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Abstract

We describe the systems of the University of Al-
berta team for the SemEval-2023 Visual Word
Sense Disambiguation (V-WSD) Task. We
present a novel algorithm that leverages glosses
retrieved from BabelNet, in combination with
text and image encoders. Furthermore, we com-
pare language-specific encoders against the ap-
plication of English encoders to translated texts.
As the contexts given in the task datasets are
extremely short, we also experiment with aug-
menting these contexts with descriptions gener-
ated by a language model. This yields substan-
tial improvements in accuracy. We describe and
evaluate additional V-WSD methods which use
image generation and text-conditioned image
segmentation. Overall, the results of our offi-
cial submission rank us 18 out of 56 teams.
Some of our unofficial results are even bet-
ter than the official ones. Our code is pub-
licly available at https://github.com/
UAlberta-NLP/v-wsd.

1 Introduction

This paper addresses our work on SemEval-2023
Task 1: Visual Word Sense Disambiguation1 (Ra-
ganato et al., 2023). The V-WSD task is closely
related to WSD, and similarly involves understand-
ing and classifying the meaning of a polysemous
word in context. The distinction is in how classes
are defined: In WSD, a system has access to a sense
inventory that enumerates the possible senses of
each word, and the task is to classify the focus word
according to the sense that best corresponds to its
intended meaning. In V-WSD, a system is given
a set of candidate images, and the task is to select
the image which depicts the intended meaning of
the focus word.

The multi-modal nature of V-WSD introduces
challenges not encountered in WSD. First, image

1https://raganato.github.io/vwsd/

Figure 1: The task is to select the image that best rep-
resents the meaning of the focus word (e.g., bat) in the
context (e.g., “baseball bat.”)

processing is generally more computationally inten-
sive than text processing. Second, a V-WSD system
must represent the meanings of both images and
text, and must have mechanisms to compare these
multi-modal semantic representations. Last, since
the candidate images in V-WSD are not restricted
to a sense inventory, they may exhibit highly vari-
able levels of sense granularity.

The V-WSD task is motivated by cases where
textual context alone is insufficient to disambiguate
a word. In such cases, visual context may be avail-
able to facilitate disambiguation. For example, the
word play is ambiguous in the context “that was
a good play,” as it may refer to a theatrical per-
formance or an action in a sport. However, an
associated image of a stage or a sports field would
enable a V-WSD system to disambiguate play.

We propose a novel V-WSD algorithm that ranks
candidate images by embedding images and words-
in-context in a shared semantic space, while also
taking advantage of lexical knowledge bases com-
monly used in WSD. In particular, our method uses
sense glosses of the focus word to create repre-
sentations of the possible meanings that word may
have. Our algorithm is flexible, It includes several
optional modules, as well as hyper-parameters that
facilitate customization, optimization, and detailed
analysis.

We test various configurations of our method
and analyze their performance. Our three principal
conclusions are as follows: First and foremost, the
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augmention of the original textual context plays
a crucial role in improving performance. Second,
there is a considerable gap between English and
non-English performance, indicating that bias to-
wards English models extends to the multi-modal
setting. Third, we observe a major distribution shift
between the train and test sets, which is confirmed
by our ablation study.

2 Related Work

Recent work on WSD can be divided into super-
vised and knowledge-based systems. Supervised
WSD methods depend on large training corpora
in which some or all of the content words have
been tagged with their correct senses (Blevins and
Zettlemoyer, 2020; Barba et al., 2021). Knowledge-
based methods depend on other sources of linguis-
tic knowledge (Wang and Wang, 2020). In gen-
eral, knowledge-based methods are outperformed
by contemporary supervised methods (Pasini et al.,
2021). Today, state-of-the-art WSD systems ap-
proach accuracy limits imposed by inter-annotator
agreement (Maru et al., 2022).

Research on the incorporation of visual infor-
mation for WSD is relatively sparse. Barnard
et al. (2003) propose a statistical model that as-
sociates image regions and words to predict word
senses. Loeff et al. (2006) apply spectral clustering
to group similar images corresponding to the same
senses. Saenko and Darrell (2008) employ an unsu-
pervised approach to assign senses to images using
surrounding texts and dictionary definitions, and
then train a visual SVM classifier to disambiguate
unseen images. Gella et al. (2019) introduce the
task of visual verb sense disambiguation, in which
one image is selected based on a given context.
Vascon et al. (2021) propose a graph-based semi-
supervised transductive learning method for visual
verb sense disambiguation.

