
Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1805–1817
July 13-14, 2023 ©2023 Association for Computational Linguistics

SKAM at SemEval-2023 Task 10: Linguistic Feature Integration and
Continuous Pretraining for Online Sexism Detection and Classification

Murali Manohar Kondragunta Amber Chen Karlo Slot
Sanne Weering Tommaso Caselli

University of Groningen
{m.m.c.kondragunta, a.chen.1,

k.h.r.slot, s.weering}@student.rug.nl
t.caselli@rug.nl

Abstract

Sexism has been prevalent online. In this paper,
we explored the effect of explicit linguistic fea-
tures and continuous pretraining on the perfor-
mance of pretrained language models in sexism
detection. While adding linguistic features did
not improve the performance of the model, con-
tinuous pretraining did slightly boost the per-
formance of the model in Task B from a mean
macro-F11 score of 0.6156 to 0.6246. The best
mean macro-F1 score in Task A was achieved
by a finetuned HateBERT model using regu-
lar pretraining (0.8331). We observed that the
linguistic features did not improve the model’s
performance. At the same time, continuous
pretraining proved beneficial only for nuanced
downstream tasks like Task-B.

1 Introduction

Currently, a lot of models are proposed to flag on-
line content containing sexism. However, these
models only flag what is sexist content, but not
explain why. Categorization of sexism will give a
more detailed explanation as to why certain expres-
sions are sexism. It leads to a better understanding
of the decisions that the model makes, which can
improve the model further. To overcome this limi-
tation, SemEval 2023 Task 10 - Explainable Detec-
tion of Online Sexism (Kirk et al., 2023), proposed
three tasks, of which two will be discussed in this
paper:

• TASK A - Binary Sexism Detection: a two-
class (or binary) classification problem where
systems have to predict whether a post is sex-
ist or not sexist.

• TASK B - Category of Sexism: for posts that
are sexist, a four-class classification problem

1Mean is calculated between local development set and co-
dalab development set. Local development set is a 15 percent
split of the training data provided.

where systems have to predict one of four cat-
egories: (1) threats, (2) derogation, (3) ani-
mosity, (4) prejudiced discussions.

In this paper, we aim to build a sexism detection
system for Task A and B, which is built in two
phases. First, we evaluate which language model
performs best on the tasks. Later, we augment
linguistic features to the best-performing language
model in all possible combinations and benchmark
them.

Specifically, we consider BERT (Devlin et al.,
2018a), HateBERT (Caselli et al., 2020) and De-
BERTa (He et al., 2020). For linguistic features, we
consider the ones described in Abburi et al. (2021):
Empath, Hurtlex, and PerspectiveAPI. More de-
tails on the models and features can be found in the
appendix (Section A and B).

From the phase 1 experiments, we observed
HateBERT to perform better than BERT and De-
BERTa on both tasks. This observation reinforces
Gururangan et al. (2020)’s results on further pre-
trained language models performing better on the
downstream tasks. We conduct another chain of
experiments where the best performing variant is
further pretrained on 2 million unlabeled sentences
provided by the task organizers and later finetuned
on the downstream tasks. The phase 2 experiments
are benchmarked on the continuously pretrained
model and the model with regular pretraining.

We observed that the performance of HateBERT
was only improved by continuous pretraining for
Task B. We conjecture that further pretraining on
the task domain helped the model to understand the
nuances required in Task B to distinguish different
kinds of sexism.

When benchmarked with linguistic features, we
observed them to be redundant. It appears that
the large language models are already aware of
the task-related information that linguistic features
are trying to offer. Regardless of continuous pre-
training, we see that the features are not adding

1805



any noticeable improvements. Overall, our system
(named SKAM) ranks number 45 out of 84 for Task
A and position 39 out of 69 for Task B against
the official test set. The code can be found in the
GitHub repository.

