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Abstract

In our submission to the SIGMORPHON 2023
Shared Task on interlinear glossing (IGT), we
explore approaches to data augmentation and
modeling across seven low-resource languages.
For data augmentation, we explore two ap-
proaches: creating artificial data from the pro-
vided training data and utilizing existing IGT
resources in other languages. On the modeling
side, we test an enhanced version of the pro-
vided token classification baseline as well as a
pretrained multilingual seq2seq model. Ad-
ditionally, we apply post-correction using a
dictionary for Gitksan, the language with the
smallest amount of data. We find that our token
classification models are the best performing,
with the highest word-level accuracy for Ara-
paho and highest morpheme-level accuracy for
Gitksan out of all submissions. We also show
that data augmentation is an effective strategy,
though applying artificial data pretraining has
very different effects across both models tested.

1 Introduction

This paper describes the SigMoreFun submission to
the SIGMORPHON 2023 Shared Task on interlin-
ear glossing. Given input text in a target language,
the task is to predict the corresponding interlinear
gloss (using Leipzig glossing conventions). IGT
is an important form of linguistic annotation for
the morphological analysis of languages, and also
serves as an extremely valuable resource for lan-
guage documentation and education for speakers
of low-resource languages.

There were two tracks for this shared task, Track
1 (closed) and Track 2 (open). For Track 1, sys-
tems could only be trained on input sentences and
glosses; in Track 2, systems could make use of the
morphological segmentation of the input as well
as any (non-IGT) external resources. Since the
Track 2 setting better matches the long-term re-
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search goals of our team, we only participate in
this open track.

In our submission, we investigate two different
approaches. First, we attempt data augmentation
by either creating our own artificial gloss data by
manipulating the existing training data, or by uti-
lizing existing resources containing IGT in other
languages (§2). Second, we explore two different
models for gloss generation (§3). The first builds
off the token classification baseline, while the sec-
ond uses a pretrained multilingual seq2seq model.

Finally, we also attempt to post-correct model
outputs with a dictionary. We apply this to Gitk-
san and find that this, combined with our other
approaches, results in the highest morpheme-level
accuracy for Gitksan in Track 2.

2 Data Augmentation

One major challenge for this shared task is the scale
of data provided. All of the languages have less
than 40k lines of training data, and all but Arapaho
have less than 10k. The smallest dataset (Gitk-
san) has only 31 lines of data. Thus, one obvious
method to try is data augmentation. More specif-
ically, we try pretraining our models on different
forms of augmented data before training them on
the original target language data.

We explored two forms of data augmentation.
First, we generated artificial gloss data in the tar-
get language by swapping words in the existing
training data. Second, we utilized data from ODIN
(Lewis and Xia, 2010; Xia et al., 2014) to see if
transfer learning from data in other languages can
help improve performance.

2.1 Artificial Data

A challenge our team faced with respect to data
augmentation is figuring out how to obtain addi-
tional data when we do not have much knowledge
of the languages’ grammatical systems, along with
the fact that these languages are generally from
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digitally under-resourced language families. Fur-
thermore, we wanted our solution to be easily im-
plemented and relatively language agnostic due
to time constraints and practical usability for re-
searchers working on a variety of languages.

Thus, one avenue of data augmentation we tried
was by creating artificial data from the provided
training data. This requires no rule-writing or
knowledge of the grammar of the language, and
thus could be applied quickly and easily to all of
the languages in the shared task.

We used a naive word-swapping method to ran-
domly swap morphemes that occur in similar con-
texts to create new sentences. To do this, for each
gloss line, we replace each word stem (that has a
gloss label affix) with “STEM” to create a skeleton
gloss. We naively determine if a label is a stem
by checking if it is in lowercase. We do not do
this to words that do not have affixes as (with the
exception of Uspanteko) we do not have access to
parts of speech, and do not want to swap words that
would create an ungrammatical sequence.

We create a dictionary mapping each skeleton
word gloss to possible actual glosses, and map each
actual gloss to possible surface forms (we make
no assumptions that these mappings are one-to-
one). We then randomly sample k random skeleton
glosses (in this case, we used k equal to roughly
three times the amount of training data) and ran-
domly fill in words that match the format of skele-
ton words present in the line.

(1) to (3) below illustrate an example in this
process. We create a skeleton gloss (2) from the
Gitksan sentence in (1) by replacing the all word
stems that have an affix with “STEM” in both the
segmentation and gloss tiers—in this case, only

’witxw-it applies to this step. Then to create the
artificial data in (3), we replace the skeleton word
and corresponding gloss with another word from
the training data that has the same skeleton form,
in this case hahla’lst-it.

