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Abstract

This paper describes our system designed for
SemEval-2023 Task 12: Sentiment analysis for
African languages. The challenge faced by this
task is the scarcity of labeled data and linguistic
resources in low-resource settings. To alleviate
these, we propose a generalized multilingual
system SACL-XLMR for sentiment analysis
on low-resource languages. Specifically, we
design a lexicon-based multilingual BERT to
facilitate language adaptation and sentiment-
aware representation learning. Besides, we ap-
ply a supervised adversarial contrastive learn-
ing technique to learn sentiment-spread struc-
tured representations and enhance model gen-
eralization. Our system achieved competitive
results, largely outperforming baselines on both
multilingual and zero-shot sentiment classifica-
tion subtasks. Notably, the system obtained the
1st rank on the zero-shot classification subtask
in the official ranking. Extensive experiments
demonstrate the effectiveness of our system.

1 Introduction

Sentiment analysis is a critical aspect of natural
language processing with numerous applications,
including public opinion monitoring (Boon-Itt and
Skunkan, 2020), healthcare services (Zunic et al.,
2020), and recommendation systems (Hu et al.,
2021b). However, performing sentiment analysis
in low-resource languages poses significant chal-
lenges, including the scarcity of labeled data and
linguistic resources, as well as the diversity of lan-
guages and dialects (Lo et al., 2017; Oueslati et al.,
2020). In SemEval-2023 Task 12 (Muhammad
et al., 2023b), the focus is on sentiment analysis for
African languages in Twitter, which further exac-
erbates the challenges due to the presence of tone,
code-switching, and digraphia phenomena (Ade-
bara and Abdul-Mageed, 2022).

Although multilingual pre-trained language mod-
els (multilingual PTMs) (Conneau and Lample,
2019; Conneau et al., 2020) have shown potential in

cross-lingual transfer learning compared to mono-
lingual PTMs (Devlin et al., 2019; Hu et al., 2022a),
they have limitations in capturing nuances and cul-
tural differences within a language, especially in
the context of dialects and regional variations.

In this paper, we propose a generalized multilin-
gual system named SACL-XLMR to address these
limitations and enhance the generalization of mul-
tilingual PTMs for under-represented languages,
particularly African languages. Our system lever-
ages a lexicon-based multilingual BERT model
to facilitate language adaptation and sentiment-
aware representation learning. Additionally, we
apply a supervised adversarial contrastive learn-
ing (SACL) technique (Hu et al., 2023) to learn
sentiment-spread structured representations and en-
hance model generalization.

We present the details of the proposed sys-
tem and evaluate its performance on SemEval-
2023 Task 12. Our system achieves remarkable
performance, outperforming baselines by +1.1%
weighted-F1 score on multilingual sentiment classi-
fication subtask and by +2.8% weighted-F1 score
on zero-shot sentiment classification subtask in
the AfriSenti-SemEval datasets (Muhammad et al.,
2023a). Moreover, following the AfriSenti Se-
mEval Prizes1 and the task description (Muham-
mad et al., 2023b), our system obtains the 1st rank
on the zero-shot classification subtask in the official
ranking. We conducted experiments to demonstrate
the effectiveness of our approach, highlighting the
potential of our system in overcoming the chal-
lenges of low-resource sentiment analysis.

2 Background

2.1 Task and Data Description

The SemEval-2023 Task 12: Sentiment analysis for
African languages (AfriSenti-SemEval) (Muham-