2 Data

The dataset consists of 14,000 annotated messages
and an additional set of 2 million sentences (1 mil-
lion sentences obtained from Reddit and 1 million
sentences obtained from Gab). This additional data
will be used to further pretrain our model. More
information about the dataset can be found in Kirk
et al. (2023)’s work. In addition to the validation
dataset on codalab, we create a local development
set which is a 15 percent split of the training data
provided.

2.1 Preprocessing
In general, the chosen preprocessing methods focus
on n-gram substitution, deletion, and fragmenta-
tion. The preprocessing pipeline is adapted to the
baselines and the pretrained language models.

To prepare the data for our baselines, we first
changed all data entries to lowercase. Second, we
have chosen to remove non-words. This means
that textual fragments such as URLs, interpunction,
and non-alphanumeric characters will be removed.
Finally, we perform lemmatization and tokeniza-
tion provided by NLTK2 and convert text to term
frequency or TF-IDF vectors.

Models such as BERT have difficulty dealing
with noise, such as data with URLs or hashtags
(Kumar et al., 2020). Since the data originates
from social media, these types of noise may oc-
cur. Therefore, URLs were replaced with a [URL]
token. We chose to not replace hashtags, since
they might provide information about a message,
e.g. a possible topic. Therefore, we fragment the
hashtags into separate tokens depicting the words
expressed. Another preprocessing approach taken
was number replacement. Wallace et al. (2019)
have shown that BERT-based models have diffi-
culty working with numbers. Therefore, we treat
numbers as noise and replace them with [NUM]
tokens.

3 Methodology

Our system is built in two phases. In the first phase,
three different models are benchmarked against

2NLTK Documentation

Task A and B. The best-performing model will be
used for the next phase, which is feature evalua-
tion. During this phase, three different features are
used individually and as ensembles and appended
to the best-performing model. In addition, we con-
sider further pretraining the best-performing model
selected during phase 1.

In this section, three main aspects of our method-
ology will be discussed: (1) discussion of language
models used, (2) descriptions of features utilized
and (3) the motivation behind further pretraining
the best performing models of phase 1.

3.1 Baselines

For the baseline, two different methods were used.
The first baseline is the most frequent classifier,
which always predicts an instance as the most fre-
quent class label in the training data. This results
in a macro-F1 score of 0.4317 for Task A and a
macro-F1 score of 0.1722 for Task B.

As a second baseline, an SVM (Cortes and Vap-
nik, 1995) is used, in combination with two dif-
ferent features: TF (term frequency) and TF-IDF
(term frequency-inverse document frequency) of
n-grams.

The baseline that gives the highest macro-F1
score for Task A is the SVM with TF-IDF (0.7460),
while the highest macro-F1 score for Task B is
0.4757, which is obtained by the SVM model with
TF (see Table 1).

Task A Task B
Baseline Macro-F1 Accuracy Macro-F1 Accuracy
Majority class 0.4317 0.7595 0.1722 0.7557
SVM + TF 0.7410 0.8300 0.4757 0.5176
SVM + TF-IDF 0.7460 0.8371 0.4486 0.5392

Table 1: Baseline model results for Task A and Task B.
Best scores are displayed in boldface.

3.2 Feature-Model Integration

To integrate the features into the classification pro-
cess, we used the feature vectors to indicate the
presence of sexism-related topics. If a certain topic
was present in the text, the category name would
be appended to the input text.

For Empath and Hurtlex, if a feature value was
higher than 0, the feature name would be appended
to the input text. Since the feature values of Per-
spectiveAPI are probabilities, rather than (normal-
ized) frequencies, a threshold was set; If a probabil-
ity is higher than the threshold, the category would
be appended to the input text. We experimented

1806

https://github.com/SanneW7/Shared-Task-
https://www.nltk.org/


with thresholds ranging from 0.5 to 0.9 in intervals
of 0.1. Overall, a threshold of 0.8 had a consistent,
positive performance for Task A and Task B (see
Table 3) and was thus chosen as the threshold.

