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Abstract

Hate speech classification is crucial in address-
ing harmful content on social media and online
platforms. Building robust classifiers poses
challenges that include model interpretability
and handling dynamic hate speech. We pro-
pose the Entropy based Dynamic Attention Loss
(EDAL) loss to enhance model interpretabil-
ity by leveraging an additional attention layer.
EDAL encourages informative attention scores
and improves the model performance of pre-
trained model during the fine tuning stage of the
downstream tasks. Extensive experiments on
six diverse datasets validate the effectiveness of
EDAL in enhancing classification performance
while preserving interpretability. Moreover, ex-
periments on various pretrained models demon-
strate that EDAL significantly improves their
performance during finetuning. Overall, EDAL
shows promise in creating more transparent and
reliable hate speech classifiers, fostering a safer
online environment.

1 Introduction

The rise of harmful and offensive content on social
media and online forums has made hate speech
classification a crucial task in NLP. Automated sys-
tems for detecting and mitigating hate speech play
a vital role in fostering safer online spaces. Hate
speech classification involves categorizing text into
hateful and non-hateful classes. Automating this
process helps take timely actions to curb discrim-
ination, hostility, and violence in social space as
well as it empowers content moderators and plat-
form administrators.

A fundamental aspect of building robust and reli-
able hate speech classifiers is the prelude for model
explainability. As hate speech classification models
are increasingly integrated into real-world applica-
tions, there is a growing demand for understand-
ing the decision-making process of these models.
Model explainability provides insights into the fea-
tures and patterns considered by the classifier while
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Figure 1: Attention Heatmap Visualization of Sample
Sentences for Both Losses

making predictions. Therefore, model explainabil-
ity fosters transparency and trust in the system’s
decisions. Additionally, explainable models enable
stakeholders to identify potential biases and make
informed decisions about content moderation.

Language models, particularly large-scale pre-
trained models like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) etc. have significant
impact on the field of NLP. These Language Mod-
els (LMs) have shown remarkable performance
across various tasks including hate speech classi-
fication. However, building effective classifiers
faces challenges such as handling dynamic hate
speech, addressing class imbalance, and ensuring
model interpretability. The opaque nature of these
models makes it challenging to comprehend the
rationale behind their predictions, thus limits their
applicability in sensitive domains like hate speech
classification.

In this research paper, we introduce an intu-
itive approach to enhance the interpretability of
hate speech classifiers using the Entropy-based Dy-
namic Attention Loss (EDAL) technique. EDAL



uses an additional attention layer that measures the
the attention scores for each of the words of a sen-
tence. In this way EDAL gives better explainability.
EDAL loss addresses the issue of model opacity by
encouraging the attention scores of the classifier to
be more informative and aligned with the specific
linguistic features that contribute to hate speech
classification. By leveraging the EDAL loss, we
aim to achieve higher model interpretability with-
out compromising the classification performance.

In Figure 1, heatmaps illustrating the attention
scores for a hate sample sentence and a non-hate
sample sentence are presented. In the heatmap,
higher attention scores are represented by a deeper
shade of red. Notably, when applying EDAL loss
to a hate sentence, the model allocates increased
attention to the toxic spans compared to the Cross
Entropy (CE) approach. On the other hand, for
the non-hate one, EDAL provides almost similar
attention to each of the tokens and attention is more
refiner than CE loss. This observation signifies that
the EDAL loss enhances the model’s focus on spe-
cific aspects relevant to hate speech identification.

In our study, we have extensively demonstrated
the efficacy of the EDAL technique across six di-
verse datasets. For each dataset, we integrated
the EDAL loss alongside the CE loss during fine-
tuning that results in notable improvements in the
performance metrics of pretrained language mod-
els. The impact of EDAL was observed across
various evaluation criteria that further validated
its effectiveness in enhancing model capabilities
and overall classification performance. This com-
prehensive analysis showcases the versatility and
robustness of the EDAL loss that makes it a promis-
ing idea for improving pretrained language mod-
els during finetuning across different domains and
datasets. We show the model performance and at-
tention score measurement for detecting hatespeech
text. The EDAL loss can easily be extended to any
text classification tasks.

