and T = 1 (marked by the asterisk *).

COLA MNLI MRPC QQP RTE SST2

Full Train Set
Score 0.600 0.864 / 0.862 0.892 / 0.923 0.911 / 0.880 0.751 0.932
Time (s) 158.8 10053.0 89.0 8214.5 107.5 1314.8

Static Pruning
Score 0.587 0.852 / 0.850 0.857 / 0.892 0.895 / 0.864 0.517 0.933
Relative Time 152.6% 151.2% 150.7% 146.5% 150.8% 150.7%

Single Pruning
Score 0.586 0.778 / 0.775 0.854 / 0.887 0.909 / 0.879 0.746* 0.937
Relative Time 58.0% 56.5% 56.6% 53.1% 68.2%* 55.7%

Dynamic Random Pruning
Score 0.578 0.853 / 0.855 0.863 / 0.902 0.899 / 0.867 0.753* 0.938
Relative Time 56.0% 54.5% 55.1% 54.3% 65.8%* 52.6%

Dynamic Pruning (ours)
Score 0.590 0.863 / 0.863 0.882 / 0.915 0.912 / 0.881 0.773* 0.932
Relative Time 64.4% 64.0% 66.5% 60.4% 77.2%* 62.0%

matched and mismatched test set splits for MNLI,
and both accuracy and F-1 metrics for MRPC and
QQP. For COLA, we compute the Matthews cor-
relation coefficient. For the joint NLU tasks, we
focus on full-sequence accuracy, which requires
matching both the intent and all the entities. We
also provide the intent accuracy and entity micro
F1 in Appendix F.

4.5 Runtime Evaluation

We report GPU finetuning time in minutes or sec-
onds. To avoid the impact of CPU overhead, such
as pre-processing and batching, we measure the
time for each training step and forward pass for
scoring EL2N separately, and then sum the results
at the end of the fine-tuning process. We provide
the mathematical expressions for the total GPU run-
time and the minimum cycle Tmin to improve effi-
ciency in Appendix B. Finally, we used 10 GPUs
to parallelize the computation of EL2N scores with
static pruning, as this method requires training 10
independent models.

5 Results

5.1 GLUE Benchmark

In Table 1, we present the results obtained on the
GLUE benchmark with a 50% pruning rate. Over-
all, dynamic pruning achieves accuracy nearly on
par with full training while reducing the finetuning
time by approximately 30%. The largest accuracy
decrease is observed on the COLA and MRPC
datasets, at only 1% absolute. We also note that the
smallest time reduction occurs on RTE and is due

to the different pruning settings required by this
dataset of smaller size. We observe a sharper drop
in performance with single pruning and dynamic
random pruning, despite being faster. Static prun-
ing underperforms in terms of both accuracy and
finetuning time. This is especially the case on the
RTE dataset and is likely due to the combination of
a high pruning rate and a smaller number of train-
ing examples. This suggests that dynamic pruning
may be affected at lower data amounts, as reported
for static pruning by Sorscher et al. (2022).

5.2 Joint Intent Classification and Slot Filling

In Figures 2 and 3, we present the full-sequence
accuracy and GPU finetuning time obtained with
the studied methods on the joint NLU tasks. In
Appendix F, we also include the related intent ac-
curacy and slot micro F1 score.

5.2.1 Accuracy Analysis
Overall, our dynamic pruning method achieves ac-
curacy comparable to full training, even when using
aggressive pruning rates. It exhibits a flatter and
smoother decrease compared to other techniques,
which results in a better time-accuracy trade-off.
For instance, at a pruning rate of 40%, our approach
leads to similar scores as the full-training baseline
while being about 25% faster. Other methods un-
derperform by 0.5 to 2.5% in the same setting, ex-
cluding the ATIS dataset for which all methods per-
form above baseline. Single pruning outperforms
static pruning in almost every setting, despite static
pruning leveraging EL2N scores calculated from
multiple models. This emphasizes the importance

133

Figure 2: Full-sequence accuracy achieved on 40 epochs for different prune rates on joint NLU datasets applying:
static pruning (EL2N from 10 runs of 10 epochs), single pruning, dynamic random pruning, and our dynamic
pruning (EL2N with EMA). The dynamic methods are run with τ = 4 and T = 4.

Figure 3: Finetuning time achieved on 40 epochs for
different prune rates on joint NLU datasets applying:
static pruning (EL2N from 10 runs of 10 epochs), single
pruning, dynamic random pruning, and our dynamic
pruning (EL2N with EMA). The dynamic methods are
run with τ = 4 and T = 4.

of the initial training phase on the full dataset. Sur-
prisingly, dynamic random pruning performs better
than static and single pruning methods. This is
further discussed in section 6.

At an aggressive pruning rate of 80%, dynamic
pruning only incurs a marginal drop of 1-2%, with

a total finetuning time of nearly a third of the full
training. In comparison, dynamic random prun-
ing achieves a few absolute percentage points less
than dynamic pruning, and static pruning decreases
even faster. Single pruning shows a similar de-
crease, except on the ATIS dataset. At an extreme
prune rate of 90%, dynamic random pruning per-
forms better than dynamic pruning for two datasets:
SLURP and MTOP. This is because these datasets
have many mislabeled data points, usually associ-
ated with high-importance scores, as discussed in
section 6. We also notice a significant decrease in
accuracy from the static and single pruning meth-
ods for the same reason. Regarding domains, num-
ber of intents, and number of entities, SLURP and
MTOP are the most complex.

Results on the ATIS dataset show a different
trend, especially at a low prune rate. We observe
an improvement over the full training set method
for single, static and dynamic pruning, which per-
form equally well. ATIS is a smaller dataset with
simple, repetitive samples on a single domain and
consequently contains a larger proportion of easy-
to-learn examples (see Section 6). Even at mod-
erate prune rates, the composition of the pruned
subset remains stable over time, explaining the ad-
equate performance of the static method. At higher
prune rates, the accuracy of static pruning drops
abruptly.

Figures 7 and 8 of Appendix F show that our

134

dynamic pruning method preserves the full-trainset
intent accuracy and slot micro F1 score with prune
rates up to 80%.

5.2.2 Finetuning Time Analysis
Regarding finetuning time, we empirically observe
the linearly decreasing relationship with ρ as de-
scribed by equation 31 in Appendix B. Dynamic
random pruning is faster than dynamic pruning
since it does not require the periodic forward passes
needed for calculating χ̂ema. However, we can
observe from this difference that the overhead is
relatively small compared to the whole training
process. Single pruning, which only requires a sin-
gle computation of the importance score, is faster
than dynamic pruning. In contrast, static pruning is
significantly slower due to the overhead from the
initial 10 runs of 10 epochs, even if computations
are parallelized across ten GPUs.

5.3 Balancing Accuracy and Efficiency
In this section, we present an analysis of the time-
accuracy trade-off for our dynamic data pruning
method in relation to T and τ on the MTOP dataset,
with a fixed prune rate of 70%. Similar trends
are observed with the other datasets, as shown in
Appendix F. The results are illustrated in Figures 4
and 5.

Figure 4: Full-sequence accuracy from a dynamic prun-
ing of 70% for various τ and T on the MTOP dataset.

We found that training on larger τ and consider-
ing shorter T results in higher accuracy. We note
that τ is key to our approach since it impacts ac-
curacy the most. For instance, a τ of 2 is less
effective than 16, while the difference between 4
and 8 is marginal. Despite pruning 70% of the data
points, we achieved similar results to full training
with T = 2 and τ = 16. Considering that we
are at a high prune rate, we can achieve a better
time-accuracy trade-off at T = 4 and τ = 4. This
results in a marginal sacrifice of 1.2% for twice

Figure 5: Finetuning time from a dynamic pruning of
70% for various τ and T on the MTOP dataset.

the reduction in finetuning time. Specifically, the
finetuning time is reduced from 826 s (−36%) to
533 s (−59%) compared to full training at 1295 s.

Furthermore, we observe the inverse relationship
between the finetuning time and T in Figure 5 as
described by equation 31 in Appendix B. For small
T , this inverse relationship significantly increases
the computational time. For instance, the difference
between T = 1 and T = 2 is nearly 2 minutes,
while being negligible between 8 and 16.

Due to periodical re-evaluation of the pruned
subset, we note that performance obtained with
τ , ρ, and T is less sensible to dataset character-
istics, and the time-accuracy trade-off it provides
remains robust across various settings. We provide
additional recommendations about selecting these
parameters in Appendix E.

6 Data Selection Analysis

We analyze pruning dynamics for joint intent clas-
sification and slot filling. The analysis is presented
for SLURP, but observations are similar to other
datasets.

First, we present a data map in Figure 6a, that
shows variance and mean of χ̂nlu over 10 cycles
of T = 4 epochs for all training examples. The
pruning proportion is set to 50%. We discern three
regions delimited by dashed curves: the bottom-
left corner (low variance, low mean) corresponds
to easy-to-learn examples consistently pruned from
the train set, the top (high mean) corresponds to
hard-to-learn examples consistently retained, and
examples in-between (mid/high variance, low/mid
mean) are ambiguous.

Figure 6b shows the distribution for the number
of times a given example is selected in the retained
subset over ten pruning cycles. For SLURP, we
observe that about a third of the examples are con-

135

0
0.0

1.5k

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

2

4

6

8

10

easy-to-learn

ambiguous

hard-to-learn

Var()nluχ̂

nl
u

χ̂
M

ea
n(

)

N
u
m

b
er of selection

s in
 retain

ed
 su

b
set

Training epoch

S
am

p
le

 C
ou

n
t

Sequence length:
: [1,4]

: >10
: [7,9]

: [5,6]

a.

b. c.

750

0
0 5

av
.

S
co

re

10

0.3

0.0

0.15

4 16 4028

χ̂intent

χ̂slots: SLURP
: ATIS

Number of selections
in retained subset

Figure 6: a. Data map for SLURP train set. Colours
indicate the number of times an example is selected
in the retained subset, and shapes show the sequence
length. b. Distribution of the number of selections in
retained subset over ten pruning cycles for SLURP and
ATIS. c. Average intent and slots metrics with respect
to epochs.

sistently either always selected or never selected,
corresponding to hard-to-learn and easy-to-learn
cases, respectively. Other examples are approxi-
mately evenly distributed across selection counts.
In comparison, we also present the distribution for
the ATIS dataset, for which most training examples
are either never selected or always selected.

Figure 6c presents scoring metrics averaged over
the full train set for intent and slot classifications
with respect to the training epoch. On average, se-
quences have one intent classification term per 6.9
slot classification terms. Overall, contribution to
χ̂nlu is comparable between intent and slots, mean-
ing that individual score is typically smaller for
slots. However, scores associated with the preva-
lent no_entity class are relatively low compared to
other slot labels, which have a predominant contri-
bution to χ̂slots.

In Table 5 of Appendix F, we present 13 exam-
ples of easy-to-learn, hard-to-learn and ambiguous
samples, with their score averaged over time and
the number of selections with four different initial-
izations. Examples with the highest score typically
have mislabeled intent (1) or slot (2), or have an

infrequent class label (3, 0.03% of all samples), or
are unique (4). Examples with lowest χ̂nlu gen-
erally have short utterances with no entity label
and with highly represented intent labels having
many redundant tokens across class examples (see
5-7). Note that Spearman correlation between χ̂nlu

and the number of words (r = 0.096), number of
entities (r = 0.205) and intent class prevalence
(r = −0.109) remains low when considering full
train set.

Ambiguous examples, however, are more diffi-
cult to characterize qualitatively. We present sev-
eral examples with an increasing scoring metric
which are all under the same intent label for com-
parison purposes (see examples 8-13). There is no
clear distinction between samples. In fact, when
considering different initializations, the same am-
biguous sample obtains different selection counts
in the retained subset. This shows the necessity of
using dynamic pruning: a static pruning algorithm
will target easy-to-learn samples but will suffer
from the variability of ambiguous samples. This
high variability also explains the unexpectedly high
performance of random pruning. Dynamic prun-
ing can adjust the selection of ambiguous samples
during training based on the model’s performance,
which leads to more efficient training.

When the proportion of ambiguous examples
is low, as with the ATIS dataset, single and static
pruning outperform random dynamic pruning, as
shown in Figure 2, since the pruning subsets remain
consistent across training.

7 Conclusion

In summary, this work presents a dynamic ap-
proach to data pruning to improve finetuning ef-
ficiency. It introduces an extension of the EL2N
metric for multi-output classifications. We use this
metric to periodically select a subset of the data
during training in contrast to static pruning. We
empirically show that our method provides a better
trade-off between accuracy and efficiency, espe-
cially at high prune rates. We also show that this
trade-off benefits from initial training with the full
train set for a few epochs.

We apply our method to NLP classification
datasets, particularly six tasks from the GLUE
benchmark and four datasets for joint intent classi-
fication and slot filling. By pruning 50% of training
examples, we preserve full accuracy on the test set
while reducing the finetuning time by up to 41%. If

136

we tolerate an accuracy reduction of 1% absolute,
we can prune 80% of the training data, correspond-
ing to time reductions of up to 66%. Finally, we
provide insights into how performance is affected
by the characteristics of the training set.

As future work, we envision further investiga-
tions including more natural language tasks, more
challenging datasets (e.g. SuperGLUE) and im-
proved importance approximations. Overall, dy-
namical evaluation of sample importance remains
largely unexplored beyond improving efficiency,
notably in data augmentation, active learning, mis-
label detection or pre-training data selection.

Limitations

This study is limited to classification tasks with an
encoder architecture, short texts (e.g. utterances),
datasets with at least several thousand examples,
and a relatively low amount of mislabeled data. In
theory, we could apply our method to longer texts,
but our takeaways might not directly apply. For
similar reasons, our conclusions could be differ-
ent on very small datasets. Our approach is also
sensible to mislabeled data points, but this weak-
ness is mitigated by the fact that our method can
contribute to improving the identification of such
mislabels. We are also aware of further efficiency
optimizations, such as calculating scores directly
from mini-batches during training for the retained
subset, which we leave to future work.

Ethics Statement

We bring up two main ethical considerations. First,
this empirical study uses a large language model re-
quiring a considerable amount of computations (at
most 1,500 GPU hours), which is not without envi-
ronmental consequences. However, since this study
aims at making training more efficient, it will help
reduce energy consumption in the future. More-
over, this study focuses on accuracy as a measure of
performance, which can hide pervasive effects on
under-represented marginalized groups. However,
since our method is about evaluating importance of
training examples over train steps, it can lead to im-
proving techniques to decrease bias in the training
process, particularly when marginalized groups are
under-represented in the data and therefore chal-
lenging to identify accurately.

Acknowledgements

We would like to express our gratitude to François
Beaulieu, Paul Vozila, Rupert Brook, and Alessan-
dro Sordoni for their helpful comments. We also
appreciate the valuable feedback provided by the
anonymous reviewers, which contributed to the im-
provement of our paper.

References
Guillaume Alain, Alex Lamb, Chinnadhurai Sankar,

Aaron Courville, and Yoshua Bengio. 2015. Variance
reduction in sgd by distributed importance sampling.
arXiv preprint arXiv:1511.06481.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy,
John Langford, and Alekh Agarwal. 2019. Deep
batch active learning by diverse, uncertain gradient
lower bounds. In International Conference on Learn-
ing Representations.

Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojan-
ski, and Verena Rieser. 2020. Slurp: A spoken lan-
guage understanding resource package. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7252–7262.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Trevor Campbell and Tamara Broderick. 2018.
Bayesian coreset construction via greedy iterative
geodesic ascent. In International Conference on Ma-
chine Learning, pages 698–706. PMLR.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Fenia Christopoulou, Gerasimos Lampouras, and Ig-
nacio Iacobacci. 2022. Training dynamics for cur-
riculum learning: A study on monolingual and cross-
lingual NLU. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2595–2611, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

C Coleman, C Yeh, S Mussmann, B Mirzasoleiman,
P Bailis, P Liang, J Leskovec, and M Zaharia. 2020.
Selection via proxy: Efficient data selection for deep
learning. In International Conference on Learning
Representations (ICLR).

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

137

https://aclanthology.org/2022.emnlp-main.167
https://aclanthology.org/2022.emnlp-main.167
https://aclanthology.org/2022.emnlp-main.167

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT, pages 4171–
4186.

Mohsen Fayyaz, Ehsan Aghazadeh, Ali Modarressi, Mo-
hammad Taher Pilehvar, Yadollah Yaghoobzadeh,
Samira Ebrahimi Kahou, and CIFAR Mila. 2022.
Bert on a data diet: Finding important examples by
gradient-based pruning.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. 2015. Deep learning with lim-
ited numerical precision. In International conference
on machine learning, pages 1737–1746. PMLR.

Sariel Har-Peled and Akash Kushal. 2005. Smaller
coresets for k-median and k-means clustering. In
Proceedings of the twenty-first annual symposium on
Computational geometry, pages 126–134.

Angelos Katharopoulos and François Fleuret. 2018. Not
all samples are created equal: Deep learning with
importance sampling. In International conference on
machine learning, pages 2525–2534. PMLR.

Yekyung Kim. 2020. Deep active learning for sequence
labeling based on diversity and uncertainty in gradi-
ent. In Proceedings of the 2nd Workshop on Life-long
Learning for Spoken Language Systems, pages 1–8.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP).

M Kumar, Benjamin Packer, and Daphne Koller. 2010.
Self-paced learning for latent variable models. Ad-
vances in neural information processing systems, 23.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
Mtop: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the

16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950–2962.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. 2018. Mixed precision training. In
International Conference on Learning Representa-
tions.

Sören Mindermann, Jan M Brauner, Muhammed T Raz-
zak, Mrinank Sharma, Andreas Kirsch, Winnie Xu,
Benedikt Höltgen, Aidan N Gomez, Adrien Morisot,
Sebastian Farquhar, et al. 2022. Prioritized training
on points that are learnable, worth learning, and not
yet learnt. In International Conference on Machine
Learning, pages 15630–15649. PMLR.

Swaroop Mishra and Bhavdeep Singh Sachdeva. 2020.
Do we need to create big datasets to learn a task?
In Proceedings of SustaiNLP: Workshop on Simple
and Efficient Natural Language Processing, pages
169–173.

Alexander Munteanu, Chris Schwiegelshohn, Christian
Sohler, and David Woodruff. 2018. On coresets for
logistic regression. Advances in Neural Information
Processing Systems, 31.

Dongmin Park, Dimitris Papailiopoulos, and Kangwook
Lee. Active learning is a strong baseline for data
subset selection. In Has it Trained Yet? NeurIPS
2022 Workshop.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Mansheej Paul, Surya Ganguli, and Gintare Karolina
Dziugaite. 2021. Deep learning on a data diet: Find-
ing important examples early in training. Advances
in Neural Information Processing Systems, 34:20596–
20607.

138

https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Emmanouil Antonios Platanios, Otilia Stretcu, Graham
Neubig, Barnabás Poczós, and Tom Mitchell. 2019.
Competence-based curriculum learning for neural
machine translation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1162–1172.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Ravi S Raju, Kyle Daruwalla, and Mikko Lipasti. 2021.
Accelerating deep learning with dynamic data prun-
ing. arXiv preprint arXiv:2111.12621.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya
Ganguli, and Ari S Morcos. 2022. Beyond neural
scaling laws: beating power law scaling via data prun-
ing. In Advances in Neural Information Processing
Systems.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293.

Alex Tamkin, Trisha Singh, Davide Giovanardi, and
Noah Goodman. 2020. Investigating transferability
in pretrained language models. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1393–1401.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J Gordon. 2018. An empirical study of example
forgetting during deep neural network learning. In
International Conference on Learning Representa-
tions.

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck. 2010.
What is left to be understood in atis? In 2010 IEEE
Spoken Language Technology Workshop, pages 19–
24. IEEE.

Yu Wan, Baosong Yang, Derek F Wong, Yikai Zhou,
Lidia S Chao, Haibo Zhang, and Boxing Chen. 2020.
Self-paced learning for neural machine translation.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1074–1080.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
2021. Nyströmformer: A nyström-based algorithm
for approximating self-attention. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 14138–14148.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming
Sun, and Ping Li. 2022. Dataset pruning: Reducing
training data by examining generalization influence.
arXiv preprint arXiv:2205.09329.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33:17283–17297.

Abdelrahman Zayed, Prasanna Parthasarathi, Goncalo
Mordido, Hamid Palangi, Samira Shabanian, and
Sarath Chandar. 2022. Deep learning on a healthy
data diet: Finding important examples for fairness.
arXiv preprint arXiv:2211.11109.

Minjia Zhang and Yuxiong He. 2020. Accelerating
training of transformer-based language models with
progressive layer dropping. Advances in Neural In-
formation Processing Systems, 33:14011–14023.

A Derivations of Pruning Metrics

A.1 Unique Single-Label Classification on
CLS token

We begin by defining the GraNd score, χt(x, y) ∈
R≥0, at time t > 0 and for any sample data (x, y)
as a measure of sample importance (Paul et al.,
2021):

χt(x, y) = Ew [||gt(x, y)||2] , (8)

where gt is the gradient of the sample (x, y) ob-
tained with model f at time t. For simplicity, we
define χ′

t(x, y) as the same expression as in Equa-
tion (8) but without the expectation term. We com-
pensate for the improvement of this expectation
with dynamic pruning by leveraging the exponen-
tial moving average:

χ′
t(x, y) = ||gt(x, y)||2. (9)

Because processing per-sample gradients can be
computationally burdensome, we look for an upper

139

bound. First, we use the result from Katharopou-
los and Fleuret (2018), which implies that the full
gradient is upper bounded by a constant β ∈ R>0

multiplied by the gradient of the last classification
layer. Let Gt(x, y) ∈ RK×d denote the gradient of
the last classification layer, where K, d ∈ N (num-
ber of classes and hidden dimensions, respectively).
We can write this result as

χ′
t(x, y) ≤ β||Gt(x, y)||2. (10)

Since the last layer is a classification with the
cross-entropy loss on a softmax activation, it nat-
urally takes the form of a K × d matrix defined
by the outer product of the error vector p⃗(x) − y⃗
and the transposed contextual word embedding
h⃗CLS(x) ∈ Rd. For simplification purposes, we
do not carry the notation marking the dependence
on x for p⃗ and h⃗CLS :

Gt(x, y) = (p⃗− y⃗) h⃗TCLS . (11)

By replacing Equation (11) in Equation (10), we
obtain

χ′
t(x, y) ≤ β|| (p⃗− y⃗) h⃗TCLS ||2. (12)

Using the property of outer products, we can
separate the matrix norm into the product of the
vector norms:

χ′
t(x, y) ≤ β||⃗hCLS ||2||p⃗− y⃗||2. (13)

Given that we want to rank samples {(x, y)}1..N
and that norm of the contextual word embeddings
of h⃗CLS can roughly be assumed constant across
samples due to layer normalization, we obtain:

χ′
t(x, y) ∝ ||p⃗− y⃗||2 (14)

This metric corresponds to the EL2N score pro-
posed by Paul et al. (2021), and provides scoring
function for intent classification:

χ̂intent(x, y) = ||p⃗(x)− y⃗||2 (15)

A.2 Sequence of Single-Label Classifications
The derivation for multi-output classification is
similar to that of single-label classification shown
above, with some modifications. In this case, we
consider a summation over the sequence length
m ∈ [1,M], where M ∈ N, to update the entity
classifier with the sum of the gradients from all
tokens. We assume that all sequences are padded
up to length M .

To begin, we introduce the sequence-wise error
vectors δ⃗m = p⃗m − y⃗m, and rewrite the gradient
Gt(x, y) of equation (11) as follows:

Gt(x, y) =
M∑

m=1

δ⃗mh⃗Tm, (16)

where h⃗m is the contextual embedding for the
m-th token. By substitution in equation (10), we
obtain the following upper bound:

χ′
t(x, y) ≤ β||

M∑

m=1

δ⃗mh⃗Tm||2. (17)

We then use the triangle inequality to derive a
new bound as follows:

χ′
t(x, y) ≤ β

M∑

m=1

||δ⃗mh⃗Tm||2. (18)

Since the sum over m ∈ [1,M] can be inter-
preted as a ℓ1 norm over the sequence, we replace
it with a ℓ2 norm leveraging the equivalence of
topology of p-norms. This norm is less sensitive to
the sequence length and puts more emphasis on the
highest norms. This results in a new upper bound:

χ′
t(x, y) ≤ β

√√√√M
M∑

m=1

||δ⃗mh⃗Tm||22. (19)

This substitution is better suited for our metric
for two reasons. First, the square applied to each
individual norm of element m reduces the impact
of small norms compared to larger ones, resulting
in a metric that scales less with the length of the
sequence M . Second, it matches the ℓ2 norm used
in the previous section, which combines more nat-
urally in the mathematical development of the next
section for joint tasks.

We can apply the inner ℓ2 norm separately on
the outer product of vectors. Since the amplitude
of all contextual word embeddings h⃗m are simi-
lar, we can assume ||⃗hm|| ≈ ||⃗hm′ || ≈ ||⃗h|| with
m′ ∈ [1,M] across tokens. Thus, we obtain the
following simplified bound:

χ′
t(x, y) ≤ β

√
M ||⃗h||2

√√√√
M∑

m=1

||δ⃗m||22. (20)

Since we are interested in ranking samples
{(x, y)}1..N by scores as before, we can simplify

140

this bound for multi-output classification tasks such
as slot filling. We also replace δ⃗m by its definition.

χ̂slot(x, y) =

√√√√
M∑

m=1

||p⃗m(x)− y⃗m||22 (21)

A.3 Joint Single-Label Classification and
Sequence of Single-Label Classification

We aim to combine the gradient matrices of two
independent classification heads into one gradient
matrix using an ℓ2 norm. We can use the direct sum
to express this combination for a joint task, such
as joint intent classification (indicated by the int
superscript) and slot filling (indicated by the slot
superscript). The direct sum of matrices generates
a block diagonal matrix that combines two vector
spaces. Under a norm, this matrix representation is
equivalent to the flattened one.

Let us denote the gradient matrices as
G(int,t)(x, yint) and G(slot,t)(x, yslot), where t de-
notes the training step, x is the input data, and yint
and yslot is the corresponding labels. For simplifi-
cation, we are leaving the dependence on x, yint
and yslot on the right side of our equations. The
combined gradient matrix is obtained by taking the
direct sum of these matrices as follows:

Gt(x, y) = G(int,t) ⊕G(slot,t). (22)

Substituting this equation in (10), we get:

χ′
t(x, y) ≤ β||G(int,t) ⊕G(slot,t)||2. (23)

We consider the squared Frobenius norm and
apply the sum of square terms block-wise, where
the off-diagonal zero terms are ignored. This gives
us the sum of the square norms of each gradient
matrix as follows:

χ′
t(x, y)

2 ≤ β2
(
||G(int,t)||22 + ||G(slot,t)||22

)
. (24)

Using the definitions of the gradient norms ob-
tained from the previous derivations, we get the
following:

χ′
t(x, y)

2 ≤ β2||⃗hCLS ||22||p⃗int − y⃗int||22+

β2||⃗h||22
M∑

m=1

||p⃗m − y⃗m||22.
(25)

As ||⃗hCLS || ≈ ||⃗h|| and by identification with
the two previous derivations, we obtain the final
form for the joint task, such as joint intent classifi-
cation and slot filling, as follows:

χ̂nlu(x, y) =
√
χ̂2
intent + χ̂2

slot. (26)

B Derivations of GPU Runtime Equations

B.1 GPU Runtime Dependency to Pruning
Factor and Epoch Cycle

The total GPU time T contains three terms as fol-
low

T = Tinit + Tprune + Tscore, (27)

where Tinit is the initial amount of epochs fine-
tuned with the full training set, Tprune is the re-
maining amount of epochs to finetune with the
pruned dataset, and Tscore is the time to compute
the importance score.

We define τ ≤ E ∈ N, the epoch at which
we start the data pruning and the total amount of
epochs, respectively. We have B ∈ N, the number
of steps in one epoch (i.e. the ceiling of training
set length divided by the batch size). We define
an epoch cycle to prune the train data set as well
T ∈ N, with T ≤ E − τ . The proportion of
pruned samples is defined by ρ ∈ (0, 1). Finally,
we have ∆tstep ∈ R≥0, the average time to process
one mini-batch, and ∆tforward ∈ R≥0, the time to
compute a complete forward pass on the training
dataset.

Then, we can explicitly formulate

Tinit = τB∆tstep (28)

Tprune = (E − τ) (1− ρ)B∆tstep (29)

Tscore =
⌊
E − τ

T

⌋
∆tforward, (30)

where ⌊·⌋ is the floor operator. Therefore, the
complete GPU runtime equation based on eq. 27
takes the form

T = EB∆tstep − (E − τ)B∆tstepρ

+

⌊
E − τ

T

⌋
∆tforward

(31)

141

B.2 Lower-Bound Epoch Cycle
We can find Tmin, which is a lower bound to T , to
achieve an effective pruning in terms of computa-
tional time. We need to satisfy:

T < Tbaseline (32)

Given the previous definitions, we can find

Tbaseline = EB∆tstep (33)

Considering eq. 33 and 31 for T , we deduce

Tmin >
∆tforward

∆tstepBρ
(34)

C Training Setup

We use the following HuggingFace libraries dis-
tributed under the Apache License 2.0: transform-
ers v4.21.3 (Wolf et al., 2020) and datasets v2.5.1
(Lhoest et al., 2021). We set our back-end to Py-
torch v1.10.1 (Paszke et al., 2017, 2019). We used
the Adam optimizer (β1 = 0.9, β2 = 0.999 and
ϵ = 1 × 10−8) with no warm up and no sched-
uler. We run fine-tunings and evaluations on an
on-premise cluster of NVIDIA V100 32 Gb GPUs.
All the results are the average of 5 runs with differ-
ent random seeds unless it is stated otherwise.

We run our fine-tuning on the GLUE datasets
with the following hyper-parameters: number of
epochs of 10, a learning rate of 2× 10−5, a batch
size of 32 and a maximum sequence length of 128
(except for the RTE dataset at 256). For the joint
intent and slot filling datasets, we set: number of
epochs of 40, a learning rate of 2× 10−5, a batch
size of 32, a maximum sequence length of 50 and
λ = 0.5. For χ̂ema calculations, we use α = 0.8.

D Dataset Statistics

In Tables 2 and 3, we provide the statistics about
the GLUE datasets and the joint NLU datasets. We
verify that all samples in the datasets do not contain
offensive language and personal information.

Table 2: Statistics of GLUE datasets.

Name |Train| |Test| Task Domain

COLA 8.5k 1k Acceptability Misc.
MNLI 393k 20k NLI Misc.
MRPC 3.7k 1.7k Paraphrase News
QQP 364k 391k Paraphrase QA questions
RTE 2.5k 3k NLI News, Wikipedia
SST2 67k 1.8k Sentiment Movie reviews

Table 3: Statistics of joint NLU Datasets.

Name |Train| |Test| Domains Intents Slots

ATIS 5.0k 893 1 26 129
SNIPS 13.0k 700 - 7 53
SLURP 16.5k 3.0k 18 60 55
MTOP 15.7k 4.4k 11 117 78

E Parameter Selection

Values for τ , ρ, and T must be selected to achieve
the desired time-accuracy trade-off. A valid first
step is to set τ at about 10% of E for datasets with
more than a few thousand samples or 20-40% for
smaller datasets to achieve higher accuracy. Larger
τ significantly hinders efficiency at the expense
of accuracy. Then, we calculate Tmin as a lower
bound to obtain an efficiency gain with a given
prune rate ρ using equation 34. We recommend
ρ ∈ [0.4, 0.7] depending if accuracy or efficiency
is more important, respectively. Finally, we want to
set T such that it is above Tmin to be efficient but
small enough to provide many pruning updates for
higher accuracy — about ten cycles calculated with⌊
E−τ
T

⌋
being a valid target. In Table 4 of Appendix

F, we present values of Tmin for ρ ∈ {0.1, 0.5} for
all our datasets, along with the forward pass time
∆tf , train step time ∆tstep and the number of steps
per epoch B.

F Further Results

In Table 4, we show Tmin (i.e. the minimum cy-
cle to achieve an efficiency improvement over the
baseline) for ρ ∈ {0.1, 0.5} for all datasets along
their ∆tforward and ∆tstep.

Table 4: Minimum epoch per prune cycle T (ρ) =
Tmin (ρ) for prune rates of 10% (0.1) and 50% (0.5).
∆tf is equivalent to ∆tforward. We measure ∆tf and
∆tstep based on the median of previous experiments. B
is calculated from the train set length and the batch size.

∆tf ∆tstep B T (0.1) T (0.5)

G
L

U
E

COLA 1.8 0.061 268 1.1 0.2
MNLI 145.4 0.082 12272 1.4 0.3
MRPC 1.8 0.076 115 2.0 0.4
QQP 112.4 0.068 11371 1.4 0.3
RTE 1.5 0.102 78 1.8 0.4
SST2 14.5 0.062 2105 1.1 0.2

Jo
in

tN
L

U ATIS 3.7 0.065 156 3.6 0.7
MTOP 8.3 0.065 490 2.6 0.5
SLURP 5.9 0.066 360 2.5 0.5
SNIPS 7.6 0.064 409 2.9 0.6

In Figures 7 and 8, we provide the intent accu-

142

racy and the slot micro F1 score for the joint intent
classification and slot filling tasks as complemen-
tary results to sub-section 5.2.

In Figures 9 and 10, we present the extensive re-
sults on all joint NLU datasets for the experiments
on the prune epoch cycle T and prune epoch τ .

In table 5, we present representative examples
of hard-to-learn, easy-to-learn and ambiguous sam-
ples from fine-tunings on the SLURP dataset, as
discussed in section 6.

143

Figure 7: Intent accuracy achieved on 40 epochs for different prune rates applying: static pruning (EL2N from 10
runs of 10 epochs), single pruning, dynamic random pruning, and our dynamic pruning (EL2N with EMA). The
dynamic methods are run with τ = 4 and T = 4.

Figure 8: Slot Micro F1 score achieved on 40 epochs for different prune rates applying: static pruning (EL2N from
10 runs of 10 epochs), single pruning, dynamic random pruning, and our dynamic pruning (EL2N with EMA). The
dynamic methods are run with τ = 4 and T = 4.

144

Figure 9: Full-sequence accuracy achieved on 40 epochs using our dynamic pruning (EL2N with EMA) across T
and τ . We fixed the pruning rate to 70%.

Figure 10: Finetuning time achieved on 40 epochs using our dynamic pruning (EL2N with EMA) across T and τ .
We fixed the pruning rate to 70%.

145

Table 5: Examples for hard-to-learn, easy-to-learn and ambiguous samples for the SLURP dataset. # selection
column shows the number of times a sample is selected in retained subset over ten pruning cycles for four different
initializations.

Id Intent label Annotated utterance # selections Av. X̂nlu

H
ar

d-
to

-L
ea

rn

1 calendar_set olly play [song_name : be warned] by [artist_name : tech nine] 10, 10, 10, 10 1.291

2 play_radio play my favorite [device_type : radio station] 10, 10, 10, 10 1.018

3 cooking_query what’s the easiest and quickest way to cook a turkey 10, 10, 10, 10 1.255

4 general_joke tell me a joke [joke_type : about chickens] 10, 10, 10, 10 0.984

E
as

y-
to

-L
ea

rn 5 calendar_set please add this event to my calendar 0, 0, 0, 0 0.008

6 calendar_set add an event 0, 0, 0, 0 0.012

7 calendar_set i need you to add this event to my calendar 0, 0, 0, 0 0.08

A
m

bi
gu

ou
s

8 calendar_set mark [relation : dad’s] [event_name : retirement dinner] for 3, 5, 4, 5 0.116

[date : april fourth]

9 calendar_set add [person : mary’s] [event_name : birthday] on 4, 2, 1, 4 0.152

the [date : twenty second] to my calendar please

10 calendar_set can you add my [relation : brother’s] [event_name : birthday dinner] 5, 3, 6, 6 0.224

at [place_name : rusk] for [date : march twenty third]

11 calendar_set remind me about my [date : monday] [event_name : meeting] with 6, 9, 5, 8 0.299

[person : peter francis] [time : fifteen minutes] before the meeting

12 calendar_set add [event_name : lee’s birthday] to the calendar on 7, 4, 8, 7 0.369

[date : twenty two june]

13 calendar_set please give me a two hour warning before [date : next saturdays] 8, 8, 9, 8 0.530

[event_name : meeting]

146

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 147–157
July 13, 2023 ©2023 Association for Computational Linguistics

On the Interactions of Structural Constraints and Data Resources for
Structured Prediction

Zhisong Zhang, Emma Strubell, Eduard Hovy
Language Technologies Institute, Carnegie Mellon University

zhisongz@cs.cmu.edu, strubell@cmu.edu, hovy@cmu.edu

Abstract

In this work, we provide an analysis on the
interactions of the effectiveness of decoding
with structural constraints and the amount of
available training data for structured predic-
tion tasks in NLP. Our exploration adopts a
simple protocol that enforces constraints upon
constraint-agnostic local models at testing time.
With evaluations on three typical structured
prediction tasks (named entity recognition, de-
pendency parsing, and event argument extrac-
tion), we find that models trained with less
data predict outputs with more structural vi-
olations in greedy decoding mode. Incorporat-
ing constraints provides consistent performance
improvements and such benefits are larger in
lower resource scenarios. Moreover, there are
similar patterns with regard to the model sizes
and more efficient models tend to enjoy more
benefits. Finally, we also investigate settings
with genre transfer and discover patterns that
are related to domain discrepancies.

1 Introduction

Recently, neural models, especially those based
on pre-trained contextualized representations, have
brought impressive improvements for a variety of
structured prediction tasks in NLP (Devlin et al.,
2019; Kulmizev et al., 2019; Shi and Lin, 2019; Li
et al., 2020a). More interestingly, the incorporation
of powerful neural models seems to decrease the po-
tential benefits brought by more complex structured
output modeling. For example, for sequence label-
ing, it has been shown that reasonably good perfor-
mance could be obtained even without any explicit
modeling of the interactions of the output tags (Tan
et al., 2018; Devlin et al., 2019). For dependency
parsing, models that ignore tree constraints and
cast the problem as head selection in training can
still obtain impressive results (Dozat and Manning,
2017). Most of these previous results are obtained
in fully supervised settings. While they show that

with abundant training signals, better input model-
ing and representation learning could shadow the
benefits brought by more complex structured mod-
eling, it remains unclear for the cases where data
resources are limited.

One of the most salient and important properties
of structured prediction is that the output objects
should follow specific structural constraints. For
example, the output of a syntactic parser should
be a well-formed tree and the output labels of an
information extraction system need to follow cer-
tain type restrictions. In this work, we focus on
the facet of structural constraints and explore its
influence on structured prediction problems under
scenarios with different amounts of training data.
On the one hand, since we know the target outputs
should conform to certain constraints, explicitly
enforcing these constraints will likely bring ben-
efits and sometimes even be a requirement. On
the other hand, as neural models are developed to
better represent input contexts, they might already
be able to implicitly capture the output constraints
by learning from the data. In particular, it would be
unsurprising that the model could directly produce
outputs that conform to constraints without explicit
enforcement, given enough training data, since the
training instances are presented as such.

Regarding the interactions between explicit in-
corporation of constraints and the amount of train-
ing data, we ask the following three research ques-
tions (RQs), which we aim to explore in this work:

RQ1: What is the influence of constraints with
different amounts of training data?
With powerful neural networks and abundant train-
ing data, the model can be trained to implicitly
capture structural constraints even without explicit
enforcement. Nevertheless, it still remains unclear
for the cases with limited data. We aim to explore
how the incorporation of constraints influences the
outputs and how such influences change with dif-

147

ferent amounts of training data.

RQ2: What is the influence of constraints when
using more efficient models?
Although neural models can obtain impressive re-
sults, one shortcoming is that they are usually
computationally expensive. Recently, there have
been many works on improving model efficiency.
Knowledge distillation is one of the most widely-
utilized methods, learning a smaller student model
from a larger teacher model (Kim and Rush, 2016;
Sanh et al., 2019; Jiao et al., 2020). An interest-
ing question to explore is how these more efficient
models interact with the explicit incorporation of
structural constraints.

RQ3: What is the influence of constraints for
out-of-domain generalization?
We usually expect the model to be able to gener-
alize to scenarios that can be different from those
represented by the training data, for example, to dif-
ferent domains or text genres. It will be interesting
to explore how the constraints influence predictions
for these cases and especially whether there are
specific patterns with regard to the discrepancies
between the source and the target.

To answer these questions, we conduct extensive
experiments on three typical structured prediction
tasks, including named entity recognition (NER),
dependency parsing (DPAR) and an information
extraction task of event argument extraction (EAE).
We find that models trained with less training data
tend to produce outputs that contain more structural
violations when using constraint-agnostic greedy
decoding. Further applying constrained decoding
brings consistent performance improvements and
the benefits are more prominent in lower data sce-
narios (§3.2). A similar trend can be found with
regard to model size: Smaller models tend to output
more violations with greedy decoding and benefit
more from constrained decoding (§3.3). Finally, in
cross-genre settings, we find a weak pattern with
regard to genre discrepancies: More structural vio-
lations tend to be made with greedy decoding when
transferring to more distant genres (§3.4).

2 Tasks and Models

2.1 Named Entity Recognition
Our first task is named entity recognition (NER),
which aims to extract entity mentions from raw
texts and can be typically cast as a sequence la-
beling problem. We adopt a simple NER model

NER

TransportORG

O I-MISC I-MISC O O

DPAR
w1 w2 w3 w1 w2 w3 w4

EAE
Origin

Figure 1: Examples of structural violations (marked in
red). For NER, the tag transition from ‘O’ to ‘I-MISC’
is illegal. For DPAR, the left subtree contains a loop
while the right one has crossing edges. For EAE, the
ORIGIN role cannot be assigned to an ORG entity.

that utilizes a pre-trained BERT model as the en-
coder and a softmax layer to predict the output
tags. We adopt the typical BIO tagging scheme
(Ramshaw and Marcus, 1995), specifying tags for
the Beginning, the Inside and the Outside of an
entity span.

More specifically, for an input sequence of words
[w1, w2, · · · , wn], our model aims to assign a se-
quence of BIO tags [t1, t2, · · · , tn] for them. The
probability of each output tag is locally normalized
for each word:

p(ti|wi) =
exp score(ti|wi)∑

t′∈T exp score(t′|wi)

Here, the score(·) function is realized as a linear
layer stacked upon the word representations1 and
T denotes the output tag space.

With the BIO tagging scheme, there are hard con-
straints between tags of consecutive tokens: The
I tag must follow a B or I tag of the same entity
type. For example, the tagged sequence “O I-MISC
I-MISC O O” is erroneous because the transition
“O→ I-MISC” is illegal. One solution to mitigate
this problem is to forbid such illegal transitions in
decoding. This can be achieved by incorporating a
transition matrix M ∈ R|T |×|T |, where the entries
corresponding to illegal tag transitions are filled
with −∞ and the legal ones are filled with 0. For
the decoding process, we define the score of a tag
sequence as:

s(t1, t2, · · · , tn) =
∑

i

log p(ti|wi)+
∑

i

Mti,ti+1

In this way, the highest scoring tag sequence will
not contain transition violations. This decoding

1If a word is split into multiple tokens, we simply take its
first sub-token.

148

problem can be solved efficiently by the Viterbi
algorithm (Viterbi, 1967). If not enforcing these
constraints, the second term of the sequence score
can be dropped and the decoding will be greedily
finding the maximally-scored tag for each token
individually.

Notice that this treatment resembles conditional
random field (CRF) based models (Lafferty et al.,
2001), wherein the main difference is that we uti-
lize a locally normalized model and the transition
matrix is manually specified to exclude illegal tran-
sitions. In our preliminary experiments, we also
tried CRF models but did not find obvious benefits
compared to local models when adopting the same
underlying pre-trained model.

2.2 Dependency Parsing
We further consider dependency parsing (DPAR)
(Kübler et al., 2009), which aims to parse the in-
put sentence into well-formed tree structures. We
adopt the widely utilized first-order graph-based
parser (McDonald et al., 2005). Similar to NER, we
adopt the pre-trained BERT encoder to provide the
contextualized representations for the input tokens
and stack a biaffine scorer (Dozat and Manning,
2017) to assign scores for the dependency edges.
For training, we adopt a local model that views
the problem as a head-finding classification task
for each input token (Dozat and Manning, 2017;
Zhang et al., 2017). At testing time, we further
consider tree constraints with specific decoding
algorithms. Since we are mainly interested in struc-
tural tree constraints, we only perform unlabeled
parsing.

More specifically, for an input sequence of words
[w1, w2, · · · , wn], we aim to find the dependency
head words [h1, h2, · · · , hn] for the input word
sequence. With local normalization, this can be
viewed as a head classification problem:

p(hi|wi) =
exp score(hi|wi)∑

h′∈{R,w1,w2,··· ,wn} exp score(h′|wi)

Here we add an artificial target R to the output
space to cover the case of root nodes. The score(·)
function is realized with a biaffine module that
produces head-modifier scores for the input pair of
words.

We consider two constraints for the output struc-
tures. First, there should not be any cycles in the
output graphs, otherwise, they will not be trees.

Moreover, we consider the projectivity constraint,2

which specifies that there are no edges that cross
each other. We adopt Eisner’s algorithm (Eisner,
1996) for the constrained decoding, which is a dy-
namic programming algorithm that searches the
highest scored trees in the constrained output space.
If not considering any of these constraints, we
greedily predict the head word for each token based
on the head classification probabilities.

2.3 Event Argument Extraction
Finally, we consider event argument extraction
(EAE), an information extraction task that aims
to extract arguments for the event mentions from
the texts (Ahn, 2006). For a pair of event trigger
and entity mention, this task aims to link them with
an argument role indicating that the entity can play
such a role in the event frame. If no such role is
possible, then no links are added. We again adopt a
pre-trained BERT encoder for encoding and further
stack a task-specific predictor, which is a biaffine
scorer, similar to dependency parsing. The main
difference is that here we perform local normaliza-
tion for each event-entity pair since there are no
constraints on how many other mentions that one
mention can be linked to for event argument extrac-
tion. To better explore real application scenarios,
we train an extra sequence labeler to extract event
and entity mentions rather than using gold men-
tions. This mention detection model is the same as
the one described in our NER experiments.

More specifically, our model takes a pair of event
trigger and entity mention (mt and me) and assigns
the probabilities of argument roles to them:

p(r|mt,me) =
exp score(r|mt,me)∑

r′∈R∪{ϵ} exp score(r′|mt,me)

Here, R denotes the role labeling space and we
further include an option of ϵ to denote there are no
argument relations between the event trigger and
entity mention. The score function is realized with
a biaffine module that produces argument scores
for the input mention pair. Since a mention may
contain multiple words, we concatenate the word
representations of the starting and ending words to
form the mention’s input vector.

In event extraction, there are constraints on the
mention (event and entity) types and argument role

2We only perform experiments on English, which is a
highly projective language. Extensions to non-projective lan-
guages are left to future work.

149

Data Split #Sent. #Token #Event #Entity #Argument #Relation

CoNLL03
train 14.0K 203.6K - 23.5K - -
dev 3.3K 51.4K - 5.9K - -
test 3.5K 46.4K - 5.6K - -

UD-EWT
train 12.5K 204.6K - - - -
dev 2.0K 25.1K - - - -
test 2.1K 25.1K - - - -

ACE05
train 14.4K 215.2K 3.7K 38.0K 5.7K 6.2K
dev 2.5K 34.5K 0.5K 6.0K 0.7K 0.8K
test 4.0K 61.5K 1.1K 10.8K 1.7K 1.7K

Table 1: Data statistics of the datasets utilized in our main experiments.

labels. For example, the PERSON role of a MARRY

event should have the entity type of PER, while the
DESTINATION or ORIGIN roles of a TRANSPORT

should have entity types denoting places (GPE,
LOC or FAC). We adopt a simple method to in-
corporate such constraints in decoding by ignoring
(masking out) the roles that are not possible ac-
cording to the event and entity types. The role
constraints are manually collected according to the
event annotation guideline (LDC, 2005). If not
considering these role constraints, we simply adopt
greedy prediction for each event-entity pair.

3 Experiments

3.1 Settings
Data. Our experiments are conducted on widely
utilized English datasets. In our main experiments,
we adopt the CoNLL-2003 English dataset3 (Tjong
Kim Sang and De Meulder, 2003) for NER and the
English Web Treebank (EWT) from Universal De-
pendencies4 v2.10 (Nivre et al., 2020) for DPAR. In
the genre transfer experiments for NER and DPAR,
we utilize OntoNotes 5.0 dataset5 (Weischedel
et al., 2013) and split the data according to text
genres. For the event task, we adopt the ACE05
dataset6 (Walker et al., 2006), using the scripts
from Lin et al. (2020) for the pre-processing.7 Ta-
ble 1 shows the data statistics.

Model and training. Unless otherwise specified,
we adopt the pre-trained BERTbase as the contex-
tualized encoder for our models. The encoder is
fined-tuned with the task-specific decoders in all
the experiments. The number of model parame-
ters is around 110M. We follow common practices

3
https://www.clips.uantwerpen.be/conll2003/ner/

4
https://universaldependencies.org/

5
https://catalog.ldc.upenn.edu/LDC2013T19

6
https://catalog.ldc.upenn.edu/LDC2006T06

7
http://blender.cs.illinois.edu/software/oneie/

Task Model 5K 20K 100K

NER Local 84.270.8 88.910.6 91.240.3

Global 84.730.1 88.920.4 91.380.2

DPAR Local 84.570.1 89.460.2 91.950.1

Global 82.650.3 88.920.3 91.650.2

Table 2: Comparisons between local and global models
for NER (F1%) and DPAR (UAS%). Numbers in the
subscripts denote standard deviation.

for the settings of other hyper-parameters. Adam
(Kingma and Ba, 2014) is utilized as the optimizer.
The learning rate is initially set to 1e-5 for NER
and 2e-5 for DPAR and EAE. It is further linearly
decayed to 10% of the initial value throughout the
training process. The models are trained for 20K
steps with a batch size of around 512 tokens. We
pick final models by the performance on the devel-
opment set of each task. The original development
sets are also down-sampled accordingly as the train-
ing sets to simulate scenarios with different data
amounts. All the reported results are averaged over
five runs with different random seeds.

Local normalization. In our main experiments,
we choose locally normalized models instead of
more complex global models. Table 2 provides
comparisons between the local and global models
for NER and DPAR. For the global models, we use
a standard linear-chain CRF (Lafferty et al., 2001)
for NER and tree-CRF (Paskin, 2001) for DPAR.
For these results, constrained decoding is applied
since it is found to be helpful for both local and
global models. The results show that there are no
clear benefits of using global models over the sim-
pler local models, probably due to the strong input
context modeling capabilities of the underlying pre-
trained encoders. Therefore, we simply adopt local
models in our main experiments.

150

https://www.clips.uantwerpen.be/conll2003/ner/
https://universaldependencies.org/
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2006T06
http://blender.cs.illinois.edu/software/oneie/

5K 10K 20K 50K 100K Full
Training Size

0

1

2

3

4

Pe
rc

en
ta

ge
NER

Violation%
Err% (w/o cons.)
Err% (w/ cons.)

5K 10K 20K 50K 100K Full
Training Size

0

1

2

3

4

5

Pe
rc

en
ta

ge

DPAR
Violation%
Err% (w/o cons.)
Err% (w/ cons.)

5K 10K 20K 50K 100K Full
Training Size

0

5

10

15

20

25

Pe
rc

en
ta

ge

EAE
Violation%
Err% (w/o cons.)
Err% (w/ cons.)

Figure 2: Illustrations of constraint violations and re-
lated error rates. Here, “Violation%” denotes the per-
centages of predicted items that violates structural con-
straints in the greedy decoding mode, and “Err%” de-
notes the percentages of the predicted items that violate
the constraints and are incorrect at the same time.

Evaluation. We adopt standard evaluation met-
rics for the tasks: Labeled F1 score for NER, unla-
beled attachment score (UAS) for DPAR, labeled
argument F1 score for EAE (Lin et al., 2020).

3.2 RQ1: On Training Data
We first investigate the effectiveness of incorpo-
rating constraints in decoding, plotting the rates
of structural violations and related errors in Fig-
ure 2. For all the predicted items (all non-‘O’ tags
for NER, all dependency edges for DPAR and all
predicted argument links for EAE), we calculate
the percentage of items that violate the structural
constraints when using greedy decoding (“Viola-
tion%”). For NER, we analyze at the tag level and

5K 10K 20K 50K 100K Full
Training Size

82

84

86

88

90

92

F1
%

w/o cons.
w/ cons.

0.50

0.75

1.00

1.25

1.50

NER

diff.

5K 10K 20K 50K 100K Full
Training Size

84

86

88

90

92

U
A

S%

w/o cons.
w/ cons.

0.1

0.2

0.3

0.4
DPAR

diff.

5K 10K 20K 50K 100K Full
Training Size

20

30

40

50

F1
%

w/o cons.
w/ cons.

0.5

1.0

1.5

2.0

EAE

diff.

Figure 3: Test results with or without applying con-
straints against different training sizes. Here, x-axis
denotes the training size (measured by the number of to-
kens). The left y-axis denotes the performance (F1% for
NER, UAS% for DPAR and F1% for EAE). The right
y-axis denotes the performance differences between the
methods with or without constraints.

count the illegal tag transitions. For DPAR, we
include the edges that are inside a loop (violating
the acyclic constraint) or go across another edge
(violating the projective constraint). For EAE, we
count the argument links whose role does not com-
ply with the types of the event and the entity that it
connects. We further calculate “Err%”, which de-
notes the percentage of the items that contain viola-
tions in greedy decoding and are wrongly predicted
at the same time. Such error rates are calculated
for both greedy (w/o cons.) and constrained (w/
cons.) modes, and the comparisons between these
two can illustrate the amount of error reduction that
constrained decoding can bring.

151

Tiny Mini Small Medium Base
Model

5K

20K

100K

Full

Tr
ai

ni
ng

 S
iz

e
8.59% 4.87% 3.22% 2.41% 3.13%

7.48% 3.82% 2.45% 1.93% 1.84%

6.32% 2.45% 1.74% 1.25% 1.13%

6.13% 2.42% 1.55% 1.13% 1.00%

NER

Tiny Mini Small Medium Base
Model

5K

20K

100K

Full

Tr
ai

ni
ng

 S
iz

e

11.51% 5.95% 5.51% 4.30% 4.00%

9.25% 4.28% 3.10% 2.42% 2.14%

6.50% 2.85% 2.08% 1.50% 1.33%

5.84% 2.48% 2.00% 1.29% 1.18%

DPAR

Tiny Mini Small Medium Base
Model

5K

20K

100K

Full

Tr
ai

ni
ng

 S
iz

e

35.50% 29.74% 31.25% 26.73% 18.31%

16.21% 13.58% 12.64% 10.56% 7.28%

6.59% 6.91% 5.71% 4.80% 4.14%

4.64% 4.51% 4.24% 3.76% 3.10%

EAE

Figure 4: “Violation%” (percentages of predicted items that violates constraints with greedy decoding) with different
models and amounts of training data. Here, x-axis denotes the underlying model while y-axis denotes training sizes.

Tiny Mini Small Medium Base
Model

5K

20K

100K

Full

Tr
ai

ni
ng

 S
iz

e

+2.85 +1.98 +1.40 +0.94 +1.35

+2.99 +1.73 +1.05 +0.77 +0.78

+2.90 +1.13 +0.62 +0.49 +0.51

+3.00 +1.10 +0.58 +0.41 +0.41

NER

Tiny Mini Small Medium Base
Model

5K

20K

100K

Full

Tr
ai

ni
ng

 S
iz

e

+0.66 +0.34 +0.43 +0.30 +0.34

+0.63 +0.32 +0.27 +0.17 +0.18

+0.43 +0.20 +0.16 +0.07 +0.06

+0.37 +0.19 +0.12 +0.06 +0.06

DPAR

Tiny Mini Small Medium Base
Model

5K

20K

100K

Full

Tr
ai

ni
ng

 S
iz

e

+1.22 +1.69 +2.42 +2.30 +2.16

+1.22 +1.46 +1.66 +1.71 +1.31

+0.89 +1.12 +0.80 +0.85 +0.62

+0.64 +0.78 +0.67 +0.65 +0.42

EAE

Figure 5: Performance improvements brought by constrained decoding with different models and amounts of
training data. Here, x-axis denotes the underlying model while y-axis denotes training sizes.

The overall trends are consistent on all the tasks.
As we have more training data, there are fewer
structural violations without explicitly enforcing
constraints, which indicates that the model can im-
plicitly learn the constraints if given enough train-
ing data. Moreover, although constrained decoding
can eliminate such violations, they do not always
lead to the correct predictions; only a small portion
of incorrect items can be corrected with constrained
decoding, and such improvements are more promi-
nent with less training data.

We further show the main test results in Figure 3.
The general trends are again similar for all three
tasks: Constraints provide consistent benefits for
the model performance, and such benefits are larger
as we have less training data. This corresponds
well to the violation analysis in Figure 2: with
enough training data, the model implicitly learns
the structural constraints from the data and further
enhancement of constrained decoding will make
little difference; however, with less training data,
explicitly enforcing constraints can help.

RQ1 Takeaways: Without incorporating con-
straints, there are more constraint violations from
the predictions of the models trained with less data.
By enforcing constraints in decoding, there can be
consistent benefits for model performance and such

improvements are greater with models learned with
less training data.

3.3 RQ2: On Efficient Models
We further explore the influence of using more effi-
cient models. We take the distilled versions of the
BERT models from Turc et al. (2019) and repeat
our previous experiments. Specifically, we con-
sider five models (L=Layer Number, H=Dimension
Size): Tiny (L=2, H=128), Mini (L=4, H=256),
Small (L=4, H=512), Medium (L=8, H=512), and
Base (L=12, H=768). We plot “Violation%” and
performance differences in Figure 4 and Figure 5,
respectively.

First, if looking at the axis of the training data
size, the overall trends are similar to previous find-
ings: There are more violations with less training
data, and enforcing constraints helps more in lower-
resource scenarios. This trend is generally consis-
tent across all the underlying models. Moreover,
comparing across the model axis brings more inter-
esting findings. Overall, the smaller models tend
to output predictions with more violations if adopt-
ing greedy decoding and incorporating constraints
generally bring more performance improvements
for smaller models. The reason for this trend might
be that smaller models contain fewer parameters

152

nw wb bn mz bc tc
Testing Genre

5K

10K

20K

50K

100K

Full

Tr
ai

ni
ng

 S
iz

e
6.04% 9.20% 7.40% 8.02%10.17%8.99%

4.39% 7.30% 6.25% 7.06% 8.80% 7.20%

3.25% 6.09% 5.43% 6.27% 6.30% 7.78%

2.06% 4.09% 3.73% 3.75% 3.77% 7.43%

1.35% 3.58% 2.93% 3.38% 2.79%10.61%

0.86% 2.93% 2.33% 2.60% 1.78% 3.19%

NER

nw wb bn mz bc tc
Testing Genre

5K

10K

20K

50K

100K

Full

Tr
ai

ni
ng

 S
iz

e

5.25% 5.45% 4.59% 6.03% 5.30% 6.63%

3.35% 3.77% 3.16% 3.87% 3.81% 4.82%

2.02% 2.54% 1.97% 2.25% 2.40% 3.30%

1.41% 1.81% 1.42% 1.36% 1.91% 2.60%

1.20% 1.56% 1.34% 1.08% 1.68% 2.61%

0.82% 1.21% 0.89% 0.60% 1.42% 2.09%

DPAR

nw bn bc wl un cts
Testing Genre

5K

10K

20K

Full

Tr
ai

ni
ng

 S
iz

e

16.54% 24.12% 15.84% 25.56% 24.35% 27.06%

9.49% 14.36% 10.35% 20.24% 16.42% 15.02%

6.21% 8.45% 4.82% 10.53% 9.49% 9.10%

4.39% 5.61% 3.76% 8.22% 6.69% 2.95%

EAE

Figure 6: “Violation%” (percentages of predicted items that violates structural constraints) on different testing
genres with different amounts of source training data (“nw” as the training source). Here, x-axis denotes the testing
genres (which are sorted with the similarities to the source genre) while y-axis denotes training sizes.

nw wb bn mz bc tc
Testing Genre

5K

10K

20K

50K

100K

Full

Tr
ai

ni
ng

 S
iz

e

+2.56 +1.56 +2.11 +3.01 +3.69 +1.81

+2.01 +1.74 +2.33 +2.84 +3.56 +2.40

+1.59 +1.50 +1.91 +2.82 +2.79 +1.88

+1.06 +1.03 +1.47 +1.70 +1.84 +1.70

+0.57 +0.83 +1.14 +1.63 +1.40 +1.65

+0.50 +0.88 +1.02 +0.89 +1.04 +0.94

NER

nw wb bn mz bc tc
Testing Genre

5K

10K

20K

50K

100K

Full

Tr
ai

ni
ng

 S
iz

e

+0.48 +0.42 +0.41 +0.64 +0.41 +0.33

+0.30 +0.25 +0.27 +0.34 +0.26 +0.18

+0.11 +0.12 +0.12 +0.24 +0.12 +0.10

+0.07 +0.08 +0.07 +0.11 +0.03 -0.01

+0.05 +0.04 +0.07 +0.03 +0.05 +0.17

+0.01 +0.03 +0.04 +0.02 +0.04 +0.07

DPAR

nw bn bc wl un cts
Testing Genre

5K

10K

20K

Full

Tr
ai

ni
ng

 S
iz

e

+2.70 +3.50 +2.76 +3.02 +2.11 +4.50

+1.72 +2.16 +1.61 +2.91 +1.96 +2.53

+1.10 +1.46 +0.82 +1.76 +0.76 +1.51

+1.22 +1.27 +0.78 +1.82 +0.73 +0.04

EAE

Figure 7: Performance improvements brought by constrained decoding on different testing genres with different
amounts of source training data (“nw” as the training source). Here, x-axis denotes the testing genres (which are
sorted with the similarities to the source genre) while y-axis denotes training sizes.

Tiny Mini Small Medium Base

NERw/o 0.29 0.32 0.36 0.53 1.19
NERw/ 0.56 0.59 0.64 0.80 1.45

DPARw/o 0.23 0.26 0.33 0.47 1.07
DPARw/ 0.28 0.31 0.36 0.50 1.10

Table 3: Decoding speed (ms per sentence) without
(w/o) or with (w/) constraints.

to learn all the patterns in the training data and
such under-parameterization may bring difficulties
in implicitly capturing the constraints.

Another interesting question is how decoding
speed is influenced by the underlying model and the
decoding algorithm. Table 3 presents the time re-
quired to decode one sentence for NER and DPAR.
Here, we do not analyze the EAE task, since there
are no complex algorithms involved for our con-
strained decoding for EAE and we did not find ob-
vious speed differences between decoding methods
with or without constraints. Generally, constrained
decoding requires more computational cost com-
pared with the constraint-agnostic greedy methods.
This is not surprising since the constraint-agnostic
decoding method simply predicts the locally max-

imally scored items while constrained decoding
needs to invoke algorithms with higher complex-
ity. With smaller models, constrained decoding
brings relatively more cost because there are less
intense computational requirements for the under-
lying encoder. This trend is especially obvious for
the NER task, where constrained decoding costs
nearly twice the time as greedy decoding when us-
ing the Tiny model. When adopting larger models,
the encoder starts to require more computations and
thus the relative extra cost brought by constrained
decoding takes a smaller proportion.

RQ2 Takeaways: Smaller and more efficient
models such as distilled versions of BERT tend to
output predictions with more structural violations
with greedy decoding, and constrained decoding
generally brings more benefits.

3.4 RQ3: On Genre Transfer
Finally, we explore a transfer-learning scenario
where there are discrepancies between the train-
ing and testing data distributions. Specifically, we
consider transferring across different text genres.
For these experiments, we utilize OntoNotes for
NER and DPAR, and ACE05 for EAE. We take the

153

newswire (nw) portion as the source for training
and directly test the source-trained model on the
test sets of other genres (in a zero-shot manner).

The results are shown in Figure 6 and 7, where
the notations are similar to those in §3.3. In these
results, similar patterns along the data size axis
can be found: Incorporating constraints is more
helpful in the cases with less training data and such
trends generally hold for out-of-distribution testing
scenarios (target genres that are not “nw”) as well.

Another interesting dimension is the pattern
along the axis of genres. In the figures, we sort the
testing genres according to their similarities to the
source (nw). To calculate the similarities between
genres, we use the overlapping rate of vocabularies
since lexical overlaps can be one important factor
for the effectiveness of transfer. Overall, there is a
weak trend that when transferring to more distant
genres, greedy decoding tends to produce outputs
with more structural violations. However, such a
pattern is not consistent across all cases, and one
potential reason might be the instability of model
transfer. Moreover, there can be more appropriate
measurements than our simple lexicon-based simi-
larity that may better reflect how the predictions are
influenced by constrained decoding across genres.
We leave more explorations to future work.

RQ3 Takeaways: The previous patterns still gen-
erally hold for testing on out-of-domain instances
with genre discrepancies: Models trained with less
data tend to make more violations with greedy de-
coding and benefit more from constrained decod-
ing. There is also a weak pattern when transferring
to more distant genres, wherein greedy decoding
tends to produce more violations.

4 Related Work

For structured prediction tasks, one important prop-
erty is that the prediction outputs are complex ob-
jects with multiple interdependent variables. How
to model such inter-dependencies is an important
question for traditional NLP research. Classical
algorithms for decoding and learning have been
developed for various structured prediction tasks,
including the Viterbi algorithm (Viterbi, 1967)
and forward-backward algorithm (Baum et al.,
1970) for sequence labeling, maximum spanning
tree algorithm (Chu and Liu, 1965; Edmonds,
1967), Inside-Outside algorithm (Paskin, 2001) and
Matrix-Tree Theorem (Koo et al., 2007; Smith and
Smith, 2007; McDonald and Satta, 2007) for de-

pendency parsing, as well as more complex algo-
rithms for tasks involving more complicated graph
structures (Rush and Collins, 2012; Burkett and
Klein, 2013; Martins et al., 2015; Gormley and
Eisner, 2015). Though recent developments in neu-
ral models and pre-trained language models have
boosted the performance of simple local models,
better modeling of the structured outputs have still
been shown effective for various structured predic-
tion tasks (Wang et al., 2019; Fonseca and Martins,
2020; Zhang et al., 2020; Wei et al., 2021).

For the output modeling of structured prediction
tasks, the hard structural constraint is a key factor
for the development of decoding and learning algo-
rithms. To enhance general explicitly stated con-
straints, Roth and Yih (2004) tackle the decoding
problem with Integer Linear Programming (ILP)
and such paradigm has been applied to a range of
structured NLP tasks (Denis and Baldridge, 2007;
Roth and Yih, 2007; Clarke and Lapata, 2008; Pun-
yakanok et al., 2008). In addition to enforcing well-
formed output structures for decoding, constraints
can be also incorporated to enhance model learn-
ing (Chang et al., 2008; Li et al., 2020b; Pan et al.,
2020; Wang et al., 2020, 2021). While we mainly
focus on simply applying constrained decoding
with local models trained with different amounts
of data, it would be interesting to explore the in-
fluences when further incorporating constraints at
model training time.

5 Conclusion

In this work, we explore the interactions of
constraint-based decoding algorithms and the
amounts of training data for typical structured pre-
diction tasks in NLP. Specifically, we train local
models with different amounts of training data and
analyze the influence of whether to adopt con-
strained decoding or not. The results show that
when the model is trained with less data, the predic-
tions contain more structural violations with greedy
decoding and there are more benefits on model per-
formance by further applying constrained decod-
ing. Such patterns also generally hold with more
efficient models and when transferring across text
genres, where there are further interesting patterns
with regard to model sizes and genre distances.

154

Limitations

This work has several limitations. First, we only
experiment on English datasets. It would be inter-
esting to explore whether the general patterns hold
for non-English languages with different structural
properties. Moreover, we only explore incorporat-
ing hard constraints for decoding with local models
at testing time. Exploring more applications of
structural constraints, such as learning with con-
straints, or incorporating other types of constraints,
such as soft ones, would be promising future di-
rections. Finally, we only explore three simple
sentence-level structured prediction tasks, while
extentions can be made to more complex tasks
with larger output space, such as text generation
or document-level information extraction, where
constraints may play more interesting roles.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8, Sydney,
Australia. Association for Computational Linguistics.

Leonard E Baum, Ted Petrie, George Soules, and Nor-
man Weiss. 1970. A maximization technique occur-
ring in the statistical analysis of probabilistic func-
tions of markov chains. The annals of mathematical
statistics, 41(1):164–171.

David Burkett and Dan Klein. 2013. Variational infer-
ence for structured NLP models. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Tutorials), pages 9–10, Sofia,
Bulgaria. Association for Computational Linguistics.

Ming-Wei Chang, Lev-Arie Ratinov, Nicholas Rizzolo,
and Dan Roth. 2008. Learning and inference with
constraints. In AAAI, pages 1513–1518.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Scientia Sinica, 14:1396–
1400.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression: An integer linear
programming approach. Journal of Artificial Intelli-
gence Research, 31:399–429.

Pascal Denis and Jason Baldridge. 2007. Joint deter-
mination of anaphoricity and coreference resolution
using integer programming. In Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Computa-
tional Linguistics; Proceedings of the Main Confer-
ence, pages 236–243, Rochester, New York. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In ICLR.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards, B,
71:233–240.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Erick Fonseca and André F. T. Martins. 2020. Revisiting
higher-order dependency parsers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8795–8800, Online.
Association for Computational Linguistics.

Matthew R. Gormley and Jason Eisner. 2015. Struc-
tured belief propagation for NLP. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing:
Tutorial Abstracts, pages 5–6, Beijing, China. Asso-
ciation for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction models
via the matrix-tree theorem. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
141–150, Prague, Czech Republic. Association for
Computational Linguistics.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis lectures on
human language technologies, 1(1):1–127.

155

https://aclanthology.org/W06-0901
https://aclanthology.org/P13-5006
https://aclanthology.org/P13-5006
https://aclanthology.org/N07-1030
https://aclanthology.org/N07-1030
https://aclanthology.org/N07-1030
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.3115/v1/P15-5002
https://doi.org/10.3115/v1/P15-5002
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://aclanthology.org/D07-1015
https://aclanthology.org/D07-1015

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre. 2019. Deep
contextualized word embeddings in transition-based
and graph-based dependency parsing - a tale of two
parsers revisited. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2755–2768, Hong Kong, China. Association
for Computational Linguistics.

John D Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data. In Proceedings of the Eighteenth International
Conference on Machine Learning, pages 282–289.

LDC. 2005. ACE (automatic content extraction) en-
glish annotation guidelines for events version 5.4.3.
Linguistic Data Consortium.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020a. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering, 34(1):50–70.

Tao Li, Parth Anand Jawale, Martha Palmer, and Vivek
Srikumar. 2020b. Structured tuning for semantic role
labeling. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8402–8412, Online. Association for Computa-
tional Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

André FT Martins, Mário AT Figueiredo, Pedro MQ
Aguiar, Noah A Smith, and Eric P Xing. 2015. Ad3:
Alternating directions dual decomposition for map in-
ference in graphical models. The Journal of Machine
Learning Research, 16(1):495–545.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 91–98, Ann Arbor, Michigan. Asso-
ciation for Computational Linguistics.

Ryan McDonald and Giorgio Satta. 2007. On the
complexity of non-projective data-driven dependency
parsing. In Proceedings of the Tenth International
Conference on Parsing Technologies, pages 121–132,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In

Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4034–4043, Marseille,
France. European Language Resources Association.

Xingyuan Pan, Maitrey Mehta, and Vivek Srikumar.
2020. Learning constraints for structured prediction
using rectifier networks. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4843–4858, Online. Association
for Computational Linguistics.

Mark A Paskin. 2001. Cubic-time parsing and learning
algorithms for grammatical bigram models.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Confer-
ence on Computational Natural Language Learn-
ing (CoNLL-2004) at HLT-NAACL 2004, pages 1–8,
Boston, Massachusetts, USA. Association for Com-
putational Linguistics.

Dan Roth and Wen-tau Yih. 2007. Global inference
for entity and relation identification via a linear pro-
gramming formulation. Introduction to statistical
relational learning, pages 553–580.

Alexander M Rush and MJ Collins. 2012. A tutorial
on dual decomposition and lagrangian relaxation for
inference in natural language processing. Journal of
Artificial Intelligence Research, 45:305–362.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Peng Shi and Jimmy Lin. 2019. Simple bert models for
relation extraction and semantic role labeling. arXiv
preprint arXiv:1904.05255.

David A. Smith and Noah A. Smith. 2007. Probabilistic
models of nonprojective dependency trees. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 132–140, Prague, Czech Republic.
Association for Computational Linguistics.

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen,
and Xiaodong Shi. 2018. Deep semantic role label-
ing with self-attention. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In

156

https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/2020.acl-main.744
https://doi.org/10.18653/v1/2020.acl-main.744
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://aclanthology.org/W07-2216
https://aclanthology.org/W07-2216
https://aclanthology.org/W07-2216
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://doi.org/10.18653/v1/2020.acl-main.438
https://doi.org/10.18653/v1/2020.acl-main.438
https://doi.org/10.1162/coli.2008.34.2.257
https://doi.org/10.1162/coli.2008.34.2.257
https://aclanthology.org/W95-0107
https://aclanthology.org/W95-0107
https://aclanthology.org/W04-2401
https://aclanthology.org/W04-2401
https://aclanthology.org/W04-2401
https://aclanthology.org/D07-1014
https://aclanthology.org/D07-1014
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419

Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Andrew Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE transactions on Information Theory,
13(2):260–269.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. ACE 2005 multilingual
training corpus. Linguistic Data Consortium, 57.

Haoyu Wang, Muhao Chen, Hongming Zhang, and Dan
Roth. 2020. Joint constrained learning for event-
event relation extraction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 696–706, Online.
Association for Computational Linguistics.

Haoyu Wang, Hongming Zhang, Muhao Chen, and Dan
Roth. 2021. Learning constraints and descriptive seg-
mentation for subevent detection. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5216–5226, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with end-
to-end neural networks. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4609–4618, Florence, Italy. Asso-
ciation for Computational Linguistics.

Tianwen Wei, Jianwei Qi, Shenghuan He, and Song-
tao Sun. 2021. Masked conditional random fields
for sequence labeling. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2024–2035, Online.
Association for Computational Linguistics.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0. Lin-
guistic Data Consortium, Philadelphia, PA, 23.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 665–676,
Valencia, Spain. Association for Computational Lin-
guistics.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 3295–3305, Online. Association for Computa-
tional Linguistics.

157

https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2021.emnlp-main.423
https://doi.org/10.18653/v1/2021.emnlp-main.423
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/2021.naacl-main.163
https://doi.org/10.18653/v1/2021.naacl-main.163
https://aclanthology.org/E17-1063
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 158–182
July 13, 2023 ©2023 Association for Computational Linguistics

Can we Pretrain a SotA Legal Language Model on a Budget From Scratch?

Joel Niklaus and Daniele Giofré
Thomson Reuters Labs, Zug, Switzerland

firstname.lastname@thomsonreuters.com

Abstract

Even though many efficient transformers have
been proposed, only few such models are avail-
able for specialized domains. Additionally,
since the pretraining process is extremely costly
in general – but even more so as the sequence
length increases – it is often only in reach of
large research labs. One way of making pre-
training cheaper is the Replaced Token Detec-
tion (RTD) task, by providing more signal dur-
ing training compared to MLM, since the loss
can be computed over all tokens. In this work,
we train Longformer models with the efficient
RTD task on long-context legal data to show-
case that pretraining efficient LMs is possible
using less than 12 GPU days. We evaluate the
trained models on challenging summarization
tasks requiring the model to summarize com-
plex long texts. We find that both the small and
base models outperform their baselines on the
in-domain BillSum and out-of-domain PubMed
tasks in their respective parameter range. We
publish our models as a resource for researchers
and practitioners.

1 Introduction

Pretrained transformer models have achieved ex-
cellent performance across various Natural Lan-
guage Processing (NLP) tasks such as Text Clas-
sification (TC), Named Entity Recognition (NER),
Question Answering (QA) and summarization (De-
vlin et al., 2019; Yang et al., 2020; He et al., 2021;
Zhang et al., 2020a).

Transfer learning is to a large extent responsible
for this success (Howard and Ruder, 2018). Usu-
ally, transformer models are pretrained in a self-
supervised way on large unlabeled corpora (De-
vlin et al., 2019; Radford et al., 2018). Pretrain-
ing is very resource intensive (especially for large
models), thus making it costly and only available
for large organizations (Sharir et al., 2020). The
Masked Language Modeling (MLM) task has been

Figure 1: Results on BillSum (log-scaled x-axis)

very successful, with many models adopting the
task in pretraining (Devlin et al., 2019; Liu et al.,
2019; Beltagy et al., 2020; Zaheer et al., 2021).
Since typically only 15% of the tokens are masked,
the loss can be computed for those tokens only.

Clark et al. (2020) introduced the Replaced To-
ken Detection (RTD) task, enabling loss compu-
tation on all tokens for efficient training. On the
GLUE benchmark (Wang et al., 2018), ELECTRA
matches RoBERTa (Liu et al., 2019) and XLNet
(Yang et al., 2020) using 1/4 their compute. Al-
though ELECTRA’s training strategy seems very
promising, to the best of our knowledge, only few
works have adopted the RTD task so far (He et al.,
2021; Kanakarajan et al., 2021).

On another note, domain-specific pretraining has
been shown to improve downstream performance in
many domains such as law (Chalkidis et al., 2020;
Xiao et al., 2021), biology (Lee et al., 2019), sci-
entific articles (Beltagy et al., 2019), clinical docu-
ments (Li et al., 2022), or even code (Chen et al.,
2021a). Despite the vast amount of legal text and
the importance of training legal models for down-
stream tasks, there has yet to be domain-specific
pertaining coupled with the RTD task for law.

Pretraining on legal documents is especially chal-
lenging, given that legal documents tend to span
multiple pages (ranging from 10s to 100s of pages,
which translates to tens of thousands tokens). This

158

is incompatible with current transformer architec-
tures (Vaswani et al., 2017) as they often prohibit ef-
ficient processing of sequences longer than 512 to-
kens on current hardware due to the quadratic time
and memory requirement of the attention mecha-
nism. To solve this problem, a rich body of research
investigates how transformers can be adapted to ef-
ficiently process longer input (Tay et al., 2020b;
Child et al., 2019; Beltagy et al., 2020; Zaheer
et al., 2021; Roy et al., 2021; Kitaev et al., 2020;
Tay et al., 2021; Lee-Thorp et al., 2021).

Longformer (Beltagy et al., 2020) is one of
these efficient transformer architectures for long se-
quences, leveraging windowed and global attention.
So far, to the best of our knowledge, there does not
yet exist a public Longformer model pretrained on
English legal data1, although Xiao et al. (2021)
have proven the effectiveness of the Longformer
in dealing with long legal text in many Chinese-
related tasks. This work aims to fill this gap.

To test the ability to grasp long-distance depen-
dencies in the text, we mainly evaluated our models
on the task of automatic (abstractive) summariza-
tion. It consists of capturing the most important
concepts/ideas from the (long) document and then
rewriting it in a shorter passage in a grammatical
and logically coherent way (Chen et al., 2019).

In particular, we used the BillSum dataset (Ko-
rnilova and Eidelman, 2019), as a domain-specific
summarization task, and the PubMed dataset (Co-
han et al., 2018), to evaluate the model’s ability
outside the legal context (i.e., in the biomedical
context). On BillSum, we achieve a new state-
of-the-art (SOTA) (see Figure 1) in our parameter
range. On Pubmed, we obtain comparable metrics
even though the Language Model (LM) has only
been pretrained on legal data and the tokenizer is
also optimized for legal data (see Figure 2).

We emphasize that this performance was
achieved with minimal pretraining due to the com-
bination of the RTD task and the Longformer in-
frastructure making our LM very attractive from
the perspective of building costs. For example,
our model saw 3.2M examples during pretraining,
while RoBERTa (Liu et al., 2019) or PEGASUS-
large (Zhang et al., 2020a) saw 4.1B examples

1On the web there is a model based on Long-
former in the legal domain, but it offers no model card
(https://huggingface.co/saibo/legal-longformer-base-4096).
Also, concurrent to our work, Mamakas et al. (2022) trained
legal Longformer models, but they are private. Additionally,
concurrently, Hua et al. (2022) trained Reformer (Kitaev et al.,
2020) models with the RTD task on legal data.

(nearly 1300x more). For reference, RoBERTa
was trained for 1024 GPU days (>42x more than
our base model), while our small and base models
only used 12 and 24 GPU days respectively (16GB
NVIDIA V100 GPUs for all models).2

Contributions
The contributions of this paper are three-fold:

• We train and release a new model pretrained
on recently published curated English legal text
(Henderson et al., 2022), capable of handling in-
put spans longer than 512 tokens out of the box.

• Using Longformer and RTD, dubbed Budget-
Longformer, we achieve a new SOTA on Bill-
Sum and PubMed compared to models of the
same size. Our small model even outperforms
a transformer base model (Vaswani et al., 2017)
containing almost 4 times more encoder parame-
ters (110M vs. 29M). On BillSum it performs on
par with a PEGASUS base model (Zhang et al.,
2020a) whose encoder is also almost 4 times
larger and has been pretrained specifically for
the abstractive summarization task in mind.

• We verified that pretraining with the RTD task is
suitable for down-stream summarization tasks by
evaluating our model on an out-of-domain bench-
mark (PubMed), obtaining comparable results
with summarization-specific architectures.