(1) ii
CCNJ

nee-dii-t
NEG-FOC-3.I

naa
who

dim
PROSP

’witxw-it
come-SX

(2) ii
CCNJ

nee-dii-t
NEG-FOC-3.I

naa
who

dim
PROSP

STEM-it
STEM-SX

(3) ii
CCNJ

nee-dii-t
NEG-FOC-3.I

naa
who

dim
PROSP

hahla’lst-it
work-SX

While this method may create a somewhat un-
natural input surface sequence (as we are unable to
capture phonological changes in the surface form

and corresponding translations may be nonsensi-
cal), this method guarantees that the structure of
the gloss is a naturally occurring sequence (as we
only use gloss skeletons that are present in the in-
put). However, a limitation of this method is that
it does not extend to out-of-vocabulary tokens or
unseen gloss structures. Furthermore, as we cannot
generate a gold-standard translation for the artifi-
cial data, we do not make use of a translation in
training.

2.2 ODIN

Another potential avenue for data augmentation
is transfer learning from data in other languages,
which has been shown to be an effective method
to improve performance in low-resource settings
(Ruder et al., 2019).

The available resource we utilize is ODIN, or
the Online Database for Interlinear Text (Lewis
and Xia, 2010; Xia et al., 2014). ODIN contains
158,007 lines of IGT, covering 1,496 languages.

We use the 2.1 version of ODIN data and convert
the dataset to the shared task format, and filter out
languages with fewer than five glossed sentences.
However, there remains significant noise in the
dataset that could cause significant alignment is-
sues for the token classification models. Therefore
we opt to only train the ByT5 models on ODIN, in
the hope that this model is less sensitive to align-
ment errors. Indeed, we find that the ByT5 model
finetuned first on ODIN receives a performance
boost when finetuned again on the shared task data.

3 Models

We explore two models for gloss generation. The
first one is built upon the token classification base-
line with some improvements, and we treat this
model as our internal baseline. The second model
we deploy tests whether we can achieve competi-
tive performance by finetuning a pretrained charac-
ter based multilingual and multitask model, ByT5.
For this model, we perform minimal preprocess-
ing and use raw segmented morphemes and free
translations if available.

3.1 Token Classification Transformer

We use the baseline Track 2 model provided by the
organizers as a starting point. The original imple-
mentation randomly initializes a transformer model
from the default Huggingface RoBERTa base con-
figuration, and uses a token classification objective
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with cross-entropy loss, where each gloss is treated
as a distinct token. The morphemes and free trans-
lations are tokenized by space and dashes, with
punctuations pre-separated. They are concatenated
and separated by the SEP token and are used as
the inputs to the model. We modify the original
Track 2 baseline model to obtain a better baseline.
We use pretrained weights from XLM-RoBERTa
base (Conneau et al., 2020), instead of randomly
initializing the weights. We also slightly modify
the morpheme tokenizer to enforce that the number
of morpheme tokens matches the number of output
gloss tokens exactly.

Additionally, we introduce the COPY token to
replace the gloss if it matches the corresponding
morpheme exactly. An example from Natugu is
shown in gloss (4):

(4) 67
COPY

.
COPY

mnc-x
be-1MINI

Mzlo
COPY

Skul
COPY

We believe this would improve performance by
removing the need to memorize glossed code-
switching and proper nouns, though it is only ef-
fective if the code-switched language is the same
as the matrix language (e.g. Arapaho), and would
have no effect if the source language uses a dif-
ferent orthography or is code-switched to another
language, where the gloss would not matched the
morpheme form exactly. This method also com-
presses all punctuation markers into one token, but
the usefulness of this side effect is less clear.

Since we are using pretrained weights, it is then
natural to explore integrating the pretrained tok-
enizer. Since XLM-RoBERTa was not trained on
any of the source languages, it makes the most
sense to only use the pretrained tokenizer to tok-
enize free translations, if they are available, and
extend the vocabulary to include morphemes.

3.2 Finetuned ByT5

Multi-task and multi-lingual pretrained large lan-
guage models have been shown to be effective for
many tasks. We explore whether such models can
be used effectively for glossing. We conduct ex-
periments with both mT5 (Xue et al., 2021) and
ByT5 (Xue et al., 2022), but ByT5 is preferred
because it takes raw texts (bytes or characters) as
inputs and in theory should be more effective for
unseen languages. We use a prompt based multilin-
gual sequence to sequence objective for both mod-
els. The prompt template is: “Generate interlin-
ear gloss from [source language]: [segmented

morphemes] with its [matrix language] trans-
lation: [free translation] Answer: ”. Data
from all languages are mixed together and shuffled,
with no up or down sampling. After initial experi-
ments, we find ByT5 outperforms mT5 across all
languages, and therefore we only conduct subse-
quent experiments on ByT5 and report those re-
sults.

