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Abstract

For school teachers and Designated Safeguard-
ing Leads (DSLs), computers and other school-
owned communication devices are both indis-
pensable and deeply worrisome. For their ed-
ucation, children require access to the inter-
net, as well as a standard institutional ICT in-
frastructure, including e-mail and other forms
of online communication technology. Given
the sheer volume of data being generated and
shared on a daily basis within schools, most
teachers and DSLs can no longer monitor the
safety and wellbeing of their students without
the use of specialist safeguarding software. In
this paper, we experiment with the use of state-
of-the-art neural network models on the mod-
elling of a dataset of almost 9,000 anonymised
child-generated chat messages on the Microsoft
Teams platform. The dataset was manually an-
notated into two binary classes: true positives
(real safeguarding concerns) and false positives
(false alarms) that a monitoring program would
be interested in. These classes were then fur-
ther annotated into eight fine-grained classes
of safeguarding concerns (or false alarms). For
the binary classification, we achieved a macro
F1 score of 87.32, while for the fine-grained
classification, our models achieved a macro
F1 score of 73.56. This first experiment into
the use of Deep Learning for detecting safe-
guarding concerns represents an important step
towards achieving high-accuracy and reliable
monitoring information for busy teachers and
safeguarding leads.

1 Introduction

As our lives become ever more digital, tradition-
ally “offline” activities are steadily moving on-
line, and child safeguarding is no exception. In
simpler times, it might have been enough for a
schoolteacher to walk up and down a classroom to

WARNING: This paper contains offensive examples.
*The two authors contributed equally to this work.

cast an eye over their pupils, or for a member of
staff to oversee breaks in the playground to ensure
that no bullying takes place. These days, however,
children are often to be found online: when they
aren’t using school computers to do their work,
they are reading news and social websites, watch-
ing videos, messaging one another, and sharing
content. As a result, schools are now reliant on
specific safeguarding technology to help monitor
the online activities of their pupils.

So necessary is this technology that the UK’s
statutory guidance for schools and colleges on safe-
guarding children, Keeping Children Safe in Edu-
cation (KCSIE)1, heavily emphasises the dangers
posed by the internet in schools and outlines the
obligations of staff to ensure that appropriate web
filtering and monitoring systems are in place. As
a result, such systems are commonplace and are
used in schools and colleges across the UK as well
as abroad. KCSIE points to a range of online risks
to which schools must be vigilant, ranging from
harmful web content (e.g. pornography, fake news,
extremism) to problematic forms of contact (e.g.
online grooming, child exploitation), bad behaviour
(e.g. cyberbullying, sharing of explicit images),
and financial traps (e.g. online gambling, inappro-
priate advertising, phishing).

Given that no digital monitoring system can be
perfect, and given the seriousness of child safety,
human discernment is still required even for the
most sophisticated risk-detecting algorithms. The
output of a school’s online monitoring system is
typically reviewed by a Designated Safeguarding
Lead (DSL) or other trusted member of staff before
incidents can be triaged and acted upon. As such,
it is a priority that such systems capture as many
true positive cases as possible while minimising

1The guidance can be found online at https:
//www.gov.uk/government/publications/
keeping-children-safe-in-education--2

https://www.gov.uk/government/publications/keeping-children-safe-in-education--2
https://www.gov.uk/government/publications/keeping-children-safe-in-education--2
https://www.gov.uk/government/publications/keeping-children-safe-in-education--2
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the number of false positives (i.e. noise). For a
sensitively tuned safeguarding system that’s geared
more towards recall than precision, false positives
are unavoidable, but they also represent a burden on
the DSL in that they require time and energy to re-
view and discard before real safeguarding concerns
can be acted upon.

While much progress is being made in online
safeguarding technology, most products are still be-
devilled by the same NLP challenges faced in every
other sector that utilises computational linguistics:
word-sense disambiguation, parsing, coreference
resolution, and sentiment analysis, just to name a
few. Meanwhile, we have witnessed huge strides in
NLP applications with the assistance of neural net-
works and other advanced machine learning tech-
niques, the likes of which are only very recently
becoming visible in the educational technology and
child safeguarding sectors.