Main Research Questions
In this work, we pose and examine three main re-
search questions:
RQ1: Is it possible to train a LM with domain (e.g.
legal) expertise efficiently from scratch, reducing
costs?
RQ2: How does our model compare with other
models on the challenging legal domain-specific
BillSum summarization benchmark?
RQ3: How well does our model compare with
other models on the biomedical out-of-domain
PubMed summarization benchmark?

2 Related Work
Domain-Specific Language Models
Previous work showed that domain-specific pre-
training achieves promising results on datasets of
specialized domains such as law (Chalkidis et al.,
2020; Xiao et al., 2021), biology (Lee et al., 2019),
scientific articles (Beltagy et al., 2019), clinical

2Although Zhang et al. (2020a) do not report the compute
used, we expect it to be similar to RoBERTa.

159

documents (Li et al., 2022), or even code (Chen
et al., 2021a).

Gururangan et al. (2020) show that continued
pretraining on a RoBERTa checkpoint on biomed-
ical data, scientific articles in computer science,
and reviews, clearly improves downstream perfor-
mance in the respective domain-specific datasets.
The effect was less pronounced on news domain
datasets, presumably because RoBERTa has seen
many news articles during pretraining already.

Long Document Processing

In the past few years, a vast amount of research
has been devoted to addressing the problem of
quadratic time and memory complexity associated
with the dense attention mechanism (Vaswani et al.,
2017), practically limiting the maximum sequence
length severely (often to 512 tokens) (Tay et al.,
2020b; Child et al., 2019; Beltagy et al., 2020; Za-
heer et al., 2021; Roy et al., 2021; Kitaev et al.,
2020; Tay et al., 2021; Lee-Thorp et al., 2021).
These research works have given rise to a new class
of transformers, referred to as sparse transformers
or efficient transformers (Tay et al., 2020b). Re-
ducing the cost associated with the computation
of the dense attention matrix while maintaining
the same performance is the core idea behind ef-
ficient transformers. This is often achieved by
introducing sparsity in the attention matrix in a
variety of ways that may be fixed pattern such as
local (windowed) attention (Child et al., 2019; Belt-
agy et al., 2020), global attention (Zaheer et al.,
2021) or learnable patterns such as routing atten-
tion (Roy et al., 2021) and LSH attention (Kitaev
et al., 2020) or a random pattern (Zaheer et al.,
2021; Tay et al., 2021). Recently, Lee-Thorp et al.
(2021) proposed to use Fourier transforms instead
of the attention layer. Tay et al. (2020b) provide a
comprehensive list of efficient transformers and the
detailed description of their attention mechanism.
(Tay et al., 2020a) proposed a series of tasks de-
signed for testing the capabilities of these different
models suitable for longer inputs. However, this
so-called “Long Range Arena” considers mostly ar-
tificial tasks, with the goal of evaluating the models
independent of any pretraining.

Efficient Pretraining

ELECTRA-style pretraining (Clark et al., 2020)
has been shown to reduce training cost substan-
tially, while matching the performance of SOTA
LMs. ELECTRA leverages a smaller generator

model (discarded after pretraining), that changes
some tokens. The larger discriminator model (used
for down-stream tasks) must predict for each token
if it was changed by the generator or not, similar to
how Generative Adversarial Networks (GANs) are
trained (Goodfellow et al., 2014). This enables the
loss to be relevant for every token, leading to much
faster and thus more efficient training.

3 Datasets

3.1 Pile of Law

Henderson et al. (2022) recently released a large-
scale English corpus suitable for pretraining LMs.
It contains 256 GB of diverse legal text in En-
glish from various jurisdictions and judicial bodies
including for example bills, court decisions and
contracts from the US, Canada, and Europe even
though the focus clearly lies on US data. While
there are 28 US datasets available (253.25 GB or
99%), there is only 1 Canadian dataset3 (243 MB
or 0.09%), 3 European datasets4 (2.3 GB or 0.9%),
and 2 international datasets5 (212 MB or 0.08%).
The non-US datasets only cover the categories “Le-
gal Case Opinions and Filings”, “Laws” and “Con-
versations”, but do not cover categories “Legal
Analyses”, “Contracts / Business Documents” and
“Study Materials”, whereas the US data is much
more diverse and covers all categories.

3.2 BillSum

Kornilova and Eidelman (2019) introduced a leg-
islative summarization dataset covering 21K US
bills from 1993 to 2018. It is challenging due to the
technical nature and complex structure of the bills.
Additionally, the bills are rather long, ranging from
5K to 20K characters (∼ 1K to 4K tokens6) with
their summaries being up to 5K characters (∼ 1K
tokens) long (see Appendix C for more details).

3.3 PubMed

Cohan et al. (2018) introduced another challeng-
ing summarization dataset in a specialized domain
(scientific articles from the biomedical domain).
It includes 133K scientific papers together with
their abstracts in English. The papers are 3K words
long on average and the summaries (abstracts) 200

3Canadian Court Opinions (ON, BC)
4European Court of Human Rights Opinions, EUR-LEX

and European Parliament Proceedings Parallel Corpus
5World Constitutions and U.N. General Debate Corpus
6Our experiments show that using our tokenizer, one token

corresponds to 5.33 characters on average.

160

words. Thus, similar to the BillSum dataset, this
dataset is well suited as a test bed for methods capa-
ble of long document summarization. Note, that in
this dataset, the domain is vastly different from the
legal domain (see Appendix C for more details).

4 BudgetLongformer

In the legal domain, it is especially important that
models can handle long input. So far, there does not
exist an English legal model capable of handling
more than 512 tokens. Since many tasks in legal
NLP are formulated as TC problems, a hierarchical
architecture has been used frequently to process
long documents (Chalkidis et al., 2019; Niklaus
et al., 2021, 2022, 2023). This simple hierarchi-
cal architecture, however, cannot be easily adapted
to solve the more complex sequence-to-sequence
tasks like token classification or summarization be-
cause it compresses the long input sequence into a
single token. For this reason, in this work, we pre-
train a more versatile Longformer model. To make
pretraining more affordable, we trained the well-
proven Longformer model (Beltagy et al., 2020)
with the RTD task proposed by Clark et al. (2020).

4.1 Longformer

We opted for the Longformer method over other
efficient transformer architectures because it seems
to work robustly7 and is heavily used in the litera-
ture (Xiao et al., 2021; Dai et al., 2022; Maroudas
et al., 2022). Longformer (Beltagy et al., 2020)
proposed three sparse attention mechanisms: Slid-
ing Window Attention, Dilated Sliding Window
Attention and Global + Sliding Window. We fol-
low their recommendations and use the Global +
Sliding Window attention mechanism because we
pretrain an encoder-only model.

4.2 Replaced Token Detection

Inspired by GAN training (Goodfellow et al.,
2014), the RTD task adapts this training framework
to NLP. The drawback of training with MLM is that
the loss can only be computed for the masked to-
kens (usually 15%). With RTD training, a smaller
generator model (usually 1/3 the size of the dis-
criminator) solves the MLM task. The discrimi-
nator receives the predictions of the generator and
determines for each token, whether it is original or
changed by the generator. This leads to the loss be-
ing computed for each token for the discriminator,

7164 models on huggingface hub as of January 3rd 2023

PileOfLaw Subset Dataset Size # Words # Documents

caselaw

CL Opinions 59.29GB 7.65B 3.39M

diverse

Total 73.04GB 8.91B 2.1M
CL Opinions 8.74GB 1.13B 500K
CL Docket Entries 17.49GB 1.80B 500K
U.S. State Codes 6.77GB 829.62M 157
U.S. Code 0.27GB 30.54M 43
EUR-Lex 1.31GB 191.65M 106K
Edgar Contracts 7.26GB 0.97B 500K
Atticus Contracts 31.2GB 3.96B 488K

Table 1: The datasets used for pretraining our models.
CL is short for Court Listener

thus transporting more information per forward-
pass and leading to more efficient training.

5 Experimental Setup

In this section, we describe how we set up the
experiments. For all experiments, we used the hug-
gingface transformers library (Wolf et al., 2020)
available under an Apache 2.0 license and AMP
mixed precision training and evaluation to reduce
costs and GPU memory.

5.1 Tokenizer
We trained a byte-level BPE tokenizer (Wang et al.,
2019) akin to Beltagy et al. (2020) with a large
64K token vocabulary to encode complex legal lan-
guage well. We trained the tokenizer using the
huggingface tokenizers library8 on the entire Pile-
OfLaw training split (∼ 192GB, ∼ 22.5B tokens,
∼ 7.5M documents), covering a wide array of En-
glish (mostly US) legal texts without preprocess-
ing/cleaning due to the high-quality data.

5.2 Pretraining
Henderson et al. (2022) have experienced difficul-
ties when the language model was trained on the
entire PileOfLaw. We believe that the highly im-
balanced dataset concerning text types (contracts,
court decisions, legislation, etc.) could have been a
reason for the training instability.9 This led us to
do a sanity check by training only on caselaw first
and then to subselect only the most important and
largest subsets of the PileOfLaw for training the
diverse model, leading to stable pretraining (see
Section 6). On the contrary, on the summarization
tasks, the diverse model – which includes more

8https://github.com/huggingface/tokenizers
9However, the large model size could also explain the

training instability.

161

https://github.com/huggingface/tokenizers

lexical and layout diversity of documents – turns
out to perform better and train more robustly.

We trained the caselaw models on the train-
ing subset of “Court Listener Opinions” from the
PileOfLaw (59.3 GB, 7.65B words, 3.39M doc-
uments). The diverse models were trained on
caselaw (“Court Listener Opinions” & “Court Lis-
tener Docket Entries”), legislation (“US Code”,
“State Codes” & “EURLEX”) and contracts (“At-
ticus Contracts” & “EDGAR Contracts”). To
balance the training data, we limited the num-
ber of documents to 500K (this affects Court Lis-
tener Opinions, Court Listener Docket Entries and
EDGAR Contracts (see Table 1 for more details).
Our validation set consisted of 1000 randomly se-
lected examples from the respective training set.10

To maximally use the available data, we concate-
nated all the examples and cut them off in slices
of the model’s maximum sequence length (4096) –
in batches of 1000 examples with multiprocessing
to speed up data preparation. We dropped the last
slice, since it will not contain 4096 tokens.

We trained both a small (29M parameters) and
a base (159M parameters) model for each configu-
ration (caselaw and diverse data). To reach 100K
steps it took 68 hours (a bit less than 3 days) for
the small model and 135 hours (a bit more than
5 days) for the base model on 4 16GB NVIDIA
V100 GPUs. The achieved training and evaluation
losses are shown in Table 7 in Appendix A. Inter-
estingly, we find that the diverse models achieve
lower training and evaluation losses. Please find
more training details in Appendix A. Due to budget
constraints, we trained for a maximum of 200K
steps. Surprisingly, lower pretraining loss from
200K-step models did not transfer to downstream
tasks. We hypothesize that a larger batch size might
lead to improvements when training longer.

5.3 Downstream Benchmarks

For downstream finetuning, we paired our pre-
trained encoder model with a randomly initialized
BART-base decoder model (Lewis et al., 2020).11

For BillSum, we set the maximum input length to
1024 and the maximum target length to 256 to save
compute. However, many summaries get cut off at
256 tokens. This is why we took our best model

10We used such a small validation set to save compute.
11Interestingly, the randomly initialized decoder

yielded better results than when we used the weights
from the pretrained huggingface checkpoint at
https://huggingface.co/facebook/bart-base.

and trained it with maximum input length 4096 and
maximum target length 1024 (see results in Table
5 and examples in Table 12). For PubMed, we set
the maximum input length to 4096 and the maxi-
mum generation length to 512. Due to high training
costs, we only trained our models with one random
seed (42). Our models contain 29M (small) and
159M (base) parameters in the encoder and 96M
parameters in the decoder, resulting in a total of
125M (small) and 255M (base) parameters.

5.4 Ablation Studies
We run two ablation studies on the BillSum dataset,
testing the influence of the pretraining corpus and
the number of pretraining steps. To reduce com-
putational costs, we set the maximum input and
generation lengths to 1024 and 128 respectively.

Steps Size Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑
100K small 51.62 30.84 40.22
200K small 49.02 27.02 36.98

100K base 56.10 36.50 45.17
200K base 55.30 35.47 44.30

Table 2: Models pretrained on caselaw only.

Corpus Size Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑
caselaw small 51.62 30.84 40.22
diverse small 53.61 33.54 42.50

caselaw base 56.10 36.50 45.17
diverse base 54.87 35.63 44.21

Table 3: Models pretrained for 100K steps.

Pretraining Steps
Though train and evaluation losses decrease
steadily with more pretraining steps (see Table 7),
surprisingly, models trained longer underperform
on the BillSum benchmark (see Table 2). We hy-
pothesize the low pretraining batch size caused fast
convergence to a local optimum, inhibiting further
progress. Consequently, we use the 100K steps
model checkpoints.

Pretraining Corpus
In total, we trained 4 models (small and base each
on the caselaw and diverse corpora). In Table 3
we perform an ablation on the pretraining corpus.
The results are inconclusive, with the diverse cor-
pus outperforming for the small models and the
caselaw corpus outperforming for the base models.
The caselaw models were unstable during finetun-
ing and even failed completely for some learning

162

https://huggingface.co/facebook/bart-base

rates. Together with the fact that the diverse models
reached lower pretraining losses (see Table 7), we
focus on the diverse models for our experiments.

We acknowledge the necessity of more ablations.
Because of limited compute, we opted for the safest
and cheapest choices instead of ablating them (e.g.
windowed and global attention, RTD pretraining
task). Additionally, we put a focus on providing
our models as a resource for further research in
this area and for practitioners in the field of legal
NLP. We thus leave further ablations for future
work (w.r.t. pretraining task, more general domain
corpora, efficient transformer method, etc.).

6 Results

In this section, we present results for the BillSum
and PubMed datasets, conducting error analysis on
generated summaries. Table 4 compares models
in detail. All further experiments utilize models
trained on the diverse dataset.

6.1 BillSum

We achieve a new SOTA on BillSum in the small
and base parameter range and outperform models
with almost 12 times more encoder parameters and
others having seen more than 1200 times more
pretraining examples. The results on BillSum are
presented in Figure 1 and Table 5.

We observe that even our small diverse model
clearly exceeds the baseline of the original article
(DOC + SUM), even though their model is based on
BERT-large, containing almost 12 times more en-
coder parameters and pretrained for 10x more steps.
Even more surprisingly, our small diverse model
is on par with the PEGASUS-base model (Zhang
et al., 2020a) (37.58 vs. 37.78 Rouge-L), pretrained
using the Gap-Sentences task specifically designed
for abstractive summarization. PEGASUS-base
contains almost 4 times more encoder parameters
and has seen 40 times more training examples dur-
ing pretraining (128M vs. 3.2M; see Table 4). Most
surprisingly, it even outperforms an LED large
model12 (37.58 vs. 34.23 Rouge-L) using a much
longer input length (16384 vs. 1024), containing
more than 8 times as many encoder parameters
(257M vs. 29M) and having seen more than 1200
times more examples during pretraining.

By scaling up our model to the base size and in-
creasing the maximum input and generation length

12https://huggingface.co/Artifact-
AI/led_large_16384_billsum_summarization

Figure 2: Results on PubMed (log-scaled x-axis)

to 4096 and 1024 tokens respectively, we even ap-
proach the performance of PEGASUS-large (43.23
vs. 45.8 Rouge-L). PEGASUS-large has seen three
orders of magnitude more training examples during
its pretraining in comparison to our model (4.1B vs.
3.2M) and contains almost twice as many encoder
parameters (301M vs. 159M).

To conclude, it appears that pretraining with the
RTD on (high-quality) in-domain data can be an
effective and computationally cheap alternative to a
summarization-specific model trained on web text
(i.e. PEGASUS). Whether the gain is due to in-
domain pretraining or the RTD task is inconclusive,
and we leave these experiments for future work.

6.2 PubMed

We achieve a new SOTA on PubMed in the small
and base parameter range and almost reach the per-
formance of a PEGASUS large model pretrained
with a summarization-specific task. The results on
PubMed are presented in Figure 2 and Table 6.

Similar to the results on BillSum, our small
model clearly outperforms the transformer-base
model (23.24 vs. 19.02 Rouge-L) and approaches
the PEGASUS-base model (23.24 vs. 25.2 Rouge-
L) despite not being specifically pretrained for sum-
marization and having seen significantly fewer ex-
amples during pretraining (3.2M vs. 128M). Simi-
lar again, our base model outperforms PEGASUS-
base (26.53 vs. 25.23 Rouge-L) and almost reaches
the performance of PEGASUS-large (26.53 vs.
27.69 Rouge-L) while having seen 1280 times
fewer examples during pretraining (3.2M vs. 4.1B).

Our model is pretrained on the narrower domain
of legal text, rather than broader C4 data used by
PEGASUS. Furthermore, our model and tokenizer
had no exposure to medical data in pretraining.
This, combined with the high quality of legal data
used in pretraining, may explain our model’s good
out-of-domain performance, similar to the findings

163

https://huggingface.co/Artifact-AI/led_large_16384_billsum_summarization
https://huggingface.co/Artifact-AI/led_large_16384_billsum_summarization

Model Name Source P. Steps P. BS # P. Examples # Enc. Par # Dec. Par MaxSeqLen Vocab

DOC + SUM (Kornilova and Eidelman, 2019) 1000K 256 256M 340M – 512 30K
Transformer base (Zhang et al., 2020a) – – – 159M 187M 1024 96K
PEGASUS base (Zhang et al., 2020a) 500K 256 128M 159M 187M 1024 96K
PEGASUS large (C4) (Zhang et al., 2020a) 500K 8192 4096M 301M 368M 1024 96K
LED large (Beltagy et al., 2020) 500K 8192 4096M 257M 254M 16384 50K
LongT5 xl (Guo et al., 2022) 1000K 2048 2048M 1224M 1626M 16384 32K
BudgetLongformer small ours 100K 32 3.2M 29M 96M 4096 64K
BudgetLongformer base ours 100K 32 3.2M 159M 96M 4096 64K

Table 4: Comparison of the evaluated models. For more information on the baselines, refer to the cited papers.
(Abbreviations: P.: Pretraining, BS: Batch Size, Enc.: Encoder, Dec.: Decoder, Par: Parameters.)

Model Size MaxInLen MaxGenLen Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑
BudgetLongformer small 1024 256 49.85 29.63 37.58

Transformer base 512 256 44.05 21.30 30.98
PEGASUS base 512 256 51.42 29.68 37.78
BudgetLongformer base 1024 256 52.70 32.97 40.50
BudgetLongformer base 4096 1024 55.45 36.68 43.23

DOC + SUM large 512 512 40.80 23.83 33.73
PEGASUS (C4) large 1024 256 57.20 39.56 45.80
LED large 16384 1024 47.84 26.34 34.23

Table 5: Results on BillSum. Best results per model size are in bold.

of Taylor et al. (2022). Even though our pretraining
data is out-of-domain PubMed – whereas C4, likely
contains medical data – compared to PEGASUS,
our models perform similarly on PubMed as on
BillSum. This makes us believe the gains stem
mainly from the RTD pretraining task.

Krishna et al. (2022) find that pretraining on
the downstream corpus can achieve similar results
as pretraining on a large upstream corpus, signifi-
cantly cutting costs. Finetuning a small model on
BillSum cost us approx. half-day of a 16GB V100
GPU. Pretraining the small model for 100K steps
cost approx. 12 GPU days13. Pretraining and fine-
tuning a smaller model with the RTD task on a task
specific corpus might be a suitable alternative to
finetuning a larger general model, yielding similar
performance with shorter inference time and costs.

6.3 Error Analysis

We conducted an error analysis by manually in-
specting 25 random summaries. Example sum-
maries are shown in Appendix D.

Coherence The inspected summaries were well-
structured and emulated the specific style of the
reference summaries in the respective domains14.

13For the base model the numbers are approx. double
14In future work, we will corroborate these findings by

performing human evaluations with domain experts.

Consistency We find the summaries mostly fac-
tually aligned with the source.15 However, some-
times it copies formulas from the source text, but
then mixes up numbers.16

Fluency Generally, we find the summaries to be
fluent17 and grammatically correct.

Relevance In general, the model summaries con-
tain important content from the source document.
However, we find repetitions to be a repeating issue
in both BillSum and PubMed summarization. In
the BillSum task, the model occasionally uses the
same start of the sentence multiple times instead of
providing a longer list 18. It correctly imitates the
lists often given in BillSum summaries, but then
seems to struggle with continuing lists to more
entries. Other times it manages well to formally
continue the lists, but repeats list items. In the
PubMed task, in one particular summary, a phrase

15e.g. “imaging guidance improved the accuracy of intra
- articular injections of the knee (96.7% versus 81.0%, p <
0.001) and shoulder (97.3% versus 65.4%, p < 0.001)”

16e.g. “[a1c (%) = [0.021 mbg (mg / dl] + 4.3, r = 0.92)
+ 4.3, r = 0.58]”

17Repetitions are discussed in “Relevance”
18e.g. “amends the agricultural marketing act of 1946 to

terminate the authority of the secretary of agriculture (usda)
to: (1) livestock processing plant processing plant slaughter,
and (2) slaughtering plant slaughter. amends the agricultural
marketing act of 1946 to: (1) revise minimum reporting
requirements; and (2) revise reporting requirements”

164

Model Size MaxInLen MaxGenLen Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑
BudgetLongformer small 4096 512 34.98 13.56 23.24

Transformer base 512 256 33.94 7.43 19.02
PEGASUS base 512 256 39.98 15.15 25.23
BudgetLongformer base 4096 512 41.16 18.15 26.53

PEGASUS (C4) large 1024 256 45.49 19.90 27.69

LongT5 xl 16384 512 50.23 24.76 46.67

Table 6: Results on PubMed. Best results per model size are in bold.

gets repeated 10 times. Even in a high scoring ex-
ample (Rouge1: 62.2, RougeL: 48.5, 464 tokens
summary length), a sentence is repeated three times.
Here, in contrast to BillSum, the repetitions are also
occurring on a lower level.19

Generally, the problems are similar in the Bill-
Sum and the PubMed tasks; however, they are less
pronounced in the in-domain BillSum dataset.

7 Conclusions and Future Work

7.1 Answers to Main Research Questions
RQ1: Is it possible to train a LM with domain (e.g.
legal) expertise efficiently from scratch, reducing
costs? Yes, this work demonstrates the feasibility
of pretraining a domain-expertise LM from scratch
with minimal compute, matching performance of
methods exposed to three orders of magnitude more
pretraining examples. Particularly when a high-
performing large teacher model is unavailable, our
method is advisable.
RQ2: How does our model compare with other
models on the challenging legal domain-specific
BillSum summarization benchmark? Our LMs
compare favorably to baselines on the challenging
domain-specific summarization benchmark Bill-
Sum, necessitating long input processing. Our
small model outperforms the larger PEGASUS-
base, and our base model almost reaches the perfor-
mance of the larger PEGASUS-large. Both base-
lines have been pretrained with much more com-
pute and data, and additionally with a pretraining
task crafted specifically for summarization.
RQ3: How well does our model compare with
other models on the biomedical out-of-domain
PubMed summarization benchmark? Our re-
sults on the out-of-domain PubMed summariza-
tion benchmark show that our models compare
favorably to baselines. Again, our small model

19e.g. “hemoglobin glycated hemoglobin (hba1c)”

outperforms PEGASUS-base and our base model
approaches PEGASUS large.

7.2 Conclusion

In this work, we show that we can successfully
pretrain Longformer models with the RTD task on
a Budget. Using very little pretraining, we can
achieve SOTA performance on the challenging le-
gal summarization task BillSum, outperforming
PEGASUS, that has been pretrained specifically
for summarization. Our model even outperforms
PEGASUS on the out-of-domain PubMed dataset
involving biomedical research articles. To sum up,
we present a simple and extremely cheap way of
pretraining a long-context LM in cases without the
availability of a large teacher model.

7.3 Future Work

Future work could test our models on further le-
gal downstream benchmarks such as LexGLUE
(Chalkidis et al., 2021), ClassActionPrediction
(Semo et al., 2022), CUAD (Hendrycks et al., 2021)
or MultiLexSum (Shen et al., 2022). Additionally,
one can test whether the out-of-domain results hold
on other out-of-domain summarization datasets,
such as BigPatent (Sharma et al., 2019) or ArXiv
(Cohan et al., 2018). Future work could further
scale up the models in terms of batch size, pre-
training steps, parameter count and data size to test
what further gains can be achieved. Additionally,
to further save compute and enhance models, one
could explore warm-starting ELECTRA pretrain-
ing from existing checkpoints.. The difficulty, of
course, lies in getting a suitable generator and dis-
criminator, trained with the same tokenizer. One
possible setup might be Longformer-base as the
generator and Longformer-large as the discrimina-
tor. Finally, one can investigate the use of other
efficient transformers with the RTD task.

165

Limitations

ELECTRA-style training has the disadvantage of
the setup being slightly more complicated, requir-
ing a generator and a discriminator. Additionally,
the generator should be smaller than the discrimina-
tor to ensure stable training. This makes it difficult
to warm start from available checkpoints, since two
models of different sizes are required. Often, small
models are not released, which makes it difficult
to warm-start base models using the RTD task. We
leave the direction of warm starting a large discrim-
inator with a base generator to future work.

Except for EUR-LEX (1.31 GB or 1.8% of our
diverse dataset), our models have only seen US
data during the pretraining phase. So, while these
models are expected to work well on US data or
datasets with similar content such as heavily in-
fluenced by the US or mainly common-law based,
legal data from Europe for example is expected to
look very different (mainly civil-law based except
for the UK) and often translated from the origi-
nal European languages. Thus, our models are not
expected to transfer well to such kind of data.

Because of insufficient compute, we were not
able to scale up our models in terms of parameter
size, batch size and number of pretraining steps. So
while we can show that our approach scales well
from the small to the base model, it is unknown
if this continues to even larger model sizes. Al-
though it is expected to produce better results, we
do not know if using a higher batch size and more
pretraining steps boosts performance significantly.
Additionally, the lacking compute budget made
evaluating on more and especially large datasets
like BigPatent impossible. Therefore, we cannot
give any conclusions at this point to whether our
results are robust across a wide range of datasets.

So far, we did not evaluate our summarization
models using newer reference-based metrics such
as BERTScore (Zhang et al., 2020b) or BARTScore
(Yuan et al., 2021), or reference-free metrics such
as SUPERT (Gao et al., 2020) or Semantic Dis-
tribution Correlation (SDC) (Chen et al., 2021b).
However, our baselines used ROUGE only, requir-
ing us to rerun experiments for comparison using
newer scores, straining our low compute budget.

So far, we did not have the resources to con-
duct a thorough human expert evaluation of the
quality of our summarization outputs. Such an
evaluation would be needed for production systems
and for better comparison of models. However,

it also requires highly educated medical experts
(for PubMed) or lawyers with specific expertise
in US bills (for BillSum) respectively, and thus a
prohibitively high amount of resources.

For comparing the efficiency of pretraining, num-
ber of FLOPs would probably be best. We com-
pared the models’ efficiency based on the number
of seen examples during pretraining, due to ready
availability (most papers report batch size and num-
ber of steps, but few papers report FLOPs).

Ethics Statement

Pretraining language models is a very compute-
heavy process and thus leaves a large carbon foot-
print (Strubell et al., 2019; Patterson et al., 2021).
Our method makes significantly reduces the com-
pute requirements and thus the carbon footprint.

As with any large LM there is the risk of it pro-
ducing biased or unfair output. Researchers using
the model should put into place respective safe-
guards to identify biased and/or toxic language.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:

A Pretrained Language Model for Scientific Text.
arXiv:1903.10676 [cs]. ArXiv: 1903.10676.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The Long-Document Trans-
former. arXiv:2004.05150 [cs]. ArXiv: 2004.05150.

Ilias Chalkidis, Ion Androutsopoulos, and Nikolaos Ale-
tras. 2019. Neural Legal Judgment Prediction in
English. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4317–4323, Florence, Italy. Association for
Computational Linguistics.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.
2020. LEGAL-BERT: The Muppets straight out
of Law School. arXiv:2010.02559 [cs]. ArXiv:
2010.02559.

Ilias Chalkidis, Abhik Jana, Dirk Hartung,
Michael James Bommarito, Ion Androutsopoulos,
Daniel Martin Katz, and Nikolaos Aletras. 2021.
LexGLUE: A Benchmark Dataset for Legal Lan-
guage Understanding in English. SSRN Scholarly
Paper ID 3936759, Social Science Research Network,
Rochester, NY.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,

166

http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2004.05150
https://doi.org/10.18653/v1/P19-1424
https://doi.org/10.18653/v1/P19-1424
http://arxiv.org/abs/2010.02559
http://arxiv.org/abs/2010.02559
https://doi.org/10.2139/ssrn.3936759
https://doi.org/10.2139/ssrn.3936759

Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021a. Eval-
uating Large Language Models Trained on Code.
arXiv:2107.03374 [cs]. ArXiv: 2107.03374.

Wang Chen, Piji Li, and Irwin King. 2021b. A Training-
free and Reference-free Summarization Evaluation
Metric via Centrality-weighted Relevance and Self-
referenced Redundancy. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 404–414, Online. Association
for Computational Linguistics.

Yangbin Chen, Yun Ma, Xudong Mao, and Qing Li.
2019. Multi-Task Learning for Abstractive and Ex-
tractive Summarization. Data Science and Engineer-
ing, 4(1):14–23.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating Long Sequences with
Sparse Transformers. arXiv:1904.10509 [cs, stat].
ArXiv: 1904.10509.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators. arXiv:2003.10555 [cs]. ArXiv:
2003.10555.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A Discourse-Aware Attention
Model for Abstractive Summarization of Long Doc-
uments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Xiang Dai, Ilias Chalkidis, Sune Darkner, and
Desmond Elliott. 2022. Revisiting Transformer-
based Models for Long Document Classification.
arXiv:2204.06683 [cs]. ArXiv: 2204.06683.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Yang Gao, Wei Zhao, and Steffen Eger. 2020. SUPERT:
Towards New Frontiers in Unsupervised Evaluation

Metrics for Multi-Document Summarization. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1347–
1354, Online. Association for Computational Linguis-
tics.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. ArXiv:1406.2661 [cs, stat].

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2022. LongT5: Efficient text-to-text transformer for
long sequences. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 724–
736, Seattle, United States. Association for Compu-
tational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t Stop Pretraining:
Adapt Language Models to Domains and Tasks.
arXiv:2004.10964 [cs]. ArXiv: 2004.10964.

Pengcheng He, Jianfeng Gao, and Weizhu Chen.
2021. DeBERTaV3: Improving DeBERTa
using ELECTRA-Style Pre-Training with
Gradient-Disentangled Embedding Sharing.
arXiv:2111.09543 [cs]. ArXiv: 2111.09543.

Peter Henderson, Mark S. Krass, Lucia Zheng, Neel
Guha, Christopher D. Manning, Dan Jurafsky, and
Daniel E. Ho. 2022. Pile of Law: Learning Responsi-
ble Data Filtering from the Law and a 256GB Open-
Source Legal Dataset. ArXiv:2207.00220 [cs].

Dan Hendrycks, Collin Burns, Anya Chen, and
Spencer Ball. 2021. CUAD: An Expert-
Annotated NLP Dataset for Legal Contract Review.
ArXiv:2103.06268 [cs].

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Wenyue Hua, Yuchen Zhang, Zhe Chen, Josie Li, and
Melanie Weber. 2022. LegalRelectra: Mixed-domain
Language Modeling for Long-range Legal Text Com-
prehension. ArXiv:2212.08204 [cs].

Kamal raj Kanakarajan, Bhuvana Kundumani, and
Malaikannan Sankarasubbu. 2021. BioELEC-
TRA:Pretrained Biomedical text Encoder using Dis-
criminators. In Proceedings of the 20th Workshop
on Biomedical Language Processing, pages 143–154,
Online. Association for Computational Linguistics.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The Efficient Transformer.
arXiv:2001.04451 [cs, stat]. ArXiv: 2001.04451.

167

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2021.acl-long.34
https://doi.org/10.18653/v1/2021.acl-long.34
https://doi.org/10.18653/v1/2021.acl-long.34
https://doi.org/10.18653/v1/2021.acl-long.34
https://doi.org/10.1007/s41019-019-0087-7
https://doi.org/10.1007/s41019-019-0087-7
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
http://arxiv.org/abs/2204.06683
http://arxiv.org/abs/2204.06683
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.1406.2661
https://aclanthology.org/2022.findings-naacl.55
https://aclanthology.org/2022.findings-naacl.55
http://arxiv.org/abs/2004.10964
http://arxiv.org/abs/2004.10964
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2207.00220
http://arxiv.org/abs/2207.00220
http://arxiv.org/abs/2207.00220
http://arxiv.org/abs/2103.06268
http://arxiv.org/abs/2103.06268
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.48550/arXiv.2212.08204
https://doi.org/10.48550/arXiv.2212.08204
https://doi.org/10.48550/arXiv.2212.08204
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
http://arxiv.org/abs/2001.04451

Anastassia Kornilova and Vladimir Eidelman. 2019.
BillSum: A Corpus for Automatic Summarization of
US Legislation. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 48–56,
Hong Kong, China. Association for Computational
Linguistics.

Kundan Krishna, Saurabh Garg, Jeffrey P. Bigham,
and Zachary C. Lipton. 2022. Downstream
Datasets Make Surprisingly Good Pretraining Cor-
pora. ArXiv:2209.14389 [cs].

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, page btz682. ArXiv: 1901.08746.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2021. FNet: Mixing Tokens with
Fourier Transforms. arXiv:2105.03824 [cs]. ArXiv:
2105.03824.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yikuan Li, Ramsey M. Wehbe, Faraz S. Ahmad, Hanyin
Wang, and Yuan Luo. 2022. Clinical-Longformer
and Clinical-BigBird: Transformers for long clin-
ical sequences. arXiv:2201.11838 [cs]. ArXiv:
2201.11838.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs]. ArXiv:
1907.11692.

Dimitris Mamakas, Petros Tsotsi, Ion Androutsopoulos,
and Ilias Chalkidis. 2022. Processing Long Legal
Documents with Pre-trained Transformers: Modding
LegalBERT and Longformer. ArXiv:2211.00974
[cs].

Stelios Maroudas, Sotiris Legkas, Prodromos Malaka-
siotis, and Ilias Chalkidis. 2022. Legal-Tech Open
Diaries: Lesson learned on how to develop and de-
ploy light-weight models in the era of humongous
Language Models. ArXiv:2210.13086 [cs].

Joel Niklaus, Ilias Chalkidis, and Matthias Stürmer.
2021. Swiss-Judgment-Prediction: A Multilingual
Legal Judgment Prediction Benchmark. In Proceed-
ings of the Natural Legal Language Processing Work-
shop 2021, pages 19–35, Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Joel Niklaus, Veton Matoshi, Pooja Rani, Andrea
Galassi, Matthias Stürmer, and Ilias Chalkidis.
2023. LEXTREME: A Multi-Lingual and
Multi-Task Benchmark for the Legal Domain.
ArXiv:2301.13126 [cs].

Joel Niklaus, Matthias Stürmer, and Ilias Chalkidis.
2022. An Empirical Study on Cross-X Transfer for
Legal Judgment Prediction. In Proceedings of the
2nd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
12th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
32–46, Online only. Association for Computational
Linguistics.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Car-
bon Emissions and Large Neural Network Training.
arXiv:2104.10350 [cs]. ArXiv: 2104.10350.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving Language Under-
standing by Generative Pre-Training. page 12.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient Content-Based
Sparse Attention with Routing Transformers. Trans-
actions of the Association for Computational Lin-
guistics, 9:53–68. Place: Cambridge, MA Publisher:
MIT Press.

Gil Semo, Dor Bernsohn, Ben Hagag, Gila Hayat, and
Joel Niklaus. 2022. ClassActionPrediction: A Chal-
lenging Benchmark for Legal Judgment Prediction of
Class Action Cases in the US. In Proceedings of the
Natural Legal Language Processing Workshop 2022,
pages 31–46, Abu Dhabi, United Arab Emirates (Hy-
brid). Association for Computational Linguistics.

Or Sharir, Barak Peleg, and Yoav Shoham. 2020. The
Cost of Training NLP Models: A Concise Overview.
ArXiv:2004.08900 [cs].

Eva Sharma, Chen Li, and Lu Wang. 2019. BIG-
PATENT: A Large-Scale Dataset for Abstractive and
Coherent Summarization. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2204–2213, Florence, Italy. Asso-
ciation for Computational Linguistics.

Zejiang Shen, Kyle Lo, Lauren Yu, Nathan Dahlberg,
Margo Schlanger, and Doug Downey. 2022.
Multi-LexSum: Real-World Summaries of
Civil Rights Lawsuits at Multiple Granularities.
ArXiv:2206.10883 [cs].

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and Policy Considerations for
Deep Learning in NLP. ArXiv:1906.02243 [cs].

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan,
Zhe Zhao, and Che Zheng. 2021. Synthesizer:
Rethinking Self-Attention in Transformer Models.
arXiv:2005.00743 [cs]. ArXiv: 2005.00743.

168

https://doi.org/10.18653/v1/D19-5406
https://doi.org/10.18653/v1/D19-5406
http://arxiv.org/abs/2209.14389
http://arxiv.org/abs/2209.14389
http://arxiv.org/abs/2209.14389
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
http://arxiv.org/abs/2105.03824
http://arxiv.org/abs/2105.03824
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2201.11838
http://arxiv.org/abs/2201.11838
http://arxiv.org/abs/2201.11838
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2211.00974
http://arxiv.org/abs/2211.00974
http://arxiv.org/abs/2211.00974
http://arxiv.org/abs/2210.13086
http://arxiv.org/abs/2210.13086
http://arxiv.org/abs/2210.13086
http://arxiv.org/abs/2210.13086
https://aclanthology.org/2021.nllp-1.3
https://aclanthology.org/2021.nllp-1.3
https://doi.org/10.48550/arXiv.2301.13126
https://doi.org/10.48550/arXiv.2301.13126
https://aclanthology.org/2022.aacl-main.3
https://aclanthology.org/2022.aacl-main.3
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.1162/tacl_a_00353
https://aclanthology.org/2022.nllp-1.3
https://aclanthology.org/2022.nllp-1.3
https://aclanthology.org/2022.nllp-1.3
http://arxiv.org/abs/2004.08900
http://arxiv.org/abs/2004.08900
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.48550/arXiv.2206.10883
https://doi.org/10.48550/arXiv.2206.10883
https://doi.org/10.48550/arXiv.1906.02243
https://doi.org/10.48550/arXiv.1906.02243
http://arxiv.org/abs/2005.00743
http://arxiv.org/abs/2005.00743

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang, Se-
bastian Ruder, and Donald Metzler. 2020a. Long
Range Arena: A Benchmark for Efficient Transform-
ers. arXiv:2011.04006 [cs]. ArXiv: 2011.04006.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020b. Efficient Transformers: A Survey.
arXiv:2009.06732 [cs]. ArXiv: 2009.06732.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A Large Language Model for Science.
ArXiv:2211.09085 [cs, stat].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is
All You Need. arXiv:1706.03762 [cs]. ArXiv:
1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

Changhan Wang, Kyunghyun Cho, and Jiatao Gu. 2019.
Neural Machine Translation with Byte-Level Sub-
words. ArXiv:1909.03341 [cs].

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Chaojun Xiao, Xueyu Hu, Zhiyuan Liu, Cunchao Tu,
and Maosong Sun. 2021. Lawformer: A pre-trained
language model for Chinese legal long documents.
AI Open, 2:79–84.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2020.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. arXiv:1906.08237 [cs].
ArXiv: 1906.08237.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
BARTScore: Evaluating Generated Text as Text Gen-
eration. arXiv:2106.11520 [cs]. ArXiv: 2106.11520.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,

and Amr Ahmed. 2021. Big Bird: Transformers
for Longer Sequences. arXiv:2007.14062 [cs, stat].
ArXiv: 2007.14062.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020a. PEGASUS: Pre-training with Ex-
tracted Gap-sentences for Abstractive Summariza-
tion. arXiv:1912.08777 [cs]. ArXiv: 1912.08777.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kil-
ian Q. Weinberger, and Yoav Artzi. 2020b.
BERTScore: Evaluating Text Generation with BERT.
arXiv:1904.09675 [cs]. ArXiv: 1904.09675.

A Hyperparameters and Training Details

Model Data # Steps Train Loss Eval Loss

small caselaw 50K 14.61 15.78
small caselaw 100K 13.93 15.07
small caselaw 150K 13.63 14.77
small caselaw 200K 13.38 14.49

small diverse 50K 13.75 12.70
small diverse 100K 12.78 11.66
small diverse 150K 12.28 11.29
small diverse 200K 12.05 11.03

base caselaw 50K 12.40 13.76
base caselaw 100K 11.67 12.99
base caselaw 150K 11.31 12.58
base caselaw 200K 11.02 12.27

base diverse 50K 10.70 10.01
base diverse 100K 9.86 9.22
base diverse 150K 9.42 8.79
base diverse 200K 9.20 8.56

Table 7: Training and Evaluation losses for the different
trained models. Note that these losses are the addition of
the loss of the generator and the loss of the discriminator.
Since the loss of the discriminator is much smaller, it is
scaled by a factor of 50 to stabilize training.

In this section, we present additional details re-
garding training and the chosen hyperparameters.

A.1 Pretraining

We pretrained our models with batch size 128 and
learning rate 5e-4 and 3e-4 for the small and base
models respectively. We used a Longformer at-
tention window of 256. As described in by Clark
et al. (2020), we used 10000 warm up steps and a
4 and 3 times smaller generator than the discrimi-
nator in the small and base version respectively. In
contrast to Clark et al. (2020), we reduced the gen-
erator’s depth (number of hidden layers) instead of
its width (embedding size, hidden size and interme-
diate size). We used a MLM probability of 25% for

169

http://arxiv.org/abs/2011.04006
http://arxiv.org/abs/2011.04006
http://arxiv.org/abs/2011.04006
http://arxiv.org/abs/2009.06732
https://doi.org/10.48550/arXiv.2211.09085
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/1909.03341
http://arxiv.org/abs/1909.03341
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1016/j.aiopen.2021.06.003
https://doi.org/10.1016/j.aiopen.2021.06.003
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/2106.11520
http://arxiv.org/abs/2106.11520
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1904.09675

the generators. The pretraining losses are shown in
Table 7.

A.2 Downstream Benchmarks

We finetuned on the summarization datasets using
early stopping on the validation set with patience of
3 epochs. We used a batch size of 32 and learning
rate of 7e-5 after tuning in {5e-4, 9e-5, 7e-5, 5e-5,
3e-5, 1e-5}. We used the bart-base default config
for num_beams (4) and no_repeat_ngram_size (3).

Overall, we found the diverse models to be more
robust in finetuning with less failed runs and typi-
cally higher performance.

A.3 Compute Costs

For running the pretraining, we used an AWS
p3.8xlarge instance with 4 16GB NVIDIA V100
GPUs. Training the four models to 200K steps
each, took approx. 36 days or 144 GPU days in to-
tal (almost. 6 days and almost 12 days for the small
and base models respectively). Previous debug runs
additionally consumed approx. 12 GPU days. For
running the finetuning experiments, we used an
AWS p3.16xlarge instance with 8 16GB NVIDIA
V100 GPUs. Running the BillSum, and PubMed
experiments including debugging and hyperparam-
eter tuning took approximately 25 and 7 GPU days
in total respectively. Putting it all together, we
trained our models for 176 16GB NVIDIA V100
GPU days.

B Library Versions

We used the following versions to the libraries in a
pip requirements.txt format:
datasets==2.4.0
huggingface-hub==0.9.0
nltk==3.7
pandas==1.3.5
rouge-score==0.1.2
scikit-learn==1.0.2
scipy==1.7.3
tokenizers==0.12.1
torch==1.12.1
tqdm==4.64.0
transformers==4.21.1

C Data Details

We used our own tokenizer to calculate the number
of tokens. In Tables 3, and 4 we show the data
length distributions for the BillSum train and test

splits. In Tables 5, 6, and 7 we show the data length
distributions for the PubMed train, validation and
test splits.

170

(a) Input Text
Mean: 1289, Median: 1166
75-Quant: 1644, 95-Quant: 2290, Max: 3055

(b) Summary
Mean: 179, Median: 157
75-Quant: 240, 95-Quant: 398, Max: 808

Figure 3: Histograms for the BillSum training set (18949 samples).

(a) Input Text
Mean: 1284, Median: 1164
75-Quant: 1629, 95-Quant: 2288, Max: 2957

(b) Summary
Mean: 179, Median: 156
75-Quant: 239, 95-Quant: 394, Max: 787

Figure 4: Histograms for the BillSum test set (3269 samples).

171

D Examples

Example summaries are displayed in Tables 8, 9,
10, 11, 12, 13, 13, 15, and 16. Since the documents
are very long sometimes, we truncated them to the
first 2500 characters. We sorted the examples by
RougeL scores and show the bottom 5%, bottom
25%, top 75% and top 95% percentile.

172

(a) Input Text
Mean: 3044, Median: 2572
75-Quant: 3996, 95-Quant: 7057, Max: 109759

(b) Summary
Mean: 202, Median: 208
75-Quant: 262, 95-Quant: 326, Max: 391

Figure 5: Histograms for the PubMed train set (119924 samples).

(a) Input Text
Mean: 3112, Median: 2609
75-Quant: 4011, 95-Quant: 6968, Max: 119269

(b) Summary
Mean: 203, Median: 209
75-Quant: 263, 95-Quant: 330, Max: 518

Figure 6: Histograms for the PubMed validation set (6633 samples).

(a) Input Text
Mean: 3093, Median: 2596
75-Quant: 3964, 95-Quant: 6985, Max: 48750

(b) Summary
Mean: 205, Median: 213
75-Quant: 265, 95-Quant: 329, Max: 506

Figure 7: Histograms for the PubMed test set (6658 samples).

173

Bottom 5% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Child Citizenship Act of 2000”.
TITLE I–CITIZENSHIP FOR CERTAIN CHILDREN BORN OUTSIDE THE UNITED STATES
SEC. 101. AUTOMATIC ACQUISITION OF CITIZENSHIP FOR CERTAIN CHILDREN BORN OUTSIDE THE UNITED STATES.
(a) In General.–Section 320 of the Immigration and Nationality Act (8 U.S.C. 1431) is amended to read as follows:
“children born outside the united states and residing permanently in the united states; conditions under which citizenship automatically acquired
“Sec. 320. (a) A child born outside of the United States automatically becomes a citizen of the United States when all of the following conditions have been fulfilled: “(1) At least one parent of the child is a citizen of the United States, whether by birth or
naturalization. “(2) The child is under the age of eighteen years. “(3) The child is residing in the United States in the legal and physical custody of the citizen parent pursuant to a lawful admission for permanent residence. “(b) Subsection (a) shall apply
to a child adopted by a United States citizen parent if the child satisfies the requirements applicable to adopted children under section 101(b)(1).”. (b) Clerical Amendment.–The table of sections of such Act is amended by striking the item relating to
section 320 and inserting the following: “Sec. 320. Children born outside the United States and residing permanently in the United States; conditions under which citizenship automatically acquired.”.
SEC. 102. ACQUISITION OF CERTIFICATE OF CITIZENSHIP FOR CERTAIN CHILDREN BORN OUTSIDE THE UNITED STATES.
(a) In General.–Section 322 of the Immigration and Nationality Act (8 U.S.C. 1433) is amended to read as follows:
“children born and residing outside the united states; conditions for acquiring certificate of citizenship
“Sec. 322. (a) A parent who is a citizen of the United States may apply for naturalization on behalf of a child born outside of the United States who has not acquired citizenship automatically under section 320. The Attorney General shall issue a certificate
of citizenship to such parent upon proof, to the satisfaction of the Attorney General, that the following conditions have been fulfilled: “(1) At least one parent ...

Gold Provides for issuance of a certificate of naturalization for a child born outside of the United States when the following conditions are met: (1) at least one parent is a U.S. citizen who has been present in the United States for not less than five years, at least
two of which were after having attained the age of 14, or who has a citizen parent meeting such requirements; (2) the child is under 18 years old; and (3) the child is residing outside the United States in the legal and physical custody of the citizen parent,
is temporarily and lawfully present in the United States, and is maintaining such lawful status. Applies such provision to an adopted child meeting certain definitional requirements who is adopted by a U.S. citizen parent. Title II: Protections for Certain
Aliens Voting Based on Reasonable Belief of Citizenship - Amends the Immigration and Nationality Act respecting unlawful voting or false U.S. citizenship claims by permanent resident aliens under 16 years old having natural or adoptive U.S. citizen
parents, to provide exceptions from certain provisions regarding deportability, moral character, inadmissability or related criminal penalties.

Model table of contents: title i: citizenship for certain title ii: immigration and naturalization provisions title i: citizenship for certain children born outside the united states
- amends the immigration and nationality act (ina) to revise naturalization requirements with respect to child born outside the united states. (sec. 102) amends the
immigration and nationality act to revise requirements with respect to: (1) naturalization as a citizen of the united states; (2) naturalization of a u.s. citizen; (3) citizenship;
(4) citizenship; (5) naturalization service; and (6)

Metrics Rouge1: 35.9, Rouge2: 15.54, RougeL: 22.56, RougeLsum: 20.51, Summary length (tokens): 129

Bottom 25% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Effective Terrorists Prosecution Act of 2006”.
SEC. 2. DEFINITION OF UNLAWFUL ENEMY COMBATANT.
Paragraph (1) of section 948a of title 10, United States Code (as enacted by the Military Commissions Act of 2006 (Public Law 109-366)), is amended to read as follows: “(1) Unlawful enemy combatant.–The term ‘unlawful enemy combatant’ means an
individual who directly participates in hostilities as part of an armed conflict against the United States who is not a lawful enemy combatant. The term is used solely to designate individuals triable by military commission under this chapter.”.
SEC. 3. DETERMINATION OF UNLAWFUL ENEMY COMBATANT STATUS BY COMBATANT STATUS REVIEW TRIBUNAL NOT DISPOSITIVE FOR PURPOSES OF JURISDICTION OF MILITARY COMMISSIONS.
Section 948d of title 10, United States Code (as enacted by the Military Commissions Act of 2006 (Public Law 109-366)), is amended– (1) by striking subsection (c); and (2) by redesignating subsection (d) as subsection (c).
SEC. 4. EXCLUSION FROM TRIAL BY MILITARY COMMISSION OF STATEMENTS OBTAINED BY COERCION.
Section 948r of title 10, United States Code (as enacted by the Military Commissions Act of 2006 (Public Law 109-366)), is amended by striking subsections (c) and (d) and inserting the following new subsection (c): “(c) Exclusion of Statements
Obtained by Coercion.–A statement obtained by use of coercion shall not be admissible in a military commission under this chapter, except against a person accused of coercion as evidence that the statement was made.”.
SEC. 5. DISCRETION OF MILITARY JUDGE TO EXCLUDE HEARSAY EVIDENCE DETERMINED TO BE UNRELIABLE OR LACKING IN PROBATIVE VALUE.
Section 949a(b)(2)(E)(ii) of title 10, United States Code (as enacted by the Military Commissions Act of 2006 (Public Law 109-366)), is amended by striking “if the party opposing the admission of the evidence demonstrates that the evidence is
unreliable or lacking in probative value” and inserting “if the military judge determines, upon motion by counsel, that the evidence is unreliable or lacking in probative value”.
SEC. 6. DISCRETION OF MILITARY JUDGE TO TAKE CERTAIN ACTIONS IN EVENT THAT A SUBSTITUTE FOR CLASSIFIED EXCULPATORY EVIDENCE IS INS...

Gold Effective Terrorists Prosecution Act of 2006 - Amends federal armed forces provisions enacted by the Military Commissions Act of 2006 to, among other things: (1) exclude from military commission (commission) trials statements obtained by coercion;
(2) allow a commission military judge to exclude hearsay evidence determined to be unreliable or lacking in probative value; (3) provide for review of commission decisions by the U.S. Court of Appeals for the Armed Forces rather than the Court of
Military Commission Review; (4) revise generally provisions concerning the implementation of treaty obligations with respect to the U.S. prosecution of enemy combatants; (5) restore habeas corpus rights for individuals detained by the United States;
and (6) provide for expedited judicial review of provisions of the Military Commissions Act of 2006.

Model effective terrorists prosecution act of 2006 - amends federal armed forces law to revise the definition of " unlawful enemy combatant" to include an individual who
directly participated in hostilities as part of an armed conflict against the united states who is not a lawful enemy combatant.
amends the military pay reform and reform act of 2006 to provide that a complaint obtained by mail or the military court of appeals for the u.s. military court of appeals
for the armed forces who is not a lawful enemy combatant.
directs the u.s. military department of defense to review the record in each case, except against a person aggrieved by prosecution or

Metrics Rouge1: 51.64, Rouge2: 24.64, RougeL: 33.8, RougeLsum: 37.56, Summary length (tokens): 129

Top 75% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Census Address List Improvement Act of 1994”. SEC. 2. ADDRESS INFORMATION REVIEWED BY LOCAL GOVERNMENTS. (a) In General.–Chapter 1 of title 13, United States Code, is amended by adding after
section 15 the following new section: “Sec. 16. Address information reviewed by States and local governments “(a) The Secretary, to assist efforts to ensure the accuracy of censuses and surveys under this title, shall– “(1) publish standards defining the
content and structure of address information which States and local units of general purpose government may submit to the Secretary to be used in developing a national address list; “(2)(A) develop and publish a timetable for the Bureau to receive,
review, and respond to submissions of information under paragraph (1) before the decennial census date; and “(B) provide for a response by the Bureau with respect to such submissions in which the Bureau specifies its determinations regarding such
information and the reasons for such determinations; and “(3) be subject to the review process developed under section 3 of the Census Address List Improvement Act of 1994 relating to responses pursuant to paragraph (2). “(b)(1) The Secretary– “(A)
shall provide officials who are designated as census liaisons by a local unit of general purpose government with access to census address information for the purpose of verifying the accuracy of the address information of the Bureau for census and survey
purposes; and “(B) together with such access, should provide an explanation of duties and obligations under this title. “(2) Access under paragraph (1) shall be limited to address information concerning addresses within the local unit of general purpose
government represented by the census liaison or an adjacent local unit of general purpose government. “(3) The Bureau should respond to each recommendation made by a census liaison concerning the accuracy of address information, including the
determination (and reasons therefor) of the Bureau regarding each such recommendation. “(4) For the purposes of paragraph (1), in a case in which a local unit of general purpose government is within another local unit of general purpose government and
is not independent of the enclosing unit, the census liaison shall be ...

Gold Census Address List Improvement Act of 1994 - Directs the Secretary of Commerce to: (1) publish standards defining the content and structure of address information which States and local governments may submit to the Secretary to be used in
developing a national address list; (2) develop and publish a timetable for the Bureau of the Census to receive, review, and respond to the submitted information before the decennial census date; (3) provide for a response by the Bureau that specifies its
determinations regarding such information and the reasons for such determinations; and (4) be subject to the review process developed under this Act relating to such responses. Directs the Secretary to provide officials who are designated as census
liaisons by local governments with access to census address information for the purpose of verifying the accuracy of the Bureau’s address information for census and survey purposes and together with such access, provide an explanation of duties and
obligations under this Act. Limits such access to the addresses within the local government represented by the census liaison or an adjacent local government. Requires the Bureau to respond to each recommendation made by a census liaison concerning
the accuracy of address information, including the determination (and reasons therefor) of the Bureau regarding each such recommendation. Prohibits a census liaison from using information made available under this Act for purposes other than the
purposes specified in this Act. Makes provisions that require, with exceptions, that such information be treated as confidential applicable to local government census liaisons. Imposes a fine and up to five years’ imprisonment on whoever being or having
been a census liaison wrongfully discloses such information. Requires: (1) the Administrator of the Office of Information and Regulatory Affairs, acting through the Chief Statistician, to develop an appeals process for those States and local governments
which desire to appeal determinations of the Bureau; and (2) the Postal Service to provide to the Secretary for use by the Bureau such address, address- related, and point of postal delivery information, including postal delivery codes, determined by the
Secretary to be appropriate for any census or survey being conducted by the Bureau.

Model census address list improvement act of 1994 - directs the secretary of transportation to: (1) publish standards amending the content and structure of address information
which states and local governments may submit to the secretary to the secretary to the secretary for such a national address list; (2) provide for a response by a census
liaison with respect to such reports; and (3) provide for a response by a census liaison with respect to such reports. requires the secretary to: (1) provide officials who are
designated as census liaison with access to census information; and (2) report annually to the congressional committees on the accuracy of

Metrics Rouge1: 62.26, Rouge2: 41.9, RougeL: 50.0, RougeLsum: 52.83, Summary length (tokens): 129

Top 95% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “National Geologic Mapping Reauthorization Act of 1996”.
SEC. 2. FINDINGS.
Congress finds that– (1) in enacting the National Geologic Mapping Act of 1992 (43 U.S.C. 31a et seq.), Congress found, among other things, that– (A) during the 2 decades preceding enactment of that Act, the production of geologic maps had been
drastically curtailed; (B) geologic maps are the primary data base for virtually all applied and basic earth-science investigations; (C) Federal agencies, State and local governments, private industry, and the general public depend on the information
provided by geologic maps to determine the extent of potential environmental damage before embarking on projects that could lead to preventable, costly environmental problems or litigation; (D) the lack of proper geologic maps has led to the poor
design of such structures as dams and waste- disposal facilities; (E) geologic maps have proven indispensable in the search for needed fossil fuel and mineral resources; and (F) a comprehensive nationwide program of geologic mapping is required in
order to systematically build the Nation’s geologic-map data base at a pace that responds to increasing demand; (2) the geologic mapping program called for by that Act has not been fully implemented; and (3) it is time for this important program to be
fully implemented.
SEC. 3. REAUTHORIZATION AND AMENDMENT.
(a) Definitions.–Section 3 of the National Geologic Mapping Act of 1992 (43 U.S.C. 31b) is amended– (1) by striking “As used in this Act:” and inserting “In this Act:”; (2) by redesignating paragraphs (2), (3), (4), and (5) as paragraphs (3), (4), (5), and
(6), respectively; (3) by inserting after paragraph (1) the following: “(2) Association.–The term ‘Association’ means the Association of American State Geologists.”; and (4) in each paragraph that does not have a heading, by ...

Gold National Geologic Mapping Reauthorization Act of 1996 - Amends the National Geologic Mapping Act of 1992 to establish a national cooperative geologic mapping program between the U.S. Geological Survey and State geological surveys. Establishes
a geologic mapping advisory committee to advise the Director of the U.S. Geological Survey on planning and implementation of the geological mapping program. Authorizes appropriations.

Model national geologic mapping reauthorization act of 1996 - amends the national geologic mapping act of 1992 to establish a national cooperative geologic mapping program
within the united states geological survey (usgs) to be administered and administered through the association. establishes a national cooperative geologic mapping
program between the united states geological survey and the association. authorizes appropriations.

Metrics Rouge1: 74.14, Rouge2: 56.14, RougeL: 65.52, RougeLsum: 67.24, Summary length (tokens): 69

Table 8: Examples of the BillSum dataset using the model billsum-1024-128 small diverse

174

Bottom 5% example (Sorted by rougeL)
Document SECTION 1. NATIONAL GUARD SUPPORT FOR BORDER CONTROL ACTIVITIES.

(a) Operation Jump Start.– (1) In general.–Not fewer than 6,000 National Guard personnel shall continue to be deployed along the international border between the United States and Mexico under Operation Jump Start until the date on which the Federal
Government has achieved operational control of such border (as defined in section 2(b) of the Secure Fence Act of 2006 (Public Law 109- 367)). (2) Exemption.–National Guard personnel deployed pursuant to paragraph (1) shall not be included in the
calculation to determine compliance with– (A) limits on end strength; or (B) limits on the number of National Guard personal that may be placed on active duty for operational support. (b) Support Authorized.–Chapter 1 of title 32, United States Code, is
amended by inserting after section 112 the following: “Sec. 112a. Border control activities “(a) Funding Assistance.–The Secretary of Defense may provide funds to the Governor of a State who submits to the Secretary a State border control activities
plan satisfying the requirements of subsection (c). Such funds shall be used for the following: “(1) The pay, allowances, clothing, subsistence, gratuities, travel, and related expenses, as authorized by State law, of personnel of the National Guard of that
State used, while not in Federal service, for the purpose of border control activities. “(2) The operation and maintenance of the equipment and facilities of the National Guard of that State used for the purpose of border control activities. “(3) The
procurement of services and equipment, and the leasing of equipment, for the National Guard of that State used for the purpose of border control activities. However, the use of such funds for the procurement of equipment may not exceed $5,000 per item,
unless approval for procurement of equipment in excess of that amount is granted in advance by the Secretary of Defense. “(b) Use of Personnel Performing Full-Time National Guard Duty.– (1) Under regulations prescribed by the Secretary of Defense,
personnel of the National Guard of a State may, in accordance with the State...

Gold Provides for continued National Guard support for border control activities along the U.S.- Mexico border under Operation Jump Start until operational control of such border has been achieved.
Authorizes the Secretary of Defense to provide funding to a state that submits to the Secretary of State a state border control activities plan that meets certain requirements. Limits the number of National Guard that may be so deployed.

Model (this measure has not been amended since it was passed by the senate on december 21, 2011. the summary of that version is repeated here.)
states that not fewer than six,000, national guard personnel shall continue to be deployed along the international border between the united states and mexico under
operation jump start up to six,000 shall not be included in the annual calculation to determine compliance with: (1) limits on end strength or limits on the number of
national guard personal that may be placed on active duty for operational support; and (2) the pay, allowances, and benefits of the national guard of a state shall

Metrics Rouge1: 46.33, Rouge2: 14.86, RougeL: 22.6, RougeLsum: 32.77, Summary length (tokens): 129

Bottom 25% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “International Commerce Enhancement Act”.
SEC. 2. REFERENCES.
Except as otherwise specifically provided in this Act, whenever in this Act an amendment or repeal is expressed as the amendment or repeal of a section or other provision, the reference shall be considered to be made to a section or other provision of the
Arms Export Control Act (22 U.S.C. 2751 et seq.).
SEC. 3. FOREIGN AND NATIONAL SECURITY POLICY OBJECTIVES AND RESTRAINTS.
(a) Value of Defense Articles and Services.–Section 3(d) (22 U.S.C. 2753(d)) is amended in paragraphs (1) and (3)(A)– (1) by striking “$14,000,000” each place it appears and inserting “$25,000,000”; and (2) by striking “$50,000,000” each place it
appears and inserting “$85,000,000”. (b) Transfers With Respect to NATO and Major Non-NATO Countries.– Section 3(d) (22 U.S.C. 2753(d)) is amended– (1) in paragraph (2)– (A) in subparagraph (A), by striking “Except as provided in subparagraph
(B), unless” and inserting “Unless”; and (ii) in subparagraph (B) to read as follows: “(B) Subparagraph (A) shall not apply in the case of a proposed transfer to the North Atlantic Treaty Organization, or any member country of such Organization, Japan,
Australia, or New Zealand.”; and (iii) in subparagraph (C), by striking “or (B)”; and (2) in paragraph (3)– (A) in the second sentence of subparagraph (A), by striking “shall be submitted” and all that follows through “unless the President” and inserting
“shall be submitted at least 30 calendar days before such consent is given in the case of a transfer to a country other than a country which is a member of the North Atlantic Treaty Organization, Japan, Australia, or New Zealand, unless the President”; (B)
in the third sentence of subparagraph (A), by striking “(thus waiving the requirements of clause (i) or (ii), as the case may be, and of subparagraph (B))”; and (C) in subparagraph (B)– (i) by striking ...

Gold International Commerce Enhancement Act - Amends the Arms Export Control Act to increase threshold values of major defense equipment or defense articles or related training or other defense services whose transfer or lease to foreign countries would
require a presidential certification to Congress. Exempts from specified congressional oversight requirements any such transfers to North Atlantic Treaty Organization (NATO) countries, Japan, Australia, or New Zealand.

Model international commerce enhancement act - amends the arms export control act to: (1) increase the amount of defense articles and services from $10 million to $10
million to $10 million the value of defense articles and services (currently, $10 million); (2) prohibit the transfer of defense articles or services to the north atlantic treaty
organization (nato); and (3) prohibit the transfer of defense articles or services from the north atlantic treaty organization (nato) defense articles or services.
repeals the requirement that the transfer of defense articles or services from defense articles or services from the north atlantic treaty (nato)

Metrics Rouge1: 44.72, Rouge2: 21.38, RougeL: 34.78, RougeLsum: 38.51, Summary length (tokens): 129

Top 75% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Family Education Reimbursement Act of 2005”.
SEC. 2. FAMILY EDUCATION REIMBURSEMENT ACCOUNTS.
(a) Establishment.–The Secretary of Education, in consultation with the Secretary of Health and Human Services, shall– (1) establish a Family Education Reimbursement Account Program under which, at the direction of the parent of each displaced
student who signs up under subsection (d), the Secretary provides reimbursement to enable the student or preschool-age child to attend the school or preschool program of his or her parent’s choice during the 2005-2006 school year; (2) of the amount
available to carry out this section for fiscal year 2006, use not more than one third of one percent of such amount for administrative expenses, including outreach, support services, and dissemination of information; and (3) contract with a nongovernmental
entity to administer and operate the program. (b) Reimbursement.– (1) In general.–In carrying out this section, the Secretary– (A) shall allow the parent of the participating displaced student to select the school or preschool program to be attended by the
student during the 2005- 2006 school year; (B) at the direction of the parent, shall provide reimbursement to that school or preschool program on a quarterly basis; and (C) in the case of a public school, may provide such reimbursement to the appropriate
local fiscal agent for the school. (2) Amount.–In providing reimbursement under paragraph (1), the Secretary shall– (A) determine the amount of reimbursement to a school or preschool program based on the number of weeks during which the
participating displaced student attended the school or preschool program during the preceding quarter; (B) subject to subparagraph (C), provide the same amount of reimbursement to each school and preschool program for each week of attendance by one
participating displaced student; (C) not provide reimbursement...

Gold Family Education Reimbursement Act of 2005 - Directs the Secretary of Education to establish a Family Education Reimbursement Account Program for families of students displaced by Hurricane Katrina or Hurricane Rita.
Provides for reimbursing parents for costs of such students or preschool-age children attending schools or preschool programs, chosen by the parents, during the 20052006 school year.
Requires the Secretary to make a contract with a nongovernmental entity to administer and operate the program.

Model family education reimbursement act of 2005 - directs the secretary of education to establish a family education reimbursement account program under which, at the
direction of the parent of each displaced student who signs up under the 2005- 2006 school year, the secretary of education shall: (1) provide reimbursement to the student
or preschool child to attend the school or breakfast program of his or her parent’s choice during the 2005- 2006- 2006 school year; (2) contract with a nongovernmental
entity to administer and operate the program; and (3) contract with a nongovernmental entity to administer the program.
requires the secretary to develop and implement a web-

Metrics Rouge1: 63.74, Rouge2: 44.44, RougeL: 52.75, RougeLsum: 61.54, Summary length (tokens): 129

Top 95% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Pharmaceutical Products Price Equity Act”.
SEC. 2. FINDINGS.
The Congress finds the following: (1) Modern life enhancing and life sustaining drugs are the products of decades of scientific research and practice. (2) The refining and production of products by American pharmaceutical enterprises must be
appropriately compensated. (3) The pricing of American pharmaceutical products varies greatly from country to country with the corporate owners of such products voluntarily assuming no losses by always selling their products above the cost of
production. (4) Considering the vital life and death nature of pharmaceutical products, it is appropriate that the United States Government, in harmony with other nations belonging to the World Trade Organization, should engage in the reasonable
regulation of the prices of pharmaceutical products.
SEC. 3. REASONABLE LIMITS ON PROFITS OF PHARMACEUTICAL PRODUCTS.
(a) Presidential Authority.–The President shall issue such orders and regulations, and establish such procedures and reporting requirements, as the President determines to be appropriate to ensure that no pharmaceutical product (as defined by the President
in such regulation or order) is sold to any consumer in the United States at a price that is more than 6 percent above the average retail price at which such pharmaceutical product is sold in the 5 most industrialized, free-market countries, other than the
United States, as determined by the President. (b) Delegation.–The President may delegate the performance of any function under this section to any officer of any Federal department or agency who has been appointed by the President, by and with the
consent of the Senate. (c) Confidentiality of Information.–All information reported to or otherwise obtained by any person exercising any authority under this section which contains or relates to a trade secret or other matter referred to in section 1905 of
title 18, United States Code, shall be considered confidential for purposes of that section, except that such information may be disclosed to any other officer or employee of the United States involved in carrying out this section solely for the purpose of
carrying out, and enforcing compliance with, this section. (d) Subpoena Powe...

Gold Pharmaceutical Products Price Equity Act - Directs the President to issue orders and regulations, and establish procedures and reporting requirements, to ensure that no pharmaceutical product is sold to any consumer in the United States at a price that is
more than six percent above the average retail price at which such pharmaceutical product is sold in the five most industrialized, free-market countries, other than the United States. Sets forth enforcement and civil liability provisions.

Model pharmaceutical products price equity act - directs the president to issue orders and regulations to ensure that no pharmaceutical product is sold to any consumer in the
united states at a price more than six percent above the average retail price at which such product is sold in the five most industrialized, free-market countries, other than
the united states. authorizes the president to delegate the performance of any such function to any federal department or agency who has been appointed by the president,
by and with the consent of the senate, by and with the consent of the senate.

Metrics Rouge1: 70.11, Rouge2: 63.95, RougeL: 68.97, RougeLsum: 68.97, Summary length (tokens): 113

Table 9: Examples of the BillSum dataset using the model billsum-1024-128 base diverse

175

Bottom 5% example (Sorted by rougeL)
Document .–(1) For purposes of subsection (a)(2) and this subsection, the term ‘joint resolution’ means only a joint resolution introduced by a qualifying Member specified in paragraph (2) after the date on which the report of the President under subsection (a)(1) is

received by the Congress– “(A) the matter after the resolving clause of which is as follows: ‘That the Congress hereby concurs in the certification of the President relating to deployment of a National Missile Defense system as submitted to Congress
pursuant to section 4(b) of the National Missile Defense Act of 1999.’; “(B) which does not have a preamble; and “(C) the title of which is as follows: ‘Joint resolution relating to deployment of a National Missile Defense system.’. “(2) For purposes of
this subsection, a qualifying Member described in this paragraph is– “(A) in the case of the House of Representatives, the majority leader or minority leader of the House of Representatives or a Member of the House of Representatives designated by the
majority leader or minority leader; and “(B) in the case of the Senate, the majority leader or minority leader of the Senate or a Member of the Senate designated by the majority leader or minority leader. “(3) The provisions of paragraphs (3) through (8) of
section 4(c) of the National Missile Defense Deployment Criteria Act of 2001 shall apply to a joint resolution under this subsection in the same manner as to a joint resolution under such section.”.
SEC. 4. LIMITATION ON OBLIGATION OF FUNDS FOR PROCUREMENT FOR NATIONAL MISSILE DEFENSE SYSTEM.
(a) Limitation.–No funds appropriated to the Department of Defense for procurement may be obligated for the National Missile Defense system unless– (1) the President submits to Congress a report concerning testing of the National Missile Defense
system against countermeasures that includes a certification described in subsection (b); and (2) a joint resolution concurring in the President’s certification in such report is enacted as provided for in this section. (b) Presidential Certification.–A
certification described in this subsection is a certification by the President that– (1) an adequate testing program for the National Missile ...

Gold National Missile Defense Deployment Criteria Act of 2001 - Amends the National Missile Defense Act of 1999 to allow deployment of a national missile defense system (system) only if: (1) the system is technologically feasible; (2) system cost
in relation to other Department of Defense (DOD) priorities will not lead to an overall reduction in national security by reducing resources available for other defense priorities; (3) the system will not diminish overall U.S. national security; (4)
the system will not threaten to disrupt relations with U.S. nuclear allies, U.S. European allies, Russia, the People’s Republic of China, and other nations; and (5) the threat of a long-range ballistic missile attack from a nation of concern is clearly
demonstrated.Prohibits the President from directing DOD to deploy a system unless and until: (1) the President certifies to Congress that the above deployment conditions have been met; and (2) a joint resolution is enacted concurring in the President’s
certification.Prohibits DOD procurement funds from being obligated for a system unless: (1) the President certifies to Congress that adequate system tests have been undertaken to meet identified threats against countermeasures; and (2) a joint resolution
is enacted concurring in the President’s certification.Requires the Secretary of Defense to direct the Ballistic Missile Defense Organization to: (1) include specified system countermeasures in system ground and flight testing conducted before the system
becomes operational; and (2) determine the extent to which the exoatmospheric kill vehicle and the system can reliably discriminate between warheads and such countermeasures.

Model prohibits funds appropriated to the department of defense (dod) for procurement from being obligated for the national missile defense system unless the president
certifies to congress that: (1) an adequate testing program for the system is in place to meet the threats identified in the report; and (2) an adequate ground and flight
testing of the system has been conducted against the system that are likely to be used against the system and that other countries have or are likely to acquire.

Metrics Rouge1: 40.69, Rouge2: 16.67, RougeL: 20.0, RougeLsum: 20.0, Summary length (tokens): 94

Bottom 25% example (Sorted by rougeL)
Document TITLE I–FEDERAL AIRPORTS SECURITY ENHANCEMENT ACT

SEC. 101. SHORT TITLE.
This title may be cited as the “Federal Airports Security Enhancement Act”.
SEC. 102. ESTABLISHMENT OF AIRPORT SECURITY COMMITTEES.
The Act of July 5, 1994 (49 U.S.C. 44935), is amended– (1) by striking section 44901 subparagraph (b) and inserting the following:
“SEC. 103. EMPLOYMENT STANDARDS AND TRAINING.”.
(2) by striking section 44935 subparagraph (b) and inserting the following: “(a) Review and Recommendations.–The Administrator of the Federal Aviation Administration shall establish Security Committees at each airport location to be composed of
representatives of the air carriers, airport operators, other interested parties and at least one representative from the Federal Protective Service, the Federal Bureau of Investigation, The Federal Aviation Administration and one member from each local
jurisdiction that the airport may be located in or that may have jurisdictional authority for the airport facility. Each Airport Security Committee shall meet at least quarterly and shall make recommendations for minimum security countermeasures to the
Administrator. The Federal Protective Service shall have primary responsibility for conducting on an ongoing basis security surveys and formulating recommendations to the Security Committee. The Administrator shall prescribe appropriate changes in
existing procedures to improve that performance.”.
SEC. 103. SCREENING PASSENGERS AND PROPERTY.
The Act of July 5, 1994 (49 U.S.C. 44935), is amended by striking section 44901, subparagraph (a), and inserting the following: “(a) General Requirements.–The Administrator of the Federal Aviation Administration shall prescribe regulations requiring
screening of all passengers and property that will be carried in a cabin of an aircraft in air transportation or intrastate air transportation. The screening must take place before boarding and be carried out by a weapon detecting facility or procedure used or
operated by an employee or agent of the Federal Protective Service. The Administrator– “(1) shall require that sufficient Federal Police Officers are posted at airport facilities to provide patrol duties during all hours of operations as well as supervise
screening personnel; “(2) shall maintain sufficient numbers of Special Agents to provid...

Gold Federal Airports Security Enhancement Act - Amends Federal aviation law to direct the Administrator of the Federal Aviation Administration (FAA) to establish at each airport a Security Committee which shall make recommendations for minimum
security counter-measures. Requires the Administrator, on the basis of such recommendations, to prescribe appropriate changes to improve the performance of existing airport security procedures.Requires the screening of passengers and property
that will be carried in a cabin of an aircraft to be carried out by Federal Protective Service employees or agents. (Currently, screening is carried out by employees or agents of an air carrier, interstate air carrier, or foreign air carrier).Authorizes the
Administrator of the General Services Administration (GSA) to appoint police officers and special agents (currently, special policemen and nonuniformed special policemen) for the policing of all Federal buildings (including buildings under the control of
the GSA). Sets forth certain additional powers of such officers and agents, including the authority to carry firearms and to police areas adjacent to Federal property.Establishes the Federal Protective Service as a separate operating service of the GSA. Calls
for at least 1,000 full-time equivalent Service police officers to be assigned to areas outside of airport operations. Requires the Commissioner of the Service to prescribe minimum employment and training standards to be applied in the contracting of
security personnel for the policing of buildings and areas controlled by the United States and GSA. Authorizes GSA to recover airport security costs from the FAA.

Model table of contents: title i: federal airports security enhancement act title ii: miscellaneous provisions general federal airports security enhancement act - title i: federal
airports security enhancement - amends the federal aviation act of 1992 to direct the administrator of the federal aviation administration (faa) to prescribe regulations
requiring screening of all passengers and property that will be carried in a port of aircraft in air transportation or intrastate air transportation. (sec. 102) directs the
administrator to prescribe regulations requiring screening of all passengers and property that will be carried out by the federal protective service, the federal bureau of
investigation (fbi), the federal bureau of investigation (fbi), and one member from each local jurisdiction that the aircraft may be located in or that may have jurisdictional
authority for the airport of an aircraft in air transportation or intrastate air transportation. (sec. 103) directs the administrator to prescribe regulations requiring screening
of all passengers and property that will be carried out by a weapon detection facility or procedure used or operated by an employee or agent of the federal protective
service. (sec. 103) authorizes the administrator to enter into agreements with state and local law enforcement authorities to obtain authority for, jointly with state and
local law enforcement authorities. (

Metrics Rouge1: 52.44, Rouge2: 22.84, RougeL: 29.7, RougeLsum: 47.8, Summary length (tokens): 256

Top 75% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Patent and Trademark Office Authorization Act of 2002”.
SEC. 2. AUTHORIZATION OF AMOUNTS AVAILABLE TO THE PATENT AND TRADEMARK OFFICE.
(a) In General.–There are authorized to be appropriated to the United States Patent and Trademark Office for salaries and necessary expenses for each of the fiscal years 2003 through 2008 an amount equal to the fees estimated by the Secretary of
Commerce to be collected in each such fiscal year, respectively, under– (1) title 35, United States Code; and (2) the Act entitled “An Act to provide for the registration and protection of trademarks used in commerce, to carry out the provisions of certain
international conventions, and for other purposes”, approved July 5, 1946 (15 U.S.C. 1051 et seq.) (commonly referred to as the Trademark Act of 1946). (b) Estimates.–Not later than February 15, of each fiscal year, the Undersecretary of Commerce for
Intellectual Property and the Director of the Patent and Trademark Office (in this Act referred to as the Director) shall submit an estimate of all fees referred to under subsection (a) to be collected in the next fiscal year to the chairman and ranking member
of– (1) the Committees on Appropriations and Judiciary of the Senate; and (2) the Committees on Appropriations and Judiciary of the House of Representatives.
SEC. 3. ELECTRONIC FILING AND PROCESSING OF PATENT AND TRADEMARK APPLICATIONS.
(a) Electronic Filing and Processing.–Not later than December 1, 2004, the Director shall complete the development of an electronic system for the filing and processing of patent and trademark applications, that– (1) is user friendly; and (2) includes the
necessary infrastructure to– (A) allow examiners and applicants to send all communications electronically; and (B) allow the Office to process, maintain, and search electronically the contents and history of each application. (b) Authorization of
Appropriations.–Of amounts authorized under section 2, there are authorized to be appropriated to carry out subsection (a) of this section not more than $50,000,000 for each of fiscal years 2003 and 2004. Amounts made available under this subsection
shall...

Gold Patent and Trademark Office Authorization Act of 2002 - Authorizes appropriations to the U.S. Patent and Trademark Office for salaries and expenses for FY 2003 through 2008 in an amount equal to all patent and trademark fees estimated by the
Secretary of Commerce (Secretary) to be collected in each such fiscal year.(Sec. 2) Requires the Under Secretary of Commerce for Intellectual Property and the Director of the Office (Director), by February 15 of each fiscal year, to report an estimate of
all fees to be collected in the next fiscal year to the chairman and ranking member of specified congressional committees.(Sec. 3) Requires the Director, by December 1, 2004, to complete the development of an electronic system for the filing and
processing of patent and trademark applications that: (1) is user friendly; and (2) includes the necessary infrastructure to allow examiners and applicants to send all communications electronically, and the Office to process, maintain, and search
electronically the contents and history of each application. Authorizes appropriations for FY 2003 and 2004 for development of such system.(Sec. 4) Requires the Secretary, in each of the five calendar years following the enactment of this Act, to report
to specified congressional committees on the progress made in implementing the 21st Century Strategic Plan issued on June 3, 2002, and on any amendments made to it.(Sec. 5) Amends Federal patent law to provide that previous citation by or to, or
consideration by the Office of, a patent or printed publication does not preclude the existence of a substantial new question of patentability in patent reexamination proceedings.(Sec. 6) Revises requirements for appeals in inter partes reexamination
proceedings to allow a third-party requester to appeal to the U.S. Court of Appeals for the Federal Circuit, or be a party to any appeal taken by the patent owner, with respect to any final decision favorable to the patentability of any original or proposed
amended or new claim of the patent.Allows a third-party requester to appeal a decision of the Board of Patent Appeals and Interferences.Provides that a third-party requester in an inter partes reexamination proceeding dissatisfied with the final decision in
an appeal to the Board may appeal the decision only to the U.S. Court of Appeals for the Federal Circuit.

Model patent and trademark office authorization act of 2002 - authorizes appropriations to the u.s. patent and trademark office for fy 2003 through 2008. requires the director of
the patent and trademark office to: (1) complete the development of an electronic system for the filing and processing of patent and trademark applications; and (2)
submit an annual report to the congressional committees on progress made in implementing the 21st century strategic plan issued under the federal patent and trademark
programs.