Upon initial experiments, we also find the results
for Lezgi to be lower than expected. We hypothe-
size that the fact that the data are in Cyrillic script
causes this deficiency, since ByT5 was trained on
far less Cyrillic data than data in the Latin script.
Therefore we create an automatic romanization
tool, sourced from Wikipedia1 and integrated in
the Epitran package (Mortensen et al., 2018), and
convert all Lezgi data to Latin script for ByT5 fine-
tuning.

After inspecting the outputs of the ByT5 models,
we find cases where punctuations are attached to
the previous glosses, instead of being separated by
a space as is standard in the training sets. This is
probably due to the fact that the model was pre-
trained on untokenized data and this behavior is
preserved despite finetuning on tokenized data. We
therefore use a simple regular expression based tok-
enizer to fix the inconsistencies. We notice that the
procedure only gives performance boost on Gitk-
san, Lezgi, Uspanteko, and Natugu, and so we only
apply the procedure to those languages, leaving the
rest of the outputs unchanged.

4 Dictionary Post-correction: Gitksan

One of the key challenges for extremely low re-
source languages is the integration of structured
linguistic data in other forms, such as a dictionary,
into machine learning pipelines. We test a simple
post-correction method from a pre-existing dictio-
nary on Gitksan only, due to its unique combination
of low resource and easily obtainable dictionary in
machine readable form. We use the dictionary com-
piled by Forbes et al. (2021), without consulting the
morphological analyzers that they also provided.
At inference time, if a morpheme is unseen dur-
ing training, we search for the exact form in the
dictionary. We also expand the search to all sub se-
quences of morphemes within the enclosing word,
plus the previous whole word in cases where a par-
ticle is included in the dictionary form. The first

1https://en.wikipedia.org/wiki/Lezgin_
alphabets
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matched definition is used as the gloss and if none
of the search yields an exact match, we fall back to
the model prediction. We only apply this method to
the token classification models because the align-
ment between morphemes and glosses is directly
established, whereas the seq2seq models do not
guarantee that the number of glosses matches the
number of morphemes.

5 Results and Discussion

Tables 1 and 2 show our systems’ performance (as
well as the original baseline) on the test data with re-
spect to word- and morpheme-level micro-averaged
accuracy, respectively. Overall, the token classifica-
tion model trained first on the artificially generated
augmented data perform the best, with the model
trained on the shared task data only not far behind.
Meanwhile, ByT5 models perform worse, with the
model finetuned first on ODIN trailing our best
model by a few percentage points, while the model
finetuned first on augmented data performs worse
than the baseline.

5.1 Data Augmentation
Overall, we find data augmentation to be useful.
With artificially generated data, we see the effects
are perhaps greatest for the mid-resource languages
(ddo, lez, ntu, nyb, usp), while the highest and
lowest resourced languages did not receive much
benefit from pretraining on the artificial data. We
think this is perhaps because there is a “sweet spot”
with respect to the amount of data that is required to
train a model. If there is enough data already, in the
case of Arapaho, then the noisiness of artificial data
would out-weight the benefit of training on them.
On the other end of the scale, Gitksan perhaps
needs more synthetic data for data augmentation to
yield meaningful improvements.

For ByT5 models, artificially generated data
seem to have the opposite effect, where perfor-
mance is significantly degraded. A speculation for
this effect is the fact the pretrained model is more
semantically aware, and since the artificially gen-
erated sentences could be nonsensical, the model
could become confused. On the other hand, pre-
training on ODIN yields improvements for the ma-
jority of the languages2. This is encouraging since
we did not perform much preprocessing for ODIN,

2Tsez is the only language that appeared in ODIN (68
sentences). We did not remove it from the corpus but this
should have little influence on the performance because the
size of the dataset is very small.

and there is definitely still room to make the data
cleaner and more internally consistent, which in
turn should result in a better model.