1https://afrisenti-semeval.github.io/
prizes/
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ISO Code Language Total Train Val Test Subregion Script Lexicon
amh Amharic 9,483 5,985 1,498 2,000 East Africa Ethiopic ✗

arq Algerian Arabic/Darja 3,062 1,652 415 959 North Africa Arabic ✗

hau Hausa 22,155 14,173 2,678 5,304 West Africa Latin ✓

ibo Igbo 15,718 10,193 1,842 3,683 West Africa Latin ✓

kin Kinyarwanda 5,158 3,303 828 1,027 East Africa Latin ✓

ary Moroccan Arabic/Darija 9,762 5,584 1,216 2,962 Northern Africa Arabic/Latin ✓

pt-MZ Mozambican Portuguese 7,495 3,064 768 3,663 Southeastern Africa Latin ✗

pcm Nigerian Pidgin 10,559 5,122 1,282 4,155 West Africa Latin ✗

orm Oromo 2,494 - 397 2,097 East Africa Latin ✓

swa Swahili 3,014 1,811 454 749 East Africa Latin ✗

tir Tigrinya 2,400 - 399 2,001 East Africa Ethiopic ✓

twi Twi 4,821 3,482 389 950 West Africa Latin ✓

tso Xitsonga 1,264 805 204 255 Southern Africa Latin ✗

yor Yorùbá 15,130 8,523 2,091 4,516 West Africa Latin ✓

Table 1: The statistics of the AfriSenti datasets. The train/validation sets of Oromo (orm) and Tigrinya (tir) are
not used due to the zero-shot transfer setting used for evaluation. Lexicon refers to a valid lexicon, which provides
words or phrases that correspond to the predefined sentiment polarity.

mad et al., 2023b) is the first Afro-centric SemEval
shared task for sentiment analysis in Twitter. It con-
sists of three subtasks, i.e., monolingual, multilin-
gual, and zero-shot sentiment classification. Brief
descriptions of the last two subtasks that our team
focuses on are as follows:

• Multilingual Sentiment Classification.
Given combined training data of multiple
African languages, determine the polarity of a
tweet on the combined test data of the same
languages (positive, negative, or neutral).
This subtask has only one track with 12
languages (Amharic, Algerian Arabic/Darja,
Hausa, Igbo, Kinyarwanda, Moroccan
Arabic/Darija, Mozambican Portuguese,
Nigerian Pidgin, Swahili, Twi, Xitsonga, and
Yorùbá), i.e., a multilingual track with 12
African languages.

• Zero-Shot Sentiment Classification. Given
unlabelled tweets in two African languages
(Tigrinya and Oromo), leverage any or all
available training datasets of source languages
(12 African languages in the multilingual
track) to determine the sentiment of a tweet
in the two target languages. This task has two
tracks, i.e., a zero-shot Tigrinya track and a
zero-shot Oromo track.

The AfriSenti datasets2 (Muhammad et al.,
2023a) are a collection of multilingual Twitter
datasets that consist of 110,000+ tweets in 14 low-
resource African languages from four language

2https://github.com/afrisenti-semeval

families for sentiment analysis. The statistics of
each monolingual tweet datasets are reported in
Table 1. The datasets involve tweets labeled with
three sentiment classes (positive, negative, neutral).
Each tweet is annotated by three native speakers
following the sentiment annotation guidelines Mo-
hammad (2016) and the final label for each tweet
is determined by majority voting (Davani et al.,
2022). If a tweet conveys both a positive and neg-
ative sentiment, the stronger sentiment should be
chosen.

3 Related Work

3.1 Sentiment Analysis
Sentiment analysis has evolved from lexicon-based
approaches to more advanced machine learning
and deep learning-based methods (Medhat et al.,
2014). Previous works in sentiment analysis have
focused on various levels of granularity, such as
aspect (Pontiki et al., 2014), sentence (Hu et al.,
2021a), and document (Wei et al., 2020), as well as
different modalities (Zadeh et al., 2017; Hu et al.,
2022b) and languages (Boiy and Moens, 2009; Bal-
ahur and Turchi, 2014).