Metrics Rouge1: 48.99, Rouge2: 39.86, RougeL: 44.3, RougeLsum: 48.32, Summary length (tokens): 94

Top 95% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Guidance, Understanding, and Information for Dual Eligibles (GUIDE) Act”.
SEC. 2. FINDINGS; PURPOSE.
(a) Findings.–The Congress finds the following: (1) Nearly 8,800,000 Americans were eligible for benefits under the Medicare program and for medical assistance under Medicaid (dual eligible beneficiaries) in fiscal year 2005. Of these “dual eligible
beneficiaries”, almost 40 percent have cognitive impairments, including Alzheimer’s disease, dementia, serious mental illnesses, and intellectual disabilities. Until December 31, 2005, dual eligible beneficiaries received outpatient prescription drug
benefits through medical assistance under Medicaid. On January 1, 2006, drug coverage for dual eligibles switched from Medicaid to Medicare. (2) In 2008, 53 percent of dual eligible beneficiaries had medication access problems and of those, 27 percent
experienced significant adverse clinical events. (3) Individuals with medication access issues experience significantly more adverse clinical events. Among dual eligible beneficiaries with mental illness who had medication access problems, 27 percent
experienced significant adverse clinical events, which included emergency room visits and hospitalizations. (4) In total, over 1,000,000 dual eligible beneficiaries and low-income subsidy beneficiaries were automatically auto- enrolled to new benchmark
prescription drug plans under part D of the Medicare program between 2006 and 2007. (5) Community providers are at the front line of helping the most vulnerable dual eligible beneficiaries obtain prescription drug coverage under the Medicare program
and navigate complex enrollment and low-income subsidy eligibility requirements under such program. (b) Purpose.–It is the purpose of this bill to help low-income persons with cognitive impairments to enroll in and navigate the prescription drug
benefit under the Medicare program by providing front line community providers who serve the population daily with financial assistance to conduct vigorous education and outreach and direct case management.
SEC. 3. MEDICARE PRESCRIPTION DRUG OUTREACH DEMONSTRATION PROGRAM FOR DUAL E...

Gold Guidance, Understanding, and Information for Dual Eligibles (GUIDE) Act - Directs the Secretary of Health and Human Services to establish a three-year demonstration program under which the Secretary awards grants and contracts to appropriate,
qualified community programs and clinics for individuals with intellectual or developmental disabilities, or certain programs under the Public Health Services Act, to employ qualified social workers and case managers to provide one-on-one counseling
about benefits under part D (Voluntary Prescription Drug Benefit Program) of title XVIII (Medicare) of the Social Security Act (SSA) to a full-benefit dual eligible individual (eligible for benefits under both Medicare and SSA title XIX [Medicaid]) who
has one or more mental disabilities.

Model guidance, understanding, and information for dual eligible beneficiaries with intellectual or developmental disabilities act - directs the secretary of health and human
services (hhs) to establish a three-year demonstration program under which the secretary awards grants and contracts to qualified community programs and clinics
for individuals with intellectual or developmental disabilities or such programs to provide medicare prescription drug assistance to individuals with intellectual or
developmental disabilities or such programs.

Metrics Rouge1: 60.87, Rouge2: 47.25, RougeL: 58.7, RougeLsum: 58.7, Summary length (tokens): 80

Table 10: Examples of the BillSum dataset using the model billsum-1024-256 small diverse

176

Bottom 5% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Health Coverage Tax Credit Extension Act of 2015”.
SEC. 2. EXTENSION AND MODIFICATION OF HEALTH COVERAGE TAX CREDIT.
(a) Extension.–Subparagraph (B) of section 35(b)(1) of the Internal Revenue Code of 1986 is amended by striking “before January 1, 2014” and inserting “before January 1, 2020”. (b) Coordination With Credit for Coverage Under a Qualified Health
Plan.–Subsection (g) of section 35 of the Internal Revenue Code of 1986 is amended– (1) by redesignating paragraph (11) as paragraph (13), and (2) by inserting after paragraph (10) the following new paragraphs: “(11) Election.– “(A) In general.–A
taxpayer may elect to have this section apply for any eligible coverage month. “(B) Timing and applicability of election.–Except as the Secretary may provide– “(i) an election to have this section apply for any eligible coverage month in a taxable year
shall be made not later than the due date (including extensions) for the return of tax for the taxable year, and “(ii) any election for this section to apply for an eligible coverage month shall apply for all subsequent eligible coverage months in the taxable
year and, once made, shall be irrevocable with respect to such months. “(12) Coordination with premium tax credit.– “(A) In general.–An eligible coverage month to which the election under paragraph (11) applies shall not be treated as a coverage month
(as defined in section 36B(c)(2)) for purposes of section 36B with respect to the taxpayer. “(B) Coordination with advance payments of premium tax credit.–In the case of a taxpayer who makes the election under paragraph (11) with respect to any
eligible coverage month in a taxable year or on behalf of whom any advance payment is made under section 7527 with respect to any month in such taxable year– ...

Gold Health Coverage Tax Credit Extension Act of 2015 This bill extends the tax credit for health insurance costs of a taxpayer and qualifying family members through 2019. The tax credit for health insurance costs is a refundable tax credit equal to 72.5% of
the cost of qualified health coverage paid by an eligible individual [defined as an individual who is receiving a trade adjustment allowance, is eligible for the alternative trade adjustment assistance program, or is over age 55 and receives pension benefits
from the Pension Benefit Guaranty Corporation (PBGC)]. The bill requires a taxpayer to make an election to have the tax credit apply for any eligible coverage month during a taxable year. An eligible coverage month is a month in which an eligible
individual is covered by qualified health insurance, does not have other specified coverage, and is not imprisoned. The bill also directs the Departments of the Treasury, Health and Human Services, and Labor and the PBGC to conduct a public outreach,
including on the Internet, to inform individuals eligible for the tax credit for health insurance costs on the extension of such credit and the availability of the election to claim such credit retroactively for coverage months beginning after December 31, 2013.

Model health coverage tax credit extension act of 2015 this bill amends the internal revenue code, with respect to health care coverage, to: (1) extend through 2020 the tax credit
for advance payments to individuals, (2) allow advance payments of advance payments of advance payments of advance payments, and (3) extend through 2018 the tax
credit for advance payments of advance payments of advance payments to individuals.

Metrics Rouge1: 26.37, Rouge2: 11.07, RougeL: 21.25, RougeLsum: 25.64, Summary length (tokens): 82

Bottom 25% example (Sorted by rougeL)
Document SECTION 1. EXTENSION. (a) In General.–Chapter 5 of subtitle B of the Agricultural Marketing Act of 1946 (7 U.S.C. 1636 et seq.) is amended by adding at the end the following new section: “SEC. 260. TERMINATION OF AUTHORITY. “The

authority provided by this subtitle terminates on September 30, 2010.”. (b) Conforming Amendment and Extension.–Section 942 of the Livestock Mandatory Reporting Act of 1999 (7 U.S.C. 1635 note; Public Law 106-78) is amended by striking
“terminate on September 30, 2005” and inserting “(other than section 911 of subtitle A and the amendments made by that section) terminate on September 30, 2010”. SEC. 2. DEFINITIONS. (a) Base Market Hogs.–Section 231(4) of the Agricultural
Marketing Act of 1946 (7 U.S.C. 1635i(4)) is amended to read as follows: “(4) Base market hog.–The term ‘base market hog’ means a barrow or gilt for which no discounts are subtracted from and no premiums are added to the base price.”. (b)
Boars.–Section 231(5) of such Act (7 U.S.C. 1635i(5)) is amended to read as follows: “(5) Boar.–The term ‘boar’ means a sexually-intact male swine.”. (c) Packer of Sows and Boars.–Section 231(12) of such Act (7 U.S.C. 1635i(12)) is amended by– (1)
striking subparagraph (B) and inserting the following new subparagraph: “(B) for any calendar year, the term includes only– “(i) a swine processing plant that slaughtered an average of at least 100,000 swine per year during the immediately preceding five
calendar years; and “(ii) a person that slaughtered an average of at least 200,000 sows, boars, or any combination thereof, per year during the immediately preceding five calendar years; and”; and (2) in subparagraph (C)– (A) by inserting “or person” after
“swine processing plant”; (B) by inserting “or person” after “plant capacity of the processing plant”; and (C) by inserting “or person” after “determining whether the processing plant”. SEC. 3. REPORTING; BARROWS AND GILTS. Section 232(c) of
the Agricultural Marketing Act of 1946 (7 U.S.C. 1635j(c)) is amended to read as follows: “(c) Daily Reporting; Barrows and Gilts.– “(1) Prior day report.– “(A) In general.–The corporate officers or officially d...

Gold Amends the Agricultural Marketing Act of 1946 to extend the provisions of the Livestock Mandatory Price Reporting Act of 1999 through September 30, 2010.
Amends swine price reporting provisions.

Model amends the agricultural marketing act of 1946 to terminate the authority of the secretary of agriculture (usda) to: (1) livestock processing plant processing plant slaughter,
and (2) slaughtering plant slaughter.
amends the agricultural marketing act of 1946 to: (1) revise minimum reporting requirements; and (2) revise reporting requirements.
amends the agricultural marketing act of 1946 and the agricultural marketing act of 1946 to: (1) revise reporting requirements; and (2) revise reporting requirements.

Metrics Rouge1: 33.66, Rouge2: 18.18, RougeL: 31.68, RougeLsum: 29.7, Summary length (tokens): 105

Top 75% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Maritime Administration Authorization Act for Fiscal Year 2001”.
SEC. 2. AUTHORIZATION OF APPROPRIATIONS FOR FISCAL YEAR 2001.
Funds are hereby authorized to be appropriated, as Appropriations Acts may provide, for the use of the Department of Transportation for the Maritime Administration as follows: (1) For expenses necessary for operations and training activities, not to
exceed $80,240,000 for the fiscal year ending September 30, 2001. (2) For the costs, as defined in section 502 of the Federal Credit Reform Act of 1990, of guaranteed loans authorized by title XI of the Merchant Marine Act, 1936 (46 U.S.C. App. 1271
et seq.), $50,000,000, to be available until expended. In addition, for administrative expenses related to loan guarantee commitments under title XI of that Act, $4,179,000.
SEC. 3. AMENDMENTS TO TITLE IX OF THE MERCHANT MARINE ACT, 1936.
(a) Title IX of the Merchant Marine Act, 1936 (46 U.S.C. App. 101 et seq.) is amended by adding at the end thereof the following:
“SEC. 910. DOCUMENTATION OF CERTAIN DRY CARGO VESSELS.
“(a) In General.–The restrictions of section 901(b)(1) of this Act concerning a vessel built in a foreign country shall not apply to a newly constructed drybulk or breakbulk vessel over 7,500 deadweight tons that has been delivered from a foreign shipyard
or contracted for construction in a foreign shipyard before the earlier of– “(1) the date that is 1 year after the date of enactment of the Maritime Administration Authorization Act for Fiscal Year 2001; or “(2) the effective date of the OECD Shipbuilding
Trade Agreement Act. “(b) Compliance With Certain U.S.-Build Requirements.–A vessel timely contracted for or delivered pursuant to this section and documented under the laws of the United States shall be deemed to have been United-States built for
purposes of sections 901(b) and 901b of this Act if– “(1) following delivery by a foreign shipyard, the vessel has any additional shipyard work necessary to receive its initial Coast Guard certificate of inspection performed in a United States shipyard; “(2)
the vessel is not documented in another country before being documented under the laws of the United States; “(3)...

Gold (Sec. 3) Amends the Merchant Marine Act, 1936 to declare that certain restrictions concerning a vessel built in a foreign country shall not apply to a newly constructed drybulk or breakbulk vessel over 7,500 deadweight tons that has been delivered from a
foreign shipyard or contracted for construction in a foreign shipyard before the earlier of two specified dates. Deems U.S.-built any vessel timely contracted for or delivered and documented under U.S. law, if certain conditions are met. (Sec. 4) Directs
the Secretary of State, in coordination with the Secretary of Transportation, to initiate discussions in all appropriate international forums to establish an international standard for the scrapping of vessels in a safe and environmentally sound manner.
Directs the Secretary of Transportation to develop, and report to specified congressional committees on, a program for the scrapping of obsolete National Defense Reserve Fleet Vessels. Amends the National Maritime Heritage Act of 1994 to extend,
through September 30, 2006, the authority of the Secretary to dispose of certain vessels in the National Defense Reserve Fleet. Requires that such vessels be disposed of in the most cost effective manner to the United States, taking into account the need
for disposal, the environment, and safety concerns. Amends Federal law to authorize the expenditure of funds from the National Defense Sealift Fund for costs related to the scrapping of National Defense Reserve Fleet vessels. Names vessels in the
National Defense Reserve Fleet that may be scrapped in the United States or a foreign country. (Sec. 5) Requires the Maritime Administration (in its annual report to Congress and its estimated annual budget) to state separately the amount, source,
intended use, and nature of any funds (other than funds appropriated to the Administration or to the Secretary for use by the Administration) administered, or subject to oversight, by the Administration. (Sec. 6) Amends Federal maritime law to authorize
the Secretary of Transportation to make a grant to a National Maritime Enhancement Institute for maritime and maritime intermodal research as if the Institute were a university transportation center. (Sec. 7) Directs the Secretary to study maritime
research and technology development, and report the results, including any recommendations, to Congress. Authorizes appropriations. (Sec. 8) Authorizes the Secretary to convey all right, title, and U.S. interest in the U.S.S. GLACIER (formerly of the
National Defense Reserve Fleet) to the Glacier Society, Inc., Bridgeport, Connecticut.

Model maritime administration authorization act for fiscal year 2001 - authorizes appropriations for the department of transportation (dot) for fy 2001 for: (1) operations and
training activities; (2) training activities; and (3) administrative expenses.amends the merchant marine act, 1936 to make appropriations for fy 2001 through 2001 for the
maritime administration.amends the merchant marine act, 1936 to apply certain restrictions concerning a vessel located in a foreign country to a newly constructed dry or
breakable vessel over seven,500 feet that has been delivered from a foreign shipyard or contracted for construction in a foreign shipyard before the earlier of: (1) one year
after enactment of this act, or (2) the effective date of the international maritime administration act. directs the secretary of state in coordination with the secretary of
transportation to initiate discussions in all appropriate international forums in order to establish an international standard for the scrapping of vessels in a safe and
environmentally sound manner. directs the secretary of state to initiate discussions in all appropriate international forums to establish an international standard for the
scrapping of vessels in a safe and environmentally sound manner.

Metrics Rouge1: 61.19, Rouge2: 41.5, RougeL: 47.76, RougeLsum: 57.21, Summary length (tokens): 222

Top 95% example (Sorted by rougeL)
Document SECTION 1. SMALL BUSINESS EXPENSING PROVISIONS MADE PERMANENT.

(a) Increase in Small Business Expensing Made Permanent.– (1) In general.–Subsection (b) of section 179 of the Internal Revenue Code of 1986 (relating to limitations) is amended– (A) by striking “$25,000 ($125,000 in the case of taxable years
beginning after 2006 and before 2011)” in paragraph (1) and inserting “$500,000”, and (B) by striking “$200,000 ($500,000 in the case of taxable years beginning after 2006 and before 2011)” in paragraph (2) and inserting “$1,000,000”. (2) Conforming
amendment.–Section 179(b) of such Code is amended by striking paragraph (7). (b) Expensing for Computer Software Made Permanent.–Clause (ii) of section 179(d)(1)(A) of such Code is amended by striking “and which is placed in service in a taxable
year beginning after 2002 and before 2011,”. (c) Inflation Adjustment.– (1) So much of subparagraph (A) of section 179(b)(5) of such Code as precedes clause (i) thereof is amended to read as follows: “(A) In general.–In the case of any taxable year
beginning in a calendar year after 2009, the $500,000 and $1,00,000 amounts in paragraphs (1) and (2) shall each be increased by an amount equal to–”. (2) Section 179(b)(5)(A)(ii) of such Code is amended by striking “2006” and inserting “2008”. (d)
Effective Date.–The amendments made by this section shall apply to taxable years ending after the date of the enactment of this Act.
SEC. 2. DEDUCTION FOR PURCHASE OF DOMESTICALLY MANUFACTURED AUTOMOBILES.
(a) In General.–Part VII of subchapter B of chapter 1 of the Internal Revenue Code of 1986 (relating to additional itemized deductions for individuals) is amended by redesignating section 224 as section 225 and by inserting after section 223 the following
new section:
“SEC. 224. DEDUCTION FOR PURCHASE OF DOMESTICALLY MANUFACTURED AUTOMOBILES.
“(a) Allowance of Deduction.–In the case of an individual, there shall be allowed as a deduction an amount equal to the cost of any qualified automobile placed in service by the taxpayer during the taxable year. “(b) Limitation Per Vehicle.–The amount of
the ded...

Gold Amends the Internal Revenue Code to: (1) increase and make permanent the expensing allowance for depreciable business assets; and (2) allow a tax deduction, up to $10,000, for the purchase of a motor vehicle manufactured in the United States.
Terminates such tax deduction after 2010.

Model amends the internal revenue code to make permanent: (1) the increased expensing allowance for depreciable business assets; and (2) the tax deduction for the purchase of
manufactured manufactured automobiles.

Metrics Rouge1: 72.0, Rouge2: 46.58, RougeL: 64.0, RougeLsum: 64.0, Summary length (tokens): 40

Table 11: Examples of the BillSum dataset using the model billsum-1024-256 base diverse

177

Bottom 5% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Public Health Equity Act”.
SEC. 2. FINDINGS.
Congress finds that– (1) all communities and individuals are entitled to protection from occupational and other exposure to substances that are hazardous to the public health; (2) hazardous substances have had a disproportionate impact on the public health
of poor and ethnic minority communities and individuals, resulting in exclusion from participation in, denial of benefits under, and discrimination under, programs and activities receiving Federal financial assistance; and (3) each Federal agency has an
obligation to ensure that all federally assisted programs and activities that affect human health do not directly or through contractual arrangements use criteria, methods, or practices that cause discrimination on the ground of race, color, or national origin.
SEC. 3. PUBLIC HEALTH EQUITY.
The Public Health Service Act (42 U.S.C. 201 et seq.) is amended by adding at the end thereof the following new title:
“TITLE XXVII–PUBLIC HEALTH EQUITY
“SEC. 2701. DEFINITIONS.
“As used in this title: “(1) Activity; program.–The term ‘program or activity’ means any operation of– “(A)(i) a department, agency, special purpose district, or other instrumentality of a State or of a local government; or “(ii) the entity of such State or
local government that distributes such assistance and each such department or agency (and each other State or local government entity) to which the assistance is extended, in the case of assistance to a State or local government; “(B)(i) a college,
university, or other postsecondary institution, or a public system of higher education; or “(ii) a local educational agency (as defined in section 198(a)(10) of the Elementary and Secondary Education Act of 1965), system of vocational education, or other
school system; “(C)(i) an entire corporation, partnership, or other private organization, or an entire sole ...

Gold Public Health Equity Act - Amends the Public Health Service Act to add a new title, title XXVII: Public Health Equity. Prohibits, under such title, acts with discriminatory effect as well as intentionally discriminatory acts that result in disproportionate
exposure to a covered substance on the basis of race, color, or national origin. Defines a covered substance to include certain hazardous materials, substances, contaminants, or chemicals listed, identified, or defined in specified laws.

Model public health equity act - amends the public health service act to require the president to ensure that no person shall be excluded from participation in, be denied the
benefits of, or being subject to discrimination under, any program or activity on the ground of race, color, or national origin.
requires the president to ensure that no person shall be excluded from participation in, be denied the benefits of, or being subject to discrimination under, any program or
activity on the ground of race, color, or national origin.
requires the secretaries of labor, health and human services, the administrator of the health and human services, the administrator, and any other head of a federal agency
with responsibility for providing federal financial assistance to a program or activity to issue regulations implementing such nondiscrimination requirements.
requires such regulations to: (1) declare that no person shall be excluded from participation in, be denied the benefits of, or be subject to discrimination under, any
program or activity on the ground of race, color, or national origin; and (2) address actions of programs or activities that result in disproportionate exposure to a covered
substance on the basis of race, color, or national origin.

Metrics Rouge1: 28.89, Rouge2: 20.15, RougeL: 22.96, RougeLsum: 26.67, Summary length (tokens): 239

Bottom 25% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE; REFERENCES TO TITLE 38, UNITED STATES CODE.

(a) Short Title.–This Act may be cited as the “Veterans Programs Improvement Act of 2003”. (b) References.–Except as otherwise expressly provided, wherever in this Act an amendment is expressed in terms of an amendment to a section or other
provision, the reference shall be considered to be made to a section or other provision of title 38, United States Code.
SEC. 2. INCREASE IN RATES OF DISABILITY COMPENSATION AND DEPENDENCY AND INDEMNITY COMPENSATION.
(a) Rate Adjustment.–The Secretary of Veterans Affairs shall, effective on December 1, 2003, increase the dollar amounts in effect for the payment of disability compensation and dependency and indemnity compensation by the Secretary, as specified in
subsection (b). (b) Amounts To Be Increased.–The dollar amounts to be increased pursuant to subsection (a) are the following: (1) Compensation.–Each of the dollar amounts in effect under section 1114. (2) Additional compensation for dependents.–Each
of the dollar amounts in effect under section 1115(1). (3) Clothing allowance.–The dollar amount in effect under section 1162. (4) New dic rates.–Each of the dollar amounts in effect under paragraphs (1) and (2) of section 1311(a). (5) Old dic
rates.–Each of the dollar amounts in effect under section 1311(a)(3). (6) Additional dic for surviving spouses with minor children.–The dollar amount in effect under section 1311(b); (7) Additional dic for disability.–Each of the dollar amounts in effect
under subsections (c) and (d) of section 1311. (8) DIC for dependent children.–Each of the dollar amounts in effect under sections 1313(a) and 1314. (c) Determination of Increase.– (1) The increase under subsection (a) shall be made in the dollar
amounts specified in subsection (b) as in effect on November 30, 2003. (2) Except as provided in paragraph (3), each such amount shall be increased by the same percentage as the percentage by which benefit amounts payable under title II of the Social
Security Act (42 U.S.C. 401 et seq.) are increased effective December 1, 2003, as a result of a determination under section 215(i) of such Act (42 U.S.C...

Gold Veterans Programs Improvement Act of 2003 - Directs the Secretary of Veterans Affairs to increase, as of December 1, 2003, the rates of veterans’ disability compensation, additional compensation for dependents, the clothing allowance for certain
disabled adult children, and dependency and indemnity compensation for surviving spouses and children.
Makes the effective date for the award of death pension the same as that for the award of death compensation or dependency and indemnity compensation.
Excludes lump-sum insurance proceeds from income for purposes of eligibility for veterans’ pensions.
Prohibits the payment of veterans’ disability compensation for an alcohol- or drug-abuse related disability even if the the alcohol or drug abuse is secondary to a service-connected disability.
Provides alternative beneficiaries for National Service Life Insurance and United States Government Life Insurance proceeds when the first beneficiary does not make a claim.
Provides burial benefit eligibility for a veteran’s surviving spouse who remarries following the veteran’s death.
Makes permanent the authority for the State cemetery grants program.
Repeals the Department of Veterans Affairs Education Loan program.
Includes self-employment training under the Montgomery GI Bill.

Model veterans programs improvement act of 2003 - directs the secretary of veterans affairs, effective on december 1, 2003, to increase the rates of disability and dependency
and indemnity compensation (dic) through the department of veterans affairs (va), to: (1) increase the rates of disability compensation and dependency and indemnity
compensation; (2) provide for additional compensation for dependents; (3) provide for additional compensation for dependents; (4) exclude lump-sum sales of any
life insurance policy or policies on a veteran for purposes of pension benefits; (5) exclude lump-sum sales of any life insurance policy or policies on a veteran for
purposes of pension benefits; (6) exclude lump-sum life insurance proceeds from the determinations of annual income for pension purposes; (7) provide for alternative
beneficiaries for certain veterans’ life insurance policies or policies on a veteran’s service-connected disability; and (8) authorize the secretary to approve a program of
self-employment on-employment in the department of veterans affairs education loan program.amends the veterans’ advisory committee on education to: (1) repeal the
requirement that a claimant and the claimant’s representative is necessary to complete an application is not received by the secretary within one year from the date of
such notification; (2) make permanent the same authority for state cemetery grants program; and (3) authorize the secretary to approve a program of self-employment
on-employment in the department of america known as the department of veterans affairs.

Metrics Rouge1: 60.71, Rouge2: 29.79, RougeL: 33.88, RougeLsum: 50.82, Summary length (tokens): 297

Top 75% example (Sorted by rougeL)
Document SECTION 1. SHORT TITLE.

This Act may be cited as the “Cameron Gulbransen Kids and Cars Safety Act of 2003”.
SEC. 2. EVALUATION OF DEVICES AND TECHNOLOGY TO REDUCE CHILD INJURY AND DEATH FROM PARKED OR UNATTENDED MOTOR VEHICLES.
(a) In General.–The Secretary of Transportation shall evaluate– (1) devices and technologies intended to reduce the incidence of child injury and child death occurring outside of parked motor vehicles in nontraffic, noncrash events, including backing-over
incidents, that are caused by such vehicles, and determining which of those methods is the most effective; and (2) currently available technology to prevent injury and death of children left unattended inside of parked motor vehicles, including injury or
death due to hyperthermia, power windows, or power sunroofs. (b) Report.–The Secretary of Transportation shall submit a report on the findings and determinations of the evaluation under this section to the Congress by not later than one year after the
date of the enactment of this Act. (c) Completion of Rulemaking Regarding Power Windows.–The Secretary of Transportation shall by not later than 6 months after the submission of the report under subsection (b) complete any rulemaking begun before
the date of the enactment of this Act regarding power windows and power window switches.
SEC. 3. DATABASE FOR TRACKING THE NUMBER AND TYPES OF INJURIES AND DEATHS IN NONTRAFFIC, NONCRASH EVENTS.
(a) Establishment.–The Secretary of Transportation shall establish a database of (or modify an existing database to include), and collect data regarding, the numbers and types of injuries and deaths in nontraffic, noncrash events involving motor vehicles.
(b) Included Information.–The Secretary of Transportation shall collect and include in such database the following information: (1) The types, makes, models, and model years of motor vehicles involved in nontraffic, noncrash events. (2) Whether there
was an operator of each motor vehicle in such events. (3) The age of each operator of such motor vehicles. (4) The age of each individual who suffered injury or death in such events. (5) Whether each motor vehicle had technology installed to detect
individuals and objects behind it. (6...

Gold Cameron Gulbransen Kids and Cars Safety Act of 2003 - Directs the Secretary of Transportation to: (1) evaluate devices and technologies to reduce child injuries and deaths occurring outside of parked motor vehicles in non-traffic, non-crash events or
inside of parked vehicles when children are left unattended; (2) establish a database of, and collect data on, the number and types of injuries and deaths in such events; (3) evaluate technologies for detecting and preventing collisions with individuals and
objects behind motor vehicles; (4) prescribe safety standards to require devices for detecting individuals and objects behind motor vehicles; and (5) prescribe safety standards for power windows and power sunroofs, including requirements for child-safe
switches and auto reverse technology.

Model tamarisk kids and cars safety act of 2003 - directs the secretary of transportation (dot) to evaluate: (1) devices and technologies intended to reduce the incidence of child
injury and death occurring inside distant motor vehicles in nontraffic, noncrash events, and determine which are the most effective; and (2) currently available technology
to prevent injury and death of children left behind the motor vehicles.
directs the secretary to: (1) establish a database of, and collect data regarding, the number and types of injuries and deaths in nontraffic, noncrash events involving motor
vehicles; and (2) prescribe motor vehicle safety standards.

Metrics Rouge1: 63.59, Rouge2: 37.21, RougeL: 50.69, RougeLsum: 49.77, Summary length (tokens): 132

Top 95% example (Sorted by rougeL)
Document SECTION 1. FINDINGS.

The Congress finds the following: (1) As a Member of Congress from the Tenth Congressional District of Texas, as Majority Leader of the U.S. Senate, Vice- President and President of the United States, Lyndon Baines Johnson’s accomplishments in the
fields of civil rights, education, and economic opportunity rank among the greatest achievements of the past half century. (2) As President, Lyndon Johnson proposed, championed, led to passage, and signed into law on August 6, 1965, the Voting Rights
Act of 1965, which swept away barriers impeding millions of Americans from meaningful participation in American political life. (3) On July 30, 1965, President Johnson signed into law the Social Security Amendments Act of 1965, popularly known as
Medicare, which has transformed the delivery of health care in the United States and which, along with Social Security, reduced the rate of poverty among the elderly from 28.5 percent in 1966 to 9.1 percent in 2012. (4) On July 2, 1964, President
Johnson secured passage and signed into law the most sweeping civil rights legislation since Reconstruction, the Civil Rights Act of 1964, which prohibits discrimination in employment, education, and public accommodations based on race, color,
religion, or national origin. (5) On November 8, 1965, President Johnson signed into law the Higher Education Act, which provided need-based financial aid to students in the form of scholarships, work-study grants, and loans, and thus made higher
education more accessible to populations of persons who were previously unable to attend college because of economic circumstances. (6) On October 3, 1965, President Johnson signed into law the Immigration and Naturalization Act of 1965, which
transformed the Nation’s immigration system by abolishing the racially based quota system that had defined American immigration policy for four decades and replaced it with a policy whose central purpose was family reunification, with a preference for
immigrants with specific skill sets. (7) According to Robert A. Caro, the preeminent biographer of Lyndon Baines Johnson, with the s...

Gold This bill directs the Speaker of the House and the President pro tempore of the Senate to arrange for the posthumous award of a Congressional Gold Medal to Lyndon Baines Johnson in recognition of his contributions to the nation, including passage of
the Voting Rights Act of 1965, the Social Security Amendments Act (Medicare) of 1965, the Civil Rights Act of 1964, the Higher Education Act of 1965, and the Immigration and Naturalization Act of 1965. Requires such medal to be given to the
Lyndon Baines Johnson Library and Museum following its award, where it will be available for display and research.

Model this bill directs the speaker of the house of representatives and the president pro tempore of the senate to arrange for the posthumous award, on behalf of congress, of
a gold medal to lyrics to lyrics in recognition of his contributions to the nation, including recognition of his contributions to the nation, including recognition of the
landmark voting rights act of 1965, the civil rights act of 1964, the higher education act of 1965, and the immigration and naturalization act of 1965.

Metrics Rouge1: 72.83, Rouge2: 62.64, RougeL: 68.48, RougeLsum: 68.48, Summary length (tokens): 97

Table 12: Examples of the BillSum dataset using the model billsum-4096-1024 base diverse

178

Bottom 5% example (Sorted by rougeL)
Document in the last decade the amount of data regarding micrornas (mirs) and their target genes described in the literature has expanded tremendously . the volume of information on this new group of regulators (i.e. , mirs) has complicated attempts to integrate

this data within existing metabolic and signalling networks . as regulators of gene expression in addition , a single mir can potentially regulate multiple different genes at the same time , leading to complex functional outcomes . however , from another
perspective , the identification of groups of genes targeted by the same mir and the clustering of these genes within individual signalling pathways represents a means to understand the cross talk between multiple signalling networks and their role in a
common biological process . the focus of this review is to summarize the validated groups of mirs functionally linked to the cross talk between tgf- , notch , and wnt signalling during the common biological process of epithelial - to - mesenchymal
transition (emt) . in particular , this review will address whether the documented cross talk between these three important emt - associated pathways could be further reinforced by the identification of a signature of mirs , already depicted in the literature
but not yet sharpened or clearly defined in this role . in the past years , many studies have elegantly described the role of tgf- , notch , and wnt pathways in promoting emt and emt - associated disorders including fibrosis and metastatic dissemination in
cancer [16] . here we identify published and validated interactions between mirs and genes involved in tgf- , notch , and wnt signalling . this led to the discovery of a signature of 30 mirs each regulating all three pathways . we then searched for
additional validated genes targeted by these 30 mirs and then further clustered these into the tgf- , notch , and wnt signalling pathways . interestingly , in our attempt to identify mirs that were common to all three of these signalling pathways , we found
that the 30-mir signature strongly reinforced existing evidence supporting cross talk between these three pathways during emt . in this review we used tarbase v6.0 , the largest currently available manually curated mir target gene database , which includes
targets derived from specific and high throughput experiments . using tarbase v6.0 we searched the collection of manually curated , experimentally validated mir - gene intera...

Gold epithelial - to - mesenchymal transition (emt) is a reversible process by which cancer cells can switch from a sessile epithelial phenotype to an invasive mesenchymal state . emt enables tumor cells to become invasive , intravasate , survive in the
circulation , extravasate , and colonize distant sites . paracrine heterotypic stroma - derived signals as well as paracrine homotypic or autocrine signals can mediate oncogenic emt and contribute to the acquisition of stem / progenitor cell properties ,
expansion of cancer stem cells , development of therapy resistance , and often lethal metastatic disease . emt is regulated by a variety of stimuli that trigger specific intracellular signalling pathways . altered microrna (mir) expression and perturbed
signalling pathways have been associated with epithelial plasticity , including oncogenic emt . in this review we analyse and describe the interaction between experimentally validated mirs and their target genes in tgf- , notch , and wnt signalling pathways
. interestingly , in this process , we identified a signature of 30 experimentally validated mirs and a cluster of validated target genes that seem to mediate the cross talk between tgf- , notch , and wnt signalling networks during emt and reinforce their
connection to the regulation of epithelial plasticity in health and disease .

Model micrornas (mirs) are a class of small noncoding rnas that regulate multiple gene expression at the same time, leading to complex functional outcomes. recent studies
have shown that mirs regulate multiple different pathways at the same time, leading to complex functional outcomes. however, from another perspective, the identification
of genes targeted by the same mir and the clustering of these genes within individual signalling pathways represents a means to understand the cross talk between
multiple signalling pathways and their role in a common biological process. in this review , we summarize the published studies of mir-, notch, and wnt signalling in

Metrics Rouge1: 20.22, Rouge2: 0.0, RougeL: 11.24, RougeLsum: 14.61, Summary length (tokens): 129

Bottom 25% example (Sorted by rougeL)
Document mhc class ii molecules are heterodimeric cell surface glycoproteins that bind exogenously derived antigenic peptides and present them to cd4 t cells 12 . class ii and chains are translocated into the endoplasmic reticulum (er) , where they form nonamers

with invariant (ii) chain 3 . ii chain prevents the binding of immunogenic peptides due to the presence of a 14amino acid domain (clip) that occupies the peptide - binding groove of / dimers 3 . after ii degradation in the endocytic pathway , the mhc -
encoded molecules hla - dm (or h2-m in the mouse) and hla - do (h2-o) facilitate the removal of clip from / dimers , allowing peptide binding 456 . ii chain has been implicated in functions such as er export , endosome targeting , and even b cell
maturation 37 . two alternatively spliced ii isoforms exist (p31 and p41) , distinguished by a 64-residue domain in the lumenal portion of p41 8 . the isoforms are expressed differently in various apcs and regulate the presentation of certain antigen
epitopes in b cells 9 . this difference may reflect protease inhibition by the amino acid insertion in p41 , as it has been shown to inhibit the lysosomal cysteine protease cathepsin l both in vitro and in vivo 910 . therefore , ii chain may contribute to the
modulation of the proteolysis in the endocytic pathway and thus modulate antigen processing indirectly 1112 . we demonstrate here that ii chain deletion leads to the lysosomal degradation of h2-mb in apcs , suggesting that ii chain is required to prevent
the proteolysis of h2-m and perhaps of other proteins . this feature may help explain how ii chain expression affects t cell selection and b cell maturation independently from its effect on mhc class ii traffic 131415 . c57bl/6 (control) and ii , ii p31 1416 ,
class ii , and class ii / ii mice (the gift of p. marrack , university of colorado health sciences center , denver , co) were kept in a pathogen - free environment for 78 wk before killing . splenocytes were obtained as described 7 . bone marrow derived
dendritic cells (dcs) were cultured as described 17 . after purification , immature dcs were characterized by immunofluorescence and processed in parallel with the lps - treated dcs . the primers used here to detect i - a , h2-m , and h2-m are identical to
the primers described previously 19 . 3 10 late dcs were pulse labeled with 7.5 mci / ml of [s]methionine translabel (icn) and chased as described 17

Gold the association of invariant (ii) chain with major histocompatibility complex (mhc) class ii dimers is required for proper antigen presentation to t cells by antigen - presenting cells . mice lacking ii chain have severe abnormalities in class ii transport , t
cell selection , and b cell maturation . we demonstrate here that h2-m , which is required for efficient class ii antigenic peptide loading , is unexpectedly downregulated in splenocytes and mature dendritic cells (dcs) from ii/ mice . downregulation reflects
an increased rate of degradation in ii/ cells . degradation apparently occurs within lysosomes , as it is prevented by cysteine protease inhibitors such as e64 , but not by the proteasome inhibitor lactacystin . thus , ii chain may act as a lysosomal protease
inhibitor in b cells and dcs , with its deletion contributing indirectly to the loss of h2-m .

Model mhc class ii molecules are heterodimeric cell surface glycoproteins that bind exogenously derived antigenic peptides and present them to cd4 t cells 12. type ii chains are
translocated into the endoplasmic reticulum (er), where they form nonamers with invariant (ii) chain 3. type ii chains are translocated into the endoplasmic reticulum (
er), where they form nonamers with invariant (ii) chain 3. type ii chains are translocated into the endoplasmic reticulum (er), where

Metrics Rouge1: 27.67, Rouge2: 8.92, RougeL: 17.61, RougeLsum: 25.16, Summary length (tokens): 129

Top 75% example (Sorted by rougeL)
Document stroke , after myocardial infarction (mi) , is the second leading reason for mortality in iran as with many countries worldwide . the epidemiology of stroke has already been investigated in the american , european , african , and asian countries . no

comprehensive study has yet investigated the epidemiology of stroke , particularly in mi patients , in iran , one of the largest countries in southwest asia . stroke and mi share many risk factors , most prevalent of which are smoking , dyslipidemia , type 2
diabetes , and hypertension . the risk factors for stroke and mi , especially smoking , hypertension , and dyslipidemia are highly prevalent in iran , as well . according to projections urbanism , increased life expectancy , reduction in childbirth , aging and
elderly population , epidemiological changes , socioeconomic status , geographical conditions , and lifestyles such as poor diet , stress , and low mobility are the main causes of the burden of noncommunicable diseases , particularly stroke . because the
determinants of stroke in different communities are various , we require knowledge about the risk factors and determinants of mortality in a community for effective planning and selection of appropriate strategies for the prevention and management
of stroke and heart attack as the most important causes of death . since no comprehensive study has yet been investigated the status and mortality determinants of stroke in mi patients in iran , this study is conducted to determine and compare the
determinants of mortality due to stroke in mi patients . in this retrospective cohort study , the data obtained from the mi registry of iran ’s cardiovascular diseases surveillance system were analyzed . around 20,750 hospitalized patients with mi with a new
presentation (hospitalized in 540 hospitals) between april , 2012 and march , 2013 were enrolled . the study was approved by the management center of noncommunicable diseases and the department of cardiovascular diseases prevention of iran ’s
ministry of health and medical education (approval no . the research followed the principles of the declaration of helsinki ; the researchers did not conduct any interventions on the patients , and an institutional review board approved this research . the
study protocol was approved by an independent scientific review committee (at shahid beheshti university medical of sciences) (no . inclusion criteria were determined according to the world...

Gold background : the data and determinants of mortality due to stroke in myocardial infarction (mi) patients are unknown . this study was conducted to evaluate the differences in risk factors for hospital mortality among mi patients with and without stroke
history.materials and methods : this study was a retrospective , cohort study ; 20,750 new patients with mi from april , 2012 to march , 2013 were followed up and their data were analyzed according to having or not having the stroke history . stroke and
mi were defined based on the world health organization ’s definition . the data were analyzed by logistic regression in stata software.results:of the 20,750 studied patients , 4293 had stroke history . the prevalence of stroke in the studied population was
derived 20.96% (confidence interval [ci] 95% : 20.1321.24) . of the patients , 2537 (59.1%) had st - elevation mi (stemi) . mortality ratio in patients with and without stroke was obtained 18.8% and 10.3% , respectively . the prevalence of risk factors
in mi patients with and without a stroke is various . the adjusted odds ratio of mortality in patients with stroke history was derived 7.02 (95% ci : 5.429) for chest pain resistant to treatment , 2.39 (95% ci : 1.972.9) for stemi , 3.02 (95% ci : 2.53.64)
for lack of thrombolytic therapy , 2.2 (95% ci : 1.662.91) for heart failure , and 2.17 (95% ci : 1.62.9) for ventricular tachycardia.conclusion:with regards to the factors associated with mortality in this study , it is particularly necessary to control the
mortality in mi patients with stroke history . more emphasis should be placed on the mi patients with the previous stroke over those without in the interventions developed for prevention and treatment , and for the prevention of avoidable mortalities .

Model background : stroke and myocardial infarction (mi) share many risk factors, most prevalent of which are smoking, dyslipidemia, type 2 diabetes, and hypertension. the
aim of this study was to determine and compare the determinants of stroke in mi patients.methods:in this retrospective cohort study, the data obtained from the mi
registry of iran’s cardiovascular diseases surveillance system were analyzed. patients with mi were defined by the date at mi diagnosis, hospital stay, and follow - up till
discharge or death (outcome). odds ratio (or) of mortality for clinical and demographic risk factors were calculated by logistic regression.results

Metrics Rouge1: 55.88, Rouge2: 20.79, RougeL: 31.37, RougeLsum: 51.96, Summary length (tokens): 129

Top 95% example (Sorted by rougeL)
Document stroke commonly causes loss of motor function due to weakening of upper / lower extremity muscles1 . according to ryerson2 , use the affected upper extremity decreases because of the patient s dependency on the unaffected upper extremity for

normal functions , which results in problems such as learned disuse , asymmetric postural patterns , contractures , and aggravated functional restrictions involving the affected upper extremity . therefore , to improve functions of the affected upper
extremity in stroke patients , measures that maximize opportunities to use the affectedupper extremity are necessary . bilateral activities have been discussed as measures to improve the body symmetry and to reduce abnormal muscle tone3 , thereby
promoting voluntary movement of the affected upper extremity4 . thus far , bilateral upper extremity coordination movements have been applied in the form of bilateral single exercises utilizing tasks such as figure imitation5 , robot arm upper extremity
mechanisms6 and functional stretching7 , and bilateral complex exercises combined with the principle of motor learning , such as rhythmic acoustic8 , unaffected extremity weight addition9 , and active neuromuscular electrical stimulation in stroke
patients10 . most previous studies have reported the positive effects of these exercises on motor function recovery in stroke patients . whitall et al.8 reported that when chronic hemiplegia patients underwent bilateral training to push and pull upper
extremity apparatuses , including acoustic signals , their upper extremity functions were improved . in a study conducted by summer et al.7 with 12 chronic stroke patients , the movement time of the patients affected side upper extremity decreased and
upper extremity functions showed more improvement when they performed tasks to hold objects by stretching both hands simultaneously then when they performed tasks to hold objects by stretching only one hand . however , lee su - jin11 advised that
the tasks in those studies involved mostly gross motor exercises of the upper extremity and simple repetitive training tasks , and that they were not sufficient to improve patients grasping ability to hold objects with various sizes , shapes , and weights using
the shoulder , elbow , wrist , and fingers . although studies that applied diverse functional training tasks including activities of daily living to symmetric bilateral upper ...

Gold [purpose] the purpose of this study was to investigate the effects of task - oriented bilateral arm training and repetitive bilateral arm training on upper limb function and activities of daily living in stroke patients . [subjects] forty patients with hemiplegia
resulting from stroke were divided into a task orientied bilateral arm training group (n=20) and a repetitive bilateral arm training group (n=20) . [methods] the task - oriented group underwent bilateral arm training with 5 functional tasks , and the
repetitive group underwent bilateral arm training with rhythmin auditory cueing for 30 minutes / day , 5 times / week , for 12 weeks . [results] the upper limb function and the ability to perform activities of daily living improved significantly in both
groups . although there were significant differences between the groups , the task - oriented group showed greater improvement in upper limb function and activities of daily living . [conclusion] we recommend bilateral arm training as well as adding
functional task training as a clinical intervention to improve upper limb function activities of daily living in patients with hemiplegia .

Model [purpose] the purpose of this study was to compare the effects of symmetric bilateral upper extremity exercises using diverse functional training tasks with the effects of
repetitive bilateral upper extremity exercises including acoustic signals on the recovery of upper extremity function and daily living activities in stroke paitents. [subjects
and methods] forty patients with hemiplegia resulting from stroke were randomly and equally assigned to a task - oriented bilateral arm training group (tbg : 11 males,
9 females) and a repetitive bilateral arm training group (rbg : 13 males, 7 females). both groups performed their exercises for

Metrics Rouge1: 62.03, Rouge2: 34.59, RougeL: 50.27, RougeLsum: 60.96, Summary length (tokens): 129

Table 13: Examples of the PubMed dataset using the model pubmed-1024-128 small diverse

179

Bottom 5% example (Sorted by rougeL)
Document cdnas containing the sequence of human wt - ftl and human mutant ftl498499instc were introduced into the pet-28a(+) expression vector (novagen , emd chemicals inc .) . the cdnas were cloned between the bamhi and xhoi sites , downstream from and

in - frame with the sequence encoding an n - terminal his6 tag . to eliminate the his6 tag (included in the expression vector) , the sequence of the vector was modified by introducing the recognition sequence for cleavage by factor xa before the coding
sequence of the ferritin genes . pcr amplification of the ferritin cdnas was performed using the upstream primer f1 5-tgg atc cat cga agg tcg tat gag ctc cca gat t-3 and the downstream primer r1 5-tta tgc ctc gag ccc tat tac ttt gca agg-3. f1 contains the factor
xa sequence (underlined) . pet-28a(+) carrying wt - ftl and mt - ftl cdnas was transformed into bl21 (de3) escherichia coli (invitrogen) . transformed cells were grown in luria broth medium (lb) containing 30 g / ml kanamycin (invitrogen) at 37 c up
to an absorbance of 0.91.0 at 600 nm . bacteria were induced to overexpress recombinant proteins by adding 1 mm isopropyl thio–d - galactopyranoside (icn biotechnologies) for 12 h at 25 c . purification of recombinant wt- and mt - ftl homopolymers
cells were harvested by centrifugation and frozen at -80 c . the cell pellets were suspended in 50 mm sodium phosphate , 500 mm nacl (ph 7.4) , 1 mg / ml lysozyme , and a protease inhibitor mixture (complete , roche applied science) for 30 min .
bacteria were disrupted by sonication , and the insoluble material was removed by centrifugation at 21,000 g for 30 min . the soluble fraction was purified by nickel iminodiacetic acid affinity chromatography using an akta purifier system (ge healthcare) .
purified protein was eluted with 250 mm imidazole in 50 mm sodium phosphate (ph 7.4) , 0.5 m nacl . recombinant proteins were diluted with 50 mm tris and 10% glycerol (v / v) down to an absorbance of 0.5 at 280 nm , and ferritins were cleaved
from the his tag by digestion with factor xa protease (ge healthcare) (5 units / mg of protein) . after being dialyzed against 50 mm tris , ph 8.0 , for 18 h , proteins were further purified by anion exchange chromatography (mono q) using a linear nacl
elution gradient in 50 mm tris (ph 8) . peak fractions were 95% pure based on s...

Gold nucleotide insertions in the ferritin light chain (ftl) polypeptide gene cause hereditary ferritinopathy , a neurodegenerative disease characterized by abnormal accumulation of ferritin and iron in the central nervous system . here we describe for the first
time the protein structure and iron storage function of the ftl mutant p.phe167serfsx26 (mt - ftl) , which has a c terminus altered in sequence and extended in length . mt - ftl polypeptides assembled spontaneously into soluble , spherical 24-mers that
were ultrastructurally indistinguishable from those of the wild type . far - uv cd showed a decrease in -helical content , and 8-anilino-1-naphthalenesulfonate fluorescence revealed the appearance of hydrophobic binding sites . near - uv cd and proteolysis
studies suggested little or no structural alteration outside of the c - terminal region . in contrast to wild type , mt - ftl homopolymers precipitated at much lower iron loading , had a diminished capacity to incorporate iron , and were less thermostable .
however , precipitation was significantly reversed by addition of iron chelators both in vitro and in vivo . our results reveal substantial protein conformational changes localized at the 4-fold pore of mt - ftl homopolymers and imply that the c terminus of
the mt - ftl polypeptide plays an important role in ferritin solubility , stability , and iron management . we propose that the protrusion of some portion of the c terminus above the spherical shell allows it to cross - link with other mutant polypeptides
through iron bridging , leading to enhanced mutant precipitation by iron . our data suggest that hereditary ferritinopathy pathogenesis is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron -
induced ferritin aggregates .

Model apoferrin is a member of the nuclear receptor superfamily family of membrane proteins. apoferrin is a member of the family of apoferrin family. apoferrin is a member
of the family of apoferrin family. apoferrin is a member of the family of apoferrin family. apoferrin is a member of the family of apoferrin family. apoferrin is a member
of the family of apoferrin family. apoferrin is a member of the family of

Metrics Rouge1: 13.33, Rouge2: 1.35, RougeL: 12.0, RougeLsum: 12.0, Summary length (tokens): 129

Bottom 25% example (Sorted by rougeL)
Document intracellular signaling pathways transmit signals of various extracellular stimuli to their cytosolic and nuclear targets in order to induce biological responses , such as proliferation , differentiation , cell death and migration . when needed , the signals are

transmitted from the cytoplasm to the nucleus via translocation of one or more components of each of the signaling pathways involved . thus , after stimulation , a large number of signaling proteins are rapidly translocated to the nucleus to induce and
regulate many nuclear processes . however , despite the importance of stimulated nuclear signaling , the mechanisms by which these components reach the nucleus upon stimulation have been elucidated only for a few signaling pathways . classic nuclear
shuttling is mediated by an importin- complex that binds to cargoes containing a nuclear localization signal (nls) , consisting of mono- or bi - partite clusters of basic amino acids [1 - 3] . this importin- complex often acts as a housekeeping mechanism
that shuttles most nuclear proteins immediately to the nucleus after their translation . the relocalization of cargoes is followed by the dissociation of the proteins from the importins upon binding to rangtp , which exports the importins back to the
cytoplasm , while the cargo remains in the nucleus . however , only a limited number of signaling proteins , such as nfb and erk5 (extracellular signal - regulated kinase 5) [8 - 10] , use this machinery for their stimulated nuclear shuttle . aside from this
canonical mechanism , importin- or similar karyopherins , termed -like importins , operate by binding to non - canonical nlss to mediate translocation without the assistance of importin-. the mechanism by which these components operate is much less
understood and is currently under investigation . recently , several -like importins have been implicated in the stimulated nuclear translocation of signaling proteins . here , we propose that this group of importins might be responsible for the swift nuclear
shuttling of many proteins following various stimuli . the rapid and robust activation of erk1/2 allows the phosphorylation and modulation of the activity of more than 300 proteins , which are localized either in the cytoplasm or the nucleus [13 - 15] .
these substrates are important for the induction and regulation of cellular processes , including proliferation , differentiation , and migration amongst others [16 - ...

Gold classic nuclear shuttling is mediated by an importin- heterodimer that binds to cargoes containing a nuclear localization signal , and shuttles most nuclear proteins immediately after their translation . aside from this canonical mechanism , kariopheryn-s or
-like importins operate by binding to non - canonical nuclear localization signals to mediate translocation without the assistance of importin-. the mechanism by which these components operate is much less understood and is currently under investigation .
recently , several -like importins have been implicated in the stimulated nuclear translocation of signaling proteins . here , we propose that this group of importins might be responsible for the swift nuclear shuttling of many proteins following various
stimuli .

Model the nuclear translocation signal (nl) is a key regulator of many cellular processes, including proliferation, differentiation, cell death, migration, and migration. recent
studies have shown that the nuclear translocation signal (nl) is required for the induction and regulation of many nuclear processes, including proliferation, differentiation,
migration, and migration. here , we discuss the role of nl in the regulation of the nuclear translocation signal (nl), as well as the mechanisms that regulate it.

Metrics Rouge1: 33.33, Rouge2: 5.0, RougeL: 18.52, RougeLsum: 32.1, Summary length (tokens): 100

Top 75% example (Sorted by rougeL)
Document helicobacter pylori is a stomach bacterium that colonizes ~50% of people globally.1 h. pylori is the primary risk factor for gastric cancer the third highest cause of global cancer morbidity.2 h. pylori infection rates are highly dependent on socioeconomic

status ; ~80% of those living in low socioeconomic areas of latin america , asia , and eastern europe are infected , compared with < 20% of asymptomatic caucasians in the usa.3 h. pylori infection is treatable with different regimens of antibiotics,4 and
eradication of h. pylori is a recognized way to lower incidence of gastric cancer.5 however , recurrence of infection is variable,6,7 and the emergence of antibiotic resistance compromises treatment efficacy . thus , determining the best course of treatment
is important to improve treatment efficacy and to reduce recurrence of h. pylori infection . unfortunately , there is no broad consensus about an optimal antibiotic therapy for the treatment of h. pylori . for example , meta - analyses of european and asian
clinical data compared the standard triple therapy (amoxicillin , clarithromycin , and a proton - pump inhibitor for 714 days) with 5- or 10-day quadruple therapy regimens (adding metronidazole or tinidazole to the triple therapy) and found that
quadruple therapies are both significantly more effective and cheaper than the triple therapy.810 however , we previously published a study comparing eradication therapies in seven sites of six latin american countries that showed that the 14-day triple
therapy was superior to the 5-day concomitant quadruple therapy , and no different than the 10-day sequential quadruple therapy.11,12 these inconsistencies reflect localized differences in antibiotic use practices , such as the use of clarithromycin for
upper respiratory infections.13 the differences in efficacy of antibiotic therapy are supported by primary antibiotic resistance data . for example , h. pylori resistance to amoxicillin varied widely between africa (65.6%) , europe (0.5%) , asia (11.6%) ,
and the americas (2.2%).12 even in the same region , patterns of resistance differ : within central and latin america , reported average metronidazole resistance varies from 30% in argentina to 83% in columbia , and tetracycline resistance varies from 2%
in brazil to 33% in columbia.14 as such , characterizing local resistance patterns is important for selecting therapies with the highest likelihood of success . our research focus...

Gold objectivesgastric carcinoma is the most common cancer and cause of cancer mortality in peru . helicobacter pylori , a bacterium that colonizes the human stomach , is a group 1 carcinogen due to its causal relationship to gastric carcinoma . while
eradication of h. pylori can help prevent gastric cancer , characterizing regional antibiotic resistance patterns is necessary to determine targeted treatment for each region . thus , we examined primary antibiotic resistance in clinical isolates of h. pylori in
lima , peru.materials and methodsh . pylori strains were isolated from gastric biopsies of patients with histologically proven h. pylori infection . primary antibiotic resistance among isolates was examined using e - test strips . isolates were examined for
the presence of the caga pathogenicity island and the vaca m1/m2 alleles via polymerase chain reaction.resultsseventy-six isolates were recovered from gastric biopsies . clinical isolates showed evidence of antibiotic resistance to 1 (27.6% , n=21/76) , 2
(28.9% , n=22/76) , or 3 antibiotics (40.8%) . of 76 isolates , eight (10.5%) were resistant to amoxicillin and clarithromycin , which are part of the standard triple therapy for h. pylori infection . no trends were seen between the presence of caga , vaca
m1 , or vaca m2 and antibiotic resistance.conclusionthe rate of antibiotic resistance among h. pylori isolates in lima , peru , is higher than expected and presents cause for concern . to develop more targeted eradication therapies for h. pylori in peru , more
research is needed to better characterize antibiotic resistance among a larger number of clinical isolates prospectively .

Model helicobacter pylori infection is the third most common cause of global cancer morbidity. eradication of helicobacter pylori is a recognized way to lower incidence of
gastric cancer. however, there is no broad consensus about an optimal antibiotic therapy for the treatment of helicobacter pylori. we assessed primary antibiotic resistance
to helicobacter pylori among 76 isolates from a cohort of patients recruited in lima, peru. primary antibiotic resistance to metronidazole, amoxicillin, tetracycline,
clarithromycin, levofloxacin, and rifamp

Metrics Rouge1: 50.0, Rouge2: 17.28, RougeL: 32.93, RougeLsum: 47.56, Summary length (tokens): 129

Top 95% example (Sorted by rougeL)
Document in general , brain injury can occur due to sudden and severe head strike to a hard object , which can be mild , moderate or severe (1) . the main causes of head injury include traffic accidents , falling from heights , physical violence , accidents at work ,

inside home accidents and during exercise incidents . however , the most important cause of head trauma in iranian population is traffic accident (2) . among the warning signs of head trauma are nausea , vomiting , dizziness , headache , blurred vision ,
and loss of balance , difficulty in sleeping , memory problems , tinnitus and fatigue (3) . nausea and vomiting are the most common complications after minor head trauma that in addition to severe harassment of patients increases the risk of aspiration
and intracranial pressure rising . ondansetron is a serotonin 5-ht3 receptor antagonist , which connects to the peripheral and central receptors of serotonin (1) . this drug is mostly used in nausea and vomiting after chemotherapy and surgery (2) . it does
not have any effect on dopamine receptors thus ; it does not have extra pyramidal effect (3) . this drug has a half - life of 2 - 7 hours and is metabolized in the liver where it changes into glucuronide and sulfate which is inactive . its most common side
effects include headaches , fatigue , diarrhea , constipation , dizziness and anxiety . the recommended dose for the treatment of nausea and vomiting is 4 - 8 milligrams (4 , 5) . metoclopramide as an old antiemetic is mostly used in high doses , before
chemotherapy and for nausea and vomiting caused by various reasons (6 - 8) . this drug blocks the dopamine receptors on the peripheral and central dopamine receptors and increases the movement of the upper gastrointestinal tract without increasing
secretion (9 , 10) . its intravenous absorption takes about 3 minutes and the peak of its effect is about 15 minute . this drug is metabolized in the liver and its half - life is approximately 4 - 5 hours (11) . its most common side effects include dystonia <
10% , fatigue , drowsiness , and flushing . based on the above - mentioned reasons , the present study was aimed to compare the antiemetic effects of metoclopramide and ondansetron in the treatment of post head trauma nausea and vomiting . study
design and setting the study was a controlled , randomized , double blind clinical trial , which was conducted in the first 6 months of 2014 in al - zahra a...

Gold introduction : nausea and vomiting are the most common complications after minor head trauma that increases the risk of intracranial pressure rising . therefore , the present study was aimed to compare the antiemetic effects of metoclopramide and
ondansetron in the treatment of post - traumatic nausea and vomiting . methods : the study was a controlled , randomized , double blind clinical trial , which was conducted in the first 6 months of 2014 in emergency department al - zahra and kashani
hospitals in isfahan , iran . the patients with minor head trauma associated with nausea and vomiting were randomly divided into 2 groups : treatment with metoclopramide (10mg/2ml , slow injection) and treatment with ondansetron (4mg/2ml , slow
injection) . the comparison between the 2 groups was done regarding antiemetic efficacy and side effects using spss 21 statistical software . results:120 patients with minor head trauma were distributed and studied into two groups of 60 patients (mean
age 35.614.1 years ; 50.0% male) . administration of both ondansetron and metoclopramide significantly reduced the severity of nausea (p<0.001) . changes in the severity of nausea in both groups before and after the treatment revealed that nausea had
been decreased significantly in both groups (p < 0.001) . the incidence of fatigue (p=0.44) , headache (p=0.58) and dystonia (p=0.06) had no significant difference in the two groups but the incidence of drowsiness and anxiety in the metoclopramide
group was significantly higher (p < 0.001) . conclusion : the present study indicated that the treatment effectiveness of ondansetron and metoclopramide are similar . however , incidence of drowsiness and anxiety in the metoclopramide was considerably
higher . since these complications can have adverse effects on the treatment of patients with brain injury , it is suggested that it may be better to use ondansetron in these patients .

Model background : head injury can occur due to sudden and severe head strike to a hard object, which can be mild, moderate or severe. metoclopramide as an old antiemetic is
mostly used in high doses, before chemotherapy and for nausea and vomiting caused by various reasons. the present study was aimed to compare the antiemetic effects
of metoclopramide and ondansetron in the treatment of post head trauma nausea and vomiting. methods : this randomized, double blind clinical trial was conducted in
the first 6 months of 2014 in isfahan, iran. the patients were randomly divided into

Metrics Rouge1: 59.69, Rouge2: 46.56, RougeL: 51.31, RougeLsum: 58.64, Summary length (tokens): 129

Table 14: Examples of the PubMed dataset using the model pubmed-1024-128 base diverse

180

Bottom 5% example (Sorted by rougeL)
Document this study is an extension of a report on patients with type 1 diabetes at children ’s hospital of new orleans (14) and was approved by the institutional review board at louisiana state university health sciences center , new orleans , louisiana . glucose data

were downloaded from patient meters at each clinic visit . meter model and sampling protocols varied by patient preference and insurance provider . an average of three glucose measurements per day were recorded in a study using a similar self -
monitoring protocol (7) . a1c was measured by national glycohemoglobin standardization program (ngsp)-approved immunoassays (15) at the children ’s hospital (184 patients) or by commercial laboratories that presumably also used ngsp - approved
methods (18 patients , including 4 low- , 7 moderate- , and 7 high - hgi subjects) . a population regression equation { a1c (%) = [0.021 mbg (mg / dl)] + 4.3 , r = 0.57 } was derived using mean mbg and mean a1c from 202 patients collected at 1,612
clinic visits as described elsewhere (14) . the same data were used to calculate hemoglobin glycation index (hgi) and to divide patients into low- , moderate- , and high - hgi groups . predicted a1c values were calculated at each clinic visit by inserting
mbg into the regression equation . hgi values were calculated by subtracting predicted a1c from observed a1c measured at the same clinic visit . patients were divided into low- , moderate- , and high - hgi groups based on mean hgi tertile (33%) rank (
low hgi , < 0.41 , n = 67 ; moderate hgi , 0.41 to 0.26 , n = 68 ; high hgi , > 0.26 , n = 67) . eag was calculated by inserting observed a1c into the adag linear regression equation (eag [mg / dl] = [28.7 a1c (%)] 46.7 , r = 0.92) (1) . a mean blood
glucose index (mbgi) that quantifies the difference between mbg and eag was calculated by subtracting observed mbg from eag . descriptive statistics and linear regression analyses were generated using graphpad prism v. 4.03 (graphpad software , san
diego , ca) . glucose data were downloaded from patient meters at each clinic visit . meter model and sampling protocols varied by patient preference and insurance provider . an average of three glucose measurements per day were recorded in a study
using a similar self - monitoring protocol (7) . a1c was measured by national glycohemoglobin standardization program (ngsp)-approved immunoassays (15) at the children ’s ho...

Gold objectivethe a1c - derived average glucose study recommended reporting a1c in estimated average glucose (eag) equivalents . we compared eag with self - monitored mean blood glucose (mbg) to determine whether eag is systematically biased due to
biological variation in the relationship between mbg and a1c.research design and methodsmbg and a1c were recorded from charts of 202 pediatric type 1 diabetic patients at 1,612 clinic visits . patients were divided into groups with low , moderate , or
high a1c bias based on a hemoglobin glycation index (hgi).resultsthe mean sd values for mbg versus eag were as follows : total population , 194 34 vs. 196 36 mg / dl ; low - hgi group , 186 31 vs. 163 20 mg / dl ; moderate - hgi group , 195 28 vs. 193 19
mg / dl ; and high - hgi group , 199 42 vs. 230 31 mg / dl.conclusionseag underestimated mbg in low hgi patients and overestimated mbg in high hgi patients . disagreement between eag and mbg downloaded from patient glucose meters will cause
confusion if eag is implemented for clinical use .

Model objectiveto investigate the relationship between hemoglobin glycated hemoglobin (hba1c), hemoglobin glycated hemoglobin (hba1c), and hemoglobin glycated
hemoglobin (hba1c) in children with type 1 diabetes.research design and methodsa1c was measured by national glycohemoglobin standardization program (
ngsp)-approved immunoassays at the children’s hospital of new orleans. hba1c was measured by national glycohemoglobin standardization program (ngsp)-approved
immunoassays at the children’s hospital of new orleans. hba1c was measured by national glycohemoglobin standardization program (ngsp)-approved immunoassays at
the children’s hospital of new orleans. a population regression equation [a1c (%) = [0.021 mbg (mg / dl] + 4.3, r = 0.92) + 4.3, r = 0.58] was derived using mean
hba1c (%). a population regression equation [a1c (%) = [0.021 mbg (mg / dl] + 4.3, r = 0.92) + 4.3, r = 0.92] was

Metrics Rouge1: 19.4, Rouge2: 6.06, RougeL: 10.03, RougeLsum: 13.38, Summary length (tokens): 256

Bottom 25% example (Sorted by rougeL)
Document the principal aim of this laboratory is the synthesis of conjugated unsaturated ketones as candidate antineoplastic agents . these compounds interact with thiols but in general , they have little or no affinity for amino and hydroxyl groups which are found in

nucleic acids (1 - 3) . hence thiol alkylators may not have the genotoxic properties associated with a number of contemporary anticancer drugs (4) . however after an initial chemical insult , certain neoplasms are more vulnerable to a subsequent
cytotoxic effect than various non - malignant cells (5 , 6) . hence by mounting the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore [ar - c = c - c(o)-c = c - ar] on heterocyclic and cycloaliphatic scaffolds , two sequential interactions with cellular thiols
can take place which may be more detrimental to tumours than normal tissues . such considerations led to the development of 3,5-bis(benzylidene)-4-piperidones 1a - d which demonstrated potent cytotoxic properties with the ic50 values in the low
micromolar range against human molt 4/c8 and cem t - lymphocytes as well as murine l1210 lymphocytic leukemia cells (7 , 8) . the hypothesis of sequential cytotoxicity was advanced that the 1,5-diaryl-3-oxo-1,4-pentadienyl group interacts at a
primary binding site and a side chain on the piperidine nitrogen may align at an auxiliary binding site which could enhance cytotoxic potencies . in order to evaluate this hypothesis , a novel series of n - aroyl-3,5-bis(benzylidene)-4-piperidone derivatives
2 - 7 were synthesized (8) . in these compounds , the side chain contains atoms and groups capable of forming hydrogen and van der waals bonds and also an ionic bond in series 3 - 6 which could bind at an auxiliary binding site . when the potencies of
the compounds in series 3 - 6 were compared with that of the analogs 1a - d which have the same aryl substituent , the ic50 values of the amides 3 - 6 were lower in 48% of the comparisons made while equipotency was noted in 35% of the cases (
8) . the proposed primary and auxiliary binding sites of cytotoxic n - aroyl-3,5-bis(benzylidene)-4-piperidone analogs the objectives of the present investigation are two folds . first , to gain some insight into the physicochemical properties of the
3,5-bis(benzylidene)-4-piperidone derivatives 1 - 7 that influence cytotoxic potencies , and second , to derive predictive 2d - qsar models that will be helpful to design new analogs with improved bioactivity . t...

Gold 1-[4-(2-alkylaminoethoxy) phenylcarbonyl]-3,5-bis(arylidene)-4-piperidones are a novel class of potent cytotoxic agents . these compounds demonstrate low micromolar to submicromolar ic50 values against human molt 4/c8 and cem t - lymphocytes and
murine leukemia l1210 cells . in this study , a comparative qsar investigation was performed on a series of 3,5-bis (arylidene)-4-piperidones using different chemometric tools to develop the best predictive models for further development of analogs with
improved cytotoxicity . all the qsar models were validated by internal validation tests . the qsar models obtained by ga - pls method were considered the best as compared to mlr method . the best qsar model obtained by ga - pls analysis on l1210 , cem
and molt4/c8 demonstrated good predictively with r2pred values ranging from 0.94 - 0.80 . molecular density , topological (x2a) and geometrical indices of the molecules were found to be the most important factors for determining cytotoxic properties .

Model in order to evaluate the physicochemical properties of the 3,5-bis(benzylidene)-4-piperidone derivatives 1 - 7 and 2 - 7 were synthesized. the compounds 1 - 7 showed
potent cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent
cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent
cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent
cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent
cytotoxic property with ic50 values of 3 - 6. the compounds 1 - 7 showed potent cytotoxic property with ic50 values of 3 - 6.

Metrics Rouge1: 21.38, Rouge2: 5.06, RougeL: 16.35, RougeLsum: 16.35, Summary length (tokens): 253

Top 75% example (Sorted by rougeL)
Document educational evaluation (ee) is a formal process performed to evaluate the quality of effectiveness and/or value of a program , process , goal or curriculum.12 it deals with data collection and assessment of the progress of academic programs.34 by

considering some principles related to educational measurements and data collection , ee may result in a better understanding of such programs.57 during the past thirty years , theorists have presented numerous methods of evaluation . worthen and
sanders2 mentioned that more than 50 different evaluation approaches has been developed in recent decades . among these , methods based on internal criteria are known as the ones that can interpret the scientific , educational , and therapeutic
authenticity of different educational groups.48 this is greatly welcomed by the academic community and is widely spread to all universities in the world . that is because this method provided a scientific , appropriate , precise , timely , and valid basis
regarding the interpretation of decision making system quality and programming for its promotion and development.3 such a method was successfully carried out in four medical education groups at supervisory and expansion of medical education
council secretariat of ministry of health , treatment and medical education of iran in 1995.8 ee has its most effect , value , and results when it can provide needed information to individuals which are directly related , as well as those who may be benefited
from its results.346 educating dental professionals consists of theoretical and practical (clinical , paraclinical , and laboratory) courses , differing in duration , and educational curriculum among different countries . it might vary from 4 years (e.g. , in
india , turkey , and russia) to 6 years or more (e.g. , in iran consisting of 2 years of only basic medical sciences and 4 + years of dentistry courses) . due to numerous practical educational units in dentistry education and with regard to expensive but very
critical protocols for infection control , a great deal of resources is consumed in governmental universities of iran over training every general practitioner with a degree of doctorate of dental surgery . on the other hand , the quality of dental services plays
an important role in public health . considering these issues , dentistry education needs to be cost - effective in terms of optimizing its quality . to date , the pace of advancements in dentistry...

Gold background : educational evaluation is a process which deals with data collection and assessment of academic activities progress . in this research , educational evaluation of dentistry school of tehran university of medical sciences , which trains students
in undergraduate and residency courses , was studied.methods:this descriptive study was done with a model of educational evaluation in ten steps and 13 fields including purposes and mission objectives , management and organization , academic board
members , students , human resources and support , educational , research , health and treatment spaces , educational , diagnostic , research and laboratory tools , educational , research , health and treatment programs and courses , process of teaching and
learning , evaluation and assessment , alumni , and patients satisfaction . data were collected using observation , interviews , questionnaires , and checklists.results:results of the study were mainly qualitative and in some cases quantitative , based on
defined optimal situation . the total mean of qualitative results of educational evaluation of dentistry school in all 13 fields was 55.98% which is relatively desirable . in the case of quantitative ones , results of some fields such as treatment quality of
patients and education and learning of the students were relatively desirable (61.32% and 60.16% respectively).conclusion : according to the results , educational goals and missions , educational and research facilities and spaces which were identified as
the weakest areas need to be considered and paid more serious attention .

Model background : educational evaluation (ee) is a formal process performed to evaluate the quality of effectiveness and/or value of a program, process, goal or curriculum. it
deals with data collection and assessment of the progress of academic programs. the objective of this descriptive cross - sectional study was to assess the quality of
education provided at dental school of tehran university of medical sciences.materials and methods : in this descriptive cross - sectional study, the efficacy of provided
educational programs provided at dental school of tehran university of medical sciences educational groups in 2010 through this descriptive cross - sectional study was
assessed in 13 fields. the data were analyzed using spss version 20.results:the overall quality of education provided in 13 fields. the most important quality of education
was the quality of education. the most important quality of education was the quality of education. the most important quality of education was the quality of education.
the most important quality of education was the quality of education. the most important quality of education was the quality of education. the most important quality of
education was the quality of education. the most important quality of education was the quality of education. the most important quality of education was the quality of
education.

Metrics Rouge1: 39.32, Rouge2: 12.68, RougeL: 27.67, RougeLsum: 34.47, Summary length (tokens): 256

Top 95% example (Sorted by rougeL)
Document the study population included patients over 18 years old who had an initial cabg or combined cabg and open chest aortic valve replacement (avr) , from april 1 , 1998 to october 31 , 2011 in ontario . the date of first cardiac surgery was the index date ,

and eligible patients were followed for 1 year with respect to major outcomes , and 5 years for mortality . preoperative data were included for 1 year prior to surgery , and outcomes for 1 year postoperatively . patients for whom sex , age , height , weight
were missing , and patients living outside of ontario or of unknown residence were excluded . cardiac care network of ontario (ccn) data were used to identify baseline characteristics such as cardiac ejection fraction , number of grafts bypassed , prior
myocardial infarction (mi) , emergency or elective surgery , and other co - morbidities . ccn data and the following datasets were combined from ices using deterministic linkage by unique ices key number identifiers : ontario health insurance plan ,
canadian institute of health information (cihi) discharge abstract database , national ambulatory care reporting system , same day surgery , and the registered persons database . patients who had undergone either isolated cabg or combined cabg / avr were
selected from the cihi discharge abstract database . data for which other cardiac procedures had been performed during the same admission were excluded (eg , percutaneous coronary intervention or other valve procedures) . bmi was calculated as
weight (kg)/height (m) , and patients were divided into groups : underweight (bmi < 20 kg / m) , normal weight (bmi 20.0 to 24.9 kg / m) , overweight (bmi 25.0 to 29.9 kg / m) , obese (bmi 30.0 to 34.9 kg / m) , and morbidly obese (bmi > 34.9 kg
/ m) , closely based on world health organization (who) and health canada guidelines.1214 the following comorbidities were assessed for presence within 1 year prior to index date : diabetes , smoking history (current or ever smoked) , peripheral
vascular disease (pvd) , chronic obstructive pulmonary disease (copd) , dialysis within 1 year prior to surgery , cerebrovascular disease (cvd) , congestive heart failure (chf , from cihi) , hypertension , elective or emergent surgery , creatinine . within
30 days prior to surgery , the following cardiac characteristics were captured : ejection fraction , prior mi , left main coronary disease , and previous cabg at date o...

Gold backgroundthe obesity paradox reflects an observed relationship between obesity and decreased morbidity and mortality , suggesting improved health outcomes for obese individuals . studies examining the relationship between high body mass index (
bmi) and adverse outcomes after cardiac surgery have reported conflicting results.methods and resultsthe study population (n=78 762) was comprised of adult patients who had undergone first - time coronary artery bypass (cabg) or combined cabg /
aortic valve replacement (avr) surgery from april 1 , 1998 to october 31 , 2011 in ontario (data from the institute for clinical evaluative sciences) . perioperative outcomes and 5-year mortality among pre - defined bmi (kg / m2) categories (underweight
< 20 , normal weight 20 to 24.9 , overweight 25 to 29.9 , obese 30 to 34.9 , morbidly obese > 34.9) were compared using bivariate analyses and cox multivariate regression analysis to investigate multiple confounders on the relationship between bmi and
adverse outcomes . a reverse j - shaped curve was found between bmi and mortality with their respective hazard ratios . independent of confounding variables , 30-day , 1-year , and 5-year survival rates were highest for the obese group of patients (99.1%
[95% confidence interval { ci } , 98.9 to 99.2] , 97.6% [95% ci , 97.3 to 97.8] , and 90.0% [95% ci , 89.5 to 90.5] , respectively) , and perioperative complications lowest . underweight and morbidly obese patients had higher mortality and incidence of
adverse outcomes.conclusionsoverweight and obese patients had lower mortality and adverse perioperative outcomes after cardiac surgery compared with normal weight , underweight , and morbidly obese patients . the obesity paradox was confirmed for
overweight and moderately obese patients . this may impact health resource planning , shifting the focus to morbidly obese and underweight patients prior to , during , and after cardiac surgery .

Model backgroundthe aim of this study was to investigate the relationship between body mass index (bmi) and mortality in patients undergoing coronary artery bypass grafting
(cabg) or open chest aortic valve replacement (avr).methods and resultswe identified 1 year patients undergoing primary cabg or combined cabg and open chest aortic
valve replacement (avr) from april 1, 1998 to october 31, 2011. patients were divided into groups : underweight (bmi < 20 kg / m2), normal weight (bmi 25.0 to 29.9
kg / m2), overweight (bmi 25.0 to 29.9 kg / m2), obese (bmi 30.0 to 29.9 kg / m2), and morbidly obese (bmi > 34.9 kg / m2). patients were followed for 1 year with
respect to major outcomes, and 5 years for mortality. cox proportional hazards regression analysis was used to investigate multiple confounders on the relationship
between bmi and mortality, providing hazard ratios and 95% confidence intervals (ci). patients with bmi < 20 kg / m2 were more likely to die during the 5 years of
follow - up (hazard ratio [hr]

Metrics Rouge1: 56.82, Rouge2: 26.29, RougeL: 40.91, RougeLsum: 50.0, Summary length (tokens): 256

Table 15: Examples of the PubMed dataset using the model pubmed-4096-512 small diverse

181

Bottom 5% example (Sorted by rougeL)
Document in august , 4 months before presentation , a 35-year - old white woman of scots and english descent developed reddish urine for several days followed by eruption of vesicles and blisters on the dorsal surfaces of her hands and fingers , the sides of her nose

, and her upper anterior chest , knees , and legs . she worked as a landscaping contractor and noticed that lesions occurred on areas exposed to sunlight , but application of sunscreen neither diminished the rate at which new lesions appeared , nor promoted
healing of older lesions . her skin was fragile in areas of the lesions and the lesions healed slowly , often with scarring . she also developed dark brown pigmentation and the growth of fine black hair over her cheeks . she consumed three glasses of wine
each week and had smoked electronic cigarettes for approximately 6 months , having changed from tobacco cigarettes . she had donated three units of blood for transfusion , but none in several years . she had no menses in the 12 months before
presentation due to the effects of a contraceptive vaginal ring (nuvaring ; etonogestrel / ethinyl estradiol) . a dermatologist performed a punch biopsy of two skin lesions on her left forefinger and referred her for hematology evaluation and treatment .
physical examination confirmed the presence of new vesicles and bullae with erythematous bases , some as large as 1 cm in diameter , and older lesions in various stages of erosion , resolution , and scarring in the anatomical distribution described above .
lesions were most prominent on the dorsal surfaces of the hands and fingers (fig . milia were scattered over areas affected with bullous lesions and were especially prominent on skin overlying finger joints . (a) before therapy , there were vesicles , bullae
with erythematous bases , older lesions in various stages of erosion , resolution , scarring , and punctate milia , all typical of pct . (b) after iron depletion with phlebotomy , there were no active skin lesions , although hyperpigmentation , scarring , and
milia (especially over dorsal aspects of second and third interphalangeal joints) persisted . punch biopsy specimens of skin were deposited in immunofluorescence transport medium , flash frozen , and cut for manual immunofluorescence staining . the
sections were probed with fluorescein - labeled anti - human antibodies specific for igg , iga , igm , c3 , c5b-9 , and fibrinogen . complete blood count (including ...

Gold porphyria cutanea tarda (pct) is characterized by decreased uroporphyrinogen decarboxylase activity in hepatocytes , uroporphyrin i and heptacarboxyl porphyrin iii accumulation , photosensitivity dermatitis , and increased storage iron . in women ,
estrogen therapy , including oral contraceptives , postmenopausal hormone replacement , and tamoxifen for breast cancer treatment , is a risk factor for pct . we report the case of a woman who presented with pct , hfe c282y homozygosity , and hepatic
iron overload and was using a contraceptive vaginal ring containing ethinyl estradiol , an estrogen . we discuss this case in the context of characteristics of other persons with pct , including common hfe mutations , iron overload , and estrogen exposure .

Model a 35-year - old white woman of scots and english descent developed reddish urine for several days followed by eruption of vesicles and blisters on the dorsal surfaces of
her hands and fingers, the sides of her nose, and her upper anterior chest, knees, and legs. skin biopsy specimens revealed linear glassy iga and igg deposition along
the epidermal basement membrane zone and superficial dermal blood vessels, forming a doughnut pattern. the patient was treated with a levonorgestrel - releasing
intrauterine contraceptive system (skyla). eight months after presentation, she underwent implantation of a levonorgestrel - releasing intrauterine contraceptive system (
skyla). eight months after presentation, she underwent implantation of a levonorgestrel - releasing intrauterine contraceptive system (skyla).

Metrics Rouge1: 20.56, Rouge2: 0.94, RougeL: 11.22, RougeLsum: 17.76, Summary length (tokens): 176

Bottom 25% example (Sorted by rougeL)
Document this was a multicenter , community - based , retrospective observational study of patients with pns , ranging from 8 to 20 mm in diameter , presenting to 18 geographically representative outpatient pulmonary clinics across the united states . the study was

approved at 15 sites by a central institutional review board and at three sites by local institutional review board approval . four hundred forty sites were identified based on investigator databases and claims data from a large insurance carrier whose
coverage population was representative of the overall us population . of these , 77 sites expressed interest in participating , and 48 sites went on to sign confidentiality agreements . of these , 17 did not request additional information , leaving 31 sites
undergoing qualification review . eighteen outpatient pulmonary clinics were chosen to participate based on the following criteria : (1) management of patients with pns , (2) availability of medical records , and (3) ability to perform data abstraction .
in addition , investigators targeted enrollment of geographically diverse patients to limit the potential bias associated with differences in practice patterns and to account for variation in disease prevalence (eg , endemic mycoses) that could alter
management decisions . patients were identified by querying databases (eg , billing and scheduling systems) using five international classification of diseases , ninth revision , clinical modification codes for pn (793.1 , 786.6 , 518.89 , 519.8 , 519.9) to
ensure homogeneity in patient identification and inclusion . manual chart abstraction was then used to identify those who met the criteria . to minimize selection bias , the sites were not permitted to use additional codes during database query to identify
patients . to ensure a systematic sample , inclusion criteria included age 40 years and 89 years at the time of nodule finding , presentation to a pulmonologist , nodule size 8 to 20 mm , and definitive diagnosis ascertained by tissue diagnosis or radiographic
follow - up for 2 years . exclusion criteria included chest ct scan performed > 60 days prior to the initial visit , prior diagnosis of any cancer within 2 years of nodule detection , or incomplete chart data . patients were categorized into three groups by the
most invasive procedure performed during management , as follows : surveillance (serial imaging) , biopsy (ct scan - guided transthoracic needle aspi...

