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Abstract

This paper describes the system developed
by the USTC-NELSLIP team for SemEval-
2023 Task 2 Multilingual Complex Named En-
tity Recognition (MultiCoNER II). A method
named Statistical Construction and Dual Adap-
tation of Gazetteer (SCDAG) is proposed for
Multilingual Complex NER. The method first
utilizes a statistics-based approach to construct
a gazetteer. Secondly, the representations of
gazetteer networks and language models are
adapted by minimizing the KL divergence
between them at both the sentence-level and
entity-level. Finally, these two networks are
then integrated for supervised named entity
recognition (NER) training. The proposed
method is applied to XLM-R with a gazetteer
built from Wikidata, and shows great gener-
alization ability across different tracks. Ex-
perimental results and detailed analysis verify
the effectiveness of the proposed method. The
official results show that our system ranked 1st
on one track (Hindi) in this task.

1 Introduction

Named Entity Recognition (NER) is a fundamental
and important natural language processing (NLP)
task, which aims at finding entities and recognizing
their type in a text sequence. Recently, deep
neural networks have achieved great performance
on simple NER with abundant labeled data (Ye and
Ling, 2018; Jia et al., 2020; Chen et al., 2022). In
practical and open-domain settings, it is difficult
for machines to process complex and fine-grained
named entities (Ashwini and Choi, 2014; Fetahu
et al., 2023b). For example, “The Old Man and
the Sea” is the title of a movie as well as a
book, which has different categories in different
contexts and cannot be recognized easily by present
NER systems. This issue may become even more
serious in multilingual settings (Fetahu et al., 2021).
However, it has not received sufficient attention
from the research community. To alleviate the

issue, SemEval-2023 Task 2 (Fetahu et al., 2023b)
formulates this task which challenges participants
to develop NER systems for 12 languages (English,
Spanish, Swedish, Ukrainian, Portuguese, French,
Farsi, German, Chinese, Hindi, Bangla and Italian),
focusing on recognizing semantically complex
and fine-grained entities in short and low-context
settings. Each language constitutes a single track,
while Multilingual is added as Track 13. The
datasets (Fetahu et al., 2023a) mainly contain
sentences from three domains: Wikipedia, web
questions and search queries. Besides, simulated
errors are added to the test set to make the task
more realistic and difficult.

Recent studies have found that integrating exter-
nal knowledge or gazetteers into neural architec-
tures is effective in solving this problem (Liu et al.,
2019; Rijhwani et al., 2020; Meng et al., 2021).
For example, the two representations respectively
from a language model and a gazetteer network are
integrated as one representation, which is further
fed into a classifier such as a conditional random
field (CRF) (Lafferty et al., 2001). However, for the
fine-grained entities, due to the closer semantic dis-
tance between these entity categories, the coverage
rate of the constructed entity gazetteer is difficult
to improve. Besides, the interaction between the
two representations in previous work (Chen et al.,
2022) only focus on sentence-level, which ignore
the entity-level representation gap between them
and lead to information loss.

In this paper, we propose a method named
Statistical Construction and Dual Adaptation of
Gazetteer (SCDAG) for Multilingual Complex
NER based on GAIN (Chen et al., 2022). Firstly,
based on Wikipedia of the 12 languages, we build
a multilingual gazetteer to search for the entities
in input sentence. Different from GAIN, we
use a statistics-based approach to maximize the
coverage of the gazetteer. Afterwards, the SCDAG
adopts a two-stage training strategy to dually
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adapt the gazetteer network to the language model.
During the first training stage, the parameters of a
language model are fixed. Then a sentence and its
annotation are fed into the two networks separately.
The representations of gazetteer networks and
language models are adapted by minimizing the
KL divergence between them at the sentence-level
and entity-level. This process helps the gazetteer
network understand the meaning of NER tags and
strengthen the model adaptation ability to NER.
A gazetteer is applied to sentences to generate
pseudo tags which are fed into the two pre-trained
networks separately in the second stage. Finally,
the two output representations are integrated for
classifying.

The proposed method achieves great improve-
ments on the validation set (Fetahu et al., 2023a) of
SemEval-2023 Task 2 compared to baseline models
with gazetteers. Ensemble models are used for
all thirteen tracks in the final test phase, and our
system officially ranked 1st on one track (Hindi).
The outstanding performance demonstrates the
effectiveness of our method. To facilitate the
reproduction of our results, the code is available at
https://github.com/mjy1111/SCDAG.

