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Abstract

Language models pretrained on general domain
corpora usually exhibit considerable degrada-
tion when generalizing to downstream tasks of
specialized domains. Existing approaches try
to construct PLMs for each specific domains ei-
ther from scratch or through further pretraining,
which not only costs substantial resources, but
also fails to cover all target domains at various
granularity. In this work, we propose RADA,
a novel Retrieval-Augmented framework for
Domain Adaptation. We first construct a tex-
tual corpora that covers the downstream task at
flexible domain granularity and resource avail-
ability. We employ it as a pluggable datastore
to retrieve informative background knowledge,
and integrate them into the standard language
model framework to augment representations.
We then propose a two-level selection scheme
to integrate the most relevant information while
alleviating irrelevant noises. Specifically, we
introduce a differentiable sampling module as
well as an attention mechanism to achieve both
passage-level and word-level selection. Such
a retrieval-augmented framework enables do-
main adaptation of language models with flexi-
ble domain coverage and fine-grained domain
knowledge integration. We conduct compre-
hensive experiments across biomedical, science
and legal domains to demonstrate the effective-
ness of the overall framework, and its advan-
tage over existing solutions.

1 Introduction

Language models pretrained on large scale of un-
supervised corpora are capable of producing pow-
erful representations as well as providing satisfac-
tory performance when finetuned for general do-
main downstream tasks (Devlin et al., 2019; Brown
et al., 2020). However, as such representations are
learned from general domain distributions, their
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†Correspondence to: jiangwenbin@baidu.com

generalization performance are deteriorate on spe-
cialized domains where distribution are much more
different, such as biomedicine, science, legal, etc.

Many works thus trying to construct domain-
specific PLMs either from scratch or initialized
from the original PLM, such as BioBERT (Lee
et al., 2020), LegalBERT (Chalkidis et al., 2020),
SciBERT (Beltagy et al., 2019), etc. Through the
pretraining procedure, domain-specific knowledge
are memorized and internalized into the parame-
ter of the PLMs, thus providing a better initializa-
tion point for learning downstream tasks. How-
ever, such attempts not only consume much more
costs, as it requires considerable computation to
pretrain a language model, but also can not cover
adaptive needs at task- or even instance-level gran-
ularity, as domain-specific PLMs are preliminarily
trained with a fixed scale domain corpora but ap-
plied for all domain tasks. In fact, domain can be
defined at various granularity w.r.t. various appli-
cations (Chronopoulou et al., 2022). For example,
in the biomedical domain, texts might distribute
across academic publication, medical record or
medical-situated dialog, and exhibit completely dif-
ferent style and background knowledge.

In this paper, we novelly propose a Retrieval-
Augmented framework for Domain Adaptation
(RADA) to address the above challenges. Instead
of internalizing a fixed corpora into PLM param-
eters via further pretraining, we construct and re-
trieve a datastore to dynamically enhance the learn-
ing of domain-specific downstream tasks. The flex-
ibility of such a retrieval-augmented framework is
in two-fold: 1) On one hand, we no longer need
to maintain multiple PLMs respectively for each
application domains, all domains simply share the
same checkpoint for initialization but with domain-
specialized datastore. 2) On the other hand, the
datastore only consists of most relevant background
passages tailored for each specific task. Such task-
level granularity provides best trade-off between
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Figure 1: Illustration of the motivated retrieval-augmented framework for language model domain adaptation.

scale and coverage, we either do not need to collect
a very large corpora in order to effectively cover all
sub-domains, nor concerned with its coverage for
this specific task. The illustration of the motivated
framework compared to existing further pretraining
solution is given in Figure 1.

The core component of such a retrieval-
augmented framework remains how to effectively
integrate the retrieved passages. One line of related
works is knowledge-enhanced PLMs (Zhang et al.,
2019; Peters et al., 2019; Liu et al., 2020), they
mostly resort to attention mechanism to directly
incorporate the matched knowledge triples. Differ-
ently, we consider textual domain corpus instead of
structured knowledge in this paper as the latter only
has very limited coverage, especially for domain
specialized scenarios. As a consequence, we aim to
integrate retrieved passages that are less knowledge-
intensive and might be mixed with noisy informa-
tion that are irrelevant to solve the task. We ac-
cordingly propose a two-level selection scheme:
passage-level selection and word-level selection.
Among the multiple retrieved passages given by a
coarse-grained but efficient retriever, we first pro-
pose a differentiable sampling module that enables
the model to dynamically select the most helpful
background passage. We then adopt an attention
mechanism to weigh all words inside the selected
passage to achieve more fine-grained integration.
The retrieval-augmentation interface works as a
pluggable module that needs no further modifica-
tion of the main encoding pipeline.