3.3 Continuous pretraining

Continuous learning, also known as continuous
pretraining, is a method used to refine a machine
learning model’s performance by further training it
on additional data that is related to the target task.
This process helps the model better understand and
adapt to the nuances of the domain it is working on,
leading to improved performance in downstream
tasks. Gururangan et al. (2020) showed that domain
adaptive pretraining leads to performance gains in
downstream tasks. As we observed HateBERT
(Caselli et al., 2020) to perform better than BERT
(Devlin et al., 2018b) and DeBERTa (He et al.,
2020) on the development set (Table 9 & 10 ), we
conjecture that narrowing the model domain more
closely to the task will help us improve the model’s
performance. To test this hypothesis, we further
pretrained HateBERT on the 2 million sentences
provided for further pretraining.

Since HateBERT is already further pretrained on
hate speech data, we limit the number of epochs to
5 and the learning rate to 1.00e-5. We believe that
this setting will allow the model to learn domain-
specific nuances while not losing out on the previ-
ously gained knowledge from earlier pretraining.

4 Results

4.1 Model Selection

BERT, HateBERT, and DeBERTa were each fine-
tuned using batch size (4, 16, 32 and 64) and
learning rate (1.00E-04, 5.00E-05 and 1.00E-05).
The models are evaluated using the local devel-
opment set and the competition development set
supplied through Codalab, using the mean of the
two macro-F1 scores. The overview of all results of
the model finetuning can be found in the Appendix
(Section B.1, Table 9 and 10).

HateBERT obtained the highest mean macro-
F1 score in Task A (0.8298) and Task B (0.6151).
Therefore we selected HateBERT as the model to
build upon for the remainder of the experiments for
Task A.

4.2 Feature Selection

After establishing HateBERT as the best perform-
ing model after finetuning, the additional features

Empath, PerspectiveAPI, and Hurtlex were added
in all possible combinations. The overview of all
results of the best-performing model per task, after
adding the different additional feature sets can be
found in Table 3 in the appendices. The macro-F1
scores in this table are based on evaluation on the
local development set.

For Task A, the model without any additional
features is the best performing one (macro-F1 score
of 0.837) whereas for Task B, the model in combi-
nation with Hurtlex obtained the highest macro-F1
score of 0.627.

After calculating the mean of the local macro-F1
and competition macro-F1 scores, the best perform-
ing combination is HateBERT without additional
features for Task A (0.8331) and HateBERT with
Empath and PerspectiveAPI for Task B (0.6220).

4.3 Further Pretraining the best model

The performance of the model with all possible
feature combinations was also tested with contin-
uous pretraining. The overview of the results can
be found in Table 5. While continuous pretraining
improves the local development set performance
of some models in Task A, there is a consistent
increase in macro-F1 scores for Task B.

We observed continuous pretraining to not im-
prove the macro-F1 score compared to regular pre-
training in Task A. The best model with continu-
ous pretraining achieved a mean macro-F1 score
of 0.8259, while the one with regular pretraining
scored 0.8331.

The best macro-F1 score for the local Task B de-
velopment set was obtained by the model combined
with Hurtlex using continuous pretraining (0.632).
Compared to the model using regular pretraining,
a small improvement was made (0.627). The best
mean macro-F1 score however was achieved by
the model without any additional features (0.6246),
which obtained a score of 0.617 on the local set
and a score of 0.6322 on the competition set.

5 Discussion

5.1 Why linguistic features did not work?

Albeit on a different task, Younus and Qureshi
(2020) showed that linguistic features are helpful
when they are computed taking context into consid-
eration. Their model performed similar to a vanilla
BERT model when the augmented linguistic fea-
tures does not consider the context. Although the
task seems to be different from ours, this observa-

1807



Table 2: Best performing models per task with macro-F1 and accuracy scores.