3.2 Low-resource Sentiment Analysis
Despite the success of polarity classification in
high-resource languages, noisy user-generated data
in under-represented languages presents a chal-
lenge (Yimam et al., 2020). Recently, several stud-
ies have proposed approaches for sentiment analy-
sis on low-resource languages (Lo et al., 2017; Yi-
mam et al., 2020). Besides, Moudjari et al. (2020);
Adebara and Abdul-Mageed (2022); Muhammad
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Figure 1: Overall architecture of our SACL-XLMR. Given a batch of training samples, a multilingual BERT is used
to learn contextual representations of the input sentences. We take the ×-marked utterance as an example to show
the objective of SACL. r means adversarial perturbations that put on the embedding layer of BERT.

et al. (2023a) have relied on manual annotation by
native speakers or expert annotators to build senti-
ment analysis datasets in low-resource languages.

4 System Overview

In this section, we describe our system adopted in
SemEval-2023 Task 12, where we design a general-
ized multilingual system named SACL-XLMR for
sentiment analysis on low-resource languages. The
overall architecture is illustrated in Figure 1. With
the guidance of SACL framework, the method can
learn label-consistent structured features for better
sentiment classification.

4.1 Model Architecture

The network structure of SACL-XLMR consists of
a multilingual BERT (i.e., an embedding layer and
Transformer encoder) and a sentiment classifier.

Multilingual BERT We apply a multilingual
BERT model (Conneau and Lample, 2019; Alabi
et al., 2022) on monolingual corpus to facilitate
language adaptation. Besides, sentiment lexicon
knowledge for each language is used to enhance
sentiment-aware representation learning.

Formally, given an input token sequence
xi1, ..., xiN where xij refers to j-th token in the
i-th input sample, and N is the maximum sequence
length, the model learns to generate the context
representation of the input token sequences:

hi = BERT([CLS], sL,[SEP], xi1, ..., xiN ,[SEP]), (1)

where [CLS] and [SEP] are special tokens, usu-
ally at the beginning and end of each sequence,
respectively. sL refers to a token sequence of sen-
timent lexicon prefix corresponding to the input
sequence. hi indicates the hidden representation
of the i-th input sample, computed by the repre-
sentation of [CLS] token in the last layer of the
encoder.

Sentiment Classifier Finally, according to the
obtained representations, a sentiment classifier is
applied to predict the sentiment label of each sam-
ple.

ŷi = softmax(Whhi + bh), (2)

where Wh ∈ Rdh×|Y| and bh ∈ R|Y| are trainable
parameters. |Y| is the number of sentiment labels.

4.2 Optimization Objective

Supervised contrastive learning (SCL) (Khosla
et al., 2020; Gunel et al., 2021) is utilized to learn
a generalized feature representation by capturing
similarities between examples within a class and
contrasting them with examples from other classes.
However, directly compressing the feature space of
each class can harm fine-grained features, which
limits the model’s ability to generalize. Recently, a
supervised adversarial contrastive learning (SACL)
technique (Hu et al., 2023) is proposed to address
this issue by learning class-spread structured repre-
sentations in a supervised manner. It can effectively
utilize prior information on label consistency and
retain fine-grained intra-class features.
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Model # Param. # Vocab. # Lang.
Seen Lang.

Adapt.
Unseen Lang.

Adapt.
Lang. supported in AfriSenti datasets

XLM-R 270M 250k 100 ✗ ✗ amh, arq, hau, ary, pt-MZ, orm, swa
AfriBERTa 126M 70k 11 ✓ ✗ amh, hau, ibo, kin, pcm, orm, swa, tir, yor
AfroXLMR 270M 250k 20 ✓ ✗ amh, arq, hau, ibo, kin, ary, pcm, orm, swa, yor
SACL-XLMR 270M 250k 20 ✓ ✓ amh, arq, hau, ibo, kin, ary, pcm, orm, swa, yor

Table 2: Comparison of our SACL-XLMR with other PTMs. # Param. refers to the total number of parameters for
each model excluding the task-specific classifier. # Vocab. represents the size of vocabulary. # Lang. indicates the
number of language coverage. Seen/Unseen Lang. Adapt. represents whether the model supports seen/unseen target
language adaptation. We list the languages covered by both the pre-trained corpus and AfriSent datasets.