We conduct experiments on 7 popular tasks cov-
ering three different downstream domains and a
wide range of task variety. The results and abla-
tions demonstrate the effectiveness and advantage
of the proposed framework. The contribution of
this paper is three-fold:

• Conceptual Contribution We novelly pro-

pose a retrieval-augmented framework for
domain-adaptation of PLMs. The framework
is designed as a pluggable module, which not
only saves the costs to construct and maintain
specialized PLMs for each respective domain,
but also provides domain specialty at flexible
task-level granularity with no concern of the
trade-off between domain scale and coverage.

• Technical Contribution We propose a two-
level selection scheme to achieve fine-grained
integration of retrieved passages while al-
leviate noise distraction. Specifically, we
introduce a differentiable sampling module
for passage-level selection and an attention
mechanism to further assign word-level im-
portance.

• Experimental Contribution We achieve con-
sistent improvements across different domains
including Science, Biomedicine and Legal.
When combined with further pretraining, the
improvements of the proposed framework are
much more significant, surpassing competi-
tive baseline of vanilla further pretraining.

2 Related Work

Domain Adaptation (Ramponi and Plank, 2020) is
an important and widely investigated problem in
the area of NLP. In the current pretrain-finetune
paradigm, it becomes even more practical as
most of NLP systems start with a general-purpose
PLM but applied into various downstream scenar-
ios (Guo and Yu, 2022). Many early works have
found that continued pretraining of PLM on domain
specific corpus could bring benefits (Alsentzer
et al., 2019; Lee et al., 2020). Gururangan et al.
(2020) take a step further to systematically inves-
tigate the effect of further pretraining on multiple
domains, which they refer to as domain-adaptive
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Figure 2: The overall retrieval-augmented framework of RADA. The RA-Interface serves as a pluggable
module to augment task-agnostic input representations with domain-specialized background passages.

pretraining (DAPT). Besides, they also propose
task-adaptive pretraining (TAPT) to perform fur-
ther pretraining also on task data, which further
brings significant improvements.

There are mainly two concerns for these further
pretraining based methods. One is the cost to con-
struct and maintain considerable number of PLMs
for each specific domain, which can be quite a lot
spreading over various application scenarios. The
other is the complication to formally define the
concept of domain because domains exhibit hierar-
chical taxonomy in practical scenarios (Reid et al.,
2022). The scope of a domain should neither be too
broad, which results in loss of domain specialty, nor
be too narrow, which results in loss of generaliza-
tion ability. Many recent works (Chronopoulou
et al., 2022; Gururangan et al., 2022; Li et al.,
2022) thus propose to incorporate multiple domains
into one shared model, and introduce mixture-of-
experts module to allow different sub-domains also
share with each other. By contrast, RADA takes
a very different retrieval-based road to resolve the
above concerns.

Several other works also try to advance domain
adaptation from various perspectives. For example,
Yu et al. (2021) studied DAPT for the specific task
of abstractive summarization. Xu et al. (2021)
propose gradual finetuning for domain adaptation.
Bai et al. (2021) investigates the trade-off between
DAPT and data annotation under limited budget
for domain adaptation.

Another very related line of work is retrieval-
augmented language models. kNN-LM (Khan-

delwal et al., 2020) retrieves for similar language
modeling probability distributions and interpolate
them with the current step of token generation.
Guu et al. (2020) and Lee et al. (2019) propose
to learn differentiable retriever to better select help-
ful passages. Lewis et al. (2020) propose a non-
parametric retriever and combine it with a gen-
erator model. Borgeaud et al. (2022) use atten-
tion mechanism to integrate retrieved passages
and also explore the datastore in a very large
scale. Izacard et al. (2022) investigate the use-
fulness of retrieval-augmentation in the context
of few-shot prompting with LLMs. Although be-
ing technically related, most of these works focus
on general-purpose language understanding, espe-
cially knowledge-intensive tasks. While in this
paper, we focus on the challenge of LM domain
adaptation, and also novelly propose a two-level se-
lection scheme to further augment the framework.

