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Abstract

Image captioning typically involves an image
encoder to extract meaningful image features,
and a text decoder to generate appropriate sen-
tences. Powerful pretrained models can be used
for both image encoding and text decoding; but
in this case, a separate multimodal translation
stage between image-encoder output features
and text-decoder input features must be learned.
One exception is when image and text features
are already aligned by construction, as in the
CLIP model (Contrastive Language and Im-
age Pretraining – a bimodal network pretrained
on 400M image-text pairs). Pretrained CLIP-
image features can be directly fed to a text-
decoder trained to reconstruct captions from
their pretrained CLIP-text features. Here we
show that this direct captioning method is in
fact sub-optimal. Instead, we propose an al-
ternative method to translate CLIP-image fea-
tures into CLIP-text features in a strictly un-
supervised way, using the CycleGAN architec-
ture – originally designed for unpaired image-
to-image translation. Our Latent CycleGAN,
optimized solely for an unsupervised cycle-
consistency objective, generates CLIP-text la-
tent features conditioned on CLIP-image latent
features and vice-versa. Using these CLIP-text
latent features as input to the text decoder, our
method largely outperforms the direct caption-
ing method that uses CLIP-image features –
despite the fact that CLIP’s large-scale pretrain-
ing should have already aligned the two feature
spaces. This implies that cycle-consistency on
unmatched multimodal data can be efficiently
implemented in a bimodal latent space, and that
CLIP-based image captioning can be improved
without additional supervised training.

1 Introduction

Multimodality is gaining popularity due to the re-
cently available online resources that make the cre-
ation of huge visio-linguistic datasets possible (Jia
et al., 2021). Many models have been created to

perform specific bimodal tasks such as Visual Ques-
tion Answering or Image Captioning (Anderson
et al., 2017; Lu et al., 2019; Li et al., 2019; Singh
et al., 2019), but some have been designed with a
more general objective: producing a multimodal
latent vectorial space where images and text can be
represented and compared. Among these models,
CLIP – an algorithm trained with a multimodal con-
trastive objective on a large dataset (400M samples)
of image-caption pairs – has shown impressive
zero-shot learning abilities (Radford et al., 2021).
This model has recently been tested on tasks for
which it was not initially trained, such as transfer
learning and few-shot learning on unimodal and
multimodal datasets, or image captioning, estab-
lishing new SOTA results on some tasks (Bielawski
et al., 2022; Mokady et al., 2021).

In the specific case of image captioning, many
studies use pretrained models for image feature
encoding as well as for text generation. An end-
to-end image-to-caption fine-tuning stage is typ-
ically required, however, to align visual and lin-
guistic representations in a supervised way on a
matched image-caption dataset (Chen et al., 2021;
Fang et al., 2021; Zhou et al., 2019). There is an
obvious exception to this rule: when the pretrain-
ing of the model already aligned text and image
features – as in the case of CLIP. Therefore, here
we aim at leveraging this property by implement-
ing a captioning pipeline that does not use matched
image-caption data.

We first train a “CLIP-text decoder” to recon-
struct captions based on their textual features in
CLIP’s latent space (a unimodal, linguistic ob-
jective); this text decoder is subsequently frozen.
Hence, we compare a direct captioning pipeline –
feeding the text-decoder with CLIP image features
in order to generate a caption – with a pipeline
where a CycleGAN (Zhu et al., 2017) inspired
translator – trained with only unpaired visual and
textual features – is used to convert image features
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into text features before feeding them to the text-
decoder. Even though CLIP’s latent space was
already pretrained with a brute-force approach to
align its visual and linguistic representations on
400M image-caption pairs, we demonstrate that
our feature conversion model trained using cycle-
consistency in the CLIP latent space significantly
improves captioning performance, compared with
the direct method.

2 Dataset

To train our algorithms, we use the COCO (Lin
et al., 2014) train 2014 dataset, composed of im-
ages representing complex scenes, along with their
descriptions. We simply use the captions and the
images independently, as two sets of unpaired uni-
modal data from each modality.

For the evaluation, we use the COCO validation
2014 dataset.

3 Models

3.1 Pretrained models

We use CLIP ViT-B/32, a pretrained Vision-
Transformer-based (Dosovitskiy et al., 2020) CLIP
checkpoint, as image and text encoder. CLIP’s vi-
sion encoder will be therafter referred to as just
CLIP, and CLIP’s text encoder will be called CLIP-
T.

Text featurescaption Frozen CLIP-T

Trained CLIP-T
decoder

Figure 1: The text decoder is trained to reconstruct
COCO train captions from their textual embedding in
CLIP’s latent space. It learns a mapping from CLIP-T
features to prefixes that condition the generation of text
with a pretrained (frozen) GPT-2. Note that the text-
decoder is trained only with (unimodal) linguistic data.