2 Related Work

NER has a lot of applications in various domains
and languages. Recently, with the introduction
of contextual pre-trained models, such as BERT,
ROBERTA (Delobelle et al., 2020) and XLM-
R (Conneau et al., 2020), the performance of NER
systems has been significantly improved. These
models are trained on large-scale unlabeled data
such as Wikipedia, which can significantly improve
the contextual representations abilities.

SemEval-2023 Task 2 is a continuation of the
multilingual NER task started in 2022 (Malmasi
et al., 2022b). There are many challenges that
can make NER extremely difficult. In Meng et al.
(2021), they explain that named entity recognition
is especially difficult in situations with low-context
or in scenarios where the named entities are
exceptionally complex and ambiguous. Another
work has extended this to multilingual and code-
mixed settings (Fetahu et al., 2021). These are
the key challenges of the 2022 datasets (Malmasi
et al., 2022a) and we have participated in this
competition (Chen et al., 2022). Besides, NER
requires abundant well-annotated data, which is
too expensive in low-resource languages (Ma et al.,

2022).
Lots of methods are proposed to improve NER

performance and a general discovery is that the
use of external knowledge bases is very effective.
Wang et al. (2021) retrieve related contexts from a
search engine as external contexts of the inputs to
take advantage of long-range dependencies for en-
tity disambiguation and successfully achieve state-
of-the-art performance across multiple datasets.
Meng et al. (2021) recognize the importance of
gazetteer resources, even in the case of state-of-
the-art systems making use of pre-trained models.
They propose a Contextual Gazetteer Represen-
tation encoder, combined with a novel Mixture-
of-Expert (MoE) gating network to conditionally
utilize gazetteer information. Fetahu et al. (2021)
employ multilingual gazetteers embedded with
transformer models in an MoE approach to improve
the recognition of entities in code-mixed web
queries, where entities are in a different language
from the rest of the query.

3 Data

The MultiCoNER dataset (Fetahu et al., 2023a) is
provided in a column-based format and divided
into the training, development and testing sets. The
text is lowercase with the named entity annotation
in BIO format (Sang and Meulder, 2003). The first
token (or the single token) of an entity contains
the “B-” prefix. Other entity tokens (in the case
of multi-token entities) start with an “I-” prefix,
while non-entity tokens are denoted with “O”. It
consists of 6 coarse-grained entity types and 33
fine-grained entity types, and the coarse to fine
level mapping of the tags is as follows: Location
(Facility, OtherLOC, HumanSettlement, Station),
Creative Work (VisualWork, MusicalWork, Writ-
tenWork, ArtWork, Software), Group (Musical-
GRP, PublicCORP, PrivateCORP, AerospaceMan-
ufacturer, SportsGRP, CarManufacturer, ORG),
Person (Scientist, Artist, Athlete, Politician, Cleric,
SportsManager, OtherPER), Product (Clothing,
Vehicle, Food, Drink, OtherPROD), Medical (Med-
ication/Vaccine, MedicalProcedure, Anatomical-
Structure, Symptom, Disease).

Two data augmentation methods are used follow-
ing (Chen et al., 2022). For the basic training set
provided officially, an entity replacement strategy
is adopted using our own gazetteer to construct
a data-augmented set. This part of data is called
“data-wiki”, which mainly consists of rich-context
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where to buy apple iphone 13
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Figure 1: The overall structure of the proposed system. “S” and “E” are the logits distributions of the whole sentence
and entities, reflecting the sentence-level and entity-level adaptation, respectively.

sentences. In order to improve the performance
of our models on low-context instances, a set of
annotated sentences are generated from the MS-
MARCO QnA corpus (V2.1) (Nguyen et al., 2016)
and the ORCAS dataset (Craswell et al., 2020),
which are mentioned in Meng et al. (2021). Our
trained models and existing NER systems (e.g.,
spacy) are applied to identify entities in these
corpora, and only templates identically recognized
by all models are reserved. Then 3,379 English
templates for MS-MARCO and 11,754 English
templates for ORCAS are obtained. Next, we slot
the templates by our own gazetteer and translate
them to the other 11 languages. This part of data is
called “data-query”. Finally, the constructed data
is used together with the official data for training.