2 Related Work

The paper by Mathew et al. introduces the Hat-
eXplain (Mathew et al., 2021) dataset that covers
different aspects of hate speech. The dataset uses
a 3-class classification, the target community (i.e.,
the community that has been the victim of hate
speech/offensive speech in the post), and the ratio-
nales (i.e., the portions of the text on which their
labeling decision as hate, offensive or normal, is

based). The authors collected text from Twitter and
Gab and uses annotators from Amazon Mechani-
cal Turk (MTurk) to label the texts. 3 annotators
annotate each text along with the rationales. They
are the first dataset to introduce a word and phrase-
level annotation. They annotate more than 20k
texts of which 4K are identified as hate speech,
5.5K as offensive, and 7.8K as normal. Each post
is also annotated on a word level as to which words
are responsible for the post being labeled as hate
speech or offensive. They introduce an attention
loss with their ground truth attentions.

(Cao et al., 2019) introduces an attention loss for
small sample image classification tasks. This atten-
tion loss focuses on the misclassified samples and
incorporates a soft label approach to handle con-
fused categories. (Li et al., 2020) propose the use
of dice loss as an alternative to the standard cross-
entropy objective for data-imbalanced NLP tasks.
(Zayed et al., 2023) investigate the relationship be-
tween the entropy of the attention distribution and
the model’s performance and fairness. They in-
troduce a method called Entropy-based Attention
Temperature scaling (EAT) to modulate the entropy
of the model’s attention maps. This modulation is
achieved through temperature scaling after training,
and the hyperparameter β is chosen based on the
validation set to strike a balance between perfor-
mance and fairness.

Recent work by (Attanasio et al., 2022) also in-
troduces an entropy based attention regularization
techniques for mitigating bias the unintended bi-
ases. In that work, they used internal attention of
BERT layers to discourage overfitting to training-
specific terms. For a layer of BERT, they found
mean attention of positions for different heads and
passed the attention into softmax operator for find-
ing entropy for that layer. A sum of entropy from
different layers of BERT were used with the main
classification loss.

3 Methodology

3.1 Finding Contextual Representations

After the input sentence S undergoes tokeniza-
tion, resulting tokens: {x1, x2, . . . , xn} are fed
into a text encoder such as LSTM (Hochreiter and
Schmidhuber, 1997) or BERT (Devlin et al., 2019).
This process aims to find contextual representations
H = {h1, h2, . . . , hn} where hi is the contextual
representation of xi.

For transformer-based text encoders, specific to-



kenization is tailored to the model’s architecture.
In contrast, for non-transformer models, an embed-
ding layer is employed to derive the token embed-
dings.

3.2 Additional Attention Layer

Once the contextual representations H are ob-
tained, we proceed to incorporate an additional
attention layer. The primary purpose of introducing
this layer is to compute learnable attention scores
for each token. For the token xi, the attention score
is denoted as αi, and its calculation is as follows:

αi = softmax(W · hi + b),

i = 1, 2, . . . , n

For each sentence, we calculate an atten-
tion score for each token within that sentence.
This results in a set of attention_scores =
{α1, α2, . . . , αn} corresponding to the tokens in
the given sentence.

These attention scores collectively represent the
overall attention distribution across the sentence
indicating the relative importance or relevance of
each token to the context of the entire sentence.

3.3 Classification

After finding attention scores for each tokens, we
find the context vector for the sentence S by mul-
tiplying the contextual representations of token xi
with its attention score αi.

c =

T∑
i=1

αi · hi

After obtaining the context vector, it is further
processed through a linear layer to perform the clas-
sification task. This linear layer is for mapping the
contextual information into the appropriate output
format for the specific classification objective.

z = Wc · c+ bc

3.4 EDAL Loss

In the binary hate speech classification problem,
we designate the target class 0 to represent the
non-hate category, while the other class serves as
the hate class that will be our positive or interest
class. When a sentence belongs to the target class

Figure 2: Pytorch Code for EDAL Loss calculation

0 (non-hate), it indicates that there are no specific
words or word-spans within the sentence that are
responsible for expressing hate. Consequently, the
model should assign similar attention scores to all
the words in that sentence.

That means, we aim to achieve a uniform dis-
tribution of attention scores for class 0, indicating
that all words in non-hate sentences should receive
similar attention from the model. On the other
hand, for class 1 (hate), we expect a non-uniform
distribution of attention scores as certain words or
word-spans play a significant role in determining
hate speech. We know that a uniform distribution
has maximal entropy1 meaning that all elements
are equally likely.