In this paper, we describe some initial exper-
iments into applying Deep Learning (DL) tech-
niques to the problem of online safeguarding for
schoolchildren. We carry out these experiments in
the hope of developing more useful and accurate
safeguarding technology that will save schools time
and effort and ultimately help to protect children
better. In this particular case, we focus on mes-
sages sent between children on school-owned de-
vices, specifically on the chat platform of Microsoft
Teams, as captured by a keylogging cloud-based
safeguarding tool, Senso.cloud. A safeguarding
concern in such chat messages might be anything
from bullying and discriminatory language to dis-
closures of self-harm and other indications of men-
tal health risks.

The remainder of the paper is structured as fol-
lows. In Section 2, we explore some of the related
work that has already been carried out, as well as
the gap that we aim to address with our ongoing
work. Section 3 describes the process of data col-
lection and data annotation, followed by Section 4,
which explains the use of machine learning models
in our experiments. Section 5 reports on the results
of our experiments, and in Section 6, we conclude
the paper with a brief discussion and some com-
ments on future work.

2 Related Work

While there is not, to our knowledge, a safeguard-
ing study that is directly comparable with this one,
we discuss in this section some examples of ma-

chine learning and deep learning in NLP generally,
as well as the use of NLP for various safeguarding
applications.

2.1 Machine Learning and Deep Learning in
NLP

Over the years, machine learning has been widely
used in NLP tasks including text classification,
which we utilise in this study. Early approaches
relied heavily on feature engineering combined
with traditional machine learning classifiers such as
Naive Bayes and support vector machines (Dadvar
et al., 2013; Xu et al., 2012). More recently, neural
networks such as LSTMs, bidirectional LSTMs,
and GRUs combined with word embeddings have
proved to outperform traditional machine learning
methods in text classification (Aroyehun and Gel-
bukh, 2018; Modha et al., 2018).

With the recent introduction of transformer mod-
els such as BERT (Devlin et al., 2019), deep learn-
ing methods have been applied to various text clas-
sification tasks and achieved state-of-the-art results
in many benchmarks. The transformer models have
a transfer learning approach in which the model
is pre-trained on a large number of documents
and then fine-tuned to a downstream task such as
text classification (Ranasinghe et al., 2019). This
transfer learning strategy has provided excellent
results and, consequently, the NLP community has
successfully applied transformers to many tasks
(Ranasinghe and Zampieri, 2020).

2.2 NLP for Safeguarding
Hatespeech, trolling, cyberaggression and cyberbul-
lying have become the focal areas of regular shared
tasks, conferences and special issues (Zampieri
et al., 2020, 2019b; Satapara et al., 2023; Modha
et al., 2022). There have also been recent works
dedicated to the detection of mental health prob-
lems online, such as on social media (Bucur et al.,
2021; Bannink et al., 2014). All of these represent
useful and timely applications of machine learning
methods to certain specific aspects of online safety.

Promising work has also been undertaken in au-
tomatic online grooming detection, such as Cano
et al. (2014), Zuo et al. (2018) and Anderson et al.
(2019); see also Borj et al. (2022). Building on
this body of research, the DRAGON-S project
at Swansea University seeks to utilise machine
learning to identify the conversational stages that
characterise an online grooming interaction and
then develop an automatic groomer “spotter” tool
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(Lorenzo-Dus et al., 2023). Meanwhile, the de-
tection of online sexual predatory behaviour using
DL has become the subject of an edited volume
published this year (Kesavamoorthy et al., 2023).

SafeChat, a system developed by researchers
at the University of Sunderland (MacFarlane and
Holmes (2018); Seedall et al. (2019)), is a DL-
driven chat moderation app for children that specif-
ically seeks to prevent children from sharing inap-
propriate personal information (e.g. home address,
or a meeting place) to mitigate threats to physical
safety. Similarly, SafeToWatch is a visual threat
detection solution for mobile phones, developed
by SafeToNet and the Internet Watch Foundation,
which utilises machine learning to recognise the
generation of child sexual abuse material in real
time and proactively prevent the material from be-
ing created or sent (IWF, 2023).