4 Methodology

This study focuses on making better use of external
entity knowledge. To describe our system clearly,
in this section, we first introduce three basic
mainstream NER systems used. Then we show the
process of constructing a gazetteer from Wikipedia
using a statistics-based approach to maximize the
coverage rate, and how the gazetteer representation
is generated and utilized. Finally, we illustrate
the dual adaptation between gazetteer network
and language model. The overall structure of the
proposed system is shown in Figure 1.

4.1 Basic NER Systems

We mainly use the XLM-RoBERTa large (Conneau
et al., 2020) as the pre-trained language model,
which is a widely used encoder. Generated by
feeding a sentence into the encoder, the represen-
tation is then input to different classifiers. Three
mainstream NER backend classifiers are adopted:
Softmax (Devlin et al., 2019) and CRF (Huang

Lang. Total Num. Average Average-stat
EN 3035,896 32.52% 36.76%
ZH 940,614 27.83% 32.59%
HI 80,588 43.86% 46.55%
BN 115,759 43.20% 45.91%
ES 1334,659 40.94% 42.34%
DE 1686,065 30.44% 32.27%
FA 460,283 40.81% 43.61%
FR 785,379 27.66% 30.71%
IT 243,768 33.49% 35.86%
PT 124,532 19.78% 20.99%
SV 79,137 17.67% 21.53%
UK 101,986 30.34% 35.38%
MULTI 6269,437 31.29% 35.73%

Table 1: The metrics of our gazetteer in detail. The Total
Num. column means the accurate number of entries in
the gazetteer for each track. Numbers with % denote the
coverage rates to entities in the training and validation
set. The Average means coverage rate of the gazetteer
with a manual one-to-one matching following Chen et al.
(2022) and the Average-stat is the coverage rate after
adding the statistics-based approach.

et al., 2015) are classic sequential labeling methods
that predict the tag of each token, and Span
(Yu et al., 2020) is a segment-based method that
predicts the start and the end of an entity separately.

4.2 The Gazetteer

It’s difficult to process complex and fine-grained
entities only relying on the language model itself
(Ashwini and Choi, 2014). To integrate external
entity knowledge, we first need to build a large
gazetteer matching the taxonomy, then we have to
consider how to fuse the gazetteer information with
the semantic information from the language model.
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4.2.1 Statistical Construction
Our gazetteer is built based on Wikidata. Wikidata
is a free and open knowledge base. Every entity
of Wikidata has a page consisting of a label,
several aliases, descriptions, and one or more entity
types. We use entity type annotated by Wikidata
to construct the gazetteer. For example, “Da Vinci”
can be annotated as a researcher or a well-known
artist in Wikidata. Thus, according to the entity
definition of this competition, the word “Da Vinci”
is given both scientist and artist labels.

In the previous work (Chen et al., 2022), to
construct a gazetteer fit to the data of this task,
firstly every entity of the training set is searched
in Wikidata. Then all the entity types returned
are mapped to the NER taxonomy with 6 labels
manually. Next, all Wikidata entities stored in these
entity types can be added to the 6 labels gazetteer
separately. However, since labels are fine-grained
and some labels are semantically similar in this
work, the cost of manual matching is too high and
just adding the returned entity types to a certain
label gazetteer will result in low coverage of the
gazetteer. Therefore, we counted the coverage of
the Wikidata entities contained in each returned
entity type on each label of the training set, and
added this entity type to the top two labels gazetteer
with the highest coverage.

In this way, a multilingual gazetteer is con-
structed that contains entities from 70K to 3M
for each language. The gazetteer approximately
has a coverage rate of 35 percent on entities in
the training and validation set. To validate the
effectiveness of this method, we also use a manual
one-to-one matching same as Chen et al. (2022).
Basic information about our gazetteer is shown in
Table 1. The coverage rate is calculated as the
number of entities both appearing in the official
data and our gazetteer divided by the total number
of entities in the official data. It shows that with
the statistic-based approach, the coverage rate of
the gazetteer gains a significant improvement.

4.2.2 Application
A search tree is constructed for string matching
firstly to apply the gazetteer to a sentence. Once
a sentence is fed into the search tree, a maximum
length matching algorithm will be conducted, and
a 67-dimension one-hot vector for each token will
be generated. Take the sentence “where to buy
apple iphone 14” for example. By string matching
with the gazetteer, “apple iphone 14”, “iphone

Words O B-Food I-Food B-OtherPROD I-OtherPROD

where 1 0 0 0 0
to 1 0 0 0 0
buy 1 0 0 0 0
apple 0 1 0 1 0
iphone 0 0 0 1 1
14 0 0 0 0 1

Table 2: Example of the one-hot representation for a
searched sentence. The rest labels are all zero.

