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Abstract
In this paper, we discuss our models applied
to Task 4: Human Value Detection of SemEval
2023, which incorporated two different embed-
ding techniques to interpret the data. Prelim-
inary experiments were conducted to observe
important word types. Subsequently, we ex-
plored an XGBoost model, an unsupervised
learning model, and two Ensemble learning
models were then explored. The best perform-
ing model, an ensemble model employing a
soft voting technique, secured the 34th spot
out of 39 teams, on a class imbalanced dataset.
We explored the inclusion of different parts of
the provided knowledge resource and found
that considering only specific parts assisted our
models.

1 Introduction
SemEval-2023 Task 4: Human Value Detection fo-
cuses on classifying a textual argument into one of
20 human value categories, each from Schwartz’
value continuum (Kiesel et al., 2023). Examples
of categories include, Self-direction: thought (it is
good to have one’s own ideas and interests), Face
(it is good to maintain one’s public image), and Hu-
mility (it is good to recognize one’s own insignif-
icance in the larger scheme of things). Blending
computer science and social science, the system
can also be applied to a variety of topics outside
of academia. Understanding the motives of oth-
ers allows one to have more insightful conversa-
tions as they approach topics from different angles
(Crisp and Turner, 2011). By understanding what
the other side of argument values, it can help us
to reach common ground in discussions and lead
to more productive interactions with less friction
(Galinsky and Moskowitz, 2000).

We approached this Task with models that con-
sider both supervised and unsupervised techniques.
Furthermore, we perform an analysis on the data
provided but the task to observe trends among dif-
ferent classes. The best performing model ranked

77th out of the 111 submitted. The code is open
source and available on GitHub1.

Our unsupervised learning model employed a
cosine similarity comparison between record em-
beddings and class description embeddings, taken
from the knowledge resource2. To address some
limitations of the system, the methods in which the
data was preprocessed and embedded could have
impacted the performance of our models. On top of
data preprocessing, the dataset was only in English,
limiting the reach of our models.

2 Background

The submissions focused only on the ValueEval’23
dataset (Mirzakhmedova et al., 2023), which con-
tains almost 9, 000 records, in English. Roughly
80% of the records came from IBM’s argument
quality dataset (Gretz et al., 2020), 15% from the
Conference for the Future of Europe (Barriere et al.,
2022), and the remaining 5% from group discus-
sion ideas. These arguments were then split by
the Task organizers into separate training (60%),
validation (20%), and testing (20%) sets. The raw
data was broken down into four columns; the ID
of the argument (to link the record to its labels),
the conclusion, the stance, and the premise. The
annotated label file has a record for every argument
in the training and validation dataset, along with
labels corresponding to the 20 classes.

3 System Overview

The four end-to-end pipelines implemented for this
Task can be seen in Figure 1. Each row pertains to a
specific model, with arrows detailing the data flow
for each model. Nodes with identical names rep-
resent the same process occurring across different
pipelines.

1https://github.com/VeiledTee/SemEval-2023
2https://touche.webis.de/semeval23/

touche23-web/index.html#task
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Figure 1: The end-to-end pipeline for the system.

3.1 Encoding
In an effort to test novel approaches to the Task,
we opted to train and test a wide variety of models.
To remedy this, we leveraged the embeddings pro-
vided by two different pretrained language models,
detailed in the following subsections. We only re-
trieved the embedding of the casefolded “Premise”
column of the dataset, but also kept track of the
“Argument ID” for comparison purposes.

The first type of embeddings were “BERT” em-
beddings, created through the use of a BERT model,
specifically “bert-base-uncased” (Devlin et al.,
2019). Receiving premises as input, which were
prepended with [CLS] and appended with [SEP]
tokens, the structure of the text passed to the BERT
model is as follows: [CLS] + premise+ [SEP ].
The BERT model then yielded a 768-dimension
embedding for each token in the sentence. We used
the embedding for the [CLS] token as it represented
a single embedding for the entire text.

The second type of embeddings that were con-
sidered were embeddings that represent the en-
tire sentence, generated by the all-MiniLM-L6-v2
model (Reimers and Gurevych, 2019) from Hug-
ging Face3.This method yielded a 384-dimension
embedding for each sentence, which is half the
number of dimensions the previously mentioned
BERT model outputs.

3.2 XGBoost
The XGBoost Classifier was the first of three su-
pervised models employed to tackle the Task, and
operates as follows; the model creates decision
trees sequentially, allowing each tree to correct
the output of the previous one. The classifier also
utilizes weights assigned to each independent in-
put variable, and adjusts the value of the weights
assigned to incorrectly classified variables. Step
one of a two-step application process was to train
XGBoost on the [CLS] token embedding yielded
by bert-base-uncased (Devlin et al., 2019) for

3https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

each training premise, and the premise’s respective
labels.