To enforce this behavior in the model, we intro-
duce the Entropy-based Dynamic Attention Loss
(EDAL Loss). This loss function is designed to
encourage the model to produce attention distribu-
tions with high entropy for class 0 and non-uniform
distributions for class 1. By optimizing the EDAL
Loss, we ensure that the model pays consistent
attention to all words in non-hate sentences while
focusing on the most relevant words for hate speech
classification.

To do that, first, we calculate the entropy of the
attention scores obtained from the attention layer in
Section 3.2 for a batch with size B. If the attention
scores for each batch are represented as A = B×L,
where L is the sentence_length, then Ai denotes
the attention scores for the i-th sample in the batch
given by {α1, α2, . . . , αn}.

1https://stats.stackexchange.com/questions/66108/why-
is-entropy-maximised-when-the-probability-distribution-is-
uniform



The entropy of Ai is calculated as:

Entropy(Ai) = −
n∑

j=1

αj log(αj)

If the target class is 0 (let’s denote it as class p),
the goal is to maximize the entropy of the attention
scores for class p. This is achieved by averaging
the negative entropy values for the samples in class
p:

Entropyp(A) = − 1

Np

∑
i∈class p

Entropy(Ai)

where Np is the number of samples in class p, and
Ai is the entropy of attention scores for the i-th
sample in class p.

On the other hand, if the target class is not p,
the goal is to minimize the entropy of the attention
scores for other classes. This is achieved by av-
eraging the entropy values for samples in classes
other than p. Let Nnot p be the number of samples
in classes other than p:

Entropynot p(A) =
1

Nnot p

∑
i∈class not p

Entropy(Ai)

If target represents the ground-truth target class
indices, the overall EDAL loss is the sum of the
above two entropy terms:

LEDAL(A, target) = Entropyp(A)

+ Entropynot p(A)

EDAL can easily be extended to multi-class clas-
sification problem. A pytoch like code for calculat-
ing EDAL is provided in Figure 2. The final loss for
hatespeech calculation is a combination of Cross
Entropy based loss and EDAL base loss:

L = LCE + λ ∗ LEDAL

4 Experimental Setup

4.1 Dataset
To evaluate the performance of EDAL loss, we
experiment with six different hatespeech dataset.
(Davidson et al., 2017) released a dataset of 25k
tweets collected via the Twitter API to discern hate
speech, offensive language, and normal speech.
(Founta et al., 2018) constructed an 80k-tweet

Dataset Train Test
Class 0 Class 1 Class 0 Class 1

Davidson 3328 16498 835 4122

Degilbert 7026 746 1755 188

Vidgen 9179 11697 2237 2982

Founta 43148 25624 10703 6491

Elsherief 10617 6567 2674 1622

OLID 7107 3485 1733 915

Table 1: Dataset Size after Preprocessing

dataset classifying content as abusive, hateful, nor-
mal, or spam. (Zampieri et al., 2020) introduced the
Offensive Language Identification Dataset (OLID),
one of the most established datasets for hate speech,
encompassing 14k tweets, with 4.5k labeled as of-
fensive. It utilizes a three-level annotation schema
for offensive language detection, categorization,
and target identification. (Vidgen et al., 2021) pro-
poses a human-and-model-in-the-loop process for
dynamically generating datasets comprising 40k
entries, with 54% identified as hateful, adopting
a binary labeling schema to identify the type and
target of hate speech. (de Gibert et al., 2018) intro-
duced another hatespeech dataset which contains
10k texts where 11% data was hate. (ElSherief
et al., 2021) created an implicit hate speech dataset
collected from Twitter. There were around 20k
samples whereas around 5k were implicit hate
samples.

To ensure consistency in the dataset labels, we
unified the class labels across different datasets.
Some datasets had 3 class labels, while others had
2 class labels. To achieve this, we merged the
hate and offensive classes into a single hate class.
Subsequently, we considered normal text as the
non-hate class (Class 0), and the merged class as
the hate class (Class 1). Following this conversion,
the dataset sizes are listed in the Table 1.

4.2 Preprocessing & Settings

In each dataset, we performed some essential text
preprocessing steps including removing punctua-
tion, emojis, and URLs, if any. For obtaining the
hidden representations from the text, we utilized
two different models: LSTM and BERT as the text
encoders.

When using the LSTM-based model, an embed-
ding layer with an embedding dimension of 128
was employed to convert the tokens into vector rep-



resentations. The LSTM model’s hidden dimension
was set to 256. We used a learning rate of 0.005
and a batch size of 64 for this configuration.