All of these represent important contributions to
data-driven, intelligent child protection. However,
each of these is focused on achieving one specific
safeguarding goal, such as detecting depression
or identifying conversations with online predators.
Research and development that applies deep learn-
ing to generalised safeguarding, i.e. seeks to detect
a range of safeguarding concerns for the benefit of
teachers and DSLs, is thin on the ground. While
there are commercial safeguarding systems that
claim to utilise AI technology to this end, details
of such systems are not (to our knowledge) made
available in public-facing documents or publica-
tions.

3 Data

In this section we outline our data collection and
annotation as well as ethical considerations.

3.1 Data Collection

Senso.cloud2 is proprietary, cloud-based software
used to help monitor and protect children using
computers in schools. It primarily employs a key-
logging approach to violation detection, which es-
sentially matches a user’s keystrokes against a set
of a priori keyword ”libraries”, each one centred
around a particular safeguarding concern. For ex-
ample, the word porn will trigger a “violation”
against the keyword library related to inappropri-
ate adult content. The violation, along with its
surrounding textual context, will then be logged
within the Senso.cloud portal for manual review

2https://senso.cloud/gb/

by the designated member of staff responsible for
safeguarding the user who typed it.

Because Senso.cloud only logs typing activity
when a violation is triggered, the only data that is
available for research purposes is that which has
been deemed a potential safeguarding threat. For
this experiment, we drew on roughly one year’s
worth of historical Microsoft Teams violation log
entries (student-generated messages containing one
or more strings matching a Senso.cloud violation
keyword), and from this secure repository took a
random anonymised sample of 10,000 messages.
Of these 10,000, it was found that 1,148 were not
analysable as they contained only empty HTML
tags (from e.g. redacted GIFs and other images);
these were discarded. The remaining 8,852 were
manually annotated by a safeguarding specialist
according to eight fine-grained labels:

• TP1: an unambiguous true positive violation
that requires the attention of a safeguarder, e.g.
I feel suicidal

• TP2: a somewhat ambiguous true positive
violation that may require the attention of a
safeguarder, e.g. I will beat u

• FP1: a false positive in the sense that it is
copy-pasted media rather than self-generated,
e.g. explicit song lyrics, or an unfortunate
news story

• FP2: a false positive generated by discussion
of problematic or adult themes within school-
work assignments, e.g. a debate on gun con-
trol laws

• FP3: a false positive as a result of sentiment
polarity, e.g. you’re fucking awesome

• FP4: a false positive as a result of polysemy,
e.g. I’m hardcore

• FP5: a false positive as a result of foreign lan-
guage interference, e.g. je vais être en retard

• FP6: a false positive as a result of violations
within other words, e.g. gunna

A portion of the dataset underwent annotation by
two annotators. We measured the inter-annotator
agreement with Cohen’s kappa, which was 0.83.
The high inter-annotator agreement suggests that
the labels are straightforward and the annotation
guidelines are clear.

https://senso.cloud/gb/


367

It should be noted that the violation data used
in this paper was captured by an older version of
Senso.cloud’s safeguarding module, and that the
figures in Table 1 do not reflect Senso.cloud’s cur-
rent performance on Microsoft Teams chat monitor-
ing. This historical data was used for our machine-
learning purposes only.

Binary classes Fine-grained
classes Totals

True Positive
TP1 3,071

4,258
TP2 1,187

False Positive

FP1 157

4,594

FP2 409
FP3 992
FP4 1,252
FP5 194
FP6 1,590

Table 1: Number of Instances in Each Class

As shown in Table 1, the eight fine-grained
classes can be grouped into two binary classes: true
positive and false positive. From a safeguarder’s
point of view, the binary classification is the one
that matters the most, as it determines whether or
not further action is required. The fine-grained
classes are there to provide more detailed distinc-
tions between different kinds of textual messages,
so that a monitoring program might better under-
stand the nature of a keyword violation. The classes
were not predetermined, but emerged during the
course of the annotation process. It is also worth
noting that the classes do not each relate to a dif-
ferent kind of safeguarding concern (e.g. bullying,
mental health), but rather the question of whether
or not a safeguarding concern of any kind is sug-
gested in the text (binary), and, further to that, the
nature of the keyword violation as captured by the
keylogging system (fine-grained).