Step two incorporated The TF-IDF score, and
came after tuning the hyperparameters of the model.
Calculated using the frequency of each type and the
number of classes that they appear in, the score of
each type from the training dataset was employed in
the prediction process. Iterating over each class, if a
test premise contained a word type with a score that
landed the type in the top 1, 000 (approximately
14%) of all word types associated with the current
class, the test premise is assigned the label for said
class. The label assigned by the TF-IDF score over-
writes the label assigned by the XGBoost model.
The threshold of the top 1, 000 types per class was
found to yield the best F1-score, where [10, 2000]
represents the range of values tested. The TF-IDF
scores for each class were sorted in descending
order.

3.3 Ensemble

The ensemble method was implemented with
the VotingClassifier4 from the scikit-learn (Pe-
dregosa et al., 2011) library. It consisted of three
different models - a logistic regression model5, a
random forest classifier6, and a Gaussian Naive
Bayes7 model - that were combined into a single
ensemble system, and were only evaluated as a
collective.

Two versions of model were created, trained on
either BERT embeddings or sentence embeddings.

The BERT ensemble method was tailored to in-
terpret the [CLS] token embeddings generated by
the bert-base-uncased model. The model would
predict the class of test premises based on each
[CLS] token embedding, and output said predic-
tions to a submission file. This method will be
referred as “BERT ensemble” in this paper.

The sentence ensemble classifier, as it will hence-
forth be referred to, puts the full-sentence embed-
dings to use.

4https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.VotingClassifier.html

5https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html\/#sklearn.linear_model.
LogisticRegression

6https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
RandomForestClassifier.html

7https://scikit-learn.org/stable/modules/
generated/sklearn.naive_bayes.GaussianNB.html
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3.4 Threshold Comparison - An Unsupervised
Approach

Using the definitions of each class from the Task
knowledge resource, this model encodes them us-
ing the sentence embedding model (Reimers and
Gurevych, 2019). Figure 2 breaks down the de-
scription of the Self-direction: thought class,
with all remaining classes adhering to the same
format. The phrase labeled 1 in red is the class’s
name, phrase 2 (blue) is a general summation of
the values the class represents, and the third section
of the description, the bullet points below phrase
2, describe in-depth the values the class represents.
Of each bullet point in the third section, there exists
two halves; 3a, consisting of all tokens the the left
of the semicolon, and 3b, comprised of the tokens
that appear after the semicolon.

Figure 2: A breakdown of a class’s description.

We represented a class by concatenating a com-
bination of sentence embeddings (Reimers and
Gurevych, 2019), representing phrases 1, 2, 3a, and
3b. The average of these embeddings was taken to
yield a single embedding for each class. Once the
embeddings for each of the 20 classes were gener-
ated, they were all compared to each other via the
cosine similarity to get a sense of what classes were
described in a semantically similar manner. The
permutation that most significantly distinguished
the classes was the inclusion of phrase 1, the exclu-
sion of phrase 2 and 3a, and the inclusion of phrase
3b. With phrase 2 being nearly identical across all
classes, it brought the cosine score of each class
closer together, and thus was excluded. The 3a
phrases are similar across all classes have a very
similar structure, summarizing its paired 3b phrase,
but not elaborating upon it. Excluding them thus
increases the uniqueness of each class’s descrip-
tion, in turn maximizing the differences between
classes.

In the beginning of the training phase, all

premises in the training data were embedded and
fed into the model. By looping through each class
(and the class’s description embedding), all premise
embeddings were compared to each class, one at a
time. If the cosine similarity between the embed-
ding for a given premise and a class description
was above a set threshold, it was assigned the label
1, indicating the premise belongs to that class. If
the embedding of the data does not reach the set
threshold, the class is skipped and a label of 0 is
assigned. These values were saved in a list that
represented the labels of all premises, in order, of
a particular class. This process is walked through
in Algorithm 1. The similarity threshold was deter-
mined by examining the performance of the model
on the range of values [0.01, 0.5]. The highest F1-
score was consistently generated by a similarity
threshold value of 0.2.

4 Experiments
In this section, we discuss the design of our exper-
iments and our hyperparameter tuning. Our team
name for this Task was “Jesus of Nazareth”.
4.1 Experimental Setup
The data (Mirzakhmedova et al., 2023) provided by
the Task organizers (Kiesel et al., 2023) was already
split into three sets, “training”, “validation”, and
“test”. The supervised learning models detailed in
Sections 3.2 and 3.3 used only the training set. The
hyperparameters for these models were tuned on
the validation set, and used the best-performing
settings for each modelwere applied to the test set.

For the unsupervised learning model (Section
3.4), both the training and validation data were
used to tune the model. Since unsupervised learn-
ing does not require labels, this approach aimed to
solve the Task in a novel manner. Finally, the test
dataset was used to evaluate the threshold compari-
son model using the threshold that yielded the best
results during tuning.
4.2 Hyperparameters
This subsection discusses the different hyperparam-
eters of the four models reviewed in Section 3.

