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Abstract

We present the system description of our team
Zhegu in SemEval-2023 Task 9 Multilingual
Tweet Intimacy Analysis. We propose EPM
(Exponential Penalty Mean Squared Loss) for
the purpose of enhancing the ability of learning
difficult samples during the training process.
Meanwhile, we also apply several methods
(frozen Tuning & contrastive learning based
on Language) on the XLM-R multilingual lan-
guage model for fine-tuning and model ensem-
ble. The results in our experiments provide
strong faithful evidence of the effectiveness of
our methods. Eventually, we achieved a Pear-
son score of 0.567 on the test set.

1 Introduction

Text intimacy is considered as the essential compo-
nent in emotional communication and social rela-
tionships (Pei and Jurgens, 2020; Hovy and Yang,
2021; Sullivan, 2013). At the same time, intimacy
exists in any language in the world. However, both
data sets and methods of this area are still rare.
Valuable research on the multilingual regression
task is necessary to facilitate the sentiment analysis
of language. To further investigate the intimacy in
text, Pei et al. propose the MINT, a new Multi-
lingual intimacy analysis dataset. In this case, we
describe the model system of our team Zhegu in
SemEval-2023 Task 9.

Since the mean of intimacy is different from the
"positive" or "negative" in sentiment analysis, it
is difficult to have a clear definition. There exist
many hard samples, which can not be learned by
the model easily. Lin et al. propose Focal loss for
learning the hard samples for model only in classi-
fication. Therefore, we present EPM (Exponential
Penalty Mean Squared Loss) for the regression
task, which set a penalty term for hard samples dur-
ing calculating the training loss to accelerate the
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model focus on those hard samples. We also con-
struct a language-based contrastive loss function
to draw closer the distance of the text in the same
language and distinguish in the different languages.
The test set in this task includes four new languages
text data additionally, which do not exist in the
training data. In order to achieve better Zero-shot
inference on new languages data, we also adopt the
frozen tuning to fine tune the model, which means
freezing some parameters of the model for training.
All in all, the main contributions of our paper are
as follows.

• We first propose EPM, which is an exponential
penalty mean squared loss function for better
learning hard sample in regression.

• We introduce a language-based contrastive
loss for the multilingual problem.

• We apply frozen tuning for increasing the ca-
pability of model generalization.

All methods we mentioned above will be presented
in detail in the Section 3 and will be validated in
Section 4. In Section 5, we will give the conclusion
of our research and future work.

2 Dataset

The data sets of Task 9 is divided into the labeled
set and the unlabeled testing set. Some samples
of the labeled set are shown in Table 1. The value
of intimacy is range from 1 to 5. The training
set contains 9,491 labeled data of six languages,
including English (en), Chinese (zh), French (fr),
Italian (it), Portuguese (po) and Spanish (sp). There
are a total of 13,697 unlabeled data in the test set of
ten languages with additional four new languages,
including Arabic (ar), Dutch (du), Hindi (hi) and
Korean (ko). Details of the data sets can refer to
Table 2.

According to Table 2, the amount of text data for
each language is relatively balanced to each other
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Text Language Intimacy
@user @user Enjoy each new day! English 1.6
“If you trust them they will always be here for us too” English 3.0
"Buenas, recién de Desperté después de un turno de noche de que me perdí." Spanish 3.6
@user @user @user amo você demais minha princesa ♡ Portuguese 4.0

Table 1: The multilingual training set. The score of label is range 1 to 5.

Language Train Test
Chinese (zh) 1596 1354
English (en) 1587 1396
French (fr) 1588 1382
Italian (it) 1532 1352
Portuguese (po) 1596 1390
Spanish (sp) 1592 1396
Arabic (ar) 0 1368
Dutch (du) 0 1389
Hindi (hi) 0 1260
Korean (ko) 0 1410
All 9,491 13,697

Table 2: The number of text data of each language in
the labeled set and test set.

in both the training set and test set. Meanwhile,
the distribution of the number of text data with
different labeled values in the labeled set is shown
in Figure 1. It is obvious that the distribution shows
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Figure 1: The distribution of the training set according
to the label. The number of those data with lower values
is far away bigger than those with higher values.

the decreasing trend, principally like the long-tail
distribution. The number of those data with 1.0 is
close to 1400, which is nearly one hundred times
of the value of 5.0.