In a safeguarding system, the emphasis is always
on safety over precision and so it will inevitably be
sensitive enough to capture false positives as well
as true positives. In child protection, it is better to
err on the side of caution and then filter – usually
manually – the output of the software for genuine
safeguarding concerns. For this reason, we expect a
high number of false positives in any safeguarding
system, and it is to this end that a machine-learning-
assisted approach could potentially help to create a
more streamlined process for teachers and DSLs.

3.2 Ethical Considerations
Any research involving input from children is inher-
ently sensitive from an ethical standpoint. In our
case, there is a considered and lawful basis, rooted
in safety and the public interest, to capture only the
online activities of schoolchildren that indicate a
reasonable likelihood of a safeguarding risk. To
protect those children’s privacy, we do not analyse
this data in the context of usernames, device names,
or school locations.

For ethical and data protection reasons, we do
not have full access to, nor can we share, the meta-
data of the messages in our dataset. The sensitivity
of child safeguarding data is one of the key rea-
sons that such research is difficult to conduct and
to replicate, and could explain why so little of it
exists in the literature for us to compare our work
against.

4 Methodology

Our methodology mainly consists of two steps:
data preprocessing and machine learning, which
we describe in the following subsections.

4.1 Data Preprocessing
For data preprocessing, we performed data clean-
ing, in which we removed HTML tags related to
text formatting as they do not contribute to the
machine learning models. After this simple data
cleaning step, we fed the data into different ma-
chine learning models, which we describe below.

4.2 Machine Learning Models
During our experimentation, we explored a range
of machine learning models, spanning from sim-
ple to more sophisticated ones. For instance, we
tested models like BiLSTM, which offer efficient
solutions for the task at hand. We also examined
complex models like transformers, which will de-
liver superior results but come with a trade-off in
terms of computational efficiency.

SVC Our simplest machine learning model is a
linear Support Vector Classifier (SVC) trained on
word unigrams. Prior to the emergence of neural
networks, SVCs achieved state-of-the-art results
for many text classification tasks (Schwarm and
Ostendorf, 2005; Goudjil et al., 2018) including
offensive language identification (Zampieri et al.,
2019a; Alakrot et al., 2018). Even in the neural net-
work era, SVCs produce an efficient and effective
baseline.
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BiLSTM As the first embedding-based neural
model, we experimented with a bidirectional Long
Short-Term Memory (BiLSTM) model, which we
adopted from a pre-existing model for Greek offen-
sive language identification (Pitenis et al., 2020).
The model consists of (i) an input embedding layer,
(ii) two bidirectional LSTM layers, and (iii) two
dense layers. The output of the final dense layer is
ultimately passed through a softmax layer to pro-
duce the final prediction. The architecture diagram
of the BiLSTM model is shown in Figure 1. Our
BiLSTM layer has 64 units, while the first dense
layer has 256 units.

Figure 1: The BiLSTM model for sentence-level Sinhala
offensive language identification. The labels are (a)
input embeddings, (b,c) two BiLSTM layers, (d, e)
fully-connected layers; (f) softmax activation, and (g)
final probabilities (Ranasinghe and Zampieri, 2023)

CNN We also experimented with a convolutional
neural network (CNN), which we adopted from a
pre-existing model for English sentiment classifi-
cation (Kim, 2014). The model consists of (i) an
input embedding layer, (ii) 1 dimensional CNN
layer (1DCNN), (iii) a max pooling layer and (iv)
two dense layers. The output of the final dense
layer is ultimately passed through a softmax layer
to produce the final prediction.

Figure 2: CNN model for sentence-level Sinhala offen-
sive language identification. The labels are (a) input
embeddings, (b) 1DCNN, (c) max pooling, (d, e) fully-
connected layer; (f) with dropout, (g) softmax activation,
and (h) final probabilities (Ranasinghe and Zampieri,
2023)

For the BiLSTM and CNN models presented above,
we set three input channels for the input embed-
ding layers: pre-trained word2vec embeddings, pre-
trained fastText embeddings, and updatable embed-
dings learned by the model during training. For
both models, we used the implementation provided
in the OffensiveNN Python library3.

Figure 3: A schematic representation of the transformer
models in classification (Uyangodage et al., 2021).