In order to create our CLIP-T decoder (see Fig-
ure 1) we rely on the code provided by Mokady
et al. (2021), inspired from Li and Liang (2021).
Their decoder was originally trained on the CLIP
image features of COCO images, with the objective
to reconstruct their corresponding captions (there-
fore using paired vision-language data to align the

text decoder training with pretrained image fea-
tures). Instead, our text decoder is trained in a
unimodal setting on the CLIP-T textual features of
captions from the COCO train set (414K captions),
with the objective of regenerating the original text.
This decoder uses GPT-2 (Radford et al., 2019) as
a frozen language generator, and learns to produce
prefixes that condition the generation of text. The
parameters of the text decoder are shown in Table
1. Once trained, our text decoder is frozen and
used as such in the two captioning pipelines that
we compare.

3.2 Architecture

Text featurescaption Frozen CLIP-T Image features Frozen CLIP image

Image feature
generation

Textualisation

Figure 2: The full architecture of the latent CycleGAN.
The generators (purple arrows) are trained with un-
matched multimodal data from the COCO dataset. One
is trained to generate latent image features given a CLIP-
T embedding, the other is trained to produce latent text
features given the image features, i.e. to “textualize”
them. Discriminators are not shown here.

Text featurescaption Frozen CLIP-T Image features

Image feature
generation

Image feature
discriminator

Figure 3: The GAN objective for Image feature genera-
tion: the generator must fool the discriminator, which
must distinguish between real and fake inputs (here, be-
tween real image features and those translated from text
features). A similar training objective and discriminator
network exists for the other “textualisation” generator
(not shown here).

The architecture and training procedure of the
Latent CycleGAN are shown in Figure 2 to 4, the
parameters of the architecture are displayed in Ta-
ble 2. It is trained as a CycleGAN on unpaired data
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Parameter # of epochs prefix length CLIP prefix length mapping type batch size fine-tune GPT-2 # of layers CLIP version
Value 20 40 40 Transformer 64 False 8 ViT-B/32

Table 1: Parameters used for the training of the text decoder. For details see Mokady et al. (2021).

Text featurescaption Frozen CLIP-T Image features

Image feature
generation

Textualisation

L1
reconstruction

loss

1

2

3

4

Figure 4: The cycle consistency objective consists in
minimizing the L1 loss between a feature vector and its
reconstruction after passing successively through both
generators (here the translation of text features to and
back from image features). The same cycle-consistency
objective is also applied with cycles starting from the
other (image) modality (not shown here).

Parameter # of epochs batch size # of layers Latent space dimensions
Value 20 64 8 512

Table 2: Parameters used for the Cycle-consistent archi-
tecture.

from the image and text modalities of the COCO
train dataset (83K images and 414K captions). The
training takes two generators – one of text features,
one of image features – and two discriminators
– to discriminate between real image (resp. text)
features and fake/generated ones (Figure 2).

Just as in any GAN, the objective of each gen-
erator is to fool the corresponding discriminator.
This is done by generating a fake latent vector
in one modality, given a real latent vector from
the other (this source vector can thus be consid-
ered as the noise that conditions the generation).
The discriminator’s objective is to guess whether
any latent feature vector is real or generated (Fig-
ure 3). The generators of a CycleGAN (Zhu et al.,
2017) also have specific extra objectives. The cycle
consistency objective (Figure 4) minimizes the L1
loss between a feature vector and its reconstruction
when passed successively through the two genera-
tors (e.g. an image feature vector is passed through
the text feature generator, then this vector is passed
though the image feature generator: the result of

this operation is a reconstructed image feature vec-
tor). The identity objective aims at learning the
identity function when the image (resp. the text)
generator is fed with an image (resp. text) feature
vector.

Each generator is composed of 4 dense layers
of dimension 512x512 with Tanh activation; the
discriminators are composed of two dense layers,
one of dimension 512x256, the other of 256x1,
with LeakyReLU activation.

After having trained the Latent Cycle-GAN to
convergence, we can then compare the two caption-
ing pipelines illustrated in Figure 5.

The first one uses the fact that in CLIP’s latent
space, the features extracted from an image are
intended to be as close as possible to the features
computed by CLIP-T for a matching caption. This
similarity was enforced by extensive contrastive
training over 400M paired image-captions. There-
fore, we may simply feed our CLIP-T decoder
(trained on text features) with image features, and
generate a corresponding caption.

The second pipeline uses the image-to-text-
feature generator (the rest of the Latent CycleGAN
was only required during training, i.e. to compute
and optimize cycle-consistency). The image-to-
text-feature generator is used for what we call here
"textualisation", i.e. it generates a text feature vec-
tor conditioned on an input image feature vector.
After the textualisation of an image vector, the tex-
tualised vector is fed to the CLIP-T decoder to
generate the caption.