Gold background : pulmonary nodules (pns) are a common reason for referral to pulmonologists . the majority of data for the evaluation and management of pns is derived from studies performed in academic medical centers . little is known about the
prevalence and diagnosis of pns , the use of diagnostic testing , or the management of pns by community pulmonologists.methods:this multicenter observational record review evaluated 377 patients aged 40 to 89 years referred to 18 geographically
diverse community pulmonary practices for intermediate pns (8 - 20 mm) . study measures included the prevalence of malignancy , procedure / test use , and nodule pretest probability of malignancy as calculated by two previously validated models . the
relationship between calculated pretest probability and management decisions was evaluated.results:the prevalence of malignancy was 25% (n = 94) . nearly one - half of the patients (46% , n = 175) had surveillance alone . biopsy was performed on
125 patients (33.2%) . a total of 77 patients (20.4%) underwent surgery , of whom 35% (n = 27) had benign disease . pet scan was used in 141 patients (37%) . the false - positive rate for pet scan was 39% (95% ci , 27.1%-52.1%) . pretest
probability of malignancy calculations showed that 9.5% (n = 36) were at a low risk , 79.6% (n = 300) were at a moderate risk , and 10.8% (n = 41) were at a high risk of malignancy . the rate of surgical resection was similar among the three groups (
17% , 21% , 17% , respectively ; p = .69).conclusions : a substantial fraction of intermediate - sized nodules referred to pulmonologists ultimately prove to be lung cancer . despite advances in imaging and nonsurgical biopsy techniques , invasive
sampling of low - risk nodules and surgical resection of benign nodules remain common , suggesting a lack of adherence to guidelines for the management of pns .

Model objectivethe aim of this study was to document the prevalence of cancer (25%) in patients with intermediate - sized pulmonary nodules referred to community
pulmonologists.materials and methodsthis was a multicenter, community - based, observational study of patients with intermediate - sized pulmonary nodule who were
referred to pulmonologists. patients were categorized into three groups by the most invasive procedure performed during management, as follows : surveillance (serial
imaging), biopsy (ct - guided transthoracic needle aspiration [ttna] or bronchoscopy), or surgery (including mediastinoscopy, video - assisted thorascopic surgery,
and/or thoracotomy). patients were categorized into three groups by the most invasive procedure performed during management, as follows : surveillance (serial
imaging), biopsy (ct - guided transthoracic needle aspiration [ttna] or bronchoscopy), or surgery (including mediastinoscopy, video - assisted thorascopic surgery,
and/or thoracotomy). patients were categorized into three groups by the most invasive procedure performed during management, as follows : surveillance (serial
imaging), biopsy (ct - guided transthoracic needle aspiration [ttna] or bronchoscopy), or surgery (including mediastinoscopy, video - assisted thorascopic surgery,
and/or thoracotomy). multivariate logistic regression was performed to identify factors associated with the use of an invasive diagnostic procedure.resultsof the 377
patients included, 283 (75%) had a nodule that was benign, and 94 (25%) had a malignant nodule. the overall accuracy of pet scanning was 74%, with a false - positive
(fp) rate of 39% and a false - negative (fn) rate of 9%. the overall accuracy of pet scanning was 74%, with a false - positive (fp) rate of 39% and a false - negative (
fn) rate of 9%. nodules measuring > 11 to 15 mm (n = 48) had fn and fp rates of 9% and 36%, respectively.conclusionsthe prevalence of cancer in patients with
intermediate - sized nodules was 25%. the rate of surgical resection for benign disease varied from 9% to 23% in screening trials and surgical series.

Metrics Rouge1: 45.58, Rouge2: 9.56, RougeL: 18.37, RougeLsum: 38.1, Summary length (tokens): 470

Top 75% example (Sorted by rougeL)
Document a total of 1,217 dead birds were shipped at 4c to the tropical medicine institute " pedro kouri " and identified by ornithology experts . brain , heart , and kidneys were removed and tested for wnv by using reverse transcription polymerase chain reaction (rt

- pcr) (12) . briefly , rna was extracted by using the qiamp viral rna kit (qiagen , inc . , valencia , ca , usa) . primers wn212 (5-ttgtgttggctctcttggcgttctt-3) and wn619c (5-cagccgacagcactggacattcata-3) were used to detect viral rna . a second rt - pcr
with primers wn9483 (5-cacctacgccctaaacactttcacc-3) and wn9794 (5-ggaacctgctgccaatcataccatc-3) was performed on the same rna preparation . serum specimens from horses in havana and havana province were tested for antibodies to wnv by using a
competitive enzyme - linked immunosorbent assay (elisa) with monoclonal antibodies 3.1112 g and 6b6c-1 as described by blitvich et al . we tested 210 serum specimens from horses collected as part of an infectious anemia study . the immunoglobulin
m (igm) test was not performed because horses were never suspected of having wnv and did not have any history of suspected viral encephalitis or other illness or symptoms . an inhibition value > 30% was used as the diagnostic criterion to identify
flavivirus antibody (table 1) . * wnv , west nile virus ; elisa , enzyme - linked immunosorbent assay ; prnt , plaque reduction neutralization test ; slev , saint louis encephalitis virus . the cuban health ministry and medical services division conducted
surveillance for encephalitis of unknown origin in patients > 30 years of age . serum and cerebrospinal fluid specimens were shipped at 4c to the tropical medicine institute " pedro kouri . " human sera were screened for wnv igm and igg by using
commercial igm and igg elisa kits (focus technologies , cypress , ca , usa) according to manufacturer ’s instructions . hemagglutination - inhibition (hi) tests were also undertaken with wnv and saint louis encephalitis virus (slev) antigen (14) . reactive
serum samples were further tested by a plaque reduction neutralization test (prnt) with wnv (ny99 , ontario , canada , 2001 isolate) , slev (parton strain , american type culture collection catalog no . vr-1265) , and dengue virus (dengue 2 , ng - c strain)
. prnt was performed to confirm wnv - specific antibody and was carried out as described previously (15) by using a neutral red double - overlay procedure . ho...

Gold a surveillance system to detect west nile virus (wnv) was established in cuba in 2002 . wnv infection was confirmed by serologic assays in 4 asymptomatic horses and 3 humans with encephalitis in 2003 and 2004 . these results are the first reported
evidence of wnv activity in cuba .

Model we report the first evidence of antibodies to west nile virus (wnv) in horses and humans in cuba. antibodies were detected by plaque reduction neutralization test in 10
of 1,217 dead birds tested. these findings provide evidence that wnv and slev may co - circulate in cuba.

Metrics Rouge1: 51.06, Rouge2: 17.39, RougeL: 31.91, RougeLsum: 46.81, Summary length (tokens): 64

Top 95% example (Sorted by rougeL)
Document intra - articular injections of corticosteroids have been used for several decades in the management of inflammatory and degenerative joint conditions when first - line conservative therapies such as rest , ice , and anti - inflammatory medications fail to

provide adequate symptom relief . based in part on this long history of successful utilization coupled with the findings of several randomized controlled trials , consensus statements and meta - analyses have concluded that intra - articular corticosteroid
injections provide short - term patient benefit and clinical efficacy for chronic knee pain.13 more recently , various injectable hyaluronic acid agents have become commercially available and have enjoyed widespread clinical acceptance as an effective
treatment for knee osteoarthritis . these agents are indicated for the treatment of the pain associated with osteoarthritis of the knee in patients who have failed to respond adequately to conservative nonpharmacologic therapy and simple analgesics , eg ,
acetaminophen . traditionally , intra - articular injections have been performed using anatomical landmarks to identify the correct trajectory for needle placement . however , different anatomical - guided injection techniques have yielded inconsistent intra
- articular needle positioning due , in large part , to the fact that the physician can not directly visualize the area of interest , and variations in anatomy are common . incorrect needle placement has been partially attributed to variable clinical outcomes.410
furthermore , inaccurate corticosteroid injections in the knee , for example , may result in post - injection pain , crystal synovitis , hemarthrosis , joint sepsis , and steroid articular cartilage atrophy , as well as systemic effects , such as fluid retention or
exacerbation of hypertension or diabetes mellitus.1 therefore , identification of methods and proper training to aid in correct needle placement during these procedures is warranted . various imaging modalities can be used to improve the accuracy of intra -
articular injections , including fluoroscopy , computed tomography , and magnetic resonance imaging . however , musculoskeletal ultrasound is one of the most practical because it is rapid , safe , relatively inexpensive , emits no ionizing radiation , and
can be performed in the outpatient clinical setting.11,12 ultrasound utilizes high - frequency sound waves to visualize soft tissues and bony structures and is a f...

Gold intra - articular corticosteroid and hyaluronic acid injections provide short - term symptom amelioration for arthritic conditions involving structural damage or degenerative changes in the knee . conventional palpation - guided anatomical injections
frequently result in inaccurate needle placement into extra - articular tissue and adjacent structures . the purpose of this review was to determine the effect of ultrasound guidance on the accuracy of needle placement , clinical outcomes , and cost -
effectiveness in comparison with anatomical landmark - guided intra - articular large joint injections , with particular emphasis on the knee . a total of 13 relevant studies were identified ; five studied the knee , seven studied the shoulder , one used both the
knee and shoulder , and none studied the hip . ultrasound was used in seven studies ; the remaining studies utilized air arthrography , fluoroscopy , magnetic resonance arthrography , or magnetic resonance imaging . across all studies (using all imaging
modalities and all joints) , needle placement accuracy ranged from 63% to 100% with ultrasound and from 39% to 100% with conventional anatomical guidance . imaging guidance improved the accuracy of intra - articular injections of the knee (96.7%
versus 81.0% , p < 0.001) and shoulder (97.3% versus 65.4% , p < 0.001) . in particular , ultrasound guidance of knee injections resulted in better accuracy than anatomical guidance (95.8% versus 77.8% , p < 0.001) , yielding an odds ratio of 6.4 (
95% confidence interval 2.914) . ultrasound guidance notably improves injection accuracy in the target intra - articular joint space of large joints including the knee . the enhanced injection accuracy achieved with ultrasound needle guidance directly
improves patient - reported clinical outcomes and cost - effectiveness .

Model objectivethe purpose of this review was to determine the effect of ultrasound guidance on the accuracy of needle placement, clinical outcomes, and cost - effectiveness in
comparison with anatomical landmark - guided intra - articular large joint injections, with particular emphasis on the knee.methodsthe peer - reviewed literature was
searched using medline and relevant bibliographies published in english language journals through december 31, 2011 that compared the accuracy of intra - articular
injections with anatomical landmark - guided intra - articular large joint injections, with particular emphasis on the knee.resultsa total of 13 studies met the entry criteria.
needle placement accuracy ranged from 63% to 100% with ultrasound and from 39% to 100% with conventional anatomical guidance. imaging guidance improved the
accuracy of intra - articular injections of the knee (96.7% versus 81.0%, p < 0.001) and shoulder (97.3% versus 65.4%, p < 0.001). imaging guidance improved the
accuracy of intra - articular injections of the knee (96.7% versus 81.0%, p < 0.001) and shoulder (97.3% versus 65.4%, p < 0.001). imaging guidance improved the
accuracy of intra - articular injections of the knee (96.7% versus 81.0%, p < 0.001) and shoulder (97.3% versus 65.4%, p < 0.001). in particular, ultrasound guidance
of knee injections resulted in better accuracy than did anatomical guidance (95.8% versus 77.8%, p < 0.001). in particular, ultrasound guidance of knee injections
resulted in better accuracy than did anatomical guidance (95.8% versus 77.8%, p < 0.001). in particular, ultrasound guidance of knee injections resulted in better
accuracy than did anatomical guidance (95.8% versus 77.8%, p < 0.001).conclusionthe use of imaging guidance, in particular ultrasound, improves the accuracy of intra
- articular injections in large joints, including the knee. furthermore, accurate ultrasound - guided intra - articular knee injections improve clinical outcomes and lower
health care costs.

Metrics Rouge1: 62.21, Rouge2: 43.74, RougeL: 48.51, RougeLsum: 58.7, Summary length (tokens): 464

Table 16: Examples of the PubMed dataset using the model pubmed-4096-512 base diverse

182

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 183–189
July 13, 2023 ©2023 Association for Computational Linguistics

Is a Video worth n× n Images? A Highly Efficient Approach to
Transformer-based Video Question Answering

Chenyang Lyu† Tianbo Ji‡∗ Yvette Graham¶ Jennifer Foster†
† School of Computing, Dublin City University, Dublin, Ireland

‡ Nantong University, China
¶ School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland

chenyang.lyu2@mail.dcu.ie, ygraham@tcd.ie, jennifer.foster@dcu.ie
jitianbo@ntu.edu.cn

Abstract

Conventional Transformer-based Video Ques-
tion Answering (VideoQA) approaches gener-
ally encode frames independently through one
or more image encoders followed by interac-
tion between frames and question. However,
such schema incur significant memory use and
inevitably slow down the training and inference
speed. In this work, we present a highly effi-
cient approach for VideoQA based on existing
vision-language pre-trained models where we
concatenate video frames to a n × n matrix
and then convert it to one image. By doing
so, we reduce the use of the image encoder
from n2 to 1 while maintaining the temporal
structure of the original video. Experimental
results on MSRVTT and TrafficQA show that
our proposed approach achieves state-of-the-
art performance with nearly 4× faster speed
and only 30% memory use. We show that
by integrating our approach into VideoQA sys-
tems we can achieve comparable, even supe-
rior, performance with a significant speed up
for training and inference. We believe the pro-
posed approach can facilitate VideoQA-related
research by reducing the computational require-
ments for those who have limited access to bud-
gets and resources. Our code is publicly avail-
able at https://github.com/lyuchenyang/
Efficient-VideoQA for research use.

1 Introduction

Transformer-based Video Question Answer-
ing (VideoQA) (Xu et al., 2016; Yu et al., 2018;
Xu et al., 2021b; Bain et al., 2021; Lei et al.,
2022) approaches relying on large scale vision
transformers (Dosovitskiy et al., 2020) have
achieved strong performance in recent years.
However, such approaches typically encode
multiple video frames separately through one
or more Image Encoders (Lei et al., 2021; Luo
et al., 2021; Xu et al., 2021a; Arnab et al., 2021;

∗*corresponding author

Frame-1 Frame-2 Frame-N…… Frame-1 Frame-2 Frame-N……

Image
Encoder

Image
Encoder

Image
Encoder

……

Shared
Weights

Shared
Weights

Temporal Modeling

Video Representation

Image
Encoder

Video Representation

(2) Our Approach(1) Conventional Approaches

Figure 1: Conventional approach to encoding video
frames for VideoQA and our proposed method.

Zhong et al., 2022) followed by interaction with
question representations. This requires significant
memory use and inevitably slows down training
and inference speed. In order to reduce the
computational cost required for modeling video
representations from frames, we propose to arrange
the frames sampled from one video as a single
image. Specifically, we sample n2 frames from
one video and concatenate them as a single image
with n× n grids.

Figure 1 shows the difference between our
method (right) and conventional methods (left). In
general, conventional approaches either indepen-
dently encode video frames (Luo et al., 2021; Xu
et al., 2021a; Lei et al., 2021; Bain et al., 2022)
which require N forward passes, or encode the se-
quence of all patches in video frames (Bain et al.,
2021; Arnab et al., 2021) which quadratically in-
creases the computational cost in the attention mod-
elling. Both types of aforementioned encoding
approaches can be expected to negatively impact
training and inference speed, whereas our proposed
method reduces this need substantially, now requir-
ing only a single forward pass.

Our method diverges from previous approaches
in two ways: 1) it fully relies on existing avail-
able pre-trained vision-language models such as
CLIP (Radford et al., 2021) without need for extra

183

https://github.com/lyuchenyang/Efficient-VideoQA
https://github.com/lyuchenyang/Efficient-VideoQA

pre-training (Bain et al., 2021; Lei et al., 2022); 2)
it considers a multi-frame video as a single image,
dispensing with the need for positional embedding
at the frame level (Bain et al., 2021), so only minor
modifications to pre-trained models are necessary.

More importantly, our approach has three ad-
vantages: 1) higher computational efficiency1; 2)
less memory use - our approach only uses an Im-
age Encoder a single time; 3) our approach can be
easily scaled up for large numbers of frames for
long videos. Our approach also models a multiple-
frame video as a single image while still (partially)
maintaining the temporal structure of the original
video.

To validate the effectiveness of our approach, we
conduct experiments on two benchmark VideoQA
datasets: MSRVTT-MC (Xu et al., 2016; Yu et al.,
2018) and TrafficQA (Xu et al., 2021b). Results
show that our approach achieves comparable or
even superior performance compared to existing
models with nearly 4× faster training and inference
speed and vast reduction in memory use (30%).
Our contribution can be summarised as follows:

• We propose a novel approach combining
video frames as a single image to accelerate
VideoQA systems ;

• Experimental results on MSRVTT-MC and
TrafficQA show that our proposed approach
achieves competitive performance with faster
training-inference speed and lower memory
use;

• We include additional experiments investigat-
ing options for arrangement of video frames
for VideoQA;

2 Model Architecture

In this section, we introduce details of our ap-
proach, of which an overview is shown in Figure 2.

2.1 Vision Transformer
Generally Vision Transformer (ViT) (Dosovitskiy
et al., 2020) flattens a single image to m non-
overlapping patches v = {p0, p1,, pm−1}. All
patches are fed into a linear projection and then re-
garded as discrete tokens in (Vaswani et al., 2017;
Radford et al., 2018; Devlin et al., 2019) followed

1For example, the computational cost of Bain et al. (2021);
Arnab et al. (2021) scales up quadratically w.r.t. the number
of image patches whereas ours is invariant w.r.t. the number
of image patches.

Frame-1

Frame-2

Frame-N

Image
Encoder

Question
Encoder

Question

Multi-Head-Attention

Answer
Decision

Figure 2: An overview of our proposed approach.

by transformer-based modeling (Vaswani et al.,
2017; Dosovitskiy et al., 2020). The output feature
is vh = {h0, h1,, hm−1}, where Eh ∈ Rm×d,
d is the dimension of the output feature for each
patch.

For encoding a multiple-frame video, sup-
pose that we have an input video V =
{v0, v1,, vn−1} with n frames, so for each
frame vi ViT flattens it to m non-overlapping
patches vi = {pi,0, pi,1,, pi,m−1}. The patches
for each frame are concatenated to form a sequence
of patches:

V = {p0,0,, p0,m−1,, pi,0,

pi,1,, pi,m−1,} (1)

which are fed into (a) linear projection(s) fol-
lowed by transformer-based modeling (Vaswani
et al., 2017; Dosovitskiy et al., 2020)2. We thus
obtain frame-level representations:

V h = {v0, v1,, vn−1} (2)

where V h ∈ Rn×d. 3

2.2 Interaction with Question Representations

For a natural language question Q =
{w0, w1,, wk−1} consisting of k words,
we use a textual transformer to encode Q to obtain
a sentence-level representation Qh ∈ R1×d. Since
in this work, we mainly focus on reducing the
computational cost of encoding videos, we perform
simple interactions between video representations
V h and question representations Qh:

2Frames can be encoded separately through one or more
Image Encoder (Luo et al., 2021; Xu et al., 2021a; Bain et al.,
2022) or all patches can also be concatenated and passed into
one Image Encoder (Bain et al., 2021; Arnab et al., 2021)

3Patch-level representations V h =
{h0,0,, h0,m−1,, hi,0, hi,1,, hi,m−1,}
are used in (Lei et al., 2021; Bain et al., 2021)

184

V h
′
= MULTI-HEAD-ATTENTION(Qh, V h, V h)

(3)
where V h

′
∈ R1×d is the question

weighted representations and MULTI-HEAD-
ATTENTION (Vaswani et al., 2017) performs
attention between V h (key and value) and
Qh (query).

2.3 Frames Transformation

When encoding multiple frames, the encoding
schema in 2.1 incurs significant memory use
and additionally impedes training and inference
speed (Lei et al., 2021; Luo et al., 2021; Xu et al.,
2021a; Lei et al., 2022). Therefore, we propose
a novel strategy to reduce the computational cost
associated with encoding videos by combining all
frames into a single image arranged by n×n grids.
Practically, we arrange all frames to a matrix, M ,
in which each entry corresponds to a frame. For a
video with n × n frames, we put each frame into
Mi,j in a specific order. For example, frames can
be arranged in M via ascending or descending or-
der (either vertically or horizontally) based on its
index in the video.4 Next, we convert M to a single
image. Therefore, regardless of how many frames
we use, the number of tokenized patches (image
tokens) is always a constant number, resulting in a
computationally more efficient VideoQA system.

3 Experiments

3.1 Datasets

We conduct experiments on two benchmark
datasets for VideoQA: MSRVTT-MC (Xu et al.,
2016; Yu et al., 2018) and TrafficQA (Xu et al.,
2021b), which are multi-choice VideoQA datasets
– each video in MSRVTT-MC is associated with
5 candidate options whereas TrafficQA provides
4 options for each question. We follow the stan-
dard data split for MSRVTT-MC (Xu et al., 2016;
Yu et al., 2018), where evaluation data have 2,990
videos. TrafficQA contains 62,535 QA pairs and
10,080 videos. We follow the standard split of Traf-
ficQA: 56,460 QA pairs for training and 6,075 QA
pairs for evaluation.

4The effect of various arrangement orders is shown in
Sec 3.5.

Models Accuracy

JSFusion (Yu et al., 2018) 83.4
ActBERT (Zhu and Yang, 2020) 85.7
ClipBERT (Lei et al., 2021) 88.2
MERLOT (Zellers et al., 2021) 90.9
VIOLET (Fu et al., 2021) 90.9
VideoCLIP (Xu et al., 2021a) 92.1
All-in-One (Wang et al., 2022) 92.0
Singularity (Lei et al., 2022) 92.1
Ours + MULTI-FRAME 92.1 (1.0×)
Ours + SINGLE-FRAME 92.2 (3.9×)

Table 1: Evaluation results on MSRVTT-MC (Xu et al.,
2016; Yu et al., 2018) dataset. Number in bracket in-
dicates the average of training and inference speed (↑),
which is evaluated on Nvidia GTX 3090.

3.2 Experimental Setup

We use CLIP ViT-B/16 (Radford et al., 2021) 5

to initialize our IMAGE-ENCODER and TEXT-
ENCODER. We evenly sample 9 frames from the
videos in MSRVTT-MC and TrafficQA for the
main experiment. We train our model for 20 epochs
with a learning rate of 1e-6. The training batch size
is 16. We use a maximum gradient norm of 1.
The optimizer we used is AdamW (Loshchilov and
Hutter, 2019), for which the ϵ is set to 1× 10−8.

3.3 Evaluation Results

We show the evaluation results on MSRVTT-
MC (Xu et al., 2016; Yu et al., 2018) in Table 1.
Furthermore, we conduct experiments on Traf-
ficQA (Xu et al., 2021b) and the results are shown
in Table 2. We present the results of separately
encoding video frames (MULTI-FRAME) as in Fig-
ure 1 (left) and our approach that combines mul-
tiple video frames into a single image (SINGLE-
FRAME). For SINGLE-FRAME, the frames are ar-
ranged in a matrix via horizontally descending or-
der. The evaluation results show that our approach
SINGLE-FRAME achieves comparable and even
improved performance relative to strong baselines
including VideoCLIP (Xu et al., 2021a), All-in-
One (Wang et al., 2022), Singularity (Lei et al.,
2022) and CMCIR (Liu et al., 2022). SINGLE-
FRAME obtains a significant speed up (approaching
×4) compared to MULTI-FRAME approach while
maintaining competitive performance. The mem-
ory use of SINGLE-FRAME is only 30% of MULTI-

5https://openai.com/blog/clip/

185

Models Accuracy

Q-type (random) (Xu et al., 2021b) 25.0
QE-LSTM (Xu et al., 2021b) 25.2
QA-LSTM (Xu et al., 2021b) 26.7
Avgpooling (Xu et al., 2021b) 30.5
CNN+LSTM (Xu et al., 2021b) 30.8
I3D+LSTM (Xu et al., 2021b) 33.2
VIS+LSTM (Ren et al., 2015) 29.9
BERT-VQA (Yang et al., 2020) 33.7
TVQA (Lei et al., 2018) 35.2
HCRN (Le et al., 2020) 36.5
Eclipse (Xu et al., 2021b) 37.0
ERM (Zhang et al., 2022) 37.1
TMBC (Luo et al., 2022) 37.2
CMCIR (Liu et al., 2022) 38.6
Ours + MULTI-FRAME 39.7 (1.0×)
Ours + SINGLE-FRAME 39.7 (3.8×)

Table 2: Evaluation results on SUTD-TrafficQA (Xu
et al., 2021b) dataset. Number in bracket indicates the
average of training and inference speed (↑).

FRAME, which are compared on Nvidia GTX 3090.
The results on two benchmark datasets have shown
the effectiveness of our approach for improving the
computational efficiency while maintaining accu-
racy of VideoQA systems.

3.4 Effect of Number of Frames

We investigate the effect of the number of video
frames used by our approach during the training
and inference process. The results are shown in
Figure 3. We compare the performance of MULTI-
FRAME and SINGLE-FRAME for number of frames
ranging from 1 to 256 in Figure 3. Results show
that: 1) Both MULTI-FRAME and SINGLE-FRAME

systems can benefit from more video frames; 2)
SINGLE-FRAME is capable of achieving compara-
ble and even better performance against MULTI-
FRAME; 3) MULTI-FRAME costs much more com-
putational time than SINGLE-FRAME especially
when using a large number of video frames. There-
fore, our proposed SINGLE-FRAME approach is
able to achieve higher efficiency as well as compet-
itive accuracy.

3.5 Effect of Frame Order

We investigate the effect of the arrangement of
video frames used to form a single frame. The

6For SINGLE-FRAME with a number of frames that is not
a square number we up-sample it to the closest square number.
For example, a SINGLE-FRAME that deals with 2 frames with
index of {0, 1}, we upsample it to {0, 0, 1, 1} as 2×2 images.

0 5 10 15 20 25
Amount of Frames

84.0

86.0

88.0

90.0

92.0

Ac
cu

ra
cy

Multi-Frame
Single-Frame

0 5 10 15 20 25
Amount of Frames

2.0

4.0

6.0

8.0

10.0

12.0

Co
m

pu
ta

tio
na

l T
im

e

Multi-Frame
Single-Frame

Figure 3: Evaluation results including accuracy (↑) and
computational time (↓) on the effect of amount of video
frames on MSRVTT-MC.

Arrangement of Frames 9 frames 16 frames

Vertical-Ascent 89.8 89.9
Vertical-Descent 89.1 89.5
Horizontal-Ascent 88.7 88.8
Horizontal-Descent 87.5 88.6
Matrix (Vertical-Ascent) 91.4 91.1
Matrix (Vertical-Descent) 91.9 91.8
Matrix (Horizontal-Ascent) 91.6 91.2
Matrix (Horizontal-Descent) 92.2 92.1
Matrix (Random) 90.5 90.7

Table 3: Evaluation results on the effect of the arrange-
ment of video frames on MSRVTT-MC.

results of both the 9 frame and 16 frame configura-
tions are shown in Table 3. We report the results of
VERTICAL, HORIZONTAL and MATRIX via either
ASCENDING or DESCENDING order.7 The results in
Table 3 reveal that both VERTICAL and HORIZON-
TAL perform worst, and this is likely due to con-
figurations distorting the visual information since
they essentially squeeze the video frames either
vertically or horizontally. The MATRIX arrange-
ment performs substantially better especially MA-
TRIX (HORIZONTAL-DESCENT) and HORIZON-
TAL generally yielding better performance com-
pared to VERTICAL under the MATRIX arrange-
ment.

4 Conclusion and Future Work

In this paper, we propose a highly efficient method
for VideoQA where we combine multiple video
frames into one single image. By adapting our
approach, the computational cost of VideoQA sys-
tems can be significantly reduced. To validate the
effectiveness of our approach, we conduct experi-
ments on two benchmark datasets, MSRVTT-MC
and TrafficQA. Results show that our approach

7Examples are shown in Appendix A.1.

186

achieves competitive performance and faster train-
ing and inference speed (nearly 4× faster) and less
memory consumption (30%). Our approach pro-
vides a way of significantly accelerating training
and inference. In the future, we aim to explore
how to adapt our approach to VideoQA with longer
videos and additional video-related NLP tasks.

Acknowledgements

This work was funded by Science Foundation Ire-
land through the SFI Centre for Research Training
in Machine Learning (18/CRT/6183). We thank the
reviewers for helpful feedback.

Limitations

The two VideoQA datasets used in experiments are
associated with relatively short videos. Therefore it
would be better if more experiments could be con-
ducted on VideoQA datasets with long videos to
verify the effectiveness of our approach on a wider
range of VideoQA tasks. Although the proposed
approach in this paper can also be used in other
video-language tasks, our experiments focuses on
a specific video-language task - VideoQA. Experi-
ments on more video-language tasks are needed to
show that our approach are also effective in other
video-language tasks.

References
Anurag Arnab, Mostafa Dehghani, Georg Heigold,

Chen Sun, Mario Lučić, and Cordelia Schmid. 2021.
Vivit: A video vision transformer. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 6836–6846.

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zis-
serman. 2021. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 1728–1738.

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zis-
serman. 2022. A clip-hitchhiker’s guide to long video
retrieval. arXiv preprint arXiv:2205.08508.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. In International
Conference on Learning Representations.

Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin,
William Yang Wang, Lijuan Wang, and Zicheng
Liu. 2021. Violet: End-to-end video-language trans-
formers with masked visual-token modeling. arXiv
preprint arXiv:2111.12681.

Thao Minh Le, Vuong Le, Svetha Venkatesh, and
Truyen Tran. 2020. Hierarchical conditional relation
networks for video question answering. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9972–9981.

Jie Lei, Tamara L Berg, and Mohit Bansal. 2022. Re-
vealing single frame bias for video-and-language
learning. arXiv preprint arXiv:2206.03428.

Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L
Berg, Mohit Bansal, and Jingjing Liu. 2021. Less is
more: Clipbert for video-and-language learning via
sparse sampling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 7331–7341.

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara Berg.
2018. Tvqa: Localized, compositional video ques-
tion answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1369–1379.

Yang Liu, Guanbin Li, and Liang Lin. 2022.
Cross-modal causal relational reasoning for event-
level visual question answering. arXiv preprint
arXiv:2207.12647.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen
Lei, Nan Duan, and Tianrui Li. 2021. Clip4clip:
An empirical study of clip for end to end video clip
retrieval. arXiv preprint arXiv:2104.08860.

Yuanmao Luo, Ruomei Wang, Fuwei Zhang, Fan Zhou,
and Shujin Lin. 2022. Temporal-aware mechanism
with bidirectional complementarity for video q&a.
In 2022 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 3273–3278.
IEEE.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

187

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Mengye Ren, Ryan Kiros, and Richard Zemel. 2015.
Exploring models and data for image question an-
swering. Advances in neural information processing
systems, 28.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Jinpeng Wang, Yixiao Ge, Rui Yan, Yuying Ge,
Xudong Lin, Guanyu Cai, Jianping Wu, Ying Shan,
Xiaohu Qie, and Mike Zheng Shou. 2022. All in one:
Exploring unified video-language pre-training.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko,
Armen Aghajanyan, Florian Metze, Luke Zettle-
moyer, and Christoph Feichtenhofer. 2021a. Video-
CLIP: Contrastive pre-training for zero-shot video-
text understanding. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6787–6800, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-
vtt: A large video description dataset for bridging
video and language. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 5288–5296.

Li Xu, He Huang, and Jun Liu. 2021b. Sutd-trafficqa:
A question answering benchmark and an efficient net-
work for video reasoning over traffic events. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9878–9888.

Zekun Yang, Noa Garcia, Chenhui Chu, Mayu Otani,
Yuta Nakashima, and Haruo Takemura. 2020. Bert
representations for video question answering. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1556–1565.

Youngjae Yu, Jongseok Kim, and Gunhee Kim. 2018.
A joint sequence fusion model for video question
answering and retrieval. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
471–487.

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi.
2021. MERLOT: Multimodal neural script knowl-
edge models. In Advances in Neural Information
Processing Systems.

Fuwei Zhang, Ruomei Wang, Fan Zhou, and Yuanmao
Luo. 2022. Erm: Energy-based refined-attention
mechanism for video question answering. IEEE
Transactions on Circuits and Systems for Video Tech-
nology.

Yaoyao Zhong, Wei Ji, Junbin Xiao, Yicong Li, Wei-
hong Deng, and Tat-Seng Chua. 2022. Video ques-
tion answering: Datasets, algorithms and challenges.
arXiv preprint arXiv:2203.01225.

Linchao Zhu and Yi Yang. 2020. Actbert: Learning
global-local video-text representations. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8746–8755.

A Appendix

A.1 Examples of frames with different
arrangement order

We present some examples of frames with dif-
ferent arrangement order in Figure 4, where we
use 9 frames as examples. The arrangement
orders are: (1) HORIZONTAL. (2) VERTICAL.
(3) MATRIX (HORIZONTAL-ASCENT). (4) MA-
TRIX (HORIZONTAL-DESCENT). (5) MATRIX

(VERTICAL-ASCENT). (6) MATRIX (VERTICAL-
DESCENT). The corresponding video frame in-
dices are shown in Figure 5.

188

https://doi.org/10.48550/ARXIV.2203.07303
https://doi.org/10.48550/ARXIV.2203.07303
https://doi.org/10.18653/v1/2021.emnlp-main.544
https://doi.org/10.18653/v1/2021.emnlp-main.544
https://doi.org/10.18653/v1/2021.emnlp-main.544
https://openreview.net/forum?id=CRFSrgYtV7m
https://openreview.net/forum?id=CRFSrgYtV7m

(1)

(2)

(3) (4)

(5) (6)

Figure 4: Frames arranged via different order.

(1)

(2)

(3) (4)

(5) (6)

0 1 2 3 4 5 6 7 8 0

1

2

3

4

5

6

7

8

0 1 2

3 4 5

6 7 8

8 7 6

5 4 3

2 1 0

0 3 6

1 4 7

2 5 8

8 5 2

7 4 1

6 3 0

Figure 5: Corresponding frame index for different arrangement order.

189

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 190–200
July 13, 2023 ©2023 Association for Computational Linguistics

How to Unleash the Power of Large Language Models for
Few-shot Relation Extraction?

Xin Xu, Yuqi Zhu, Xiaohan Wang, Ningyu Zhang∗

Zhejiang University & AZFT Joint Lab for Knowledge Engine
{xxucs, wangxh07, zhangningyu}@zju.edu.cn

Abstract

Scaling language models have revolutionized
widespread NLP tasks, yet little comprehen-
sively explored few-shot relation extraction
with large language models. In this paper, we
investigate principal methodologies, in-context
learning and data generation, for few-shot re-
lation extraction via GPT-3.5 through exhaus-
tive experiments. To enhance few-shot perfor-
mance, we further propose task-related instruc-
tions and schema-constrained data generation.
We observe that in-context learning can achieve
performance on par with previous prompt learn-
ing approaches, and data generation with the
large language model can boost previous so-
lutions to obtain new state-of-the-art few-shot
results on four widely-studied relation extrac-
tion datasets. We hope our work can inspire
future research for the capabilities of large lan-
guage models in few-shot relation extraction1.

1 Introduction

Few-shot Relation Extraction (RE) appeals to many
researchers in Natural Language Processing (NLP)
due to the capability to extract textual information
where only a few support examples are given (Han
et al., 2018; Yang et al., 2021; Han et al., 2021a;
Brody et al., 2021; Ma et al., 2023). Most previous
works focus on fine-tuning (Soares et al., 2019; Ye
et al., 2022) or prompt-tuning (Chen et al., 2022;
Han et al., 2021b) with relatively small language
models, e.g., RoBERTa (Liu et al., 2019). Recently,
with the scaling of model size and corpus size,
large language models (LLMs) such as ChatGPT
(OpenAI, 2022) and GPT-4 (OpenAI, 2023a) have
demonstrated powerful abilities by demonstrating
only a few instances, a.k.a In-Context Learning
(Dong et al., 2023). Although LLMs have achieved
remarkable results in many NLP tasks, their po-

∗ Corresponding author.
1Code is available in https://github.com/zjunlp/

DeepKE/tree/main/example/llm.

tential in few-shot relation extraction has not been
fully explored yet.

In this paper, we take GPT-3.5 (OpenAI, 2023b)
as an exemplary LLM to investigate how to max-
imize the utilization of LLMs for the few-shot
relation extraction task with in-context learning
and data generation. Different from text classifica-
tion, the relation extraction task contains rich pre-
defined schemas (e.g., entity and relation type con-
straints) and a relatively large and complex classifi-
cation space with noisy data. We further design two
simple-yet-effective strategies to unleash the power
of large language models better: task-related in-
structions and schema-constrained data genera-
tion. We conduct exhaustive experiments on four
well-known relation extraction datasets. Empiri-
cal results indicate that LLMs can potentially be
advantageous to few-shot relation extraction and
boost previous prompt learning performance.

2 Background

2.1 Few-shot Relation Extraction

The relation extraction task aims to extract the re-
lationship between head and tail entities within
a plain context. Specifically, one instance for
the relation extraction task consists of a context
x = {x1, x2, ..., h, ..., t, ..., x|x|}, head and tail en-
tity mentions h and t, entity types th and tt, and
the relation y ∈ Y between h and t, where Y is the
set of candidate relations. RE systems will predict
y given x,h, t, th and tt. For few-shot relation
extraction, fine-tuning pre-trained language mod-
els (PLMs) is a direct solution (Han et al., 2019;
Yamada et al., 2020; Joshi et al., 2020; Lyu and
Chen, 2021; Zhou and Chen, 2022). To alleviate
the gap between pre-training objectives and down-
stream applications, prompt tuning has recently
been applied to relation extraction, especially for
low-resource scenarios (Chen et al., 2022; Han
et al., 2021b, 2022). Most of those approaches

190

https://github.com/zjunlp/DeepKE/tree/main/example/llm
https://github.com/zjunlp/DeepKE/tree/main/example/llm

Figure 1: Strategies to unleash the power of LLMs for few-shot relation. HEAD TYPE and TAIL TYPE are schemas.
HEAD ENTITY and TAIL ENTITY are entity mentions. RELATION refers the verbalized relation label words.

utilize relatively small language models (RoBERTa
(Liu et al., 2019), GPT2 (Radford et al., 2019)),
demonstrating empirical success regarding few-
shot relation extraction performance. To date, large
language models have demonstrated powerful abil-
ities by prompting a few instances without tuning
(Ding et al., 2022); however, the power of LLMs
for few-shot relation extraction is little known.

2.2 Large Language Models
Large language models, trained with exceedingly
large corpora and often with a great number of pa-
rameters (≥10B), have achieved excellent perfor-
mance in numerous downstream NLP tasks (Taylor
et al., 2022; Zhang et al., 2022; Zeng et al., 2022;
Chowdhery et al., 2022; Ouyang et al., 2022). Com-
pared to relatively small language models (SLMs),
LLMs are usually not open-source and can not be
fine-tuned, which is challenging for downstream
task adaptation. Therefore, in-context learning
(Brown et al., 2020) is proposed to utilize prompts
with a few demonstrations for few-shot learning.
Previous studies (Yoo et al., 2021; Wang et al.,
2021) have investigated using LLMs for text classi-
fication and generation. In this work, we take the
first step to study few-shot RE with large language
models, which brings new challenges and insights.

3 LLMs for Few-shot Relation Extraction

In this section, we introduce two strategies to utilize
LLMs for relation extraction: 1) in-context learning
(§3.1); 2) data generation (§3.2) with LLMs, as
shown in Figure 1.

3.1 In-Context Learning with LLMs
The first strategy applies in-context learning (ICL)
by providing LLMs with demonstrations in the

prompt to elicit comprehension of the relation ex-
traction task from LLMs. To this end, specific and
compelling prompts for RE with demonstrations
are manually constructed and designed to instruct
LLMs to understand the relation extraction task
and how to execute relation extraction. Consid-
ering aspects and characteristics of the relation
extraction task, including task definition, candi-
date relation (label) words, entity types (schemas)
and so on, we design prompts of different articu-
lation and complexity to investigate how prompts
help LLMs release the power of few-shot RE. First,
TEXT PROMPT only contains essential elements
for RE, including relation categories, contexts, and
corresponding head and tail entities. Inspired by
the fantastic performance of InstructGPT (Ouyang
et al., 2022) and ChatGPT (OpenAI, 2022), we de-
sign the task-related instruction describing the
relation extraction task and add it to the prompt,
which is named INSTRUCT PROMPT. Meanwhile,
according to previous few-shot RE works (Zhou
and Chen, 2022), entity types (schemas) are help-
ful; therefore, we also explore the effectiveness of
schemas in prompts.

3.2 Data Generation with LLMs

To complement the scarcity of labeled data, we in-
troduce another strategy: data generation via LLMs.
Specifically, we utilize specific prompts with de-
scriptions of data forms to guide LLMs to generate
more in-domain labeled data autonomously, which
is subsequently employed to fine-tune a relatively
small language model with existing few-shot la-
beled training data. We design the prompt to tell the
essential components (x,h, t, th, tt and y) of one
RE training instance and show few-shot instances
as demonstrations to teach LLMs to comprehend

191

Method
TACRED TACREV RE-TACRED SciERC

K=8 K=16 K=8 K=16 K=8 K=16 K=8 K=16
B

as
el

in
es

SpanBERT (Joshi et al., 2020) 8.4 17.5 5.2 5.7 14.2 29.3 29.0 38.7
LUKE (Yamada et al., 2020) 9.5 21.5 9.8 22.0 14.1 37.5 33.2 48.9
GDPNet (Xue et al., 2021) 11.8 22.5 8.3 20.8 18.8 48.0 33.5 42.3
TANL (Paolini et al., 2021) 18.1 27.6 18.6 28.8 26.7 50.4 32.4 38.7
TYP Marker (Zhou and Chen, 2022) 26.5 29.9 26.7 29.5 44.8 54.1 50.4 59.0
KnowPrompt (Chen et al., 2022) 29.4 32.1 29.8 34.1 56.1 61.4 50.2 57.1

G
PT

3

In-context Learning† 31.9 32.4 49.9 46.6
In-context Learning†(w/ Instruction) 31.0 31.9 51.8 48.8

Data Generation (TYP Marker) 35.8 36.6 36.7 36.5 58.4 60.6 63.2 64.3
Data Generation (KnowPrompt) 37.9 37.4 42.6 41.0 62.7 66.2 58.6 67.8

Table 1: Micro F1 (%) of few-shot performance. † refers to the performance with one-shot demonstrations.

Prompts TACRED TACREV RE-TACRED SciERC

TEXT 31.9 32.4 49.9 46.6
TEXT + Schema 36.9 37.7 54.3 45.9

INSTRUCT 31.0 31.9 51.8 48.8
INSTRUCT + Schema 38.3 36.7 58.5 50.2

Table 2: Micro F1 (%) of performance on different
prompt: TEXT PROMPT and INSTRUCT PROMPT.

features of labeled RE data. Note that schemas,
such as types of relations and entities, are signifi-
cant structural information in RE data. Therefore,
we propose schema-constrained data generation
by adding entity types as schema guidance to the
prompt (in Figure 1) to boost performance. Then,
the prompt is utilized to guide LLMs to create aug-
mented relation extraction data that are converted
into the expected format for future usage.

4 Experimental Setups

4.1 Methods and Datasets

GPT-3.5 is utilized via OpenAI API2 as the large
language model in our experiments. We implement
experiments on four relation extraction datasets,
including TACRED (Zhang et al., 2017), TACREV
(Alt et al., 2020), RE-TACRED (Stoica et al., 2021)
and SciERC (Luan et al., 2018). Compared with
the LLM, six baselines methods are conducted via
relatively small models (details in Appendix A).

4.2 Few-shot Settings

K instances per relation (K-shot) are sampled
for training and validation. For all baselines, we
use randomly sampled 8-shot and 16-shot datasets

2https://platform.openai.com/docs/models/
gpt-3-5

for training and validation. As for in-context learn-
ing, because GPT-3.5 has the limitation of maxi-
mum request tokens (4097 tokens) and the series
of TACRED datasets have more than 40 relations,
one-shot demonstrations can only be used, and
the one-shot performance is reported in Table 1.
For the same reason, to generate more labeled data
for each relation independently, only three demon-
strations for the relation are added to the prompts.

In-context learning is implemented on the four
whole test sets. Different demonstrations are ran-
domly sampled from the shuffled training set every
time to avoid effects from permutations of demon-
strations (Lu et al., 2021). As for data generation,
generated data from GPT-3.5 and original few-shot
training data are combined to fine-tune two base-
lines, TYP Marker (Zhou and Chen, 2022) and
KnowPrompt (Chen et al., 2022). Using different
shots of generated data will lead to different results.
Therefore, we increasingly add generated k-shot
(k ∈ {8, 16, 32, 48}) data to the original 8-shot
and 16-shot training data respectively and report
the best performance over k in Tabel 1. More de-
tails are shown in Appendix A.3.

5 Results and Discussion

5.1 Main Findings for Relation Extraction

In-context learning on LLMs can achieve com-
parable performance for RE with tuning rel-
atively small PLMs. From Table 1, we notice
that ICL with only one-shot demonstrations can
obtain competitive performance with full parame-
ter tuning-based prompt learning baselines. Using
LLMs via ICL does not necessitate any parameter
updates, which contains the potential value of mak-

192

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5

Figure 2: Micro F1 (%) of k in-context demonstrations
in SciERC.

ing models scenario-adaptable, unlike supervised
learning requiring parameter optimization.

Data generation with LLMs can boost previous
solutions to obtain new state-of-the-art few-shot
RE results. We find that previous baselines can
significantly improve with 10.7% for 16-shot in
SciERC and 6.6% for 16-shot in RE-TACRED
by simply using generated data from GPT-3.5 in
Table 1. To be noted, data generation is a simple
yet effective approach to elicit the power from the
LLM to previous methods, and we demonstrate that
using schema-constrained generation with LLMs
can benefit all previous approaches with SLMs.

5.2 Prompts in In-context Learning with
LLMs

Instructions and schemas play an essential
role in in-context learning for RE with LLMs.
From Table 2, we notice that the model with
INSTRUCT PROMPT obtains better performance
than TEXT PROMPT in most cases, indicating task-
related information indeed helps to unlock more
ability of LLMs for RE. Aberrant results are shown
in TACRED and TACREV because incorrectly la-
beled demonstrations from the two datasets will vi-
olate the correct instruction fed into LLMs, which
confuses LLMs and results on worse performance
than ICL without the instruction. Moreover, adding
schema information obtains much better perfor-
mance, exhibiting the importance of pre-defined
structural information for relation extraction.

More demonstrations, counter-intuitively, may
not lead to performance improvement for RE
with LLMs. We find performance will not im-
prove even drop and the gap between INSTRUCT

PROMPT and TEXT PROMPT becomes relatively
smaller as the number of in-context demonstrations
increases from Figure 2. We argue that there may
be two reasons: 1) it is challenging to select rep-

Figure 3: Performance of data generation with LLMs
and different data augmentation methods. Roberta and
SciBERT are used on RE-TACRED and SciERC, respec-
tively, in the context embedding-based DA method.

resentative demonstrations; 2) it is non-trivial for
LLMs to understand structure prediction tasks with
more large output (relation) space. More case stud-
ies for GPT-3.5 can be found in Appendix B.1.

5.3 Utility of Generated Data from LLMs

Combining data generated from LLMs with
original training data can yield better RE per-
formance than from traditional data augmenta-
tion approaches. We compare data generation
through the LLM with previous widely used data
generation approaches, such as substituting words
in training sets with WordNet’s synonyms and con-
textual word embedding in Figure 3 (details in
Appendix A.3). Data generation with LLMs can
obtain better performance than all others, indicat-
ing guiding LLMs to generate data is an effective
method to compensate for the lack of labeled data.

Using more and more generated data from
LLMs can only boost RE performance to a cer-
tain extent, not continuously better. From Fig-
ure 4, we observe that with more generated data,
the result climbs up first and then declines, and
is always higher than without generated data. We
think low-quality generated data introduces much
noise in the training course, according to the anal-
ysis on generated data in Appendix B.2, and LMs
may have an anti-noise capacity (Song et al., 2020).

6 Discussion and Conclusion

In this paper, we take the first step to investi-
gate how to utilize the large language model for
few-shot relation extraction. We observe that
task-related information, including instructions or

193

Figure 4: Micro F1 (%) of KnowPrompt with generated
training data and original 8-shot data.

schemas, helps to elicit the capability of LLMs and
boost few-shot relation extraction performance. At
this stage, using LLMs to generate data may be a
simple yet effective solution to enhance the power
of foundation models (relatively small PLMs) for
practical applications. We hope this work can de-
liver the benefits of using LLMs for the NLP com-
munity. Note that LLMs can make predictions only
based on contexts combined with a few training ex-
amples as demonstrations. We argue that it has the
potential to design sophisticated human-readable
prompts for scenario-adaptable (e.g., low-shot and
any domains) relation extraction.

Acknowledgment

We would like to express gratitude to the anony-
mous reviewers for their kind comments. This
work was supported by the National Natural Sci-
ence Foundation of China (No.62206246), Zhe-
jiang Provincial Natural Science Foundation of
China (No. LGG22F030011), Ningbo Natural Sci-
ence Foundation (2021J190), and Yongjiang Talent
Introduction Programme (2021A-156-G), CAAI-
Huawei MindSpore Open Fund.

Limitations

Despite our best efforts, there may still be some
limitations remaining in this paper.

LLMs: Due to the limited budgets, we can not
afford all kinds of LLMs, so we only evaluate
GPT-3.5 (text-davinci-003). We will try to investi-
gate relation extraction with more LLMs, such as
OPT (Zhang et al., 2022), GLM-130B (Zeng et al.,
2022), or code language models (Bi et al., 2023)
like Codex.

Other Methods to utilize LLMs: There are
several other techniques to leverage LLMs, such

as black-box optimization (Sun et al., 2022) and
feature-based learning (Lang et al., 2022); however,
we find that most of those approaches cannot di-
rectly be applied to relation extraction due to the
large label space and complex schema structures.
We leave these for future work to leverage other
methods with LLMs for relation extraction.

Datasets: We only evaluate four relation extrac-
tion datasets and will try to investigate relation ex-
traction performance with LLMs on more diverse
datasets across different domains and languages.

References
Christoph Alt, Aleksandra Gabryszak, and Leonhard

Hennig. 2020. Tacred revisited: A thorough evalu-
ation of the tacred relation extraction task. In Pro-
ceedings of ACL.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo,
Huajun Chen, and Ningyu Zhang. 2023. Codekgc:
Code language model for generative knowledge
graph construction. CoRR, abs/2304.09048.

Sam Brody, Sichao Wu, and Adrian Benton. 2021. To-
wards realistic few-shot relation extraction. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5338–
5345, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. In WWW ’22: The ACM Web

194

https://arxiv.org/abs/2004.14855
https://arxiv.org/abs/2004.14855
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.48550/arXiv.2304.09048
https://doi.org/10.48550/arXiv.2304.09048
https://doi.org/10.48550/arXiv.2304.09048
https://doi.org/10.18653/v1/2021.emnlp-main.433
https://doi.org/10.18653/v1/2021.emnlp-main.433
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998

Conference 2022, Virtual Event, Lyon, France, April
25 - 29, 2022, pages 2778–2788. ACM.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Mor-
eira, Rewon Child, Oleksandr Polozov, Katherine
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint,
abs/2204.02311.

Bosheng Ding, Chengwei Qin, Linlin Liu, Lidong Bing,
Shafiq R. Joty, and Boyang Li. 2022. Is GPT-3 a good
data annotator? arXiv preprint, abs/2212.10450.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey for in-context learning.
arXiv preprint, abs/2301.00234.

Jiale Han, Bo Cheng, and Wei Lu. 2021a. Exploring
task difficulty for few-shot relation extraction. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 2605–2616. Association
for Computational Linguistics.

Jiale Han, Shuai Zhao, Bo Cheng, Shengkun Ma, and
Wei Lu. 2022. Generative prompt tuning for rela-
tion classification. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
3170–3185, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Xu Han, Tianyu Gao, Yuan Yao, Deming Ye, Zhiyuan
Liu, and Maosong Sun. 2019. Opennre: An open
and extensible toolkit for neural relation extraction.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019 - System Demon-
strations, pages 169–174. Association for Computa-
tional Linguistics.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu,
and Maosong Sun. 2021b. PTR: prompt tuning

with rules for text classification. arXiv preprint,
abs/2105.11259.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. FewRel: A
large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4803–4809,
Brussels, Belgium. Association for Computational
Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Trans. Assoc. Comput. Linguistics, 8:64–
77.

Hunter Lang, Monica N. Agrawal, Yoon Kim, and
David A. Sontag. 2022. Co-training improves
prompt-based learning for large language models.
In International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learn-
ing Research, pages 11985–12003. PMLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. arXiv:1907.11692, abs/1907.11692.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint,
abs/2104.08786.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreferencefor scientific knowledge
graph construction. In Proc. Conf. Empirical Meth-
ods Natural Language Process. (EMNLP).

Shengfei Lyu and Huanhuan Chen. 2021. Relation
classification with entity type restriction. In Find-
ings of the Association for Computational Linguis-
tics: ACL/IJCNLP 2021, Online Event, August 1-6,
2021, volume ACL/IJCNLP 2021 of Findings of ACL,
pages 390–395. Association for Computational Lin-
guistics.

Yubo Ma, Yixin Cao, YongChing Hong, and Aixin Sun.
2023. Large language model is not a good few-shot
information extractor, but a good reranker for hard
samples! CoRR, abs/2303.08559.

OpenAI. 2022. Chatgpt: Optimizing language mod-
els for dialogue. https://openai.com/blog/
chatgpt/.

OpenAI. 2023a. Gpt-4 technical report. arXiv preprint,
abs/2303.08774.

OpenAI. 2023b. Text-davinci-003. https:
//platform.openai.com/docs/models/
text-davinci-003.

195

https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2212.10450
https://doi.org/10.48550/arXiv.2212.10450
https://doi.org/10.48550/arXiv.2301.00234
https://doi.org/10.18653/v1/2021.emnlp-main.204
https://doi.org/10.18653/v1/2021.emnlp-main.204
https://aclanthology.org/2022.findings-emnlp.231
https://aclanthology.org/2022.findings-emnlp.231
https://doi.org/10.18653/v1/D19-3029
https://doi.org/10.18653/v1/D19-3029
http://arxiv.org/abs/2105.11259
http://arxiv.org/abs/2105.11259
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://proceedings.mlr.press/v162/lang22a.html
https://proceedings.mlr.press/v162/lang22a.html
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.findings-acl.34
https://doi.org/10.18653/v1/2021.findings-acl.34
https://doi.org/10.48550/arXiv.2303.08559
https://doi.org/10.48550/arXiv.2303.08559
https://doi.org/10.48550/arXiv.2303.08559
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://platform.openai.com/docs/models/text-davinci-003
https://platform.openai.com/docs/models/text-davinci-003
https://platform.openai.com/docs/models/text-davinci-003

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. arXiv preprint, abs/2203.02155.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai,
Cícero Nogueira dos Santos, Bing Xiang, and Ste-
fano Soatto. 2021. Structured prediction as transla-
tion between augmented natural languages. In 9th
International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling,
and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 2895–2905. Association for Computa-
tional Linguistics.

Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-
Gil Lee. 2020. Learning from noisy labels with
deep neural networks: A survey. arXiv preprint,
abs/2007.08199.

George Stoica, Emmanouil Antonios Platanios, and
Barnabás Póczos. 2021. Re-tacred: Addressing short-
comings of the TACRED dataset. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, Febru-
ary 2-9, 2021, pages 13843–13850. AAAI Press.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning
for language-model-as-a-service. In International
Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
20841–20855. PMLR.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint, abs/2211.09085.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021. Want to reduce la-
beling cost? GPT-3 can help. In Findings of the
Association for Computational Linguistics: EMNLP

2021, Virtual Event / Punta Cana, Dominican Re-
public, 16-20 November, 2021, pages 4195–4205.
Association for Computational Linguistics.

Fuzhao Xue, Aixin Sun, Hao Zhang, and Eng Siong
Chng. 2021. Gdpnet: Refining latent multi-view
graph for relation extraction. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 14194–14202. AAAI Press.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: deep con-
textualized entity representations with entity-aware
self-attention. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20,
2020, pages 6442–6454. Association for Computa-
tional Linguistics.

Shan Yang, Yongfei Zhang, Guanglin Niu, Qinghua
Zhao, and Shiliang Pu. 2021. Entity concept-
enhanced few-shot relation extraction. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual
Event, August 1-6, 2021, pages 987–991. Association
for Computational Linguistics.

Hongbin Ye, Ningyu Zhang, Hui Chen, and Huajun
Chen. 2022. Generative knowledge graph construc-
tion: A review. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1–17, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-
Woo Lee, and Woo-Myoung Park. 2021. Gpt3mix:
Leveraging large-scale language models for text aug-
mentation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 16-20 November,
2021, pages 2225–2239. Association for Computa-
tional Linguistics.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan
Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Peng
Zhang, Yuxiao Dong, and Jie Tang. 2022. GLM-
130B: an open bilingual pre-trained model. CoRR,
abs/2210.02414.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

196

https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
https://doi.org/10.18653/v1/p19-1279
https://doi.org/10.18653/v1/p19-1279
http://arxiv.org/abs/2007.08199
http://arxiv.org/abs/2007.08199
https://ojs.aaai.org/index.php/AAAI/article/view/17631
https://ojs.aaai.org/index.php/AAAI/article/view/17631
https://proceedings.mlr.press/v162/sun22e.html
https://proceedings.mlr.press/v162/sun22e.html
https://doi.org/10.48550/arXiv.2211.09085
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://ojs.aaai.org/index.php/AAAI/article/view/17670
https://ojs.aaai.org/index.php/AAAI/article/view/17670
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2021.acl-short.124
https://doi.org/10.18653/v1/2021.acl-short.124
https://aclanthology.org/2022.emnlp-main.1
https://aclanthology.org/2022.emnlp-main.1
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.48550/arXiv.2210.02414
https://doi.org/10.48550/arXiv.2210.02414
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), pages 35–45.

Wenxuan Zhou and Muhao Chen. 2022. An improved
baseline for sentence-level relation extraction. In Pro-
ceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing, AACL/IJCNLP
2022 - Volume 2: Short Papers, Online only, Novem-
ber 20-23, 2022, pages 161–168. Association for
Computational Linguistics.

A Experimental Details

A.1 Datasets
TACRED3 is a widely used RE dataset. It has 42
relation labels, including no_relation, meaning no
relation is found. TACREV4 includes the same
training set and relabeled development and test sets
from TACRED. RE-TACRED5 is a re-annotated
version of TACRED with 40 relations. SciERC6

has seven relation categories and is constructed in
the scientific domain. All datasets are derived from
their official webs without modification, including
contents and train/test/dev splits.

A.2 Baselines
We compare LLMs with recent baseline methods
using relatively small models. 1) Normal fine-
tuning methods: SpanBERT (Joshi et al., 2020),
a span-based PLM; LUKE (Yamada et al., 2020),
pre-trained contextualized representations of words
and entities based on the bidirectional transformer;
GDPNet, a gaussian dynamic time warping pool-
ing net able to select important words for rela-
tion prediction; TYP Marker (Zhou and Chen,
2022), fine-tuning with entity typed markers. 2)
Generative method: TANL (Paolini et al., 2021),
framing a structured prediction language task as
a translation task between augmented natural lan-
guages. 3) Prompt-tuning methods: KnowPrompt,
knowledge-aware continuous prompt-based tuning
with synergistic optimization.

A.3 Implementation Details
Generated data with existing training data is then
evaluated on KnowPrompt. Data augmentation

3https://nlp.stanford.edu/projects/tacred/
4https://github.com/DFKI-NLP/tacrev
5https://github.com/gstoica27/Re-TACRED
6http://nlp.cs.washington.edu/sciIE/

methods with Word-Net’s synonyms and contex-
tual word embedding are achieved by nlpaug7. The
parameter temperature in OpenAI API is set to 0
for precision in ICL and 1 for generating diverse
RE data. One NVIDIA GeForce RTX 3090 GPU
with 24GB memory is employed to run all experi-
ments. We rerun the official code of baselines with
their original settings except on the SciERC dataset.
Due to the vertical domain of SciERC, SciBERT
(Beltagy et al., 2019) is used in TYP Marker and
KnowPrompt for fairness. And for another three
datasets, RoBERTa-large is utilized in TYP Marker
and KnowPrompt.

B Case Analysis

B.1 Wrong Cases from ICL
From Table 4, we notice that some RE instances
are challenging for LLMs, and there are several
limitations with LLMs: 1) LLMs are not good at
clearly distinguishing the order between head and
tail entities. 2) The same mention of head and tail
entities will confuse LLMs. 4) If the distance be-
tween head and tail entities in the context is long, it
is difficult for LLMs to decide the relation correctly.
5) Semantically-similar relation label words and
entity mentions will puzzle LLMs because their em-
beddings are similar. 6) LLMs cannot afford very
long instances since there is a large label space for
relation extraction. 7) LLMs may mostly fail to ex-
tract those ambitious or wrongly labeled relations;
those are also challenging for humans. More high-
quality demonstrations may help mitigate these
issues. And we think it is necessary to develop
step-by-step (Chat-style) approaches with LLMs to
extract limited relations in one stage.

B.2 Generated Data from LLMs
There are some cases for generated data from GPT-
3.5 in Table 5. Through human checks on 100
generated samples per dataset, about 78% gener-
ated data are corrected labeled and of a high quality
(85% for TACRED, 82.5% for TACREV, 72% for
RE-TACRED, 75% for SciERC). Meanwhile, we
add generated data and original gold training data
respectively to 8-shot datasets and fine-tune Know-
Prompt, we evaluate the quality of generated data
as shown in Table 3. We observe that labeled data
generated by GPT-3.5 are mostly correct. As for
TACRED and TACREV, generated data achieve
more improvements than gold labeled data. Since

7https://github.com/makcedward/nlpaug

197

https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://aclanthology.org/2022.aacl-short.21
https://aclanthology.org/2022.aacl-short.21
https://nlp.stanford.edu/projects/tacred/
https://github.com/DFKI-NLP/tacrev
https://github.com/gstoica27/Re-TACRED
http://nlp.cs.washington.edu/sciIE/
https://github.com/makcedward/nlpaug

8-shot Dataset
TACRED TACREV RE-TACRED SciERC

generated gold generated gold generated gold generated gold

add 0-shot 29.35 29.35 29.77 29.77 56.05 56.05 45.80 45.80
add 8-shot 31.63 30.73 34.30 33.16 59.85 60.92 48.30 57.08
add 16-shot 34.78 31.88 36.33 33.49 59.59 61.30 58.62 65.15
add 32-shot 36.45 33.35 38.19 33.98 60.06 64.65 57.70 72.11
add 48-shot 37.89 33.97 38.80 35.06 62.67 65.56 51.64 74.29
add 64-shot 36.67 34.36 42.61 35.57 61.07 67.28 54.52 75.36
add 72-shot 35.69 34.58 41.72 35.96 59.09 67.43 49.59 75.87

Table 3: Micro F1 (%) of KnowPrompt after adding labeled data generated by GPT-3.5 or gold labeled data to
8-shot datasets.

there are many incorrect labeled data in TACRED
and TACREV (Zhang et al., 2017; Alt et al., 2020),
we think better performance results from GPT-3.5’s
help. However, we also find that Some generated
data from GPT-3.5 are of less quality than gold data.
As for RE-TACRED and SciERC, using more gold
data perform better than generated data. Through
human checks, some generated samples are too
short and concatenated by some semantically ir-
relevant sentences. Meanwhile, big performance’s
difference on SciERC shows GPT-3.5 is not good
at vertical domains such as science.

198

Dataset Case Gold Relation In-context Learning

TACRED
Context: And strangely enough , Cain’s short , three-year
tenure at the NRA is evidently the only period in his
decades-long career during which he ’s alleged to have
been a sexual predator.
Head Type: ORGANIZATION. Head Entity: NRA.
Tail Type: PERSON. Tail Type: Cain

org:top_members/employees per:employee_of

Context: "I learn from students and I challenge them,"
says Heloise, 58, who took over the family hints business
when her mother, also named Heloise, died in 1977.
Head Type: PERSON. Head Entity: Heloise.
Tail Type: PERSON. Tail Entity: Heloise.

per:parents per:alternate_names

TACREV
Context: Anna Mae Pictou Aquash, a Mi ‘ kmaq Indian
from Canada, was brutally murdered in 1975.
Head Type: PERSON. Head Entity: Anna Mae Pictou
Aquash.
Tail Type: COUNTRY. Tail Entity: Canada.

per:country_of_birth per:countries_of_residence

Context: Messina Denaro has been trying to impose his
power in Palermo, the Sicilian capital, and become the
new head of the Sicilian Mafia, weakened by the arrest
of Provenzano in April 2006.
Head Type: PERSON. Head Entity: his.
Tail Type: CITY. Tail Entity: Palermo.

no_relation per:cities_of_residence

RE-TACRED
Context: They say Vladimir Ladyzhenskiy died late Sat-
urday during the contest in southern Finland, while his
Finnish rival Timo Kaukonen was rushed to a hospital.
Head Type: PERSON. Head Entity: Vladimir Ladyzhen-
skiy.
Tail Type: PERSON. Tail Entity: his.

per:identity per:date_of_death

President of the Central American Parliament (Parlacen)
Jacinto Suarez said on Monday that the presidents of the
Central American countries did not support Panama ’s
request of withdrawal from the Parlacen.
Head Type: ORGANIZATION. Head Entity: Central
American Parliament.
Tail Type: PERSON. Tail Entity: Jacinto Suarez.

org:top_members/employees per:title

SciERC
Context: We evaluate across two corpora (conversational
telephone speech and broadcast news speech) on both
human transcriptions and speech recognition output.
Head Type: OtherScientificTerm. Head Entity: transcrip-
tions.
Tail Type: OtherScientific Term. Tail Entity: output.

CONJUNCTION COMPARE

Context: We validate this new method on nine standard
person re-identification datasets including two large scale
Market-1501 and CUHK03 datasets and show that we
improve upon the current state-of-the-art methods on all
of them.
Head Type: Material. Head Entity: CUHK03 datasets.
Tail Type: Material. Tail Entity: datasets.

HYPONYM-OF PART-OF

Table 4: Wrong cases predicted by GPT-3.5. The gold relation categories are listed in the third column and the
results predicted by in-context learning are in the fourth column.

199

Dataset Case Corrective Data

TACRED
Context: The American Cancer Society is headquartered in Atlanta and was
founded in 1913 by 15 trained laywomen.
Head Type: ORGANIZATION. Head Entity: American Cancer Society.
Tail Type: ORGANIZATION. Tail Entity: 15 trained laywomen.
Relation: org:founded_by.

Tail Type: PERSON

Context: Mary Brown, CEO of Brown Corp and renowned businesswoman,
is a regular speaker at industry conferences and events.
Head Type: PERSON. Head Entity: Mary Brown.
Tail Type: PERSON. Tail Entity: CEO.
Relation: per:title.

Tail Type: TITLE

TACREV
Context: Gustav Mahler was born in Kalischt, Bohemia on July 7th, 1860.
Head Type: PERSON. Head Entity: Gustav Mahler.
Tail Type: PERSON. Tail Entity: 1860.
Relation: per:country_of_birth.

Tail Type: DATE
Relation: per:date_of_birth

Context: MTN Nigeria, a subsidiary of South African-based MTN Group, has
begun to list its shares on the Nigerian Stock Exchange.
Head Type: ORGANIZATION. Head Entity: MTN Group.
Tail Type: ORGANIZATION. Tail Entity: MTN Nigeria.
Relation: org:subsidiaries.

-

RE-TACRED
Context: Pope John Paul II was a hugely popular Catholic leader who was
based in the Vatican City for most of his papacy.
Head Type: PERSON. Head Entity: Pope John Paul II.
Tail Type: PERSON. Tail Entity: Vatican City.
Relation: per:countries_of_residence.

Tail Type: CITY
Reltaion:
per:cities_of_residence

Context: French drug manufacturer Sanofi-Aventis dissolved its Chinese
subsidiary Guangzhou Pharma following a bribery scandal.
Head Type: ORGANIZATION. Head Entity: Sanofi-Aventis.
Tail Type: ORGANIZATION. Tail Entity: Guangzhou Pharma.
Relation: org:dissolved.

-

SciERC
Context: The comparison between the two approaches indicates that the neural
method produces far better results than the rule-based system.
Head Type: Method. Head Entity: neural method.
Tail Type: Method. Tail Entity: rule-based system.
Relation: COMPARE.

-

Context: The combination of chromatography and mass spectrometry has
enabled scientists to achieve unparalleled levels of proteome analysis.
Head Type: Method. Head Entity: mass spectrometry.
Tail Type: Method. Tail Entity: chromatography.
Relation: FEATURE-OF.

Relation: CONJUNCTION

Table 5: Generated data from LLMs. Errors are bold in the second column and corrected in the third column.

200

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 201–211
July 13, 2023 ©2023 Association for Computational Linguistics

Prompting language models improves performance in imbalanced setting

Jay Mohta
Amazon

jaymoht@amazon.com

Abstract
Prompting is a widely adopted technique for
fine-tuning large language models. Recent re-
search by Scao and Rush (2021) has demon-
strated its effectiveness in improving few-shot
learning performance compared to vanilla fine-
tuning and also showed that prompting and
vanilla fine tuning achieves similar perfor-
mance in high data regime (∼> 2000 samples).
This paper investigates the impact of imbal-
anced data distribution on prompting. Through
rigorous experimentation on diverse datasets
and models, our findings reveals that even in
scenarios with high data regimes, prompting
consistently outperforms vanilla fine-tuning by
exhibiting average performance improvement
of 2− 5%.

1 Introduction

Fine tuning language models is a common strategy
in Natural Language Processing (NLP), where a
classifier head is added on top of the base language
model to obtain the desired classification output.
This approach has been applied to various NLP
models, including RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2019), and DeBERTa (He
et al., 2020), and has demonstrated exceptional
performance on benchmark datasets such as GLUE
(Wang et al., 2018) and SuperGLUE (Wang et al.,
2019).

An alternate approach to adapting language mod-
els to downstream tasks involves the use of autore-
gressive text generation or prompt based fine tun-
ing. This technique is commonly used in sequence-
to-sequence models such as T5 (Raffel et al., 2019)
leading to state-of-the-art performance on Super-
GLUE benchmark. This type of fine tuning strategy
has an added advantage of multi-task training (Mc-
Cann et al., 2018). This technique has also shown
to improve models zero shot capability (Puri and
Catanzaro, 2019) where we can provide only task
description and model is able to classify the input
correctly.

Work by Scao and Rush (2021); Schick and
Schütze (2020); Webson and Pavlick (2021) has
shown that prompting language models really helps
in few shot learning setting over vanilla fine tuned
models. In high data regime setting prompting
and vanilla fine tuned language models achieve the
similar performance. However, these studies used
balanced datasets where the number of examples
from each class are equal.

The issue of class imbalance in machine learning
is a well-known challenge, and occurs when the
distribution of samples across classes is skewed.
These types of problems are encountered in var-
ious real world settings like malware detection
(Demirkiran et al., 2021), spam detection (Rao
et al., 2023), medical domain (Altaf et al., 2023)
and many more. Previous work by Buda et al.
(2017); Leevy et al. (2018) has shown that if we
use general supervised loss then it leads to poor
generalization on the minority classes. In this work
we ask the question: How does prompting impact
performance in imbalanced setting? To the best of
our knowledge this is the first work which explores
impact of prompting in imbalanced setting.

In this work therefore we conduct an experimen-
tal study by varying imbalance ratio and compare
performance of vanilla fine tuned model with that
of prompting based models. Our study includes
experiments with varying models like RoBERTa
(Liu et al., 2019), ALBERT (Lan et al., 2019) and
DeBERTa (He et al., 2020), and different datasets
like RTE (Dagan et al., 2007), QQP (Chen et al.,
2017) and MRPC (Lan et al., 2017). To study
how different imbalance ratios affect performance
we vary imbalance ratio from 0.1%-30%. We also
compare the impact of model size on the perfor-
mance of models in imbalanced settings i.e. for
ALBERT we run experiments on large and its base
counterpart. To make our finding more robust we
experiment across different prompts as work by
Webson and Pavlick (2021) points out that different

201

prompts could impact performance of the models.
To isolate the impact of prompting we don’t use any
special technique like PET (Schick and Schütze,
2021), AdaPET (Tam et al., 2021) for performing
fine tuning. We suspect that using those techniques
may further improve performance of prompt based
models.

Our results show that prompting helps in im-
balanced setting over vanilla fine tuning in mild
imbalanced setting even in high data regime by
2 − 5% increase in performance on average. In
high and no imbalanced setting the prompting and
vanilla fine tuning gives a very similar performance.
This insight will help practitioners decide what fine
tuning strategy works the best for their use case.

The rest of the paper is organized as follows
section 2 will provide some background on vanilla
fine tuning and prompting. section 3 describes
our experimental setup and results. We conclude
in section 4 with a summary of our findings and
suggestions for future work.

2 Background

The aim of this work is to evaluate the impact of
prompting on language model performance com-
pared to traditional fine tuning. To achieve this, we
conduct experiments with different imbalance ra-
tios from severe to mild to low/no imbalance. The
following sections provides background on vanilla
fine tuning, prompting based fine tuning and imbal-
anced classification problems before delving into
our empirical study.

2.1 Vanilla fine tuning

This is very simple and widely adopted fine tun-
ing stratgey where we add classifier head on the
top of language models. In the case of RoBERTa,
ALBERT and DeBERTa the classification head is
added on top of [CLS] token and the embedding
generated for that token are fed into this classifica-
tion head to generate the classification output.

2.2 Prompt based fine tuning

Prompting is a fine tuning technique that utilizes
masked language modeling to obtain the classifica-
tion output, converting each classification task into
sequence-to-sequence problem. Similar to PET
(Schick and Schütze, 2021), the prompt is decom-
posed into two parts: the pattern and the verbalizer.
The pattern transforms the input into clozed task,
i.e., a sequence with a mask token that needs to be

filled by the model, serving as the classification out-
put. The verbalizer then converts the output space
into a token or sequence of tokens in the vocabu-
lary. The goal of prompting is to guide the model
by providing a pattern that contains the mask to-
ken, and for the model to predict the correct output
based on the defined verbalizer pattern.

To illustrate the technique of prompting,
consider an example from the RTE dataset (Dagan
et al., 2007). The task is to predict whether the
premise No Weapons of Mass Destruction Found
in Iraq Yet. entails the hypothesis, Weapons of
Mass Destruction Found in Iraq. The prompt is
generated using the verbalizer pattern that maps
entailment to yes and non-entailment to no. The
prompt pattern is defined as follows

Given No Weapons of Mass
Destruction Found in Iraq
Yet. Should we assume that
Weapons of Mass Destruction
Found in Iraq mask

The bolded text represents the prompt pattern,
while the non-bolded text is the sample from RTE
dataset. The model predict yes or no at the mask
token based on the verbalizer pattern we defined.
Different pattern-verbalizer pattern can be used for
single task and prior work (Webson and Pavlick,
2021; Brown et al., 2020) has shown that different
choices of prompt pattern and verbalizer pairs can
impact the performance of the model. To ensure
robust results, we experiment with various prompt
pattern-verbalizer pairs.

2.3 Class imbalance

In this work we define something called imbalance
ratio which represents how imbalanced is your train
set. It is defined as follows

Imbalance Ratio =
Number of negative samples

Total number of samples
(1)

In order to effectively study prompting based tech-
nique in class imbalance we start from an imbal-
ance ratio of 0.1%, we incrementally increase the
imbalance ratio up to 30%, allowing us to study the
effect of various levels of class imbalance.

3 Experimental setting and results

We now present our main experimental results to
show that prompting improves performance of the

202

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.55

0.6

0.65

0.7

0.75

0.8

0.85
Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(a) RoBERTa

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(b) DeBERTa

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(c) ALBERT

Figure 1: These figures are similar to figures plotted in Webson and Pavlick (2021). Here each dot represents one
prompt under one random seed (random seed controls different negative examples selected to create an imbalance).
The plot compares fine tuning and prompt based tuning performance with varying imbalance ratios on RTE dataset
(reported accuracies are on validation set). The boxes span from first quartile to third quartile while the lines inside
the box mark the median.

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.55

0.6

0.65

0.7

0.75 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(a) ALBERT-Base

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(b) ALBERT-Large

Figure 2: Comparing performance of ALBERT-Base with ALBERT-Large on RTE dataset.

model than vanilla fine tuned model in imbalanced
setting (even in high data regime). To improve
the robustness of our results we experiment with
different models, datasets and different training
splits. In the following subsection we describe the
setup and main takeways from the experiments.

3.1 Setup

We experimented with RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2019) and DeBERTa (He
et al., 2020) pre-trained models. These are all
encoder-only models trained using masked lan-
guage modelling objective during pretraining phase.
We experimented with different prompts from the
open-source library prompt-source (Bach et al.,
2022) to understand the impact of different prompts
on performance. We provide experimental results
on three different datasets Recognizing Textual En-

tailment (RTE) (Dagan et al., 2007), Quora Ques-
tion Pairs (QQP) (Chen et al., 2017) and Microsoft
Research Paraphrase Corpus (MPRC) (Lan et al.,
2017). Except QQP which has > 100k samples
all other datasets have about 2400 samples. In or-
der to check how prompting affect performance in
imbalanced setting we experiment with different
imbalance ratios defined in eq. (1). We start from
as low as 0.1% imbalance ratio and incrementally
increase it up to 30%. To ensure the reliability
of our results, we conduct multiple experiments
by varying the random seed three times which is
used for selecting a new subset of samples from the
training set. On each downstream task we fine tune
RoBERTa, ALBERT and DeBERTa using prompt-
ing based fine tuning and vanilla fine tuning with
varying prompts and varying seeds. For all of our
prompt based fine tuning experiments we use a

203

learning rate of 1e− 5 and we train the model for
5 epochs. For all of our vanilla fine tuning experi-
ments we use learning rate of 2e− 5 and train the
model for 5 epochs as well. In the main text of the
paper we provide results on RTE dataset. We ask
the readers to refer to Appendix for results on all
datasets. We also provide different prompts used
for different datasets in appendix A.

3.2 Prompting improves performance in
imabalanced setting

The results of our experiments are depicted in fig. 1.
Our findings demonstrate that in high data regime
and imbalanced settings, prompt-based fine tuning
consistently outperforms vanilla fine tuning. In sce-
narios where the imbalance ratio is between 0.1%
and 1%, both prompt-based and vanilla models per-
form similarly, almost equivalent to predicting the
more labels class. However, when the imbalance ra-
tio is between 5% and 15%, we observe significant
improvement in the performance of prompt-based
models compared to vanilla fine tuning. Especially,
for RTE dataset we observe 10−15% improvement
in performance across different models. The dif-
ference in performance between the two methods
becomes smaller at 30% imbalance ratio. As stated
by previous studies (Brown et al., 2020; Webson
and Pavlick, 2021), in balanced high data regimes,
the performance of prompt-based models becomes
similar to vanilla fine tuning. For more compre-
hensive results obtained from various datasets and
models, please refer to appendix B. Overall, our
findings indicates that when dealing with an im-
balance ratio ranging from 5% to 15% there is an
average improvement in performance of approxi-
mately 2− 5%.

As shown in fig. 2, the comparison of the perfor-
mance between the prompted model and ALBERT-
Base and Large reveals that using the base models
of these models does not significantly improve per-
formance. Both the vanilla fine-tuned model and
the prompt-based fine-tuned model yield similar re-
sults. This finding aligns with previous studies such
as (Schick and Schütze, 2021; Tam et al., 2021),
which also noted that prompted base models (or
smaller models) do not enhance performance in
the few-shot learning setting. The same holds true
for imbalanced settings, as indicated by our results.
For further analysis of different model sizes, please
refer to appendix C in the paper.

4 Conclusion

This paper investigated the impact of prompt-based
fine-tuning and vanilla fine-tuning on the perfor-
mance of models in high data regimes and imbal-
anced settings. The findings revealed that prompt-
based fine-tuning outperforms vanilla fine-tuning
by about 2−5%, particularly in scenarios where the
imbalance ratio is between 5% to 15%. The results
in balanced high data regimes were in accordance
with previous studies, showing that prompt-based
models perform similarly to vanilla fine-tuning. A
comparison between the prompted base models and
large models found that the former did not provide
significant improvement in performance. To ex-
plain these phenomenons we aim to further study
the pretraining dataset on the performance the mod-
els, as the output distribution of masked language
modelling may play a role in the enhanced perfor-
mance of prompt-based models compared to vanilla
fine-tuned models.