Transformers From an input sentence, trans-
formers compute a feature vector h ∈ Rd, upon
which we build a classifier for the task. For this
task, we implemented a softmax layer, i.e., the
predicted probabilities are y(B) = softmax(Wh),
where W ∈ Rk×d is the softmax weight ma-
trix, and k is the number of labels, which in our
case is two. This architecture is depicted in Fig-
ure 3. We employed a batch size of 32, Adam
optimiser with learning rate 2e−5, and a linear
learning rate warm-up over 10% of the training
data. During the training process, the parame-
ters of the transformer model, as well as the pa-
rameters of the subsequent layers, were updated.
The models were evaluated while training using
an evaluation set that had one-fifth of the rows in
data. We performed early stopping if the evalu-
ation loss did not improve over three evaluation
steps. All the models were trained for three epochs.
We experimented with BERT-BASE-CASED (Devlin
et al., 2019), ROBERTA-BASE (Liu et al., 2019)
and ELECTRA-BASE (Clark et al., 2020). All the
pre-trained transformer models we used for the
experiments are available in HuggingFace (Wolf
et al., 2020).

3OffensiveNN is a pip package in https://pypi.
org/project/offensivenn/

https://pypi.org/project/offensivenn/
https://pypi.org/project/offensivenn/
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TP FP Weighted Macro
F1Type Model P R F1 P R F1 P R F1

SVC - 0.65 0.46 0.55 0.70 0.81 0.73 0.64 0.65 0.65 0.63

BiLSTM
CBOW 0.71 0.76 0.74 0.80 0.76 0.81 0.75 0.74 0.73 0.76
fastText 0.82 0.71 0.76 0.82 0.89 0.86 0.82 0.82 0.82 0.81
Self-learned 0.66 0.34 0.45 0.66 0.88 0.76 0.66 0.66 0.63 0.60

CNN
CBOW 0.68 0.73 0.70 0.80 0.77 0.79 0.75 0.75 0.75 0.74
fastText 0.82 0.73 0.77 0.83 0.89 0.86 0.83 0.83 0.82 0.82
Self-learned 0.85 0.53 0.65 0.74 0.93 0.83 0.79 0.77 0.76 0.74

Transformers

BERT 0.84 0.79 0.81 0.85 0.87 0.85 0.82 0.84 0.85 0.86
RoBERTa 0.83 0.80 0.80 0.87 0.87 0.87 0.84 0.86 0.86 0.87
ELECTRA 0.81 0.83 0.79 0.85 0.86 0.85 0.83 0.83 0.83 0.82

Table 2: Results of the binary classification (Section 5.1). Type refers to the machine learning algorithm used, and
Model refers to the embedding model used. We report Precision (P), Recall (R), and F1 for each model/baseline on
all classes and weighted averages. Macro F1 is also listed (best in bold).

Type Model Weighted F1 Macro F1

SVC - 0.55 0.48

BiLSTM
CBOW 0.73 0.64
fastText 0.77 0.69
Self-learned 0.69 0.56

CNN
CBOW 0.75 0.66
fastText 0.77 0.68
Self-learned 0.61 0.50

Transformers
BERT 0.79 0.72
RoBERTa 0.81 0.73
ELECTRA 0.78 0.70

Table 3: Results of the Fine-grained Classification (Sec-
tion 5.2). Type refers to the machine learning algorithm
used, and Model refers to the embedding model used.
We report Weighted F1 and Macro F1 (best in bold).

5 Results

We show our results in two levels: binary classifi-
cation in Section 5.1 and fine-grained classification
in Section 5.2. For each level, we experiment with
the machine learning models described in Section
4 to see how they perform. All the models were
trained on the training set and then evaluated by
predicting the labels for the held-out test set. As
the label distribution is highly imbalanced, we eval-
uate and compare the performance of the different
models using macro-averaged F1 score. We further
report per-class Precision (P), Recall (R), and F1
score (F1) for the binary classification. We also
experimented with several resampling methods to
balance the classes, such as upsampling and down-

sampling. However, we did not see a significant
improvement in the results. Therefore, we contin-
ued the experiments with the original training set
distribution.