In this task, we apply the SACL technique to
learn sentiment-spread representations and enhance
the generalization of multilingual BERT. Formally,
let us denote I as the set of samples in a batch.
Define ϕ(i) = {e ∈ I\{i} : ŷe = ŷi} as the set
of indices of all positives in the batch distinct from
i, and |ϕ(i)| is its cardinality. The loss function of
soft SCL is a weighted average of CE loss and SCL
loss with a trade-off scalar parameter λ, i.e.,

Lsoft-SCL = LCE + λLSCL, (3)

where
LCE = −

∑

i∈I
yi,k log(ŷi,k), (4)

LSCL =
∑
i∈I

−1
|ϕ(i)|

∑
e∈ϕ(i)

log exp(sim(zi,ze)/τ)∑
a∈A(i)

exp(sim(zi,za)/τ)
.

(5)
yi,k and ŷi,k denote the value of one-hot vector yi

and probability vector ŷi at class index k, respec-
tively. A(i) = I\{i}. zi = Whhi + bh. sim(·, ·)
is a pairwise similarity function, i.e., dot product.
τ > 0 is a scalar temperature parameter that con-
trols the separation of classes.

At each step of training, under the soft SCL ob-
jective, we apply an adversarial training strategy
(e.g., FGM (Miyato et al., 2017)) on original sam-
ples to generate adversarial samples. These sam-
ples can be seen as hard positive examples, which
spread out the representation space for each sen-
timent class and confuse robust-less models. Af-
ter that, we utilize a new soft SCL on obtained
adversarial samples to maximize the consistency
of sentiment-spread representations with the same
sentiment label. Following the above calculation
process of Lsoft-SCL on original samples, the op-
timization objective on corresponding adversarial
samples can be easily obtained in a similar way,
i.e., Lr-adv

soft-SCL.
The overall loss of SACL is defined as a sum of

two soft SCL losses on both original and adversar-

ial samples, i.e.,

L = Lsoft-SCL + Lr-adv
soft-SCL. (6)

5 Experimental Setup

5.1 Comparison Methods
We compare SACL-XLMR with the following sev-
eral methods:

• Random is based on random guessing, choos-
ing each class/label with an equal probability.

• XLM-R (Conneau and Lample, 2019) is a
multilingual variant of RoBERTa (Liu et al.,
2019). It is pre-trained on filtered Common-
Crawl data containing 100 languages. We use
xlm-roberta-base3 to initialize XLM-R.

• AfriBERTa (Ogueji et al., 2021) is an Afro-
centri multilingual language model pretrained
on 11 African languages. It is trained on
an aggregation of datasets from the BBC
news website and Common Crawl. We use
castorini/afriberta_large3 to initialize AfriB-
ERTa.

• AfroXLMR (Alabi et al., 2022) is an XLM-R
model adapted to African languages. It is ob-
tained by MLM adaptation of XLM-R on 17
African languages covering the major African
language families and 3 high resource lan-
guages (Arabic, French, and English). We use
Davlan/afro-xlmr-large3 to initialize AfroX-
LMR.

We report the comparison of our SACL-XLMR
and the above PTMs in Table 2.

5.2 Implementation Details
All experiments are conducted on a single NVIDIA
Tesla V100 32GB card. Stratified k-fold cross val-
idation (Kohavi, 1995) is performed to split com-
bined training and validation data of 12 African

3https://huggingface.co/
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Hyperparameter SACL-XLMR
Hidden size du 1024
Perturbation radius {0.5, 5}
Perturbation rate {0.1, 1}
Trade-off weight λ and λr-adv {0.05, 0.1}
Temperature τ and τ r-adv 0.1

Number of epochs 10
Patience 3
Batch size 128
Learning rate 1e−5

Weight decay 1e−2

Dropout 0.2
Maximum token length 250

Table 3: Hyperparameter settings of SACL-XLMR.

languages into 5 folds. Train/validation sets for
Oromo (orm) and Tigrinya (tir) are not used due
to the limited size of the data. We only evaluate
on them in a zero-shot transfer setting. We choose
the optimal hyperparameter values based on the the
average result of validation sets for all folds, and
evaluate the performance of our system on the test
data. Following the scoring program of AfriSenti-
SemEval, we report the weighted-F1 (w-F1) score
to measure the overall performance.