14” and “apple” are found in the OtherPROD
gazetteer, while “apple” is also found in the Food
gazetteer. Then a 67-dimension one-hot vector will
be generated for every word as shown in Table 2.

Denote one sentence as w = (w1, w2, ...wM )
where M is the length of the sentence and wi is the
ith word. By feeding w into the encoder such as the
XLM-RoBERTa large, a semantic representation
e ∈ RN×D is obtained, where N is the length
of subword tokens and D is the hidden size. At
the same time, the one-hot vector generated from
the search tree is fed into a gazetteer network
consisting of a dense layer and a BiLSTM. To
match the hidden size of the language model, the
output embedding g has the same size as e. Noting
that the value of each word in gazetteer is assigned
to the first subword, and the other subwords are 0.

Then we use two ways to integrate e and g. One
way is to concatenate them on each token, another
way is to get the weighted summation of them by
setting a trainable parameter λ ∈ RN×D. The final
representation is fed into the backend classifier for
supervised NER training.

4.3 Dual Adaptation

Chen et al. (2022) have found that only conducting
the normal training process above is not enough.
Since the encoder XLM-R large and the gazetteer
network BiLSTM are almost isolating each other
during the whole training, almost no semantic
information can be gained explicitly by the classic
gazetteer network.

In this paper, the dual adaptation method is
proposed with a two-stage training strategy to
interact the representations of gazetteer network
and language model at both sentence-level and
entity-level. In the first stage, an one-hot vector
is constructed just based on the true tags in training
set for each sentence. A gazetteer representation
gr ∈ RN×D is obtained after passing the vector
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through the gazetteer network. Then the parameters
of the language model are fixed, and the sentence
w is fed into it to get a semantic representation s.
{gr, s} are projected to {gt

r, s
t} ∈ RN×67 by two

separate linear layers, where the semantic meaning
is transferred to the tags meaning as a kind of
logits distribution. Meantime, all entity logits are
connected and denoted as {ge

r, s
e} ∈ RE×67. Then

the sentence-level and entity-level adaptation are
respectively implemented by the designed losses:

L1 = KL(sg(gt
r)||st) + KL(sg(st)||gt

r), (1)

L2 = KL(sg(ge
r)||se) + KL(sg(se)||ge

r), (2)

where KL(·) is the KL divergence calculation and
sg(·) operation is used to stop back-propagating
gradients, which is also employed in Jiang et al.
(2020); Liu et al. (2020). The loss L1 encourages
the distributions gt

r and st to approximate each
other to enhance the two networks as a whole at
the sentence-level. The loss L2 utilizes entities to
strengthen the model adaptation ability to NER.
In the second stage, all the parameters are trained
with a gazetteer. As illustrated in Section 4.2.2,
a gazetteer representation g is generated from the
search tree and the gazetteer network BiLSTM.
Next, an ordinary fusion method is applied to g
and s to get an integration representation, which is
then fed into the backend classifier to compute a
conventional loss with true tags T. This supervised
training goal is implemented by the loss L3:

L3 = Classifier(f(g, s),T), (3)

where f(·) denotes ordinary integration meth-
ods like concatenation or weighted summation.
Classifier(·) represents one of the three main-
stream backend classifiers mentioned in Section
4.1. It is worth noting that in Eq. (2), we use
the true entities in training set for the whole
training. During the second-stage training, a
multitask learning goal is conducted shown as:

L4 = α(L1 + L2) + L3, (4)

where α is a hyperparameter control the importance
of gazetteer and is manually set for different fusion
or backend methods.

5 Experiments

5.1 Implementation Details

In this paper, the XLM-R large model was chosen
as the encoder for all tracks, which could be found
on the HuggingFace Page (Wolf et al., 2019). As
for hyperparameter, the hidden size was 1024,
batch size was 32 and dropout rate was set to 0.1.
The AdamW (Loshchilov and Hutter, 2019) was
used as optimizer. We adopted a learning rate 2e-5
for language models, 2e-4 for gazetteer networks
and 2e-5 for classifiers. The training epoch for first-
stage training was 5 and for second-stage training
was 20. The α for the second stage training was set
to 5 for Softmax and Span, 100 for CRF. All code
was implemented in the PyTorch framework1.