References
Fouzia Altaf, Syed M. S. Islam, Naeem Khalid Janjua,

and Naveed Akhtar. 2023. Pre-text representation
transfer for deep learning with limited imbalanced
data : Application to ct-based covid-19 detection.
ArXiv, abs/2301.08888.

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert
Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea San-
tilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu,
Gunjan Chhablani, Han Wang, Jason Alan Fries,
Maged S. Al-shaibani, Shanya Sharma, Urmish
Thakker, Khalid Almubarak, Xiangru Tang, Xian-
gru Tang, Mike Tian-Jian Jiang, and Alexander M.
Rush. 2022. Promptsource: An integrated develop-
ment environment and repository for natural language
prompts.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Mateusz Buda, Atsuto Maki, and Maciej A.
Mazurowski. 2017. A systematic study of the

204

http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279

class imbalance problem in convolutional neural net-
works. Neural networks : the official journal of the
International Neural Network Society, 106:249–259.

Zihang Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2017. Quora question pairs.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2007. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop.

Ferhat Demirkiran, Aykut Çayir, Uğur Ünal, and Hasan
Dag. 2021. An ensemble of pre-trained transformer
models for imbalanced multiclass malware classifica-
tion. Comput. Secur., 121:102846.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-
enhanced bert with disentangled attention. ArXiv,
abs/2006.03654.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. arXiv preprint arXiv:1708.00391.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. ArXiv, abs/1909.11942.

Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A.
Bauder, and Naeem Seliya. 2018. A survey on ad-
dressing high-class imbalance in big data. Journal of
Big Data, 5:1–30.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language
decathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Raul Puri and Bryan Catanzaro. 2019. Zero-shot
text classification with generative language models.
arXiv preprint arXiv:1912.10165.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. ArXiv, abs/1910.10683.

Sanjeev Rao, Anil Kumar Verma, and Tarunpreet Bha-
tia. 2023. Hybrid ensemble framework with self-
attention mechanism for social spam detection on
imbalanced data. Expert Systems with Applications.

Teven Le Scao and Alexander M. Rush. 2021. How
many data points is a prompt worth? In North Amer-
ican Chapter of the Association for Computational
Linguistics.

Timo Schick and Hinrich Schütze. 2020. It’s not just
size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118.

Timo Schick and Hinrich Schütze. 2021. True few-
shot learning with prompts—a real-world perspective.
Transactions of the Association for Computational
Linguistics, 10:716–731.

Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank
Srivastava, and Colin Raffel. 2021. Improving and
simplifying pattern exploiting training. In Confer-
ence on Empirical Methods in Natural Language
Processing.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. ArXiv, abs/1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

Albert Webson and Ellie Pavlick. 2021. Do prompt-
based models really understand the meaning of their
prompts? ArXiv, abs/2109.01247.

205

A Different prompts used for different
datasets

This section describes the different prompts and
verbalizer patterns used for the experiments.

206

Dataset Patterns Verbalizer
RTE Given {premise} Should we assume that {hypothesis}

is true?
yes-no

{premise} Based on the previous passage, is it true
that {hypothesis}?

yes-no

Given {premise} Is it guaranteed true that {hypothe-
sis}?

yes-no

Suppose {premise} Can we infer that {hypothesis}? yes-no
QQP Can an answer to {question1} also be used to answer

{question2}?
yes-no

I received the questions {question1} and {question2}.
Are they duplicates?

yes-no

Are the questions {question1} and {question2} ask-
ing the same thing?

yes-no

I am an administrator on the website Quora. There
are two posts, one that asks {question1} and another
that asks {question2}. I can merge questions if they
are asking the same thing. Can I merge these two
questions?

yes-no

MRPC Are the following two sentences equivalent? {sen-
tence1}. {sentence2}

yes-no

I want to know whether the following two sentences
mean the same thing. {sentence1}. {sentence2}

yes-no

Do the following two sentences mean the same thing?
{sentence1}. {sentence2}

yes-no

Can I replace the sentence {sentence1} with the sen-
tence {sentence2} and have it mean the same thing?

yes-no

Table 1: Table showing different Datasets, Patterns, and Verbalizers.

207

B Prompt based fine tuning vs vanilla fine
tuning on different datasets and models

208

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.55

0.6

0.65

0.7

0.75

0.8

0.85
Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(a) RoBERTa

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(b) DeBERTa

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(c) ALBERT

Figure 3: RTE dataset performance on different models

0.1%
 (2477)

1%
 (2510)

5%
 (2657)

10%
 (2840)

15%
 (3024)

30%
 (3574)

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(a) RoBERTa

0.1%
 (2477)

1%
 (2510)

5%
 (2657)

10%
 (2840)

15%
 (3024)

30%
 (3574)

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(b) DeBERTa

0.1%
 (2477)

1%
 (2510)

5%
 (2657)

10%
 (2840)

15%
 (3024)

30%
 (3574)

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(c) ALBERT

Figure 4: MRPC dataset performance on different models

0.1%
 (134741)

1%
 (138016)

5%
 (152570)

10%
 (170762)

15%
 (188954)

30%
 (243531)

0.4

0.5

0.6

0.7

0.8

0.9
Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(a) RoBERTa

0.1%
 (134741)

1%
 (138016)

5%
 (152570)

10%
 (170762)

15%
 (188954)

30%
 (243531)

0.4

0.5

0.6

0.7

0.8

0.9
Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(b) DeBERTa

0.1%
 (134741)

1%
 (138016)

5%
 (152570)

10%
 (170762)

15%
 (188954)

30%
 (243531)

0.4

0.5

0.6

0.7

0.8

0.9
Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(c) ALBERT

Figure 5: QQP dataset performance on different models

209

C Large vs base model comparison on
different datasets

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.55

0.6

0.65

0.7

0.75 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(a) ALBERT-Base

0.1%
 (1243)

1%
 (1265)

5%
 (1365)

10%
 (1490)

15%
 (1614)

30%
 (1988)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(b) ALBERT-Large

Figure 6: Comparing performance of ALBERT-Base
with ALBERT-Large on RTE dataset

0.1%
 (2477)

1%
 (2510)

5%
 (2657)

10%
 (2840)

15%
 (3024)

30%
 (3574)

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(a) ALBERT-Base

0.1%
 (2477)

1%
 (2510)

5%
 (2657)

10%
 (2840)

15%
 (3024)

30%
 (3574)

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(b) ALBERT-Large

Figure 7: Comparing performance of ALBERT-Base
with ALBERT-Large on MRPC dataset

210

0.1%
 (134741)

1%
 (138016)

5%
 (152570)

10%
 (170762)

15%
 (188954)

30%
 (243531)

0.4

0.5

0.6

0.7

0.8

0.9 Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(a) ALBERT-Base

0.1%
 (134741)

1%
 (138016)

5%
 (152570)

10%
 (170762)

15%
 (188954)

30%
 (243531)

0.4

0.5

0.6

0.7

0.8

0.9
Prompt based fine tuning

Vanilla fine tuning

Imbalance Ratio (Total Samples)

A
c
c
u
r
a
c
y

(b) ALBERT-Large

Figure 8: Comparing performance of ALBERT-Base
with ALBERT-Large on QQP dataset

211

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 212–218
July 13, 2023 ©2023 Association for Computational Linguistics

KGQA Without Retraining

Nick McKenna
University of Edinburgh

nick.mckenna@ed.ac.uk

Priyanka Sen
Amazon Alexa AI

sepriyan@amazon.co.uk

Abstract

Popular models for Knowledge Graph Ques-
tion Answering (KGQA), including semantic
parsing and End-to-End (E2E) models, decode
into a constrained space of KG relations. Al-
though E2E models accommodate novel en-
tities at test-time, this constraint means they
cannot access novel relations, requiring expen-
sive and time-consuming retraining whenever
a new relation is added to the KG. We propose
KG-Flex, a new architecture for E2E KGQA
that instead decodes into a continuous embed-
ding space of relations, which enables use of
novel relations at test-time. KG-Flex is the
first to support KG updates with entirely novel
triples, free of retraining, while still supporting
end-to-end training with simple, weak supervi-
sion of (Q, A) pairs. Our architecture saves on
time, energy, and data resources for retraining,
yet we retain performance on standard bench-
marks. We further demonstrate zero-shot use
of novel relations, achieving up to 82% of base-
line hit@1 on three QA datasets. KG-Flex can
also fine-tune, requiring significantly shorter
time than full retraining; fine-tuning on target
data for 10% of full training increases hit@1 to
89-100% of baseline.

1 Introduction

Knowledge Graph Question Answering (KGQA)
is the task of answering questions using facts in
a Knowledge Graph (KG). Common approaches
to KGQA include semantic parsing (Rongali et al.,
2020) and End-to-End (E2E) Question Answering
techniques (Cohen et al., 2020). E2E approaches
are promising due to being composed of entirely
differentiable operations, including program pre-
diction and execution using a Differentiable KG
(DKG), and the ease of training with simple (ques-
tion, answer) pairs. However, these methods de-
code into a constrained space of KG relations
which are then used to traverse the KG. While this
works well for benchmark datasets where the KGs

(Hiroshi Ôno, films_production_designed, Akira)

Encoder
Q: “Who did the

production design
for Akira?”

films production designed

produced

films casting directed
films art directed

Decoder

A: Hiroshi Ôno

DKG

Nearest Neighbor Scoring

Figure 1: KG-Flex enables KG updates with new enti-
ties or relations at test-time without retraining. Given
a question, an embedding is predicted in the space of
(pre-computed) KG relation embeddings. Available re-
lations are scored relatively by distance to prediction.

are static, it fails to scale to real use cases where
KGs are frequently updated.

For example, Wikidata (Vrandečić and Krötzsch,
2014) is a commonly used Knowledge Graph that is
actively updated. Between March 2022 and March
2023, the number of reported properties (relations
in Wikidata) increased from 9.7K to 10.9K. At the
time of writing, there are almost 200 new prop-
erties proposed for addition, including relations
about new platforms or services (e.g., Patreon user
ID, Peacock ID), and relations improving existing
ontologies (e.g., Pokemon category, alternate uni-
verse counterpart).

In order to handle new relations, most KGQA
methods require full retraining to learn a new out-
put space of possible relations. These methods
also require additional training data with examples
using the new relations. We argue that incremen-
tally updating the KG should not require full model
retraining, a mostly redundant process which is
energy- and time-intensive.

We present KG-Flex, an E2E model architecture
that overcomes this problem by instead decoding

212

into an open embedding space in which relations
are expressed in natural language. Given an in-
put question, the model predicts the answer rela-
tion embedding, and available triples in the KG are
scored against the prediction via their relations (ex-
ample in Figure 1). KG-Flex is the first End-to-End
KGQA model that allows updates to both KG enti-
ties and relations at test-time, without retraining.

We show that KG-Flex retains performance on
standard benchmarks compared to a similar model,
while demonstrating additional capabilities. In a
zero-shot setting in three QA datasets, KG-Flex
scores between 40-82% of baseline hit@1 on ques-
tions using relations that were held out during train-
ing time, a task which is impossible for previous
models using a fixed decoder. Further, by fine-
tuning for 10% of full training, scores are increased
to 89-100% of baseline.

2 Related Work

Traditional approaches to KGQA involve semantic
parsing of natural language into logical forms. Se-
mantic parsing models use a constrained decoder
over the output space of symbols. Since mod-
els such as Rongali et al. (2020) treat relations
as whole symbols, adding new relations requires
increasing the decoder output size and retraining
the model. Further, collecting new training data of
natural language to logical forms (e.g., SPARQL)
is expensive (Finegan-Dollak et al., 2018).

Other techniques transform queries and KG
triples to an embedding space (Saxena et al., 2020;
Sun et al., 2020). These methods do not require an-
notated KG queries, however, adding new relations
requires retraining to update the model.

Recent End-to-End methods for KGQA (Cohen
et al., 2020; Sen et al., 2021) are weakly supervised
with (question, answer) pairs which, conditioned
on a question, predict a probability distribution
over KG relations. Execution on the KG involves
following relations and returning probabilistically
weighted answer entities. While E2E methods also
do not require supervision of KG pathways, they
still constrain relation decoding, which means that
adding new relations requires retraining.

Previous work in expanding the flexibility of
KGQA models at test-time include Ravishankar
et al. (2021), using a two-step process of first pre-
dicting an intermediate query template, then adding
KG-specific relations. However, this method still
relies on expensive SPARQL query annotation for

training data. Oguz et al. (2022) propose a method
to unify structured and unstructured data sources
by converting them all into text, however this sacri-
fices the useful structure of Knowledge Graphs.

3 KG-Flex

We introduce KG-Flex, a novel KGQA architecture
that is designed for unconstrained relation decod-
ing, and can be trained end-to-end using only weak
supervision of questions and answers. KG-Flex is
an encoder-decoder model using a Differentiable
Knowledge Graph, in the family of End-to-End
KGQA models such as ReifKB (Cohen et al., 2020)
and Rigel-based models (Sen et al., 2021; Saffari
et al., 2021). We make key changes in the decoder
to enable the use of new relations at test-time. KG-
Flex has 4 key stages.

3.1 Precompute KG Relation Embeddings
Ahead of train- or test-time, we pre-compute vector
embeddings for all relations available in KG triples
(in training and test, these are frozen). To do so,
every KG relation ri ∈ R is lightly preprocessed
into natural language and encoded as a vector ri ∈
Rh, h = 768, using the RoBERTa-base v2 Sentence
Transformer (Reimers and Gurevych, 2019).

• Freebase (Bollacker et al., 2008) property IDs
are preprocessed into the template “(type) prop-
erty”, e.g., film.film_festival.location ⇒ “(film
festival) location”

• Wikidata property label text is already in natural
language, e.g., “place of birth”

• MetaQA relations have underscores replaced
with spaces, e.g., directed_by⇒ “directed by”

3.2 Encode Question Text
At train- and test-time, a natural language question
is encoded with RoBERTa-base v2 Sentence Trans-
former, into a vector representation q ∈ Rh. This
is similar to earlier E2E models like Rigel (Sen
et al., 2021), which uses a RoBERTa encoder.

3.3 Decode Relation Embedding
The decoder is the key improvement in KG-Flex,
which predicts from amongst the relations avail-
able in the KG, unconstrained from a fixed schema.
Conditioned on the question encoding q, the KG-
Flex decoder predicts an embedding for a relation
which answers the question. All available relations
are scored based on their Euclidean distance to

213

WebQ SimpleQ MetaQA 1-hop MetaQA 2-hop MetaQA 3-hop

MemNN (Bordes et al., 2015) 22.7 61.6 – – –
KVMemNet (Miller et al., 2016) 46.7 – 95.8 25.1 10.1
GraftNet (Sun et al., 2018) 66.4 – 97.0 94.8 77.7
PullNet (Sun et al., 2019) 68.1 – 97.0 99.9 91.4
KBQA Adapter (Wu et al., 2019) – 72.0 – – –
EmbedKGQA (Saxena et al., 2020) 66.6 – 97.5 98.8 94.8
TransferNet (Shi et al., 2021) 71.4 – 97.5 100.0 100.0
ReifKB (Cohen et al., 2020) 52.7 – 96.2 81.1 72.3
Rigel (Sen et al., 2021) 69.2 79.9 97.5 87.1 89.6

KG-Flex (ours) 68.9 79.2 97.6 90.1 87.2

Table 1: KG-Flex compared to baselines on three standard QA tasks: WebQuestions (WebQ), SimpleQuestions
(SimpleQ), and MetaQA. Compared to the similar model Rigel, KG-Flex scores within 3 percentage points.

the prediction, and these scores are converted to a
probability distribution via a softmax.

As in Sen et al. (2021) and Saffari et al. (2021),
the decoding step is performed for T “hops” in
the KG, where the hyperparameter T is fixed be-
fore training1. An attention mechanism is jointly
learned as part of the model which predicts how
many hops (up to T) is required for a given ques-
tion, conditioned on q. This is used to weight
final entity predictions. For example, answering
“What’s the mascot of Obama’s alma mater?” re-
quires two hops from the entity Obama: first the
ALMA-MATER relation, then MASCOT, so entities
fetched in hop 2 will be weighted most heavily.

For each hop t ∈ [1, T], we apply a decoder
transformation Dt ∈ R(th)×h (with bias bt ∈ Rh).
Dt predicts a relation embedding zt ∈ Rh, given
the encoded question vector q ∈ Rh and any pre-
dictions of earlier hops z<t.

z1 = tanh(qD1 + b1)

z2 = tanh([q; z1]D2 + b2)

z3 = tanh([q; z1; z2]D3 + b3)

The decoder is trained to predict a relation embed-
ding which minimizes the Euclidean distance (L2

norm) to the relation path that leads to the answer
entity. Each decoder hop produces a probability
distribution dt over relations ri ∈ R by a softmax
over negated distances from zt to precomputed ri:

dt,i =
e−||zt−ri||2

∑|R|
j=0 e

−||zt−rj ||2

3.4 Execute on DKG
As an E2E model, KG-Flex executes a probabilistic
query over its Differentiable KG (DKG) to produce

1We assume that T = 3 hops is sufficient to cover all
realistic human questions.

weighted answer entities; these are scored to feed
back the training signal through the model.

A DKG is just a re-representation of a KG as
three matrices. In hop t, given a distribution over
subjects et and relations dt, the “follow” operation
(Cohen et al., 2020) computes a probability distri-
bution over KG triple objects et+1 using simple
matrix multiplication:

et+1 = follow(et,dt)

In the first hop, e1 is a one-hot vector of KG en-
tities (question entity set to 1) 2. For each hop
1 ≤ t ≤ T , a probability distribution is predicted
over KG entities, which are fed into the subsequent
hop. The final model prediction is a distribution
over KG entities discovered in all hops, weighted
by the hop attention mechanism. During training,
entity predictions are compared to the gold label en-
tities via binary cross-entropy loss, and updates are
backpropagated through the decoder and encoder.

4 Experiments

In our experiments, we use three datasets: Sim-
pleQuestions (Bordes et al., 2015), a large-scale
dataset of simple, one-hop questions based on
FreeBase; WebQuestionsSP (Yih et al., 2016), a
dataset of natural language questions containing up
to 2 hops linked to FreeBase; and MetaQA (Zhang
et al., 2018), a movies QA dataset divided into one,
two, and three-hop subsets. MetaQA uses a KG
that is internal to the dataset.

KG-Flex models are trained until dev set con-
vergence or max 40,000 steps on a single NVIDIA
Tesla V100 GPU (see Appendix A for details).

2Like Cohen et al. (2020) and Sen et al. (2021), we begin
with question entities pre-identified in the datasets.

214

Full Test Set Heldout Test Set

Rigel KG-Flex Rigel KG-Flex

Dataset Domain BL BL Zero-Shot Fine-tuned BL BL Zero-Shot Fine-tuned

WebQuestions film 69.2 68.9 65.8 68.7 71.4 76.8 31.3 76.8
WebQuestions sports 69.2 68.9 66.0 69.0 49.7 53.6 28.4 51.0

SimpleQuestions film 79.9 79.2 71.9 79.2 74.1 73.3 60.1 70.2
SimpleQuestions medicine 79.9 79.2 77.5 79.7 79.4 82.2 60.2 72.8

MetaQA 1-hop directed_by 97.5 97.6 92.6 97.6 97.1 97.2 70.5 97.1
MetaQA 2-hop directed_by 87.1 90.1 79.7 90.6 90.1 85.7 54.8 86.7
MetaQA 3-hop directed_by 89.6 87.2 62.9 85.7 89.2 86.2 36.9 85.5
MetaQA 1-hop written_by 97.5 97.6 93.8 97.6 98.7 98.9 81.4 98.9
MetaQA 2-hop written_by 87.1 90.1 81.7 91.3 87.1 90.0 68.0 91.7
MetaQA 3-hop written_by 89.6 87.2 65.1 85.8 86.8 84.3 32.8 82.5

Table 2: For each dataset and domain, we evaluate three models: the Baseline (BL) is trained on the full dataset,
Zero-Shot is trained with a Domain held out, and Fine-tuned is the Zero-Shot model fine-tuned for 4K steps on
the full dataset. Each of these three models are evaluated on two datasets: Full Test Set (all examples in the test
set), and Heldout Test Set (the subset of the test set using the held out relations).

4.1 Standard Benchmarks

First, we benchmark KG-Flex against existing
methods on standard datasets. We report hit@1
scores, a metric that measures the percentage of
questions where the highest probability entity pre-
dicted is correct3. Results are shown in Table 1.
Compared to similar E2E models like Rigel, KG-
Flex attains competitive performance within 3 per-
centage points.

4.2 Zero-Shot Transfer to Held-out Relations

We simulate a real-world scenario where new KG
domains are added after training. We demonstrate
how KG-Flex can predict using these held-out rela-
tions, an impossible task for prior E2E models like
Rigel and ReifKB.

In training, we remove a subdomain of relations
from the KG and all questions involving those re-
lations from train and dev sets. Then at test-time
we reintroduce the relations to the KG and include
the held-out questions. We report on the full test
set as well as the subset consisting of just the held-
out questions. For SimpleQuestions, we remove
all relations in the domains Film (61 relations) or
Medicine (66 relations). For WebQuestions, we
remove Film (24 relations) or Sports (45 relations).
These domains represent a reasonably-sized KG
update (< 10% of total relations). Since MetaQA
contains only movie questions, we remove the “di-
rected_by” or “written_by” relations (further info
in Appendix B).

3Since SimpleQuestions may have multiple correct an-
swers, we count predictions as correct if any entity within a
tie for most probable is correct.

Train Fine-tune

WebQuestions 7 hr 45 min
SimpleQuestions 7 hr 1 hr
MetaQA 1-hop 1 hr 10 min
MetaQA 2-hop 1 hr 15 min
MetaQA 3-hop 1 hr 15 min

Table 3: Comparison of training time (for 40,000 steps)
vs. fine-tuning (for 4,000 steps) on each of our datasets

Results are shown under Zero-Shot columns in
Table 2. We compare to the Baseline KG-Flex re-
sults, which refer to training on the full dataset. On
the held-out datasets the zero-shot models score up
to 82% of the baseline score on simpler datasets
(81.4 achieved / 98.9 baseline on written_by in
MetaQA 1-hop; 60.1 / 73.3 on film in SimpleQues-
tions). However, they perform worse on more com-
plex questions, reaching as low as 40% of the base-
line on multi-hop question datasets (36.9 / 86.2
on directed_by in MetaQA 3-hop; 31.3 / 76.8 on
film in WebQuestions). We attribute this to the
compounding likelihood of error when predicting
multiple relations at once. Since comparable mod-
els would score 0% on this task, we still consider
this to be a valuable step forward.

4.3 Fine-tuned Transfer to Held-out Relations

To improve transfer to new relations, we further
fine-tune the zero-shot models. Each zero-shot
model is fine-tuned for 4,000 steps (10% of full
training) on the entire dataset, including held-out
relations. Results are under Fine-tuned in Table 2.

Our fine-tuned models are able to recapture be-
tween 89-100% of baseline KG-Flex performance
on both the full test set and heldout test set. We

215

are able to fine-tune our model because we have an
unconstrained decoder space, whereas comparable
models such as ReifKB (Cohen et al., 2020) would
require retraining from scratch. By fine-tuning for
only a fraction of the full training time (see Table
3), we demonstrate that KG-Flex can efficiently
adapt to new relations.

5 Conclusions

We present KG-Flex, a new model architecture for
KGQA which is the first to use an unconstrained
decoder over KG relations and to train end-to-end
using simple (question, answer) pairs. While main-
taining performance on benchmarks, KG-Flex is
demonstrated to make use of incrementally chang-
ing live KGs without requiring expensive retraining.
We show that KG-Flex uses novel relations added
at test-time, handling simple questions with new
relations in zero-shot, and handling more complex
multihop questions by fine-tuning for only 10% of
the training steps required for full retraining.

6 Limitations

We present KG-Flex, an end-to-end model that can
access new relations at test-time without retrain-
ing. Our current KG-Flex model does not perform
entity resolution, and so we rely on resolved enti-
ties provided by the datasets. However, resolved
entities may not always be available, so tools such
as automatic entity recognition may be necessary.
While it is possible for end-to-end models to jointly
learn to resolve entities in questions before relation
following (Saffari et al., 2021), we consider this
outside the scope of this focused work.

Additionally, KG-Flex is limited in the kinds of
reasoning it can do over a Knowledge Graph. Cur-
rently, KG-Flex only performs relation following,
so it cannot handle questions which require com-
plex reasoning like counts, comparatives, min/max,
etc, such as “Who is the tallest NBA player?” We
hope to address this in future work.

Further, we test KG-Flex on popular datasets
representing possible real human questions. How-
ever, we do not deeply investigate the semantic
properties of these questions. Notably, McKenna
and Steedman (2022) show that searching for sim-
ilar relations in embedding space (as done in KG-
Flex) may work better for paraphrastic inference,
and only in certain cases for directional inference
where semantic precision matters, e.g. DEFEAT en-
tails PLAY, but PLAY does not entail DEFEAT. We

leave deeper investigation of KG-Flex semantics
and edge cases to future work.

References
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, page 1247–1250, New York,
NY, USA. Association for Computing Machinery.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks.

William W. Cohen, Haitian Sun, R. Alex Hofer, and
Matthew Siegler. 2020. Scalable neural methods for
reasoning with a symbolic knowledge base. In Inter-
national Conference on Learning Representations.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Nick McKenna and Mark Steedman. 2022. Smooth-
ing entailment graphs with language models.
ArXiv:2208.00318v1 [cs.CL].

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400–1409, Austin, Texas. Associ-
ation for Computational Linguistics.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2022.
UniK-QA: Unified representations of structured and
unstructured knowledge for open-domain question
answering. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 1535–1546,
Seattle, United States. Association for Computational
Linguistics.

Srinivas Ravishankar, June Thai, Ibrahim Abdelaziz,
Nandana Mihidukulasooriya, Tahira Naseem, Pavan
Kapanipathi, Gaetano Rossilleo, and Achille Fok-
oue. 2021. A two-stage approach towards generaliza-
tion in knowledge base question answering. arXiv
preprint arXiv:2111.05825.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

216

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.48550/ARXIV.1506.02075
https://doi.org/10.48550/ARXIV.1506.02075
https://openreview.net/forum?id=BJlguT4YPr
https://openreview.net/forum?id=BJlguT4YPr
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
http://arxiv.org/abs/2208.00318
http://arxiv.org/abs/2208.00318
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/2022.findings-naacl.115
https://doi.org/10.18653/v1/2022.findings-naacl.115
https://doi.org/10.18653/v1/2022.findings-naacl.115
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. In Proceedings of The Web Confer-
ence 2020, WWW ’20, page 2962–2968, New York,
NY, USA. Association for Computing Machinery.

Amir Saffari, Armin Oliya, Priyanka Sen, and Tom Ay-
oola. 2021. End-to-end entity resolution and question
answering using differentiable knowledge graphs.
In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages
4193–4200, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4498–
4507, Online. Association for Computational Lin-
guistics.

Priyanka Sen, Armin Oliya, and Amir Saffari. 2021.
Expanding end-to-end question answering on differ-
entiable knowledge graphs with intersection. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8805–
8812, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han-
wang Zhang. 2021. TransferNet: An effective and
transparent framework for multi-hop question an-
swering over relation graph. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4149–4158, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Haitian Sun, Andrew Arnold, Tania Bedrax Weiss, Fer-
nando Pereira, and William W. Cohen. 2020. Faithful
embeddings for knowledge base queries. Advances
in Neural Information Processing Systems, 33.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231–4242,
Brussels, Belgium. Association for Computational
Linguistics.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Peng Wu, Shujian Huang, Rongxiang Weng, Zaixiang
Zheng, Jianbing Zhang, Xiaohui Yan, and Jiajun
Chen. 2019. Learning representation mapping for
relation detection in knowledge base question an-
swering. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6130–6139, Florence, Italy. Association for
Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
AAAI.

A Training Specifications

A.1 Hardware
We performed our experiments on one AWS EC2
instance of p3.2xlarge, which is equipped with one
NVIDIA Tesla V100 GPU (16 GiB memory).

A.2 Hyperparameters
We train and test a KG-Flex model constructed to
the specifications shown in Table 4.

Hyperparameter Value

Batch Size 4
Gradient Accumulation 32
Optimizer Adam
Learning Rate 1e-4
Training Steps 40,000
Relation Embedding Size 768

Table 4: Hyperparameters used in the KG-Flex architec-
ture.

B Added Domains

Our experiments in §4.2 use expert KGs containing
specific domains of Freebase. We show summary
information for the domains in Table 5.

217

https://doi.org/10.1145/3366423.3380064
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.18653/v1/2021.emnlp-main.345
https://doi.org/10.18653/v1/2021.emnlp-main.345
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.18653/v1/2021.emnlp-main.694
https://doi.org/10.18653/v1/2021.emnlp-main.694
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/P19-1616
https://doi.org/10.18653/v1/P19-1616
https://doi.org/10.18653/v1/P19-1616
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033

Questions Relations Triples

SimpleQuestions

Total 108,442 1,830 15,352,572
Film 13,538 61 1,028,076
Medicine 2,881 66 166,886

WebQuestionsSP

Total 4,737 585 10,968,596
Film 306 24 814,126
Sports 445 45 176,237

MetaQA 1-hop

Total 116,045 9 134,741
directed_by 21,483 1 15,966
written_by 22,193 1 19,543

MetaQA 2-hop

Total 148,724 9 134,741
directed_by 51,368 1 15,966
written_by 65,434 1 19,543

MetaQA 3-hop

Total 142,744 9 134,741
directed_by 70,227 1 15,966
written_by 60,384 1 19,543

Table 5: Domain summary information for experiments
in zero-shot transfer to new domains.

218

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 219–226
July 13, 2023 ©2023 Association for Computational Linguistics

MANER: Mask Augmented Named Entity Recognition
for Extreme Low-Resource Languages

Shashank Sonkar
Rice University

ss164@rice.edu

Zichao Wang
Rice University

jzwang@rice.edu

Richard G. Baraniuk
Rice University

richb@rice.edu

Abstract

This paper investigates the problem of Named
Entity Recognition (NER) for extreme low-
resource languages with only a few hundred
tagged data samples. A critical enabler of most
of the progress in NER is the readily available,
large-scale training data for languages such as
English and French. However, NER for low-
resource languages remains relatively under-
explored, leaving much room for improvement.
We propose Mask Augmented Named Entity
Recognition (MANER), a simple yet effective
method that leverages the distributional hypoth-
esis of pre-trained masked language models
(MLMs) to improve NER performance for low-
resource languages significantly. MANER re-
purposes the [mask] token in MLMs, which
encodes valuable semantic contextual infor-
mation, for NER prediction. Specifically, we
prepend a [mask] token to every word in a
sentence and predict the named entity for each
word from its preceding [mask] token. We
demonstrate that MANER is well-suited for
NER in low-resource languages; our experi-
ments show that for 100 languages with as few
as 100 training examples, it improves on the
state-of-the-art by up to 48% and by 12% on
average on F1 score. We also perform detailed
analyses and ablation studies to understand the
scenarios that are best suited to MANER.

1 Introduction

Named Entity Recognition (NER) is a funda-
mental problem in natural language processing
(NLP) (Nadeau and Sekine, 2007). Given an un-
structured text, NER aims to label the named entity
of each word, be it a person, a location, an or-
ganization, and so on. NER is widely employed
as an important first step in many downstream
NLP applications, such as scientific information
retrieval (Krallinger and Valencia, 2005; Krallinger
et al., 2017), question answering (Mollá et al.,
2006), document classification (Guo et al., 2009),
and recommender systems (Jannach et al., 2022).

Recent advances in NER have mainly been
driven by deep learning-based approaches,
whose training relies heavily on large-scale
datasets (Rosenfeld, 2021). As a result, the most
significant progress in NER is for resource-rich
languages such as English (Wang et al., 2021),
French (Tedeschi et al., 2021), German (Schweter
and Akbik, 2020), and Chinese (Zhu and Li, 2022).
This reliance on large training datasets makes it
challenging to apply deep learning-based NER
approaches to low-resource languages where
training data is scarce. To illustrate the ubiquity
of low-resource languages, WikiANN (Rahimi
et al., 2019), one of the largest NER datasets, has
NER-labeled data for 176 languages, but 100 of
these languages have only 100 training examples.

Providing NER for low-resource languages is
critical to ensure the equitable, fair, and democ-
ratized utilization of NLP technologies that are
required to achieve the goal of making such tech-
nologies universally available for all (Magueresse
et al., 2020; King, 2015). Several research efforts
are pushing the frontiers of NER for low-resource
languages in two orthogonal and complementary
directions. The first direction aims to obtain larger
NER datasets to solve the data scarcity problem,
via either data collection or augmentation (Mal-
masi et al., 2022; Al-Rfou et al., 2014; Meng et al.,
2021a). The second direction aims to develop new
model architectures and training algorithms capa-
ble of handling scarce data. For example, ideas
from meta-learning (de Lichy et al., 2021), dis-
tant supervision (Meng et al., 2021b), and transfer
learning (Lee et al., 2017) leverage the few-shot
generalizability of language models for NER in
data-scarce settings.

Our Contributions. In this work, we pro-
pose Mask Augmented Named Entity Recognition
(MANER), a new NER approach for low-resource
languages that does not rely on additional data
and does not require modifications to existing, off-

219

Figure 1: How MANER (b) differs from a standard
NER model (a). MANER 1) modifies the input to add
a [mask] token before each word and 2) predicts the
NER tag for a word from its preceding [mask] token.

the-shelf pre-trained models. The key intuition
of MANER is to exploit the semantic informa-
tion encoded in a pre-trained masked language
model (MLM), in particular, in the [mask] token.
Specifically, we reformat the input to the MLM by
prepending a [mask] token to every token in the
text to be annotated with NER tags. This reformat-
ted input is then used to fine-tune the MLM with a
randomly initialized NER prediction head on top
of the prepended mask tokens. Extensive experi-
ments on 100 extremely low-resource languages
(each with only 100 training examples) demon-
strate that MANER improves over state-of-the-art
approaches by up to 48% and by 12% on average
on F1 score. Detailed ablation and analyses of
MANER demonstrate the importance of using the
encoded semantic information and suggest scenar-
ios in which MANER is most applicable.

2 Methodology

We now introduce MANER in detail and describe
how it functions differently from a standard NER
model (henceforth referred to as SNER).

SNER takes a sentence as input, passes the sen-
tence through a transformer encoder model to ob-
tain contextualized word embeddings, and applies
a NER classifier layer on top of each word embed-
ding to get the word’s NER class.

MANER, in contrast, repurposes the [mask]
token for the NER task. Two key differences that
MANER implements as compared to SNER are 1)
instead of giving the model the input sentence as
is, MANER modifies the input sentence to append
a [mask] token in front of each word and passes
this modified sentence through the transformer en-
coder; and 2) instead of predicting the NER tag
directly from the word embedding itself, MANER
predicts the NER tag from the [mask] token em-
bedding prepended to each word in the modified
input sentence. These differences are illustrated
in figure 1. We hypothesize that in such a setting,

MANER will be better able to use the [mask]
token to weigh the relative relevance of the neigh-
boring word vs. the rest of the context when deter-
mining the label to assign to the neighboring word.
Below, we expand on the above differences and
introduce the two key components in MANER.

Modified input sentence. Let the set of NER
labels be denoted by N . Let the sequence of NER
labels for a sentence S = {w0, w1, .., wn−1} con-
sisting of n words be L = {c0, c1, .., cn−1} where
ci ∈ N , 0 ≤ i < n. To obtain the input that
MANER requires we append a [mask] token to
the beginning of each word in sentence S. The
new sentence is S′ = {m,w0,m,w1, ..,m,wn−1}
where m is the [mask] token. The modified la-
bels L′ are {c0, ∅, c1, ∅, .., cn−1, ∅}. The original
NER label of each word is assigned to the [mask]
token to the immediate left of the word.

MANER’s classifier design. MANER uses a
pre-trained, masked language model as the back-
bone with an NER classifier head on top. The
transformer model takes a sentence as input and
outputs embeddings for each token in the sentence.
The NER classifier uses the token embeddings to
output the most probable NER class for each token.

Denote the MANER model by M.
The transformer model is given by T ,
T (S′) = T ({m,w0,m,w1, ..,m,wn−1}) =
{e0, e1, .., e2n−1}, where ei ∈ RD , 0 ≤ i <
2n − 1 is the token embedding, and D is its
dimension. The NER classifier is modeled using
a weight matrix M ∈ RD×|N| that takes the
computed token embeddings as input. Using
these token embeddings, the classifier outputs
scores for all NER labels for each token in the
sentence. Passing these scores through a softmax
nonlinearity provides probabilities pi ∈ R|N | for
all NER classes in N for a given token i in S:

pi = softmax
(
M

(
ei
))

.

Summing up, we have
M(T,M, S′, i) = pi, 0 ≤ i < 2n.

MANER training and inference. During train-
ing, the weights of M and T are learned/fine-tuned
by minimizing cross-entropy loss. Note that the
loss is not calculated for labels marked ∅ in the
modified label set L′. The NER label of the word
is given by the NER label of the [mask] token
preceding it. During inference, each word in the
sentence is prepended with the [mask] token, and
the NER class of each word is the most probable
NER class of its prepended [mask] token.

220

ace
als
am ang
ba bo cbk-zam
cdo
ce co crh
dv fo frr
fur
gan
gu hsb
ia jv km ksh
lm

o
ln m

in
m

n
m

t
m

w
l

m
zn

nap
nds
ne nov
pm

s
pnb
ps qu rw sa scn
sco
szl
tk ug vep
vls
w

ar
w

uu
zea
zh-cl

0.3

0.5

0.7

0.9
F1

 S
co

re

MANER
SNER

Figure 2: F1 scores comparing MANER against SNER for a subset of 50 low-resource languages in the WikiANN
dataset that only have 100 training samples. The x-axis represents the languages. Overall, MANER improves NER
performance for 88 of the 100 languages over SNER; performance improvement is up to 48% and on average 12%.

3 Experiments

We perform various empirical studies on MANER
to 1) demonstrate its superior performance in low-
resource language NER tasks and 2) provide in-
sights into its performance and scenarios in which
it will work well.

Dataset. We use the WikiANN multilingual NER
dataset (Pan et al., 2017; Rahimi et al., 2019),
which provides three named entities (person, lo-
cation, organization) for Wikipedia articles across
176 languages. Therefore, our NER tag set N has
four elements, with an additional null tag. To the
best of our knowledge, WikiANN is by far the most
comprehensive dataset for multilingual NER. Other
multilingual datasets exist but they cover a few pop-
ular languages. For example, CoNLL (Kim Sang
and De Meulder, 2003) contains only English, Ger-
man, Dutch, and Spanish. We focus our main study
on extreme low-resource settings by experimenting
on the 100 languages in WikiANN that each has
only 100 examples for train and test splits. Further
details on the WikiANN dataset are in Appendix B.

MANER implementation and baselines. We
use XLM-RoBERTa-large (Conneau et al., 2019) as
the backbone model for MANER and all baselines.
XLM-RoBERTa-large is a multilingual version of
the RoBERTa (Liu et al., 2019) model, pre-trained
with the MLM objective on 2.5TB of filtered Com-
monCrawl data containing 100 languages (Con-
neau et al., 2020). We compare MANER against
two baselines 1) SNER , which stands for a stan-
dard NER model and 2) MLM-NER , which is
another strategy to use the [mask] token for NER
inspired by the masked language modeling (MLM)
loss. MLM-NER masks a small percentage of
words and predicts the NER tag for both the masked
and unmasked words, thus leveraging the [mask]
token. More details on the above models and their
training setup are in Appendix A.

3.1 Main results

Metric SNER MLM-NER MANER
F1 0.649 0.643 (-0.5%) 0.715 (12%)

Table 1: Average F1 scores for the 100 languages in
the WikiANN dataset with only 100 samples comparing
MANER to baselines. In this extreme low-resource
setting, MANER achieves an average improvement of
12% over baselines.

In Table 1, we report the average of F1 score
for the 100 languages in WikiANN that we con-
sider. MANER provides a significant 12% av-
erage improvement in our low-resource language
settings. The MLM inspired NER-model MLM-
NER , in contrast, performs only similarly to SNER.
We also plot, in Figure 2, the F1 score of 50 ran-
domly sampled low-resource languages comparing
SNER against MANER (the plot for the remaining
languages is in Appendix D). MANER offers up
to 48% performance improvements compared to
SNER, and there are only a few languages (12 out
of 100) in which the SNER outperforms MANER.

We believe the reason that MANER outperforms
MLM-NER is that MANER uses the [mask] to-
ken for NER prediction in both training and infer-
ence, whereas MLM-NER does not. Therefore,
MANER learns to give more importance to the
context in the case of out-of-distribution test labels
using the [mask] token during inference. We will
revisit and empirically support the above reasoning
in Section 3.2. Additionally, in MLM-NER train-
ing, we mask out certain words with the [mask]
token, which introduces noise and makes training
and the NER task more difficult.

3.2 Analysis: Importance of the[mask]token

We now conduct two analyses to demonstrate
the importance of using the [mask] token in
MANER. Intuitively, the [mask] token can be
helpful because it learns to encode the semantics
of the context during pre-training and, thereby, the

221

10 20 30 40 50 60 70 80 90 100

Language = Icelandic

0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

F1
 S

co
re

10 20 30 40 50 60 70 80 90 100

Language = Kazakh

0.60

0.65

0.70

0.75

0.80

0.85

10 20 30 40 50 60 70 80 90 100

Language = Swahili

0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90

10 20 30 40 50 60 70 80 90 100

Language = Telugu

0.60

0.65

0.70

0.75

0.80

0.85

MANER
SNER

0.0 0.2 0.4 0.6 0.8 1.0

Pct of training data

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Measure effect of training samples to performance in MANER. MANER can give a boost in performance
till 400 samples and then both MANER and SNER model perform similarly. This demonstrates that MANER is
best suited for extreme low resource languages and rapid prototyping since it is easy and cost-effective to obtain
very few human annotations to achieve large performance improvements (just 100 annotations are required).

Metric SNER MANER
(w/ [mask])

MANER
(w/ [rand])

F1 0.649 0.715 (12%) 0.679 (6%)

Table 2: Average F1 scores for 100 languages for
MANER using the [mask] token and the [rand]
token. Replacing the [mask] token with the [rand]
token diminishes the improvements.

word that needs to be tagged (by distributional hy-
pothesis in Harris (1954) which states the meaning
of a word can be inferred from its context).

In the first analysis, we replace the [mask] to-
ken in MANER with a control token, namely, the
random token [rand]. Note that the [rand]
token is not learned during the XLM-RoBERTa
model pre-training; thus, it will not encode any
contextual information. As we see in Table 2,
if we replace the [mask] token with [rand] ,
MANER achieves only a 6% improvement in F1
performance over the SNER baseline. This result
illustrates the power of the context: even when the
[rand] token does not contain contextual infor-
mation during pre-training, MANER can still use
the [rand] token to predict how much weight
to assign the context and the word immediately
adjacent to it depending on the test sample.

In the second analysis, we report in Table 3
the averaged F1 score of only those languages on
which the XLM-RoBERTa model was pre-trained
with at least 0.5GB of training data per language.
The rationale behind this experiment design is that
the [mask] token will encode the context seman-
tics of a language only if the language was seen
during the pre-training stage of XLM-RoBERTa
model. As we see in Table 3, in this case, MANER
provides a whooping 18% improvement in F1 score
(as compared to the 12% gain in Table 1) if the lan-
guage was seen in the pre-training stage. This ex-
periment again highlights the importance of using
[mask] token in MANER.

Metric SNER MANER
F1 0.603 0.705 (18%)

Table 3: F1 scores comparing MANER against SNER,
averaged on a subset of languages on which XLM-
RoBERTa was pre-trained. The improvement over
SNER is 18% compared to 12% improvement in the
previous study that included all 100 languages.

3.3 Analysis: Effect of training set size

We measure the effectiveness of MANER in situ-
ations where more training data is available. For
this purpose, we select 4 languages from WikiANN
dataset that have 1000 training data samples each.
From Figure 3, we see that MANER boosts F1 per-
formance over the SNER baseline until about 400
samples and then both methods perform similarly.
This result demonstrates that MANER is best suited
for extreme low resource languages and rapid pro-
totyping because it is easy and cost-effective to ob-
tain very few human annotations to achieve large
performance improvements (e.g., just 100 annota-
tions are required).

4 Conclusions

In this paper, we have proposed Mask Augmented
Named Entity Recognition (MANER) for NER in
extreme low-resource language settings. MANER
exploits the information encoded in pre-trained
masked language models (inside [mask] token
specifically) and outperforms existing approaches
for extreme low-resource languages with as few as
only 100 training examples by up to 48% and by
12% on average on F1 score. Analyses and abla-
tion studies show that using semantics encoded in
[mask] token is integral to MANER. Future work
will exploit MANER’s effectiveness for highly
resource-constraint and human-in-the-loop settings,
such as rapid prototyping in an active learning setup
and few-shot learning with human annotators.

222

5 Limitations

Our proposed method MANER for improving NER
is best suited for low-resource settings. As dis-
cussed in Section 3.3, we measured the effective-
ness of MANER in situations where more training
data is available and found that MANER boosts F1
performance over the SNER baseline until about
400 training examples, and then both methods
perform similarly. The result demonstrated that
MANER is best suited for extreme low-resource
languages and rapid prototyping because it is easy
and cost-effective to obtain very few human anno-
tations to achieve significant performance improve-
ments.

We base the experiments in this paper on
a widely adopted model, XLM-RoBERTa, pre-
trained on multiple languages. It is possible that
the empirical conclusions we draw from the ob-
servations do not generalize to other pre-trained
models.

6 Ethics Statement

We believe providing NER for low-resource lan-
guages is critical to ensure the equitable, fair, and
democratized utilization of NLP technologies that
are required to achieve the goal of making such
technologies universally available for all. Our work
contributes to this direction by proposing MANER,
which boosts performance for 100 languages with
only 100 training samples each.

Acknowledgement

This work was supported by NSF grants 1842378,
ONR grant N0014-20-1-2534, AFOSR grant
FA9550-22-1-0060, and a Vannevar Bush Faculty
Fellowship, ONR grant N00014-18-1-2047.

References
Rami Al-Rfou, Vivek Kulkarni, Bryan Perozzi, and

Steven Skiena. 2014. Polyglot-ner: Massive multilin-
gual named entity recognition.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised

cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Cyprien de Lichy, Hadrien Glaude, and William Camp-
bell. 2021. Meta-learning for few-shot named entity
recognition. In Proceedings of the 1st Workshop on
Meta Learning and Its Applications to Natural Lan-
guage Processing. Association for Computational
Linguistics.

Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. 2009.
Named entity recognition in query. In Proceedings
of the 32nd international ACM SIGIR conference on
Research and development in information retrieval -
SIGIR '09. ACM Press.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and
Li Chen. 2022. A survey on conversational recom-
mender systems. ACM Computing Surveys, 54(5):1–
36.

Erik F. Kim Sang and Fien De Meulder. 2003. Intro-
duction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142–147.

Benjamin Philip King. 2015. Practical Natural Lan-
guage Processing for Low-Resource Languages.
Ph.D. thesis, University of Michigan.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Martin Krallinger, Obdulia Rabal, Anália Lourenço,
Julen Oyarzabal, and Alfonso Valencia. 2017. In-
formation retrieval and text mining technologies for
chemistry. Chemical Reviews, 117(12):7673–7761.

Martin Krallinger and Alfonso Valencia. 2005. Text-
mining and information-retrieval services for molec-
ular biology. Genome biology, 6(7):1–8.

Ji Young Lee, Franck Dernoncourt, and Peter Szolovits.
2017. Transfer learning for named-entity recognition
with neural networks.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

223

https://doi.org/10.48550/ARXIV.1410.3791
https://doi.org/10.48550/ARXIV.1410.3791
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2021.metanlp-1.6
https://doi.org/10.18653/v1/2021.metanlp-1.6
https://doi.org/10.1145/1571941.1571989
https://doi.org/10.1145/3453154
https://doi.org/10.1145/3453154
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://doi.org/10.1021/acs.chemrev.6b00851
https://doi.org/10.1021/acs.chemrev.6b00851
https://doi.org/10.1021/acs.chemrev.6b00851
https://doi.org/10.48550/ARXIV.1705.06273
https://doi.org/10.48550/ARXIV.1705.06273
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Alexandre Magueresse, Vincent Carles, and Evan Heet-
derks. 2020. Low-resource languages: A review of
past work and future challenges.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022. MultiCoNER: A
large-scale multilingual dataset for complex named
entity recognition. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3798–3809, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Tao Meng, Anjie Fang, Oleg Rokhlenko, and Shervin
Malmasi. 2021a. Gemnet: Effective gated gazetteer
representations for recognizing complex entities in
low-context input. In NAACL 2021.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Xuan Wang,
Yu Zhang, Heng Ji, and Jiawei Han. 2021b. Distantly-
supervised named entity recognition with noise-
robust learning and language model augmented self-
training. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.

Diego Mollá, Menno van Zaanen, and Daniel Smith.
2006. Named entity recognition for question answer-
ing. In Proceedings of the Australasian Language
Technology Workshop 2006, pages 51–58, Sydney,
Australia.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvis-
ticæ Investigationes. International Journal of Lin-
guistics and Language Resources, 30(1):3–26.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual
name tagging and linking for 282 languages. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1946–1958.

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
sively multilingual transfer for NER. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 151–164, Florence,
Italy. Association for Computational Linguistics.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Jonathan S. Rosenfeld. 2021. Scaling laws for deep
learning. CoRR, abs/2108.07686.

Stefan Schweter and Alan Akbik. 2020. Flert:
Document-level features for named entity recogni-
tion.

Simone Tedeschi, Valentino Maiorca, Niccolò Campol-
ungo, Francesco Cecconi, and Roberto Navigli. 2021.
WikiNEuRal: Combined neural and knowledge-
based silver data creation for multilingual NER. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021. Association for Computa-
tional Linguistics.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Automated Concatenation of Embeddings for Struc-
tured Prediction. In the Joint Conference of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP 2021). Association for Computational Lin-
guistics.

Enwei Zhu and Jinpeng Li. 2022. Boundary smooth-
ing for named entity recognition. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics.

224

https://doi.org/10.48550/ARXIV.2006.07264
https://doi.org/10.48550/ARXIV.2006.07264
https://aclanthology.org/2022.coling-1.334
https://aclanthology.org/2022.coling-1.334
https://aclanthology.org/2022.coling-1.334
https://www.amazon.science/publications/gemnet-effective-gated-gazetteer-representations-for-recognizing-complex-entities-in-low-context-input
https://www.amazon.science/publications/gemnet-effective-gated-gazetteer-representations-for-recognizing-complex-entities-in-low-context-input
https://www.amazon.science/publications/gemnet-effective-gated-gazetteer-representations-for-recognizing-complex-entities-in-low-context-input
https://aclanthology.org/U06-1009
https://aclanthology.org/U06-1009
https://doi.org/10.1075/li.30.1.03nad
https://doi.org/10.1075/li.30.1.03nad
https://www.aclweb.org/anthology/P19-1015
https://www.aclweb.org/anthology/P19-1015
https://aclanthology.org/W95-0107
https://aclanthology.org/W95-0107
http://arxiv.org/abs/2108.07686
http://arxiv.org/abs/2108.07686
https://doi.org/10.48550/ARXIV.2011.06993
https://doi.org/10.48550/ARXIV.2011.06993
https://doi.org/10.48550/ARXIV.2011.06993
https://doi.org/10.18653/v1/2021.findings-emnlp.215
https://doi.org/10.18653/v1/2021.findings-emnlp.215
https://doi.org/10.18653/v1/2022.acl-long.490
https://doi.org/10.18653/v1/2022.acl-long.490

A Implementation details on baselines

A.1 SNER

Similar to MANER design, current standard NER
systems (SNER) built upon transformer models
also simply add a NER classifier to the top of a
transformer model. The classifier predicts the NER
class of each token of an unmodified sentence S:

Mbase(T,M, S, i) = softmax
(
M

(
ei
))

= pi,

0 ≤ i < n,

where Mbase is an NER model built on a trans-
former model T using classifier weight matrix M.
This baseline method remains the de-facto method
for training NER models for most languages (es-
pecially low-resource languages) to the best of our
knowledge, though specialized models have been
built for popular languages like English.

Inference: Similar to training during inference,
the NER class of each word in the sentence is the
most probable NER tag assigned to the classified
word embedding.

A.2 MLM-NER

Our MANER methodology in Section 2 is one way
to change the input phrase using the mask token.
In this baseline, we introduce yet another way to
repurpose the [mask] token for NER that is in-
spired by the masked language modeling (MLM)
framework that is used for pre-training transformer
models which we refer as MLM-NER. In MLM, a
word is predicted using the words surrounding it in
the sentence. Since the NER category of a word is
also a semantic property of the word, we use the
philosophy of MLM for NER fine-tuning.

In MLM pre-training, the dataset is prepared
by masking random words in a sentence with
a [mask] token with a fixed probability pmlm.
Then, the masked words are predicted using the
context information.

Analogous to MLM pre-training, for NER fine-
tuning, we randomly replace words in sentence S
with the [mask] token with the fixed probability
pner. However, instead of predicting the missing
words, as with MLM, we predict the NER labels L
for each word w in S irrespective of whether the
word was replaced by a [mask] token or not. In
the case the word was replaced with the [mask]
token, the transformer outputs the [mask] token
embedding for that word.

Thus the modified input to the transformer is
S′ = mask(S), where

mask(wi) =

{
[mask] , if pi ≤ pner,

wi, otherwise
(1)

with pi a random number between 0 and 1 gener-
ated for wi. Then, we use the first baseline NER
model designMbase for training, but now it is is
fine-tuned on S′ and L (note we predict the label
of the [mask] tokens as well). Inference with this
model remains same as the first baseline model.

A.3 MANER Classifier Input Embedding

The NER prediction for each word in MANER is
based on the embedding of the first token of the
word. This is a common practice in NER with
Transformer-based models where a word may be
tokenized into multiple tokens.

A.4 Training procedures

For each language in our experiment, we train
MANER and baselines for 30 epochs with a learn-
ing rate of 5e−6 and the loss optimized using Adam
(Loshchilov and Hutter, 2019). Training takes 3
minutes on a single 11 GB GeForce GTX 1080 Ti
GPU for a single language. We run MANER for
following five random seeds for each language -
12345, 23451, 34512, 45123, 51234. The standard
deviation in performance for SNER averaged over
100 languages for 5 runs is 0.649± 0.005 and for
MANER is 0.715± 0.007.

B WikiANN dataset details

The NER labels in WikiANN are in IOB2 (In-
side–outside–beginning) format (Ramshaw and
Marcus, 1995) comprising PER (person), LOC (lo-
cation), and ORG (organization) tags. An instance
of NER tagged sentence: UNICEF(B-ORG) is a
nonprofit organization, founded by Ludwik(B-PER)
Rajchman(I-PER) headquartered at New(B-LOC)
York(I-LOC), United(B-LOC) States(I-LOC).

In addition, language names corresponding to
abbreviations used in figure 2 can be found in the
Appendix section of Conneau et al. (2020).

C Comments on catastrophic forgetting
in MANER

The catastrophic forgetting (Kirkpatrick et al.,
2017) phenomenon that masked language models
undergo during any kind of fine-tuning is one of the

225

arc
arz
as ay bar
bat-sm

g
bh ceb
csb
cv diq
em

l
ext
fiu-vro
gd gn hak
ig ilo io jbo
kn ku ky li lij m

ap-bm
s

m
g

m
hr

m
i

m
y

oc or os pa pdc
rm sah
sd si so su tg vec
vo w

a
xm

f
yi yo zh-m

n

0.3

0.5

0.7

0.9
F1

 S
co

re

MANER
SNER

Figure 4: F1 scores comparing MANER against SNER for the remaining 50 low-resource languages in the WikiANN
dataset that only have 100 training samples each. Similar to the results in Figure 2, MANER gives a significant
improvement of 12% on F1 score compared to SNER .

.

N
epali

Sinhala

K
annada

M
ongolian

G
ujarati

B
urm

ese

K
hm

er

K
yrgyz

Am
haric

Punjabi

Pashto

C
hinese-Trad

O
riya

0.4

0.5

0.6

0.7

0.8

0.9
MANER
SNER

Figure 5: F1 score comparing MANER against SNER
on a subset of languages on which the backbone of both
models, XLM-RoBERTa-large, has been pre-trained.
MANER improves upon SNER for each of these lan-
guages, with F1 score improvement of up to 22% and
18% on average.

reasons we think MANER does not provide gains
when more training data is available (of course
more training data also implies less reliance on spe-
cialized techniques like ours). Catastrophic forget-
ting causes the loss of useful context semantics en-
coded in the [mask] token during the fine-tuning
stage that MANER heavily relies on. Adding an
additional masked language modeling loss to the
NER loss during fine-tuning may help to circum-
vent catastrophic forgetting; we leave this investi-
gation as a valuable venue for future work.

D Additional experiment results

Figure 4 shows the performance comparing
MANER and SNER on the remaining 50 low-
resource languages in the WikiANN dataset.
The results here align with that in the main
text: MANER provides performance improvement,
sometimes significantly, over SNER.

Figure 5 shows the performance comparing
MANER and SNER on a subset of languages
on which the backbone of both models, XLM-
RoBERTa-large, has been pre-trained. The results
corroborate with those in the main text: MANER

improves upon SNER for each of these languages,
with F1 score improvement of up to 22% and 18%
on average.

226

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 227–238
July 13, 2023 ©2023 Association for Computational Linguistics

Efficient and Interpretable Compressive Text Summarisation with
Unsupervised Dual-Agent Reinforcement Learning

Peggy Tang†, Junbin Gao‡, Lei Zhang�, Zhiyong Wang†
†School of Computer Science, The University of Sydney

�International Digital Economy Academy
‡The University of Sydney Business School, The University of Sydney

{peggy.tang,junbin.gao,zhiyong.wang}@sydney.edu.au,
leizhang@idea.edu.cn

Abstract

Recently, compressive text summarisation of-
fers a balance between the conciseness issue
of extractive summarisation and the factual
hallucination issue of abstractive summarisa-
tion. However, most existing compressive
summarisation methods are supervised, rely-
ing on the expensive effort of creating a new
training dataset with corresponding compres-
sive summaries. In this paper, we propose
an efficient and interpretable compressive sum-
marisation method that utilises unsupervised
dual-agent reinforcement learning to optimise
a summary’s semantic coverage and fluency
by simulating human judgment on summari-
sation quality. Our model consists of an ex-
tractor agent and a compressor agent, and both
agents have a multi-head attentional pointer-
based structure. The extractor agent first
chooses salient sentences from a document,
and then the compressor agent compresses
these extracted sentences by selecting salient
words to form a summary without using refer-
ence summaries to compute the summary re-
ward. To our best knowledge, this is the first
work on unsupervised compressive summari-
sation. Experimental results on three widely
used datasets (e.g., Newsroom, CNN/DM, and
XSum) show that our model achieves promis-
ing performance and a significant improve-
ment on Newsroom in terms of the ROUGE
metric, as well as interpretability of semantic
coverage of summarisation results. 1

1 Introduction

Most existing works on neural text summarisation
are extractive, abstractive, and compressive-based.
Extractive methods select salient sentences from
a document to form its summary and ensure the
production of grammatically and factually correct
summaries. These methods usually follow the sen-
tence ranking conceptualisation (Narayan et al.,

1Our source code is publicly available for research pur-
poses at https://github.com/peggypytang/URLComSum/

Figure 1: Illustration of our proposed URLComSum.

2018b; Liu and Lapata, 2019; Zhong et al., 2020).
The supervised models commonly rely on creating
proxy extractive training labels for training (Nalla-
pati et al., 2017; Jia et al., 2021; Mao et al., 2022;
Klaus et al., 2022), which can be noisy and may not
be reliant. Various unsupervised methods (Zheng
and Lapata, 2019; Xu et al., 2020; Padmakumar
and He, 2021; Liu et al., 2021) were proposed
to leverage pre-trained language models to com-
pute sentences similarities and select important
sentences. Although these methods have signif-
icantly improved summarisation performance, the
redundant information that appears in the salient
sentences may not be minimized effectively.

Abstractive methods formulate the task as a
sequence-to-sequence generation task, with the
document as the input sequence and the summary
as the output sequence (See et al., 2017; Zhang
et al., 2020; Wang et al., 2021; Liu et al., 2022) As
supervised learning with ground-truth summaries
may not provide useful insights on human judg-
ment approximation, reinforcement training was
proposed to optimise the ROUGE metric (Parnell
et al., 2021), and to fine-tune a pre-trained language
model (Laban et al., 2020). Prior studies showed
that these generative models are highly prone to
external hallucination (Maynez et al., 2020).

Compressive summarisation is a recent appraoch
which aims to select words, instead of sentences,
from an input document to form a summary, which
improves the factuality and conciseness of a sum-
mary. The formulation of compressive document
summarisation is usually a two-stage extract-then-

227

compress approach (Zhang et al., 2018; Mendes
et al., 2019; Xu and Durrett, 2019; Desai et al.,
2020): it first extracts salient sentences from a doc-
ument, then compresses the extracted sentences
to form its summary. Most of these methods are
supervised, which require a parallel dataset with
document-summary pairs to train. However, the
ground-truth summaries of existing datasets are
usually abstractive-based and do not contain su-
pervision information needed for extractive sum-
marisation or compressive summarisation (Xu and
Durrett, 2019; Mendes et al., 2019; Desai et al.,
2020).

Therefore, to address these limitations, we pro-
pose a novel unsupervised compressive summarisa-
tion method with dual-agent reinforcement learning
strategy to mimic human judgment, namely URL-
ComSum. As illustrated in Figure 1, URLComSum
consists of two modules, an extractor agent and a
compressor agent. We model the sentence and
word representations using a efficient Bi-LSTM
(Graves and Schmidhuber, 2005) with multi-head
attention (Vaswani et al., 2017) to capture both
the long-range dependencies and the relationship
between each word and each sentence. We use a
pointer network (Vinyals et al., 2015) to find the
optimal subset of sentences and words to be ex-
tracted since the Pointer Network is well-known
for tackling combinatorial optimization problems.
The extractor agent uses a hierarchical multi-head
attentional Bi-LSTM model for learning the sen-
tence representation of the input document and a
pointer network for extracting the salient sentences
of a document given a length budget. To further
compress these extracted sentences all together, the
compressor agent uses a multi-head attentional Bi-
LSTM model for learning the word representation
and a pointer network for selecting the words to
assemble a summary.

As an unsupervised method, URLComSum does
not require a parallel training dataset.We propose
an unsupervised reinforcement learning training
procedure to mimic human judgment: to reward
the model that achieves high summary quality in
terms of semantic coverage and language fluency.
Inspired by Word Mover’s Distance (Kusner et al.,
2015), the semantic coverage rewardis measured
by Wasserstein distance (Peyré et al., 2019) be-
tween the semantic distribution of the document
and that of the summary. The fluency reward is
measured by Syntactic Log-Odds Ratio (SLOR)

(Pauls and Klein, 2012). SLOR is a referenceless
fluency evaluation metric, which is effective in sen-
tence compression (Kann et al., 2018) and has bet-
ter correlation to human acceptability judgments
(Lau et al., 2017).

The key contributions of this paper are:

• We propose the first unsupervised compres-
sive summarisation method with dual-agent re-
inforcement learning, namely URLComSum.

• We design an efficient and interpretable multi-
head attentional pointer-based neural network
for learning the representation and for extract-
ing salient sentences and words.

• We propose to mimic human judgment by op-
timising summary quality in terms of the se-
mantic coverage reward, measured by Wasser-
stein distance, and the fluency reward, mea-
sured by Syntactic Log-Odds Ratio (SLOR).

• Comprehensive experimental results on three
widely used datasets, including CNN/DM,
XSum, Newsroom, demonstrate that URL-
ComSum achieves great performance.

2 Related Work

Most of the existing works on neural text summari-
sation are extractive, abstractive, and compressive-
based.

2.1 Extractive Methods
Extractive methods usually follow the sentence
ranking conceptualisation, and an encoder-decoder
scheme is generally adopted. An encoder formu-
lates document or sentence representations, and
a decoder predicts extraction classification labels.
The supervised models commonly rely on creat-
ing proxy extractive training labels for training
(Cheng and Lapata, 2016; Nallapati et al., 2017;
Jia et al., 2021), which can be noisy and may not
be reliant. Some methods were proposed to tackle
this issue by training with reinforcement learning
(Narayan et al., 2018b; Luo et al., 2019) to opti-
mise the ROUGE metric directly. Various unsuper-
vised methods (Zheng and Lapata, 2019; Xu et al.,
2020; Padmakumar and He, 2021) were also pro-
posed to leverage pre-trained language models to
compute sentences similarities and select important
sentences. Although these methods have signifi-
cantly improved summarisation performance, since
the entire sentences are extracted individually, the

228

redundant information that appears in the salient
sentences may not be minimized effectively.

2.2 Abstractive Methods
Abstractive methods formulate text summarisation
as a sequence-to-sequence generation task, with the
source document as the input sequence and the sum-
mary as the output sequence. Most existing meth-
ods follow the supervised RNN-based encoder-
decoder framework (See et al., 2017; Zhang et al.,
2020; Wang et al., 2021; Liu et al., 2022). As super-
vised learning with ground-truth summaries may
not provide useful insights on human judgment ap-
proximation, reinforcement training was proposed
to optimise the ROUGE metric (Paulus et al., 2018;
Parnell et al., 2021), and to fine-tune a pre-trained
language model (Laban et al., 2020). These mod-
els naturally learn to integrate knowledge from the
training data while generating an abstractive sum-
mary. Prior studies showed that these generative
models are highly prone to external hallucination,
thus may generate contents that are unfaithful to
the original document (Maynez et al., 2020).

2.3 Compressive Methods
Compressive methods select words from a given
document to assemble a summary. Due to the
lack of training dataset, not until recently there
have emerged works for compressive summarisa-
tion (Zhang et al., 2018; Mendes et al., 2019; Xu
and Durrett, 2019; Desai et al., 2020). The for-
mulation of compressive document summarisation
is usually a two-stage extract-then-compress ap-
proach: it first extracts salient sentences from a
document, then compresses the extracted sentences
to form its summary. Most of these methods are
supervised, which require a parallel dataset with
document-summary pairs to train. However, the
ground-truth summaries of existing datasets are
usually abstractive-based and do not contain su-
pervision information needed for extractive sum-
marisation or compressive summarisation. Sev-
eral reinforcement learning based methods (Zhang
et al., 2018) use existing abstractive-based datasets
for training, which is not aligned for compression.
Note that existing compressors often perform com-
pression sentence by sentence. As a result, the
duplicated information among multiple sentences
could be overlooked. Therefore, to address these
limitations, we propose a novel unsupervised com-
pressive method by exploring the dual-agent rein-
forcement learning strategy to mimic human judg-

ment and perform text compression instead of sen-
tence compression.

3 Methodology

As shown in Figure 1, our proposed compres-
sive summarisation method, namely URLComSum,
consists of two components, an extractor agent
and a compressor agent. Specifically, the extractor
agent selects salient sentences from a document
D to form an extractive summary SE, and then
the compressor agent compresses SE by selecting
words to assemble a compressive summary SC.

3.1 Extractor Agent
Given a document D consisting of a sequence of
M sentences {si|i = 1, ...,M}, and each sen-
tence si consisting of a sequence of N words
{weij |j = 1, ..., N}2, the extractor agent aims
to produce an extractive summary SE by learning
sentence representation and selecting LE sentences
from D. As illustrated in Figure 2, we design a hi-
erarchical multi-head attentional sequential model
for learning the sentence representations of the doc-
ument and using a Pointer Network to extract sen-
tences based on their representations.

Figure 2: Illustration of the extractor agent.

3.1.1 Hierarchical Sentence Representation
To model the local context of each sentence and
the global context between sentences, we use two-
levels Bi-LSTMs to model this hierarchical struc-
ture, one at the word level to encode the word se-
quence of each sentence, one at the sentence level
to encode the sentence sequence of the document.
To model the context-dependency of the impor-
tance of words and sentences, we apply two levels
of multi-head attention mechanism (Vaswani et al.,
2017), one at each of the two-level Bi-LSTMs.

2We have pre-fixed the length of each sentence and each
document by padding.

229

Given a sentence si, we encode its words into
word embeddings xei = {xeij |j = 1, ..., N} by
xeij = Enc(weij), where Enc() denotes a word
embedding lookup table. Then the sequence of
word embeddings are fed into the word-level Bi-
LSTM to produce an output representation of the
words lew:

lewij =
←−−→
LSTM(xeij), j ∈ [1, N] . (1)

To utilize the multi-head attention mechanism to
obtain aewi = {aewi1, ...,aewiN} at word level, we
define Qi = lewi , Ki = Vi = xei,

aewi = MultiHead(Qi,Ki, Vi) . (2)

The concatenation of lewi and aewi of the words are
fed into a Bi-LSTM and the output is concatenated
to obtain the local context representation hews

i for
each sentence si:

hewij =
←−−→
LSTM(

[
lewij ;ae

w
ij

]
), j ∈ [1, N] ,

hews
i = [hewi1, ...,he

w
iN] .

(3)

To further model the global context between sen-
tences, we apply a similar structure at sentence
level. hews = {hews

i |i = 1, ...,M} are fed into
the sentence-level Bi-LSTM to produce output rep-
resentation of the sentences les:

lesi =
←−−→
LSTM(hews

i), i ∈ [1,M] . (4)

To utilize the multi-head attention mechanism to
obtain aes = {aes1, ...,aesM} at sentence level, we
define Q = les, K = V = hews,

aes = MultiHead(Q,K, V). (5)

The concatenation of the Bi-LSTM output les and
the multi-head attention output aes of the sentences
are fed into a Bi-LSTM to obtain the final represen-
tations of sentences hes = {hes1, ...,hesM}:

hesi =
←−−→
LSTM([lesi ;ae

s
i]), i ∈ [1,M] . (6)

3.1.2 Sentence-Level Extraction
Similar to (Chen and Bansal, 2018), we use an
LSTM-based Pointer Network to decode the above
sentence representations hes = {hes1, ...,hesM}
and extract sentences recurrently to form an extrac-
tive summary SE = {A1, ..., Ak, ..., ALE

} with
LE sentences, where Ak denotes the k-th sentence
extracted.

At the k-th time step, the pointer network re-
ceives the sentence representation of the previous

extracted sentence and has hidden state dek. It first
obtains a context vector de′k by attending to hes:

ueki = vT tanh(W1he
s
i +W2dek), i ∈ (1, ...,M) ,

aeki = softmax(ueki), i ∈ (1, ...,M) ,

de′k =
M∑

i=1

aeki he
s
i ,

(7)
where v,W1,W2 are learnable parameters of the
pointer network. Then it predicts the extraction
probability p(Ak) of a sentence:

dek ←
[
dek, de

′
k

]
,

ueki = vT tanh(W1he
s
i +W2dek), i ∈ (1, ...,M) ,

p(Ak|A1, ..., Ak−1) = softmax(uek) .
(8)

Decoding iterates until LE sentences are selected
to form SE .

Figure 3: Illustration of the compressor agent.

3.2 Compressor Agent
Given an extractive summary SE consisting of a
sequence of words wc = {wci|i = 1, ..., N}, the
compressor agent aims to produce a compressive
summary SC by selecting LC words from SE. As
illustrated in Figure 3, it has a multi-head atten-
tional Bi-LSTM model to learn the word represen-
tations. It uses a pointer network to extract words
based on their representations.

3.2.1 Word Representation
Given a sequence of words wc, we encode the
words into word embeddings xc = {xci|i =
1, ..., N} by xci = Enc(wci). Then the sequence
of word embeddings are fed into a Bi-LSTM to
produce the words’ output representation lcw:

lcwi =
←−−→
LSTM(xci), i ∈ [1, N] . (9)

To utilise the multi-head attention mechanism to
obtain acw = {acw1 , ...,acwN}, we define Q = lcw,
K = V = xc,

acw = MultiHead(Q,K, V). (10)

230

The concatenation of lcw and acw of the words are
fed into a Bi-LSTM to obtain the representation
hcwi for each word wci:

hcwi =
←−−→
LSTM([lcwi ;ac

w
i]), i ∈ [1, N] . (11)

3.2.2 Word-Level Extraction
The word extractor of the compressor agent
shares the same structure as that of the extrac-
tor agent’s sentence extractor. To select the
words based on the above word representations
hcw = {hcw1 , ...,hcwN}, the word extractor de-
codes and extracts words recurrently to produce
{B1, ..., Bk, ..., BLC

}, where Bk denotes the word
extracted at the k-th time step. The selected words
are reordered by their locations in the input docu-
ment and assembled to form the compressive sum-
mary SC.

3.3 Reward in Reinforcement Learning
We use the compressive summary SC to compute
the reward of reinforcement learning and denote
Reward(D,SC) as Reward(D,S) for simplicity.
Reward(D,S) is a weighted sum of the semantic
coverage award Rewardcov(D,S) and the fluency
reward Rewardflu(S):

Reward(D,S) = wcovRewardcov(D,S)

+wfluRewardflu(S) ,
(12)

where wcov and wflu denote the weights of two re-
wards.

3.3.1 Semantic Coverage Reward
We compute Rewardcov with the Wasserstein dis-
tance between the corresponding semantic distribu-
tions of the document D and the summary S, which
is the minimum cost required to transport the se-
mantics from D to S. We denote D = {di|i =
1, ..., N} to represent a document, where di in-
dicates the count of the i-th token (i.e., word or
phrase in a vocabulary of size N). Similarly, for
a summary S = {sj |j = 1, ..., N}, sj is respect
to the count of the j-th token . The semantic dis-
tribution of a document is characterized in terms
of normalised term frequency without the stop-
words. The term frequency of the i-th token in
the document D and the j-th token in the sum-
mary S are denoted as TFD(i) and TFS(j), respec-
tively. By defining TFD = {TFD(i)} ∈ RN and
TFS = {TFS(j)} ∈ RN , we have the semantic
distributions within D and S respectively.

The transportation cost matrix C is obtained by
measuring the semantic similarity between each
of the tokens. Given a pre-trained tokeniser and
token embedding model with N tokens, define vi

to represent the feature embedding of the i-th token.
Then the transport cost cij from the i-th to the j-th
token is computed based on the cosine similarity:
cij = 1 − <vi,vj>

‖vi‖2‖vj‖2
. An optimal transport plan

T∗ = {t∗i,j} ∈ RN×N in pursuit of minimizing the
transportation cost can be obtained by solving the
optimal transportation and resources allocation op-
timization problem (Peyré et al., 2019). Note that
the transport plan can be used to interpret the trans-
portation of tokens from document to summary,
which brings interpretability to our URLComSum
method.

Wasserstein distance measuring the distance be-
tween the two semantic distributions TFD and
TFS with the optimal transport plan is com-
puted by: dW (TFD,TFS|C) =

∑
i,j t
∗
ijcij .

Rewardcov(D,S) can be further defined as:

Rewardcov(D,S) = 1− dW (TFD,TFS|C) .
(13)

3.3.2 Fluency Reward
We utilise Syntactic Log-Odds Ratio (SLOR)
(Pauls and Klein, 2012) to measure Rewardflu(S),
which is defined as: Rewardflu(S) =
1
|S|(log(PLM (S)) − log(PU (S))) , where
PLM (S) denotes the probability of the summary
assigned by a pre-trained language model LM ,
pU (S) =

∏
t∈S P (t) denotes the unigram proba-

bility for rare word adjustment, and |S| denotes
the sentence length.

We use the Self-Critical Sequence Training
(SCST) method (Rennie et al., 2017), since this
training algorithm has demonstrated promising re-
sults in text summarisation (Paulus et al., 2018; La-
ban et al., 2020). For a given input document, the
model produces two separate output summaries:
the sampled summary Ss, obtained by sampling
the next pointer ti from the probability distribution
at each time step i, and the baseline summary Ŝ,
obtained by always picking the most likely next
pointer t at each i. The training objective is to
minimise the following loss:

Loss = −(Reward(D,Ss)− Reward(D, Ŝ))

· 1
N

N∑

i=1

log p(tsi |ts1, ..., tsi−1,D) ,

(14)

231

where N denotes the length of the pointer sequence,
which is the number of extracted sentences for the
extractor agent and the number of extracted words
for the compressor agent.

Minimising the loss is equivalent to maximis-
ing the conditional likelihood of Ss if the sampled
summary Ss outperforms the baseline summary
Ŝ, i.e. Reward(D,Ss)− Reward(D, Ŝ) > 0, thus
increasing the expected reward of the model.

4 Experiments

4.1 Experimental Settings
We conducted comprehensive experiments on three
widely used datasets: Newsroom (Grusky et al.,
2018), CNN/DailyMail (CNN/DM) (Hermann et al.,
2015), and XSum (Narayan et al., 2018a). We
set the LSTM hidden size to 150 and the num-
ber of recurrent layers to 3. We performed hy-
perparameter searching for wcov and wflu and de-
cided to set wcov = 1 , wflu = 2 in all our ex-
periments since it provides more balanced results
across the datasets. We trained the URLComSum
with AdamW (Loshchilov and Hutter, 2018) with
learning rate 0.01 with a batch size of 3. We ob-
tained the word embedding from the pre-trained
GloVe (Pennington et al., 2014). We used BERT
for the pre-trained embedding models used for com-
puting semantic coverage reward. We chose GPT2
for the trained language model used for comput-
ing the fluency reward due to strong representation
capacity.

As shown in Table 1, we followed (Mendes et al.,
2019) to set LE for Newsroom and (Zhong et al.,
2020) to set LE for CNN/DM and XSum. We also
followed their protocols to set LC by matching the
average number of words in summaries.

Dataset Newsroom CNN/DM XSum

#Sentences in Doc. 27 39 19

#Tokens in Doc. 659 766 367

LE 2 3 2

LC 26 58 24

Train 995,041 287,113 204,045

Test 108,862 11,490 11,334

Table 1: Overview of the three datasets. #Sentences in
Doc. and #Tokens in Doc. denote the average number
of sentences and words in the documents respectively.
LE denotes the number of sentences to be selected by
the extractor agent. LC denotes the number of words
to be selected by the compressor agent. Train and Test
denote the size of train and test sets.

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 33.9 23.2 30.7

LEAD-WORD 34.9 23.1 30.7

Supervised Methods

EXCONSUMM (Ext.)* 31.9 16.3 26.9

EXCONSUMM (Ext.+Com.)* 25.5 11.0 21.1

Unsupervised Methods

SumLoop (Abs.) 27.0 9.6 26.4

TextRank (Ext.) 24.5 10.1 20.1

URLComSum (Ext.) 33.9 23.2 30.0

URLComSum (Ext.+Com.) 34.6 22.9 30.5

Table 2: Comparisons on the Newsroom test set. The
symbol * indicates that the model is not directly com-
parable to ours as it is based on a subset (the "Mixed")
of the dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 40.0 17.5 32.9

LEAD-WORD 39.7 16.6 32.5

Supervised Methods

LATENTCOM (Ext.) 41.1 18.8 37.5

LATENTCOM (Ext.+Com.) 36.7 15.4 34.3

JECS (Ext.) 40.7 18.0 36.8

JECS (Ext.+Com.) 41.7 18.5 37.9

EXCONSUMM (Ext.) 41.7 18.6 37.8

EXCONSUMM (Ext.+Com.) 40.9 18.0 37.4

CUPS (Ext.) 43.7 20.6 40.0

CUPS (Ext.+Com.) 44.0 20.6 40.4

Unsupervised Methods

SumLoop (Abs.) 37.7 14.8 34.7

TextRank (Ext.) 34.1 12.8 22.5

PacSum (Ext.) 40.3 17.6 24.9

PMI (Ext.) 36.7 14.5 23.3

URLComSum (Ext.) 40.0 17.5 32.9

URLComSum (Ext.+Com.) 39.3 16.0 32.2

Table 3: Comparisons between our URLComSum and
the state-of-the-art methods on the CNN/DM test set.
(Ext.), (Abs.), and (Com.) denote the method is extrac-
tive, abstractive, and compressive respectively.

We compare our model with existing compres-
sive methods which are all supervised, including
LATENTCOM (Zhang et al., 2018), EXCONSUMM
(Mendes et al., 2019), JECS (Xu and Durrett, 2019),
CUPS (Desai et al., 2020). Since our method is
unsupervised, we also compare it with unsuper-
vised extractive and abstractive methods, includ-
ing TextRank (Mihalcea and Tarau, 2004), PacSum
(Zheng and Lapata, 2019), PMI (Padmakumar and
He, 2021), and SumLoop (Laban et al., 2020). To
better evaluate compressive methods, we followed
a similar concept as LEAD baseline (See et al.,
2017) and created LEAD-WORD baseline which

232

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 19.4 2.4 12.9

LEAD-WORD 18.3 1.9 12.8

Supervised Methods

CUPS (Ext.) 24.2 5.0 18.3

CUPS (Ext.+Com.) 26.0 5.4 19.9

Unsupervised Methods

TextRank (Ext.) 19.0 3.1 12.6

PacSum (Ext.) 19.4 2.7 12.4

PMI (Ext.) 19.1 3.2 12.5

URLComSum (Ext.) 19.4 2.4 12.9

URLComSum (Ext.+Com.) 18.0 1.8 12.7

Table 4: Comparisons on the XSum test
set.URLComSum (Ext.) denotes the extractive
summary produced by our extractor agent. URLCom-
Sum (Ext.+Com.) denotes the compressive summary
produced further by our compressor agent.

extracts the first several words of a document as
a summary. The commonly used ROUGE metric
(Lin, 2004) is adopted.