3 Methodology

In this section, we describe in detail the methods
we used on task 9. We first introduce a loss function

for regression task we proposed, and we named it
EPM. After that, we present contrastive loss and
frozen tuning. The reasons for their ability to im-
prove model performance will be described in de-
tail. And We take XLM-RoBERTa-large (Conneau
et al., 2019) as the backbone of our model.

3.1 EPM
We denote the training data D =
[(x1, y1), (x2, y2), ..., (xN , yN )], yi ∈ [1.0, 5.0].
N represents the number of the training set. And
the model function is

ŷi = f(xi) = wxi (1)

where ŷi is the prediction of the model and w is
the parameters. The calculation of MSE (Mean
Squared Error) loss in regression is

LMSE(yi, ŷi) =
1

N

N∑

i=1

(yi − ŷi)
2 (2)

The MSE loss function is used to measure the dif-
ference between the label and the prediction. And
we define our EPM loss function as

LEPM (yi, ŷi) =
1

N

N∑

i=1

(yi − ŷi)
2e|yi−ŷi| (3)

EPM adds a penalty term e|yi−ŷi| on side of MSE,
which can further penalize those samples with huge
deviations. EPM will degrade to the standard MSE
loss function when ŷi equals to yi. The derivative
of the MSE loss function with respect to w is

∂(LMSE)

∂w
=

2

N

N∑

i=1

(ŷi − yi)xi (4)

The derivative of the EMP loss function with re-
spect to w is

∂LEPM

∂w
=

1

N

N∑

i=1

e|ŷi−yi|[2(ŷi − yi) + (ŷi − yi)
2]xi

(5)

=
∂(LMSE)

∂w
e|ŷi−yi| + LEPMxi, ŷi ≥ yi (6)
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∂LEPM

∂w
=

1

N

N∑

i=1

e|ŷi−yi|[2(ŷi − yi)− (ŷi − yi)
2]xi

(7)

=
∂(LMSE)

∂w
e|ŷi−yi| − LEPMxi, ŷi < yi (8)

The value of Equation 5 equals to Equation 7 when
ŷi equals to yi. We can easily know that the deriva-
tive function of EPM is continuous by referred to
Equation A. The EPM derivative function reveals
the e|yi−ŷi| penalty term amplifies the gradient iso-
metrically during the process of back-propagation.
And (ŷi − yi)

2 penalizes the gradient once again.
The larger |yi − ŷi|, the larger the penalty for that
one hard sample. Focal loss (Lin et al., 2017) also
has capacity to penalize hard samples for classifica-
tion tasks. Nevertheless, EPM does not reduce the
attention of the learning of simple samples, while
Focal loss does. For those easy samples that they
could be easy to learn by the model, ŷi converges
to yi so much that LEPM highly approximates to
LMSE .

3.2 Contrastive Loss
Contrastive learning can help model to distinguish
the negative samples and converge the positive
samples by constructing appropriate positive and
negative samples. In this section, we introduce a
language-based contrastive loss.

In contrastive learning, the construction of posi-
tive and negative samples is crucial. According to
the analysis of data in the previous Section 2, the
labeled set contains text data from six languages.
For the multilingual task, we take XLM-R (Con-
neau et al., 2019) as the backbone of our model.
We believe that the distance between those text data
from the same language should be closer than those
from different languages. Based on the above anal-
ysis, the construction of the positive and negative
samples of contrastive learning in our paper are
based on the languages. The process of contrastive
learning for a batch of training data is shown in
Figure 2.

