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Abstract

Popular models for Knowledge Graph Ques-
tion Answering (KGQA), including semantic
parsing and End-to-End (E2E) models, decode
into a constrained space of KG relations. Al-
though E2E models accommodate novel en-
tities at test-time, this constraint means they
cannot access novel relations, requiring expen-
sive and time-consuming retraining whenever
a new relation is added to the KG. We propose
KG-Flex, a new architecture for E2E KGQA
that instead decodes into a continuous embed-
ding space of relations, which enables use of
novel relations at test-time. KG-Flex is the
first to support KG updates with entirely novel
triples, free of retraining, while still supporting
end-to-end training with simple, weak supervi-
sion of (Q, A) pairs. Our architecture saves on
time, energy, and data resources for retraining,
yet we retain performance on standard bench-
marks. We further demonstrate zero-shot use
of novel relations, achieving up to 82% of base-
line hit@1 on three QA datasets. KG-Flex can
also fine-tune, requiring significantly shorter
time than full retraining; fine-tuning on target
data for 10% of full training increases hit@1 to
89-100% of baseline.

1 Introduction

Knowledge Graph Question Answering (KGQA)
is the task of answering questions using facts in
a Knowledge Graph (KG). Common approaches
to KGQA include semantic parsing (Rongali et al.,
2020) and End-to-End (E2E) Question Answering
techniques (Cohen et al., 2020). E2E approaches
are promising due to being composed of entirely
differentiable operations, including program pre-
diction and execution using a Differentiable KG
(DKG), and the ease of training with simple (ques-
tion, answer) pairs. However, these methods de-
code into a constrained space of KG relations
which are then used to traverse the KG. While this
works well for benchmark datasets where the KGs

(Hiroshi Ôno, films_production_designed, Akira)

Encoder
Q: “Who did the 

production design 
for Akira?”

films production designed

produced

films casting directed
films art directed

Decoder

A: Hiroshi Ôno

DKG

Nearest Neighbor Scoring

Figure 1: KG-Flex enables KG updates with new enti-
ties or relations at test-time without retraining. Given
a question, an embedding is predicted in the space of
(pre-computed) KG relation embeddings. Available re-
lations are scored relatively by distance to prediction.

are static, it fails to scale to real use cases where
KGs are frequently updated.

For example, Wikidata (Vrandečić and Krötzsch,
2014) is a commonly used Knowledge Graph that is
actively updated. Between March 2022 and March
2023, the number of reported properties (relations
in Wikidata) increased from 9.7K to 10.9K. At the
time of writing, there are almost 200 new prop-
erties proposed for addition, including relations
about new platforms or services (e.g., Patreon user
ID, Peacock ID), and relations improving existing
ontologies (e.g., Pokemon category, alternate uni-
verse counterpart).

In order to handle new relations, most KGQA
methods require full retraining to learn a new out-
put space of possible relations. These methods
also require additional training data with examples
using the new relations. We argue that incremen-
tally updating the KG should not require full model
retraining, a mostly redundant process which is
energy- and time-intensive.

We present KG-Flex, an E2E model architecture
that overcomes this problem by instead decoding
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into an open embedding space in which relations
are expressed in natural language. Given an in-
put question, the model predicts the answer rela-
tion embedding, and available triples in the KG are
scored against the prediction via their relations (ex-
ample in Figure 1). KG-Flex is the first End-to-End
KGQA model that allows updates to both KG enti-
ties and relations at test-time, without retraining.

We show that KG-Flex retains performance on
standard benchmarks compared to a similar model,
while demonstrating additional capabilities. In a
zero-shot setting in three QA datasets, KG-Flex
scores between 40-82% of baseline hit@1 on ques-
tions using relations that were held out during train-
ing time, a task which is impossible for previous
models using a fixed decoder. Further, by fine-
tuning for 10% of full training, scores are increased
to 89-100% of baseline.