On the other hand, for the BERT model, we
utilized the bert-base-cased variant that enables us
to extract contextual representations through fine-
tuning. In this case, the hidden dimension of the
BERT model was set to 768. The learning rate for
BERT was 2 × 10−5, and a batch size of 32 was
used.

Both configurations employed the AdamW op-
timizer with β1 = 0.9 and β2 = 0.99. To ensure
robustness, we performed five-fold cross-validation
and three different random seeds. Additionally, we
set λ = 10 for all experiments. An ablation study
investigating the effect of different λ values is pre-
sented in Table 3. All experiments were conducted
using Python (version 3.8) and PyTorch, leverag-
ing the free NVIDIA Tesla K80 GPU available in
Google Colab, as well as a single NVIDIA Tesla
P100 GPU provided by Kaggle.

4.3 Evaluation Metrics
To compare the model performance on the pre-
dictions, we use the following performance-based
metrics:

• Accuracy: This metric measures the propor-
tion of correctly classified samples over the
total number of samples.

• Weighted F1 Score: The weighted F1 Score
takes into account the class imbalance by com-
puting the F1 Score for each class and then
weighting the scores by the number of sam-
ples in each class.

• ROC-AUC: The ROC-AUC (Receiver Oper-
ating Characteristic - Area Under the Curve)
metric evaluates the model’s ability to distin-
guish between positive and negative samples
across different probability thresholds.

5 Results and Analysis

5.1 Model Performance with EDAL Loss
The performance comparison of the BERT model
fine-tuned with both cross-entropy (CE) loss and
EDAL loss across six different datasets is presented
in Table 2. We reported the performance of the
models in test dataset in that table. For each dataset,
the BERT model trained with both losses exhibits
superior performance compared to the one trained

(a) F1 Score for Class-0 Predictions

(b) F1 Score for Class-1 Predictions

Figure 3: Experiment on classwise F1 score

solely with CE loss. Notably, the proposed EDAL
loss consistently yields a substantial improvement
of 1-3% in accuracy and ROC-AUC for all datasets.
Similarly, in terms of weighted F1 score, EDAL
results in a notable improvement of 2-4%.

These findings indicate that EDAL effectively
enhances the model’s attention mechanism leading
to improved performance across various evaluation
metrics. To further illustrate this, we report the
class-wise F1 scores for all datasets in Figure 3.
The figure demonstrates that EDAL significantly
boosts the model’s performance, particularly for
class 0, surpassing the performance of the model
fine-tuned with only CE loss by a significant mar-
gin.

As observed from Table 2, it is evident that
EDAL shows limited effectiveness when applied
to LSTM-based models. In comparison to CE loss,
the performance of EDAL is relatively lower. The
reason behind this disparity lies in the fact that, for
LSTM models, the word embeddings are trained
from scratch, which hinders EDAL’s ability to pre-
cisely determine which words or spans of words
should receive higher attention. In contrast, BERT



Dataset Experiment Performance Metrics
Accuracy F1 Score ROC-AUC

LSTM 92.8 87.1 96.6

Davidson LSTM + EDAL 91.4 85.1 94.8

BERT 96.3 96.2 97.1

BERT + EDAL 97.2 98.4 98.8

LSTM 87.9 58.4 71.8

Degilbert LSTM + EDAL 90.4 60.7 76.1

BERT 92.6 91.9 93.2

BERT + EDAL 93.3 93.1 94.2

LSTM 76.9 76.3 77.5

Vidgen LSTM + EDAL 73.8 73.8 78.9

BERT 87.5 91.6 94.8

BERT + EDAL 87.9 94.1 96.1

LSTM 91.4 92.7 92.9

Founta LSTM + EDAL 92.0 91.4 95.0

BERT 93.9 92.2 96.9

BERT + EDAL 95.3 94.9 97.8

LSTM 71.1 69.2 76.2

Elsherif-implicit LSTM + EDAL 70.8 68.7 75.9

BERT 79.3 76.6 84.4

BERT + EDAL 82.7 80.2 87.5

LSTM 68.6 63.8 65.4

Olid LSTM + EDAL 70.9 64.9 68.5

BERT 79.5 78.8 84.8

BERT + EDAL 80.3 80.5 86.6

Table 2: Model performance of CE and CE+EDAL loss in six different Hatespeech dataset based on three different
evaluation metrics. For each dataset, CE+EDAL loss with BERT model outperforms the other approach.

models benefit from pre-trained word embeddings
enabling EDAL to function more effectively. EDAL
loss helps the pretrained model for getting better
performance during finetuning in a custom dataset.