5.2 Choice of Hyperparameters
We find the choice of hyperparameters of the token
classification models to be necessarily language
and dataset specific. Arapaho and Gitksan in par-
ticular need special attention, where the number
of training epochs need to be adjusted for the very
high and low data size. We also developed most of
the optimization on the token classification model
on Arapaho. However, we did not have time to
propagate the changes (using pretrained tokenizer,
saving the last model instead of the model with the
lowest validation loss) to the rest of languages since
initial experiment showed that pretrained tokeniz-
ers did not improve on the other languages. How-
ever, after the submission deadline is concluded, we
ran more experiments and discovered that adding
pretrained tokenizers requires more training steps,
and the training is better controlled by specifying
the training steps instead of epochs. We do not in-
clude those latest experiments in this paper, but our
token classification models have the potential to
perform better with more hyperparameter tuning.

5.3 In- Versus Out-of-Vocabulary Errors
One dimension of error analysis we investigated
was what proportion of our systems’ errors come
from morphemes or words that are either in or out
of the training data vocabulary. We count a mor-
pheme or word as in-vocabulary if the surface form
and its corresponding gloss co-occur in the pro-
vided training data (not including the development
data, as our models are only trained on the train
set). Note that there is a much larger proportion
of OOV words as opposed to morphemes due to
the fact that an unseen word can be composed of
different combinations of seen morphemes.

Table 3 shows the proportion of morphemes and
words that are out-of-vocab (OOV) within the test
set. While nearly all the languages have less than
10% of their morphemes classified as OOV, Gitksan
notably has a relatively large portion of OOV test
data, with ≈ 45% of morphemes and ≈ 78% of
words being OOV.

Tables 4 and 5 show our models’ performances
on in- verses out-of-vocab tokens at the morpheme
and word levels, respectively. While we would
intuitively expect that word-level OOV accuracy be
about the same or worse than morpheme-level OOV
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Model arp ddo git lez ntu nyb usp AVG

xlmr-base 85.87 73.77 27.86 / 34.11a 74.15 82.99 80.61 73.47 72.14
xlmr-aug 82.92 80.07 24.74 / 31.25 77.77 78.72 85.53 77.51 73.39

byt5-base 78.86 80.32 14.84 60.72b 76.67 76.73 77.21 66.48
byt5-aug 73.27 62.37 4.17 38.60 55.11 69.25 70.85 53.38
byt5-odin 80.56 82.79 20.57 63.77 77.97 82.59 75.72 69.14

baseline 85.44 75.71 16.41 34.54 41.08 84.30 76.55 59.14

aWe report before / after dictionary based post-correction for Gitksan.
bWe trained this model without romanizing Lezgi.

Table 1: Word-level accuracy of our submitted systems. Best performance per language in the table is bolded. The
XLMR baseline is the highest Arapaho accuracy reported out of all shared task submissions.

Model arp ddo git lez ntu nyb usp AVG

xlmr-base 91.36 84.35 47.47 / 52.82 80.17 88.35 85.84 80.08 80.42
xlmr-aug 89.34 88.15 46.89 / 52.39 82.36 85.53 89.49 83.08 81.48

byt5-base 78.82 75.77 12.59 44.10 62.40 78.97 74.25 60.99
byt5-aug 72.10 57.93 2.60 26.24 35.62 70.01 67.73 47.46
byt5-odin 80.81 78.24 12.74 50.00 63.39 85.30 73.25 63.39

baseline 91.11 85.34 25.33 51.82 49.03 88.71 82.48 67.69

Table 2: Morpheme-level accuracy of our submitted systems. Best performance per language in the table is bolded.
The XLMR baseline with artificial pretraining and dictionary post-correction is the highest Gitksan accuracy
reported out of all shared task submissions.

arp ddo git lez ntu nyb usp

Morph 0.043 0.009 0.450 0.056 0.034 0.019 0.070

Word 0.242 0.155 0.781 0.169 0.214 0.084 0.200

Table 3: Proportion of morphemes and words that are
OOV within the test set.

accuracy, this is not the case due to the fact that
a large portion of out-of-vocab words are formed
with in-vocab morphemes. For most languages,
with the exception of Gitksan, there appears to
be a trade-off between better in-vocab morpheme
performance with XLMR and performance out-of-
vocab with ByT5.

6 Related Work

There have been a variety of approaches to the prob-
lem of (semi-) automatically generating interlinear
gloss. Baldridge and Palmer (2009) investigate the
efficacy of active learning for the task of interlinear
glossing, using annotation time required by expert
and non-expert annotators as their metric. The sys-
tem they use to generate gloss label suggestions is

a standard maximum entropy classifier.

A rule-based approach by Snoek et al. (2014)
utilizes an FST to generate glosses for Plains Cree,
focusing on nouns. Samardžić et al. (2015) view
the task of glossing segmented text as a two-step
process, first treating it as a standard POS tagging
task and then adding lexical glosses from a dictio-
nary. They demonstrate this method on a Chintang
corpus of about 1.2 million words.