Task Features Pretraining Model Batch size Learning rate Mean Macro-F1
A None Regular HateBERT 4 1.00E-05 0.8331
B None Continuous HateBERT 4 5.00E-05 0.6246

Features Threshold Task A
Local macro-F1

Task B
Local macro-F1

None 0.837 0.616
E 0.822 0.614
H 0.829 0.627
P 0.5 0.815 0.596

0.6 0.83 0.583
0.7 0.818 0.574
0.8 0.829 0.616
0.9 0.823 0.61

H + E 0.834 0.615
P + H 0.8 0.836 0.608
E + P 0.8 0.83 0.608

E + H + P 0.8 0.827 0.575

Table 3: HateBERT scores with added feature combi-
nations for Task A and Task B. The threshold column
refers to the used threshold value for PerspectiveAPI.
E = Empath, H = Hurtlex, P = PerspectiveAPI

Task A Task B
Pretraining Features Threshold Macro-F1 Macro-F1
Regular None 0.829 0.616

E 0.805 0.582
H 0.811 0.615
P 0.8 0.814 0.609
H + E 0.820 0.599
P + H 0.8 0.802 0.616
E + P 0.8 0.815 0.635
E + H + P 0.8 0.828 0.605

Continuous None 0.820 0.632
E 0.829 0.613
H 0.826 0.592
P 0.8 0.822 0.606
H + E 0.820 0.608
P + H 0.8 0.828 0.584
E + P 0.8 0.828 0.626
E + H + P 0.8 0.829 0.564

Table 4: Codalab competition results of models with
added feature combinations for Task A and Task B, with
regular and continuous model pretraining. E = Empath,
H = Hurtlex, P = PerspectiveAPI

tion supports our findings and provides a justifica-
tion for why linguistic features did not work in our
experiments.

We found HateBERT to be the best performing
model in phase 1, which is specifically pretrained
on hate speech texts. This raises the question if it
is already tuned to extract the information which
extrinsic linguistic features aim to extract.

Koufakou et al. (2020) had a similar approach on
extending BERT model with Hurtlex; HurtBERT.
When tested on multiple datasets, it improved the
baseline in 4 out of 6 cases. We speculate that
the current dataset is one of the cases where Hurt-
BERT did not work. It would be interesting to ex-
pand HurtBERT with Empath and PerspectiveAPI
features and benchmark on the same six datasets.

In this direction, we tried the features in iso-
lation with SVM on Task A. Table 11 shows the
scores obtained on the local development set. It can
be seen that Hurtlex features outperform Perspec-
tiveAPI & Empath features. Moreover, Perspec-
tiveAPI and Empath features perform similar to
Majority Class classifier (Table 11) with an macro-
F1 score of 0.43. This shows that Hurtlex features
tend to be more informative than other features.
It can also observed that adding PerspectiveAPI,
Empath or both to Hurtlex features does not im-
prove the model’s performance. It is possible that
PerspectiveAPI and Empath features are redundant
when used with Hurtlex. However, it would be in-
teresting if the same theory holds when tried with
HurtBERT on the six datasets mentioned in Ko-
ufakou et al. (2020).

5.2 Why Continuous Pretraining worked in
one task but not the other?

From the results we found that continuous pretrain-
ing was beneficial for HateBERT on Task B, but not
on Task A. As Task B is more complex, the model
needs to have a better understanding of nuances in
the text. Task A is less complex and presumably
requires less nuance capturing. We conjecture that
further pretraining on the task domain helped the
model to understand the nuances required in Task
B to distinguish different kinds of sexism.