4.2 Experimental Results
The experimental results of URLComSum on dif-
ferent datasets are shown in Table 2, Table 3 and
Table 4 in terms of ROUGE-1, ROUGE-2 and
ROUGE-L F-scores. (Ext.), (Abs.), and (Com.)
denote that the method is extractive, abstractive,
and compressive, respectively. Note that on the
three datasets, LEAD and LEAD-WORD baseline
are considered strong baselines in the literature and
sometimes perform better than the state-of-the-art
supervised and unsupervised models. As also dis-
cussed in (See et al., 2017; Padmakumar and He,
2021), it could be due to the Inverted Pyramid writ-
ing structure (Pöttker, 2003) of news articles, in
which important information is often located at the
beginning of an article and a paragraph.

Our URLComSum method significantly outper-
forms all the unsupervised and supervised ones
on Newsroom. This demonstrates the effective-
ness of our proposed method. Note that, unlike
supervised EXCONSUMM, our reward strategy
contributes to performance improvement when the
compressor agent is utilised. For example, in
terms of ROUGE-L, EXCONSUMM(Ext.+Com.)
does not outperform EXCONSUMM(Ext.), while
URLComSum(Ext.+Com.) outperforms URLCom-
Sum(Ext.). Similarly, our URLComSum method
achieves the best performance among all the unsu-
pervised methods on XSum, in terms of ROUGE-1
and -L. URLComSum underperforms in ROUGE-

2, which may be due to the trade-off between in-
formativeness and fluency. The improvement on
Newsroom is greater than those on CNN/DM and
XSum, which could be because the larger size of
Newsroom is more helpful for training our model.

Our URLComSum method achieves compara-
ble performance with other unsupervised methods
on CNN/DM. Note that URLComSum does not
explicitly take position information into account
while some extractive methods take advantage of
the lead bias of CNN/DM, such as PacSum and
LEAD. Nevertheless, we observe that URLCom-
Sum(Ext.) achieves the same result as LEAD .
Even though URLComSum is unsupervised, even-
tually the extractor agent learns to select the first
few sentences of the documents, which follows the
principle of the aforementioned Inverted Pyramid
writing structure.

4.2.1 Ablation Studies
Effect of Compression. We observed that the ex-
tractive and compressive methods usually obtain
better results than the abstractive ones in terms of
ROUGE scores on CNN/DM and Newsroom, and
vice versa on XSum. It may be that CNN/DM
and Newsroom contain summaries that are usu-
ally more extractive, whereas XSum’s summaries
are highly abstractive. We noticed that URL-
ComSum(Ext.+Com.) generally achieves higher
ROUGE-1 and -L scores than its extractive ver-
sion on Newsroom. Meanwhile, on CNN/DM and
XSum, the compressive version has slightly lower
ROUGE scores than the extractive version. We
observe similar behaviour in the literature of com-
pressive summarisation, which may be that the sen-
tences of news articles have dense information and
compression does not help much to further con-
dense the content.

Effect of Transformer. Note that we inves-
tigated the popular transformer model (Vaswani
et al., 2017) in our proposed framework to replace
Bi-LSTM for learning the sentence and word rep-
resentations. However, we noticed the transformer-
based agents do not perform as well as the Bi-
LSTM-based ones while training from scratch with
the same training procedure. The difficulties of
training a transformer model have also been dis-
cussed in (Popel and Bojar, 2018; Liu et al., 2020).
Besides, the commonly used pre-trained trans-
former models, such as BERT (Devlin et al., 2019)
and BART (Lewis et al., 2020), require high compu-
tational resources and usually use subword-based

233

tokenizers. They are not suitable for URLComSum
since our compressor agent points to words instead
of subwords. Therefore, at this stage Bi-LSTM is
a simpler and more efficient choice. Nevertheless,
the transformer is a module that can be included in
our framework and is worth further investigation in
the future.

Comparison of Extraction, Abstraction and
Compression Approaches. We observed that the
extraction and compressive approaches usually ob-
tain better results than the abstractive in terms of
ROUGE scores on CNN/DM and Newsroom, and
vice versa on XSum. It may be because CNN/DM
and Newsroom contain summaries that are usu-
ally more extractive, whereas XSum’s summaries
are highly abstractive. Since the ROUGE metric
reflects lexical matching only and overlooks the
linguistic quality and factuality of the summary, it
is difficult to conclude the superiority of one ap-
proach over the others solely based on the ROUGE
scores. Automatic linguistic quality and factual-
ity metrics would be essential to provide further
insights and more meaningful comparisons.

4.3 Qualitative Analysis
In Figure 5, 6, 7 in Appendix A, summaries pro-
duced by URLComSum are shown together with
the reference summaries of the sample documents
in the CNN/DM, XSum, and Newsroom datasets.
This demonstrates that our proposed URLComSum
method is able to identify salient sentences and
words and produce reasonably fluent summaries
even without supervision information.

4.4 Interpretable Visualisation of Semantic
Coverage

URLComSum is able to provide an interpretable
visualisation of the semantic coverage on the sum-
marisation results through the transportation ma-
trix. Figure 4 illustrates the transport plan heatmap,
which associated with a resulting summary is illus-
trated. A heatmap indicates the transportation of
semantic contents between tokens in the document
and its resulting summary. The higher the inten-
sity, the more the semantic content of a particular
document token is covered by a summary token.
Red line highlights the transportation from the doc-
ument to the summary of semantic content of token
“country”, which appears in both the document and
the summary. Purple line highlights how the se-
mantic content of token “debt”, which appears in
the document only but not the summary, are trans-

Figure 4: Interpretable visualisation of the OT plan.
from a source document to a resulting summary on the
CNN/DM dataset. The higher the intensity, the more
the semantic content of a particular document token is
covered by a summary token. Red line highlights the
transportation from the document to the summary of
semantic content of token “country”, which appears in
both the document and the summary. Purple line high-
lights how the semantic content of token “debt”, which
appears in the document only but not the summary, are
transported to token “bankruptcy” and “loans”, which
are semantically closer and have lower transport cost,
and thus achieve a minimum transportation cost in the
OT plan.

ported to token “bankruptcy” and “loans”, which
are semantically closer and have lower transport
cost, and thus achieve a minimum transportation
cost in the OT plan.

5 Conclusion

In this paper, we have presented URLComSum, the
first unsupervised and an efficient method for com-
pressive text summarisation. Our model consists of
dual agents: an extractor agent and a compressor
agent. The extractor agent first chooses salient sen-
tences from a document, and the compressor agent
further select salient words from these extracted
sentences to form a summary. To achieve unsu-
pervised training of the extractor and compressor
agents, we devise a reinforcement learning strategy
to simulate human judgement on summary quality
and optimize the summary’s semantic coverage and
fluency reward. Comprehensive experiments on
three widely used benchmark datasets demonstrate
the effectiveness of our proposed URLComSum
and the great potential of unsupervised compres-
sive summarisation. Our method provides inter-
pretability of semantic coverage of summarisation
results.

234

References
Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-

tive summarization with reinforce-selected sentence
rewriting. In Annual Meeting of the Association
for Computational Linguistics (ACL), pages 675–
686, Melbourne, Australia. Association for Compu-
tational Linguistics.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Shrey Desai, Jiacheng Xu, and Greg Durrett. 2020.
Compressive summarization with plausibility and
salience modeling. In Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6259–6274, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT).

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural net-
works, 18(5):602–610.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 708–719, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In International Conference on
Neural Information Processing Systems (NeurIPS),
page 1693–1701, Cambridge, MA, USA. MIT Press.

Ruipeng Jia, Yanan Cao, Haichao Shi, Fang Fang,
Pengfei Yin, and Shi Wang. 2021. Flexible non-
autoregressive extractive summarization with thresh-
old: How to extract a non-fixed number of sum-
mary sentences. In AAAI Conference on Artificial In-
telligence, volume 35, pages 13134–13142, Online.
AAAI Press.

Katharina Kann, Sascha Rothe, and Katja Filippova.
2018. Sentence-level fluency evaluation: Ref-
erences help, but can be spared! In Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 313–323, Brussels, Belgium. Asso-
ciation for Computational Linguistics.

Svea Klaus, Ria Van Hecke, Kaweh Djafari Naini, Is-
mail Sengor Altingovde, Juan Bernabé-Moreno, and

Enrique Herrera-Viedma. 2022. Summarizing legal
regulatory documents using transformers. In Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), page
2426–2430, New York, NY, USA. Association for
Computing Machinery.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. In International Conference on
Machine Learning (ICML), page 957–966, Lille,
France. JMLR.org.

Philippe Laban, Andrew Hsi, John Canny, and Marti A.
Hearst. 2020. The summary loop: Learning to write
abstractive summaries without examples. In Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 5135–5150, Online. Associa-
tion for Computational Linguistics.

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2017. Grammaticality, acceptability, and probabil-
ity: A probabilistic view of linguistic knowledge.
Cognitive Science, 41(5):1202–1241.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Jingzhou Liu, Dominic J. D. Hughes, and Yiming Yang.
2021. Unsupervised extractive text summarization
with distance-augmented sentence graphs. In Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), page
2313–2317, New York, NY, USA. Association for
Computing Machinery.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu
Chen, and Jiawei Han. 2020. Understanding the dif-
ficulty of training transformers. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Conference on
Empirical Methods in Natural Language Process-
ing and the International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3730–3740, Hong Kong, China. Association for
Computational Linguistics.

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham
Neubig. 2022. BRIO: Bringing order to abstractive
summarization. In Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages
2890–2903, Dublin, Ireland. Association for Com-
putational Linguistics.

235

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations (ICLR), New
Orleans, LA, USA. OpenReview.net.

Ling Luo, Xiang Ao, Yan Song, Feiyang Pan, Min
Yang, and Qing He. 2019. Reading like HER: Hu-
man reading inspired extractive summarization. In
Conference on Empirical Methods in Natural Lan-
guage Processing and International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP).

Qianren Mao, Hongdong Zhu, Junnan Liu, Cheng Ji,
Hao Peng, Jianxin Li, Lihong Wang, and Zheng
Wang. 2022. Muchsum: Multi-channel graph neu-
ral network for extractive summarization. In Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), page
2617–2622, New York, NY, USA. Association for
Computing Machinery.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factual-
ity in abstractive summarization. In Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL), pages 1906–1919, Online. Association
for Computational Linguistics.

Afonso Mendes, Shashi Narayan, Sebastião Miranda,
Zita Marinho, André F. T. Martins, and Shay B.
Cohen. 2019. Jointly extracting and compress-
ing documents with summary state representations.
In Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
3955–3966, Minneapolis, Minnesota. Association
for Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 404–411, Barcelona, Spain. Asso-
ciation for Computational Linguistics.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of doc-
uments. In AAAI Conference on Artificial Intelli-
gence, page 3075–3081, San Francisco, California,
USA. AAAI Press.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018a. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1797–1807, Brussels, Belgium. Association
for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lap-
ata. 2018b. Ranking sentences for extractive sum-
marization with reinforcement learning. In Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human

Language Technologies (NAACL-HLT), pages 1747–
1759, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Vishakh Padmakumar and He He. 2021. Unsupervised
extractive summarization using pointwise mutual in-
formation. In Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL), pages 2505–2512, Online. Association for
Computational Linguistics.

Jacob Parnell, Inigo Jauregi Unanue, and Massimo Pic-
cardi. 2021. RewardsOfSum: Exploring reinforce-
ment learning rewards for summarisation. In Work-
shop on Structured Prediction for NLP (SPNLP),
pages 1–11, Online. Association for Computational
Linguistics.

Adam Pauls and Dan Klein. 2012. Large-scale syntac-
tic language modeling with treelets. In Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 959–968, Jeju Island, Korea. Associa-
tion for Computational Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations (ICLR).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1532–1543, Doha, Qatar. Association for Computa-
tional Linguistics.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-
tional optimal transport: With applications to data
science. Foundations and Trends in Machine Learn-
ing, 11(5-6):355–607.

Martin Popel and Ondřej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics (NeurIPS).

Horst Pöttker. 2003. News and its communicative qual-
ity: the inverted pyramid—when and why did it ap-
pear? Journalism Studies, 4(4):501–511.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In IEEE
conference on computer vision and pattern recogni-
tion (CVPR).

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1073–1083, Vancouver, Canada. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is

236

all you need. In International Conference on Neu-
ral Information Processing Systems (NeurIPS), vol-
ume 30, Long Beach, CA, USA. Curran Associates,
Inc.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In International Con-
ference on Neural Information Processing Systems
(NeurIPS), volume 28, Montreal, Canada. Curran
Associates, Inc.

Lihan Wang, Min Yang, Chengming Li, Ying Shen,
and Ruifeng Xu. 2021. Abstractive text summariza-
tion with hierarchical multi-scale abstraction model-
ing and dynamic memory. In International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval (SIGIR), page 2086–2090, New
York, NY, USA. Association for Computing Machin-
ery.

Jiacheng Xu and Greg Durrett. 2019. Neural extractive
text summarization with syntactic compression. In
Conference on Empirical Methods in Natural Lan-
guage Processing and the International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP), pages 3292–3303, Hong Kong, China. As-
sociation for Computational Linguistics.

Shusheng Xu, Xingxing Zhang, Yi Wu, Furu Wei, and
Ming Zhou. 2020. Unsupervised extractive summa-
rization by pre-training hierarchical transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP, pages 1784–1795, Online. Asso-
ciation for Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. 2020. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In International Conference on Machine Learning
(ICML), pages 11328–11339, Online. PMLR.

Xingxing Zhang, Mirella Lapata, Furu Wei, and Ming
Zhou. 2018. Neural latent extractive document sum-
marization. In Conference on Empirical Methods
in Natural Language Processing (EMNLP), page
779–784, Brussels, Belgium. Association for Com-
putational Linguistics.

Hao Zheng and Mirella Lapata. 2019. Sentence central-
ity revisited for unsupervised summarization. In An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 6236–6247, Florence, Italy.
Association for Computational Linguistics.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL), pages 6197–6208, Online. Association
for Computational Linguistics.

237

A Sample Summaries
The following shows the sample summaries generated by URLComSum on the CNN/DM, XSum,
and Newsroom datasets. Sentences extracted by the URLComSum extractor agent are highlighted.
Words selected by the URLComSum compressor agent are underlined in red. Our unsupervised method
URLComSum can identify salient sentences and words to produce a summary with reasonable semantic
coverage and fluency.

Figure 5: A sample summary produced by URLComSum on the CNN/DM dataset. The summary generated
by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 68.8, 52.7, and 62.4 respectively, with
semantic coverage reward 0.76 and fluency reward 0.64, while the reference summary has semantic coverage
reward 0.80 and fluency reward 0.62.

Figure 6: A sample summary produced by URLComSum on the XSum dataset. The summary generated by
URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 38.1, 20.0, and 33.3 respectively, with
semantic coverage reward 0.77 and fluency reward 0.56, while the reference summary has semantic coverage
reward 0.73 and fluency reward 0.59.

Figure 7: A sample summary produced by URLComSum on the Newsroom dataset. The summary generated
by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 76.6, 62.2, and 76.6 respectively, with
semantic coverage reward 0.79 and fluency reward 0.61, while the reference summary has semantic coverage
reward 0.76 and fluency reward 0.65.

238

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 239–244
July 13, 2023 ©2023 Association for Computational Linguistics

Exploring the Effect of Frequency Resolution in FNet

Greg Szumel and Ghazal Khalighinejad and Rickard Stureborg and Sam Wiseman
Duke University

{gks9, gk126, rs541, sam.wiseman}@duke.edu

Abstract

The recently introduced FNet model (Lee-
Thorp et al., 2022) computes a two-dimensional
discrete Fourier transform (DFT) of a sequence-
length-by-hidden-dimension-sized representa-
tion of its input. Because it is equally effi-
cient to compute the DFT of any reshaping
of this input matrix, we investigate the extent
to which increasing the frequency resolution
in one dimension (at the expense of the other)
affects task performance. We consider the LRA
tasks (Tay et al., 2021) considered by Lee-
Thorpe et al., as well as the more practical set-
ting of using FNet as the encoder in a machine
translation (MT) model. We find that frequency
resolution has a marked task-dependent effect
on performance, allowing us to largely outper-
form standard FNet on our tasks, and suggest-
ing that resolution should be carefully tuned
before deploying FNet.

1 Introduction

The FNet model, recently introduced by Lee-
Thorp et al. (2022), is an encoder-only Transformer
(Vaswani et al., 2017) that takes a major devia-
tion from the Transformer’s standard architecture.
Mainly, FNet replaces the self-attention mechanism
in a Transformer with a 2D Discrete Fourier Trans-
form (DFT). The DFT is a deterministic operation
which transforms an input vector x to output vector
X , both of length N , by

Xk =

N−1∑

n=0

xn ∗ exp(
−i2π
N

kn)

Notably, there are no learnable parameters
within this sub-layer. Additionally, FNet represents
an important innovation because the DFT scales
sub-quadratically in the sequence length, unlike
self-attention. FNet therefore offers the promise of
a more efficient general-purpose transformer-like
architecture.

We note that it is equally efficient to compute
the 2D DFT of any reshaping of this matrix (i.e.,
increasing the number of columns at the expense
of the rows, or vice-versa) and that reshaping will
change the frequency resolution of the DFT in each
dimension. We hypothesize that changing the fre-
quency resolution may yield a more efficient token
mixing than the standard input’s mixing, particu-
larly when flattening the input into a column of
embedded tokens. The purpose of this paper is to
explore whether there is any performance benefit to
increasing or decreasing the frequency resolution
in either dimension, a question not addressed by
Lee-Thorp et al. (2022).

In addition to changing resolution by reshaping,
which does not alter the number of elements in the
matrix, we consider transformations that do alter
the number of elements in the matrix, such as pro-
jecting up or down, or padding. We investigate
the effect of these transformations on the FNet ar-
chitecture as applied to the LRA tasks (Tay et al.,
2021) considered in the original paper, and as an
encoder in a standard transformer-based neural ma-
chine translation model. We find that reshaping
has a marked effect on the performance of FNet on
the tasks we consider, although no single reshaping
appears to be optimal for all tasks. As such, we
recommend that the reshaping be tuned per-task,
as a hyperparameter. We also find that padding can
improve performance for the Translation and short
IMDB tasks, whereas projection tends to harm per-
formance overall.

2 Methods

Below we outline several approaches to changing
the dimensionality of the matrix consumed by the
DFT in FNet, and thus the frequency resolution in
at least one dimension. Whereas we are interested
in changing the DFT’s frequency resolution, we
are not interested in changing the model’s hidden
dimension, which determines the size of the feed-

239

forward layers that follow the DFT. Accordingly,
we always ensure that the DFT’s output is mapped
back to a sequence-length by hidden-dimension-
sized matrix before being consumed by a feed-
forward layer. Details are below.

Reshaping In FNet, the inputs to the DFT have
dimension (excluding batch-size) S × H , where
S and H are sequence- and hidden-dimension re-
spectively, and where S and H are powers of two.
To reshape, we multiply S by a power of 2 (includ-
ing negative powers), and divide H by that same
power. We then contiguously reshape the matrix
into one of dimension S · 2i ×H · 2−i. Note this
transformation is implemented by the JAX/PyTorch
library’s reshape function. We choose all possible
combinations of i such that S · 2i and H · 2−i are
both integers. We include both fully flattened com-
binations (where H or S = 1) for completeness,
although these transformations are equivalent.

Projection Reshaping maintains the same total
number of elements in the input matrix, making it
impossible to change the resolution in only one di-
mension. Projection, on the other hand, allows us to
hold the resolution in one dimension constant while
changing the the other’s. In our experiments, we
take the optimal power-of-2 reshaping as described
in the previous paragraph, and then project one
of its hidden or sequence dimension up or down.
Specifically, we linearly project the pre-DFT input
and then reshape it into the desired dimension. Af-
ter taking the DFT, we undo the prior reshaping
and project back to the original dimension. See
Appendix A for more details.

Padding Rather than projecting, we may also
pad the input matrix with zeros, along either the
sequence or hidden dimension. In the case of
padding the hidden dimension, we pad before tak-
ing the DFT and simply discard the extra columns
after taking the DFT and before the subsequent
feed-forward layer. In the case of padding the
sequence-length, we simply pad the encoder in-
put directly. See Appendix C for a discussion on
time-complexities from padding.

3 Experiments

We evaluate on the Long Range Arena (LRA) tasks
(Tay et al., 2021), also used in Lee-Thorp et al.
(2022). Due to training instability, we only report
on image-classification (CIFAR), text-classification
(IMDB), and document matching (Matching). We

report all LRA results as an average over three ran-
dom seeds. In order to evaluate FNet in a more
conventional NLP setting, we evaluate it as an en-
coder on the IWSLT14 English to German trans-
lation benchmark (Cettolo et al., 2014), and on
a ‘short’ IMDB task. We modify the standard
IWSLT14 task to only include examples shorter
than 64 tokens, and pad all remaining examples
to 64 tokens. See Appendix C for a discussion
on time-complexity. To construct the short-IMDB
task, we use the LRA’s IMDB codebase but lever-
age the non-byte tokenization scheme, where each
word is enumerated and is represented by its in-
dex. We also truncate and pad examples to have
input length of 500 tokens. For IWSLT14 and the
Short-IMDB tasks, we run experiments on a single
seed and report the results directly. All results are
reported as the optimal validation scores obtained
during training.

Proj. dim. scale D-Model Seq-Length
Scale 1

4 0.344 0.325
Scale 1

2 0.390 0.318
Base (8, 4096) 0.422 0.322
Scale 2 0.409 0.314
Scale 4 0.419 0.313

(a) CIFAR projection experiments

Proj. dim. scale D-Model Seq-Length
Scale 1

4 0.691 0.569
Scale 1

2 0.702 0.575
Base (2048, 128) 0.693 0.568
Scale 2 0.566 0.572
Scale 4 0.567 0.593

(b) IMDB projection experiments

Proj. dim. scale D-Model Seq-Length
Scale 1

4 0.624 0.623
Scale 1

2 0.625 0.616
Base (2048, 256) 0.623 0.630
Scale 2 0.618 0.619
Scale 4 0.612 0.622

(c) Matching projection experiments

Table 1: Projection of highest performing reshaping
from the reshaping survey on LRA. Base dimensions
are [D-model, Sequence length].

4 Results

4.1 LRA

Figure 1 outlines the results of our reshaping survey
across the LRA tasks IMDB, CIFAR, and Match-

240

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

1,
 3

27
68

2,
 1

63
84

8,
 4

09
6

16
, 2

04
8

32
, 1

02
4

64
, 5

12

12
8,

 2
56

51
2,

 6
4

40
96

, 8

32
76

8,
 1

(a) CIFAR

0.5

0.55

0.6

0.65

0.7

0.75

1,
 2

62
14

4

8,
 3

27
68

12
8,

 2
04

8

25
6,

 1
02

4

51
2,

 5
12

10
24

, 2
56

20
48

, 1
28

40
96

, 6
4

32
76

8,
 8

26
21

44
, 1

(b) IMDB

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

1,
 5

24
28

8

4,
 1

31
07

2

16
, 3

27
68

64
, 8

19
2

12
8,

 4
09

6

25
6,

 2
04

8

10
24

, 5
12

20
48

, 2
56

40
96

, 1
28

32
76

8,
 1

6

52
42

88
, 1

(c) Matching

Figure 1: Results of reshaping survey on LRA tasks. Orange bars denote the unchanged dimensions. The first
dimension is the reshaped hidden dimension, second dimension is the sequence length. Flattened reshapings should
be computationally equivalent and are included for completeness.

ing. See Appendix B.1 for results on all tasks
and reshapings. We observe optimal ‘aspect-ratios’
which are distinct from the unaltered ratios. For
CIFAR, reshaping to have a larger sequence-length
improves performance by a number of percentage
points. IMDB and Matching also show local op-
tima at either end of the spectrum, which provides
the largest resolution to a single dimension.

Table 1 outlines the results of Projection on the
LRA tasks. For CIFAR, IMDB, and Matching, we
set the optimal reshaped dimension to [8, 4096],
[2048, 128], and [2048, 256], respectively. We then
project either the hidden or sequence dimension by
a fixed scale, denoted by the "Projection dimension
scale". For example, a scale of 1

2 on CIFAR pro-
duces a DFT input shape of [4, 4096] when project-
ing D-Model, while the same scale has a DFT input
shape of [8, 2048] when projecting Seq-Length.

We see that projecting before taking the DFT
reduces model performance. Further, projecting
the sequence length almost always results in lower
performance than projecting the hidden dimension.

Experiments on the padding dimension are in
Table 2. As with the projection experiments, we
see that padding along both the sequence and the
hidden dimension typically lowers model perfor-
mance. However, increasing the resolution with
padding can improve performance on the IMDB
task for certain padding amounts.

4.2 Translation

The results of the reshaping survey on the transla-
tion task are given in Figure 2. In contrast to the
LRA experiments, we observe that the performance
of the base DFT input shape is greater than every

Padded dim. scale D-Model Seq-Length
8, 4096 (no pad) 0.425 0.425
Scale 2 0.408 0.426
Scale 4 0.386 0.403

(a) CIFAR padding experiments

Padded dim. scale D-Model Seq-Length
2048, 128 (no pad) 0.726 0.726
Scale 2 0.738 0.737
Scale 4 0.730 0.708

(b) IMDB padding experiments

Padded dim. scale D-Model Seq-Length
2048, 256 (no pad) 0.638 0.638
Scale 2 0.621 0.621
Scale 4 0.626 0.624

(c) Matching padding experiments

Table 2: Padded of strongest dimensions in LRA.

tested reshaping. Notably, FNet is nearly compara-
ble to Transformer after fixing input length.

Table 3 shows the results of the projection ex-
periment. We do not project the sequence length
due to its low performance on LRA. We again se-
lect the optimal reshaping, which for translation is
[512, 64]. Here we see the original shape outper-
forms all projections on the hidden dimension.

Table 4a shows the results of padding along the
sequence length dimension. Here, we observe mod-
est increases when padding along the sequence
length, although there is a point at which increas-
ing the length hinders performance. Table 4b shows
the results of padding along the hidden dimension.
We do not observe any hidden-dimension padding
that surpasses the baseline model performance.

241

26

27

28

29

30

31

32

33

34

35

1,
 3

27
68

4,
 8

19
2

16
, 2

04
8

32
, 1

02
4

64
, 5

12

25
6,

 1
28

51
2,

 6
4

10
24

, 3
2

40
96

, 8

32
76

8,
 1

Tr
an

sf
.

Figure 2: Results of reshaping survey on the Translation
task. Orange bars denote the unchanged dimensions.
The first dimension is the reshaped hidden dimension,
second dimension is the sequence length. Flattened
reshapings should be computationally equivalent and
are included for completeness.

Projected dim. size BLEU
128, 64 27.84
256, 64 28.85
512, 64 (base shape) 30.11
1024, 64 30.03
2048, 64 25.92

Table 3: Projection of strongest dimensions in transla-
tion.

4.3 Short IMDB

Figure 6 displays the results of the reshaping sur-
vey on the Short-IMDB task. Like the Translation
results, the model using unaltered DFT input has
higher accuracy than the other tested models. Inter-
estingly, reshapings that had high accuracy in the
long-IMDB task do not appear to transfer to the
short-IMDB task.

5 Conclusion

It is clear that tuning the FNet’s DFT input dimen-
sion can affect model performance. In LRA, be-
tween optimal and base input dimensions, we see
that CIFAR, IMDB, and Matching all increase per-
formance by 9%, 15%, and 2%, respectively. How-
ever, altering does not appear to help for all tasks.
In Translation and short IMDB, altering the input
dimension to the DFT layer lowers overall perfor-
mance. There could be several reasons for this
performance degradation.

First, performance variance could be due to input
length. The translation task uses a max sequence
length of 64, which is significantly shorter than the
LRA tasks, which had a minimum of 1024. If true,

Padded dim. size - seq len BLEU
64 (unpadded) 32.77
128 33.23
256 33.28
512 29.43

(a) Sequence length

Padded dim. size - hidden dim. BLEU
256 (unpadded) 32.77
512 32.02
700 32.64
1024 32.04

(b) Hidden dimension

Table 4: Padded of strongest dimensions in LRA.

0.78

0.8

0.82

0.84

0.86

0.88

0.9

1,
 1

28
00

0

4,
 3

20
00

32
, 4

00
0

12
8,

 1
00

0

25
6,

 5
00

51
2,

 2
50

10
24

, 1
25

Figure 3: Results of reshaping survey on the ‘short
IMDB’ task. Orange bars denote the unchanged di-
mensions. The first dimension is the reshaped hidden
dimension, second dimension is the sequence length.

it may be harder to tune DFT input shapes with
shorter sequence-lengths.

Second, certain tokenization methods may be
more amenable to tuning the DFT input dimen-
sion. We observe a performance boost through the
reshape survey on IMDB and Matching, both of
which use byte-level tokenization. Therefore, re-
shaping may be more potent on tasks that use a
byte-level tokenization.

We have not yet characterized the mechanism
for why FNet performance can be affected by al-
tering the input dimension to the DFT. We believe
that future work on tokenization techniques, base-
sequence-length, and testing on additional tasks
could be ideal routes to further explore why adjust-
ing the input shape to the DFT can alter the model’s
overall performance.

242

References

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th IWSLT evaluation campaign. In Proceed-
ings of the 11th International Workshop on Spoken
Language Translation: Evaluation Campaign, pages
2–17, Lake Tahoe, California.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2022. FNet: Mixing tokens with
Fourier transforms. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 4296–4313, Seattle,
United States. Association for Computational Lin-
guistics.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena : A benchmark for efficient transformers.
In International Conference on Learning Representa-
tions.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

A Example of projection methodology

Suppose we wish to project an input of reshaped
size [32, 1024] to [32, 2048]. Let’s suppose the
original input had [64, 512]. Before taking the DFT,
we take the following steps:

• Project the original input’s hidden dimension
by 2, yielding [64, 1024]

• Reshape to [32, 2048]

• Take DFT

• Un-reshape back to [64, 1024]

• Project back down to [64, 512]

In the case that we would like to reshape to [64,
1024], we now project the sequence length. Before
and after each projection, we transpose the input to
[H,S].

In the case of padding the hidden dimension,
replace the Projection layers with padding/cropping
operations. We pad initially, then crop back down
at the end.

Model Time complexity
BERT 2n2dh + 4nd2h

FNet (matrix) n2dh + nd2h
FNet (FFT) ndh[log(n) + log(dh)]

Table 5: Number of mixing layer operations (forward
pass). n is the sequence length and dh is the model
hidden dimension.

B Additional results

B.1 LRA Survey
See Figure 4 for the full results on the Survey
task across all LRA tasks. Again, Pathfinder and
PathfinderX models tended to have relatively un-
stable models (some models not finding strong per-
formance, at 50% accuracy), so we excluded them
from further testing. Additionally, ListOps does
not appear to improve performance based on alter-
ing the hidden-seq ratio, so it was also excluded
from further testing.

B.2 Translation survey
Figure 5 shows the full results of altering the aspect
ratio into the DFT for the Translation task.

B.3 Short IMDB Survey
Figure 6 shows the full results of altering the aspect
ratio into the DFT for the short-IMDB task.

C Time complexity of reshaping and
padding

Lee-Thorp et al. (2022) assembled the rough time
complexity of FNet compared to standard the stan-
dard transformer, which is listed in 5.

Suppose that for some reshaping we have
sequence-length l and hidden dimension dh.
The time-complexity in the FFT case would be
dhl(log(l) + log(dh)) = dhl log(dhl). We can see
here that the no reshaping would be more time-
intensive than another if the product of l and dh is
fixed.

However, we can see that increasing the se-
quence length (or hidden dimension) by padding
has time complexity of n log n for padded length
n. Padding will also increase the time complexity
by n2 in decoders, where the attention-mechanism
is still present.

243

https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://doi.org/10.18653/v1/2022.naacl-main.319
https://doi.org/10.18653/v1/2022.naacl-main.319
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

1,
 3

27
68

2,
 1

63
84

4,
 8

19
2

8,
 4

09
6

16
, 2

04
8

32
, 1

02
4

64
, 5

12
12

8,
 2

56
25

6,
 1

28
51

2,
 6

4
10

24
, 3

2
20

48
, 1

6
40

96
, 8

81
92

, 4
16

38
4,

 2
32

76
8,

 1

(a) CIFAR

0.5

0.55

0.6

0.65

0.7

0.75

1,
 2

62
14

4
2,

 1
31

07
2

4,
 6

55
36

8,
 3

27
68

16
, 1

63
84

32
, 8

19
2

64
, 4

09
6

12
8,

 2
04

8
25

6,
 1

02
4

51
2,

 5
12

10
24

, 2
56

20
48

, 1
28

40
96

, 6
4

81
92

, 3
2

16
38

4,
 1

6
32

76
8,

 8
65

53
6,

 4
13

10
72

, 2
26

21
44

, 1

(b) IMDB

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

1,
 1

04
85

76
2,

 5
24

28
8

4,
 2

62
14

4
8,

 1
31

07
2

16
, 6

55
36

32
, 3

27
68

64
, 1

63
84

12
8,

 8
19

2
25

6,
 4

09
6

51
2,

 2
04

8
10

24
, 1

02
4

20
48

, 5
12

40
96

, 2
56

81
92

, 1
28

16
38

4,
 6

4
32

76
8,

 3
2

65
53

6,
 1

6
13

10
72

, 8
26

21
44

, 4
52

42
88

, 2
10

48
57

6,
 1

(c) ListOps

0.53

0.55

0.57

0.59

0.61

0.63

0.65

1,
 5

24
28

8
2,

 2
62

14
4

4,
 1

31
07

2
8,

 6
55

36
16

, 3
27

68
32

, 1
63

84
64

, 8
19

2
12

8,
 4

09
6

25
6,

 2
04

8
51

2,
 1

02
4

10
24

, 5
12

20
48

, 2
56

40
96

, 1
28

81
92

, 6
4

16
38

4,
 3

2
32

76
8,

 1
6

65
53

6,
 8

13
10

72
, 4

26
21

44
, 2

52
42

88
, 1

(d) Matching

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1,
 1

31
07

2
2,

 6
55

36
4,

 3
27

68
8,

 1
63

84
16

, 8
19

2
32

, 4
09

6
64

, 2
04

8
12

8,
 1

02
4

25
6,

 5
12

51
2,

 2
56

10
24

, 1
28

20
48

, 6
4

40
96

, 3
2

81
92

, 1
6

16
38

4,
 8

32
76

8,
 4

65
53

6,
 2

13
10

72
, 1

(e) Pathfinder

0.45

0.47

0.49

0.51

0.53

0.55

1,
 2

09
71

52
2,

 1
04

85
76

4,
 5

24
28

8
8,

 2
62

14
4

16
, 1

31
07

2
32

, 6
55

36
64

, 3
27

68
12

8,
 1

63
84

25
6,

 8
19

2
51

2,
 4

09
6

10
24

, 2
04

8
20

48
, 1

02
4

40
96

, 5
12

81
92

, 2
56

16
38

4,
 1

28
32

76
8,

 6
4

65
53

6,
 3

2
13

10
72

, 1
6

26
21

44
, 8

52
42

88
, 4

(f) PathfinderX

Figure 4: Results of varying hidden dimension and sequence length dimensions into the Fourier Transform. Orange
lines denote the unchanged dimensions. First dimension is hidden dimension, second dimension is the sequence
length. Each run is the average of the maximum validation BLUE score, taken as an average over 3 random seeds.

26

27

28

29

30

31

32

33

34

35

1, 3
2768

4, 8
192

16, 2
048

64, 5
12

256, 1
28

1024, 3
2

4096, 8

16384, 2

Transfo
rm

er

Figure 5: Results of varying hidden dimension and se-
quence length dimensions into the Fourier Transform.
Orange bars indicate the unchanged dimension scales.
The first dimension on the x axis is the hidden dimen-
sion, second dimension is the sequence length.

0.78

0.8

0.82

0.84

0.86

0.88

0.9

1, 12
800

0

2, 64
000

4, 32
000

8, 16
000

16, 8
000

32, 4
000

64, 2
000

128
, 1

00
0

256
, 5

00

512
, 2

50

102
4,

12
5

Figure 6: Results of reshaping survey on short IMDB

244

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 245–256
July 13, 2023 ©2023 Association for Computational Linguistics

Towards Adaptable and Interactive Image Captioning with Data
Augmentation and Episodic Memory

Aliki Anagnostopoulou1,2 Mareike Hartmann3 Daniel Sonntag1,2

1German Research Center for Artificial Intelligence (DFKI), Germany
2Applied Artificial Intelligence (AAI), Oldenburg University, Germany

3Department of Language Science and Technology, Saarland University, Germany
{firstname.lastname}@dfki.de

Abstract

Interactive machine learning (IML) is a benefi-
cial learning paradigm in cases of limited data
availability, as human feedback is incremen-
tally integrated into the training process. In this
paper, we present an IML pipeline for image
captioning which allows us to incrementally
adapt a pre-trained image captioning model
to a new data distribution based on user in-
put. In order to incorporate user input into the
model, we explore the use of a combination of
simple data augmentation methods to obtain
larger data batches for each newly annotated
data instance and implement continual learn-
ing methods to prevent catastrophic forgetting
from repeated updates. For our experiments,
we split a domain-specific image captioning
dataset, namely VizWiz, into non-overlapping
parts to simulate an incremental input flow for
continually adapting the model to new data.
We find that, while data augmentation wors-
ens results, even when relatively small amounts
of data are available, episodic memory is an
effective strategy to retain knowledge from pre-
viously seen clusters.

1 Introduction

Image Captioning (IC) is the task of generating
a description in natural language for a given im-
age (Stefanini et al., 2021). For the training of
most state-of-the-art IC models, large amounts of
annotated training data are required (Zhou et al.,
2020). However, whenever models need to caption
user-specific images without large-scale annota-
tions, this is an impractical requirement. In this
case, a potential solution can be found in an in-
teractive framework, in which the model can be
efficiently adapted to new data based on user feed-
back (Ling and Fidler, 2017; Shen et al., 2019).
Additionally, interactivity renders AI/ML-systems
more user-friendly and trustworthy (Bussone et al.,
2015; Guo et al., 2022).

In interactive ML settings, training takes place

with small amounts of data, and often in an in-
cremental manner. These properties can lead to
overfitting, on the one hand, which is the lack
of generalization ability of the model, and catas-
trophic forgetting, on the other hand, which refers
to the drop in performance on older tasks, when
a model is trained on new data. For our interac-
tive approach, we tackle these problems using a
combination of methods previously proposed in
the literature. To tackle overfitting, we apply data
augmentation to each instance of user feedback to
obtain larger batches of data, which the model is
then updated on (Wang et al., 2021). Nevertheless,
we find that this strategy fails to improve results in
our image captioning task, indicating that the data
augmentation methods we used are not suitable for
this kind of task. In order to prevent catastrophic
forgetting, we rely on continual learning methods.
In the following, we present and test an IC pipeline
that can be used in an interactive setting. Our work
is guided by the following research questions:

1. How does data augmentation benefit a sys-
tem which is trained incrementally with (sim-
ulated) user feedback? How does this system
perform in few-shot scenarios?

2. How effective is an episodic memory replay
module (de Masson d'Autume et al., 2019) for
knowledge retention from previous trainings?

Our contributions are as follows:

• We propose a lightweight continual learning
IC pipeline that leverages data augmentation,
which can be used in an interactive machine
learning setting.

• We adapt a continual learning method, namely
sparse memory replay, proposed by de Mas-
son d'Autume et al. (2019), for IC.

• We test a combination of data augmentation

245

VizWiz
cluster

MS COCO

Memory

VizWiz
clusteraug

Image Captioning
Model

Data
Augmentation

Module

Image Captioning
Model

adapt

tra
in

VizWiz
cluster

VizWiz
cluster

evaluate

Figure 1: Our pipeline. Following the pre-training/fine-tuning paradigm, we first train our IC model on the MS
COCO dataset. We then continue to train our model incrementally, by adding a new cluster each time from the
VizWiz dataset, after applying DA methods on it to obtain more training data. During training on the VizWiz data
for each cluster, an episodic memory module is activated, which is used to retrieve old data points from previously
seen clusters.

methods for interactive IC in both image and
text modalities.

• Since we report negative results for the system
using data augmentation methods on the user
feedback, we additionally investigate why
these methods do not work in our case, and
we offer some possible explanations for the
deteriorating performance.

• We propose a method based on nominal
phrase similarity between captions of differ-
ent images for splitting a dataset into different
tasks suitable for evaluating task-incremental
continual learning when only image captions
are given.

For our simulated user feedback, we use a
domain-specific dataset, namely VizWiz (Gurari
et al., 2020; Simons et al., 2020), which consists
of images taken by visually impaired people. We
choose this dataset exactly because of this prop-
erty: the quality of the images is lower than in most
general-use IC datasets, resembling the image qual-
ity of user images.

2 Related work

Image captioning (IC) Deep-learning based IC
models (Xu et al., 2015; Anderson et al., 2018) tra-
ditionally consist of two parts: an encoder and a de-
coder. The visual encoder breaks the image down
into features or creates an intermediate representa-
tion. The decoder is a language model, which takes
the encoder output as input and generates a cap-
tion. For grounded approaches, more supervision

is required: image features, such as regions, are ad-
ditionally inserted into the visual encoder (Lu et al.,
2018). Following the trend in other deep learn-
ing tasks, recent approaches include large-scale
vision-language pre-training, as well as general-
ized models that work for a variety of computer
vision and vision-language tasks, including image
retrieval, referring segmentation, and visual ques-
tion answering (Zou et al., 2022; Li et al., 2022).

Interactive IC Interactive IC has not gained as
much attention as other ML tasks. Jia and Li (2020)
involve the human-in-the-loop by providing incom-
plete sequences as input, in addition to each image,
during inference time. Biswas et al. (2020) extend
the Show, Attend, and Tell architecture by combin-
ing high-level and low-level features, which pro-
vide explainability, as well as beam search during
decoding time.

Data augmentation Data augmentation (DA) is
widely applied to multiple tasks which include
learning from large data, whenever there is a lack
of annotated instances. It can additionally be used
as a regularization technique to avoid overfitting by
introducing noise into the dataset. In Computer Vi-
sion, transformations like cropping, warping, and
horizontal/vertical flipping are often applied (Taka-
hashi et al., 2019; Katiyar and Borgohain, 2021).

For text, augmentation methods need to be more
elaborate, since image-inspired techniques often
change the semantics of the text drastically. Popu-
lar methods include, but are not restricted to, EDA
(Wei and Zou, 2019) (including random insertion,
deletion, word swap), back-translation (Sennrich

246

et al., 2016; Turkerud and Mengshoel, 2021), syn-
onym replacement and contextual augmentation
(Kobayashi, 2018; Atliha and Šešok, 2020), often
using a pre-trained language model (Devlin et al.,
2019). For both modalities, retrieval-based aug-
mentation from additional resources is possible as
well (Li et al., 2021).

Continual Learning In cases where a model is
trained repeatedly on new data, catastrophic forget-
ting (Kirkpatrick et al., 2017) can be observed. This
refers to the degradation of model performance on
older tasks when it is trained on new ones. In
order to overcome this, continual learning meth-
ods are often applied. Methods such as weight
regularization, encoder/decoder freezing, pseudo-
labeling, and knowledge distillation, have been
previously applied to IC models (Nguyen et al.,
2019; Del Chiaro et al., 2020). In the natural lan-
guage processing domain, de Masson d'Autume
et al. (2019) use a combination of episodic memory
replay during training and local adaptation of the
model during inference.

3 Method

In this section, we describe the approach followed,
including our benchmark strategy, our DA meth-
ods, as well as the episodic memory module. Our
pipeline is illustrated in Figure 1.

3.1 Interactive IC pipeline

Architecture We experiment with a concrete im-
plementation of the interactive approach outlined
in Hartmann et al. (2022). We use a PyTorch imple-
mentation of Show, Attend and Tell (Xu et al., 2015).
This architecture consists of a convolutional neural
network (CNN) encoder, which is used to extract
feature vectors from images, and a long-short-term
memory (LSTM) decoder, which generates a cap-
tion conditioned on these vectors, with the use of
attention. Following Dognin et al. (2022), we re-
place the ResNet encoder with a ResNext network
(Xie et al., 2016).

For the decoder, an LSTM network is used. A
problem arising from incremental training here
is the expansion of the vocabulary. In order to
tackle this problem, we rely on the subword vo-
cabulary given by the BERT (Devlin et al., 2019)
tokenizer provided by Huggingface1. By using a
pre-trained subword tokenizer, we account for new

1We use bert-base-uncased.

original captions:
a. ‘a bottle of Hawthorne food supplement or drug’,
b. ‘Foreign currency is sitting on the table and it looks kind of

exotic.’
c. ‘White t-shirt with black line drawings of Mt Rushmore,

motorcycles, rose and beer, with text.’

paws:
a. ‘a bottle of Hawthorne food supplement or drug combination’,
b. ‘foreign currency sitting on the table and it looks sort of

exotic.’,
c. ‘White tee with black line drawings by Mt Rushmore,

motorcycles, roses and beer, with text.’

pegasus:
a. ‘There is a bottle of Hawthorne food supplement.’,
b. ‘The table has foreign currency on it.’,
c. ‘The t-shirt has black line drawings of Mt Rushmore,

motorcycles, rose and beer.’

O
rig

in
al

A
ug

m
en

te
d

a. b. c.

Figure 2: Generated data points generated based on the
DA methods described in subsection 3.1. Top: image
DA (combination of several DA methods). Bottom: text
DA.

words learned incrementally, without the need to
expand the model size. The training strategy used
is cross-entropy loss.

While current state-of-the-art architectures
achieve better scores, we adapt this particular ar-
chitecture because of its simplicity, and because
its inputs are raw images, as opposed to image fea-
tures like bounding boxes and labels from object
recognition models, which further decreases pre-
processing time. The pipeline can potentially be
adapted to any IC model that takes images as input,
rather than image regions and classes.

Data augmentation methods For our experi-
ments, we use DA on Image (IMG), Text (TXT),
and both modalities simultaneously (BOTH). For
IMG, we use the Albumentations (Buslaev et al.,
2020) library. We create a pipeline of different
operations, including CLAHE, optical and grid dis-
tortion, blur, flip, and rotation. Our goal here is to
introduce noise to the input data, in order to help
the model generalize better to unseen data. For the

247

train val test all WT

1 3,332 954 2,476 6,762 10,047
2 1,535 302 488 2,325 4,988
3 5,668 1,402 2,199 9,269 13,497
4 333 83 113 529 2,931
5 6,160 1,516 2,474 10,150 12,407

all 17,028 4,257 7,750 29,035 21,955

Table 1: VizWiz cluster (task) statistics after filtering
out bad quality images (according to the procedure men-
tioned in subsection 3.3). WT stands for word types.

TXT modality, we aim at generating meaningful
captions. For this reason, we employ two para-
phrasing models provided by Huggingface, namely
pegasus_paraphrase, a PEGASUS (Zhang et al.,
2019a) model fine-tuned for paraphrasing, and
paws_paraphrase, a T5 (Raffel et al., 2020) model
trained on the PAWS (Zhang et al., 2019b; Yang
et al., 2019) dataset. The reason we use two dif-
ferent paraphrasing tools is that we found out that
the quality of the generated samples is different. In
addition, paraphrasing quality drops in each tool
when the number of paraphrases increases. In order
to introduce more variety without compromising
the quality, we decide to utilize two paraphrasing
tools. In the case of combined (BOTH) DA, IMG

augmented images are combined with synthetically
generated captions. In every case, we generate
batches that are 10 times bigger than the initial
ones. Examples of generated data points can be
found in Figure 2.

Episodic memory for lifelong learning In order
to help the model retain old knowledge when be-
ing adapted to new data, we implement a continual
learning method, more specifically a sparse mem-
ory replay that operates during training. We adapt
the method described by de Masson d'Autume et al.
(2019): During training, some samples/experiences
are written into the memory. Every training sample
has a certain probability to be selected for mem-
ory writing. These experiences are then sparsely
replayed (i.e. 1 sample from memory for every
200 new data points, see subsection 3.2) while the
model is trained on new data. This way, the model
retains information from previous training itera-
tions with very low additional computational effort.

3.2 Procedure and training details

We follow the pre-training/fine-tuning paradigm,
where we first train the model on a supervised pre-
training task using a large, generic dataset, namely
MS COCO (Lin et al., 2014) (details below). Dur-
ing (supervised) pre-training, we do not use any
DA or continual learning method. After obtaining
the best model, we continue with our incremental
model adaptation, during which we apply DA and
continual learning.

Training details For the supervised pre-training
step, we train our model on MS COCO in two
stages: during the first training, we freeze the en-
coder and only train the decoder. The encoder is
then trained in the second stage. For the adaptation
step, we train our models on each task once.

We train with a batch size of 32 and a learn-
ing rate of 4e-4 for the decoder. For our memory
module, the replay frequency is 200, as mentioned
in subsection 3.1; that means that for every 200
batches, one batch is drawn from the memory and
added to the current training batch. The memory
writing probability is 20%.

We use early stopping. During our initial exper-
iments, we trained with higher (p=10) and lower
(p=2) patience values for early stopping. During
our initial experiments, lower patience seems to
produce better results, hence we adopt this value
for our adaptation training. During supervised pre-
training, we used 20 as the default patience value.

3.3 Datasets

Supervised pre-training step We first train our
model on the MS COCO dataset (Lin et al., 2014).
It contains 328k images, and it is broadly used as a
pre-training dataset for vision tasks, including ob-
ject recognition, object segmentation, and IC. We
use the 2014 release, which contains 82,783 train-
ing and 40,504 validation images. Each image is
annotated with five captions, describing the content
of each image. We make use of the Karpathy splits
(Karpathy and Fei-Fei, 2017).

Adaptation After obtaining the best possible cap-
tioning model trained on MS COCO, we train our
model incrementally using VizWiz (Gurari et al.,
2020; Simons et al., 2020), a dataset consisting of
images taken by visually impaired people. Since
there are no test captions available, we use the val-
idation set as our test set. A part of the training
samples is used as our validation set.

248

+ cluster 1 [3332] + cluster 2 [1535] + cluster 3 [5668] + cluster 4 [333] + cluster 5 [6160]
DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

1 18.8 6.4 15.8 15.3 12.4 2.2 11.3 4.4 15.9 2.4 13.0 7.3 12.7 1.9 9.8 3.9 11.8 2.8 9.7 7.1
2 26.0 6.9 19.8 16.4 25.0 5.5 18.7 11.3 18.7 4.6 13.0 7.2 22.6 3.5 14.9 13.8
3 27.7 4.2 24.5 16.3 21.1 2.3 16.4 4.9 22.4 2.9 16.9 11.9
4 26.7 4.6 20.5 13.1 20.4 3.4 15.4 10.6
5 25.9 3.7 19.2 15.3

all 18.8 6.4 15.8 15.3 16.4 3.4 14.6 7.4 23.6 3.6 19.9 12.2 18.4 2.4 14.2 5.0 21.2 3.3 16.2 12.1

Table 2: CIDEr results on our experiments on VizWiz data clustered according to the procedure described in
subsection 3.3. We start with the model resulting from the supervised pre-training step on MS COCO and continue
to train this model incrementally on the VizWiz clusters (+cluster ...). We include the amount of (original) training
data in brackets. DA: Data augmentation, NO: no DA, IMG: image DA, TXT: text DA, BOTH: image and text DA.
The numbers in the left column stand for clusters evaluated on. ’all’ refers to the micro avg.

Dataset processing We want to simulate a contin-
ual learning setting where we incrementally adapt
the IC model to new sets of user-specific data. For
this, we split VizWiz into non-overlapping clus-
ters representing user-specific datasets. We follow
the procedure for other continual learning datasets,
where data is split according to classes/concepts,
and each new class/concept represents a new task
(Del Chiaro et al., 2020). As the VizWiz dataset
does not contain object annotations for its images,
we resort to splitting the data according to the ob-
jects mentioned in the captions, using the procedure
described below. The resulting clusters resemble
the user-specific data we might expect to receive
from different users in a real-world setup: Whereas
one user might be more interested in captioning
screenshots or images of IT-related concepts, an-
other user might be interested in captioning images
of containers of food and drinks, etc. Example NPs
for each cluster can be found in Appendix A.

We follow the steps below:

1. We collect all nominal phrases (NPs) in the
entire caption corpus. We use TextBlob2 for
the extraction of the NPs.

2. From all the NPs, we choose so-called key-
words, namely phrases that appear at least 15
times in the dataset.

3. Using GloVe (Pennington et al., 2014) embed-
dings, we extract word embeddings for each
keyword. In case a keyword is phrasal, we av-
erage between individual word embeddings.

4. We cluster the keyword embeddings in 5 clus-
ters, using K-means clustering (Hartigan and
Wong, 1979).

2https://textblob.readthedocs.io/en/dev/

5. We iterate over all captions for each image,
looking for relevant keywords, and assigning
them to clusters. In case one image corre-
sponds to more than one cluster according to
its keywords, we favor the smaller cluster.

VizWiz contains some images of bad quality: in
some cases, the caption reads ’Quality issues are
too severe to recognize visual content’. In order
to avoid the generation of these captions during
inference, they can be removed from the training
set (Çaylı et al., 2022). In our work, we exclude an
image from training, if at least 3 out of the five cap-
tions in the image contain this caption; that means
that more than 50% of the annotators could not
describe the content of the image. If Quality Is-
sues are brought up only once or twice, we remove
this caption and duplicate one or two of the other
captions, so that, in the end, each image is anno-
tated with five captions. We do not remove Quality
Issues images and captions from our test set. We
exclude a total of 2,146 images.

While we technically do not use the complete
dataset provided, it is justified by the fact that we
test our pipeline in a low-resource scenario. Table 1
includes statistics over our tasks, including word
type counts.

4 Evaluation & Results

In this section, we present the evaluation metrics
we used, our procedure, as well as the results from
our core experiments.

4.1 Evaluation metrics & splits
Since IC is a natural language generation task, re-
sults are evaluated using standard metrics for eval-
uating text generation tasks. These metrics mea-
sure similarity to the ground truths. The metrics
most commonly used are BLEU (Papineni et al.,

249

https://textblob.readthedocs.io/en/dev/

gold: I see a red wine bottle
with writing on it
no: a bottle of alcohol is on
top of a table
txt: there is a bottle of wine.

gold: a can of progresso light
soup sitting on a counter
no: a can of campbell’s
cream of mushroom soup
txt: there is a can of soup on
the counter.

gold: a package containing
sugar free Hawaiian punch
singles
no: a single packet of kool - aid
drink mix
txt: there is a package of food.

gold: A computer screen wanting
the user to fill a captcha field
no: a computer screen with a
captcha on it
txt: there is a text on the screen.

Figure 3: Generated captions without DA and with TXT DA, compared with one of the gold captions.

2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), CIDEr (Vedantam et al., 2015),
and SPICE (Anderson et al., 2016). For our hy-
perparameter tuning on the validation set, we use
the BLEU metric. We report CIDEr scores in the
main paper for brevity, scores for the other evalua-
tion metrics can be found in Appendix B. We use
the Pycocoevalcap3 library for evaluation. In order
to evaluate the continual learning abilities of our
IC model, we report scores per cluster, as well as
micro-averages over the clusters trained so far.

4.2 Results
We present our results in Table 2. The use of our
DA methods does not improve the results. Es-
pecially when IMG DA is involved, performance
drops dramatically compared to the NO DA base-
line. This leads us to the conclusion that the DA
operations we applied to the images were not suit-
able. Unexpectedly, we observe that TXT DA does
not improve results compared to the NO DA base-
line, which is in contrast to findings of previous
work showing that caption augmentation is benefi-
cial for low-resource IC (Atliha and Šešok, 2020).
We analyze this in more detail in section 5.

5 Analysis

In this section, we take a closer look into the qual-
ity of the captions generated by our models. We
focus on the NO and TXT models since they pro-
duce better results. We also conduct two ablation
studies: one considers training without the use of
the memory module, and the other one tests our
method in a low-resource scenario.

3https://github.com/salaniz/pycocoevalcap.git

NO IMG TXT BOTH

no. of types 1,383 2,418 1,397 1,053
I (median) 10.0 10.0 8.0 10.0
I (mean) 10.229 10.464 7.949 9.894

Table 3: Statistics over captions generated with our
models. I : average caption length.

5.1 Caption quality

In order to gain a better insight into our results,
in particular the observation that TXT DA wors-
ens results compared to the NO DA baseline, we
compare the generated captions based on their av-
erage length and the number of unique word types
contained in the captions. One aspect that strikes
immediately when comparing captions generated
with TXT DA vs NO DA is variation. While we find
that NO captions and TXT captions share a similar
amount of unique word types, their average length
is different, with TXT captions being more than 2
words shorter than NO captions.

We include some examples of generated cap-
tions in Figure 3. While we see that the captions
generated are not necessarily erroneous, captions
generated with the models trained with TXT DA
are less informative than the gold captions and cap-
tions generated without DA. Automated evaluation
metrics often penalize changes in the length of the
output. Captions generated by the TXT DA model
tend to be more similar to the paraphrases gener-
ated by the PEGASUS paraphrasing model (which
was used to generate data for the training of the TXT

DA model), which are shorter and less informative.
Hence, this paraphrasing tool is not suitable for this

250

https://github.com/salaniz/pycocoevalcap.git

+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO TXT NO TXT NO TXT NO TXT NO TXT

MEM + - + - + - + - + - + - + - + - + - + -

1 27.1 27.1 20.9 20.8 16.5 15.6 14.3 9.7 22.8 22.9 17.7 16.3 19.3 20.8 13.1 15.2 17.6 19.0 13.3 13.5
2 26.0 27.0 22.2 20.1 25.2 24.9 18.7 17.2 19.3 17.2 16.0 15.3 23.3 23.0 18.3 15.2
3 32.4 31.3 28.1 24.1 24.2 23.8 17.9 18.4 25.1 24.2 18.1 19.1
4 25.3 23.7 17.5 20.9 18.5 18.9 13.5 12.2
5 27.1 25.6 19.9 19.0

all 27.1 27.1 20.9 20.8 21.0 20.4 18.5 14.3 29.7 29.1 24.8 22.0 23.4 23.5 17.2 18.1 24.9 24.3 18.6 18.4

Table 4: CIDEr results on the validation set for NO and TXT augmentation with (+) and without (-) episodic memory
replay. We mark in bold the cases in which episodic memory contributes to an improvement, and in red the cases in
which it does not.

Figure 4: CIDEr results on the validation set for each task training with 10%, 20%, 50%, and 100% of the data.

particular task. In the future, we plan to compare
more paraphrasing tools for DA on IC tasks.

To confirm our qualitative observations in a quan-
titative manner, we carried out a small manual anal-
ysis. We randomly sampled 100 captions gener-
ated with the TXT models and compared them to
the gold captions. Our criterion was informative-
ness: we ranked each generated caption as non-
informative, partially informative, or very informa-
tive. We find that 46 of them are very or partially
informative, while for some of the rest, the lack of
informativeness comes from the fact that the image
quality is low (since seven of them contain severe
quality issues).

5.2 Ablation study: Training without episodic
memory replay

In order to investigate the effect of the sparse
episodic memory replay on the continual learn-
ing abilities of the model, we train models in the

same settings as in our core experiments, except for
the use of sparse episodic memory replay. Results
for these experiments are shown in Table 4. We
observe that, in general, there is an improvement
in performance in almost all cases, both in models
trained with NO DA and in models trained with TXT

DA. The only exception is the model after training
with cluster 4, which is significantly smaller than
the rest of the other clusters (approx. 1/3 the size of
the next smaller cluster). This shows that, while the
episodic memory module positively influences per-
formance when at least 1000 samples are present,
it is not as effective with very few samples.

5.3 Ablation study: Training with parts of the
dataset

In an interactive setup, we cannot assume large
amounts of annotated data provided by the user,
hence we evaluate our models after training on
only 10%, 20%, and 50% of the data of each clus-

251

ter. Training data points for each cluster are cho-
sen randomly - for this reason, we present average
scores over 3 trainings with the same settings. Our
training takes place without memory since in most
cases, the amount of data is too small for the mem-
ory to be activated. The results for models trained
on reduced amounts of data for each cluster are
shown in Figure 4.

It seems that TXT DA does not improve results
even in a low-resource scenario - the curves for NO

and TXT DA are similar for the larger clusters (1,
3, 5). For task 2, a slight improvement in perfor-
mance can be observed when training with 50%
of the data. This, in turn, leads to an additional
observation, namely the fact that almost all our NO

DA models deter when trained with half of the data
of each cluster. This might be attributed to the data
distribution of the clusters with which we trained.

6 Conclusion

We have presented a pipeline for interactive IC,
which combines simple methods for incremental
model improvement. This framework allows in-
cremental adaptation of a pre-trained IC model to
new data that is entered by users. The user input
is transformed into a larger data batch using var-
ious data augmentation methods (for image, text,
and both modalities). We additionally adapted a
continual learning method for IC, which prevents
catastrophic forgetting after repeated updates. In or-
der to simulate incremental user input, we split the
relatively small, domain-specific VizWiz dataset
into non-overlapping clusters based on nouns men-
tioned in the image captions. VizWiz is a good
test bed for our pipeline, as it contains real-world
images with varying quality.

We analyzed the effectiveness of DA in our ex-
periments, and we noticed a lower performance of
our models when trained with augmented data. The
drop in performance resulting from the application
of DA methods was evident in our low-resource
experiments as well. We concluded that, especially
for IC, IMG DA must be applied carefully. The
same applies to TXT DA: since brevity is penalized
in this task, the DA outputs should be of similar
length and descriptiveness as the gold captions. We
confirmed that sparse memory replay does enable
the models to retain knowledge learned from previ-
ous datasets while adapting to new data.

In the future, we plan to experiment with more
elaborate joint DA methods for IC. Apart from

evaluating the approach with respect to model per-
formance using automated performance metrics,
we intend to evaluate its usefulness and usability
for end-users in a human study. Since prompting
using large models is a popular paradigm recently,
we intend to experiment with models like CLIP
(Radford et al., 2021) as well, additionally assess-
ing the trade-off between initial training cost and
adaptation cost. Last but not least, applying ac-
tive learning methods to select the best sample(s)
for the episodic memory module can potentially
increase the effectiveness of the continual learning
method used in our pipeline.

Limitations

Despite the promising results of our IML pipeline
for image captioning, our work has some limita-
tions. Firstly, the experiments were conducted on a
domain-specific dataset, VizWiz, and may not gen-
eralize to other datasets or domains. Secondly, our
approach may not be suitable for scenarios where
user feedback is sparse or unreliable, as the effec-
tiveness of IML heavily depends on the quality
and quantity of the feedback. Thirdly, our use of
episodic memory to retain knowledge from previ-
ously seen clusters may not scale well to smaller
datasets and other methods may be required. Lastly,
our approach does not address the challenge of bias
in the data, which can lead to biased models.

Ethical Statement

As of now, we do not see ethical concerns with the
study presented in this paper. We used a dataset
that is publicly available. The study is currently
not applied to human subjects with personal data;
in this case, the use of user feedback in the train-
ing process could potentially introduce biases if
the feedback is not diverse or representative of
the population. Lastly, our approach may be used
to develop image captioning models that generate
harmful or inappropriate content, such as captions
that perpetuate harmful stereotypes or stigmatize
certain groups of people.

Acknowledgments

We thank the reviewers for their insightful com-
ments and suggestions. The research was funded
by the XAINES project (BMBF, 01IW20005) and
by the No-IDLE project (BMBF, 01IW23002).

252

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2016. SPICE: semantic proposi-
tional image caption evaluation. In Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings,
Part V, volume 9909 of Lecture Notes in Computer
Science, pages 382–398. Springer.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for im-
age captioning and visual question answering. In
Proceedings of the IEEE CVPR conference, pages
6077–6086.

Viktar Atliha and Dmitrij Šešok. 2020. Text augmen-
tation using bert for image captioning. Applied Sci-
ences, 10(17):5978.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. ACL.

Rajarshi Biswas, Michael Barz, and Daniel Sonntag.
2020. Towards explanatory interactive image cap-
tioning using top-down and bottom-up features, beam
search and re-ranking. KI - Künstliche Intelli-
genz, German Journal on Artificial Intelligence - Or-
gan des Fachbereiches "Künstliche Intelligenz" der
Gesellschaft für Informatik e.V. (KI), 36:1–14.

Alexander Buslaev, Vladimir I. Iglovikov, Eugene
Khvedchenya, Alex Parinov, Mikhail Druzhinin, and
Alexandr A. Kalinin. 2020. Albumentations: Fast
and flexible image augmentations. Information,
11(2).

Adrian Bussone, Simone Stumpf, and Dympna
O’Sullivan. 2015. The role of explanations on trust
and reliance in clinical decision support systems. In
2015 International Conference on Healthcare Infor-
matics, pages 160–169.

Özkan Çaylı, Volkan Kılıç, Aytuğ Onan, and Wenwu
Wang. 2022. Auxiliary classifier based residual rnn
for image captioning. In 2022 30th European Sig-
nal Processing Conference (EUSIPCO), pages 1126–
1130.

Cyprien de Masson d'Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Riccardo Del Chiaro, Bartłomiej Twardowski, An-
drew D Bagdanov, and Joost Van de Weijer.
2020. Ratt: Recurrent attention to transient tasks
for continual image captioning. arXiv preprint
arXiv:2007.06271.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the NACCL: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. ACL.

Pierre Dognin, Igor Melnyk, Youssef Mroueh, Inkit
Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff,
Richard A. Young, and Brian Belgodere. 2022. Im-
age captioning as an assistive technology: Lessons
learned from vizwiz 2020 challenge. J. Artif. Int.
Res., 73.

Lijie Guo, Elizabeth M. Daly, Oznur Alkan, Massimil-
iano Mattetti, Owen Cornec, and Bart Knijnenburg.
2022. Building trust in interactive machine learn-
ing via user contributed interpretable rules. In 27th
International Conference on Intelligent User Inter-
faces, IUI ’22, pages 537–548, New York, NY, USA.
Association for Computing Machinery.

Danna Gurari, Yinan Zhao, Meng Zhang, and Nilavra
Bhattacharya. 2020. Captioning images taken by
people who are blind. CoRR, abs/2002.08565.

J. A. Hartigan and M. A. Wong. 1979. A k-means
clustering algorithm. JSTOR: Applied Statistics,
28(1):100–108.

Mareike Hartmann, Aliki Anagnostopoulou, and Daniel
Sonntag. 2022. Interactive machine learning for im-
age captioning.

Zhengxiong Jia and Xirong Li. 2020. Icap: Interactive
image captioning with predictive text. In Proceed-
ings of the 2020 International Conference on Mul-
timedia Retrieval, ICMR ’20, pages 428–435, New
York, NY, USA. Association for Computing Machin-
ery.

Andrej Karpathy and Li Fei-Fei. 2017. Deep visual-
semantic alignments for generating image descrip-
tions. IEEE Trans. Pattern Anal. Mach. Intell.,
39(4):664–676.

Sulabh Katiyar and Samir Kumar Borgohain. 2021. Im-
age captioning using deep stacked lstms, contextual
word embeddings and data augmentation. arXiv
preprint arXiv:2102.11237.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the NACCL: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 452–457, New Orleans,
Louisiana. ACL.

253

https://doi.org/10.1007/978-3-319-46454-1_24
https://doi.org/10.1007/978-3-319-46454-1_24
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.3390/info11020125
https://doi.org/10.3390/info11020125
https://doi.org/10.1109/ICHI.2015.26
https://doi.org/10.1109/ICHI.2015.26
https://doi.org/10.23919/EUSIPCO55093.2022.9909624
https://doi.org/10.23919/EUSIPCO55093.2022.9909624
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1613/jair.1.13113
https://doi.org/10.1613/jair.1.13113
https://doi.org/10.1613/jair.1.13113
https://doi.org/10.1145/3490099.3511111
https://doi.org/10.1145/3490099.3511111
http://arxiv.org/abs/2002.08565
http://arxiv.org/abs/2002.08565
https://doi.org/10.48550/ARXIV.2202.13623
https://doi.org/10.48550/ARXIV.2202.13623
https://doi.org/10.1145/3372278.3390697
https://doi.org/10.1145/3372278.3390697
https://doi.org/10.1109/TPAMI.2016.2598339
https://doi.org/10.1109/TPAMI.2016.2598339
https://doi.org/10.1109/TPAMI.2016.2598339
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072

Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang,
Ming Yan, Bin Bi, Jiabo Ye, Hehong Chen, Guo-
hai Xu, Zheng Cao, et al. 2022. mplug: Effective
and efficient vision-language learning by cross-modal
skip-connections. arXiv preprint arXiv:2205.12005.

Guodun Li, Yuchen Zhai, Zehao Lin, and Yin Zhang.
2021. Similar scenes arouse similar emotions: Paral-
lel data augmentation for stylized image captioning.
arXiv preprint arXiv:2108.11912.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain. ACL.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Huan Ling and Sanja Fidler. 2017. Teaching machines
to describe images via natural language feedback.
In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages
5075–5085.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
2018. Neural baby talk. In Proceedings of the IEEE
CVPR conference, pages 7219–7228.

Giang Nguyen, Tae Joon Jun, Trung Tran, Tolcha Yalew,
and Daeyoung Kim. 2019. Contcap: A scalable
framework for continual image captioning. arXiv
preprint arXiv:1909.08745.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the ACL, pages 311–318,
Philadelphia, Pennsylvania, USA. ACL.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, pages 1532–1543.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8748–8763.
PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the ACL (Volume 1: Long Papers),
pages 86–96, Berlin, Germany. ACL.

Tingke Shen, Amlan Kar, and Sanja Fidler. 2019. Learn-
ing to caption images through a lifetime by asking
questions. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 10393–
10402.

Rachel N. Simons, Danna Gurari, and Kenneth R. Fleis-
chmann. 2020. "i hope this is helpful": Understand-
ing crowdworkers’ challenges and motivations for an
image description task. Proc. ACM Hum.-Comput.
Interact., 4(CSCW2).

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi,
Silvia Cascianelli, Giuseppe Fiameni, and Rita Cuc-
chiara. 2021. From show to tell: A survey on image
captioning. CoRR, abs/2107.06912.

Ryo Takahashi, Takashi Matsubara, and Kuniaki Ue-
hara. 2019. Data augmentation using random image
cropping and patching for deep cnns. IEEE Transac-
tions on Circuits and Systems for Video Technology,
30(9):2917–2931.

Ingrid Ravn Turkerud and Ole Jakob Mengshoel. 2021.
Image captioning using deep learning: Text augmen-
tation by paraphrasing via backtranslation. In 2021
IEEE Symposium Series on Computational Intelli-
gence (SSCI), pages 01–10.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2015. CIDEr: Consensus-based image de-
scription evaluation. In 2015 IEEE CVPR, pages
4566–4575.

Zijie J. Wang, Dongjin Choi, Shenyu Xu, and Diyi Yang.
2021. Putting humans in the natural language pro-
cessing loop: A survey. In Proceedings of the First
Workshop on Bridging Human–Computer Interac-
tion and Natural Language Processing, pages 47–52,
Online. ACL.

Jason Wei and Kai Zou. 2019. EDA: Easy data aug-
mentation techniques for boosting performance on
text classification tasks. In Proceedings of the 2019
Conference on EMNLP and the 9th IJCNLP, pages
6382–6388, Hong Kong, China. ACL.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen
Tu, and Kaiming He. 2016. Aggregated residual
transformations for deep neural networks. 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5987–5995.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In Proceedings of the 32nd ICML, volume 37 of
Proceedings of Machine Learning Research, pages
2048–2057, Lille, France. PMLR.

254

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.1145/3415176
https://doi.org/10.1145/3415176
https://doi.org/10.1145/3415176
http://arxiv.org/abs/2107.06912
http://arxiv.org/abs/2107.06912
https://doi.org/10.1109/SSCI50451.2021.9659834
https://doi.org/10.1109/SSCI50451.2021.9659834
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/CVPR.2015.7299087
https://aclanthology.org/2021.hcinlp-1.8
https://aclanthology.org/2021.hcinlp-1.8
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://proceedings.mlr.press/v37/xuc15.html
https://proceedings.mlr.press/v37/xuc15.html
https://proceedings.mlr.press/v37/xuc15.html

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. PAWS-X: A Cross-lingual Adver-
sarial Dataset for Paraphrase Identification. In Proc.
of EMNLP.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019a. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019b.
PAWS: Paraphrase Adversaries from Word Scram-
bling. In Proc. of NAACL.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu,
Jason Corso, and Jianfeng Gao. 2020. Unified vision-
language pre-training for image captioning and vqa.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34(07):13041–13049.

Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie
Li, Chunyuan Li, Xiyang Dai, Harkirat Behl, Jian-
feng Wang, Lu Yuan, Nanyun Peng, Lijuan Wang,
Yong Jae Lee, and Jianfeng Gao. 2022. General-
ized decoding for pixel, image, and language. CoRR,
abs/2212.11270.

A Example NPs for VizWiz clustering

We include example nominal phrases (NPs) from
our VizWiz clustering. We follow the procedure
described in the main body of the paper. For each
cluster, we include 20 NPs. While there is no per-
fect separation in object categories, we do notice
certain semantic similarities between the NPs in
most clusters:

B Results for BLEU-4, METEOR,
ROUGE, SPICE metrics

In the main paper, we only include CIDEr scores
for our main experiments. Here we present results
in four additional metrics: BLEU-4 (Table 6), ME-
TEOR (Table 7), ROUGE-L (Table 8), and SPICE
(Table 9). The tables can be found on the next page.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

gift card ac kitchen counter top ingredients dark surface
button labrador top portion small packet glass cup

camera lens quaker small dog crock pot light fixture
nutrition information stouffer bottom large bottle wooden countertop

apple dr left side nutritional beige carpet
video games packet small kitchen appliance black

electrical outlet screenshot eye drops ingredients label lamp
tv screen sainsbury math problems lotion bottle wire
cable box barcode paper money milk chocolate concrete floor

computer tower coke led liter bottle interior
tv nokia person ’s knee dark chocolate plastic container

cd case samsung ’s chicken medicine bottle marble counter
silver device tan brand name frozen dinner box glass container

keys unopened side view dinner table shorts
image quality container/ box / bottle counter top water bottle styrofoam

design sprite sunny day small jar couch cushion
entertainment center the/this remote control spice plastic wrapping

book page roni body coffee pod glass door
background k-cup room area brownie mix clear plastic bag

laptop monitor upc left side ice cream flat horizontal surface

Table 5: First 20 NPs for each cluster from the VizWiz Dataset

255

http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
https://doi.org/10.1609/aaai.v34i07.7005
https://doi.org/10.1609/aaai.v34i07.7005
https://doi.org/10.48550/arXiv.2212.11270
https://doi.org/10.48550/arXiv.2212.11270

+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

eval on 1 14.4 6.0 11.1 12.4 9.1 2.6 8.7 4.6 11.6 2.8 9.2 6.3 10.5 2.6 7.5 4.5 7.6 2.9 6.0 6.1
eval on 2 16.9 7.4 15.1 13.7 17.8 5.6 15.9 10.6 16.6 5.7 12.5 9.7 16.2 4.8 12.5 13.6
eval on 3 16.0 4.9 13.8 11.3 13.7 3.5 10.5 6.4 13.8 3.8 10.8 10.6
eval on 4 16.9 4.6 13.5 9.1 12.4 3.3 9.8 8.4
eval on 5 15.1 4.4 11.3 12.1

micro avg 14.4 6.0 11.1 12.4 10.4 3.5 9.8 6.3 14.0 4.0 11.8 8.9 12.5 3.4 9.4 6.0 12.4 3.8 9.6 9.9

Table 6: BLEU-4 results on our experiments on VizWiz data clustered according to the procedure described in our
main paper. We start with the model resulting from the supervised pre-training step on MS COCO and continue to
train this model incrementally on the VizWiz clusters (+cluster ...). We include the amount of (original) training
data in brackets. DA: Data augmentation, NO: no DA, IMG: image DA, TXT: text DA, BOTH: image and text DA.
The numbers in the left column stand for clusters evaluated on. ’all’ refers to the micro average score.

+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

eval on 1 13.5 9.3 12.4 12.9 10.8 6.7 10.5 7.8 12.4 6.8 10.7 8.8 11.2 6.5 9.7 7.7 10.8 7.3 9.4 9.3
eval on 2 15.8 10.3 15.0 13.7 16.0 9.3 14.6 11.9 14.8 9.4 13.3 11.2 15.8 8.9 13.7 13.8
eval on 3 15.2 8.6 13.7 12.0 13.9 7.7 12.0 9.4 14.1 8.5 12.2 11.9
eval on 4 15.1 9.0 13.0 11.5 13.8 8.0 12.0 11.4
eval on 5 15.4 9.3 13.3 13.0

micro avg 13.5 9.3 12.4 12.9 11.6 7.3 11.2 8.7 13.9 7.8 12.3 10.5 12.8 7.3 11.0 8.8 13.6 8.4 11.7 11.5

Table 7: METEOR results, as above.

+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

eval on 1 34.0 26.0 31.0 31.5 28.3 21.0 28.8 23.1 31.3 22.2 29.0 26.9 30.8 21.6 26.9 24.8 29.9 23.6 27.0 28.4
eval on 2 39.0 30.8 39.1 36.1 42.4 29.3 39.5 34.9 39.7 29.7 35.8 33.6 42.3 29.8 37.2 39.9
eval on 3 39.8 27.2 37.2 34.3 37.4 25.6 33.2 29.8 38.7 27.8 34.5 35.3
eval on 4 38.0 27.1 34.4 32.2 36.4 26.8 34.0 33.7
eval on 5 40.7 29.3 35.7 37.5

micro avg 34.0 26.0 31.0 31.5 30.1 22.6 30.5 25.3 35.9 25.0 33.5 30.8 34.5 24.1 30.5 27.8 36.7 27.0 32.6 34.1

Table 8: ROUGE-L results, as above.

+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

eval on 1 7.5 5.3 7.2 7.2 5.0 1.7 5.0 2.1 6.2 1.5 5.1 3.1 5.0 1.5 4.6 1.8 4.6 1.5 4.0 3.3
eval on 2 9.6 3.8 8.8 6.6 8.8 2.5 8.2 5.1 7.9 3.2 7.4 4.5 8.6 2.2 7.6 6.6
eval on 3 8.3 2.4 7.3 5.6 6.8 1.7 5.7 2.7 7.0 1.9 5.8 4.8
eval on 4 8.0 2.9 7.1 4.5 7.0 1.7 6.1 5.3
eval on 5 8.5 2.6 7.5 6.2

micro avg 7.5 5.3 7.2 7.2 5.8 2.0 5.6 2.9 7.3 1.9 6.3 4.3 6.1 1.8 5.4 2.5 6.8 2.0 5.9 4.9

Table 9: SPICE results, as above.

256

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 257–263
July 13, 2023 ©2023 Association for Computational Linguistics

Corpus Complexity Matters in Pretraining Language Models

Ameeta Agrawal and Suresh Singh
Department of Computer Science

Portland State University
{ameeta,singhsp}@pdx.edu

Abstract

It is well known that filtering low-quality data
before pretraining language models or selecting
suitable data from domains similar to down-
stream task datasets generally leads to im-
proved downstream performance. However,
the extent to which the quality of a corpus,
in particular its complexity, affects its down-
stream performance remains less explored. In
this work, we address the problem of creating
a suitable pretraining corpus given a fixed cor-
pus budget. Using metrics of text complexity
we propose a simple yet effective approach for
constructing a corpus with rich lexical varia-
tion. Our extensive set of empirical analyses
reveal that such a diverse and complex corpus
yields significant improvements over baselines
consisting of less diverse and less complex cor-
pora when evaluated in the context of general
language understanding tasks.

1 Introduction

The recent trend in training language models (LM)
has been to use increasingly larger text corpora
(Khandelwal et al., 2019; Kaplan et al., 2020;
Borgeaud et al., 2021). While this approach gen-
erally does improve downstream performance, it
comes at a substantial computational cost. An-
other line of research has found that increasing the
pretraining data does not always improve the per-
formance on downstream tasks (Martin et al., 2019;
Dai et al., 2019; Shin et al., 2022). In response,
numerous studies have explored approaches such
as utilizing pretraining corpora that are domain
specific or using data filtering to reduce the size
of the pretraining corpus, while improving down-
stream task performance (Beltagy et al., 2019; Lee
et al., 2020; Grave et al., 2018; Raffel et al., 2019;
Brown et al., 2020). The shortcoming of these
methods is that the pretrained LM may be very
specific to the selected tasks, and therefore, show
limited generalizability to other downstream tasks,

or require heuristic filtering techniques. In this re-
search, we explore a complementary approach and
investigate whether improving the complexity of
the pretraining corpus can yield improved model
performance. The implication is that rather than
arbitrarily increasing the size of a corpus as is done
today, increasing its complexity might yield higher
performance but at a lower computational cost.

Intuitively it is easy to compare a children’s book
with a college textbook and state that the latter is
more complex. Unfortunately, providing a general
formal definition is fraught because books of dif-
ferent genres are complex in different ways (e.g.,
post-modern novel vs. biography). However, at-
tempts have been made to characterize text com-
plexity using reasonable measures such as vocabu-
lary size, syntactic complexity, and semantic rich-
ness (Jensen, 2009). In this paper we use metrics
that derive from these linguistic measures includ-
ing types, type-token ratio, entropy, and Flesch
reading-ease to estimate corpus complexity.

First we construct five distinct corpora of equal
size but varying complexity to pretrain LMs. The re-
sulting models are then fine-tuned and evaluated on
downstream tasks from the GLUE benchmark. Our
results suggest that a corpus containing a breadth
of complexity from easy to hard but one that is
skewed towards hard makes an effective corpus as
evaluated in general language understanding tasks.