5.1 Level A - Binary Classification

As shown in Table 2, neural models outperform the
traditional machine learning model, SVC. From the
experimented word embedding models, fastText
performed best, providing a macro F1 score of
0.82 with CNN architectures. The results suggests
that the character embedding approach in fastText
is effective at classifying user-generated content
that contains unrecognised or improvised words,
i.e. text-speak. The transformer models provided
the best results. The best transformer model was
RoBERTa which provided a macro F1 score of
0.87, closely followed by BERT, which provided a
macro F1 score of 0.86.

The results clearly show that transformer models
can successfully be used for a classification task
such as this one.

5.2 Level B - Fine-grained Classification

The results for fine-grained classification are given
in Table 3. Similar to the binary classification,
neural models outperformed the traditional SVC
model. Furthermore, transformer models produced
the best macro F1 scores. As with the binary clas-
sification task, RoBERTa performed the best out of
all models in the fine-grained classification.

The results of the fine-grained classification were
not as good as those of the binary classification.
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At the best of times, multi-class classification is
a challenging task. Previous research (Zampieri
et al., 2019a) has shown that multi-class classifica-
tion usually performs worse than binary classifica-
tion. Furthermore, in this sample, the number of
instances available for some of the classes in the
fine-grained classification was low, which can af-
fect the machine learning models when predicting
for that class. This can result in a low macro F1
score.

Considering both levels, we can conclude that
deep learning architectures provided satisfactory re-
sults and they can be successfully utilised to detect
generalised safeguarding concerns in schoolchil-
dren’s online conversations.

6 Conclusions

We have presented the first study using deep learn-
ing to detect generalised safeguarding concerns in
schoolchildren’s online conversations. We have de-
veloped and employed a new and highly relevant
dataset consisting of more than 8,850 instances
annotated on binary labels as well as fine-grained
labels. We employed ten machine learning models,
including state-of-the-art transformer models, on
the two tasks. We showed that deep learning archi-
tectures provided the best results, and among them,
the RoBERTa transformer model provided the best
result. With this study, we show that machine learn-
ing and, particularly, deep-learning-based models
can be employed to detect safeguarding concerns
in schoolchildren’s online conversations.

As for limitations, we acknowledge that the
dataset is imperfect on a few fronts. For one, it
is limited to the English language, and it is cap-
tured from just one app, which is Microsoft Teams
chat. As a result of the data collection method
via the Senso.cloud software, which nonetheless
gains us access to a high volume of primary data
generated by our target demographic, the data we
receive is pre-filtered. That is to say, we only have
access to messages that have been captured accord-
ing to Senso.cloud’s a priori safeguarding keyword
libraries (an important limitation for personal data
protection purposes), and as such we cannot com-
ment on recall. It also means that there is an imbal-
ance of data and this imbalance is reflected in the
distribution across the classes. The classes them-
selves emerged in response to the nature of the data,
and as such, they are fitted to our specific software
and set of keywords. Finally, we acknowledge that

the dataset is necessarily opaque, for sensitivity
and proprietary reasons, as are the models devel-
oped during this industry research. At this very
early stage in the work, we are not yet able to make
these resources public or provide the level of de-
tail that one would find with open-access resources.
In future endeavours, we hope to find a safe and
satisfactory way of doing so.

This initial study opens many exciting avenues
in detecting safeguarding concerns in online con-
versation. In this research, we focused on English,
and given that the dataset is anonymised, we cannot
safely attribute each instance to a specific variety of
English (e.g. British English, American English).
However, the machine learning models that we ex-
plored are language-independent. In the future,
we hope to evaluate these machine learning ap-
proaches in multilingual conversations. While the
transformer models provided the best results, these
models are large in size and computationally expen-
sive. Therefore, it can be difficult to use them in
real time. Recent work has shown that knowledge
distillation can transfer knowledge from large mod-
els to computationally light models such as SVCs.
In future work, we hope to build more practical
models to detect safeguarding concerns in online
conversations in real time.

In terms of direct, practical applications, the
present research demonstrates the usefulness of pre-
trained deep learning architectures in reliably iden-
tifying a concerning online message from a child,
even without the wider context of the conversation.
For teachers and DSLs, this translates to an intel-
ligent system that can support them in processing
the safeguarding alerts they receive daily via their
school’s safeguarding software. With more data
and experiments, this vein of research promises to
produce real-world benefits for those faced with
high volumes of student safeguarding data in their
day-to-day work.
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