2 Related Work

Traditional approaches to KGQA involve semantic
parsing of natural language into logical forms. Se-
mantic parsing models use a constrained decoder
over the output space of symbols. Since mod-
els such as Rongali et al. (2020) treat relations
as whole symbols, adding new relations requires
increasing the decoder output size and retraining
the model. Further, collecting new training data of
natural language to logical forms (e.g., SPARQL)
is expensive (Finegan-Dollak et al., 2018).

Other techniques transform queries and KG
triples to an embedding space (Saxena et al., 2020;
Sun et al., 2020). These methods do not require an-
notated KG queries, however, adding new relations
requires retraining to update the model.

Recent End-to-End methods for KGQA (Cohen
et al., 2020; Sen et al., 2021) are weakly supervised
with (question, answer) pairs which, conditioned
on a question, predict a probability distribution
over KG relations. Execution on the KG involves
following relations and returning probabilistically
weighted answer entities. While E2E methods also
do not require supervision of KG pathways, they
still constrain relation decoding, which means that
adding new relations requires retraining.

Previous work in expanding the flexibility of
KGQA models at test-time include Ravishankar
et al. (2021), using a two-step process of first pre-
dicting an intermediate query template, then adding
KG-specific relations. However, this method still
relies on expensive SPARQL query annotation for

training data. Oguz et al. (2022) propose a method
to unify structured and unstructured data sources
by converting them all into text, however this sacri-
fices the useful structure of Knowledge Graphs.

3 KG-Flex

We introduce KG-Flex, a novel KGQA architecture
that is designed for unconstrained relation decod-
ing, and can be trained end-to-end using only weak
supervision of questions and answers. KG-Flex is
an encoder-decoder model using a Differentiable
Knowledge Graph, in the family of End-to-End
KGQA models such as ReifKB (Cohen et al., 2020)
and Rigel-based models (Sen et al., 2021; Saffari
et al., 2021). We make key changes in the decoder
to enable the use of new relations at test-time. KG-
Flex has 4 key stages.

3.1 Precompute KG Relation Embeddings
Ahead of train- or test-time, we pre-compute vector
embeddings for all relations available in KG triples
(in training and test, these are frozen). To do so,
every KG relation ri ∈ R is lightly preprocessed
into natural language and encoded as a vector ri ∈
Rh, h = 768, using the RoBERTa-base v2 Sentence
Transformer (Reimers and Gurevych, 2019).

• Freebase (Bollacker et al., 2008) property IDs
are preprocessed into the template “(type) prop-
erty”, e.g., film.film_festival.location ⇒ “(film
festival) location”

• Wikidata property label text is already in natural
language, e.g., “place of birth”

• MetaQA relations have underscores replaced
with spaces, e.g., directed_by ⇒ “directed by”

3.2 Encode Question Text
At train- and test-time, a natural language question
is encoded with RoBERTa-base v2 Sentence Trans-
former, into a vector representation q ∈ Rh. This
is similar to earlier E2E models like Rigel (Sen
et al., 2021), which uses a RoBERTa encoder.

3.3 Decode Relation Embedding
The decoder is the key improvement in KG-Flex,
which predicts from amongst the relations avail-
able in the KG, unconstrained from a fixed schema.
Conditioned on the question encoding q, the KG-
Flex decoder predicts an embedding for a relation
which answers the question. All available relations
are scored based on their Euclidean distance to
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WebQ SimpleQ MetaQA 1-hop MetaQA 2-hop MetaQA 3-hop

MemNN (Bordes et al., 2015) 22.7 61.6 – – –
KVMemNet (Miller et al., 2016) 46.7 – 95.8 25.1 10.1
GraftNet (Sun et al., 2018) 66.4 – 97.0 94.8 77.7
PullNet (Sun et al., 2019) 68.1 – 97.0 99.9 91.4
KBQA Adapter (Wu et al., 2019) – 72.0 – – –
EmbedKGQA (Saxena et al., 2020) 66.6 – 97.5 98.8 94.8
TransferNet (Shi et al., 2021) 71.4 – 97.5 100.0 100.0
ReifKB (Cohen et al., 2020) 52.7 – 96.2 81.1 72.3
Rigel (Sen et al., 2021) 69.2 79.9 97.5 87.1 89.6

KG-Flex (ours) 68.9 79.2 97.6 90.1 87.2

Table 1: KG-Flex compared to baselines on three standard QA tasks: WebQuestions (WebQ), SimpleQuestions
(SimpleQ), and MetaQA. Compared to the similar model Rigel, KG-Flex scores within 3 percentage points.

the prediction, and these scores are converted to a
probability distribution via a softmax.