3 Methodology

RADA is a general framework for task-agnostic do-
main adaptation, and can be readily integrated into
the standard pipeline of PLM deployment. In the
following section, we first brief the construction of
domain specialized datastore in Section 3.1, and
the framework formulation in Section 3.2. We then
introduce the core component, a pluggable inter-
face for retrieval-augmented domain adaptation in
Section 3.3, and finally brief the training usage in
Section 3.4. The overall framework is illustrated in
Figure 2.
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3.1 Datastore Construction
We consider textual domain corpus as a necessary
recipe to adapt a general-domain language model.
From their related sources, we collect domain spe-
cialized passages {pi}D, and refer to them as the
datastore. In practical implementation, we truncate
the length of each passage to 256 tokens for sim-
plicity. We then build an Elasticsearch service†, for
any task-specific training or test input sequence x,
we can retrieve for its K most relevant background
passages {pk}Kk=1. Although Elasticsearch only
serves coarse-grained retrieving purpose, we can
employ it as an efficient first-stage retriever.

For each specific downstream task, the datastore
is constructed at task-level granularity. And the re-
trieving of most relevant passages further achieves
instance-level granularity. This is in contrast with
many existing works where datastore is constructed
and utilized at domain-level granularity, once a tar-
get domain is determined, a fixed-scale datastore
is collected and injected into PLM as an integral
through further pretraining. As a result, RADA
brings better flexibility and save the difficulty to
deliberate the trade off between domain specialty
and domain coverage.

3.2 Retrieval-Augmented PLM
In a standard PLM-based framework, we first take
the task input sequence x = {xi} and use the
pretrained encoder to produce contextualized rep-
resentations:

Hx = encode(x) (1)

whereHx ∈ Rl∗d is the sequence level representa-
tion for l words and d dimensions. We accordingly
refer to hx

i as the contextualized representation at
each specific position i. The representations are
then fed into a task-tailored head module, such as
classification, regression or sequence tagging, etc.

In RADA, accompanied with each task input, we
similarly construct the representations for retrieved
passages {pk}:

Hpk = encode(pk), 1 ≤ k ≤ K (2)

and we similarly get Hpk and hpk
j . The purpose

of the proposed RADA framework can be formu-
lated as a universal interface that augments and
updates task representations hx

i usingHpk , where
†https://github.com/elastic/

elasticsearch

Hpk serves as informative, relevant and domain-
specialized knowledge source:

h̃i = RA-Interface(hx
i , {Hpk}Kk=1) (3)

h̃i is then unchangeably used in the rest of the
task pipeline. The overall framework remains task-
agnostic and can be readily integrated into both
pretraining and finetuning stage. The interface can
also be easily extended to a more broad scenario
with different backbone networks other than Trans-
former.

3.3 Retrieval Augmentation Interface
We elaborate the RA-Interface in this section.
Different from many existing methods that resort to
integrate structured knowledge (Zhang et al., 2019;
Peters et al., 2019), the retrieved textual domain
corpus are much less knowledge-intensive and thus
might contain irrelevant noise distractions. How-
ever, Elasticsearch can only satisfy coarse-grained
retrieving purpose, leaving it an important problem
to effectively select and integrate actually helpful
domain knowledge.

To address such challenge, we propose a two-
level selection scheme which performs discrete
sampling at passage-level and attentively aggregate
at word-level. Such selection strategy strengthens
the proposed interface with fine-grained selection
capability to integrate helpful knowledge while fil-
ter out its noisy parts. More specifically, we in-
troduce a gumbel sampling mechanism to select
the most helpful passage, along with an attention
mechanism to assign distinguishable weights for
each word insides the selected passage.