Our SACL-XLMR is initialized with the
Davlan/afro-xlmr-large3 parameters, due to the
nontrivial and consistent performance in both sub-
tasks. The network parameters are optimized by us-
ing Adam optimizer (Kingma and Ba, 2015). The
class weights in CE loss are applied to alleviate
the class imbalance problem and are set by their
relative ratios in the train and validation sets. The
detailed experimental settings on both two subtasks
are in Table 3.

To effectively utilize sentiment lexicons of par-
tial languages in the AfriSenti datasets, we concate-
nate the corresponding lexicon prefix with the orig-
inal input text. Given the i-th input sample, the lex-
icon prefix can be represented as yk : wk1, ..., wkM

where yk is the sentiment label, wkm refers to the
corresponding m-th lexicon token in the original
sequence. For our final system, we only use senti-
ment lexicons on the zero-shot subtask. We do not
use it on the multilingual subtask due to the fact that
some languages in the multilingual target corpus
do not have available sentiment lexicons, making
it difficult for the model to adapt effectively.

Model multilingual
Random 33.3
XLM-R 62.5
AfriBERTa 64.5
AfroXLMR 69.9
SACL-XLMRfold1

† 70.3
SACL-XLMR 71.0
Improve +1.1%

Table 4: Experimental results (%) against various meth-
ods on the multilingual sentiment classification subtask.
We present the weighted-F1 score to measure the perfor-
mance. All compared pre-trained models are fine-tuned
on the multilingual dataset. fold1 means the result us-
ing only training data of one fold. † indicates the results
on the official ranking.

Model tir orm Avg.
Random 34.3 33.6 34.0
XLM-R 43.8 35.9 39.9
AfriBERTa 44.1 43.6 43.9
AfroXLMR 69.8 42.3 56.1
SACL-XLMRfold1

† 70.5 45.8 58.2
SACL-XLMR 71.8 46.0 58.9
Improve +2.0% +2.4% +2.8%

Table 5: Experimental results (%) against various meth-
ods on the zero-shot sentiment classification subtask.
We present the weighted-F1 score to measure the perfor-
mance. All compared pre-trained models are fine-tuned
on the multilingual dataset. fold1 means the result us-
ing only training data of one fold. † indicates the results
on the official ranking.

6 Results and Analysis

6.1 Overall Results

The overall results for both subtasks are summa-
rized in Table 4 and 5. From the results, it is not
surprising that all pre-trained models clearly out-
performed the Random baseline. The proposed
SACL-XLMR consistently outperformed the com-
parison methods on both subtasks. Specifically,
SACL-XLMR achieved 1.1% and 2.8% absolute
improvements on the multilingual and zero-shot
sentiment classification subtasks, respectively.

Moreover, we present the official results from
several top-ranked systems for the zero-shot senti-
ment classification subtask in AfriSenti-SemEval
Shared Task (i.e., SemEval-2023 Task 12) in Ta-
ble 6. Our submitted system obtained the 1st over-
all rank on the zero-shot sentiment classification
subtask in the official ranking.
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Figure 2: Ablation study results on two subtasks. We report the weighted-F1 score.