Multi-modal foundation models (Bommasani
et al., 2021) such as CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) can represent both
text and images in a shared embedding space. Re-
cent work2 (Bianchi et al., 2021; Sajjad Ayoubi,
2022) improves the text encoder by using a pre-
trained text-only encoder such as BERT (Devlin
et al., 2018).

2https://github.com/moein-shariatnia/
OpenAI-CLIP

3 Task & Dataset

Task Definition: Given a focus word w in a short
context c, and a set of candidate images I , the task
is to select the image i∗ ∈ I which best represents
the meaning of w in c. For example, given the
context “baseball bat” with bat as the focus word,
a V-WSD system should choose the image that
depicts the bat used in baseball (Figure 1).

Dataset: The training data provided for this
shared task consists of a silver dataset with 12,869
V-WSD instances. Each sample is a 4-tuple
⟨f, c, I, i∗ ∈ I⟩ where |I| = 10. The contexts
are generally very short, often just a single word
in addition to the focus word. We randomly select
10% of the training data for use as a development
set. The test dataset consists of 968 instances, of
which 463 are English, 200 are Farsi, and 305 are
Italian. We observe that many of the incorrect can-
didate images in the training data have nothing to
do with any sense of the focus word. However,
in the test data, we observe that this is less often
the case, making the test set considerably more
difficult.

Evaluation Metrics: The primary metric is the
hit rate, which is equivalent to top-1 accuracy, or
simply accuracy. This is the proportion of instances
for which the system selects the correct image. We
also compute the mean reciprocal rank (Voorhees
and Tice, 2000) which represents how highly V-
WSD systems rank the ground-truth image, on av-
erage.

Language % Example
English 82 waxflower wildflower
Latin 15 shorea genus

German 2 truppenübungsplatz workplace
French 1 brumaire month

Table 1: The language distribution of 100 instances from
the training set. The focus word is underlined.

Language Distribution: We observed some in-
stances where the context contained non-English
words. To estimate the prevalence of this phe-
nomenon, we randomly selected 100 instances
from the training set and manually identified the
language of each. For example, the focus word
shorea in “shorea genus” comes from new Latin,
and refers to a genus of mainly rainforest trees. Ta-
ble 1 shows the frequency of each language in our
sample.
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4 Method

In this section, we describe the key components of
our systems, including an algorithm that combines
text and image similarity measures.

4.1 Algorithm

We propose an algorithm to select a single image
from a set of candidates that best matches the con-
text. To reiterate the problem, we are given a con-
text c containing a focus word w and a set I of
candidate images. We assume that we also have a
non-empty set G containing possible glosses of w;
in practice, we obtain G from BabelNet using the
freely available API.3

Our algorithm makes calls to two similarity
functions: The first is simL, a written language
similarity function, which takes as input two text
strings and returns a value indicating the semantic
similarity between them. The second is simV L,
a vision-to-written language similarity function,
which takes as input an image and a text string and
returns a value indicating the similarity between
what the image depicts and what the text describes.

With these functions, for each candidate image
i ∈ I , and for each gloss g ∈ G of the focus word
w, we compute the pairwise similarity between:

1. The image and context: sic = simV L(i, c)

2. The image and gloss: sig = simV L(i, g)

3. The context and gloss: scg = simL(c, g)

This allows us to identify the pair of a candidate im-
age i∗ and gloss g∗ that maximizes a weighted av-
erage of these three similarity scores. Algorithm 1
shows the pseudocode for this algorithm.

Hyperparameters: Our algorithm depends on
three weight hyperparameters: wic, wig, and wcg.
They represent the weights for image-context,
image-gloss, and context-gloss similarity, respec-
tively. Table 2 shows the results of the hyperpa-
rameter binarized grid search performed on a 500-
sample of the training set. Based on our devel-
opment experiment results, we decided to set all
hyperparameter weights to 1 for simplicity, except
where otherwise noted. We discuss the hyperpa-
rameters further in Section 6.6.