As in Sen et al. (2021) and Saffari et al. (2021),
the decoding step is performed for T “hops” in
the KG, where the hyperparameter T is fixed be-
fore training1. An attention mechanism is jointly
learned as part of the model which predicts how
many hops (up to T ) is required for a given ques-
tion, conditioned on q. This is used to weight
final entity predictions. For example, answering
“What’s the mascot of Obama’s alma mater?” re-
quires two hops from the entity Obama: first the
ALMA-MATER relation, then MASCOT, so entities
fetched in hop 2 will be weighted most heavily.

For each hop t ∈ [1, T ], we apply a decoder
transformation Dt ∈ R(th)×h (with bias bt ∈ Rh).
Dt predicts a relation embedding zt ∈ Rh, given
the encoded question vector q ∈ Rh and any pre-
dictions of earlier hops z<t.

z1 = tanh(qD1 + b1)

z2 = tanh([q; z1]D2 + b2)

z3 = tanh([q; z1; z2]D3 + b3)

The decoder is trained to predict a relation embed-
ding which minimizes the Euclidean distance (L2

norm) to the relation path that leads to the answer
entity. Each decoder hop produces a probability
distribution dt over relations ri ∈ R by a softmax
over negated distances from zt to precomputed ri:

dt,i =
e−||zt−ri||2

∑|R|
j=0 e

−||zt−rj ||2

3.4 Execute on DKG
As an E2E model, KG-Flex executes a probabilistic
query over its Differentiable KG (DKG) to produce

1We assume that T = 3 hops is sufficient to cover all
realistic human questions.

weighted answer entities; these are scored to feed
back the training signal through the model.

A DKG is just a re-representation of a KG as
three matrices. In hop t, given a distribution over
subjects et and relations dt, the “follow” operation
(Cohen et al., 2020) computes a probability distri-
bution over KG triple objects et+1 using simple
matrix multiplication:

et+1 = follow(et,dt)

In the first hop, e1 is a one-hot vector of KG en-
tities (question entity set to 1) 2. For each hop
1 ≤ t ≤ T , a probability distribution is predicted
over KG entities, which are fed into the subsequent
hop. The final model prediction is a distribution
over KG entities discovered in all hops, weighted
by the hop attention mechanism. During training,
entity predictions are compared to the gold label en-
tities via binary cross-entropy loss, and updates are
backpropagated through the decoder and encoder.

4 Experiments

In our experiments, we use three datasets: Sim-
pleQuestions (Bordes et al., 2015), a large-scale
dataset of simple, one-hop questions based on
FreeBase; WebQuestionsSP (Yih et al., 2016), a
dataset of natural language questions containing up
to 2 hops linked to FreeBase; and MetaQA (Zhang
et al., 2018), a movies QA dataset divided into one,
two, and three-hop subsets. MetaQA uses a KG
that is internal to the dataset.

KG-Flex models are trained until dev set con-
vergence or max 40,000 steps on a single NVIDIA
Tesla V100 GPU (see Appendix A for details).