Features Threshold Task A
Local macro-F1

Task B
Local macro-F1

None 0.832 0.617
E 0.828 0.624
H 0.815 0.632
P 0.8 0.828 0.619

H + E 0.802 0.615
P + H 0.8 0.823 0.631
E + P 0.8 0.819 0.612

E + H + P 0.8 0.798 0.615

Table 5: HateBERT scores for models with added fea-
ture combinations for Task A and Task B with continu-
ous pretraining. The threshold column refers to the used
threshold value for PerspectiveAPI. E = Empath, H =
Hurtlex, P = PerspectiveAPI

5.3 Error Analysis
The predicted and true labels were compared to
make confusion matrices shown in Figure 1, 2,
and 3 in the Appendices. While ‘not sexist’ has

1808



more entries in the Task A test and development set,
the amount of misclassifications is slightly higher
compared to the sexist class (306 ‘not sexist’ vs.
223 ‘sexist’ for the test set, 128 ‘not sexist’ vs. 124
‘sexist’ for the development set). The proportion of
misclassifications is therefore greater for the sexist
class in both cases, which indicates a model bias
towards the majority class (‘not sexist’).

The confusion matrix for the Task B develop-
ment set shows misclassifications across the cat-
egories. Most misclassifications happen between
categories ’2. derogation’ and ’3. animosity’. ‘Ag-
gressive and emotive attacks’ are for example quite
likely to also contain ‘gendered slurs, profanities,
and insults’ - yet the former subclass belongs to
the derogation category and the latter to the ani-
mosity category. This demands the need for a well
designed system which can learn the nuances be-
tween these two classes, re-assessing the structure
of the classification problem.

5.4 Feature Integration

During the feature extraction and integration, we
represented each collection of feature values as nu-
merical vectors. There are two options to integrate
these vectors into the classification process: (1)
appending the vector as text to the input, or (2)
appending a numerical vector to the output of the
classification layer of the classifier model.

While the first approach was chosen, we found
that generally, the transformer-based language mod-
els did not improve with this implementation of
features. Therefore, future research could entail
utilizing the numerical nature of the feature vectors
in the classification process.

6 Conclusion

In this work, we evaluated the impact of different
linguistic features, Hurtlex, PerspectiveAPI and
Empath, and found that they are redundant when
used with a domain specific language model like
HateBERT. We also evaluated if continuous pre-
training helps the model in the downstream tasks.
We observed it to be beneficial in task B which is
more complex and demands more nuanced under-
standing of the text. As future work, we aim to
incorporate context guided linguistic features and
experiment with the way we integrate features.

7 Acknowledgements

This paper is the outcome of the course "Shared
Task for Information Science" of the Information
Science Master. We would like to thank Tommaso
Caselli and Lukas Edman for their supervision.
One of the authors is supported by the Erasmus
Mundus Master Programme in“Language and Com-
munication Technologies”.

References
Charika Abburi, Shradha Sehgal, Himanshu Mahesh-

wari, and Vasudeva Varmak. 2021. Knowledge-based
neural framework for sexism detection and classifica-
tion.

Hind Saleh Alatawi, Areej Alhothali, and Kawthar Mo-
ria. 2021. Detection of hate speech using BERT
and hate speech word embedding with deep model.
CoRR, abs/2111.01515.

Elisa Bassignana, Valerio Basile, and Viviana Patti.
2018. Hurtlex: A multilingual lexicon of words to
hurt. In 5th Italian Conference on Computational
Linguistics, CLiC-it 2018, volume 2253, pages 1–6.
CEUR-WS.

Tommaso Caselli, Valerio Basile, Jelena Mitrovic, and
Michael Granitzer. 2020. Hatebert: Retraining BERT
for abusive language detection in english. CoRR,
abs/2010.12472.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018b. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Ethan Fast, Binbin Chen, and Michael S. Bernstein.
2016. Empath: Understanding topic signals in large-
scale text. CoRR, abs/1602.06979.

Suchin Gururangan, Ana Marasovic, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. CoRR,
abs/2004.10964.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-
enhanced BERT with disentangled attention. CoRR,
abs/2006.03654.