3https://babelnet.org/guide

Algorithm 1 Candidate Image Scoring
1: c← the context of the focus word
2: G← list of glosses for the focus word
3: I ← list of candidate images
4: for i in I do
5: sg ← 0
6: for g in G do
7: sig ← wig · simV L(i, g)
8: scg ← wcg · simL(c, g)
9: sg ← max(sg, sig + scg)

10: scores[i]← sg + wic · simV L(i, c)

11: return scores

Context Augmentation: For each instance, we
prompt InstructGPT (Brown et al., 2020; Ouyang
et al., 2022) to generate a definition for the context
phrase. We use the following prompt template:
“For each line, define the phrase:” followed by the
contexts, one per line. For example, the context
“baseball bat” is augmented to become “baseball
bat: a bat used to hit a baseball during the game
of baseball.” The use of this additional context is
described in Section 5.3

Supplementary Training Data: We speculate
that the size of the training dataset may be a lim-
iting factor in the accuracy of our method. We,
therefore, experiment with augmenting the training
data with additional data derived from BabelPic
Calabrese et al. (2020), a multi-modal resource
which maps a subset of BabelNet synsets to sets of
one or more images. For each pair of a synset and
an image, we enumerate a lemma from the base
synset and a lemma from a related synset. The two
lemmas are concatenated, starting with the lemma
from the related base synset, to form a two-word
context. We then select nine other random images
from BabelPic, forming an instance comparable to
those in the training set: a two-word context with a

wic wig wcg Accuracy (%)
1 1 1 79.2
1 1 0 79.2
1 0 1 72.2
1 0 0 72.2
0 1 1 68.4
0 1 0 68.6
0 0 1 11.0

Table 2: Binarized grid search results for weight hyper-
parameters.
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single focus word, with ten images, one depicting
the correct sense of the focus. We create 54,968
instances this way and experiment with adding this
dataset to the training data at training time.

Glosses: For each instance, we enumerate the
BabelNet (Navigli and Ponzetto, 2012) glosses cor-
responding to each sense of the focus word. If there
are multiple glosses for a single sense, we pick the
first and add it to the set G. This prevents senses
from being over-represented due to the number of
glosses in BabelNet.

5 Systems

In this section, we describe our systems for the
V-WSD task, Our official system submissions are
based on our primary systems: TR and LANGSPEC.
We also describe two alternative systems, which
do not use Algorithm 1. Both perform worse than
the primary systems, but their results are never-
theless valuable for the purpose of analysis. We
also present a supplementary method, which can be
optionally used in combination with our other sys-
tems. Non-English instances are translated using
DeepL4 for Italian and ChatGPT5 for Farsi.

5.1 Primary Systems
TR: Image Scoring with Translations If the
input instance is not English, we translate it into
English. Then we apply Algorithm 1. We com-
pute simV L using embeddings from CLIP (Rad-
ford et al., 2021), an English-only model which
encodes text and images in a shared embedding
space. We compute simL using BERT (Devlin
et al., 2018) as an English-only text encoder. We
set the weight parameters: wic, wig, and wcg to 1
in this specific case.

LANGSPEC: Image Scoring with Language-
Specific Models This system is similar to TR,
except that non-English instances are not trans-
lated into English. This is our only system which
directly operates in other languages. Given a non-
English instance, we replace CLIP and BERT with
language-specific models to compute simV L and
simL. For English instances, this method is the
same as TR. For Italian, we use CLIP-Italian
(Bianchi et al., 2021) to compute simV L and Ital-
ian BERT6 to compute simL. For Farsi, we use

4https://www.deepl.com/translator
5https://openai.com/blog/chatgpt/
6https://huggingface.co/dbmdz/

bert-base-italian-xxl-uncased

CLIPfa (Sajjad Ayoubi, 2022) to compute simV L

and ParsBERT (Farahani et al., 2021) to compute
simL.

5.2 Alternative Systems

GEN: Generative Image Model This method
takes a different approach compared to TR and
LANGSPEC; it does not use Algorithm 1. Instead,
we provide the context (translated into English, if
needed, as outlined above) as input to Stable Dif-
fusion (Rombach et al., 2022), a generative model
which takes a text prompt as input and produces
candidate images to depict what the text describes.
For each context, we generate 15 images using 20
diffusion steps each. We set the guidance scale
hyperparameter to 7.5. For each candidate image,
we compute its cosine similarity with each gen-
erated image based on embeddings produced by
CLIP. The candidate with the highest similarity to
the generated images is chosen as the output.