The “Max” and “Min” rows in Table 1 detail
the range at which the hyperparameters for the
XGBoost model were evaluated. The “Best” row
shows the hyperparameters that yielded the highest
F1-score on the validation data, which were then
employed in the final version of the model.

Working with the BERT ensemble model, the
logistic regression model used all the default pa-
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eta max_depth subsample colsample_bytree lambda

Min 0.01 6 0 0 0
Max 0.75 25 1 1 1
Best 0.5 15 0.25 1 0

Table 1: The ranges used when tuning the hyperparam-
eters of the XGBoost model. It also displays the best
performing hyperparameters within said range.

rameters, bar one; max_iter. As shown in Table 2,
the parameter was subject to a range of values from
100, to 100, 000 with the best-performing value
being 1, 000. The max_depth and n_estimators
hyperparameters of the random forest model were
also tuned, with the ranges also displayed in Table
2, along with the “Best” value for each hyperpa-
rameter found within said range (50 and 200, re-
spectively). The Gaussian Naive Bayes model was
not tuned, but utilized out of the box, as we wished
to observe if a raw statistical model would have a
positive influence on the classification Task in com-
parison to the XGBoost model outlined in Section
3.2.

The voting parameter of the
VotingClassifier model can use either
“hard” or “soft” voting. “Hard” voting predicts
a class based on the majority vote from each
ensemble method (Seni and Elder, 2010), whereas
“soft” voting places emphasis on the probability of
each model’s prediction and predicts the class with
the highest average predicted probability across
all models (James et al., 2013). Due to the class
imbalance in the dataset, “hard” voting performs
poorly and may predict more commonly occurring
classes (“Face”, “Universamism: concern”) over
uncommon ones (“Conformity: interpersonal”,
“Hedonism”). In comparison, the emphasis “soft”
voting places on the predicted probabilities allows
uncommon classes to be much more prevalent in
the final prediction. “Soft” voting provided on
average 10.44% and 21.93% higher F1-scores with
BERT and sentence embedding data, respectively.

Integrating “soft” voting into a multi label prob-
lem, required the class prediction to be framed as a
binary classification problem by iterating over all
classes, with “soft” voting predicting merely if a
test premise was or wasn’t the current class. The
“BERT” and “Sentence” rows in Table 2 reflect how
the imbalanced distribution of classes affected the
best performing voting technique. The imbalance
of classes led to “soft” voting models performing
better than “hard” voting ones. With more balanced
classes, the models could have performed better.

The sentence-embedding-based ensemble
model’s max_iter and max_depth values (de-
picted in the “Sentence” row of Table 2) are the
only elements that differ in comparison to the
tuned “BERT” model parameters. With a shallower
random forest and less maximum iterations, the
sentence ensemble model performed 7.67% better
than its BERT counterpart during validation.

max_iter max_depth n_estimators voting

Min 100 10 50 soft
Max 100,000 1,000 100,000 hard
BERT 1,000 50 200 soft
Sentence 100 100 200 soft

Table 2: The ranges used when tuning the hyperparam-
eters of the ensemble model. The “BERT” row shows
the best hyperparameter values for the BERT ensemble
model. “Sentence” shows the ideal hyperparameter set-
tings for the sentence ensemble model.

The threshold comparison model was tuned by
analyzing the definition of each class and the simi-
larity threshold used in comparing the cosine sim-
ilarity of each premise embedding to each class’s
embedding. The description embeddings for each
class were broken up into phrases 1, 2, 3a, and
3b and the permutation of phrase 1 and phrase 3b
yielded the best results.

The same combination of phrases was found to
be the top performer, which reinforces the initial
intuition that a better-defined separation of classes
leads to better model performance. The similarity
threshold was tuned on a range of values [0.01, 0.5],
with 0.2 yielding the highest F1-score. The final
iteration of the threshold comparison model utilizes
a cosine similarity threshold of 0.2 and makes use
of phrases 1 and 3b when defining a class.

4.3 Libraries used
Table 4 shows the Python libraries and their ver-
sions used for this Task. Python version 3.10.6 was
used. The full requirements.txt file is available
in the GitHub repository8 for the project.

4.4 Evaluation Measures
As stated on the Task website9, runs submitted to
the TIRA (Fröbe et al., 2023) platform are evalu-
ated primarily on F1 score, precision, and recall
“average over all value categories and for each cate-
gory individually.”