Hannah Rose Kirk, Wenjie Yin, Bertie Vidgen, and Paul
Röttger. 2023. SemEval-2023 Task 10: Explainable

1809

http://ceur-ws.org/Vol-2943/exist_paper7.pdf
http://ceur-ws.org/Vol-2943/exist_paper7.pdf
http://ceur-ws.org/Vol-2943/exist_paper7.pdf
http://arxiv.org/abs/2111.01515
http://arxiv.org/abs/2111.01515
http://arxiv.org/abs/2010.12472
http://arxiv.org/abs/2010.12472
http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf
http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1602.06979
http://arxiv.org/abs/1602.06979
http://arxiv.org/abs/2004.10964
http://arxiv.org/abs/2004.10964
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
https://doi.org/10.48550/arXiv.2303.04222


Detection of Online Sexism. In Proceedings of the
17th International Workshop on Semantic Evaluation,
Toronto, Canada. Association for Computational Lin-
guistics.

Anna Koufakou, Endang Wahyu Pamungkas, Valerio
Basile, and Viviana Patti. 2020. HurtBERT: Incorpo-
rating lexical features with BERT for the detection
of abusive language. In Proceedings of the Fourth
Workshop on Online Abuse and Harms, pages 34–43,
Online. Association for Computational Linguistics.

Ankit Kumar, Piyush Makhija, and Anuj Gupta. 2020.
Noisy text data: Achilles’ heel of BERT. In Proceed-
ings of the Sixth Workshop on Noisy User-generated
Text (W-NUT 2020), pages 16–21, Online. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Athar Hussein Mohammed and Ali H. Ali. 2021. Survey
of bert (bidirectional encoder representation trans-
former) types. Journal of Physics: Conference Se-
ries, 1963(1):012173.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do nlp models know num-
bers? probing numeracy in embeddings. arXiv
preprint arXiv:1909.07940.

Arjumand Younus and M Atif Qureshi. 2020. Com-
bining bert with contextual linguistic features for
identification of propaganda spans in news articles.
In 2020 IEEE International Conference on Big Data
(Big Data), pages 5864–5866. IEEE.

1810

https://doi.org/10.48550/arXiv.2303.04222
https://doi.org/10.18653/v1/2020.alw-1.5
https://doi.org/10.18653/v1/2020.alw-1.5
https://doi.org/10.18653/v1/2020.alw-1.5
https://doi.org/10.18653/v1/2020.wnut-1.3
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1088/1742-6596/1963/1/012173
https://doi.org/10.1088/1742-6596/1963/1/012173
https://doi.org/10.1088/1742-6596/1963/1/012173


A Models

BERT is a widely used pretrained language model
and obtains good results in different tasks (Alatawi
et al., 2021). Since the introduction of BERT, some
modified versions have succeeded in providing a
new state-of-the-art (Mohammed and Ali, 2021).
Regardless of modified versions, BERT has shown
good performance in text classification tasks due
to its bidirectional pretraining.

DeBERTa is a successor of BERT which uses
disentangled attention mechanism and an enhanced
mask decoder. Both techniques aid in classification
by placing emphasis on the position of a word,
and not only taking into account the content itself.
Trained on only half the data used for RoBERTa-
Large (Liu et al., 2019), He et al. (2020) were able
to provide competitive performance. Due to its
context-sensitive techniques, DeBERTa is expected
to be useful for this task.

HateBERT is a version of BERT that’s further
pretrained on a large Reddit hate speech data set.
It outperformed BERT in three different evalua-
tion sets (OffensEval, AbusEval, HatEval), show-
ing versatility in terms of practical applications.
HateBERT is expected to obtain good results due
to its close relation to the task data.

B Features

For this task, we will utilize three feature extraction
approaches as suggested by Abburi et al. (2021):
(1) Empath, (2) PerspectiveAPI, and (3) HurtLex.
Abburi et al. (2021) illustrate that these approaches
can be used to extract additional linguistic and se-
mantic knowledge from textual data, and to aid in
the classification of sexism. Therefore, we hypoth-
esize that the employment of these feature extrac-
tion methods could improve the performance of
the BERT-based models within the context of the
explainable detection of sexism.