Overall Rank Team Name tir orm Avg.
Top 1 UCAS-IIE-NLP 70.47 45.82 58.15
Top 2 NLNDE 70.86 44.97 57.92
Top 3 ymf924 70.39 45.34 57.87

- UM6P 69.53 45.27 57.40
- TBS 69.61 45.12 57.37
- uid 69.90 44.75 57.33
- mitchelldehaven 66.96 46.23 56.60

Table 6: Results of our submitted system compared with
several top-ranked systems for the zero-shot sentiment
classification subtask in AfriSenti-SemEval Shared Task.
The official scoring program uses the weighted-F1 score
to measure the performance. Following the AfriSenti
SemEval Prizes1 and the task description (Muhammad
et al., 2023b), the overall rank is calculated by averaging
the results of all the languages in the subtask.

6.2 Ablation Study

In this part, we conduct ablation studies by remov-
ing key components of SACL-XLMRfull to further
understand the proposed model:

• - w/o Lexicon refers to removing the senti-
ment lexicon.

• - w/o SACL means replacing the SACL ob-
jective with a simple cross-entropy (CE) term.

• - w/o Lexicon - w/o SACL indicates re-
moving sentiment lexicons and replacing the
SACL objective with a CE term, degenerated
to AfroXLMR.

Figure 2 shows results of ablation studies on
two subtasks for low-resource sentiment analysis.
Our SACL-XLMRfull w/o Lexicon and SACL-
XLMRfull yield the best performance on multi-
lingual and zero-shot sentiment classification sub-
tasks, respectively. When removing the SACL ob-
jective and replacing it with a CE term, the results

consistently decline on all subtasks, showing the
effectiveness of SACL.

For the multilingual sentiment classification sub-
task, SACL-XLMRfull obtains sub-optimal results.
This is most likely due to the fact that some lan-
guages in the target corpus do not have available
sentiment lexicons, making it difficult for the model
to adapt effectively. Also, another caused factor
is the incompleteness and poor quality of lexicon.
For the zero-shot sentiment classification subtask,
the SACL-XLMRfull yields the best performance
on both tir and orm languages. It shows the
effectiveness of sentiment lexicons in zero-shot
scenarios, even if its quality is not good enough.

6.3 Error Analysis

Figure 3 shows an error analysis of our system
on two subtasks of AfriSenti-SemEval, including
a multilingual test set and two zero-shot test sets.
The normalized confusion matrices are used to eval-
uate the quality of the predicted outputs of SACL-
XLMR.

From the diagonal elements of the matrices, true
positives of non-neutral labels exceed those of
the neutral label. The results show that positive
and negative features are more likely to adapt to
low-resource languages. Besides, the above phe-
nomenon is more obvious for tir and orm lan-
guages. It indicates that SACL-XLMR can further
facilitate language adaptation for low-resource lan-
guages by making full use of existing sentiment
lexicons which contain only positive and negative
words.

The confusion matrix of SACL-XLMR reveals
the most confusing pair of sentiment labels: neutral
to negative, especially for tir and orm languages
in a zero-shot setting. The performance on orm
language is relatively poor. Apart from the com-
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Figure 3: The normalized confusion matrices for SACL-XLMR on three test sets of AfriSenti. The rows represent
the actual sentiment labels, whereas the columns represent predictions made by the model. Each cell (i, j) represents
that the percentage of class i was predicted as class j. The values of the diagonal elements represent the degree
of correctly predicted classes. The higher the diagonal values of the confusion matrix the better, indicating many
correct predictions.

plexity of the language and the phenomenon of
data scarcity, it is also due to the significant differ-
ences between orm and other African languages.
Considering the above issues make the task opti-
mization more difficult, there is still a lot of room
for improvement.

7 Conclusion

In this paper, a multilingual system named SACL-
XLMR has been proposed for sentiment analysis
on low-resource African languages. The system
employs a lexicon-based multilingual BERT to fa-
cilitate language adaptation and sentiment-aware
representation learning. It also uses a supervised
adversarial contrastive learning technique to learn
sentiment-spread structured representations and en-
hance model generalization. The system achieved
competitive results, largely outperforming the com-
parison baselines on both multilingual and zero-
shot sentiment classification subtasks, and obtained
the 1st rank on zero-shot classification subtask in
the official ranking.
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