3.3.1 Cross Attention
In order to cover both sequence-level and token-
level downstream tasks, we would need to augment
the representationHx at each specific position. For
the i-th token representation hxi , we calculate its
relevancy with respect to all other words from the
retrieved passages using a canonical cross attention
mechanism:

qxi =WQhx
i

kpk
i =WKhpk

j

vpk
i =W V hpk

j

(4)

αk
ij =

qxi k
pk
j√
d

(5)
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where αk
ij denotes the attentive weight of j-th to-

ken from passage pk for current position hx
i . Intu-

itively, this attentive weight can naturally measure
each retrieved word its importance and relevance.
To represent the usefulness of passages and their
tokens at integral sequence level, we simply sum-
ming over all task input positions:

αk
j =

∑

i

αk
ij (6)

3.3.2 Differentiable Sampling
To alleviate the noise distraction in the retrieved
passages, we first sample the most relevant pas-
sage, then integrate all its words according to re-
spective attentive weights. Intuitively, the sampling
operation should be an argmax operation across all
candidate passages:

αk =
∑

j

αk
j (7)

k̂ = argmax
k∈{1,2,...,K}

αk (8)

Note that here we sum αk
j up to αk only temporar-

ily for sampling most relevant passage, and will
re-use αk

j later in Equation 12 to aggregate repre-
sentations. The passage level selection operation in
Equation 8, although intuitive, is not differentiable,
and are not allowed in an end-to-end trainable neu-
ral network. To enable such a learning-to-select
ability inside the proposed framework, we nov-
elly introduce the Gumbel-Softmax estimator (Jang
et al., 2017) to replace Equation 8:

βk =
exp((αk + g)/τ)∑
k exp((α

k + g)/τ)
(9)

where g is the noise sampled from Gumbel distri-
bution:

g ∼ Gumbel(0, 1) (10)

This is practically implemented as:

g =− log(− log(u))

where u ∼ Uniform(0, 1)
(11)

The resulting β distributed over k ∈ {1, 2, ...,K}
is an approximate categorical distribution when
the temperature τ approaches 0. We follow the
Straight-Through procedure (Jang et al., 2017) to
discretize β into k̂ in the forward pass but use gum-
bel approximation in the backward pass.

3.3.3 Aggregation
For the selected passage k̂, we apply a post-
normalization on the attentive weights:

α̃k̂
j =

αk̂
j∑

j α
k̂
j

,
∑

j

α̃k̂
j = 1 (12)

We then integrate the representations of passage k̂
accordingly:

ĥ =
∑

j

α̃k̂
jv

pk̂
j (13)

Note that in practical implementation, we use multi-
head attentions and concatenate all outputs together.
We then wrap ĥ within a residual connection and
LayerNorm at each position i to produce the final
output representation:

h̃i = LayerNorm(Wĥ+ hx
i ) (14)

whereW is another feedforward layer that merges
representations from multiple attention heads.

3.4 Retrieval-Augmented Training
The proposed RA-Interface serves as a plug-
gable module that interacts with the representations
in-place. It is also end-to-end trainable and does
not modify the final training objective. In practical
usages, we can either directly apply such a retrieval-
augmented framework in downstream finetuning,
or first adapt it with a domain-specific further pre-
training stage. We investigate both settings in the
experiments.

4 Experiments

4.1 Setup
Dataset We investigate the proposed framework
on a variety of domain-specialized downstream
tasks. Specifically, biomedical domain tasks in-
cluding QIC (Intent Classification), QQR (Query-
Query Relevance), CMeEE (Named Entity Recog-
nition), CMeIE (Information Extraction), scientific
domain tasks including SCIERC (Relation Classi-
fication) (Luan et al., 2018), ACL-ARC (Citation
Intent Classification) (Jurgens et al., 2018) and le-
gal domain task CAIL2019-SCM (Similar Case
Matching) (Xiao et al., 2019). And these 4 biomed-
ical tasks are selected from the well established
benchmark CBLUE (Zhang et al., 2022). Detailed
statistics are listed in Table 4.
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Domain Biomedical Science Legal Avg.
Method QIC QQR CMeEE CMeIE SCI ARC SCM

FT 81.860.07 81.970.81 65.450.07 61.310.20 81.391.03 68.332.05 68.970.21 72.75
RADA 82.430.21 82.180.74 65.550.18 60.070.49 79.760.48 68.872.86 69.700.46 72.87

DAPT 81.740.16 82.060.77 65.570.12 61.420.12 81.360.46 73.144.23 69.100.35 73.50
RADA† 82.450.10 82.750.67 66.000.20 61.530.24 82.070.86 75.421.48 70.250.32 74.34

Table 1: Main Results. FT refers to standard finetuning. † denotes the RADA equipped with a pretraining stage.