4 Task

Given an image from the COCO dataset, the
model’s task is to reconstruct one of the corre-
sponding captions. Several scores can be used to
evaluate the quality of the reconstruction. Here
we dispay the BLEU-1 to BLEU-4 (Papineni et al.,
2002) (BLEU-n counts matching n-grams in the
model output to n-grams in the reference text),
the ROUGE_L (Lin, 2004) (measuring the longest
common subsequence between the model output
and the reference), the CIDEr (Vedantam et al.,
2014) (computing the average n-gram cosine simi-
larity between the model output and several descrip-
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caption

Trained CLIP-T
decoder

Image features Frozen CLIP image Text featurescaption

Trained CLIP-T
decoder

Image features Frozen CLIP image

Textualisation

Figure 5: The two pipelines compared here for generating a caption. Our baseline (left) relies on the fact that
CLIP was trained to project an image and its caption as close as possible in the latent multimodal space: the text
decoder can thus generate a caption when given image features. The second one uses our generator, trained in an
unsupervised way with unpaired multimodal data, to textualise the image features before feeding them to the text
decoder.

Scoring Image features Textualised image
method as input features as input
BLEU-1 0.281 0.407
BLEU-2 0.120 0.231
BLEU-3 0.047 0.121
BLEU-4 0.020 0.062
ROUGE_L 0.239 0.341
METEOR 0.098 0.161
CIDEr 0.064 0.247

Table 3: Scores for image captioning on the COCO vali-
dation set, for the two pipelines displayed in Figure 5.
Higher scores indicate better captioning. The captioning
pipeline with image features as input to the text decoder
underperforms, compared to the one with features textu-
alised using the text feature generator.

tions of reference and several n) and the METEOR
(Denkowski and Lavie, 2014) (a variation of BLEU
that aligns the reference and the output differently
by incorporating semantic knowledge) scores.

5 Results

Results for the captioning task are displayed in Ta-
ble 3. Despite the fact that CLIP’s latent space was
specifically designed and trained so that the encod-
ing of an image and its description are as similar as
possible, the strategy of directly using image latent
features as input to the CLIP-T decoder does not
perform well (for all scoring methods).

By simply training a Latent CycleGAN on un-
matched COCO images and description (i.e. train-
ing in an unsupervised way on 82K images and
their 500K descriptions, compared to the 400M
image-text pairs of CLIP’s initial training set) the
improvement in score can go up to more than a
factor 3.

Some uncurated examples of images and output
captions from the COCO validation set can be seen

in Appendix A.

6 Discussion and conclusion

CLIP’s bimodal alignment can allow image cap-
tioning at a SOTA level, but this requires a fine-
tuning with paired image-caption data (Mokady
et al., 2021). Since image and text are projected in
the same latent space, it is also possible to use a
direct captioning method with a trained CLIP-T de-
coder, without requiring any bimodal training; how-
ever, as we show here, this method is sub-optimal.
We show how, using only unpaired images and
captions, it is possible to significantly improve per-
formance, while still taking advantage of CLIP’s
latent space multimodal alignment. Nonetheless,
the results of the unpaired translation method im-
plemented here remain far from the SOTA reached
with supervised image captioning. Moreover, in
our experiment, each caption implicitly matched
an image from the training dataset, even though
the matching was not given to the model. In future
work, one might try enlarging the training domain
of each modality, and incorporating data from sep-
arate, potentially larger unimodal datasets.

Our work suggests that the geometries of the
representation of the vision and language modali-
ties differ in CLIP’s latent space. That is, CLIP’s
training has not properly brought together the two
modalities. If it had, the image features would be
directly usable by the text decoder, and our unsu-
pervised “textualisation” training would not help
the caption generation. This means that CLIP can
represent vision and language in the same space,
but vectors extracted from one domain are not fully
multimodal in the sense that they are not indistin-
guishable from vectors from the other domain – in
other words, modality-specific information appears
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to interfere with full multimodality. Our Latent
CycleGAN helps bridge the gap between the two
latent representations, by enabling a unimodal text
decoder to better understand image features, once
they have been “textualised” by the text feature
generator.

The recently proposed DALL-E2 (Ramesh et al.,
2022) model, which uses a diffusion process to gen-
erate images from a caption, appears to have been
based on a similar realization. Their diffusion im-
age generator was trained to reconstruct an image
given its CLIP image feature vector; however, for
text-to-image generation, they did not directly feed
the CLIP-T embedding into the diffusion generator,
but first "translated" it into a suitable image-feature
latent vector, exactly as we propose here.

Acknowledgments

This research was funded by an ANITI Research
Grant ANR-19-PI3A-0004 to RV. Some of the re-
ported work was performed using HPC resources
from CALMIP (Grant 2016-P20032)

References
Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2017. Bottom-up and top-down attention for image
captioning and VQA. CoRR, abs/1707.07998.