8https://github.com/VeiledTee/SemEval-2023
9https://touche.webis.de/semeval23/

touche23-web/index.html
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Main
Best per category .59 .61 .71 .39 .39 .66 .50 .57 .39 .80 .68 .65 .61 .69 .39 .60 .43 .78 .87 .46 .58
Best approach .56 .57 .71 .32 .25 .66 .47 .53 .38 .76 .64 .63 .60 .65 .32 .57 .43 .73 .82 .46 .52
BERT .42 .44 .55 .05 .20 .56 .29 .44 .13 .74 .59 .43 .47 .23 .07 .46 .14 .67 .71 .32 .33
1-Baseline .26 .17 .40 .09 .03 .41 .13 .12 .12 .51 .40 .19 .31 .07 .09 .35 .19 .54 .17 .22 .46
Ensemble (Sentence) .40 .40 .52 .07 .17 .47 .30 .40 .05 .71 .55 .41 .48 .07 .07 .44 .17 .63 .69 .36 .39
Ensemble (BERT) .33 .29 .51 .14 .20 .46 .26 .34 .01 .55 .44 .30 .45 .19 .07 .40 .15 .57 .34 .21 .40
Threshold Comparison (Sentence) .30 .13 .42 .17 .11 .38 .13 .23 .12 .49 .46 .32 .34 .08 .08 .42 .18 .57 .39 .33 .26
XGBoost (BERT) .26 .16 .40 .09 .04 .41 .14 .13 .11 .51 .39 .19 .30 .06 .09 .33 .19 .54 .17 .22 .45

Table 3: Achieved F1-score of the team on the test dataset, from macro-precision and macro-recall (All) and for each
of the 20 value categories. Approaches in gray are shown for comparison: an ensemble using the best participant
approach for each individual category; the best participant approach; and the organizer’s BERT and 1-Baseline.

5 Results

With our final results depicted in Table 3, the
best performing model on the test dataset (plac-
ing 77th/111 was the Ensemble-Sentence model,
followed by Ensemble-BERT model (placing
90th/111), with the unsupervised Threshold Com-
parison model closely tailing (placing 94th/111).
The worst performing model was the XGBoost-
BERT model (Section 3.2), placing 98th/111,
which unfortunately didn’t surpass the 1-Baseline
model’s performance. Our overall performance
was 34th out of 39 teams.

All models performed poorly on classes with
very little representation in the training and valida-
tion datasets. The average F1-score for the Stimu-
lation, Hedonism, and Conformity: interpersonal
classes (all classes with < 2% representation in the
training and validation data) being 0.1175, 0.13,
and 0.095, respectively. These less represented
classes in the dataset may not have had sufficient
data for our models to learn when an embedding
represents this class. Conversely, when analysing
the F1-score of classes with > 11% representation
(Security: personal, Universalism: concern), the
average F1-scores were significantly higher (0.565
and 0.5775, respectively). This led us to the con-
clusion that, with the class imbalance in the dataset,
our models struggle to truly generalize, tending to
predict more commonly occurring classes over un-
commonly occurring ones. Despite the limitation
outlined previously, our models outperformed the
organizer’s BERT implementation on some classes

with less representation in the dataset.

6 Conclusion
In working on this Task, a wide range of machine
learning models, both supervised and unsupervised,
were implemented and tuned to maximize the pri-
mary metric used to evaluate models submitted,
the F1 score. Supervised learning techniques per-
formed best when employing “soft” voting and hav-
ing a somewhat-shallow depth. When tuning the
unsupervised learning model, using only phrases 1
and 3a outlined in Figure 2, taken from the knowl-
edge resource, yielded the best results. Other com-
binations of phrases led to unclear distinctions be-
tween classes, leading to the unsupervised model
having a more difficult time predicting labels, and
dragging down performance. The models were able
to surpass the organizer’s BERT implementation’s
F1 score on classes with lots of representation in
the training data, but unable to surpass the BERT
model’s overall F1 score on the test data.

If we were to revisit this project in the future,
we would like to delve further into the unsuper-
vised learning approach by interpreting the classes
and data in different ways. When updating the
supervised learning models, employing more of
the data, for example, embedding the “Conclusion”
and “Stance” columns, could be beneficial in more
accurately predict the label of each premise. It
would also be interesting to employ other state-
of-the-art embedding methods and compare the
results.
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A Appendix

Library Version
pandas 1.5.010

numpy 1.23.311

scikit-learn 1.2.112

scipy 1.9.313

sentence-transformers 2.2.214

tokenizers 0.13.115

torch 1.13.116

transformers 4.23.117

xgboost 1.7.218

Table 4: Table of major Python libraries (and their ver-
sions) employed while working to solve the Task.
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Algorithm 1 Threshold Comparison Algorithm
T ← 0.2
c← embeddings of all class descriptions
d← embeddings of all premises from data
output← [ ]
for description_embedding in c do

predictions← [ ]
for premise_embedding in d do

if cosine_similarity(premise_embedding, description_embedding) ≥ T then
append 1 to predictions

else
append 0 to predictions

end if
end for
append predictions to output

end for
save output to submission file
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