5.2 Training Strategy

In this paper, a 5-fold cross-validation training
strategy was also applied in the evaluation and a
lot of models had been trained with the SCDAG
method using different classifiers. Firstly, the
prepared data “data-wiki” and “data-query” were
split into five pieces, each one was used as the
validation set, while the other four pieces were
used as the training set. After obtaining the five
best models by this strategy, the logits of them
(for Softmax and Span models) were averaged
to integrate them as an aggregated model. CRF
models had been just voted averagely at the word
level.

Finally, the predictions of our best models in
different methods were token-voted by setting a
weight for each track. The weight was manually
set referring to all scores on the validation set.

5.3 Official Results

Our team participated in all 13 tracks and the
overall fine-grained F1 and per-class performance
were reported in Table 3. We also provided the
coarse-grained metrics F1. We ranked 1st on the HI
track. As shown in the table, the proposed SCDAG
method significantly improved the performance of
recognizing the fine-grained entities.

5.4 Analysis

5.4.1 Effectiveness of SCDAG
To explore the effectiveness of each module in
the proposed SCDAG method, a large number of
trials were conducted on the official data mentioned

1https://pytorch.org/
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Domain Metrics\Lang EN ZH HI BN ES DE FA FR IT PT SV UK

overall

f-macro@F1 0.7215 0.6657 0.8214 0.8059 0.7444 0.7871 0.6885 0.7425 0.7570 0.7126 0.7547 0.7437
f-macro@P 0.7464 0.6695 0.8306 0.8140 0.7581 0.7773 0.6827 0.7573 0.7608 0.7076 0.7444 0.7384
f-macro@R 0.6996 0.6686 0.8319 0.8132 0.7355 0.8026 0.7093 0.7302 0.7647 0.7402 0.7811 0.7688
c-macro@F1 0.8203 0.7948 0.9025 0.9002 0.7355 0.8898 0.7796 0.8306 0.8568 0.8468 0.8666 0.8550
c-macro@P 0.8434 0.8103 0.9119 0.9119 0.8538 0.8919 0.7866 0.8420 0.8560 0.8630 0.8702 0.8605
c-macro@R 0.7989 0.7800 0.8938 0.8839 0.7198 0.8879 0.7730 0.8197 0.8488 0.8401 0.8630 0.8595
TRUE 377,805 27,999 23,199 25,013 356,374 28,877 312,115 398,195 397,222 340,752 361,159 315,374
PRED 361,714 26,920 22,790 24,367 344,583 28,658 309,831 389,442 391,749 335,472 356,705 311,695
RECALLED 328,276 23,840 21,468 23,116 313,180 26,924 255,270 351,401 362,917 306,415 331,177 281,135

LOC

macro@F1 0.8806 0.8422 0.9410 0.9161 0.8638 0.9227 0.8009 0.8542 0.8784 0.8856 0.9292 0.8941
macro@P 0.8931 0.8636 0.9440 0.9531 0.8811 0.9237 0.7960 0.8659 0.8876 0.8970 0.9428 0.9007
macro@R 0.8685 0.8219 0.9380 0.9470 0.8473 0.9218 0.8059 0.8429 0.8695 0.8744 0.9160 0.8875
F1@Facility 0.7462 0.7002 0.8108 0.8515 0.7193 0.7969 0.7050 0.7457 0.7959 0.7417 0.8069 0.7500
F1@otherloc 0.7585 0.5781 0.8445 0.8444 0.6352 0.7134 0.5514 0.6773 0.6571 0.7883 0.9032 0.7380
F1@HS 0.9125 0.8509 0.9473 0.9566 0.8902 0.9386 0.8134 0.8687 0.8963 0.9053 0.9483 0.9145
F1@Station 0.8579 0.8482 0.9298 0.9100 0.8036 0.8464 0.8629 0.8137 0.8055 0.8121 0.8413 0.8037