Empath is a tool for analyzing text across lexical
categories (Fast et al., 2016). It draws connotations
between words and phrases by deep learning across
more than 1.8 billion words of modern fiction and
can generate new lexical categories. Abburi et al.
(2021) suggested the usage of a 21-dimensional
feature vector with each value depicting the pres-
ence of a concept related to sexism (for individual
features, see Appendix C). If a text contains a uni-
gram related to one of the categories, that category
would be assigned a normalized frequency value.

Google’s PerspectiveAPI3 is a machine learn-
ing algorithm that measures the effect of a text by
analyzing different emotional concepts. The Per-
spectiveAPI features are represented by a vector
consisting of nine probabilities. The categories cor-
responding to each value are in alphabetical order
(see Appendix C). For each text, the API provides a
9-dimensional vector with values ranging from 0 to
1 related to the corresponding emotional concept.

HurtLex is a lexicon that includes aggressive,
offensive, and hateful words and phrases divided
into seventeen categories (Bassignana et al., 2018).
From the seventeen categories, the nine categories
from Abburi et al. (2021) were used, as well as
an additional tenth category ‘male genitalia’ (see
Appendix C). The texts will be represented by this
10-dimensional feature vector based on frequen-
cies.

B.1 Model Selection: Hyperparameter search
and experiments

BERT, HateBERT, and DeBERTa were each fine-
tuned using batch size (4, 16, 32 and 64) and learn-
ing rate (1.00E-04, 5.00E-05 and 1.00E-05). The
models are evaluated using the local development
set and the competition development set supplied
through Codalab, using the mean of the two macro-
F1 scores. The overview of all results of the model
finetuning can be found in Table 9 and 10 in the
Appendix.

DeBERTa and HateBERT both scored consider-
ably better than BERT on the local development
set. DeBERTa with batch size 32 and a learning
rate of 1.00E-05 obtained a higher macro-F1 score
(0.839) compared to HateBERT with batch size 4
and a learning rate of 1.00E-05 (0.834) and BERT
with batch size 32 and a learning rate of 1.00E-05
(0.818). On the competition development set, Hate-
BERT obtained a higher macro-F1 score (0.8255)
compared to DeBERTa (0.8173).

HateBERT obtained the highest mean macro-
F1 score (0.8298) and was therefore selected as
the model to build upon for the remainder of the
experiments for Task A.

A similar score distribution can be observed in
Task B, where BERT obtained a lower score com-
pared to DeBERTa and HateBERT. On the competi-
tion development set HateBERT outperformed De-
BERTa with a macro-F1 score of 0.6161 compared
to 0.5589. The highest mean macro-F1 score was

3https://perspectiveapi.com/

1811

https://perspectiveapi.com/


obtained by HateBERT (0.6151 compared to De-
BERTa’s 0.5855), which is therefore also selected
as the model base for Task B experiments.

Label Percentage Amount
Not Sexist 76% 10,602
Sexist 24% 3,398

Table 6: Label distribution of the data for Task A

Label Percentage Amount
Derogation 47% 1,590
Animosity 34% 1,165
Prejudiced Discussion 10% 333
Threats 9% 310

Table 7: Label distribution of the data for Task B

1812



C Feature Categories

Table 8: Overview of features used from 3 feature extraction approaches: (1) Empath, (2) PerspectiveAPI and (3)
HurtLex

Empath PerspectiveAPI HurtLex
Sexism Flirtation Negative stereotypes and ethnic slurs (PS)
Violence Identity attack Professions and occupations (PA)
Money Insult Physical disabilities and diversity (DDF)
Valuable Obscene Cognitive disabilities and diversity (DDP)
Domestic work Profanity Female genitalia (ASF)
Hate Severe Toxicity Words related to prostitution (PR)
Aggression Sexually explicit Words related to homosexuality (OM)
Anticipation Threat With potential negative connotations (QAS)
Crime Toxicity Derogatory words (CDS)
Weakness Male genitalia (ASM)
Horror
Swearing terms
Kill
Sexual
Cooking
Exasperation
Body
Ridicule
Disgust
Anger
Rage

1813



D Finetuning models Task A

Table 9: Finetuning scores for different models in Task A on the development set. Best macro-F1 and accuracy
scores per model are displayed in boldface. Best performing model scores overall are underlined.