Let vi be the sentence vector obtained by in-
putting xi to the model, li denote the language of
xi, li ∈ {zh, en, fr, it, po, sp}. For a batch of data
(x1, x2, ..., xM ), (v1, v2, ..., vM ) are the sentence
vectors. M is batch size. Then KL (Kullback-
Leibler) divergence is calculated between every
two samples to get the matrix KL ∈ RM×M . The
reason of adopting KL divergence rather than co-
sine similarity is that cosine similarity usually is

used to calculate the similarity of the meaning be-
tween the text, while KL divergence obtains the
distance of two distributions. KL divergence is
regarded as the metric appropriately because the
different texts in the same language do not contain
the same meaning. Denote the contrastive learning
loss function as LCL.

LCL = −1

2
ln

∑
li=lj e

KL[i][j]/τ

∑
li ̸=lj e

KL[i][j]/τ
, i, j ∈ [1,M ]

(9)
where τ is temperature hyper-parameter. The fi-
nal loss function of the model is the sum of EPM
loss and contrastive loss. The model learns the ob-
jective function of regression while converging the
distribution of the text data from the same language
and distinguishing from the different languages.

L = LEMP + LCL (10)

3.3 Frozen Tuning
The test set contains text data from four languages
additionally, which the training set do not have.
The model of this task is required to have the ca-
pability of generalization for inferring the new lan-
guage text data as possible. During the training
process, the parameters of the model are fitted to
the training set containing only six languages. To
enhance the generalization of our model on new
language text data, the Frozen Tuning is used in our
paper. We named the parameters of the standard
XLM-R General parameters, which is pre-trained
on the general pre-trained corpus. And we also
named the parameters of fine-tuned XLM-R with
the training set Domain parameters. Frozen Tun-
ing freezes some of the parameters of the XLM-R
during fitting in the training set, as shown in Fig-
ure 3. The languages of the pre-trained corpus
of XLM-R contain all the languages in the train-
ing set and the test set. The frozen parameters
in the pre-training model remain the same gener-
alization capacity for all the languages, while the
fine-tuned parameters can be considered as the clas-
sifier learned on the training set. Meanwhile, the
updatable parameters of the model during the train-
ing process can be reduced by frozen tuning to
improve the generalization performance.

4 Experiments & Results

In this section, we describe the experimental proce-
dures and results in detail. The evidence of those
methods we mentioned above will be provided by
results and analysis.
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Figure 2: The procedure of contrastive learning based on languages during training process for a batch of data,
while the batch size M is 8. P and N represent the positive and negative sample in the label matrix.
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Figure 3: The process of frozen tuning. The number of
hidden layers is 12 in this figure.

4.1 Data Split

The labeled data and the unlabeled test set are pro-
vided in Task 9. Two strategies of dividing the
validation set for model selection were adopted in
our experiments.

Dev1 : We directly sample one-fifth of the labeled
data as the validation set and the remaining data as
the training set.

Dev2 : In order to simulate the distribution of
the test set as much as possible, the validation set
should also contain unseen languages’ data. There-
fore, we first sample two languages text data from
the labeled data containing six languages. Subse-
quently, we concatenate one-fifth of the remaining
four languages’ data and two unseen languages
data as the final validation set.

4.2 Performance & Analysis

All experiments in this paper were conducted on
the XLM-R pre-trained languages model. The de-
tailed hyperparameters can be found in Table 4 in
the Appendix. The final results are shown in Ta-
ble 3. Figure 4 shows the PCC (Pearson correlation
coefficient) of the training set with using different
loss function. For fair comparison, we used the
MSE loss function as the reference group. With the
help of the EPM, the model could converge faster
than MSE on the training data. Meanwhile, the
fluctuation of PCC of EPM in the optimization pro-
cess is much smoother than MSE. And the results
of the validation sets in Table 3 show that EPM
not only let the model converge faster, but also can
obtain better performances than MSE.
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Figure 4: The PCC of the training data during the train-
ing process when we set the EPM and MSE as the loss
function of the model.