CW

macro@F1 0.8175 0.7763 0.8697 0.9161 0.8383 0.8819 0.7973 0.8393 0.9014 0.8463 0.8285 0.8187
macro@P 0.8519 0.7965 0.9139 0.9046 0.8629 0.8819 0.7973 0.8570 0.9130 0.8651 0.8412 0.8210
macro@R 0.7858 0.7572 0.8295 0.8176 0.8151 0.8687 0.7789 0.8224 0.8902 0.8283 0.8162 0.8163
F1@Visual 0.8190 0.7453 0.8947 0.8674 0.8192 0.8355 0.8430 0.8833 0.9312 0.8170 0.8475 0.8235
F1@Musical 0.8181 0.6215 0.6281 0.8079 0.7784 0.8490 0.7161 0.7668 0.8676 0.8180 0.8175 0.7381
F1@Written 0.7844 0.7425 0.8919 0.8834 0.7820 0.8542 0.6820 0.7692 0.7539 0.7447 0.7414 0.7693
F1@Art 0.6859 0.5305 0.4692 0.3678 0.5917 0.8079 0.2640 0.7025 0.7363 0.2613 0.4631 0.5047
F1@Software 0.8264 0.7183 0.9332 0.9357 0.8694 0.8841 0.7722 0.8131 0.8393 0.8502 0.8657 0.8748

GRP

macro@F1 0.8202 0.8076 0.9443 0.9353 0.8494 0.9005 0.7967 0.8311 0.8617 0.8589 0.8621 0.8751
macro@P 0.8581 0.8304 0.9558 0.9500 0.8846 0.9042 0.8109 0.8403 0.8712 0.8680 0.8600 0.8821
macro@R 0.7854 0.7860 0.9330 0.9211 0.8170 0.8968 0.7829 0.8222 0.8524 0.8499 0.8641 0.8682
F1@Musical 0.8259 0.7349 0.9516 0.9443 0.8396 0.8627 0.8253 0.8235 0.8688 0.8394 0.8621 0.8873
F1@Public 0.7648 0.6268 0.9140 0.8849 0.8267 0.7883 0.7706 0.7808 0.8291 0.8540 0.7972 0.8691
F1@Private 0.7089 0.7395 0.8834 0.9644 0.6824 0.8848 0.6358 0.7961 0.5692 0.0508 0.7066 0.4537
F1@AM 0.7692 0.7040 0.4715 0.4615 0.7349 0.9037 0.8832 0.7639 0.6431 0.4832 0.4832 0.5771
F1@Sports 0.8872 0.8647 0.9729 0.9651 0.871 0.9363 0.8843 0.8554 0.8777 0.8801 0.9089 0.9123
F1@CM 0.7988 0.7083 0.9246 0.9195 0.8307 0.8449 0.7859 0.7907 0.8055 0.8175 0.8003 0.8561
F1@ORG 0.7575 0.7239 0.9256 0.9157 0.7594 0.8156 0.6965 0.7165 0.7280 0.7617 0.7691 0.7898

PER

macro@F1 0.9419 0.8942 0.9287 0.9294 0.9463 0.9425 0.8566 0.9483 0.9625 0.9472 0.9586 0.9481
macro@P 0.9450 0.9062 0.9313 0.9400 0.9486 0.9451 0.8515 0.9498 0.9626 0.9465 0.9584 0.9505
macro@R 0.9388 0.8825 0.9261 0.9191 0.9440 0.9399 0.8617 0.9467 0.9624 0.9479 0.9588 0.9457
F1@Scientist 0.5759 0.4085 0.6448 0.5104 0.5871 0.4660 0.4612 0.5656 0.5786 0.5281 0.5315 0.5686
F1@Artist 0.8016 0.7471 0.7834 0.7762 0.8307 0.7992 0.7887 0.8451 0.8929 0.8443 0.8241 0.8033
F1@Athlete 0.8150 0.7691 0.8428 0.7813 0.8122 0.8135 0.7011 0.8275 0.8938 0.8035 0.8215 0.8467
F1@Politician 0.7074 0.5575 0.7581 0.7086 0.6888 0.6533 0.6661 0.6986 0.7087 0.7236 0.7345 0.6529
F1@Cleric 0.7175 0.4516 0.8395 0.7388 0.6859 0.5956 0.6320 0.6946 0.7756 0.7421 0.6877 0.6705
F1@SM 0.6581 0.5174 0.6419 0.6440 0.6788 0.5959 0.6432 0.6456 0.7235 0.6517 0.5983 0.6716
F1@otherper 0.5418 0.4986 0.5959 0.5734 0.6127 0.5818 0.5137 0.5875 0.6095 0.6145 0.5985 0.6093