Domain Biomedical Science Legal Avg.
Method QIC QQR CMeEE CMeIE SCI ARC SCM

FT 81.070.41 80.520.28 63.240.06 53.970.23 70.770.66 56.461.91 61.200.42 66.75
DAPT 80.810.35 80.620.43 63.560.13 54.290.13 74.890.63 62.150.86 61.310.34 68.23
RADA 81.160.19 81.060.33 63.620.22 54.480.14 73.960.56 62.592.80 61.700.11 68.36

Table 2: Results under low resource scenario.

Domain LANG Size Num. of Passages

Computer English 6.2GB 4,602,628
Biomedicine Chinese 0.76GB 960,595
Legal Chinese 3.7GB 2,794,605

Table 3: Statistics of domain datastore.

Dataset SCI ARC QIC QQR CMeEE CMeIE SCM

Domain Science Biomedical Legal

Train 3219 1688 6238 13500 13500 12905 5102
Dev 455 144 693 1500 1500 1434 1500
Test 974 139 1955 1600 5000 3585 1500

Table 4: Statistics of domain tasks. For the biomedical
tasks, as we do not have access to the test label, we use
the released dev set for test, and split 10% of the train
set for development.

Datastore We collect domain specialized corpus
at scale as datastore. For scientific corpus, we
use the S2ORC corpus constructed from semantic
scholar (Lo et al., 2020), for biomedical and legal
corpus, we use in-house data regarding medical re-
views or legal documents crawled online. Detailed
statistics are listed in Table 3.

Training For retrieval-augmented pretraining,
we split 10% from the entire domain corpus as
pretraining pretext task data while the rest 90% as
pretraining datastore. The pretraining steps are set
to 10k for both DAPT and RADA. For retrieval-
augmented finetuning, all corpus are considered as
datastore, but we only retrieval and keep the most
relevant passages for each task instances. In Elas-
ticSearch, we set the number of retrieved passages

for each input data as K = 10. For each task, we
search batch size through {16, 32}, learning rate
through {1e − 5, 2e − 5, 5e − 5}†, and set epoch
to 10†. We also run with 3 different random seeds,
and accordingly report the average and standard
deviation. We use BERT (Devlin et al., 2019) as
PLM for English tasks, and RoBERTa (Cui et al.,
2020; Liu et al., 2019) for Chinese ones.

4.2 Main Results
Table 1 gives the main results for RADA. We can
observe two conclusions: 1) RADA outperforms
standard finetuning on 4 out of 7 selected tasks;
2) When combined with further pretraining, the
proposed framework is further improved, signifi-
cantly surpassing standard finetuning and DAPT.
Specifically the absolute benefits over FT baseline
are +1.59.

We further investigate a low-resource setting by
subsampling 30% of the training set. This is a very
practical scenario as we often need to deal with
domain tasks at a relatively low annotation cost.
Results in Table 2 also demonstrate the effective-
ness of the proposed framework in such settings.
On 6 out of 7 tasks, RADA achieves the best per-
formance.

4.3 Ablations
We investigate the impact of various components
in this section.

†For CMeIE, we search for {1e-5, 2e-5}.
†For CMeIE and CMeEE, we set to 35 and 15 respectively.
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Domain Biomedical Science Legal Avg.
Method QIC QQR CMeEE CMeIE SCI ARC SCM

FT 81.860.07 81.970.81 65.450.07 61.310.20 81.391.03 68.332.05 68.970.21 72.75
RADA w/ Top 1 82.310.25 82.560.43 66.080.26 61.480.05 81.780.25 74.150.96 69.140.26 73.93
RADA w/ DS 82.450.10 82.750.67 66.000.20 61.530.24 82.070.86 75.421.48 70.250.32 74.34

Table 5: Effects of Differentiable Sampling (DS). Top 1 means we simply select the passage according to their
summed attention score.