Figure 5 presents the PCC of the training data
using EPM and MSE loss functions respectively
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Method Dev1 Dev2 Test
Seen Languages Unseen Languages

XLM-R + MSE 68.66 69.13 67.26 37.39
+ EPM 68.86 70.47 69.61 44.85
+ EPM + CL 69.15 71.36 70.02 46.86
+ EPM + FT 68.98 70.22 70.04 45.98
+ EPM + CL + FT 68.59 69.63 69.81 45.14
Baseline 65.33 41.25
Ensemble 72.00 46.92

Table 3: The PCC of dev and test datasets. We report the performance of baseline from (Pei et al., 2023) directly.
CL: contrastive learning. FT: Frozen Tuning. The bolded and underlined: the SOTA results of all methods. The
underlined: the second best.
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Figure 5: The PCC of the training set when we conduct
contrastive learning task with using EPM and MSE loss
functions respectively.

when we conduct contrastive learning. The model
also converges normally when we combine EPM
and language-based contrastive learning. Although
slightly slower optimization in the early stage of
training, the model still can converge on the train-
ing set. The reason of slower optimization is that
the model optimizes both LEPM and LCL at the
same time. Nevertheless, the PCC of the train-
ing set suddenly drops or even becomes negative
in the middle of the training process when the fi-
nal loss is LMSE + LCL. This phenomenon is
caused by the gradient disappearance during the
back-propagation process. In the training process,
the regression and the contrastive learning task are
optimized at the same time. And it may make two
gradients of LMSE and LCL add up to a small
amount and cause disappearing of the gradient.
However, the penalty term of EPM could amplify
the gradient, which is able to avoid the gradient
vanishing.

Table 3 presents EPM brings improvement both
on the validation and test sets. And the improve-

ment on the seen languages and unseen languages
are nearly 2% and 7%. Meanwhile, the contrast
learning based on languages outperforms other
methods on zero-shot prediction of the unseen lan-
guages, which obtains the promotion of 2% on
the basis of EPM. Although the effectiveness is not
much as both EPM and contrastive learning, Frozen
tuning also brings a surprising improvement of 1%
in the unseen languages’ data, which may cause
by the reduction of the training parameters. It is
difficult to optimize LEPM and LCL simultane-
ously when freeze some layers of the pre-trained
model. Finally, the best result is obtained by multi
excellent models ensemble, which selected by the
validation set. The decent improvement is 7% in
the seen languages and 5% improvement of the un-
seen languages compared to baseline. The results
strongly provide faithful evidence to our methods.

5 Conclusion

We introduce the system description of our team
Zhegu in SemEval-2023 Task 9. We first pro-
pose a loss function, we named EMP (Exponential
Penalty Mean Squared Loss), which could increase
the gradient of those hard samples by adding the
penalty term. EPM could be used in any regres-
sion task. And we conduct a contrastive learning
task based on languages to reduce the distance of
those in the text from the same languages. The ex-
periments prove the effectiveness of our proposed
methods. Meanwhile, EPM could avoid the disap-
pearance of gradient than MSE when we conduct
contrastive learning. Frozen tuning is also useful
for improving the performance. In future work,
the effectiveness of EPM should also be proved in
others natural language regression tasks.
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A Appendix

limŷi→y+i

1

N

N∑

i=1

e|ŷi−yi|[2(ŷi−yi)+(ŷi−yi)
2]xi = limŷi→y−i

1

N

N∑

i=1

e|ŷi−yi|[2(ŷi−yi)−(ŷi−yi)
2]xi

Number of freeze layer 3
Max sequence length 128
Batch size 64
Epochs 11
Optimizer AdamW
Adam epsilon 1e-6
Weight decay 0.1
Scheduler linear warmup
Warmup rate 0.1
Max grad norm 1
τ 0.2
XLM-R learning rate 2e-5
Classifier learning rate 1e-4

Table 4: The hyperparameters of various strategies for
model training.
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