PROD

macro@F1 0.6908 0.6972 0.8302 0.8112 0.7355 0.8134 0.7073 0.7302 0.7448 0.7655 0.7939 0.7743
macro@P 0.7262 0.6977 0.8304 0.8139 0.7520 0.8071 0.7096 0.7495 0.7576 0.7676 0.7931 0.7870
macro@R 0.6587 0.6966 0.8299 0.8084 0.7198 0.8198 0.7050 0.7118 0.7323 0.7635 0.7948 0.7619
F1@Clothing 0.6915 0.6267 0.8249 0.5778 0.6713 0.7703 0.4948 0.6789 0.6574 0.5989 0.7198 0.6740
F1@Vehicle 0.5418 0.6739 0.9029 0.8543 0.7099 0.7704 0.6483 0.6455 0.6751 0.6911 0.7187 0.7301
F1@Food 0.6671 0.6973 0.8181 0.7843 0.6571 0.7334 0.6544 0.6338 0.6484 0.6804 0.7164 0.7161
F1@Drink 0.6820 0.5319 0.8651 0.8651 0.7321 0.7500 0.6649 0.6722 0.7234 0.7245 0.7675 0.7538
F1@otherprod 0.6602 0.6340 0.7823 0.7733 0.6573 0.7568 0.6844 0.6826 0.6871 0.7577 0.7563 0.7229

MED

macro@F1 0.7707 0.7513 0.9010 0.9045 0.7899 0.8779 0.7190 0.7808 0.7919 0.7775 0.8271 0.8197
macro@P 0.7858 0.7671 0.8961 0.8875 0.7938 0.8758 0.7352 0.7895 0.7978 0.7784 0.8259 0.8219
macro@R 0.7561 0.7361 0.9060 0.9221 0.7860 0.8801 0.7036 0.7722 0.7861 0.7766 0.8282 0.8175
F1@Medv 0.8078 0.7403 0.9122 0.9045 0.7987 0.8787 0.7837 0.7980 0.8121 0.8105 0.8183 0.8571
F1@Medp 0.7234 0.6955 0.8754 0.8885 0.7440 0.8362 0.6923 0.7405 0.7525 0.7427 0.7494 0.7182
F1@Ans 0.7579 0.7276 0.8785 0.9178 0.7729 0.8536 0.6458 0.7217 0.7567 0.7321 0.8246 0.8203
F1@Symptom 0.6783 0.5200 0.8464 0.9009 0.6859 0.6818 0.6426 0.7269 0.7077 0.6206 0.6535 0.6674
F1@Disease 0.7761 0.7345 0.9006 0.9157 0.7871 0.8747 0.7132 0.7695 0.7727 0.7936 0.8235 0.7961

Table 3: All detailed results of the official test set on monolingual tracks.“f-” and “c” referred the fine-grained
and coarse-grained respectively. Due to limited spaces, some class labels were abbreviated. “Work”, “GRP” and
“CORP” were omitted in all labels. “HS” was HumanSettlement, “AM” was AerospaceManufacturer, “CM” was
CarManufacturer, “SM” was SportsManager, “Medv” was Medication/Vaccine, “Medp” was MedicalProcedure and
“Ans” was AnatomicalStructure.
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Method Classifier EN ZH HI BN ES DE FA FR IT PT SV UK

Base
CRF 0.682 0.733 0.836 0.849 0.710 0.737 0.681 0.692 0.732 0.712 0.713 0.704
Softmax 0.671 0.725 0.828 0.834 0.702 0.733 0.672 0.687 0.729 0.701 0.716 0.709
Span 0.691 0.749 0.840 0.866 0.725 0.758 0.683 0.707 0.761 0.738 0.749 0.729

Integration
CRF 0.708 0.753 0.845 0.876 0.743 0.771 0.687 0.712 0.773 0.747 0.766 0.742
Softmax 0.702 0.746 0.839 0.862 0.738 0.763 0.681 0.704 0.761 0.734 0.753 0.731
Span 0.719 0.761 0.851 0.880 0.749 0.778 0.693 0.718 0.776 0.751 0.762 0.740

SCDAG
CRF 0.738 0.759 0.871 0.882 0.793 0.815 0.732 0.740 0.803 0.771 0.773 0.769
Softmax 0.732 0.739 0.862 0.875 0.790 0.808 0.724 0.726 0.793 0.765 0.761 0.759
Span 0.745 0.754 0.876 0.885 0.802 0.819 0.737 0.737 0.801 0.776 0.778 0.763

Table 4: All fine-grained macro-F1 scores on the validation set. Only scores of the concatenation integration method
were listed. “Base” denoted baseline systems mentioned in Section 4.1, “Integration” was ordinary integration
method with the gazetteer mentioned in Section 4.2, and SCDAG was the proposed method in Section 4.3.