Method ARC QIC QQR

FT 68.332.05 81.860.07 81.970.81

TAPT 72.432.36 82.140.04 82.710.57

RADA w/ Trainset 70.650.38 82.210.21 82.520.46

RADA (Full) 75.421.48 82.450.10 82.750.67

Table 6: Results of using training data as datastore cor-
pus. Full means extra domain corpus are used.

4.3.1 Scale of Datastore Corpus
One essential component of the proposed frame-
work is the datastore. We first look into the effects
of its scale. At pretraining stage, we fix the pretrain-
ing steps to 5,000, and accordingly set the scale
of datastore to 128, 256, 512 and 1024. The re-
sults are illustrated in Figure 3. We observe clear
trends of increasing performance w.r.t. increased
datastore scale. As a consequence, the proposed
RADA framework can always benefit from a larger
datastore.

4.3.2 Training Data as Datastore
We further investigate the feasibility of directly
using downstream task data as datastore corpus.
As previous study has demonstrated, training data
itself can also provide useful background informa-
tion to an extent (Wang et al., 2022). Similarly, Gu-
rurangan et al. (2020) have also used task training
data to perform further pretraining, which they re-
ferred to as TAPT. In Table 6, we provide the results
when using training data in the proposed retrieval-
augmented framework, and also reproduce TAPT
for more comprehensive comparison. The results
show that both TAPT and RADA with Trainset
can provide considerable benefits, but are outper-
formed by RADA (full). As for these two methods,
they perform comparably on the investigated three
datasets. We also find that training data is more use-
ful in sentence-level tasks (as included in the table),
but less helpful in other tasks such as classification,
sequence tagging, etc.

Figure 3: Ablation on scale of corpus.

Figure 4: Ablation on pretraining steps.

4.3.3 Pretraining Steps
We have equipped RADA with a further pretraining
stage with domain specialized data, and proved it to
be very effective in Table 1. In Figure 4, we further
ablate the effects of pretraining steps. We save and
evaluate the intermediate checkpoint at respectively
2.5k, 5k and 7.5k pretraining steps. The results ex-
hibit clear trends that with more pretraining steps,
RADA continually brings better adaptation perfor-
mance.

4.3.4 Differentiable Sampling
One key design of RADA is the two-level selection
scheme. Specifically, the differentiable sampling
module based on Gumbel Sampling trick enables
the model to dynamically learn which passage to
integrate. In Table 5 we investigate this choice
of design. We provide an alternative baseline,
where instead of learning to sample, we simply
sum the cross attention weights over all positions
as passage-level score, and select the maximum one
to integrate into the retrieval-augmented interface.
We refer to this as Top 1 selection strategy. The
results show that both methods can bring improve-
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• Input Text:This formalism is both elementary and powerful enough to 
strongly simulate many grammar formalisms, such as rewriting systems, 
dependency grammars , TAG , HPSG and LFG .

• Relation Label: HYPONYM-OF

Sampling Score 𝛽!

Retrieved
Passages

(ES Top 10)

1
… Although we have presented supertagging in the context of LTAG, it is 
applicable to other lexicalized grammar formalisms such as CCG (Steedrnan
1997), HPSG (Pollard and Sag 1987) , and LFG (Kaplan and Bresnan 1983) …

0.0992

2

Scrambling in German poses a problem for most grammar formalisms. Neither 
Tree Adjoining Grammar (TAG, Joshi et al., 1975) nor even linear context-free 
rewriting systems (LCFRS, Weir, 1988) are powerful enough to deal with 
scrambling and the free word order in German (see Becker et al., 1992) …

0.1737

3

… We would also expect that dependency grammars Mel’cuk and Pertsov
1987; Hudson 1984) and parsers (McDonald, Crammer, and Pereira 2005 ) 
could be trained and tested with little extra work on the dependencies in 
CCGbank. Finally, we believe that existing methods for translating the Penn 
Treebank from scratch into other grammar formalisms will benefit from …