The key contributions of our paper are as follows:
(i) We propose a simple approach for constructing
a lexically rich and complex corpus for pretraining
of language models; (ii) We conduct an extensive
set of experiments by pretraining several language
models from scratch on corpora of differing com-
plexity, and then evaluating these models on a di-
verse set of downstream tasks; (iii) We analyze our
results to estimate the correlation between the com-
plexity of a corpus, its similarity to downstream
data, and its performance on various downstream
tasks.

257

2 Related Work

Below, we briefly review two broadly related
threads of research.

Data selection. Ruder and Plank (2017) pro-
posed several similarity and diversity measures for
assessing the suitability of data for transfer learning.
Dai et al. (2019) studied the problem of selecting
appropriate corpus for pretraining in the context
of Named Entity Recognition (NER) downstream
tasks, and found that language models pretrained
on source text similar to the target task outperform
the ones pretrained on other sources (with one ex-
ception). Gururangan et al. (2020) compared the
vocabulary overlap between pretraining sources
and target domain corpora, and found that the pre-
trained model performs slightly better when target
domain is less distant than source domain, but not
in all the cases. Lange et al. (2021) studied the
selection of source data for transfer learning.

Selecting data from similar domains as down-
stream tasks for pretraining of domain-specific
language models has generally been shown to be
beneficial, e.g., SciBERT (Beltagy et al., 2019),
BioBERT (Lee et al., 2020). However, prior work
has also observed that this trend does not always
hold true (Martin et al., 2019; Shin et al., 2022).
Dai et al. (2020) found that models pretrained on
forums corpus (0.6B tokens) outperformed those
trained on tweets corpus (0.9B tokens) on both
forums- and tweets-related downstream tasks, as
well as a significantly larger generic BERT model
(3.3B tokens), highlighting the importance of do-
main similarity of corpus over its size.

Data engineering. A complementary line of
research suggests that engineering the corpus be-
fore pretraining through reordering (Agrawal et al.,
2021; Nagatsuka et al., 2021; Li et al., 2021; Wang
et al., 2023), preprocessing (Babanejad et al., 2023),
and filtering (Grave et al., 2018; Raffel et al., 2019;
Brown et al., 2020; Rae et al., 2021; Kreutzer et al.,
2022) can potentially enhance both the overall per-
formance and efficiency of language models.

Diverging from previous studies, our research fo-
cuses on examining the influence of the complexity
of a pretraining corpus on downstream tasks related
to general language understanding. To accomplish
this, we introduce a straightforward methodology
for constructing a corpus that embodies richness
and complexity.

3 Method

Let C be an unlabeled pretraining corpus of |C| to-
tal tokens, consisting of a vocabulary set VC , i.e.,
the unique tokens or types in C. Similarly, let D be
a labeled downstream dataset with total number of
tokens |D| and a vocabulary set VD. Given a fixed
corpus budget (e.g., number of tokens), we first
aim to construct distinct corpora of various com-
plexity. Then, the goal is to measure the similarity
between these corpora and downstream datasets,
and estimate the correlation between complexity,
similarity, and performance.

We present some metrics for assessing the com-
plexity of a corpus and for computing the similarity
between two collections of text – the pretraining
corpus and the downstream datasets in subsections
3.1 and 3.2, before describing the procedure for cre-
ating corpora of varying complexity in subsection
3.3.

3.1 Corpus Complexity

We consider three metrics for estimating the com-
plexity of a text corpus.

Types. This is the number of types or unique tokens
in a corpus (i.e., its vocabulary).

Type-Token Ratio (TTR). Lexical complexity can
also be indexed via TTR – the higher the ratio, the
greater the lexical diversity in the sample (Johnson,
1944). Although TTR is often sensitive to length
of the texts, for analyzing corpora of comparable
sizes, it can serve as a useful metric (Johansson,
2008), and is computed as TTR(C) = |VC |

|C| .

Entropy. Broadly speaking, entropy is a mea-
sure of randomness or disorder (Shannon, 1948;
Fano, 1961), and the greater the number of differ-
ent words in a text, the higher its entropy, or, con-
ceptually, its complexity. We calculate the unigram
entropy of C as follows:

H(C) = −
|VC |∑

i=1

p(wi) log2 p(wi)

where p(wi) is the probability of type wi in C.

3.2 Text Similarity

We adopt two well-defined measures to estimate
the similarity between two pieces of text, such as
the pretraining corpus C and a downstream dataset
D.

258

Vocabulary Overlap Ratio (VOR). This computes
the percentage of word types that appear in both
the texts (VC and VD) where a higher ratio indicates
higher similarity, and is calculated as:

V OR(C,D) = |VC ∩ VD|
|VD|

.

Jensen-Shannon divergence (JSD). This metric
measures the distance between two texts (Lin,
1991), and D(JS) is defined as:

D(JS)(P ||Q) = α1D
(KL)(P ||M)

+ α2D
(KL)(Q||M)

where M = α1P+α2Q, and P and Q are the prob-
ability distributions of two texts (e.g., a pretraining
corpus C and a downstream dataset D, in our case).
The values of α1 and α2 are set as 0.5 each. D(KL)

is Kullback-Leibler divergence, a measure for com-
paring the differences in two texts, and is defined
as, D(KL)(P ||Q) =

∑
i pi log

pi
qi

.

3.3 Constructing Corpora with Varying
Complexity

The complexity of a corpus can be summarized by
using metrics like number of types, type-token ra-
tio, and entropy (section 3.1). However, in order to
create a corpus according to varying complexity we
need a more fine-grained metric that can compute
complexity at document (or even paragraph) level.
One such metric is the Flesch reading ease (FRE)
score, commonly used to assess the difficulty of a
piece of text (Flesch, 1948).

For a document di ∈ C, its FRE score is com-
puted as:

FRE(di) = 206.835−1.015
(
#w

#s

)
−84.6

(
#l

#w

)

where #w, #s, and #l denote the number of
words, sentences, and syllables in di, respectively.
The word and sentence length serve as proxies for
semantic and syntactic complexity, respectively.
Note that texts with high FRE scores tend to display
lower complexity (e.g., children’s books), while an
editorial in the New York Times which has a much
greater complexity, shows lower FRE scores. Thus,
our approach for creating a more complex corpus is
to combine pieces (paragraphs or documents) from
existing corpora based on their FRE score.

Our method starts by adopting two text corpora
widely used for pretraining of language models:

Figure 1: FRE distribution of the corpora. Lower FRE
indicates higher complexity. wikibooks spans the
full spectrum of complexity, consisting of both low and
high complexity, but mostly skewed towards the latter.

wiki-103, a subset of English Wikipedia (Merity
et al., 2016) and BookCorpus, a large collection of
books (Zhu et al., 2015). From these, we construct
the following five corpora:

• wiki: This is the original wiki-103 corpus
consisting of around 100 million tokens.

• books-small, books-easy,
books-hard: Next, we create a
comparably-sized corpus of ∼100M to-
kens, called books-small, by randomly
sampling books from BookCorpus. Then, for
each book in BookCorpus, we compute its
FRE score and create two relevant baselines:
books-easy by combining books of lowest
complexity (i.e., the highest FRE scores), and
conversely, books-hard by using books
with the highest complexity (i.e., the lowest
FRE scores).

• wikibooks: Finally, we hypothesize that a
complex and diverse corpus contains a blend
of texts with different levels of complexity,
albeit with a focus on more complex ones. We
speculate that this composition would allow
it to capture the nuanced linguistic aspects
present in a wide range of texts. To create
such a corpus, which we call wikibooks,
we first sample some articles from wiki-103
and books from BookCorpus of varying com-
plexity (i.e., FRE scores ranging from high
to low), and then use up the remaining cor-
pus quota by sampling texts of mostly high
complexity (low FRE scores).

Figure 1 plots the FRE distribution of each of
the five corpora. As we can see, books-easy,

259

Corpus Tokens Types TTR (%) Entropy

wiki 104M 267K 0.26 7.375
books-easy 120M 258K 0.22 6.294
books-hard 111M 417K 0.38 6.826
books-small 116M 346K 0.29 6.483
wikibooks 109M 436K 0.40 7.179

Table 1: Characteristics of different pretraining corpora.

books-hard, and books-small span a nar-
row range of complexity all skewing towards less
complex; wiki has moderate to high complex-
ity; and wikibooks is the only one to show the
broadest range of complexity, with most of the
mass concentrated in the highest complexity range,
but also some in the lowest complexity range.

3.4 Downstream Datasets and
Implementation

We use eight datasets from the General Language
Understanding Evaluation (GLUE) benchmark in
our experiments, which includes CoLA, MNLI,
MRPC, QNLI, QQP, RTE, SST-2 and STS-B
(Wang et al., 2018).

Text tokenization is done using NLTK1, and
FRE scores are computed using Readability pack-
age2. Using the different corpora, we pretrain from
scratch different versions of BERT-base model3

(Devlin et al., 2019). The training continues for
at most 30K steps. Checkpoints saved after 10K,
20K, and 30K steps are then fine-tuned over the
downstream datasets for two epochs each.

4 Discussion

Our work investigates: (i) whether document-level
metric such as FRE can be used to construct cor-
pora of varying complexity, (ii) whether corpora of
higher complexity lead to improvements in down-
stream performance, (iii) whether a complex cor-
pus is more similar to downstream data, and (iv)
the correlation between complexity, similarity, and
performance.

1We use NLTK tokenizer: https://www.nltk.org/
api/nltk.tokenize.html.

2We use Readability package: https://pypi.org/
project/readability/ To account for the length-
based differences in Wikipedia articles and Books, we ran-
domly but sequentially select a subset of 1000 sentences for
each book when computing its FRE.

3We use the uncased version, with 12 transformer layers,
batch size set to 8, maximum length of the input sequence set
to 512, and all other settings set as default. All pretraining and
fine-tuning experiments are performed using HuggingFace
library (Wolf et al., 2019).

Figure 2: Comparison of (unweighted) average GLUE
score, across five different pretraining corpora under
varying number of training steps (10K, 20K, 30K).

Whether FRE can help create suitably complex
corpus. Table 1 summarizes the details of the five
distinct corpora, where we find that wikibooks,
which contains a mix of low and high complex-
ity text, has the highest number of types and TTR,
and second highest entropy. This demonstrates the
effectiveness of using a computationally simple
metric such as FRE in creating corpora of a wide
range of complexity. Moreover, we also notice that
there is no corpus in our sample with a unigram
entropy of less than six bits/word, which is in line
with information-theoretic models of communica-
tion (Bentz et al., 2017).

Analyzing corpus complexity and downstream
performance. Figure 2 plots the average scores
across eight downstream tasks obtained using mod-
els pretrained with the five different corpora un-
der varying number of training steps. Three out
of five corpora yield increasingly better results as
the training progresses, except books-easy and
books-small which show the opposite trend.
On the one hand, this suggests that simply training
for longer time does not always guarantee a mono-
tonically increasing performance score. On the
other hand, this also indicates that pretraining on
fairly less complex corpora (cf. Fig. 1) is generally
less effective.

In connecting the results of Figure 2 with com-
plexity metrics reported in Table 1, we observe
that wikibooks, a corpus with a comparatively
higher degree of complexity characterized by a
larger number of word types and a higher TTR,
consistently outperforms all other corpora across
the three model checkpoints. On the opposite end is
the poorest performing corpus books-easy with
the fewest types, lowest TTR, and lowest entropy.

Analyzing similarity between pretraining corpus
and downstream datasets. Now, we assess the
similarity between these corpora and downstream

260

https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://pypi.org/project/readability/
https://pypi.org/project/readability/

(a) Similarity (VOR) between pretraining corpus and down-
stream dataset (darker shades indicate higher similarity)

(b) Correlation between similarity (VOR) and performance (pos-
itive correlation is better)

Figure 3: (top) Similarity (VOR) between pretraining
corpora and downstream datasets (train). (bottom) Pear-
son’s correlation analysis (similarity and performance).

datasets to examine whether a more complex cor-
pus provides greater alignment with the down-
stream data. Figure 3a shows that wikibooks
is more similar to all the downstream datasets in
comparison to the other corpora, aligning with the
intuition that a corpus with richer vocabulary subse-
quently has increased similarity with downstream
data. As a further analysis, Figure 3b shows a mod-
erate to high correlation between the similarity of
the corpus to downstream datasets and the corre-
sponding performance across most datasets, which
strengthens as training progress. Similar trends
hold for JSD (included in Appendix A). These find-
ings indicate that pretraining using a corpus that
is similar to the downstream datasets is generally
beneficial, and VOR provides a computationally
simple way of estimating this similarity.

Analyzing complexity, similarity, and perfor-
mance. Figure 4 presents Kendall’s Tau correlation
analysis for all three factors: complexity, similar-
ity, and performance. In looking at the last row in
particular (i.e., performance of the ‘30K’ model)
we observe that performance is strongly correlated
with VOR, which in turn is strongly correlated with

Figure 4: Kendall’s Tau analysis comparing perfor-
mance, complexity, and similarity. Darker shades indi-
cate better correlation except for JSD, where a lighter
shade (negative correlation) is desirable.

metrics of complexity (types, TTR, and entropy).
Taken together, these results suggest that a more
complex corpus leads to better downstream evalua-
tion performance.

5 Conclusions

We investigate whether pretraining on a corpus with
higher complexity subsequently yields improved
performance in downstream evaluations. Within
this study, we construct corpora of diverse complex-
ities by using straightforward metrics like Flesch
reading ease, and estimate corpus-level complex-
ity using metrics such as unique word types, type-
token ratio, or unigram entropy. The results of
our extensive empirical analysis, which involves
training language models from scratch using five
distinct corpora of varying text complexity and eval-
uating their performance across eight downstream
tasks, suggest a strong correlation between cor-
pus complexity, its similarity to downstream data,
and the resulting performance on these tasks. One
interesting direction for future research involves
exploring the findings of this study in the context
of generative language models.

Limitations

One limitation of our study is that, due to computa-
tional constraints, we use what are now considered
as relatively “small-sized” models and corpora, ex-
clusively focusing on the English language and
generic domains such as Wikipedia articles and
books. The generalizability of our findings to larger
corpora, other languages, or specific domains such
as medical texts warrants further investigation.

261

Acknowledgments

We thank the anonymous reviewers for their insight-
ful comments. This work was partially supported
by NSF grants 2246174 and 1910655.

References
Ameeta Agrawal, Suresh Singh, Lauren Schneider, and

Michael Samuels. 2021. On the role of corpus or-
dering in language modeling. In Proceedings of the
Second Workshop on Simple and Efficient Natural
Language Processing, pages 142–154.

Nastaran Babanejad, Heidar Davoudi, Ameeta Agrawal,
Aijun An, and Manos Papagelis. 2023. The role
of preprocessing for word representation learning
in affective tasks. IEEE Transactions on Affective
Computing, pages 1–18.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Christian Bentz, Dimitrios Alikaniotis, Michael
Cysouw, and Ramon Ferrer-i Cancho. 2017. The en-
tropy of words—learnability and expressivity across
more than 1000 languages. Entropy, 19(6):275.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, et al. 2021. Improving lan-
guage models by retrieving from trillions of tokens.
arXiv preprint arXiv:2112.04426.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Xiang Dai, Sarvnaz Karimi, Ben Hachey, and Ce-
cile Paris. 2019. Using similarity measures to
select pretraining data for NER. arXiv preprint
arXiv:1904.00585.

Xiang Dai, Sarvnaz Karimi, Ben Hachey, and Cecile
Paris. 2020. Cost-effective selection of pretraining
data: A case study of pretraining bert on social media.
arXiv preprint arXiv:2010.01150.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Robert M Fano. 1961. Transmission of information:
A statistical theory of communications. American
Journal of Physics, 29(11):793–794.

Rudolph Flesch. 1948. A new readability yardstick.
Journal of applied psychology, 32(3):221.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learn-
ing word vectors for 157 languages. arXiv preprint
arXiv:1802.06893.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Kristian TH Jensen. 2009. Indicators of text complexity.
Mees, IM; F. Alves & S. Göpferich (eds.), pages 61–
80.

Victoria Johansson. 2008. Lexical diversity and lexi-
cal density in speech and writing: A developmental
perspective. Working papers/Lund University, De-
partment of Linguistics and Phonetics, 53:61–79.

Wendell Johnson. 1944. Studies in language behavior:
A program of research. Psychological Monographs,
56(2):1–15.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab,
Daan van Esch, Nasanbayar Ulzii-Orshikh, Allahsera
Tapo, Nishant Subramani, Artem Sokolov, Claytone
Sikasote, et al. 2022. Quality at a glance: An audit of
web-crawled multilingual datasets. Transactions of
the Association for Computational Linguistics, 10:50–
72.

Lukas Lange, Jannik Strötgen, Heike Adel, and Dietrich
Klakow. 2021. To share or not to share: Predicting
sets of sources for model transfer learning. arXiv
preprint arXiv:2104.08078.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Conglong Li, Minjia Zhang, and Yuxiong He. 2021.
Curriculum learning: A regularization method for ef-
ficient and stable billion-scale gpt model pre-training.
arXiv preprint arXiv:2108.06084.

262

https://doi.org/10.1109/TAFFC.2023.3270115
https://doi.org/10.1109/TAFFC.2023.3270115
https://doi.org/10.1109/TAFFC.2023.3270115
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Jianhua Lin. 1991. Divergence measures based on the
shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suárez, Yoann Dupont, Laurent Romary, Éric Ville-
monte de La Clergerie, Djamé Seddah, and Benoît
Sagot. 2019. Camembert: a tasty french language
model. arXiv preprint arXiv:1911.03894.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Koichi Nagatsuka, Clifford Broni-Bediako, and
Masayasu Atsumi. 2021. Pre-training a bert with
curriculum learning by increasing block-size of input
text. In Proceedings of the International Conference
on Recent Advances in Natural Language Processing
(RANLP 2021), pages 989–996.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Sebastian Ruder and Barbara Plank. 2017. Learning to
select data for transfer learning with Bayesian opti-
mization. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 372–382, Copenhagen, Denmark. Association
for Computational Linguistics.

Claude Elwood Shannon. 1948. A mathematical theory
of communication. The Bell system technical journal,
27(3):379–423.

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong
Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun
Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha,
et al. 2022. On the effect of pretraining corpora on
in-context learning by a large-scale language model.
arXiv preprint arXiv:2204.13509.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yile Wang, Yue Zhang, Peng Li, and Yang Liu. 2023.
Language model pre-training with linguistically mo-
tivated curriculum learning.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

A Similarity Analysis

Figure 5 presents the results of similarity analysis
and Pearson’s correlation analysis using Jensen-
Shannon divergence.

(a) JSD (lighter shades indicate higher similarity)

(b) JSD (negative correlation is better)

Figure 5: (top) Similarity between pretraining corpora
and downstream datasets (train set) using JSD. The last
column ‘average’ presents the average results of all
the datasets. (bottom) Pearson’s correlation analysis
between JSD and performance at 10K, 20K, and 30K
step checkpoints.

263

https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 264–273
July 13, 2023 ©2023 Association for Computational Linguistics

PersonaPKT: Building Personalized Dialogue Agents via
Parameter-efficient Knowledge Transfer

Xu Han1, Bin Guo2, Yoon Jung2, Benjamin Yao2, Yu Zhang2, Xiaohu Liu2 and Chenlei Guo2

1University of Colorado Boulder
2Amazon Alexa

xuha2442@colorado.edu, {guobg, yoonjun, benjamy, yzzhan,

derecliu, guochenl}@amazon.com

Abstract

Personalized dialogue agents (DAs) powered
by large pre-trained language models (PLMs)
often rely on explicit persona descriptions to
maintain personality consistency. However,
such descriptions may not always be avail-
able or may pose privacy concerns. To tackle
this bottleneck, we introduce PersonaPKT, a
lightweight transfer learning approach that can
build persona-consistent dialogue models with-
out explicit persona descriptions. By repre-
senting each persona as a continuous vector,
PersonaPKT learns implicit persona-specific
features directly from a small number of dia-
logue samples produced by the same persona,
adding less than 0.1% trainable parameters for
each persona on top of the PLM backbone. Em-
pirical results demonstrate that PersonaPKT
effectively builds personalized DAs with high
storage efficiency, outperforming various base-
lines in terms of persona consistency while
maintaining good response generation quality.
In addition, it enhances privacy protection by
avoiding explicit persona descriptions. Overall,
PersonaPKT is an effective solution for creat-
ing personalized DAs that respect user privacy.

1 Introduction

Recent advances in large-scale pre-trained lan-
guage models (PLMs) greatly boost the perfor-
mance of chit-chat dialogue agents (DAs) in gen-
erating understandable and fluent responses. How-
ever, a PLM-powered DA can potentially suffer
from the lack of a consistent personality (Zhang
et al., 2018; Li et al., 2016; Lian et al., 2022)
since it is typically trained on dialogues col-
lected from many different personas (i.e., per-
sona cross-contamination). To address the issue,
many approaches have been proposed to build more
persona-consistent models by conditioning on ex-
plicit persona descriptions (Zhang et al., 2018;
Wolf et al., 2019). These descriptions can steer
the response generation and are usually presented

in the form of several sentences like "I love the
beach.", "I am on a diet now.". However, such
explicit persona statements are rarely available in
practice: They require hand-crafted feature designs
(Madotto et al., 2019) and are intractable to be
directly extracted from real-world conversations
or speakers (Zhang et al., 2018; Madotto et al.,
2019; Lee et al., 2021a). Moreover, explicit per-
sona statements may contain sensitive user infor-
mation, thereby raising privacy concerns.

In light of this, we introduce PersonaPKT:
Persona-based Parameter-efficient Knowledge
Transfer, a lightweight transfer learning approach
to build persona-consistent dialogue models with-
out explicit persona descriptions. Inspired by the re-
cent success in lightweight PLM-tuning approaches
such as prefix-tuning (Li and Liang, 2021) and
prompt-tuning (Lester et al., 2021), each persona
is represented as a continuous vector (i.e., a per-
sonalized prefix) in PersonaPKT, adding less than
0.1% trainable parameters compared to a full PLM.
PersonaPKT then prepends these personalized pre-
fixes to the PLM with frozen weights to steer the re-
sponse generation. Instead of utilizing explicit per-
sona descriptions, each personalized prefix learns
implicit persona-specific features directly from a
small number of dialogues produced by the same
persona (i.e., low data scenarios). To further im-
prove the response generation quality under such
low data scenarios, PersonaPKT first trains one
source prefix over multiple personas’ data agnos-
tically, then uses the source prefix to initialize the
training of the personalized prefix for a target per-
sona (as in Fig 1). Through such initialization, Per-
sonaPKT is able to transfer the knowledge learned
from various personas to the target personalized
prefix training, preventing a significant drop in gen-
eration quality due to limited personalized train-
ing data (Madotto et al., 2019). Empirical results
show that PersonaPKT is able to build personalized
dialogue models with high storage efficiency, out-

264

Figure 1: An overview of PersonaPKT.

performing various baselines in terms of persona
consistency while maintaining good response gen-
eration quality. In addition, it enhances privacy pro-
tection by avoiding explicit persona descriptions.

In practice, PersonaPKT is advantageous in its
modularity and extendability. PersonaPKT main-
tains a separate personalized prefix for each per-
sona, making it easily scalable to batch process
multiple users while ensuring privacy protection
and eliminating the risk of cross-contamination
among users’ data. Additionally, PersonaPKT’s
two-stage transfer learning process allows the
source prefix to be further optimized via different
training strategies based on practical needs, show-
ing its great extendability. In this work, we exper-
imented with both data-level (temperature-scaled
mixing) and model-level (meta-learning) optimiza-
tion algorithms to train the source prefix to demon-
strate the effectiveness of PersonaPKT. To the best
of our knowledge, our work is the first on build-
ing personalized dialogue models via parameter-
efficient knowledge transfer. As a result, our work
makes three unique contributions:

• We introduce PersonaPKT, a lightweight trans-
fer learning approach to build personalized
dialogue models that respect user privacy.

• We show the great potential of PersonaPKT by
further optimizing it via data-level and model-
level optimization algorithms.

• We conduct large-scale empirical experiments
to show that PersonaPKT builds better person-
alized dialogue models in terms of both per-
sona consistency and storage efficiency while
maintaining good response generation quality.

2 Related Work

2.1 Personalized Dialogue Generation
Previous studies have shown that when explicit
persona descriptions are available, they can be en-
coded into memory networks (e.g., Zhang et al.,
2018) or appended to dialogue histories to gener-
ate persona-consistent responses (e.g., Wolf et al.,
2019). However, the utilization of explicit per-
sona descriptions raises privacy concerns as it may
require access to personal information. To ad-
dress this issue, Madotto et al. (2019) introduced
a persona-agnostic meta-learning (PAML) algo-
rithm that enables the learning of persona-specific
dialogue generation models without the need for
explicit persona descriptions. Subsequently, sev-
eral studies have explored this direction using var-
ious methodologies (Lee et al., 2021b; Yao et al.,
2021; Wu et al., 2021). For example, Lee et al.
(2021b) trained persona-specific models via multi-
task meta-learning without any explicit persona
descriptions. While the PAML algorithm and its
follow-up work demonstrate the feasibility of train-
ing persona-consistent dialogue agents without ex-
plicit persona description, they still require mod-
ifying the entire language model parameters and
storing a full copy of the pre-trained model for each
persona. To address this limitation, our approach
here provides a more storage-efficient solution for
creating effective personalized DAs without the
need for explicit persona descriptions.

2.2 Parameter-Efficient Knowledge Transfer
Instead of modifying all the language model param-
eters, efficient tuning approaches such as prompt-
tuning (Lester et al., 2021) and prefix-tuning (Li
and Liang, 2021) optimize a small number of
trainable parameters (i.e., prompts/prefixes) for
higher flexibility and storage efficiency. How-
ever, these parameter-efficient tuning methods oc-
casionally suffer from low training efficiency (e.g.,
slower convergence rate (Su et al., 2022; Xie et al.,
2022)) and limited model performance compared
to full fine-tuning settings (Xie et al., 2022; Li
and Liang, 2021). To tackle these issues, many
studies have explored the extent to which these
parameter-efficient approaches can perform knowl-
edge transfer. Vu et al. (2022) pointed out that
prompts/prefixes learned from one or more source
tasks were transferrable and could be used to ini-
tialize the prompt/prefix for a target task. Su et al.
(2022) further validated such findings and claimed

265

that knowledge transfer can accelerate parameter-
efficient tuning methods and improve their perfor-
mance. In this work, we adapt parameter-efficient
knowledge transfer to personalized dialogue mod-
eling, which to our knowledge is the first attempt
in this area.

3 Methodology

3.1 PersonaPKT

An overview of PersonaPKT is shown in Fig 1.
Building on the parameter-efficient tuning ap-
proach (e.g., prefix-tuning 1 (Li and Liang, 2021))
which learns task-specific continuous vectors to
condition a frozen pre-trained model, PersonaPKT
considers learning different personas as differ-
ent tasks. Specifically, PersonaPKT adds a train-
able persona-specific vector pθ for each persona,
which we call a personalized prefix, depicted by
orange blocks in Fig 1. The personalized prefix is
prepended to the task input and the backbone PLM
can attend to it as if it were a sequence of "virtual
tokens". During training, PersonaPKT only opti-
mizes the personalized prefix while the backbone
PLM remains frozen.

In PersonaPKT, a personalized prefix is trained
on each persona’s dialogue data only. The limited
dialogue data per persona will result in a low-data
resource scenario, potentially leading to a signifi-
cant performance drop in terms of dialogue genera-
tion quality. In light of this, PersonaPKT is novel in
introducing source prefix tuning, an extra training
stage before personalized prefix tuning (Fig 1). It
first trains one source prefix over multiple personas’
data agnostically and then uses the source prefix
to initialize the training of the personalized prefix
for a target persona. Via such a two-stage transfer
learning process, PersonaPKT is able to transfer
the knowledge learned from various personas to
the target prefix training, preventing the generation
quality from dramatically dropping due to limited
training data per persona.

3.2 Optimizing the Training of Source Prefix

PeronsaPKT’s two-stage learning process allows
the source prefix to be further optimized via differ-
ent training strategies. To validate and fully lever-
age the benefits of its two-stage learning process,
we explored two specific optimization algorithms

1In our study, we utilized prefix-tuning. However, Person-
aPKT can be adapted to any of the parameter-efficient tuning
approaches, such as prompt-tuning.

in terms of data-level (temperature-scaled mixing)
and model-level (meta-learning), to train the source
prefix.

3.2.1 Data-level optimization
PersonaPKT considers learning the source prefix
as a multi-task learning process, which involves di-
alogue data from various personas. As pointed out
by previous studies (Arivazhagan et al., 2019), it is
important for multi-task learning to properly mix
the data from each task the model should be trained
on. We thus utilized temperature-scaled mixing, a
common data mixing approach used by multilin-
gual BERT (Devlin et al., 2018) and T5 (Raffel
et al., 2020), ensuring that the source prefix was
sufficiently trained on low-resource personas. We
implemented temperature scaling with a tempera-
ture T , where the mixing rate of each persona’s data
is raised to the power of 1

T and then re-normalized
so that they sum to 1.

3.2.2 Model-level optimization
Madotto et al. (2019) proposed a PAML algorithm
to learn personalized DA models without any ex-
plicit persona descriptions. Inspired by PAML,
we employed meta-learning algorithms to further
optimize the training of source prefix. Specifi-
cally, we adapted Reptile (Nichol and Schulman,
2018), a widely-used meta-learning algorithm, into
our parameter-efficient-tuning-based setting. The
adapted algorithm, which we refer to as Parameter-
efficient Persona-agnostic Reptile (PPReptile), is
described in Algorithm 1. We further present algo-
rithm details as follows.

We define the persona dataset as D =
{P1, P2, ..., Pz}, where z is the number of per-
sonas in D. D is further split into Dtrain, Dvalid,
Dtest. PPReptile first randomly samples n personas
ρ1, ρ2, ..., ρn from Dtrain. With pre-trained param-
eters θpretrain and randomly initialized weights
θprefix, PPReptile then updates the dialogue model
fθ=θpretrain∪θprefix with

θprefix ← θprefix + β
1

n

n∑

i=1

(Wi − θprefix) (1)

, where the gradient Wi

Wi = SGD(Lρi , θprefix, α, k) (2)

. Here, β in Equation 1, α in Equation 2 de-
notes the inner and outer learning rate respec-
tively. k in Equation 2 denotes k steps of SGD

266

on ρi. Lρi is from L = {L1,L1, ...,Lz, }, which
is the set of loss functions corresponding to all
ρi in ρ1, ρ2, ..., ρn. Specifically, we use the cross-
entropy loss for our response generation task.

The main difference between PPReptile and
vanilla Reptile is that PPReptile updates prefix
parameters only, even though the gradient com-
putation still relies on both pre-trained and prefix
parameters.

Algorithm 1 Parameter-efficient Persona-agnostic
Reptile

Require: model fθ=θpretrain∪θprefix
Dtrain = {ρ1, ρ2, ..., ρz}
α, β: learning rates
L = {L1,L1, ...,Lz, }: set of loss functions
corresponding to all potential personas
k: inner step number
n: persona batch size

1: for iteration in [1, 2, ...] do
2: Sample n personas ρ{1,2,...,n} ∼ Dtrain ,
3: for i in [1,2,...,n] do
4: Wi = SGD(Lρi , θprefix, α, k)
5: end for
6: θprefix ← θprefix + β 1

n

∑n
i=1(Wi −

θprefix)
7: end for

4 Experiment and Results

4.1 The task of personalized dialogue
generation

The task of personalized dialogue generation aims
to build dialogue models that are able to generate
personalized utterances as response to the input
utterance in the context of given dialogue histo-
ries. The generated response is expected to not
only have good generation quality but also contain
information that is consistent with the desired per-
sonas. Desired personas are usually provided in the
form of several sentences as described in Section
1. In our study, we explore building dialogue mod-
els with PersonaPKT for both regular and few-shot
personas (i.e., personas with less than 6 dialogues,
more details in section 4.2.1).

4.2 Experiment setup
4.2.1 Dataset
Our experiments are conducted using PERSONA-
CHAT (Zhang et al., 2018), a widely-used conver-
sational dataset that contains persona-based dia-

Table 1: Statistics of dataset

of personas
Number of dialogues

Train Validation Test
Part A1 754 5471 774 774
Part B2 300 2166 304 304
Part C3 239 538 239 239
1 Part A: for source prefix training
2 Part B: for personalized prefixes training with regular personas
3 Part C: for personalized prefixes training with few-shot personas

logues. Following Madotto et al. (2019), we first
match all dialogues in PERSONA-CHAT by their
persona descriptions. After examining the distribu-
tion of the number of dialogues per persona (Fig 3
in Appendix A.1), we define a few-shot persona if
the number of dialogues of that persona is smaller
than 6. We had 239 few-shot personas and 1054
regular personas in total. We then randomly set
aside 300 regular personas. The remaining 754 reg-
ular personas are used as the dataset for the source
prefix training (Part A). The 300 regular personas
(Part B) and 239 few-shot personas (Part C) are
used to train target personalized prefixes. There
were no overlapped personas among Part A, Part B,
and Part C. Within each persona, train, valid and
test set are randomly created by dialogue numbers
following the ratio of 8:1:1. Table 1 are the basic
statistics of our newly-split dataset.

4.2.2 Evaluation Metrics
Automated evaluation We report F1 score of the
generated responses against the human-generated
target, which is the standard metric used for
PERSONA-CHAT. F1 score can reflect the re-
sponse quality (Madotto et al., 2019). For per-
sona consistency, we report a widely used consis-
tency metric called C score, which was defined by
Madotto et al. (2019). They first trained a BERT-
based Natural Language Inference (NLI) model
to automatically generate NLI annotation between
persona descriptions pj and dialogue utterances u
(as Formula (3)).

NLI(u, pj) =

1 if u entails pj
0 if u is independent to pj

−1 if u contradicts pj
(3)

. Based on NLI(u, pj), the persona consistency
score C is then defined as below.

C(u) =
m∑

j

NLI(u, pj) (4)

. The BERT-based NLI model was trained on
Dialog NLI (Welleck et al., 2019) dataset which

267

achieved a test set accuracy of 88.43%. In Formula
(4), m is the number of sentences in the explicit per-
sona descriptions. C score is shown to be aligned
with human-evaluated consistency (Madotto et al.,
2019) and a higher C score means having a more
persona-consistent dialogue response. In addition,
we report trainable parameter sizes to reflect the
storage efficiency of each experiment setting.

Human evaluation We also conduct a human eval-
uation on 377 generated response examples from
50 randomly selected personas in Part B to com-
plement the automatic evaluation results. In ac-
cordance with the guidelines provided by Madotto
et al. (2019), we requested crowd-sourced workers
to assess the fluency (response quality) and per-
sona consistency of the generated response with
respect to the dialogue histories and explicit per-
sona descriptions. Specifically, the workers were
instructed to rate the response fluency on a 5-point
Likert scale ("1 (Not at all)" to "5 (To a great ex-
tent)"). For persona consistency, they were required
to assign a score of -1, 0, or 1 for contradicts, neu-
tral, or consistent, respectively. To ensure the anno-
tation quality, we adopted the following strategies:
(1) we only recruited crowd-sourced workers who
had an approval rate greater than or equal to 99%
while being located in the United States; (2) two
additional annotators further validated the crowd-
sourced annotations independently. Following their
validation, they resolved any annotation conflicts
through discussion or by taking the average score
as the final decision.

4.2.3 Implementation details
We implemented PersonaPKT using GPT2 2 (Rad-
ford et al., 2019) as the backbone PLM, which
has around 345M parameters. A persona-agnostic
source prefix was first trained with Part A’s data.
Then we trained personalized prefixes for each per-
sona on part B and C. In order to stabilize the train-
ing of prefixes, we followed Li and Liang (2021)
and employed their parametrization strategy with
k = 512 (the number of persona-specific parame-
ters is less than 0.1% of the total GPT2 parameters
with k = 512). When optimizing the training of
the source prefix, we used T = 10 for temperature-
scaled mixing. For meta-learning-based optimiza-

2We only used GPT2 as a testbed to explore the effective-
ness of PersonaPKT. PersonaPKT can be adapted to different
PLM backbones.

tion, we used learning rates of α = 10−4, β =
3× 10−5, and batch sizes of bin = 2, bout = 4 for
the inner, outer loops, respectively. When training
target personalized prefixes, we tuned batch size
and learning rate with early stopping on each per-
sona’s validation set. During model training, we
used the AdamW optimizer (Loshchilov and Hut-
ter, 2019) and a linear learning rate scheduler for
all the models. We also used beam search with a
beam size of 5 when decoding.

4.3 Experiment Settings
We compare the following 8 training settings:

• Persona + Fine-tuning: A GPT2 model fine-
tuned on Part A and evaluated on the test set
of Part B and C. Explicit persona descriptions
were appended to the input utterance during
both training and inference. Although this
setting utilized explicit persona descriptions,
which is different from the underlying assump-
tions of PersonaPKT (i.e., without explicit per-
sona descriptions), we still include this setting
as a point of reference.

• Fine-tuning: Without any explicit persona
descriptions as input, this setting fine-tuned a
GPT2 model on Part A in a persona-agnostic
manner and evaluated on the test set of Part B
and C;

• Persona_id + Fine-tuning: A GPT2 model
fine-tuned on Part A and evaluated on the
test set of Part B and C. Same as Persona
+ Fine-tuning while only the persona id was
appended to the input utterance instead of the
explicit persona descriptions;

• Reptile + Fine-tuning: Multiple persona-
specific GPT2 models fine-tuned for each
persona respectively in Part B and C. Each
persona-specific GPT2 model was trained
on dialogues produced by that persona only.
Each personalized GPT2 model was initial-
ized using a GPT2 model, which was fine-
tuned in a persona-agnostic manner on Part A
with the Reptile algorithm;

• Rand init + Prefix-tuning: Personalized pre-
fixes were trained for each persona respec-
tively in Part B and C. Each personalized pre-
fix was trained on dialogues produced by that
persona only. Prefix weights were randomly
initialized;

268

Table 2: Results of automatic evaluation. Significantly underperforming settings are highlighted with ✗.

Automatic Metrics
1-gram F1 ↑ 2-gram F1 ↑ LCS F1 ↑ 1 C Score ↑ Trainable

Parameter Size ↓ 2Part B 3 Part C 4 Part B Part C Part B Part C Part B Part C

With
descriptions

Persona + Fine-tuning 5 18.64 17.42 6.76 5.68 17.69 16.50 0.20 0.23 1 * 100%

Without
descriptions

Fine-tuning 18.16 17.18 6.27 5.86 17.30 16.22 -0.0082 ✗ 0.0076 ✗ 1 * 100%
Persona_id + Fine-tuning 17.87 16.84 5.98 5.45 16.89 15.88 0.00 ✗ 0.00 ✗ 1 * 100%
Reptile + Fine-tuning 16.30 15.40 4.44 3.78 15.20 14.22 0.27 0.21 (N+1) * 100% ✗

Rand init + Prefix-tuning 9.36 ✗ 8.12 ✗ 1.34 ✗ 1.21 ✗ 6.74 ✗ 4.98 ✗ 0.28 0.26 N * 0.1%
PersonaPKT (base) 16.35 14.91 4.77 3.96 15.39 13.89 0.14 0.11 (N+1) * 0.1%
PersonaPKT (temperature) 16.40 16.38 4.53 4.66 15.41 15.15 0.15 0.12 (N+1) * 0.1%
PersonaPKT (PPReptile) 16.25 15.30 4.69 3.64 15.17 14.01 0.21 0.16 (N+1) * 0.1%

1 LCS F1 denotes the longest common subsequence F1;
2 N in this column represents the number of personas;
34 Part B for regular personas while part C for few-shot personas;
5 The model is trained with explicit persona descriptions while other models not.

• PersonaPKT (base): Personalized prefixes
were trained for each persona respectively in
Part B and C. Each personalized prefix was
trained on dialogues produced by that persona
only. Each personalized prefix was initialized
using a source prefix, which was trained in a
persona-agnostic manner on Part A;

• PersonaPKT (temperature): Personalized
prefixes were trained for each persona respec-
tively in Part B and C. Each personalized pre-
fix was trained on dialogues produced by that
persona only. Each personalized prefix was
initialized using a source prefix, which was
trained in a persona-agnostic manner on Part
A’s data after temperature-scaled mixing;

• PersonaPKT (PPReptile): Personalized pre-
fixes were trained for each persona respec-
tively in Part B and C. Each personalized
prefix was trained on dialogues produced by
that persona only. Each personalized prefix
was initialized using a source prefix, which
was trained in a persona-agnostic manner with
PPReptile in Algorithm 1 using Part A’s data.

4.4 Results

Automatic and human evaluation results are pre-
sented in Table 2 and Table 3, respectively. Over-
all, PersonaPKT outperforms various baselines in
terms of persona consistency in both automatic and
human evaluation metrics. When explicit persona
descriptions are not available, PersonaPKT is capa-
ble of achieving significantly higher persona con-
sistency compared to fine-tuning baselines in both

Table 3: Results of human evaluation. Significantly
underperforming settings are highlighted with ✗.

Human Metrics

Fluency
Persona
Consistency

With
descriptions

Persona + Fine-tuning 3.59 0.18

Without
descriptions

Fine-tuning 3.68 0.00080 ✗

Persona_id + Fine-tuning 3.69 -0.024 ✗

Reptile + Fine-tuning 3.62 0.22
Rand init + Prefix-tuning 2.49 ✗ 0.12
PersonaPKT (base) 3.71 0.17
PersonaPKT (temperature) 3.46 0.20
PersonaPKT (PPReptile) 3.42 0.20

automatic and human evaluation metrics, regard-
less of the optimization strategies (PersonaPKT
vs. Fine-tuning, Persona_id+Fine-tuning). More-
over, PersonaPKT (PPReptile) achieves even
higher human-annotated persona consistency than
the fine-tuning baseline in scenarios where explicit
persona descriptions are available (PersonaPKT
vs. Persona+Fine-tuning).

For response quality, the comparison between
PersonaPKT and Rand init + Prefix-tuning fur-
ther shows the effectiveness of using a source pre-
fix to maintain good response generation quality.
While PersonaPKT has lower F1 scores than other
fine-tuning baselines, PersonaPKT (base) has
achieved the highest human-annotated fluency com-
pared to other baselines. This finding aligns with
previous studies that indicate F1 measures are not
highly correlated with human judgments (Madotto
et al., 2019; Liu et al., 2016). For completeness,
we show generated response examples from Per-

269

sonaPKT and baseline models in Appendix A.2.
In addition, PersonaPKT finds a good trade-

off between storage efficiency and model perfor-
mance. Although PersonaPKT performs slightly
worse than the Reptile + Fine-tuning baseline in
terms of both automatic and human-annotated per-
sona consistency, its storage efficiency is consider-
ably higher, resulting in more practical utility. As
shown in Table 2, all our findings in terms of the
automatic metrics can be generalized to few-shot
personas as well (Part C).

In conclusion, although PersonaPKT doesn’t
achieve the highest score in any of the evaluation
metrics across the board except human-annotated
fluency (Table 2, Table 3), it overcomes the lim-
itations of all the baseline models, avoiding sig-
nificantly poor performances in neither response
quality, persona consistency nor storage-efficiency
(significantly underperforming metrics under each
setting were highlighted with ✗).

4.5 Ablation Study

In the ablation study, we further evaluate the impact
of different PersonaPKT optimization approaches.
Specifically, we study how fast the source prefix can
be adapted to a certain persona when training per-
sonalized prefix. As shown in Fig 2, we compared
PersonaPKT (base), PersonaPKT (temperature)
and PersonaPKT (PPReptile) in terms of their C
score with controlled numbers of epochs. The ex-
periment was conducted on 100 randomly-selected
personas from Part B.

Figure 2: Ablation study results: how fast the source
prefix can be adapted to a certain persona with different
PersonaPKT optimization strategies.

As shown in Fig 2, PersonaPKT (PPReptile)
has the best performance: it can achieve the highest
C score with the fewest training epochs, demon-
strating the effectiveness of utilizing meta-learning

to train the source prefix. In contrast, Table 2
and Table 3 reveal that PersonaPKT (base) and
PersonaPKT (temperature) have better response
quality than PersonaPKT (PPReptile). These ob-
servations highlight the extendability of Person-
aPKT’s two-stage transfer training process, which
enables the source prefix to be further optimized
via various training strategies. Such extendability
is valuable in practice as it indicates that engineers
can choose or even propose customized optimiza-
tion strategies to train the source prefix based on
their specific needs. For example, if their prod-
ucts prioritize persona consistency over F1 score,
PPReptile could be a suitable choice for optimiza-
tion.

5 Limitations

5.1 Automatic metrics vs. Human annotation

F1 vs. fluency. As discussed in section 4.4,
we have observed that the F1 score cannot be
well-correlated with human annotations across
almost all experiment settings. This is mostly due
to the inflexibility of computing the F1 score sorely
based on the similarity between the generated
responses and golden references. Such observa-
tions echo findings from previous studies (Madotto
et al., 2019; Liu et al., 2016; Deutsch et al., 2022).
In this work, we still utilize F1 score since it’s a
standardized metric for PERSONA-CHAT evalua-
tion. However, future work should aim to find a
better evaluation metric that can more comprehen-
sively reflect the quality of the generated responses.

C score vs. human-annotated consistency. We
observed a significant discrepancy between the C
score and human-annotated consistency under the
setting of Rand init + Prefix-tuning. Upon further
analysis, we discovered that many responses gen-
erated from this setting contain repeated sentences
with persona-consistent keywords (e.g., as shown
in Table 4, Rand init + Prefix-tuning repeated "he
is a preacher" multiple times). While human anno-
tators tend to ignore these repeated sentences, the
C score considers them as highly consistent. Our
observations indicate that although the C score has
been shown to be a good indicator of persona con-
sistency (Madotto et al., 2019), it is still limited
under certain experiment settings like Rand init
+ Prefix-tuning. Similar to the F1 score, a better
evaluation metric is needed in the future to more
comprehensively reflect the persona consistency of

270

generated responses.

5.2 Hyperparameter Selection

One limitation of PersonaPKT is its sensitivity to
hyperparameters. Since PersonaPKT maintains
persona-specific prefixes, this modularity of Per-
sonaPKT allows flexibility in optimizing hyperpa-
rameters for each persona, such as learning rate,
batch size, etc. Despite the advantage, our experi-
ments show that the performance of PersonaPKT
is more sensitive to hyperparameters compared to
baseline models trained over multiple personas’
data agnostically (Persona + Fine-tuning, Fine-
tuning, Persona_id + Fine-tuning). At the same
time, persona-specific baseline models trained on
a small number of dialogues produced by a single
persona (Reptile + Fine-tuning, Rand init + Prefix-
tuning) demonstrate similarly high sensitivity to hy-
perparameters as PersonaPKT. Such observations
indicate that this high sensitivity is a common is-
sue in persona-specific models like PersonaPKT.
Strategies for improving their robustness to hyper-
parameters can be a potential study area in the
future.

6 Discussion

In practice, PersonaPKT is advantageous in its
modularity and extendability. Due to its high stor-
age efficiency, PersonaPKT is advantageous when
there are a large number of user-specific models
that need to be maintained independently. Per-
sonaPKT offers not only scalability to batch pro-
cess multiple users, but also enhances user privacy
by avoiding cross-contamination between different
users’ data. Moreover, PersonaPKT’s great extend-
ability allows engineers to adopt various source
prefix optimization strategies, parameter-efficient
tuning approaches or even PLM backbones based
on practical needs. Lastly, it enhances privacy pro-
tection by avoiding the use of explicit persona de-
scriptions. All of these advantages of PersonaPKT
make it a valuable contribution to personalized DA
training in the industry.

7 Conclusion

We present PersonaPKT, a lightweight transfer
learning approach for building persona-consistent
dialogue models without the need for explicit per-
sona descriptions. By representing each persona
as a continuous vector, PersonaPKT learns implicit
persona-specific features directly from dialogue

samples produced by the same persona, with less
than 0.1% trainable parameters added for each per-
sona on top of the PLM backbone. Its two-stage
learning process provides training flexibility, allow-
ing for various optimization strategies to further en-
hance the training of the source prefix. PersonaPKT
offers potential in terms of privacy protection and
batch processing of multiple users. Future work
will explore different optimization strategies and
generalize PersonaPKT to additional applications.

References
Naveen Arivazhagan, Ankur Bapna, Orhan Firat,

Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, et al. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. arXiv preprint arXiv:1907.05019.

Daniel Deutsch, Rotem Dror, and Dan Roth. 2022. Re-
examining system-level correlations of automatic
summarization evaluation metrics. arXiv preprint
arXiv:2204.10216.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jing Yang Lee, Kong Aik Lee, and Woon Seng
Gan. 2021a. Generating personalized dialogue
via multi-task meta-learning. arXiv preprint
arXiv:2108.03377.

Jing Yang Lee, Kong Aik Lee, and Woon Seng Gan.
2021b. Generating personalized dialogue via multi-
task meta-learning. In Proceedings of the 25th Work-
shop on the Semantics and Pragmatics of Dialogue -
Full Papers, Potsdam, Germany. SEMDIAL.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 994–1003, Berlin, Germany. Associa-
tion for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

271

http://semdial.org/anthology/Z21-Lee_semdial_0012.pdf
http://semdial.org/anthology/Z21-Lee_semdial_0012.pdf
https://doi.org/10.18653/v1/P16-1094
https://doi.org/10.18653/v1/P16-1094
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Ruixue Lian, Che-Wei Huang, Yuqing Tang, Qilong Gu,
Chengyuan Ma, and Chenlei Guo. 2022. Incremen-
tal user embedding modeling for personalized text
classification. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7832–7836. IEEE.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics
for dialogue response generation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2122–2132, Austin,
Texas. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Andrea Madotto, Zhaojiang Lin, Chien-Sheng Wu, and
Pascale Fung. 2019. Personalizing dialogue agents
via meta-learning. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5454–5459, Florence, Italy. Asso-
ciation for Computational Linguistics.

Alex Nichol and John Schulman. 2018. Reptile: a
scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(3):4.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and
Jie Zhou. 2022. On transferability of prompt tuning
for natural language processing. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3949–3969,
Seattle, United States. Association for Computational
Linguistics.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5039–5059, Dublin, Ireland. Association
for Computational Linguistics.

Sean Welleck, Jason Weston, Arthur Szlam, and
Kyunghyun Cho. 2019. Dialogue natural language
inference. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,

pages 3731–3741, Florence, Italy. Association for
Computational Linguistics.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A transfer
learning approach for neural network based conver-
sational agents. CoRR, abs/1901.08149.

Yuwei Wu, Xuezhe Ma, and Diyi Yang. 2021. Personal-
ized response generation via generative split memory
network. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1956–1970, Online. Association for
Computational Linguistics.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei,
Li Tian, James Zou, Junzhou Huang, et al. 2021. Im-
proving generalization in meta-learning via task aug-
mentation. In International Conference on Machine
Learning, pages 11887–11897. PMLR.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2204–2213,
Melbourne, Australia. Association for Computational
Linguistics.

A Appendix

A.1 Distribution of the number of dialogues
per persona (Fig 3)

A.2 Generated response examples (Table 4)

272

https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/P19-1542
https://doi.org/10.18653/v1/P19-1542
https://doi.org/10.18653/v1/2022.naacl-main.290
https://doi.org/10.18653/v1/2022.naacl-main.290
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/P19-1363
https://doi.org/10.18653/v1/P19-1363
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
https://doi.org/10.18653/v1/2021.naacl-main.157
https://doi.org/10.18653/v1/2021.naacl-main.157
https://doi.org/10.18653/v1/2021.naacl-main.157
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205

Figure 3: Distribution of the number of dialogues per persona in PERSONA-CHAT

Table 4: Generated examples

Persona
my favorite color is purple

i am a 1st grade teacher
i have a 3 year old

my father is a preacher
i go to church on sunday

Dialogue history
Speaker 1: well i do not have any kids yet just four cats .

Speaker 2: i would love to see a purple cat ! its my favorite color
Speaker 1: oh my favorite color is blue . any hobbies ?

Target utterance
Speaker 2: not really . i really love church though , maybe because my dad is a preacher . you ?

Generated Responses
Persona + Fine-tuning:
Fine-tuning:
Persona_id + Fine-tuning:
Reptile + Fine-tuning:
Rand init + Prefix-tuning:
PersonaPT (base):
PersonaPT (temperature):
PersonaPT (PPReptile):

i like to go to church on sunday.
i like to go to the beach.
i like to play video games.
i run an tumblr blog dedicated to purple things it is my favorite color.
with my dad. he is a preacher. i am a preacher. i am a preacher. i am a preacher...
i go to church every sunday at sunday
i do not have any hobbies, i am a teacher. how about you?
i do not have any hobbies at all. i am a teacher

273

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 274–289
July 13, 2023 ©2023 Association for Computational Linguistics

Small Character Models Match Large Word Models for Autocomplete
Under Memory Constraints

Ganesh Jawahar♣∗, Subhabrata Mukherjee♠, Debadeepta Dey♠,
Muhammad Abdul-Mageed♣♢, Laks V.S. Lakshmanan♣, Caio Cesar Teodoro Mendes♠,

Gustavo Henrique de Rosa♠, Shital Shah♠
♣University of British Columbia, ♠Microsoft ♢MBZUAI

ganeshjwhr@gmail.com, {laks,amuham01}@cs.ubc.ca,
{Subhabrata.Mukherjee,dedey,caiocesart,gderosa,shitals}@microsoft.com

Abstract

Autocomplete is a task where the user inputs
a piece of text, termed prompt, which is con-
ditioned by the model to generate semanti-
cally coherent continuation. Existing works
for this task have primarily focused on datasets
(e.g., email, chat) with high frequency user
prompt patterns (or focused prompts) where
word-based language models have been quite
effective. In this work, we study the more chal-
lenging setting consisting of low frequency user
prompt patterns (or broad prompts, e.g., prompt
about 93rd academy awards) and demonstrate
the effectiveness of character-based language
models. We study this problem under memory-
constrained settings (e.g., edge devices and
smartphones), where character-based represen-
tation is effective in reducing the overall model
size (in terms of parameters). We use WikiText-
103 benchmark to simulate broad prompts and
demonstrate that character models rival word
models in exact match accuracy for the auto-
complete task, when controlled for the model
size. For instance, we show that a 20M pa-
rameter character model performs similar to
an 80M parameter word model in the vanilla
setting. We further propose novel methods to
improve character models by incorporating in-
ductive bias in the form of compositional infor-
mation and representation transfer from large
word models. Datasets and code used in this
work are available at https://github.com/
UBC-NLP/char_autocomplete.

1 Introduction

Autocomplete models are conditioned on user-
written prompts or text to generate semantically
coherent continuations. For example, given the
user input “Filmmaker George Lucas used Tikal as

a ”, a semantically coherent continuation can
be “filming location” (Example 1). Autocomplete
models can dramatically reduce keystrokes and im-
prove user’s productivity in a wide range of appli-

∗Part of work was done as an intern in Microsoft.

cations including email, chat and document author-
ing. Some typical challenges in building a real-
time autocomplete model include: (i) processing
arbitrary length user input (e.g., paragraphs), (ii)
handling low frequency user prompt patterns (or
broad prompts that typically cover wider vocabu-
lary (as in Example 1), and (iii) satisfying memory
constraints of the target device (such as cap on peak
memory utilization).

Despite the importance of the task, there has
been limited research on autocomplete. Existing
works such as Smart Compose (Chen et al., 2019)
and (Trajanovski et al., 2021) train autoregressive
language models on emails and chats, where user
prompt patterns tend to be high-frequency. That
is, the prompts are focused prompts, e.g., a prompt
about office standups, that typically cover narrower
vocabulary. All these models are trained at word
level, which leads to two issues: (i) input/output
embedding parameters (less compressible compo-
nent of the Transformer model (Shen et al., 2020)1)
occupy a significant share (e.g., more than 77%) of
the parameter budget due to the large vocabulary
size and (ii) tendency to memorize high-frequency
prompt patterns resulting in poor generalization on
the low-frequency ones.

n-gram unigram bigram trigram

Wikitext-103 95.44 84.35 60.63
Reddit 86.41 77.04 54.36

Table 1: Percentage of unique out of vocabulary (OOV)
n-grams in test set of WikiText-103 (broad prompts) vs.
Reddit (focused prompts) datasets.

In this paper, we focus on the autocomplete
task of broad prompts from domains such as
Wikipedia, where user prompt patterns often have

1Shen et al. (2020) study the effects of quantization on
different components of Transformer model, on the perfor-
mance in various NLP tasks. They find that the embedding
layer is most sensitive to quantization than other components
and requires more bits to keep performance loss acceptable.

274

https://github.com/UBC-NLP/char_autocomplete
https://github.com/UBC-NLP/char_autocomplete

low frequency (e.g., prompt about 93rd academy

awards). For instance, from Table 1, we observe
that WikiText-103 (broad prompts) contains at least
10% more unique out of vocabulary (OOV) n-
grams compared to the Reddit dataset (focused
prompts). This makes our task more challenging
than conventional settings considered in prior work
which do one of the following: (i) adopt word-
based models that are good at memorizing high-
frequency patterns for focused prompts or (ii) rely
on conventional language modeling which is not
geared for generating precise and short horizon
continuations (see Section 4).

Furthermore, we study this problem for prac-
tical applications under memory-constrained set-
tings. Lower-end edge platforms (e.g., Raspberry
Pi with 256MB of memory (Cai et al., 2020)) have
memory constraints that are more limiting than la-
tency constraints, for supporting various on-device
models. Also, given that autoregressive language
models are memory-bounded (Wang et al., 2021),
we focus on improving the accuracy-memory trade-
off for autocomplete task of broad prompts. Our
work is complementary to existing works in model
compression including those on pruning (Gordon
et al., 2020), quantization (Han et al., 2016) and
distillation (Sanh et al., 2019) that primarily fo-
cus on natural language understanding tasks (e.g.,
text classification). In contrast to these works, we
study the effectiveness of character-based language
models for a natural language generation task (e.g.,
autocomplete).

In this paper, we focus on two research ques-
tions. RQ1: How do character-based autocom-
plete models compare against word counterparts
under memory constraints? RQ2: How to improve
character-based autocomplete models with no neg-
ative impact on memory? We answer RQ1 by
showing that compared to word models, character
models (i) contribute 96% fewer parameters in the
embedding layer due to a much smaller vocabulary,
(ii) work well on low-frequency (or broad) prompt
patterns (e.g., 21% accuracy improvement by us-
ing 20M character model over 20M word model,
see Figure 2 (a)) and (iii) result in high savings
on peak memory utilization (e.g., 4.7% memory
savings by using 20M character model over 20M
word model, see Figure 2 (b)). When controlled
for model size (number of parameters), we find
that smaller character models (e.g., 20M parame-
ters) perform similar to large word models (e.g.,

80M parameters). We answer RQ2 by developing
novel methods to improve the accuracy of char-
acter models, which unlike previous work, have
minimal impact on memory usage. These methods
introduce inductive bias in the form of composi-
tional information and representation transfer from
large word models (best method). We show that
the best method achieves 1.12% and 27.3% relative
accuracy improvements over vanilla character and
vanilla word models respectively with no impact
on memory usage. We discuss the limitations of
our work in Section 8 and defer the analysis of
accuracy-latency trade-off to future work while fo-
cusing only on memory-constrained settings in this
work.

Our major contributions are as follows: (1) To
the best of our knowledge, this is the first study
of the autocomplete task for broad prompts in a
memory-constrained setting. (2) We perform an
extensive comparison of character and word mod-
els across diverse architectures and demonstrate
the advantage of character models over large word
models for the autocomplete task on dimensions
like peak memory utilization and model parame-
ters. (3) We introduce novel methods leveraging
inductive bias to further improve the accuracy of
character models with minimal impact on memory
usage.

2 Related Work

Our work leverages advances in neural language
models, autocompletion, and efficient deep learn-
ing.
Neural Language Models. The autocomplete
models we study in this work utilize Transformer-
based (Vaswani et al., 2017) autoregressive neural
language models as backbone. Compared to word
models, character models lag behind in language
modeling performance when controlled for model
size (Al-Rfou et al., 2019; Choe et al., 2019) and
have a high computational complexity due to long
sequence length (Tay et al., 2022). In this work,
we focus on deploying models on lower-end edge
platforms (e.g., Raspberry Pi) where memory, as
opposed to latency, is the major bottleneck.
Autocomplete Task. Despite the pervasiveness
of autocomplete models, there is limited research
in the academic community on the autocomplete
task. Gmail Smart Compose (Chen et al., 2019) is a
popular word-based autocomplete model for email
suggestions. They find the encoder-decoder archi-

275

tecture to have a higher latency than the decoder-
only architecture. They also find the Transformer
architecture to be marginally better than the LSTM
architecture (Hochreiter and Schmidhuber, 1997).
Motivated by these findings, we employ a decoder-
only, Transformer based architecture for building
our autocomplete model. Trajanovski et al. (2021)
leverage word-based autocomplete models for pro-
viding email and chat suggestions.

In this work, we focus on building autocomplete
models for broad prompts from domains such as
Wikipedia, where user prompt patterns can be quite
low frequency (e.g., prompt about Bruce Vilanch

(Oscars writer), with frequency of only 6 times).
Unlike our prompt completion task, query auto-
completion task is a well researched problem (Bar-
Yossef and Kraus, 2011; Cai and de Rijke, 2016;
Wang et al., 2020; Gog et al., 2020), where the
goal is to complete the user’s query, e.g., search
query. Since user queries are generally short, query
autocomplete models need not track long-range
dependencies to understand the user’s intent. In
contrast, it is a requirement in our prompt comple-
tion setting, as the user prompt can be arbitrarily
large, e.g., sentences or paragraphs.

ChatGPT (OpenAI, 2023b) and GPT-4 (OpenAI,
2023a) are recent dialogue models, which have gar-
nered a great attention from the AI community for
their ability to converse with human-like capabil-
ities. The data used to train these models are not
disclosed by the authors. As it is entirely possi-
ble for their training data to include the test sets
we study in our work and train-test overlap anal-
ysis cannot be performed, we cannot make a fair
comparison of our work with these ‘closed’ AI
models (Rogers et al., 2023). Models such as Al-
paca (Taori et al., 2023), Vicuna (Chiang et al.,
2023), GPT-4-LLM (Peng et al., 2023) that claim
to perform similarly as ChatGPT with few billion
parameters are usually finetuned with outputs from
ChatGPT or GPT-4. Hence, these models cannot
be fairly compared with our work either.

Efficient Deep Learning. Exponential growth in
the size of Transformer-based autoregressive lan-
guage models (e.g., 175B (Brown et al., 2020)) has
given rise to a strong need to make these models
efficient so they can be used on commodity de-
vices like laptop, tablet, and mobile, which have
various resource constraints such as peak memory
utilization and latency, while yielding the best per-
formance under the constraints. To this end, there

has been extensive research on building efficient
Transformer models that are smaller, faster, and bet-
ter, as summarized thoroughly by Tay et al. (2020)
and Menghani (2021). Our work is focused on im-
proving the efficiency of a natural language gener-
ation task (e.g., autocomplete), which has received
less attention from an efficiency perspective. Wang
et al. (2021) observe that 73% of the overall latency
of autoregressive language models goes to memory
intensive data movement operations (e.g., splitting
heads, transpose, reshape) and conclude that these
models are memory intensive. Since lower-end
edge platforms have tighter memory constraints
than latency constraints (Cai et al., 2020), we fo-
cus on improving the accuracy-memory trade-off
of autocomplete models.

3 Autocomplete – Fundamentals

Problem. Given a text sequence x =
(x1, . . . , x|x|) (user input) with tokens from a fixed
vocabulary xi ∈ V , the goal of the autocomplete
task is to generate a completion x̂k+1:N such that
the resulting sequence (x1, . . . , xk, x̂k+1, . . . , x̂N)
resembles a sample from p∗, where p∗(x) denotes
the reference distribution. x can be arbitrarily large
(e.g., paragraphs), while x̂k+1:N is generally short
(e.g., three words). Each token xk can be a word,
character, or subword. The vocabulary V contains
unique tokens from the dataset D consisting of a
finite set of text sequences from p∗.
Data. Most datasets in the autocomplete litera-
ture come from domains with focused prompts
(e.g., emails (Chen et al., 2019; Trajanovski et al.,
2021), chat messages (Trajanovski et al., 2021)).
In this work, we target the autocomplete task on
datasets with broad prompts (e.g., Wikipedia) with
a lot of low-frequency prompt patterns (e.g., the
prompt EACL 2023 conference). Autocomplete mod-
els trained to answer broad prompts can be used to
assist users in completing documents such as essay,
report, letter, etc.
Metrics. The commonly used metric for evaluat-
ing the quality of an autocomplete model is Ex-
actMatch@N (Rajpurkar et al., 2016) which mea-
sures the percentage of the first N words in the
predicted suggestion that exactly match the first
N words in the ground truth suggestion. Exact-
Match@Overall (Chen et al., 2019) is a weighted
average of the ExactMatch for all subsequence
lengths up to K. For our setting, larger n-grams
are increasingly difficult to predict for both word

276

and character models as shown in Figure 3. Hence
we set K to 3. Since the exact match metric strictly
looks for full match of the subsequence, it is a hard
metric to improve on, especially for broad prompts.
One can utilize a less stringent metric such as Par-
tialMatch (Trajanovski et al., 2021). PartialMatch
measures the percentage of characters in the first
N words in the predicted suggestion that exactly
match those of the ground truth suggestion. How-
ever, PartialMatch might not adequately penalize
for the grammatical incorrectness of the predicted
suggestion. Trajanovski et al. (2021) also utilize
metrics that require interactions from real users,
which are difficult to acquire in practice. Given
that the user-based metrics and PartialMatch met-
ric have a strong correlation with ExactMatch in
all the experiments carried out by Trajanovski et al.
(2021), we use the exact match metric to quantify
the performance of the autocomplete model in this
work. We further perform human evaluation to
compare the naturalness and user acceptability of
the suggestions generated by different models.2

Model. We adopt the Transformer architecture,
specifically Transformer-XL (Dai et al., 2019), for
our autocomplete model. We choose Transformer-
XL for the following two reasons: (i) as Dai et al.
(2019) show, the model achieves strong results
on word and character-based language modeling
benchmarks and (ii) the model can handle long text
sequences (e.g., 1600 word tokens or 3800 charac-
ter tokens) which is crucial for treating arbitrarily
long user inputs (x).
Training. We train a decoder-only, Transformer-
XL model that conditions on user input to generate
the suggestion autoregressively. The parameters θ
of the autocomplete model pθ(x) can be optimized
using the standard language modeling objective.
Inference. During inference, the model pθ(x)
takes the user input x1:k ∼ p∗ and generates
the suggestion x̂k+1:N ∼ pθ(.|x1:k) such that
(x1, . . . , xk, x̂k+1, . . . , x̂N) resembles a sample
from p∗. In this work, we choose greedy search
and select the token that receives the highest prob-
ability as the generated token; that is, x̂t =
argmax pθ(xt|x1, . . . , xt−1). As shown in Ap-
pendix A.5 (see Figure 7), beam search performs
poorly on our task and the trends we see in the
next section do not depend on the choice of the

2For our final comparison, however, we report Partial-
Match vs. ExactMatch (Table 2). We do not experiment
with ranking metrics (e.g., mean reciprocal rank) since our
autocomplete model produces just a single suggestion.

decoding algorithm. For simplicity, we assume the
autocomplete model generates exactly one sugges-
tion x̂k+1:N .

4 Character vs. Word Model

Existing autocomplete models are primarily word-
based, i.e., the representation choice for xk is word.
Word-based autocomplete models have the follow-
ing properties: (i) they invest most of the param-
eters (e.g., more than 77%) from the overall pa-
rameter budget on the embedding layer, which is
less likely compressible using standard techniques
such as quantization (Shen et al., 2020) and (ii)
they can memorize high-frequency prompt patterns
and perform well on datasets with focused prompts
(e.g., Reddit posts). In this work, we focus on auto-
completion on broad prompts and we aim to keep
the parameter allocation to the embedding layer
as small as possible thereby improving the overall
memory footprint. To this end, we choose char-
acter as the representation choice and study the
memory-accuracy tradeoff of character based mod-
els on the autocomplete task for broad prompts.
Character-based autocomplete models have several
desirable properties compared to their word based
counterpart, as they (i) invest far fewer parameters
(e.g., less than 4%) of the parameter budget on
the embedding layer and invest most parameters
on other highly compressible Transformer compo-
nents such as self-attention network, feedforward
network, and softmax layer; (ii) perform well on
datasets with broad prompts (as we will show);
and (iii) provide a better tradeoff between accuracy
and memory (model size and peak memory utiliza-
tion). To demonstrate these properties, we perform
extensive experiments on the WikiText-103 bench-
mark (Merity et al., 2017) (unless stated otherwise).
This benchmark contains about 100M tokens from
Wikipedia to simulate broad prompts. Since we
focus on improving the memory footprint of au-
tocomplete models, we do not experiment with
subword models, which introduce a large number
of token embeddings in the embedding layer (e.g.,
50K), compared to their character based counter-
part. In other words, we focus only on character
models that keep the parameter allocation to the
embedding layer as small as possible thereby im-
proving the overall memory footprint.
Component-Wise Parameter Breakdown.
Transformer-XL model can be broken down
into four components: (i) adaptive embedding

277

AdaEmb Softmax Attn FFN
0

20

40

60

80

100
 =77.21

 =0.00 =13.39 =7.50

(a) Word

AdaEmb Softmax Attn FFN
0

20

40

60

80

100

 =3.75 =2.69

 =52.05

 =39.72

(b) Character

Figure 1: Percentage of parameters allocated to a given component w.r.t. different components in Transformer-XL
model aggregated across 100 random architectures.

21% acc.

(a) Accuracy vs. No. of Parameters

4.7% mem.

(b) Accuracy vs. Peak Memory Utilization

Figure 2: Accuracy-Memory Pareto Curve. Each point in the curve has number of model parameters at the end.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
N

0.05

0.10

0.15

0.20

0.25

0.30

Ex
ac

tM
at

ch
@

N

char80M
word80M

(a) Wikitext-103

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
N

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ex
ac

tM
at

ch
@

N

char_80M
word_80M

(b) Reddit

Figure 3: ExactMatch@N vs. N for word and char. model on first 500 samples from Wiki-103 and Reddit Dev sets.

layers (AdaEmb) (Baevski and Auli, 2019), which
contain shared input and output token embeddings;
(ii) self-attention layers (Attn); (iii) feedforward
network layers (FFN); and (iv) output softmax
layers (Softmax). Figure 1 shows the percentage of
parameters allocated to each component for both
word- and character-based models, averaged over
100 random architectures for each representation.3

Word-based models allocate more than 77% of
the parameters to the embedding layers, which
are less amenable to compression, for purposes of
generating efficient and smaller models. These
models allocate less than 14% and 8% of the
parameter budget to highly compressible layers
such as self-attention and feedforward network
layers. In contrast, character-based models
allocate more than 90% of the parameters to these
highly compressible layers and less than 4% to
the embedding layers. Hence, character-based

3The hyperparameter space used to sample architectures is
shown in Appendix A.2.

100 150 200 250 300 350 400 450 500
cutoff

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ex
ac

tM
at

ch
@

1

word (Reddit)
char (Reddit)
word (Wikitext)
char (Wikitext)

Figure 4: ExactMatch@1 vs. Cutoff for word and char-
acter model. Cutoff refers to the top k prompts based
on the percentage of OOV n-grams (upto 3) in ascend-
ing (descending) order for WikiText (Reddit), where
k ∈ {100, 250, 500}. Character models perform better
than word models on WikiText (broad prompts) and
vice versa on Reddit (focused prompts).

models have the potential to admit much greater
compression using standard techniques such as
distillation and quantization with a negligible
performance drop.
Accuracy vs. Memory Tradeoff. Although
character-based models seem to have better com-
pression potential, their autocomplete performance
gap over word-based models as a function of mem-

278

ory is not immediately obvious. We study the effect
of memory in two ways: (i) model size, which cor-
responds to the total number of model parameters,
and (ii) peak memory utilization, which measures
the peak amount of memory utilized by a process
during inference. In all our experiments, the de-
coding of character models stops once the desired
number of words (identified by space character) are
predicted. The hyperparameter values for word and
character autocomplete models of different sizes
can be seen in Table 5 and Table 6 respectively. Fig-
ure 2 shows the accuracy-memory pareto curve4.
Surprisingly, we observe that small character mod-
els (e.g., 20M) can rival large word models (e.g.,
80M) in terms of accuracy-memory tradeoff. For
instance, if we use a character model of size 20M
instead of a word model of size 80M, we can save
75% of the model parameters and more than 60%
of the peak memory utilization for a performance
drop of < 0.5 points.
Broad vs. Focused Domain. Prior works (Al-
Rfou et al., 2019; Choe et al., 2019) have found
character models to be lagging behind word models
in language modeling performance. Surprisingly,
small character models perform similarly to or bet-
ter than big word models on the autocomplete task.
We hypothesize that the reason behind the superior
performance of character models in our setting is
due to their ability to answer broad prompts better
than word-based models. To validate this claim, we
compare character and word models on their ability
to answer broad and focused prompts, controlled
for the model size consisting of 80M parameters
each.

From Table 1, we observe that the percentage
of unique out-of-vocabulary (OOV) n-grams in
WikiText-103 is 10% higher than that in the Reddit
dataset. While WikiText and Reddit by nature have
a different vocabulary distribution, the significant
gap in the relative proportions of OOV n-grams in-
dicates that Wikipedia articles cover more diverse
and broad domains. Therefore we simulate broad
prompts using articles from WikiText-103 and fo-
cused prompts with user posts from Reddit.com
website (The Pushshift Reddit Dataset (Baumgart-
ner et al., 2020), see Appendix A.1 for more de-
tails). As shown in Figure 3, the performance
of the word-based model is superior to that of
the character-based model in answering focused

4Hyperparameter values of different model sizes for word
and character models can be found in Appendix A.3.

prompts, but not for answering broad prompts. A
potential reason is the tendency of word-based mod-
els to memorize high-frequency patterns that are
rife in datasets with focused prompts. On the other
hand, character-based models excel on answering
broad prompts (which are the focus of our work)
which can be attributed to their superior ability
in handling low-frequency patterns. We observe
this trend with character-based models when we
report the accuracy on the the top k (‘cutoff’) low
(high) frequent prompt patterns for WikiText (Red-
dit) selected by ranking the prompts based on the
percentage of OOV n-grams (up to 3) in the as-
cending (descending) order (see Figure 4). We also
observe the trend for unseen datasets with broad
prompts (e.g., Penn Treebank, see Appendix A.8).

5 Methods to Improve Character Models

In the previous section, we demonstrated character-
based models to be more efficient than word-based
models for the autocomplete task on broad prompts.
Unlike word-based models, which directly con-
sume words, character-based models are forced
to learn and compose semantically meaningful tex-
tual units (e.g., suffixes, words) from more granular
lexical units in the form of characters. Therefore,
methods that can explicitly integrate information
from semantic units higher than characters (such
as from words or word segments) can propel the
performance of character based models (Park and
Chiba, 2017). However, existing methods primar-
ily focus on improving the accuracy of character
models, often at the expense of memory. For ex-
ample, Park and Chiba (2017) augment a character
model with explicit model parameters for word
embeddings, which add several millions of addi-
tional parameters (e.g., 13M parameters with mod-
est embedding size of 50 and standard WikiText-
103 word vocabulary size of 267K). We introduce
some novel methods that explicitly integrate word
information into the character model with negligi-
ble impact on memory, as discussed next.
BERT-Style Word Segment Embedding. In this
method, we introduce a word segment embedding
layer which acts as an inductive bias by provid-
ing the word segment information explicitly in ad-
dition to character and position embedding lay-
ers (Figure 5 (a)). This word segment embedding
layer is inspired by the sentence segment layer of
BERT (Devlin et al., 2019) which helps the model
distinguish sentences in the textual input. In our

279

Reddit.com

I <space> s a w <space>

EI E<space> Es Ea Ew E<space>

E0 E1 E2 E3 E4 E5

Input

Char.

Position

ws0 ws1 ws2 ws3 ws4 ws5Word

(a) BERT-Style method

I <space> s a w <space>

EI E<space> Es Ea Ew E<space>

E0 E1 E2 E3 E4 E5

Input

Char.

Position

EI E<space> Es Pool (Es,Ea) Pool (Es,Ea ,Ew) E<space>Word

(b) Character pooling method

I <space> s a w

Untrained character model

random init. I saw a cat .

Trained word model

transfer

random init.

(c) Transfer from word models method

Figure 5: Methods to improve character models. Note ‘Position’ in (a), (b) refers to character position embeddings.

case, the word segment embedding layer can help
the model distinguish words in the textual input.
The number of additional model parameters intro-
duced by this layer equals the maximum number
of words in a training input sequence times the em-
bedding dimension, which is generally negligible.

Character Pooling. In this method, we compute
word embeddings by pooling from embeddings of
characters seen so far for the current word (see
Figure 5 (b)). The pooling function takes a set
of character embeddings as input, and outputs
the word embedding which is concatenated with
other embeddings (as additional input) similar to
the previous method. We experiment with non-
parameterized, simple pooling functions such as
sum, mean, and maximum. Unlike the previous
method, the character pooling method does not in-
troduce additional model parameters, due to the
choice of our pooling function. The computation
of word embedding does not involve look-ahead
embeddings from characters belonging to the cur-
rent word (that are not seen at the current timestep),
thus preventing data leakage that could render the
language modeling task trivial.

Transfer from Word Models. In this method, we
initialize a subset of decoder layers of the charac-
ter model with decoder layers from a trained word
model. Unlike previous methods, the decoder layer
transfer method can appropriately exploit the rich
syntactic and semantic information learned by the
word model, which serves as a good starting point
for training a character model rather than training
from scratch. Figure 5 (c) illustrates the transfer of
the bottom 50% of decoder layers from the word
model to the character model. Similar to the charac-
ter pooling method, this method does not introduce
additional model parameters. Rather, this method
introduces a novel hyperparameter that controls the
percentage of word-level bottom layers to transfer
into our character-level model, which is tuned on
the validation set. To the best of our knowledge, no
prior work has explored transferring layers from
a source trained model, where the source and the
target model have very different vocabularies.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Context Percent

0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150

Ex
ac

tM
at

ch
@

Ov
er

al
l

baseline
BERT-style
mean pool
max pool
sum pool

Figure 6: Improvements of char. models of size 80M
with BERT-style word segment and char. pooling over
baseline char. model on WikiText-103 validation set.

6 Results

We now discuss improvements on training charac-
ter models by employing our novel methods over
training a baseline character model from scratch.
Improvements w.r.t context percent. Figure 6
shows improvements of character models of size
80M with BERT-style word segment embedding
and character pooling methods. Context percent
corresponds to the percentage of initial tokens
taken from a Wikipedia paragraph to construct
the prompt, while the rest of the tokens form the
ground truth. BERT-style word segment outper-
forms the baseline and character pooling methods
on all context percent values. We attribute the infe-
rior performance of the character pooling methods
to their inability to track the order of the characters
while computing the word representation. Among
different pooling functions, the max function per-
forms well on most context percent values. When
the context percent is very low (e.g., 0.2-0.35), it
is interesting to see that all methods perform sim-
ilar or outperform the baseline. This result shows
that integrating word information explicitly is es-
pecially crucial when the prompts are ambiguous
or contain few tokens (i.e., context percent is low).
We omit the character pooling method from our
further analysis due to its inferior performance.
Quantitative Analysis. Table 2 shows the perfor-
mance improvements of proposed baseline char-
acter model as well as its proposed variants over
baseline word model of size 10M. To transfer de-
coder layers from the word model, we first train
a 20-layer word model that has the same Trans-

280

Models Exact Match
Overall (%)

Partial Match
Overall (%)

Naturalness
(%)

Acceptability
(%)

Human 100 100 88 100

Base (Word) 8.51 13.76 53 87

Base (Char) 10.71
(+25.9%)

15.37
(+11.7%)

62
(+16.9%)

93 (+6.9%)

BERT-st.
(Char)

10.78
(+26.7%)

15.42
(+12.1%)

59
(+11.3%)

93 (+6.9%)

Transfer fr.
word (Char)

10.83
(+27.3%)

15.5 (+12.6%) 69 (+30%) 94 (+8.1%)

Table 2: Improvements of various proposed models over
baseline word model of the same size (10M parameters)
on the WikiText-103 test set.

former shape (i.e., number of heads, head dimen-
sion, model dimension, and inner dimension in
feedforward layer) as the baseline word model and
transfer the bottom 10% of the decoder layers from
the word model to initialize our character model.5

Consistent with the findings of Trajanovski et al.
(2021), we observe the improvements in Exact-
Match@Overall and PartialMatch@Overall met-
rics to be highly correlated. Both “BERT-style
word segment" and “transfer from word model"
methods improve upon the baseline word model
by at least 26% and 12% (shown in Table 2), in
terms of ExactMatch and PartialMatch respectively.
These methods also improve upon the baseline char-
acter model by at least 0.7% and 0.3% (not explic-
itly shown in Table 2), in terms of ExactMatch
and PartialMatch respectively. Importantly, com-
pared to the “BERT-style word segment” method
that introduces 384K additional parameters, our
“transfer from word model” method does not intro-
duce any additional parameters. This demonstrates
the advantage of “transfer from word models” in
improving baseline character model (as compared
to our other methods), while leaving no impact on
memory. We also perform human evaluation of sug-
gestions generated by various autocomplete models
based on their naturalness and acceptability. Natu-
ralness measures how natural the suggestion is with
respect to the prompt while acceptability measures
how likely the suggestion will be accepted by user
(details in A.11). Human suggestions taken from
WikiText-103 have a naturalness and user accept-
ability score of 88% and 100% as rated by anno-
tators. We observe that the “transfer from word
models” method generates most natural and user
acceptable suggestions (69%, 94% resp.), which is
better than the baseline character (62%, 93% resp.)