Method EN ZH HI BN ES DE FA FR IT PT SV UK
SCDAG 0.721 0.665 0.821 0.805 0.744 0.787 0.688 0.742 0.756 0.712 0.754 0.743
SCDAG w/o. data-wiki 0.682 0.617 0.804 0.787 0.708 0.773 0.665 0.711 0.723 0.691 0.714 0.726
SCDAG w/o. data-query 0.691 0.631 0.812 0.779 0.701 0.756 0.678 0.734 0.732 0.699 0.752 0.729

Table 5: The ablation study on the constructed data in Section 3. Experiments were conducted on the test set.

in Section 3. All scores under the concatena-
tion integration setting on the validation set were
listed in Table 4. Compared “Integration” with
“Base”, significant improvements were gained by
the gazetteer on all tracks. Compared “Integration”
with SCDAG, we could find that the dual adaptation
and the two-stage training strategy was effective
for NER. Besides, the effect of the CRF method
was stronger than that of Softmax, which may
be because fine-grained classification was more
difficult for linear classifiers.

5.4.2 Ablation Study on Constructed Data
To validate the contribution of the constructed
data, the following variants were conducted to
perform the ablation study on the test set: (1)
SCDAG w/o. data-wiki, which removed the entity
replacement strategy. (2) SCDAG w/o. data-query,
which removed the templates of MS-MARCO and
ORCAS corpus mentioned in Section 3.

The results of the ablation experiments were
shown in Table 5. Some in-depth analysis could be
explored: (1) Compared SCDAG with SCDAG w/o.
data-wiki, the removal of the entity replacement
strategy caused a significant performance drop,
especially for EN, ZH, IT, ES, FR, PT and SV.
This was because a noisy subset was held for
each language where the sentences were corrupted
with noise either on context tokens or entity
tokens in the test set (Fetahu et al., 2023a). The
“data-wiki” enhanced the robustness of the model.
(2) Compared SCDAG with SCDAG w/o. data-
query, we could see that the removal of the
templates caused a significant performance drop,

strategy\lang hi en zh fa
avg 0.809 0.649 0.705 0.658
avg-token-vote 0.833 0.681 0.732 0.679
avg-logits 0.838 0.687 0.740 0.685

Table 6: Results of the 5-fold cross-validation trial.
“avg” denoted the average results of 5 models’ scores.
“avg-token-vote” represented the averagely token-vote
process. “avg-logits” was average logits of 5 models
fed into the backend softmax layer for classification.

which further demonstrated the importance of
introducing short sentence training data for low-
context settings.

5.4.3 Average-Logits Experiments
This section explained why we chose to average
logits of softmax-based models (for Softmax and
Span models) for integrating them as an aggregated
model, rather than an average token-vote. Also,
a 5-fold cross-validation training was conducted
with the official training data on the basic Softmax
method. Without loss of generality, HI, EN, ZH
and FA were chosen to represent different language
families. The results of the official validation
set were shown in Table 6. It was empirically
demonstrated that average-logits for the softmax-
based model ensemble was better than average-
token-vote in most situations.

6 Conclusion

This paper presents the implementation of the
USTC-NELSLIP system submitted to the SemEval-
2023 Task 2 MultiCoNER II. Different from
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MultiCoNER I, it has a fine-grained taxonomy
which greatly increased the difficulty of the task.
The SCDAG method is proposed to statistically
construct gazetteer and dually adapt the gazetteer
network to the language model, achieving great
improvements on the fine-grained NER task. Some
construction methods for gazetteers and augment
data are also provided. In future works, we will
improve the gazetteer quality and apply this method
to more tasks.
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Limitations

Although the proposed method has shown great
performance for MultiCoNER, this method still can
be further improved. For instance, some textual
enhancement could be adopted from Wikipedia
so that the model could get stronger semantic
information. Besides, some entity types in the
gazetteer has a low coverage because statistical
construction is not precise enough. In addition,
since the gazetteer has a large number of irrelevant
entities, denoising the gazetteer is worth studying.
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