0.1046

… … …

10

… The Broad-coverage Semantic Dependency Parsing shared task and corpora 
(Oepen et al., 2014 (Oepen et al., , 2015 include corpora annotated with the 
PDT-TL, and dependencies extracted from the HPSG grammars Enju (Miyao, 
2006) and the LinGO English Reference Grammar (ERG; Flickinger, 2002) . Like 
the PDT-TL, projects based on CCG, HPSG, and other expressive grammars
such as LTAG (Joshi and Vijay-Shanker, 1999) and LFG …

0.1018

Figure 5: Case study. Illustrated are top 10 retrieved passages using elasticsearch, and their sampling score produce
inside the RA-Interface. Scores are re-normalized for better illustration.

w/o RA w/ RA

Efficiency 0.0083 sec/instance 0.0201 sec/instance
Times 2.4× 1.0×

Table 7: Inference efficiency. Measured using a single
RTX TITAN GPU.

ments, but the proposed differentiable sampling is
much more effective.

4.3.5 Efficiency Analysis
One potential concern for retrieval-augmented
methods is their efficiency. We therefore inves-
tigate this factor in Table 7. We consider the infer-
ence efficiency at deployment time. For each task
input, we retrieve 10 background passages using
ElasticSearch, then compute and incorporate them
into the RA-Interface. Note that at deploy-
ment time, it is practical to encode and cache all
passages from the datastore in advance, so we only
account for the time consumption starting from
the interface. The results show that, the retrieval-
augmentation framework only brings acceptable
time increase. And the overall inference speed is
maintained at around 0.02 seconds per instance on
a production-level device.

4.3.6 Qualitative Analysis
We provide qualitative analysis in Table 5. The
example is sampled from the SCI task, the target
is to extract the relation between subject rewrit-
ing systems and object grammar formalisms, i.e.,

HYPONYM-OF. We can clearly see that elastic-
search can only provide coarse-grained, shallow-
semantic retrieving capability based on keywords,
such as grammar, formalisms, HPSG, etc. However,
the proposed differentiable sampling module can
more effectively identify the most helpful passage
by reasoning over deep representations produced
by shared encoders. From passage 2 with the high-
est sampling score, we can indeed reason, under-
stand and accordingly infer the actual relationship
between the target entity pair.

5 Conclusion

In this paper we propose a retrieval-augmented
framework to novelly address the challenge of lan-
guage model domain adaptation. We use domain
specialized corpus as datastore and retrieve from
it for informative and helpful domain knowledge.
The key module of the framework is a retrieval-
augmentation interface, where we design a two-
level selection scheme to integrate the most rele-
vant passage and its words while alleviating the
noise. The overall framework enables flexible do-
main coverage and fine-grained domain knowledge
integration. On a variety of downstream domains
and tasks, we conduct comprehensive experiments
and comparisons to demonstrate the effectiveness
of the motivated framework and its components.
In the future, we hope to further extend the frame-
work to more scaled large language models and
also more challenging few-shot prompting setting.
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Limitation

We summarize two limitations which also serve as
promising directions to be explored in our future
work. RADA framework only considers textual
domain corpus as the datastore, although this has
greatly improve the coverage of domain knowl-
edge as texts are always relatively easy to collect.
However, it is widely investigated that structured
knowledge such as knowledge base can also serve
similar purpose. And such resources are generally
in higher quality and are easier to match. There-
fore, it would be benefiting to further integrate such
resources at certain scenario where KB is available.

The other limitation regards to the scale of the
RADA implementation. As large language models
have becoming increasingly powerful, they have
demonstrated quite impressive capability in mem-
orizing and recalling a wide range of background
knowledge existed in the massive corpora they have
been pretrained on. This trends of development nat-
urally raises question for the proposed framework:
will it still be beneficial when scale up to LLMs?
and on what kinds of scenario does it brings best
improvements? These are very important questions
to answer, and we can certainly expect them to be
explored in future works.

Ethical Statement

We evaluate the proposed method on established
and publicly available datasets. There is also no
human evaluation involved. This paper is not con-
cerned with the above ethical risks. When the pro-
posed framework is deployed into domain specific
production, the domain adapted language models
might express ethical-related outputs, but just as
any other language models do (Weidinger et al.,
2021), and should be treated with according tech-
niques to eliminate ethical risks such as bias, stereo-
types.
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