2Like Cohen et al. (2020) and Sen et al. (2021), we begin
with question entities pre-identified in the datasets.
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Full Test Set Heldout Test Set

Rigel KG-Flex Rigel KG-Flex

Dataset Domain BL BL Zero-Shot Fine-tuned BL BL Zero-Shot Fine-tuned

WebQuestions film 69.2 68.9 65.8 68.7 71.4 76.8 31.3 76.8
WebQuestions sports 69.2 68.9 66.0 69.0 49.7 53.6 28.4 51.0

SimpleQuestions film 79.9 79.2 71.9 79.2 74.1 73.3 60.1 70.2
SimpleQuestions medicine 79.9 79.2 77.5 79.7 79.4 82.2 60.2 72.8

MetaQA 1-hop directed_by 97.5 97.6 92.6 97.6 97.1 97.2 70.5 97.1
MetaQA 2-hop directed_by 87.1 90.1 79.7 90.6 90.1 85.7 54.8 86.7
MetaQA 3-hop directed_by 89.6 87.2 62.9 85.7 89.2 86.2 36.9 85.5
MetaQA 1-hop written_by 97.5 97.6 93.8 97.6 98.7 98.9 81.4 98.9
MetaQA 2-hop written_by 87.1 90.1 81.7 91.3 87.1 90.0 68.0 91.7
MetaQA 3-hop written_by 89.6 87.2 65.1 85.8 86.8 84.3 32.8 82.5

Table 2: For each dataset and domain, we evaluate three models: the Baseline (BL) is trained on the full dataset,
Zero-Shot is trained with a Domain held out, and Fine-tuned is the Zero-Shot model fine-tuned for 4K steps on
the full dataset. Each of these three models are evaluated on two datasets: Full Test Set (all examples in the test
set), and Heldout Test Set (the subset of the test set using the held out relations).

4.1 Standard Benchmarks

First, we benchmark KG-Flex against existing
methods on standard datasets. We report hit@1
scores, a metric that measures the percentage of
questions where the highest probability entity pre-
dicted is correct3. Results are shown in Table 1.
Compared to similar E2E models like Rigel, KG-
Flex attains competitive performance within 3 per-
centage points.

4.2 Zero-Shot Transfer to Held-out Relations

We simulate a real-world scenario where new KG
domains are added after training. We demonstrate
how KG-Flex can predict using these held-out rela-
tions, an impossible task for prior E2E models like
Rigel and ReifKB.

In training, we remove a subdomain of relations
from the KG and all questions involving those re-
lations from train and dev sets. Then at test-time
we reintroduce the relations to the KG and include
the held-out questions. We report on the full test
set as well as the subset consisting of just the held-
out questions. For SimpleQuestions, we remove
all relations in the domains Film (61 relations) or
Medicine (66 relations). For WebQuestions, we
remove Film (24 relations) or Sports (45 relations).
These domains represent a reasonably-sized KG
update (< 10% of total relations). Since MetaQA
contains only movie questions, we remove the “di-
rected_by” or “written_by” relations (further info
in Appendix B).

3Since SimpleQuestions may have multiple correct an-
swers, we count predictions as correct if any entity within a
tie for most probable is correct.

Train Fine-tune

WebQuestions 7 hr 45 min
SimpleQuestions 7 hr 1 hr
MetaQA 1-hop 1 hr 10 min
MetaQA 2-hop 1 hr 15 min
MetaQA 3-hop 1 hr 15 min

Table 3: Comparison of training time (for 40,000 steps)
vs. fine-tuning (for 4,000 steps) on each of our datasets

Results are shown under Zero-Shot columns in
Table 2. We compare to the Baseline KG-Flex re-
sults, which refer to training on the full dataset. On
the held-out datasets the zero-shot models score up
to 82% of the baseline score on simpler datasets
(81.4 achieved / 98.9 baseline on written_by in
MetaQA 1-hop; 60.1 / 73.3 on film in SimpleQues-
tions). However, they perform worse on more com-
plex questions, reaching as low as 40% of the base-
line on multi-hop question datasets (36.9 / 86.2
on directed_by in MetaQA 3-hop; 31.3 / 76.8 on
film in WebQuestions). We attribute this to the
compounding likelihood of error when predicting
multiple relations at once. Since comparable mod-
els would score 0% on this task, we still consider
this to be a valuable step forward.