5The hyperparameter space for the transfer from word
models method can be seen in Appendix A.4.

second only to the human baseline (88%, 100%
resp.).

Prompt and Suggestions
Prompt: The Olmec civilization developed in the lowlands of southeastern Mexico ...
, the Indus Valley Civilization of south Asia
Ground truth: , the civilization
Baseline: , and the
BERT-style: , the indus
Transfer from word models: , the civilization
Prompt: Typhoon Lupit formed on November 18 from the monsoon trough to the
west of the Marshall Islands . Early in its duration , it moved generally to
Ground truth: the west or
Baseline: the north of
BERT-style: the west of
Transfer from word models: the west of

Table 3: Sample suggestions of length 3 words gener-
ated by baseline and proposed character autocomplete
models. See Appendix A.9 for more examples.

Qualitative Analysis. Tables 3 and 9 (Ap-
pendix A.9) show sample suggestions generated
by the proposed baseline character autocomplete
model as well as its proposed variants. Suggestions
generated by the strongest method seem to have
better match with the ground truth and factually
(e.g., direction of typhoon) correct.6

7 Conclusion

In this work, we investigated the challenging task of
building autocomplete models for answering broad
prompts under memory-constrained settings. To
this end, we introduced some novel methods that
integrate word information into a character model
with negligible impact on memory. Employing our
methods, we demonstrated that character models
can achieve a better accuracy-memory trade-off as
compared to word models.

8 Limitations

The limitations of this work are as follows:

• English. Our work builds autocomplete mod-
els for English language only.

• Accuracy-memory tradeoff only. Our work
primarily focuses on deploying models on
lower-end edge platforms where memory, as
opposed to latency, is the major bottleneck.
Hence, our methods may not improve the
accuracy-latency tradeoff, which is a focus
for future work.

• WikiText-103 dataset Our work explores
only WikiText-103 dataset for creating broad
prompts. In the future, we will study

6We provide a qualitative analysis of the baseline and
proposed character models in the Appendix A.10.

281

other datasets (e.g., 1 Billion Word Lan-
guage Model benchmark (Chelba et al., 2013))
that explore the full range of low-frequency
prompt patterns, which can arise in real-world
situations.

• Transformer-XL architecture Our work
studies only Transformer-XL architecture to
build word based and character based auto-
complete models. In the future, we will study
other popular architectures (e.g., GPT-2 (Rad-
ford et al., 2018)) to see the generalizability
of proposed techniques.

Acknowledgements

MAM acknowledges support from Canada Re-
search Chairs (CRC), the Natural Sciences and En-
gineering Research Council of Canada (NSERC;
RGPIN-2018-04267), Canadian Foundation for In-
novation (CFI; 37771), and Digital Research Al-
liance of Canada.7 Lakshmanan’s research was sup-
ported in part by a grant from NSERC (Canada).

References
Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy

Guo, and Llion Jones. 2019. Character-level lan-
guage modeling with deeper self-attention. In AAAI.

Alexei Baevski and Michael Auli. 2019. Adaptive input
representations for neural language modeling. In In-
ternational Conference on Learning Representations.

Ziv Bar-Yossef and Naama Kraus. 2011. Context-
sensitive query auto-completion. In Proceedings of
the 20th International Conference on World Wide
Web, WWW ’11, page 107–116. Association for
Computing Machinery.

Jason Baumgartner, Savvas Zannettou, Brian Keegan,
Megan Squire, and Jeremy Blackburn. 2020. The
Pushshift Reddit Dataset. CoRR, abs/2001.08435.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.
7https://alliancecan.ca

Fei Cai and Maarten de Rijke. 2016. A Survey of Query
Auto Completion in Information Retrieval. Now Pub-
lishers Inc.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han.
2020. Tinytl: Reduce memory, not parameters for
efficient on-device learning. In Advances in Neural
Information Processing Systems, volume 33, pages
11285–11297.

Ciprian Chelba, Tomás Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One
billion word benchmark for measuring progress in
statistical language modeling. CoRR, abs/1312.3005.

Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yi-
nan Wang, Andrew M. Dai, Zhifeng Chen, Timothy
Sohn, and Yonghui Wu. 2019. Gmail Smart Com-
pose: Real-Time Assisted Writing. In Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery And Data Mining, KDD ’19,
page 2287–2295.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Dokook Choe, Rami Al-Rfou, Mandy Guo, Heey-
oung Lee, and Noah Constant. 2019. Bridging the
Gap for Tokenizer-Free Language Models. CoRR,
abs/1908.10322.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah Smith, and Yejin Choi. 2022. Is GPT-3 text
indistinguishable from human text? scarecrow: A
framework for scrutinizing machine text. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7250–7274, Dublin, Ireland. Association
for Computational Linguistics.

Simon Gog, Giulio Ermanno Pibiri, and Rossano Ven-
turini. 2020. Efficient and effective query auto-

282

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://doi.org/10.1145/1963405.1963424
https://doi.org/10.1145/1963405.1963424
http://arxiv.org/abs/2001.08435
http://arxiv.org/abs/2001.08435
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://alliancecan.ca
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
https://doi.org/10.1145/3292500.3330723
https://doi.org/10.1145/3292500.3330723
https://vicuna.lmsys.org
https://vicuna.lmsys.org
https://vicuna.lmsys.org
http://arxiv.org/abs/1908.10322
http://arxiv.org/abs/1908.10322
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501

completion. In Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’20, page
2271–2280.

Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the Effects
of Weight Pruning on Transfer Learning. CoRR,
abs/2002.08307.

Song Han, Huizi Mao, and William J. Dally. 2016. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. ICLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Comput. Lin-
guist., 19(2):313–330.

Gaurav Menghani. 2021. Efficient deep learning: A sur-
vey on making deep learning models smaller, faster,
and better. CoRR, abs/2106.08962.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

OpenAI. 2023a. Gpt-4 technical report.

OpenAI. 2023b. Introducing chatgpt.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Dae Hoon Park and Rikio Chiba. 2017. A neural lan-
guage model for query auto-completion. In Proceed-
ings of the 40th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’17, page 1189–1192. Association
for Computing Machinery.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving Language Un-
derstanding by Generative Pre-Training. https://
s3-us-west-2.amazonaws.com/openai-assets/
research-covers/language-unsupervised/
language_understanding_paper.pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Anna Rogers, Niranjan Balasubramanian, Leon Der-
czynski, Jesse Dodge, Alexander Koller, Sasha Luc-
cioni, Maarten Sap, Roy Schwartz, Noah A. Smith,
and Emma Strubell. 2023. Closed ai models make
bad baselines.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: hessian based ultra low pre-
cision quantization of BERT. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8815–8821. AAAI
Press.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2020. Efficient transformers: A survey. CoRR,
abs/2009.06732.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2022.
Charformer: Fast character transformers via gradient-
based subword tokenization. In International Con-
ference on Learning Representations.

Stojan Trajanovski, Chad Atalla, Kunho Kim, Vipul
Agarwal, Milad Shokouhi, and Chris Quirk. 2021.
When does text prediction benefit from additional
context? an exploration of contextual signals for chat
and email messages. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Papers, pages 1–9,
Online. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat-
ten: Efficient sparse attention architecture with cas-

283

http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2106.08962
http://arxiv.org/abs/2106.08962
http://arxiv.org/abs/2106.08962
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://arxiv.org/abs/2303.08774
https://openai.com/blog/chatgpt
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://hackingsemantics.xyz/2023/closed-baselines/
https://hackingsemantics.xyz/2023/closed-baselines/
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2009.06732
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://doi.org/10.18653/v1/2021.naacl-industry.1
https://doi.org/10.18653/v1/2021.naacl-industry.1
https://doi.org/10.18653/v1/2021.naacl-industry.1

cade token and head pruning. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer
Architecture (HPCA), pages 97–110. IEEE.

Sida Wang, Weiwei Guo, Huiji Gao, and Bo Long. 2020.
Efficient neural query auto completion. In Proceed-
ings of the 29th ACM International Conference on
Information and Knowledge Management, CIKM
’20, page 2797–2804.

A Appendices

A.1 Reproducibility

We experiment with both Reddit and WikiText-
103 datasets. WikiText-103 is a public dataset and
widely adopted as a language modeling benchmark.
WikiText-103 is downloaded from tinyurl.com/
yajy5wjm. The Reddit dataset used in this work
is a sample of publicly available Pushshift Red-
dit dataset (Baumgartner et al., 2020). The sam-
ple contains 4M train, 20K validation and 20K
test posts. The key feature of the Reddit dataset
is the significantly low percentage of unique out
of vocabulary n-grams compared to WikiText-103,
as shown in Table 1 and discussed in Section 4.
For reproducibility, datasets and code used in
this work is available at tinyurl.com/bdd69r34
(anonymized) and will be made publicly available
should paper be accepted.

A.2 Hyperparameter space for computing
component-wise parameter breakdown

Table 7 displays the Transformer-XL hyperparame-
ter space used to create 100 random architectures
for computing component-wise parameter break-
down plot (Figure 1) for both word and charac-
ter models. Rest of the hyperparameters come
from the default configuration of Transformer-XL
model.

A.3 Hyperparameter values for word and
character models of different sizes

Table 5 displays the hyperparameter values for
word models of different sizes used in the paper.
Table 6 displays the hyperparameter values for char-
acter models of different sizes used in the paper.

A.4 Hyperparameter space for transfer from
word models method

Table 7 displays the hyperparameter space for the
proposed transfer from word models method.

A.5 Greedy vs. Beam search decoding

Figure 7 shows the pareto-curve for greedy and
beam search. It is clear that smaller character
models rival bigger word models regardless of the
choice of decoding algorithm. Strikingly, we find
greedy search to outperform beam search by a large
margin. Two possible reasons are: (i) the noise in-
jected by the adaptive softmax approximation of
predicted probability distribution over vocabulary,
and/or (ii) sensitivity of beam search to explore

284

https://doi.org/10.1145/3340531.3412701
tinyurl.com/yajy5wjm
tinyurl.com/yajy5wjm
tinyurl.com/bdd69r34

Hyperparameter Name Hyperparameter Values for Sampling
Number of hidden layers { 2, 4, 8, 12, 16, 24, 32 }
Number of attention heads { 2, 4, 8, 16, 32, 64 }
Dimension of attention head { 8, 16, 32, 64, 128 }
Dimension of input/output embedding { 256, 512, 1024, 2048 }
Inner dimension of feedforward layer { 256, 512, 1024, 2048 }
Dimension of model { 256, 512, 1024, 2048 }

Table 4: Hyperparameter space for computing component-wise parameter breakdown for both word and character
models.

Hyperparameter name / Model size 5M 10M 20M 30M 40M 50M 80M
Number of hidden layers 3 4 6 12 14 16 16
Number of attention heads 4 4 8 8 8 8 32
Dimension of attention head 24 24 32 32 32 32 32
Dimension of input/output embedding 18 36 74 100 128 160 256
Inner dimension of feedforward layer 60 150 200 768 900 800 768
Dimension of model 18 36 74 100 128 160 256
Number of tokens to predict during training 192 192 192 192 192 192 192
Number of tokens cached from previous iterations
during training

192 192 192 192 192 192 192

Learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Number of iterations for learning rate warmup 1K 1K 1K 1K 1K 1K 1K
Maximum number of training steps 200K 200K 200K 200K 200K 200K 200K
Batch size 256 256 256 256 256 256 256
Number of tokens to predict during evaluation 192 192 192 192 192 192 192
Number of tokens cached from previous iterations
during evaluation

192 192 192 192 192 192 192

Vocabulary size 267736 267736 267736 267736 267736 267736 267736

Table 5: Hyperparameter values for word models of different sizes.

spurious hypothesis when the user prompt patterns
are low frequency.

A.6 Differences of Autocomplete from
Conventional Language Modeling Task.

The autocomplete task is a well-defined problem
with rich prior literature (see Section 2). Existing
autocomplete research, including ours, is focused
on building a conventional language model that
computes the likelihood of a text sequence. The
training procedure for our autocomplete task and
that for conventional language modeling (CLM)
task are generally similar. However, the goal of
our autocomplete task is to generate suggestions
with high precision (as captured by ExactMatch)
while the main goal of CLM is to maximize the
overall data likelihood (as captured by perplex-
ity). Chen et al. (2019) show that perplexity and
ExactMatch metrics are only weakly correlated as
improvements in perplexity could be “mostly in
places where the model is relatively low in likeli-
hood score”. As shown in Figure 8, autocomplete
models with poorer perplexity scores (e.g., char-
acter model of size 20M) can enjoy better Exact-
Match scores compared to models with better per-
plexity scores (e.g., word model of size 20M). We

also perform a theoretical analysis to show how per-
plexity scores can change drastically for the same
ExactMatch score (details in Appendix A.7). Thus,
building a good language model is not enough to
solve the autocomplete task. Another major con-
ceptual difference between CLM and autocomplete
tasks is that the former focuses mainly on generat-
ing long horizon (typically 128-512 tokens) contin-
uation while the latter focuses on generating short
horizon (typically 3-5 tokens) continuation.

A.7 Theoretical analysis on differences in
perplexity and Exact Match metrics

We will conduct a theoretical study to show the
differences in the information captured by perplex-
ity and Exact Match metric. Specifically, we show
that the exact match score can be perfect whereas
perplexity score can either be perfect or worsen
by a large margin (Claim 1). Conversely, we also
show that the exact match score can be the worst
(i.e., zero) whereas the perplexity score can be poor
or better by a large margin (Claim 2). Without loss
of generality, we assume the vocabulary size V to
be 2. Let A, B be the two tokens corresponding to
the first and second index in the vocabulary respec-
tively. Consider a single token prediction (x̂j) and

285

Hyperparameter name / Model size 5M 10M 20M 80M
Number of hidden layers 12 12 12 16
Number of attention heads 8 8 8 8
Dimension of attention head 32 32 64 64
Dimension of input/output embedding 278 512 550 750
Inner dimension of feedforward layer 128 165 250 2048
Dimension of model 278 512 550 750
Number of tokens to predict during training 512 512 512 512
Number of tokens cached from previous iterations during training 512 512 512 512
Learning rate 0.001 0.001 0.001 0.001
Number of iterations for learning rate warmup 4K 4K 4K 4K
Maximum number of training steps 400K 400K 400K 400K
Batch size 128 128 128 128
Number of tokens to predict during evaluation 512 512 512 512
Number of tokens cached from previous iterations during evaluation 2K 2K 2K 2K
Vocabulary size 128 128 128 128

Table 6: Hyperparameter values for character models of different sizes.

Hyperparameter Name Hyperparameter Values
Number of hidden layers { 4, 8, 12, 16, 20, 24 }
Percentage of bottom most layers to transfer { 10%, 20%, 30%, 40%, 50% }

Table 7: Hyperparameter space for transfer from word models method.

10 20 30 40 50 60 70 80
No. of Parameters (M)

7

8

9

10

11

12

Ex
ac

tM
at

ch
@

O
ve

ra
ll

char_5

char_10

char_20

char_80

word_5

word_10
word_20

word_30

word_40
word_50

(a) Greedy search

10 20 30 40 50 60 70 80
No. of Parameters (M)

6

7

8

9

10

Ex
ac

tM
at

ch
@

O
ve

ra
ll

char_5
char_10

char_20

char_80

word_5

word_10word_20

word_30

word_40
word_50

(b) Beam search

Figure 7: Greedy search vs. Beam search on WikiText-103 test set. Beam size and prompt context percentage is set
as 5 and 20% respectively.

25 50 75 100 125 150 175 200
Perplexity

7

8

9

10

11

12

Ex
ac

tM
at

ch
@

Ov
er

al
l

char_20

char_10

char_5

word_80
word_40

word_20

word_5

word_50

word_10

word_30

Figure 8: Perplexity vs. ExactMatch. For comparison,
perplexity output by character models (also known as
bits per byte) is converted to perplexity per word using
the formula proposed in Choe et al. (2019).

let the ground truth token be B, that is, x̂j = [0, 1].
Table 8 shows the differences in perplexity score
and Exact Match score as a function of x̂j , as it
varies slightly. The first six rows in the table vali-
date Claim 1, where exact match score is 1 but the
perplexity ranges −9.9e−10 to 0.67. The rest of
the rows validate Claim 2, where the exact match
score is 0 but the perplexity score ranges from 0.69
to 20.72.

A.8 Accuracy-Memory Pareto-Curve on
Unseen Datasets

We study the accuracy-memory pareto curve of au-
tocomplete models trained on WikiText-103 and
evaluate on the test set of two unseen datasets:
LAnguage Modeling Broadened to Account for
Discourse Aspects (Paperno et al., 2016) (LAM-
BADA, mostly focused prompts) and Penn Tree-
bank (Marcus et al., 1993) (PTB, mostly broad
prompts). From Figure 9, we observe that the

286

Ground truth (xj) Prediction (x̂j) Exact Match Perplexity

[0, 1] [0, 1] 1 −9.9e−10
[0, 1] [0.1, 0.9] 1 0.11
[0, 1] [0.2, 0.8] 1 0.22
[0, 1] [0.3, 0.7] 1 0.36
[0, 1] [0.4, 0.6] 1 0.51
[0, 1] [0.49, 0.51] 1 0.67
[0, 1] [0.5, 0.5] 0 0.69
[0, 1] [0.51, 0.49] 0 0.71
[0, 1] [0.6, 0.4] 0 0.92
[0, 1] [0.7, 0.3] 0 1.2
[0, 1] [0.8, 0.2] 0 1.61
[0, 1] [0.9, 0.1] 0 2.3
[0, 1] [1.0, 0] 0 20.72

Table 8: Differences in perplexity and Exact Match as function of small changes in x̂j when the ground truth is
[0, 1].

trend where smaller character models rival larger
word models that holds true for answering broad
prompts (PTB) but not clearly for answering fo-
cused prompts (LAMBADA). It is striking that the
trend holds true for broad prompts even when the
examples are unseen during the training of the au-
tocomplete model.

A.9 Qualitative examples of suggestions from
autocomplete models

Table 9 displays sample suggestions generated by
vanilla and proposed character autocomplete mod-
els, grouped by the type of artifact in the genera-
tion.

A.10 Qualitative analysis of vanilla and
proposed character models

We manually inspect the suggestions generated by
vanilla and proposed character models8. Table 10
displays the percentage of different artifacts: plau-
sible (plausible suggestion that does not have exact
match with the ground truth), semantic error (e.g.,
new n-gram, incorrect n-gram usage), repetition
(e.g., n-gram with repetitions), and grammatical
error. Compared to baseline and BERT-style word
segment model, character model with decoder layer
transfer from word model results in less undesir-
able artifacts overall.

A.11 Human annotation of suggestions

We conduct human annotation of suggestions out-
putted by various autocomplete models based on
naturalness (how natural the suggestion is with re-
spect to the prompt?) and acceptability (whether

8Sample suggestions from different autocomplete models
can be seen in Appendix A.9.

the suggestion will be accepted by user or not?).
Some aspects of natural suggestion are borrowed
from Dou et al. (2022). The annotation guideline
for naturalness and acceptability can be seen in
Table 11 and Table 12 respectively. We ask 8 anno-
tators to rate 10 suggestions each.

287

10 20 30 40 50 60 70 80
No. of Parameters (M)

4.0

4.5

5.0

5.5

6.0

Ex
ac

tM
at

ch
@

O
ve

ra
ll

char_5

char_10

char_20

char_80

word_5

word_10

word_20

word_30

word_40word_50
word_80

lambda

(a) LAMBADA (Paperno et al., 2016)

10 20 30 40 50 60 70 80
No. of Parameters (M)

2.5

3.0

3.5

4.0

4.5

Ex
ac

tM
at

ch
@

O
ve

ra
ll

char_5

char_10
char_20

char_80

word_5

word_10
word_20

word_30
word_40

word_50

word_80

ptb

(b) PTB (Marcus et al., 1993)

Figure 9: Accuracy-Memory Pareto Curve for Autocomplete models trained on WikiText-103 and evaluated on test
set of two unseen datasets: LAMBADA and PTB.

Artifact
type

Prompt and Suggestions

Plausible

Prompt: In 2006 Boulter starred in the play Citizenship written by Mark Ravenhill . The play was part of a
series which featured different playwrights , titled Burn / Chatroom / Citizenship . In a 2006
Ground truth: interview , fellow
Baseline: interview , ravenhill
BERT-style: interview with the
Transfer from word models: interview with the

Plausible

Prompt: In December 759 , he briefly stayed in Tonggu (modern Gansu) . He departed on December 24 for
Chengdu (Sichuan province) , where he was hosted by local Prefect and
Ground truth: fellow poet Pei
Baseline: servant and served
BERT-style: chief executive officer
Transfer from word models: commissioned as a

Semantic
error

Prompt: In his lifetime and immediately following his death , Du Fu was not greatly appreciated . In part this
can be attributed to his stylistic and formal innovations, some of which are still "considered extremely daring
and bizarre by Chinese critics ." There are few contemporary references to him — only eleven poems from six
writers — and these describe him in terms of affection, but not as a
Ground truth: paragon of poetic
Baseline: reference to his
BERT-style: poem . the
Transfer from word models: consequence of his

Semantic
error

Prompt: Other translators have placed much greater weight on trying to convey a sense of the poetic forms
used by Du Fu . Vikram Seth in Three Chinese Poets uses English @-@ style rhyme schemes , whereas Keith
Holyoak in Facing the Moon approximates the Chinese rhyme scheme ; both use end @-@ stopped lines and
preserve some degree of parallelism . In The Selected Poems of Du Fu , Burton Watson follows the parallelisms
quite strictly , persuading the western reader to adapt to the poems rather than
Ground truth: vice versa .
Baseline: to the poems
BERT-style: adapt the poems
Transfer from word models: the parallelisms of

Repetition

Prompt: Although initially he was little @-@ known to other writers , his works came to be hugely influential
in both
Ground truth: Chinese and Japanese
Baseline: the writers and
BERT-style: writers and writers
Transfer from word models: the ancient and

Repetition

Prompt: In the 20th century , he was the favourite poet of Kenneth
Ground truth: Rexroth , who
Baseline: kenneth kenneth kenneth
BERT-style: county . the
Transfer from word models: kenneth kenneth kenneth

Grammatical
error

Prompt: Hung summarises his life by concluding that ,
Ground truth: " He appeared
Baseline: according to ksummarises
BERT-style: in the same
Transfer from word models: as a result

Table 9: Sample suggestions of length 3 words generated by vanilla and proposed character autocomplete models,
grouped by the type of artifact in the generation.

288

Artifact type Baseline BERT-style w. seg. Transfer from word models

Plausible (↑) 40 40 42
Semantic Error (↓) 7 6 7
Repetition (↓) 7 7 5
Gram. Error (↓) 3 3 2

Table 10: Percentage of different artifacts in the generated suggestion from vanilla and proposed character models,
by manual inspection of 100 WikiText-103 examples. ↑ indicates higher the better, ↓ indicates lower the better.

Autocomplete is a task where the user inputs a text, which is conditioned by the model to generate
‘natural’ continuation (or suggestion). The goal of this annotation effort is to rate the quality of
suggestions generated by various autocomplete models based on the ‘natural’ness. Each suggestion
will be at most three words. Keep in mind that there could be more than one ‘natural’ suggestion for a
text.

Some aspects of suggestion (but don’t restrict only to these) that makes a suggestion NOT natural
can be: grammatical error (missing words, extra words, incorrect or out of order words), redundancy
(extra unnecessary information, word repetition), off-prompt (suggestion is unrelated to the text),
self-contradiction (suggestion contradicts the text), incoherence (grammatical, not redundant, on
prompt, not contradictory but still CONFUSING), factual or commonsense errors (violates our basic
understanding of the world) and so on. Assume a broad definition of ‘natural’ness and use your best
judgement to rate.

You will be asked to annotate TEN texts. For each text, you will see a suggestion and you will rate by
picking exactly one of the two choices:
(i) natural - Select this option if suggestion is natural with respect to the text
(ii) NOT natural - Select this option if suggestion is NOT natural with respect to the text

Table 11: Annotation guideline for human annotators to rate the quality of suggestions generated by autocomplete
models and humans based on naturalness.

Autocomplete is a task where a user inputs a text (prompt), which is conditioned by the model to
generate ‘natural’ continuation (or suggestion). For example, the user can give the prompt “Filmmaker
George Lucas used Tikal as a”, and the system may give a suggestion such as “filming location”.
An autocomplete system is successful if it can reduce the keystrokes a user would need to make,
improving user productivity. The goal of this annotation task is to decide if (i) a suggestion generated
by an autocomplete model will be accepted by a user (to reduce the keystrokes) or (ii) not. Each
suggestion will be at most three words.

You can accept the suggestion if it is useful. A suggestion can be useful for one or more reasons
(but don’t restrict only to these): (i) the suggestion seems completely relevant to the prompt; (ii) the
suggestion can be minimally edited for it to be useful. Note that reasons for acceptability are generally
subjective. Hence, please assume a broad definition of “usefulness” and employ your best judgment to
rate.

You will be asked to annotate 10 texts. For each text, you will see a suggestion and you will rate by
picking exactly one of the two choices:
(i) yes - Select this option if you will accept the suggestion
(ii) no - Select this option if you will not accept the suggestion

The following is an example:
Filmmaker George Lucas used Tikal as a
Suggestion: filming location
Rating choices:
(i) yes - Select this option if you will accept the suggestion
(ii) no - Select this option if you will not accept the suggestion
Rating [type ’yes’ or ’no’ here in this line]: yes

Table 12: Annotation guideline for human annotators to rate the quality of suggestions generated by autocomplete
models and humans based on acceptability.

289

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 290–298
July 13, 2023 ©2023 Association for Computational Linguistics

Query Encoder Distillation via Embedding Alignment is a Strong Baseline
Method to Boost Dense Retriever Online Efficiency

Yuxuan Wang and Hong Lyu∗

University of Pennsylvania
{wangy49, hlyu}@seas.upenn.edu

Abstract
The information retrieval community has made
significant progress in improving the efficiency
of Dual Encoder (DE) dense passage retrieval
systems, making them suitable for latency-
sensitive settings. However, many proposed
procedures are often too complex or resource-
intensive, which makes it difficult for practi-
tioners to adopt them or identify sources of
empirical gains. Therefore, in this work, we
propose a trivially simple recipe to serve as a
baseline method for boosting the efficiency of
DE retrievers leveraging an asymmetric archi-
tecture. Our results demonstrate that even a
2-layer, BERT-based query encoder can still
retain 92.5% of the full DE performance on the
BEIR benchmark via unsupervised distillation
and proper student initialization. We hope
that our findings will encourage the community
to re-evaluate the trade-offs between method
complexity and performance improvements.

1 Introduction

Recent advances in neural-based NLP techniques
have led to powerful neural encoders that can gen-
erate high-quality, semantic-rich, dense vector text
representations (Reimers and Gurevych, 2019; Cer
et al., 2018; Conneau et al., 2018; Schick et al.,
2023), making it possible to calculate the text rele-
vancy with simple vector operations like dot prod-
uct. Thus, the Dual Encoder (DE) neural Informa-
tion Retrieval (IR) architectures, combined with
optimized semantic search implementations (An-
doni et al., 2018; Johnson et al., 2019; Boytsov and
Nyberg, 2020), have achieved comparable or even
superior performances to their Cross Encoder (CE)
based predecessors (Thakur et al., 2021; Menon
et al., 2022; Ni et al., 2022; Yu et al., 2022) while
being significantly more efficient (Reimers and
Gurevych, 2019).

Despite the numerous proposed efficiency en-
hancements for making DE-based IR models suit-

∗Both authors contributed equally to this research.

able for production settings, they may pose chal-
lenges for practitioners with limited resources in
terms of adoption and replication (Hooker, 2020).
However, by leveraging two key facts, we can sim-
plify model development while achieving higher ef-
ficiency. Firstly, documents, in contrast to queries,
are typically longer and more complex, necessitat-
ing specialized architectures (Zhang et al., 2019;
Dai et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020). Secondly, document embeddings remain
mostly static after indexing, allowing for a high-
quality and computationally expensive document
encoder without online overhead. Based on these
insights, we propose an asymmetric IR architecture
that pairs a lightweight query encoder with a robust
document encoder.

In this study, we present a minimalistic base-
line approach for constructing the aforementioned
asymmetric retriever using any existing query en-
coder. As depicted in Figure 1, by employing suit-
able initialization and simply minimizing the Eu-
clidean distance between student and teacher query
embeddings, even a 2-layer BERT-based query en-
coder (Devlin et al., 2018) can retain 92.5% of
the full DE performance on the BEIR benchmark
(Thakur et al., 2021). Similarly, the 4-layer en-
coder preserves 96.2% of the full performance,
which aligns with the supervised outcome (96.6%)
achieved by a 6-layer encoder (Kim et al., 2023).
We hope that these findings will motivate the re-
search community to reassess the trade-offs be-
tween method complexity and performance en-
hancements. Our code is publicly available in our
GitHub repository.

2 The Trivially Simple Distillation Recipe

2.1 Student Initialization

The initialization of student model weights is fre-
quently not given enough attention in the knowl-
edge distillation literature for IR. We find that a

290

https://github.com/Guest400123064/distill-retriever
https://github.com/Guest400123064/distill-retriever

Figure 1: The dual encoder retriever performance with distilled query encoders of a varying number of layers. The
student models are initialized by extracting subsets of the teacher model (msmarco-bert-base-dot-v5) layers.
Variances in performances come from different layer subsets chosen, discussed in section 4.

"well-prepared" student model can considerably
alleviate distillation challenges. In this study, we
investigate two classes of initialization approaches.

Extract a Subset of Teacher Layers In this ini-
tialization method, we establish the student model
by taking a subset of the teacher model’s trans-
former layers while keeping the embedding and
pooling layers. By inheriting some of the teacher
model’s structural properties and knowledge, the
student model is intuitively better prepared for effi-
cient distillation in comparison to a randomly ini-
tialized student model. We conduct experiments
using various combinations of teacher model lay-
ers to assess their impact on both performance and
efficiency. Details would be discussed in subsec-
tion 3.2, section 4, and subsection A.1.

Adopt Other Pretrained Models We also ex-
plore initializing the student model from other effi-
cient pretrained models. Simultaneously, we inves-
tigate the influence of multiple factors, e.g., fine-
tuning tasks and distance functions, on achieving a
"well-prepared" initialization for the student model.
We take DistilBERT (Sanh et al., 2019) as our stu-
dent model candidate and experiment with different
DistilBERT models fine-tuned on diverse tasks. Ex-
amples include the distilbert-base-uncased
model and DistilBERT models fine-tuned on the
MS MARCO dataset (Bajaj et al., 2018) with dis-
tinct objectives from sentence-transformers on
HuggingFace (Wolf et al., 2019). This approach
enables us to evaluate the efficacy of using alterna-
tive pretrained models as starting points for student
model initialization. Student model cards are listed
in subsection A.2.

2.2 Embedding Alignment

DE-based IR systems often use vector similarity for
searching (Andoni et al., 2018), making it logical
to match student and teacher embedding spaces.

Contextualized Embedding Pooling Strategies
BERT-based encoders produce contextualized rep-
resentations for all tokens from the input text. Com-
mon ways to aggregate token embeddings are se-
lecting [CLS] embedding, computing mean values
across all token embeddings, concatenating mul-
tiple pooled embeddings together, etc. We stick
with the average pooling strategy for all presented
experiment results in this paper, as in Reimers and
Gurevych (2019).

Alignment Objective Let Encsθ(·) denote the stu-
dent query encoder parameterized by θ and Enct(·)
denote the teacher query encoder, we minimize the
expected Euclidean distance between the student
and teacher embeddings,

L(θ) = Eq∼Dq

[
∥Encsθ(q)− Enct(q)∥2

]

Thus, θ is found by minimizing the empirical loss,

θ = argmin
θ

1

|Q|
∑

qi∈Q
∥Encsθ(qi)− Enct(qi)∥2

where Q denotes a set of queries sampled from the
distillation domain. In our experiment, we set Q
to be the queries of the IR datasets used by teacher
query encoders. This simple optimization objec-
tive yields surprisingly performant student models
when paired with proper initialization.

291

3 Experiments

3.1 Evaluation Datasets and Metrics

Retrieval Performance For in-domain evalua-
tion, we keep the dataset consistent with our teacher
models’ training corpus MS MARCO (Bajaj et al.,
2018). As for the out-of-domain (zero-shot) evalu-
ation, we use the BEIR benchmark (Thakur et al.,
2021) to evaluate our distillation method. It is a di-
verse collection of seven categories1 of IR-related
tasks. We report normalized Discounted Cumula-
tive Gain (nDCG@10) as the performance metric
and average the relative performance drops to com-
pare the distillation results.

Inference Efficiency We evaluate the efficiency
of our distilled query encoder by measuring the
wall-clock time required to process queries from
the NQ dataset (Kwiatkowski et al., 2019). We
simulate various scenarios, ranging from nearly on-
line settings to batched processing, by selecting
batch sizes of 4, 8, 16, 32, and 64. For each batch
size, we record the elapsed time to process approxi-
mately 4× 103 queries on a single Nvidia Tesla T4
GPU, repeating the process three times and taking
the median time to calculate the number of queries
processed per second as the evaluation result.

3.2 Teacher and Student Models

The Teacher Model In this work, we use a
siamese DE model msmarco-bert-base-dot-v5
hosted on the HuggingFace hub for its competitive
performance (Figure 3). The model was fine-tuned
on MS MARCO using the dot score as the rel-
evancy measurement and Margin Mean Squared
Error (MarginMSE) as the objective function.

Extractive Initialization We select a total of thir-
teen combinations, comprising five combinations
of 4-layer models, four combinations of 2-layer
models, and four combinations of 1-layer models.
The full combinations are listed in subsection A.1.

DistilBERT Initialization We explore six Dis-
tilBERT checkpoints. The students are initialized
from the full model without extracting subsets of
layers. Please refer to subsection A.2 for the Hug-
gingFace model cards. We discuss the potential
relationship between distillation performance and
model characteristics in section 4.

1The original publication presents nine categories, but the
news and tweet retrieval datasets are not publicly available.

3.3 Implementation Details

We use the first 80% of over eight million queries
from the MS MARCO training set as our training
data and the rest 20% for validation. We train
the student models using the AdamW optimizer
(Loshchilov and Hutter, 2017) for one epoch with
Mean Squared Error (MSE) loss, applying a batch
size of 128, a learning rate of 10−4 and 103 warm-
up steps.

4 Results and Discussions

Initializing from Subsets of Teacher Layers
Figure 1 illustrates the performance of the distilled
query encoders. We observe that different initial-
ization strategies can lead to up to 6% variability
in performance, even with the same number of
layers. However, we find that initializing the
students with the first and last few layers consis-
tently yields preferable results, which aligns with
previous findings (Fan et al., 2019; Sajjad et al.,
2020; Dong et al., 2022). For instance, consider-
ing the 1-layer student encoder (Figure 5), initial-
izing from the last layer yields the best outcomes
across all datasets except for ArguAna (Wachsmuth
et al., 2018) and Touché-2020 (Bondarenko et al.,
2021), preserving an average relative performance
of 86.1%. This observation applies similarly to
the 2-layer (retaining the first and last layers) and
4-layer (retaining the first and last two layers) stu-
dents, which exhibit performance preservation rates
of 92.5% and 96.2% respectively, aligning closely
with the performance of the supervised distilled
6-layer encoder at 96.6% (Kim et al., 2023).

Initializing from DistilBERTs The results in Ta-
ble 1 reveal the within-group performance compar-
ison. Since all student models undergo the same
embedding-alignment distillation process, the fi-
nal performance preservation rate can serve as
a proxy for the "well-preparedness" of students.
msmarco-dot performs the best. Its tuning config-
uration is the same as its teacher’s, i.e., the same
dataset, distance function, and objective function.
msmarco-tas-b, tuned with the balanced topic-
aware sampling technique (Hofstätter et al., 2021b),
closely follows. Such a variation poses a slightly
greater challenge in embedding alignment. On the
other side of the spectrum, changing a distance
measurement alone makes alignment drastically
harder, as shown from msmarco-cos. Interestingly,
using a different objective function (msmarco-base

292

https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5

Fine-tune Dataset MS MARCO MS MARCO - MS MARCO NLI + STS MS MARCO
Fine-tune Objective MarginMSE MarginMSE - MultiNegRanking CosineSimilarity MarginMSE
Similarity Function Dot Dot - Cosine Cosine Cosine
Dataset (↓) Ckpt (→) msmarco-dot msmarco-tas-b base-uncased msmarco-base nli-stb msmarco-cos

MS MARCO (In-domain) .415 (- 6.58%) .412 (- 7.17%) .406 (- 8.60%) .389 (-12.40%) .389 (-12.39%) .346 (-22.04%)
TREC-COVID .689 (- 7.58%) .676 (- 9.30%) .634 (-14.86%) .575 (-22.78%) .573 (-23.03%) .512 (-31.31%)
NFCorpus .290 (- 7.84%) .297 (- 5.87%) .283 (-10.04%) .271 (-14.06%) .269 (-14.56%) .230 (-27.04%)
NQ .481 (- 7.94%) .480 (- 8.04%) .463 (-11.42%) .433 (-17.09%) .440 (-15.75%) .404 (-22.67%)
HotpotQA .441 (-25.06%) .421 (-28.38%) .394 (-33.06%) .352 (-40.12%) .348 (-40.87%) .287 (-51.15%)
FiQA-2018 .291 (- 9.84%) .289 (-10.61%) .282 (-12.81%) .269 (-16.59%) .271 (-16.15%) .232 (-28.18%)
ArguAna .426 (14.33%) .417 (12.12%) .392 (5.40%) .408 (9.68%) .368 (- 1.07%) .402 (8.09%)
Touché-2020 .232 (- 2.22%) .238 (0.59%) .245 (3.36%) .247 (4.22%) .244 (3.17%) .234 (- 1.43%)
SCIDOCS .121 (-17.02%) .119 (-18.93%) .110 (-25.10%) .099 (-32.29%) .100 (-31.29%) .086 (-41.18%)
CQADupStack .218 (-15.54%) .212 (-17.63%) .204 (-21.08%) .180 (-30.10%) .185 (-28.26%) .148 (-42.58%)
Quora .812 (- 3.59%) .809 (- 3.98%) .806 (- 4.31%) .799 (- 5.23%) .792 (- 6.04%) .751 (-10.88%)
FEVER .620 (-18.06%) .616 (-18.64%) .568 (-25.00%) .535 (-29.39%) .519 (-31.40%) .446 (-41.05%)
Climate-FEVER .182 (-19.77%) .175 (-22.64%) .163 (-28.12%) .156 (-30.89%) .150 (-33.70%) .145 (-35.77%)
SciFact .541 (-11.09%) .546 (-10.29%) .522 (-14.23%) .492 (-19.14%) .493 (-19.02%) .439 (-27.76%)
DBpedia-Entity .337 (-12.41%) .329 (-14.50%) .314 (-18.45%) .287 (-25.54%) .302 (-21.46%) .265 (-31.08%)
Avg. ∆ Performance -10.01% -10.88% -14.55% -18.78% -19.45% -27.07%

Table 1: The DistilBERT-based students’ nDCG@10 and percentage change compared to the teacher model across
BEIR evaluation datasets. The models are ordered (left to right) according to their average performance degradation.

and nli-stsb) appears to alleviate misalignment,
suggesting the potential interaction between objec-
tive and distance functions. Additionally, a clean,
pretrained-only student (base-uncased) performs
better when a perfect replication of the teacher’s
fine-tuning setting is not present. Notably, all
DistilBERT-based students perform worse than
the top-performing extractive students. The 2-
layer extractive student outperforms the 6-layer
msmarco-dot with a performance gap of 2.5%.

Where are the Well-prepared Students? Stu-
dent pretraining has been demonstrated to be cru-
cial for knowledge distillation in language under-
standing tasks (Turc et al., 2019). However, in our
asymmetric DE system, the student encoder op-
erates in conjunction with the document encoder
of the teacher system, deviating from the conven-
tional distillation procedure. In this case, the ef-
fectiveness of student models lies not in their
sheer capability but rather in their compatibil-
ity. Dong et al. (2022) employed t-SNE (van der
Maaten and Hinton, 2008) to visualize the embed-
ding spaces of DE encoders in the context of QA
tasks. They observed that the two encoders of an
asymmetric system tend to map questions and an-
swers onto distinct parameter spaces, even when
trained jointly. This observation elucidates the rea-
son why extractive initialization significantly re-
duces the difficulty of knowledge distillation in our
scenario. Furthermore, we extend these findings by
demonstrating that aligning the training objectives,
similarity measures, and fine-tuning datasets with
those of the teacher model can enhance embedding

space compatibility. Note that fine-tuning on simi-
lar tasks without aligning other elements, e.g., the
distance function, may undermine compatibility.
Our findings, in conjunction with the results from
Kim et al. (2023), suggest that supervision signals
play a crucial role in alignment while parameter-
sharing inherently addresses this issue.

Inference Efficiency Figure 2 shows that student
models initialized from a subset of teacher layers
have significantly improved inference speed com-
pared to the teacher model, even with small batch
sizes. Considering the marginal performance loss,
query encoder distillation provides substantial ben-
efits over the siamese DE encoder.

Figure 2: Inference speeds of the distilled query en-
coders compared to that of the full teacher model. The
improvements in inference efficiencies become more
drastic as batch size increases.

5 Related Work

Efficient Methods for DE-based IR Systems
Various techniques have been proposed to enhance
encoder performance in IR systems, including
knowledge distillation (Hofstätter et al., 2021a;

293

Zeng et al., 2022; Lin et al., 2023b; Kim et al.,
2023), improved pretraining objectives (Lee et al.,
2019; Chang et al., 2020; Gao and Callan, 2021;
Izacard et al., 2021), data augmentation (Oguz
et al., 2021), better sampling techniques (Lin et al.,
2021; Zhang et al., 2021), ensembles (Hofstätter
et al., 2021b; Lin et al., 2023a; Ren et al., 2021).
However, most of these methods focus on siamese
architectures, as asymmetric DE pairs are prone to
representation collapse (Leonhardt et al., 2022) or
misalignment of embedding spaces (Dong et al.,
2022), making them challenging to train. Due to
the shared parameters between query and docu-
ment encoders, practitioners often need to constrain
model size for practicality in production settings,
despite the significance of larger models for better
retrieval and generalization performance (Ni et al.,
2022; Yu et al., 2022). Consequently, this con-
straint often leads to complex training procedures.
In contrast, our simple recipe adopts the train-large-
distill-small paradigm, offering a straightforward
and effective approach to model development and
can be adopted out of the box for existing systems.

Embedding Alignment for IR Concurrently,
Kim et al. (2023) propose incorporating embed-
ding alignment loss into the supervised distillation
pipeline. However, they initialized models from
other checkpoints without recognizing the impor-
tance of using teacher weights as initialization. Ad-
ditionally, Campos et al. (2023) suggest minimiz-
ing the KL divergence between student and teacher
embeddings in an unsupervised manner. Yet, to
the best of our knowledge, they do not explore
the impact of different layer subsets, whereas our
work demonstrates the significant variance caused
by such choices.

6 Conclusion

In this work, we leverage the characteristics of typ-
ical production DE-based IR systems to propose a
minimalistic baseline method for improving online
efficiency through embedding-alignment distilla-
tion. We explore the significance of student initial-
ization for asymmetric DEs and demonstrate that a
"well-prepared" student can achieve over five times
improvement in efficiency with only 7.5% average
performance degradation. We also observe that
"well-prepared" students generally have aligned
embedding spaces with their teachers, and a simple
approach to construct such students is by extracting
the first and last few layers from the teacher mod-

els. Our findings aim to enhance the accessibility of
neural IR systems and encourage the research com-
munity to reassess the trade-offs between method
complexity and performance improvements.

Limitations

Limited Experimental Scope Our study’s exper-
imental scope was limited to testing distilled stu-
dent models against a single teacher model. A more
comprehensive evaluation would involve multiple
teacher models of varying sizes, fine-tuning tasks,
and datasets. Additionally, in our experiment with
DistilBERT-based student models, incorporating
more checkpoints would enable a more thorough
comparison across different factors.

Unexplored Embedding Size Variations We
kept the embedding size (768) consistent across
student models to maintain variable consistency.
Future research could investigate student models
with different embedding sizes to determine if the
observed trends hold true across models of varying
widths.

Lack of Error Analysis A common distillation
limitation, as noted by Hooker et al. (2020), is the
considerable performance decline for certain data
subsets. In our study, we couldn’t conduct a thor-
ough error analysis due to the lack of appropriate
tools for comparing individual data points in re-
trieval tasks.

Ethics Statement

Although our method improves accessibility for
IR systems, it is essential to evaluate whether the
proposed approach might introduce biases or un-
fairness in the retrieval results. As our work lacks
extensive error analysis, we cannot entirely rule out
the possibility that distilled query encoders may
discard certain hard-to-process cases critical for en-
suring fairness across various query topics and user
groups. A comprehensive error analysis would be
beneficial in future research to identify and address
potential biases in the distilled query encoders, ulti-
mately fostering fair and unbiased retrieval results
for all users.

Acknowledgements

We thank the anonymous reviewers for their time
and constructive feedback. Also, we would like to
thank Prof. Mark Yatskar for his precious sugges-
tions during the development of this work.

294

References
Alexandr Andoni, Piotr Indyk, and Ilya P. Razenshteyn.

2018. Approximate nearest neighbor search in high
dimensions. CoRR, abs/1806.09823.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. MS MARCO: A Human Gen-
erated MAchine Reading COmprehension Dataset.
ArXiv:1611.09268 [cs].

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Alexander Bondarenko, Lukas Gienapp, Maik Fröbe,
Meriem Beloucif, Yamen Ajjour, Alexander
Panchenko, Chris Biemann, Benno Stein, Henning
Wachsmuth, Martin Potthast, et al. 2021. Overview
of touché 2021: argument retrieval. In Experimental
IR Meets Multilinguality, Multimodality, and Interac-
tion: 12th International Conference of the CLEF As-
sociation, CLEF 2021, Virtual Event, September 21–
24, 2021, Proceedings 12, pages 450–467. Springer.

Leonid Boytsov and Eric Nyberg. 2020. Flexible
retrieval with NMSLIB and flexneuart. CoRR,
abs/2010.14848.

Daniel Campos, Alessandro Magnani, and ChengXi-
ang Zhai. 2023. Quick Dense Retrievers Consume
KALE: Post Training Kullback Leibler Alignment
of Embeddings for Asymmetrical dual encoders.
ArXiv:2304.01016 [cs].

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal Sentence Encoder.
ArXiv:1803.11175 [cs].

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training tasks
for embedding-based large-scale retrieval. CoRR,
abs/2002.03932.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loic Barrault, and Antoine Bordes. 2018. Su-
pervised Learning of Universal Sentence Repre-
sentations from Natural Language Inference Data.
ArXiv:1705.02364 [cs].

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond a
fixed-length context. CoRR, abs/1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Zhe Dong, Jianmo Ni, Dan Bikel, Enrique Alfonseca,
Yuan Wang, Chen Qu, and Imed Zitouni. 2022. Ex-
ploring dual encoder architectures for question an-
swering. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9414–9419, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Luyu Gao and Jamie Callan. 2021. Unsupervised Cor-
pus Aware Language Model Pre-training for Dense
Passage Retrieval. ArXiv:2108.05540 [cs].

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury.
2021a. Improving Efficient Neural Ranking Mod-
els with Cross-Architecture Knowledge Distillation.
ArXiv:2010.02666 [cs].

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021b. Ef-
ficiently Teaching an Effective Dense Retriever with
Balanced Topic Aware Sampling. ArXiv:2104.06967
[cs].

Sara Hooker. 2020. The hardware lottery. CoRR,
abs/2009.06489.

Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy
Bengio, and Emily Denton. 2020. Characteris-
ing bias in compressed models. arXiv preprint
arXiv:2010.03058.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Towards unsupervised
dense information retrieval with contrastive learning.
CoRR, abs/2112.09118.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer,
Sadeep Jayasumana, Veeranjaneyulu Sadhanala, Wit-
tawat Jitkrittum, Aditya Krishna Menon, Rob Fergus,
and Sanjiv Kumar. 2023. EmbedDistill: A Geomet-
ric Knowledge Distillation for Information Retrieval.
ArXiv:2301.12005 [cs].

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. CoRR, abs/1906.00300.

295

http://arxiv.org/abs/1806.09823
http://arxiv.org/abs/1806.09823
https://doi.org/10.48550/arXiv.1611.09268
https://doi.org/10.48550/arXiv.1611.09268
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2010.14848
http://arxiv.org/abs/2010.14848
http://arxiv.org/abs/2304.01016
http://arxiv.org/abs/2304.01016
http://arxiv.org/abs/2304.01016
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/2002.03932
http://arxiv.org/abs/2002.03932
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://aclanthology.org/2022.emnlp-main.640
https://aclanthology.org/2022.emnlp-main.640
https://aclanthology.org/2022.emnlp-main.640
http://arxiv.org/abs/2108.05540
http://arxiv.org/abs/2108.05540
http://arxiv.org/abs/2108.05540
http://arxiv.org/abs/2010.02666
http://arxiv.org/abs/2010.02666
http://arxiv.org/abs/2104.06967
http://arxiv.org/abs/2104.06967
http://arxiv.org/abs/2104.06967
http://arxiv.org/abs/2009.06489
http://arxiv.org/abs/2112.09118
http://arxiv.org/abs/2112.09118
http://arxiv.org/abs/2301.12005
http://arxiv.org/abs/2301.12005
http://arxiv.org/abs/1906.00300
http://arxiv.org/abs/1906.00300

Jurek Leonhardt, Marcel Jahnke, and Avishek Anand.
2022. Distribution-aligned fine-tuning for efficient
neural retrieval. ArXiv, abs/2211.04942.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz,
Jimmy Lin, Yashar Mehdad, Wen-tau Yih, and Xilun
Chen. 2023a. How to Train Your DRAGON: Di-
verse Augmentation Towards Generalizable Dense
Retrieval. ArXiv:2302.07452 [cs].

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2021. In-Batch Negatives for Knowledge Distillation
with Tightly-Coupled Teachers for Dense Retrieval.
In Proceedings of the 6th Workshop on Represen-
tation Learning for NLP (RepL4NLP-2021), pages
163–173, Online. Association for Computational Lin-
guistics.

Zhenghao Lin, Yeyun Gong, Xiao Liu, Hang Zhang,
Chen Lin, Anlei Dong, Jian Jiao, Jingwen Lu, Daxin
Jiang, Rangan Majumder, and Nan Duan. 2023b.
PROD: Progressive Distillation for Dense Retrieval.
ArXiv:2209.13335 [cs].

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Aditya Menon, Sadeep Jayasumana, Ankit Singh Rawat,
Seungyeon Kim, Sashank Reddi, and Sanjiv Kumar.
2022. In defense of dual-encoders for neural ranking.
In Proceedings of the 39th International Conference
on Machine Learning, pages 15376–15400. PMLR.
ISSN: 2640-3498.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
9844–9855, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Barlas Oguz, Kushal Lakhotia, Anchit Gupta, Patrick
S. H. Lewis, Vladimir Karpukhin, Aleksandra Pik-
tus, Xilun Chen, Sebastian Riedel, Wen-tau Yih,
Sonal Gupta, and Yashar Mehdad. 2021. Domain-
matched pre-training tasks for dense retrieval. CoRR,
abs/2107.13602.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. ArXiv:1908.10084 [cs].

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
Qiaoqiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021. RocketQAv2: A Joint Training Method
for Dense Passage Retrieval and Passage Re-ranking.
ArXiv:2110.07367 [cs].

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2020. Poor man’s bert: Smaller and faster
transformer models. ArXiv, abs/2004.03844.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A Heterogenous Benchmark for Zero-shot Evaluation
of Information Retrieval Models. ArXiv:2104.08663
[cs].

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

Laurens van der Maaten and Geoffrey E. Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9:2579–2605.

Henning Wachsmuth, Shahbaz Syed, and Benno Stein.
2018. Retrieval of the best counterargument without
prior topic knowledge. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 241–251,
Melbourne, Australia. Association for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Yue Yu, Chenyan Xiong, Si Sun, Chao Zhang, and
Arnold Overwijk. 2022. Coco-dr: Combating dis-
tribution shifts in zero-shot dense retrieval with con-
trastive and distributionally robust learning. arXiv
preprint arXiv:2210.15212.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontañón,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big bird: Transformers for
longer sequences. CoRR, abs/2007.14062.

Hansi Zeng, Hamed Zamani, and Vishwa Vinay. 2022.
Curriculum Learning for Dense Retrieval Distillation.
ArXiv:2204.13679 [cs].

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng
Lv, Nan Duan, and Weizhu Chen. 2021. Adversar-
ial retriever-ranker for dense text retrieval. CoRR,
abs/2110.03611.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. PEGASUS: pre-training with ex-
tracted gap-sentences for abstractive summarization.
CoRR, abs/1912.08777.

296

http://arxiv.org/abs/2302.07452
http://arxiv.org/abs/2302.07452
http://arxiv.org/abs/2302.07452
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
http://arxiv.org/abs/2209.13335
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://proceedings.mlr.press/v162/menon22a.html
https://aclanthology.org/2022.emnlp-main.669
http://arxiv.org/abs/2107.13602
http://arxiv.org/abs/2107.13602
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.48550/arXiv.1908.10084
http://arxiv.org/abs/2110.07367
http://arxiv.org/abs/2110.07367
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
https://doi.org/10.48550/arXiv.2104.08663
https://doi.org/10.48550/arXiv.2104.08663
https://doi.org/10.48550/arXiv.2104.08663
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://doi.org/10.18653/v1/P18-1023
https://doi.org/10.18653/v1/P18-1023
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2204.13679
http://arxiv.org/abs/2110.03611
http://arxiv.org/abs/2110.03611
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777

A Technical Details

A.1 Layer-subtraction Schemes

The 4-layer models were initialized using the fol-
lowing schemes: [1,4,7,10], [0,1,10,11], [0,1,2,3],
[4,5,6,7], and [8,9,10,11]. The first two schemes
were inspired by the results from Fan et al. (2019),
which suggested that the input and output layers
are often more influential in embedding represen-
tations than the middle layers. The latter three
schemes were used to validate this intuition and
guide our selection schemes for 2-layer and 1-layer
initialization. Combinations of 2-layer include [0,
10], [0, 11], [1, 10], and [1, 11]. Layers extracted
to make 1-layer models are [0], [1], [10], and [11].

A.2 DistilBERT-based Student Checkpoints

The HuggingFace model cards of the DistilBERT
checkpoints adopted in the experiments are listed
below. Except for distilbert-base-uncased,
all other models have sentence-transformers/
prefix. The same order also maps to Table 1.

1. msmarco-distilbert-dot-v5
2. msmarco-distilbert-base-tas-b
3. distilbert-base-uncased
4. msmarco-distilbert-base-v3
5. distilbert-base-nli-stsb-mean-tokens
6. msmarco-distilbert-cos-v5

B Additional Results

B.1 Other Visualizations

Figure 3 shows the performances of various
teachers provided by SentenceTransformers on
a subset of BEIR benchmarks. We select the

teacher with the highest retrieval performance
msmarco-bert-base-dot-v5. Figure 4 shows the
performances of the student models initialized from
other DistilBERT checkpoints. In general, students
initialized from pretrained models perform worse
than direct layer extraction. Figure 5 and Figure 6
demonstrate that The first few layers and last few
layers are more preferable in terms of initialization
strategy.

Figure 3: The performances of various teachers provided by SentenceTransformers on a subset of BEIR benchmarks.
We select the teacher with the highest retrieval performance.

297

Figure 4: In general, students initialized from pretrained models perform worse than direct layer extraction.

Figure 5: Deeper layers are more preferable than the shallower layers in terms of initialization strategy.

Figure 6: The first few layers and last few layers are more preferable in terms of initialization strategy.

298

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 299–306
July 13, 2023 ©2023 Association for Computational Linguistics

Minimalist Entity Disambiguation for Mid-Resource Languages

Benno Kruit
Vrije Universiteit Amsterdam
De Boelelaan 1105, 1081 HV

Amsterdam, Netherlands
b.b.kruit@vu.nl

Abstract
For many languages and applications, even
though enough data is available for training
Named Entity Disambiguation (NED) systems,
few off-the-shelf models are available for use
in practice. This is due to both the large size
of state-of-the-art models, and to the computa-
tional requirements for recreating them from
scratch. However, we observe that in practice,
acceptable models can be trained and run with
far fewer resources. In this work, we intro-
duce MiniNED, a framework for creating small
NED models from medium-sized datasets. The
resulting models can be tuned for application-
specific objectives and trade-offs, depending on
practitioners’ requirements concerning model
size, frequency bias, and out-of-domain gener-
alization. We evaluate the framework in nine
languages, and achieve reasonable performance
using models that are a fraction of the size of
recent work.

1 Introduction

Motivation and Problem. Named Entity Dis-
ambiguation (NED), is the task of linking pre-
identified entity names to their corresponding en-
tries in a knowledge base, such as Wikipedia. As a
crucial component of Entity Linking (EL) applica-
tions, it has been extensively studied for almost two
decades. Presently, powerful state-of-the-art EL
systems are available based on (English or multilin-
gual) Neural Language Models (Botha et al., 2020;
Wu et al., 2020; van Hulst et al., 2020; De Cao
et al., 2022). Unfortunately, for many languages
and applications there are few off-the-shelf models
that are easy to distribute, customize, or use in con-
strained practical settings. This is due to the large
size of trained models, as well as the computational
requirements for creating them from scratch. As
a result, EL systems are often unavailable or too
large to run for many applications.

Approach. In this work, we focus on mid-
resource languages (e.g. Persian, Japanese, and

Tamil), which have some linguistic resources and
tools available but not many (Ortiz Suárez et al.,
2020). We claim that for many of these lan-
guages, simpler and smaller models can perform
well enough with careful trade-off analyses. Our
main observation is that here the range of reason-
able NED performance is quite narrow. In other
words, the lower bound (i.e. simply predicting the
most commonly linked entity for a given name)
and the non-zero-shot upper bound (i.e. perfectly
disambiguating all names that are seen in training)
are very close together. Based on this insight, we
demonstrate that small NED models can achieve
acceptable performance with limited resources. We
examine the trade-offs between model size and per-
formance for different configurations and highlight
the importance of language-specific phenomena,
such as morphological differences, in determin-
ing optimal parameter settings. We argue that the
tuning of NED models for mid-resource languages
requires careful consideration and can only be done
sustainably on small models.

Contribution. We introduce and evaluate
MiniNED1, a Python library for creating NED mod-
els from Wikipedia data in many languages. We
show that much simpler models than state-of-the-
art systems can achieve acceptable performance in
practice. We also show how our framework allows
practitioners to control model complexity and
adjust for specific use-cases, while maintaining
performance.

2 Observations

Examining the Mewsli-9 benchmark (Botha et al.,
2020), we can make several observations about the
distribution of data that is available in Wikipedia2

for training NED models.
1https://github.com/bennokr/miniNED
2All experiments were performed on Wikipedia dumps

from 2022-03-01. In Mewsli-9, we replace English by Dutch
due to our focus on mid-resource languages.

299

https://github.com/bennokr/miniNED

0.00 0.25 0.50 0.75 1.00

Turkish
Tamil

Spanish
Serbian
Persian

Japanese
German

Dutch
Arabic

Frequency
105-106

104-105

103-104

102-103

101-102

100-101

Figure 1: Distribution of entity hyperlink frequencies in
Wikipedia, for names from Mewsli-9.

In Figure 1, we show the distribution of how
often entities from the benchmark data are hyper-
linked on Wikipedia. While we observe a typical
long-tailed distribution, most entities can still be
observed between 10-1000 times. For these lan-
guages, this provides enough training data to learn
to disambiguate entity mentions from their context.

In Figure 2, however, we observe that the base-
line performance of simply predicting the top most
commonly linked entity for a given ambiguous
name (combined with straightforwardly linking un-
ambiguous names) can already achieve relatively
high performance. Additionally, many entity-name
pairs (which we will refer to as mentions) in the
benchmark data cannot be observed in training at
all; such unseen cases would require zero-shot gen-
eralization. Consequently, the upper and lower
bound for simple models are very close together.
Thus, we may comclude that the main challenge
lies in predicting shadowed entity mentions (Prova-
torova et al., 2021), which share a surface form with
more popular entities. Due to the overwhelming im-
balance of training instances for shadowed entities,
particular attention should be given to selecting ap-
propriate training data and to the assumptions that
underly the model.

Another observation is that language-specific
phenomena make a big difference. The distribu-
tion of observed ambiguity changes when names
are stemmed. Stemming removes word inflections,
which increases the ambiguity of names. We can
see that due to morphological differences, the ef-
fect of stemming is very different per language.
Overall, stemming decreases the number of unseen
mentions, but also widens the range of ambiguous
names.

Finally, Wikipedia hyperlink data is noisy (Ger-
lach et al., 2021), as it includes links to disambigua-
tion pages and incorrect entity links. This becomes

0.0 0.2 0.4 0.6 0.8 1.0

Turkish

Tamil

Spanish

Serbian

Persian

Japanese

German

Dutch

Arabic Unambig.
Top
Shadow
Unseen
Stemmed

Figure 2: Proportion of benchmark mention instances
per ambiguity category, Mewsli-9 dataset. Hatched bars
indicates the stemming of names, which decreases un-
seen cases, but increases ambiguity.

a larger problem when less data is available (as
for low-resource languages and domains). We ar-
gue that optimally tuning the training pipeline to
overcome this noise (by fixing this data or patching
the model) can only be done sustainably when the
model itself is simple.

3 Approach

We train multinomial logistic regression classi-
fiers with hashed Bag-of-Word features, which are
trained to rank candidate entities using Vowpal
Wabbit (vw, Langford et al., 2007). The candidates
are created by filtering entity mention counts from
Wikipedia dumps using heuristics. These heuristics
identify valid surface forms based on their appear-
ance on disambiguation pages, their string similar-
ity to the entity labels, and the entropy of the prior
probability distribution of hyperlink targets. Re-

0.00 0.25 0.50 0.75 1.00
Quantile of most frequent mentions selected

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Arabic
Dutch
German
Japanese
Persian
Serbian
Spanish
Tamil
Turkish

Figure 3: Maximum attainable recall of observed am-
biguous mentions given filtering thresholds. When keep-
ing the top 25% most frequent mention-entity instances,
the maximum attainable recall on ambiguous bench-
mark instances is 55-85% .

300

Base
line

Upper
bound

N
or

m
al

iz
ed

F 1
-S

co
re

Top-100% Quantile Model Top-50% Quantile Model

S
tem

m
ed

Top-25% Quantile Model

16
1MB

20
16MB

24
256MB

28
4GB

Hash Bits; Model Size

Base
line

Upper
bound

N
or

m
al

iz
ed

F 1
-S

co
re

16
1MB

20
16MB

24
256MB

28
4GB

Hash Bits; Model Size

16
1MB

20
16MB

24
256MB

28
4GB

Hash Bits; Model Size

U
nstem

m
ed

Fallback
False
True

Figure 4: Distribution (mean and 95% confidence interval) of normalized micro F1-scores. Per-language scores are
transformed w.r.t. the baseline (most frequent target of entity labels) and the upper bound on observed mentions
(Section 2). Subplots: Performance improves logistically with model size, with strongly diminishing returns.
Colors: Using a fallback to the baseline for unobserved names recovers most lost performance for stemmed and
quantile-filtered models. Rows: Stemmed models have higher variety in performance between languages, and may
overfit when large. Columns: Quantile-filtered models require fewer parameters. Raw results in Appendix A.

garding the entropy, a cutoff threshold determines
when a long, flat prior distribution is discarded (e.g.
specific villages for the anchor text “village”). This
also leads to anchor texts with flat distributions
of very similarly frequent targets to be discarded
entirely (e.g. for strings such as “click here”).

The candidate set can be further filtered by only
selecting a percentage (i.e. quantile) of most fre-
quently observed ambiguous mentions. In Fig-
ure 3, we show the tradeoff between candidate
mention filtering and the maximum recall that a
model trained to disambiguate between these can-
didates could achieve. We observe that selecting
only the most frequently mentioned entities results
in quick gains with only a fraction of the candi-
date set size. However, we also observe that our
pre-processing heuristics discard valid mentions
for some languages, so that even on the full set of
candidates, perfect recall cannot be attained.

The vw model size is controlled by the number
of bits of the feature hash, which also works as
regularisation to prevent overfitting. By exchang-
ing single coefficients per mention-feature pair for
smaller models with more hash collisions, we are
able to find the optimal tradeoff between model
size and accuracy using a hyperparameter sweep.
Although the features are hashed, the model can
still be audited by keeping track of feature hashes
for specific analyses. This can be useful for explain-
ing individual predictions (showing which context
words have a strong influence), or examining the

coefficients that are used to disambiguate a single
surface form.

Baseline Fallback Best Modelbits Upper Bound
Arabic .87 .87/.88 .8228/.8928 .93/.91
Dutch .63 .77/.77 .7728/.7828 .84/.83

German .80 .85/.84 .8428/.8528 .90/.88
Japanese .80 .83/.84 .8128/.8328 .91/.89

Persian .85 .86/.86 .8828/.8824 .91/.90
Serbian .76 .84/.80 .8328/.8028 .89/.83
Spanish .71 .80/.80 .7828/.8128 .89/.88

Tamil .61 .74/.62 .7524/.6324 .77/.64
Turkish .80 .84/.81 .8028/.8128 .91/.87

Table 1: Micro F1-scores (stemmed / unstemmed). Base-
line: most frequent target of entity labels. Fallback:
most frequent target of pre-processed hyperlinks. Best
Model: score & bits of highest-scoring model configura-
tion. Upper Bound: Perfect performance on observed
mentions.

4 Evaluation

Our analysis compares models of different sizes
and candidate filtering thresholds, and the effect
of stemming in different languages. We modify
the Mewsli-9 benchmark to discard links to dis-
ambiguation pages and list pages (statistics in Ap-
pendix B), and we generate the Dutch data using
the scripts provided by Botha et al. (2020). We
train on lowercased mentions that occur more than
once, which are filtered by discarding names which
both (1) have less than 10% of tokens appear in an
entity label on Wikidata and (2) have a high candi-
date entropy (> 1 nat), except if they are used as

301

Utrecht_(stad) utrecht
1.30

stad
1.05

provincie
-1.02

schilderij
0.96

nederlands
0.95

binnenstad
0.89

museum
0.88

straat
0.71

oudegracht
0.70

evenement
0.67

Utrecht_(provincie) provincie2.03
geografie
1.09

baarn
1.05

waterschap
1.03

gemeentelijk
0.92

wakkerendijk
0.92

provincies
0.80

categorie
0.76

heuvelrug
0.75

monument
0.73

Utrecht_(Zuid-Afrika) categorie-0.59
nederlands
-0.38

rotterdammers
-0.37

zuid
0.36

type
0.36

republiek
0.34

is
-0.34

of
-0.33

januari
-0.31

brug
-0.31

Universiteit_Utrecht provincie-0.68
universiteit
0.65

universiteiten
0.62

hoogleraar
0.57

bisschop
-0.52

plaats
-0.47

gemeente
-0.41

studenten
0.41

leiden
0.41

groningen
0.41

FC_Utrecht categorie-0.50
volksvertegenwoordiging

-0.46
eibert
-0.44

club
0.43

voormalig
0.40

fc
0.38

roelandszoon
-0.37

seizoen
0.36

stad
-0.32

contract
0.30

Figure 5: Inspecting strongest feature coefficients in the Dutch model for the name “Utrecht”, which among others
may refer to a city, province, town in South Africa, university, or football club.

main links on disambiguation pages. For stemming,
we use PersianStemmer (Taghi-Zadeh et al., 2015),
MeCab for Japanese (Kudo, 2006), and Snowball
for other languages (Porter, 2001).

In Figure 4, we report normalized disambigua-
tion micro-F1 scores, where per-language scores
are transformed with respect to the baseline (the
most frequent target of entity labels) and the up-
per bound (on observed mentions). Unnormal-
ized results are presented per language for best-
performing models in Table 1 and in Appendix A.

We observe that the effect of stemming and the
trade-off between model size and performance is
different per language, but clear trends are visible,
with diminishing returns of model sizes above a
few hundred MB.

Explainability and Denoising. By keeping track
of which features hash to which parameters for a
set of example instances, we can visualize which
context words have a strong influence on model
predictions (Figure 5). This is useful for improv-
ing models for which the training data may have
been noisy, allowing practitioners to modify pre-
processing pipelines or employ data re-labeling
efforts.

5 Related Work

Mewsli-9 was introduced by Botha et al. (2020) and
used for evaluation by De Cao et al. (2022). Our
evaluation results are not directly comparable to
theirs because we remove links to disambiguation
pages and list pages.

Some EL systems for mid-resource languages ex-
ist. Most prominently, DBpedia Spotlight (Daiber
et al., 2013) publish EL models for some languages,
but these are not tunable for size. Tsai and Roth
(2016) perform cross-lingual wikification using
multilingual embeddings; we plan to replace our
BoW features by such embeddings in future work.

Pappu et al. (2017) train lightweight multilingual
entity linking models, but not for mid-resource lan-
guages. Gerlach et al. (2021) focus on precision,
while we focus on F1-scores and model size.

Modern EL models often combine Mention De-
tection (MD) and NED end-to-end. Hachey et al.
(2013) describe the interplay of MD and NED in
English EL. Ling et al. (2015) extend this descrip-
tion, and make similar observations to ours about
NED baselines. Kolitsas et al. (2018) are the first
to train end-to-end neural EL models, improved
later by De Cao et al. (2021). These efforts were
extended to multilingual models by Botha et al.
(2020) and De Cao et al. (2022). Such end-to-end
neural models require many GPU-hours to train,
making it impossible to tune them sustainably for
specific applications. In contrast, we focus on the
smallest possible NED models, because small MD
models can be achieved with the use of gazetteers
and their interplay may be optimized by tuning.

6 Conclusion and Future Work

We introduce and evaluate MiniNED, a Python li-
brary for creating NED models from Wikipedia
data in many languages. We show that much
simpler models than state-of-the-art systems can
achieve acceptable performance in practice. We
also show how our framework allows practitioners
to control model complexity and adjust for specific
use-cases, while maintaining performance.

For future research, we expect this approach
to also be useful when incorporating more back-
ground knowledge about the entities with richer
feature representations and using weak supervi-
sion (Orr et al., 2021). Also, the tradeoffs that this
work analyses are strongly related to the difficulty
of determining the appropriate granularity of EL
systems (Van Erp and Groth, 2020). For example,
the knowledge base that the mentions are linked to
may distinguish between municipalities as admin-

302

istrative entities and the cities within them, while
for many applications this distinction is not rele-
vant. In the future we aim to add support for tuning
models to the desired levels of granularity.

Acknowledgements

This research is partially funded by Huawei Ams-
terdam Research Center.

I would like to thank Thiviyan Thanapalasingam,
Majid Mohammedi and Erman Acar for their early
feedback on language-specific models, and the
members of the VU Amsterdam Knowledge in
AI and Learning & Reasoning groups, Winston
Wansleeben, Rens Hassfeld and Mara Spadon for
their feedback on drafts of this work.

References
Jan A Botha, Zifei Shan, and Dan Gillick. 2020. En-

tity linking in 100 languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, pages 7833–7845.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Inter-
national Conference on Semantic Systems.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021.

Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel
Artetxe, Naman Goyal, Mikhail Plekhanov, Luke
Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and
Fabio Petroni. 2022. Multilingual autoregressive en-
tity linking. Transactions of the Association for Com-
putational Linguistics, 10:274–290.

Martin Gerlach, M. Miller, Rita Ho, Kosta Harlan, and
Djellel Eddine Difallah. 2021. Multilingual entity
linking system for wikipedia with a machine-in-the-
loop approach. Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management.

Ben Hachey, Will Radford, Joel Nothman, Matthew
Honnibal, and James R. Curran. 2013. Evaluating
entity linking with wikipedia. Artificial Intelligence,
194:130–150.

Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas
Hofmann. 2018. End-to-end neural entity linking.
In Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, pages 519–529.

Taku Kudo. 2006. Mecab: Yet another part-of-speech
and morphological analyzer.

John Langford, Lihong Li, and Alex Strehl. 2007. Vow-
pal wabbit online learning project.

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015.
Design Challenges for Entity Linking. Transactions
of the Association for Computational Linguistics,
3(2011):315–328.

Laurel J. Orr, Megan Leszczynski, Neel Guha, Sen Wu,
Simran Arora, Xiao Ling, and Christopher Ré. 2021.
Bootleg: Chasing the tail with self-supervised named
entity disambiguation. In 11th Conference on Inno-
vative Data Systems Research, CIDR 2021, Virtual
Event, January 11-15, 2021.

Pedro Javier Ortiz Suárez, Laurent Romary, and Benoît
Sagot. 2020. A monolingual approach to contextual-
ized word embeddings for mid-resource languages.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1703–
1714, Online. Association for Computational Linguis-
tics.

Aasish Pappu, Roi Blanco, Yashar Mehdad, Amanda
Stent, and Kapil Thadani. 2017. Lightweight multi-
lingual entity extraction and linking. In Proceedings
of the Tenth ACM International Conference on Web
Search and Data Mining, WSDM 17, New York, NY,
USA. ACM.

Martin F Porter. 2001. Snowball: A language for stem-
ming algorithms.

Vera Provatorova, Samarth Bhargav, Svitlana Vaku-
lenko, and Evangelos Kanoulas. 2021. Robust-
ness evaluation of entity disambiguation using prior
probes: the case of entity overshadowing. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10501–10510.

Hossein Taghi-Zadeh, Mohammad Hadi Sadreddini,
Mohammad Hasan Diyanati, and Amir Hossein
Rasekh. 2015. A new hybrid stemming method for
persian language. Digital Scholarship in the Human-
ities, 32(1):209–221.

Chen-Tse Tsai and Dan Roth. 2016. Cross-lingual wiki-
fication using multilingual embeddings. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 589–
598.

Marieke Van Erp and Paul Groth. 2020. Towards en-
tity spaces. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 2129–
2137.

Johannes M. van Hulst, Faegheh Hasibi, Koen Dercksen,
Krisztian Balog, and Arjen P. de Vries. 2020. REL:
An Entity Linker Standing on the Shoulders of Giants.
In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 2197–2200, Virtual Event
China. ACM.

303

https://doi.org/10.18653/v1/2020.emnlp-main.630
https://doi.org/10.18653/v1/2020.emnlp-main.630
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.1162/tacl_a_00460
https://doi.org/10.1162/tacl_a_00460
https://doi.org/10.1016/j.artint.2012.04.005
https://doi.org/10.1016/j.artint.2012.04.005
https://taku910.github.io/mecab/
https://taku910.github.io/mecab/
http://hunch.net?p=309
http://hunch.net?p=309
http://cidrdb.org/cidr2021/papers/cidr2021_paper13.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper13.pdf
https://doi.org/10.18653/v1/2020.acl-main.156
https://doi.org/10.18653/v1/2020.acl-main.156
https://snowballstem.org/
https://snowballstem.org/
https://doi.org/10.1093/llc/fqv053
https://doi.org/10.1093/llc/fqv053
https://doi.org/10.1145/3397271.3401416
https://doi.org/10.1145/3397271.3401416

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6397–
6407.

304

Appendix

A Evaluation Results
Micro-F1 scores per
model size. Line width:
Candidate selection
filtering quantile. Color:
Use of fallback to
baseline (most frequent
target).

0.6

0.7

F 1
-S

co
re

Tamil, Unstemmed Tamil, Stemmed

0.7

0.8

0.9
F 1

-S
co

re
Persian, Unstemmed Persian, Stemmed

0.7

0.8

0.9

F 1
-S

co
re

Turkish, Unstemmed Turkish, Stemmed

0.7

0.8

F 1
-S

co
re

Dutch, Unstemmed Dutch, Stemmed

0.8

0.9

F 1
-S

co
re

Arabic, Unstemmed Arabic, Stemmed

0.6

0.8

F 1
-S

co
re

Serbian, Unstemmed Serbian, Stemmed

0.7

0.8

F 1
-S

co
re

Spanish, Unstemmed Spanish, Stemmed

0.6

0.8

F 1
-S

co
re

Japanese, Unstemmed Japanese, Stemmed

16
1MB

20
16MB

24
256MB

28
4GB

Hash Bits; Model Size

0.7

0.8

0.9

F 1
-S

co
re

German, Unstemmed

16
1MB

20
16MB

24
256MB

28
4GB

Hash Bits; Model Size

German, Stemmed

Fallback
False
True
Quantile
100%
50%
25%
Pre-processing
Unstemmed
Stemmed

Baseline
Base
Base Fallback
Base Fallback Stemmed
Upper Bound
Upper Fallback
Upper Fallback Stemmed

305

B Mewsli-9 Modification

Disambig Listpage Total
Arabic 201 4 5964
Dutch 562 16 11924
German 1907 76 64807
Japanese 605 54 34214
Persian 5 0 515
Serbian 773 7 35536
Spanish 1923 105 55431
Tamil 28 1 2683
Turkish 164 5 5661

Table 2: Statistics on discarded Mewsli-9 links out of
the total original dataset

306

Author Index

Abdul-mageed, Muhammad, 274
Agrawal, Ameeta, 257
Ahmadian, Sara, 1
Anagnostopoulou, Aliki, 245
Attendu, Jean-michel, 129

Baraniuk, Richard, 219

Campos, Daniel, 39, 59, 91
Corbeil, Jean-philippe, 129

Dasgupta, Sunny, 110
De Rosa, Gustavo, 274
Dey, Debadeepta, 274

Foster, Jennifer, 183

Gao, Junbin, 227
Giofre, Daniele, 158
Graham, Yvette, 183
Guo, Bin, 264
Guo, Chenlei, 264

Han, Xu, 264
Hartmann, Mareike, 245
Hong, Lyu, 290
Hovy, Eduard, 147
Huang, Lifu, 121

Jain, Aneesh, 121
Jawahar, Ganesh, 274
Ji, Tianbo, 183
Jung, Yoon, 264

Kazemi, Mehran, 1
Khalighinejad, Ghazal, 239
Kiyono, Shun, 78
Kruit, Benno, 299
Kurtz, Mark, 39

Lakshmanan, V.s., Laks, 274
Liu, Dantong, 110
Liu, Xiaohu, 264
Liu, Yanchen, 32
Lyu, Chenyang, 183

Magnani, Alessandro, 59
Marques, Alexandre, 39
Mccallum, Andrew, 1

Mckenna, Nick, 212
Mendes, Caio, 274
Mohta, Jay, 201
Mukherjee, Subhabrata, 274

Niklaus, Joel, 158
Nystrom, Andrew, 1

Pavani, Kaushik, 110

Ramachandran, Deepak, 1

Schick, Timo, 32
Schtze, Hinrich, 32
Sen, Priyanka, 212
Shah, Aditya, 121
Shah, Shital, 274
Silwal, Sandeep, 1
Singh, Suresh, 257
Sonkar, Shashank, 219
Sonntag, Daniel, 245
Strubell, Emma, 147
Stureborg, Rickard, 239
Szumel, Gregory, 239

Takase, Sho, 78
Tang, Peggy, 227
Thapa, Surendrabikram, 121

Wang, Xiaohan, 190
Wang, Yuxuan, 290
Wang, Zhiyong, 227
Wang, Zichao, 219
Wiseman, Sam, 239

Xiang Zhai, Cheng, 39
Xu, Xin, 190

Yao, Benjamin, 264

Zhai, Chengxiang, 59, 91
Zhang, Lei, 227
Zhang, Ningyu, 190
Zhang, Yu, 264
Zhang, Zhisong, 147
Zhu, Yuqi, 190

307

	Title page
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Table of Contents
	KwikBucks: Correlation Clustering with Cheap-Weak and Expensive-Strong Signals
	Semantic-Oriented Unlabeled Priming for Large-Scale Language Models
	oBERTa: Improving Sparse Transfer Learning via improved initialization, distillation, and pruning regimes
	Quick Dense Retrievers Consume KALE: Post Training KullbackLeibler Alignment of Embeddings for Asymmetrical dual encoders
	Lessons on Parameter Sharing across Layers in Transformers
	To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models for Improved Inference Efficiency
	Small is the New Big: Pre-finetuned compact models are better for Asynchronous Active Learning
	ADEPT: Adapter-based Efficient Prompt Tuning Approach for Language Models
	NLU on Data Diets: Dynamic Data Subset Selection for NLP Classification Tasks
	On the Interactions of Structural Constraints and Data Resources for Structured Prediction
	Can we Pretrain a SotA Legal Language Model on a Budget From Scratch?
	Is a Video worth n n Images? A Highly Efficient Approach to Transformer-based Video Question Answering
	How to Unleash the Power of Large Language Models for Few-shot Relation Extraction?
	Prompting language models improves performance in imbalanced setting
	KGQA Without Retraining
	MANER: Mask Augmented Named Entity Recognition for Extreme Low-Resource Languages
	Efficient and Interpretable Compressive Text Summarisation with Unsupervised Dual-Agent Reinforcement Learning
	Exploring the Effect of Frequency Resolution in FNet
	Towards Adaptable and Interactive Image Captioning with Data Augmentation and Episodic Memory
	Corpus Complexity Matters in Pretraining Language Models
	PersonaPKT: Building Personalized Dialogue Agents via Parameter-efficient Knowledge Transfer
	Small Character Models Match Large Word Models for Autocomplete Under Memory Constraints
	Query Encoder Distillation via Embedding Alignment is a Strong Baseline Method to Boost Dense Retriever Online Efficiency
	Minimalist Entity Disambiguation for Mid-Resource Languages