Romain Bielawski, Benjamin Devillers, Tim Van
De Cruys, and Rufin Vanrullen. 2022. When does
CLIP generalize better than unimodal models? when
judging human-centric concepts. In Proceedings of
the 7th Workshop on Representation Learning for
NLP, pages 29–38, Dublin, Ireland. Association for
Computational Linguistics.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed
Elhoseiny. 2021. Visualgpt: Data-efficient image
captioning by balancing visual input and linguistic
knowledge from pretraining. CoRR, abs/2102.10407.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An image
is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929.

Zhiyuan Fang, Jianfeng Wang, Xiaowei Hu, Lin Liang,
Zhe Gan, Lijuan Wang, Yezhou Yang, and Zicheng

Liu. 2021. Injecting semantic concepts into end-to-
end image captioning. CoRR, abs/2112.05230.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up vi-
sual and vision-language representation learning with
noisy text supervision. CoRR, abs/2102.05918.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A sim-
ple and performant baseline for vision and language.
CoRR, abs/1908.03557.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for gener-
ation. CoRR, abs/2101.00190.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. 2014. Microsoft COCO: com-
mon objects in context. CoRR, abs/1405.0312.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks.
CoRR, abs/1908.02265.

Ron Mokady, Amir Hertz, and Amit H. Bermano. 2021.
Clipcap: CLIP prefix for image captioning. CoRR,
abs/2111.09734.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. CoRR, abs/2103.00020.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. 2022. Hierarchical text-
conditional image generation with clip latents.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards VQA models
that can read. CoRR, abs/1904.08920.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2014. Cider: Consensus-based image de-
scription evaluation. CoRR, abs/1411.5726.

270

http://arxiv.org/abs/1707.07998
http://arxiv.org/abs/1707.07998
https://doi.org/10.18653/v1/2022.repl4nlp-1.4
https://doi.org/10.18653/v1/2022.repl4nlp-1.4
https://doi.org/10.18653/v1/2022.repl4nlp-1.4
http://arxiv.org/abs/2102.10407
http://arxiv.org/abs/2102.10407
http://arxiv.org/abs/2102.10407
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2112.05230
http://arxiv.org/abs/2112.05230
http://arxiv.org/abs/2102.05918
http://arxiv.org/abs/2102.05918
http://arxiv.org/abs/2102.05918
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1908.02265
http://arxiv.org/abs/1908.02265
http://arxiv.org/abs/2111.09734
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
http://arxiv.org/abs/1904.08920
http://arxiv.org/abs/1904.08920
http://arxiv.org/abs/1411.5726
http://arxiv.org/abs/1411.5726


Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu,
Jason J. Corso, and Jianfeng Gao. 2019. Unified
vision-language pre-training for image captioning
and VQA. CoRR, abs/1909.11059.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. CoRR,
abs/1703.10593.

271

http://arxiv.org/abs/1909.11059
http://arxiv.org/abs/1909.11059
http://arxiv.org/abs/1909.11059
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593


A Appendix: Uncurated captioning examples

Ground truth Pair of commodes side by side in unfinished bathroom area.
A torn apart bathroom with some toilets inside of it.
A demolished bathroom with two toilets and a window
The floor and wall of the bathroom are coming apart.
A toilet and bidet sit in a bathroom that is under construction.

Direct method Damaged CCTV image of restaurant staff posing
as uncanny and uncanny people.

Textualised input A view of a rough and dingy bathroom with many objects in it.
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Ground truth A group of people are standing on the sandy beach.
Several people on the beach with their surf boards.
Three men and three women posing on a beach in front of surf boards.
A group of young people standing next to each other on a beach.
A group of people pose for a picture near surfboards.

Direct method A photograph of a young Irish kitty with a sun-dappled beach,
and her friends at the bottom of the ocean.

Textualised input The group of people posing and holding surfboards and a surf board.
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Ground truth A cheesy pizza with red peppers is in a box.
A meal from japan or china on a tray.
A cheesy casserole covered with toppings is depicted.
A pizza with cheese and vegetables in a box.
A large square shaped pizza covered in melted cheese and veggies.

Direct method A quick chili sauce knife cut in the background,
and green beans, muffin, and muffin

Textualised input A bunch of cheese, ready to go and baked in a cheesy tortilla
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Ground truth A man stands beside his black and red motorcycle near a park.
A man in black jacket next to a red motorcycle.
An older man is standing beside a red motorcycle.
A man standing by a motor cycle on a street.
A man riding on the side of a red motorcycle.

Direct method A Frank Miller Fun Road shot taken from the time I was born in 2006.
Textualised input This person is showing on the road with some

fresh motorcycle parts on the horizon.
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