SEG: Text-Conditioned Image Segmentation
As with GEN, this method does not use Algo-
rithm 1. Instead, we use a zero-shot image segmen-
tation system (Lüddecke and Ecker, 2022) to seg-
ment images based on the provided context. This
system produces a mean mask value, which we use
as a measure of similarity between the context and
the segmented image; we return the image with the
highest mean mask value, given the context.

5.3 Supplementary Method

DEF: Generating Additional Context TR,
GEN, and SEG make use of the input context, trans-
lated to English as needed. However, the contexts
provided in the official dataset for this task are ex-
tremely short. With DEF, we generate additional
context by using the original context to prompt
InstructGPT for a more extensive description, as
described in Section 4.1. We then concatenate the
generated text to the context and pass this aug-
mented context to TR, GEN, or SEG. We refer to
the methods using this supplementary method as
TR+DEF, GEN+DEF, and SEG+DEF, respectively.
We do not combine DEF with LANGSPEC, as we
observe that InstructGPT is less robust to short
non-English contexts.

For TR+DEF, we set wig and wcg to 0, as the
improved context obviates the need for their cor-
responding terms in Algorithm 1. GEN+DEF and
SEG+DEF, being based on GEN and SEG, do not
depend on Algorithm 1.
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EN IT FA Avg
Baseline 60.5 22.6 28.5 37.2
TR* 61.1 59.3 43.0 54.5
TR+DEF 69.1 63.3 40.0 57.5
LANGSPEC* 56.8 37.7 14.5 36.3
GEN 51.6 45.9 39.0 45.5
GEN+DEF 58.1 48.5 34.5 47.0
SEG 31.5 29.8 20.5 27.3
SEG+DEF 34.1 36.7 20.0 30.3

Table 3: Accuracy for English, Italian, and Farsi, along
with the macro average for all languages. We indicate
our official system submissions with *.

6 Experiments

In this section, we present, discuss, and analyze
our results.

6.1 Results

Table 3 shows our performance on the test set. We
find that accuracy has a 99.46% Pearson correlation
with mean reciprocal rank, and so for conciseness,
we report accuracy alone. The translation-based
systems, TR and TR+DEF, yield the best results.
One explanation for this outcome is the dispropor-
tionate amount of English training data available to
the models we build upon: CLIP and BERT. The
higher performance of these models on English ap-
pears to compensate for the noise introduced by
the translation process. We discuss this further in
Section 6.4.

An interesting trend is the benefit of context
augmentation, (Section 5.3). Between TR and
TR+DEF, we observe a 3% average improvement
in accuracy. We observe a similar trend in GEN

versus GEN+DEF and SEG versus SEG+DEF.
We further observe that accuracy on English in-

stances is highest, accuracy on Farsi instances is
lowest, while accuracy on Italian instances is in
between both. This corresponds to the quality and
quantity of resources available for each language.
We undertake more thorough analyses in the next
section.

6.2 Distribution Shift

As shown in Table 4, we observe a clear disparity in
polysemy, and the proportion of focus words which
are nouns, between the training and test sets. This
difference is especially notable when considering
the performance gap between the sets.

Train Test
EN EN IT FA

Polysemy 6.8 23.1 13.6 10.7
Nouns (%) 74.7 88.1 91.5 92.5

Table 4: Distribution shifts between the training and test
sets. Polysemy indicates the average number of senses
each focus word in the set has.

Zero-shot vs. Fine-tuning: We observe that fine-
tuning on the training set leads to a drop in per-
formance on the test set (Figure 2). This may be
due to the divergence between the training and test
datasets outlined above.
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Figure 2: As we fine-tune on the training set for more
epochs, we see an increase in dev set performance, but
a drop in test set performance. Epoch 0 refers to using
the model zero-shot, with no fine-tuning.

6.3 Traditional WSD
Although both the V-WSD and WSD tasks have
some similarities, we found that some ideas drawn
from WSD prove ineffective for V-WSD.

Using Glosses: We observe empirically worse
performance when using glosses in our algorithm.
Specifically, with TR on the English test set, we
obtain a hit rate of 61.1% when we do not use
glosses and 56.8% when we do. Such a steep drop
(4.3%) is surprising, especially since most state-of-
the-art WSD systems explicitly use glosses in their
methods.