A number of other works focusing on interlinear
glossing utilize conditional random field (CRF)
models. Moeller and Hulden (2018) test three
different models on a very small Lezgi dataset
(< 3000 words): a CRF (that outputs BIO labels
with the corresponding gloss per character in the in-
put), a segmentation and labelling pipeline that uti-
lizes a CRF (for BIO labels) and SVM (for gloss la-
bels), and an LSTM seq2seq model. They find that
the CRF that jointly produces the BIO labels and
tags produced the best results. McMillan-Major
(2020) utilizes translations in their training data by
creating two CRF models, one that predicts gloss
from the segmented input and another than pre-
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Model arp ddo git lez ntu nyb usp

xlmr-base
95.20 85.12 82.89 84.79 90.87 87.46 86.05
4.97 0.00 16.08 2.60 14.52 0.00 0.82

xlmr-aug
92.98 88.94 84.74 87.10 87.88 91.17 89.31
7.49 0.00 12.86 2.60 19.35 0.00 0.41

byt5-aug
74.76 58.24 3.42 40.27 36.54 71.27 70.56
12.31 24.10 1.61 23.54 9.68 3.23 30.20

byt5-odin
83.47 78.55 18.42 62.90 64.38 86.85 75.23
21.14 43.37 5.79 47.52 35.48 3.23 46.94

Table 4: Morpheme-level accuracy over all tokens of our submitted systems, split by in- versus out-of-vocab. Cells
highlighted in gray indicate OOV accuracy.

Model arp ddo git lez ntu nyb usp

xlmr-base
95.93 78.18 95.23 84.24 93.14 85.85 86.27
54.44 49.79 17.00 24.67 45.65 23.60 22.41

xlmr-aug
93.72 83.85 94.05 87.64 89.24 90.81 91.11
49.17 59.51 13.67 29.33 40.00 23.24 28.09

byt5-aug
87.22 68.69 10.71 46.06 65.13 74.59 81.44
29.69 28.04 2.33 2.00 18.26 11.24 28.63

byt5-odin
91.93 87.66 63.10 73.78 85.93 87.60 83.46
45.07 56.36 8.67 14.67 48.70 28.09 44.81

Table 5: Word-level accuracy of our submitted systems, split by in- versus out-of-vocab. Cells highlighted in gray
indicate OOV accuracy.

dicts from the translation, and then uses heuristics
to determine which model to select from for each
morpheme. Barriga Martínez et al. (2021) used a
CRF model to achieve > 90% accuracy for gloss-
ing Otomi and find that it works better than an
RNN, which is computationally more expensive.

Other works, including our systems, have turned
to neural methods. Kondratyuk (2019) leverages
pretrained multilingual BERT to encode input
sentences, then apply additional word-level and
character-level LSTM layers before jointly decod-
ing lemmas and morphology tags using simple se-
quence tagging layers. Furthermore, they show
that two-stage training by first training on all lan-
guages followed by training on the target language
is more effective than training the system on the
target language alone. An approach by Zhao et al.
(2020), like McMillan-Major (2020), makes use of
translations available in parallel corpora, but do so
by using a multi-source transformer model. They
also incorporate length control and alignment dur-
ing inference to enhance their model, and test their

system on Arapaho, Tsez, and Lezgi.

7 Conclusion

In our shared task submission, we explore data aug-
mentation methods and modeling strategies for the
task of interlinear glossing in seven low-resource
languages. Our best performing models are to-
ken classification models using XLMR. We demon-
strate that pretraining on artificial data with XLMR
is an effective technique for the mid-resource test
languages. Additionally, in our error analysis we
find that we may have actually undertrained our
token classification models, and thus our systems
may have the potential to perform better with ad-
ditional hyperparameter tuning. While our ByT5
models did not perform as well as our other sys-
tems, we show that pretraining on ODIN data is
effective, despite this data being very noisy. Finally,
we also demonstrate improvements by utilizing a
dictionary to post-correct model outputs for Gitk-
san.
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A Hyperparameter Settings

We use Adafactor (Shazeer and Stern, 2018) as
the optimizer across all experiments, with the de-
fault scheduler from Hugging Face Transformers,
a batch size of 32 for RoBERTa based models and
a batch size of 4 with a gradient accumulation step
of 8 for ByT5 based models. We train the token
classification models for 40 epochs except for Ara-
paho, on which we train 20 epochs, and Gitksan,
on which we train 2,000 steps. We train the ByT5
based models for 20 epochs on all of the data mixed
together.
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