Model Batch size Learning rate Macro-F1 Accuracy
BERT 32 1.00E-04 0.808 0.863

5.00E-05 0.801 0.842
1.00E-05 0.818 0.858

16 1.00E-04 0.789 0.85
5.00E-05 0.811 0.85
1.00E-05 0.809 0.865

4 1.00E-04 0.196 0.244
5.00E-05 0.196 0.244
1.00E-05 0.813 0.862

HateBERT 32 1.00E-04 0.81 0.852
5.00E-05 0.829 0.873
1.00E-05 0.831 0.874

16 1.00E-04 0.782 0.842
5.00E-05 0.834 0.87
1.00E-05 0.824 0.871

4 1.00E-04 0.196 0.244
5.00E-05 0.792 0.835
1.00E-05 0.837 0.883

DeBERTa 64 1.00E-04 0.802 0.843
5.00E-05 0.815 0.853
1.00E-05 0.825 0.86

32 1.00E-04 0.431 0.756
5.00E-05 0.82 0.862
1.00E-05 0.839 0.879

16 1.00E-04 0.196 0.244
5.00E-05 0.196 0.244
1.00E-05 0.834 0.871

1814



E Finetuning models Task B

Table 10: Finetuning scores for different models in Task B on the development set. Best macro-F1 and accuracy
scores per model are displayed in boldface. Best performing model scores overall are underlined.

Model Batch size Learning rate Macro-F1 Accuracy
BERT 32 1.00E-04 0.577 0.568

5.00E-05 0.575 0.578
1.00E-05 0.59 0.586

16 1.00E-04 0.503 0.533
5.00E-05 0.59 0.569
1.00E-05 0.581 0.574

4 1.00E-04 0.045 0.1
5.00E-05 0.56 0.564
1.00E-05 0.576 0.576

HateBERT 32 1.00E-04 0.613 0.586
5.00E-05 0.606 0.598
1.00E-05 0.601 0.584

16 1.00E-04 0.582 0.561
5.00E-05 0.59 0.582
1.00E-05 0.587 0.584

4 1.00E-04 0.045 0.1
5.00E-05 0.614 0.607
1.00E-05 0.601 0.584

DeBERTa 64 1.00E-04 0.125 0.334
5.00E-05 0.609 0.617
1.00E-05 0.505 0.508

32 1.00E-04 0.585 0.564
5.00E-05 0.581 0.561
1.00E-05 0.611 0.615

16 1.00E-04 0.046 0.1
5.00E-05 0.601 0.598
1.00E-05 0.612 0.592

F Feature scores

Table 11: Accuracy and macro-F1 Score for different feature combinations
E = Empath, H = Hurtlex, P = PerspectiveAPI

Input Task-A
Accuracy

Task-A
Macro-F1

Task-B
Accuracy

Task-B
Macro-F1

H 0.8057 0.62 0.7786 0.25
P 0.7562 0.43 0.7562 0.17
E 0.7562 0.43 0.7562 0.17
H + E 0.8057 0.62 0.7786 0.25
P + E 0.7562 0.43 0.7562 0.17
P + H 0.8057 0.62
P + H + E 0.8057 0.62

1815



G Confusion matrix - Task A test set

Figure 1: Confusion matrix of predictions and true labels for Task A, competition test set.

H Confusion matrix - Task A development set

Figure 2: Confusion matrix of predictions of true labels for Task A, competition development set.

1816



I Confusion matrix - Task B development set

Figure 3: Confusion matrix of predictions of true labels for Task B, competition development set.

1817