We posit that sense disambiguation in V-WSD
is more focused on homonymy than polysemy and,
as a result, can be less nuanced than in WSD. For
example, apple could refer to a fruit or a tree. In
an image depicting both, the focus may be unclear.
In WSD, this distinction is critical since tree and
fruit are distinct senses. In V-WSD, however, we
can make a correct prediction without deciding
between both senses. As a result of this lower
granularity, glosses become less important.
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Performance of WSD Systems on Context: We
manually disambiguated the sense of the focus
word in a randomly-selected set of 16 instances
from the training set. We then applied a state-of-
the-art WSD system, ConSec (Barba et al., 2021),
to these instances. We observe that ConSec sense
predictions were accurate 50% of the time, falling
considerably below its reported accuracy of 82%.

6.4 English Hegemony

Natural language processing research often focuses
on the English language, at the expense of other
languages (Magueresse et al., 2020). The relative
performance of TR and LANGSPEC reflects this
phenomenon: Translating non-English text to En-
glish, in order to apply an English encoder, can
be expected to introduce some noise due to trans-
lation errors and information loss. However, we
observe that this pipeline approach produces bet-
ter results than using an Italian or Farsi encoder
directly. This suggests that the field’s focus on
English has yielded English encoders which are
much better than those available for Italian or Farsi.
We speculate that advancing the state-of-the-art for
non-English encoders may yield even better perfor-
mance, by avoiding the need to translate to English.

6.5 Image Generation

As shown in Figure 3, when applying our image
generation system (GEN), we observe an increase
in performance as we generate more images. Al-
though the performance jump when transitioning
from 1 to 5 images is most pronounced, we see ben-
efits from scaling until a certain point, 10 images,
where the trend becomes unreliable.
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Figure 3: Hit rate (%) vs. number of images generated
for GEN and GEN+DEF.

6.6 Text-Conditioned Image Segmentation

With SEG, we can sometimes robustly segment
images and predict masks indicating the correct

Figure 4: Original images from the dataset depicting
ANDROMEDA (Japanese plant), ANDROMEDA (galaxy)
and their two masks conditioned on “andromeda tree.”

image, conditioning on the full context. However,
this method sometimes forms incorrect semantic
representations. Appendix A details more exam-
ples of SEG’s usage. In addition to Figure 4, we
present more extensive examples in Appendix A.

6.7 Algorithm Hyperparameters

Our algorithm uses three weights hyperparameters
to balance pairwise similarities. We set all weights
to 1 based on Table 2. Comparison of results with
wcg set to 0 or 1 suggests that simL(c, g) does not
improve performance. Two reasons support this
finding. Firstly, images encode richer represen-
tations, producing more precise simV L(i, g) and
simV L(i, c), while both context and glosses are
discrete textual features, introducing uncertainty to
simL(c, g). Secondly, we use CLIP and BERT to
calculate simV L and simL, respectively. CLIP’s
multi-modal pre-training may offer better similar-
ity scores, fitting this task better. Understanding
these findings more deeply is an interesting avenue
for future research.

7 Conclusion

In this paper, we outlined our work on the recently
proposed task of V-WSD. We found that many
ideas from traditional WSD are difficult to adapt to
V-WSD, and, moreover, WSD systems are gener-
ally not useful for V-WSD. We were particularly
surprised to find that, unlike in WSD, glosses ap-
pear to be unhelpful for V-WSD. Contrariwise, our
innovation of augmenting the context did yield sub-
stantial gains in accuracy.

Further research will be needed to establish the
connection between V-WSD and the broader field
of lexical semantics. We speculate that developing
systems for joint WSD and V-WSD may yield im-
provements in one or both tasks. Our work here
serves as a proof-of-concept establishing the utility
of language models and lexico-semantic resources
in the developing task of V-WSD.
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A Text-Conditioned Image Segmentation

A.1 Success Mode
In the successful case of this system, we see that
we are able to segment the object based on the
text provided properly. See the figures below for
details.

Figure 5: Original images from the dataset depicting on
the left: ANDROMEDA and on the right: ANDROMEDA.

Figure 6: Conditioned on the full “andromeda tree”

Figure 7: Conditioned on “andromeda”

Figure 8: Conditioned on “tree”

A.2 Failure Mode
In the failure case of this system, we see that we are
unable to confidently segment the object based on
the text provided. See the figures below for details.

Figure 9: Original images from the dataset depicting on
the left: BANK (finance) and on the right: BANK (river).

Figure 10: Conditioned on the full “bank erosion”

Figure 11: Conditioned on “bank”

Figure 12: Conditioned on “erosion”
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