4.3 Fine-tuned Transfer to Held-out Relations

To improve transfer to new relations, we further
fine-tune the zero-shot models. Each zero-shot
model is fine-tuned for 4,000 steps (10% of full
training) on the entire dataset, including held-out
relations. Results are under Fine-tuned in Table 2.

Our fine-tuned models are able to recapture be-
tween 89-100% of baseline KG-Flex performance
on both the full test set and heldout test set. We
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are able to fine-tune our model because we have an
unconstrained decoder space, whereas comparable
models such as ReifKB (Cohen et al., 2020) would
require retraining from scratch. By fine-tuning for
only a fraction of the full training time (see Table
3), we demonstrate that KG-Flex can efficiently
adapt to new relations.

5 Conclusions

We present KG-Flex, a new model architecture for
KGQA which is the first to use an unconstrained
decoder over KG relations and to train end-to-end
using simple (question, answer) pairs. While main-
taining performance on benchmarks, KG-Flex is
demonstrated to make use of incrementally chang-
ing live KGs without requiring expensive retraining.
We show that KG-Flex uses novel relations added
at test-time, handling simple questions with new
relations in zero-shot, and handling more complex
multihop questions by fine-tuning for only 10% of
the training steps required for full retraining.

6 Limitations

We present KG-Flex, an end-to-end model that can
access new relations at test-time without retrain-
ing. Our current KG-Flex model does not perform
entity resolution, and so we rely on resolved enti-
ties provided by the datasets. However, resolved
entities may not always be available, so tools such
as automatic entity recognition may be necessary.
While it is possible for end-to-end models to jointly
learn to resolve entities in questions before relation
following (Saffari et al., 2021), we consider this
outside the scope of this focused work.

Additionally, KG-Flex is limited in the kinds of
reasoning it can do over a Knowledge Graph. Cur-
rently, KG-Flex only performs relation following,
so it cannot handle questions which require com-
plex reasoning like counts, comparatives, min/max,
etc, such as “Who is the tallest NBA player?” We
hope to address this in future work.

Further, we test KG-Flex on popular datasets
representing possible real human questions. How-
ever, we do not deeply investigate the semantic
properties of these questions. Notably, McKenna
and Steedman (2022) show that searching for sim-
ilar relations in embedding space (as done in KG-
Flex) may work better for paraphrastic inference,
and only in certain cases for directional inference
where semantic precision matters, e.g. DEFEAT en-
tails PLAY, but PLAY does not entail DEFEAT. We

leave deeper investigation of KG-Flex semantics
and edge cases to future work.
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A Training Specifications

A.1 Hardware
We performed our experiments on one AWS EC2
instance of p3.2xlarge, which is equipped with one
NVIDIA Tesla V100 GPU (16 GiB memory).

A.2 Hyperparameters
We train and test a KG-Flex model constructed to
the specifications shown in Table 4.

Hyperparameter Value

Batch Size 4
Gradient Accumulation 32
Optimizer Adam
Learning Rate 1e-4
Training Steps 40,000
Relation Embedding Size 768

Table 4: Hyperparameters used in the KG-Flex architec-
ture.

B Added Domains

Our experiments in §4.2 use expert KGs containing
specific domains of Freebase. We show summary
information for the domains in Table 5.
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Questions Relations Triples

SimpleQuestions

Total 108,442 1,830 15,352,572
Film 13,538 61 1,028,076
Medicine 2,881 66 166,886

WebQuestionsSP

Total 4,737 585 10,968,596
Film 306 24 814,126
Sports 445 45 176,237

MetaQA 1-hop

Total 116,045 9 134,741
directed_by 21,483 1 15,966
written_by 22,193 1 19,543

MetaQA 2-hop

Total 148,724 9 134,741
directed_by 51,368 1 15,966
written_by 65,434 1 19,543

MetaQA 3-hop

Total 142,744 9 134,741
directed_by 70,227 1 15,966
written_by 60,384 1 19,543

Table 5: Domain summary information for experiments
in zero-shot transfer to new domains.
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