5.2 Effects of λ and Batch Size

Our proposed method incorporates a hyper-
parameter λ that determines the relative contri-
bution of the EDAL loss to the overall loss func-
tion. To assess the impact of different λ values,
we conducted an experiment on the OLID dataset.
The model performance, specifically class-wise F1
scores on the OLID test dataset is reported in Ta-
ble 3 for various λ values. Our observations indi-
cate that both lower and higher values of λ hinder

the model’s predictive capabilities. However, an
optimal value of λ can significantly enhance the
model’s performance.

λ Class-0 F1 Class-1 F1
0.1 85.1 66.2
0.5 85.7 67.8
1 85.3 68.3
10 85.5 67.3
100 84.7 66.4

Table 3: Ablation Study of λ in OLID Dataset

The choice of batch size in deep learning can
have a notable impact on the model’s loss function
and overall performance. To investigate this effect,



Figure 4: EDAL Performance on the variation of batch
size

we conducted an experiment on the OLID dataset
using CE loss and CE+EDAL. We measured the
weighted F1 score on the test dataset with differ-
ent batch sizes and the results are depicted in Fig-
ure 4. When using only CE loss, the model’s per-
formance exhibits fluctuations with varying batch
sizes. On the other hand, when EDAL loss is com-
bined with CE, the performance remains relatively
stable across different batch sizes. This observation
suggests that EDAL loss is less affected by changes
in batch size compared to CE loss.

The graph in Figure 4 indicates that EDAL loss
provides a consistent improvement in performance
regardless of the batch size used. This robustness
to batch size variations is advantageous as it allows
the model to achieve reliable results without the
need for fine-tuning the batch size.

5.3 Experiments with LLMs

As mentioned in Section 5.1, the EDAL proves
to be beneficial for pretrained models during fine-
tuning. To demonstrate this, we conducted an ex-
periment on the OLID dataset involving eight dif-
ferent Large Language Models (LLMs). The de-
tailed results are presented in Table 6 in Appendix
A. From the table, it is evident that EDAL con-
sistently outperforms CE loss for each of the pre-
trained models except for the deberta-base model,
where the difference is relatively small. The sub-
stantial margin of improvement in performance
achieved by EDAL highlights its effectiveness in
enhancing model capabilities during fine-tuning.

For these experiments, we set the hyperparam-
eter λ to 10 and used a batch size of 16 across all
models. However, it is important to note that model-
specific hyperparameter optimization could poten-

tially further enhance the performance of EDAL
leading to even better results.

5.4 Attention Score Analysis
Another experiment was conducted to measure the
effectiveness of EDAL Loss in word-level atten-
tion. For this experiment, we selected the OLID
dataset. As mentioned earlier, for non-hate sen-
tences, the attention scores should be uniform. Fol-
lowing the approach taken by HateXplain(Mathew
et al., 2021), we considered that the attention score
for each token in a non-hate sentence should be
1/sentence_length. We then measured the dis-
tance between the predicted attention scores and
1/sentence_length.

Given a sentence s with n tokens, we have the
predicted attention values for each word, denoted
as αi, where i is the index of the word in the
sentence. We want to measure the difference be-
tween the predicted attention of each word and
1/n, and then find the average difference for each
word in the sentence. The predicted attention val-
ues for the sentence are represented as the list
α = [α1, α2, . . . , αn], and the attention value for
each word can be accessed as α[i]. The average dif-
ference for each word in the sentence is calculated
as follows:

Average_Difference(s) =
1

n

n∑
i=1

|αi −
1

n
|

where | · | represents the absolute value. We cal-
culate the average difference score for all the sen-
tences in test dataset for both hate (class-1) labelled
sentence and non-hate (class-0) labelled sentence.
For hate labelled sample this score should be close
to zero and for the other one the score should be
far from zero.

Loss Class-0 ↓ Class-1 ↑
CE 0.051 0.1722

CE + EDAL 0.025 0.1987

Table 4: Attention Score Difference Measurement

The analysis of Table 4 reveals that the inclusion
of EDAL loss has notably improved the alignment
of the model with the desired behavior. Specifically,
in the non-hate class, the EDAL loss effectively
guides the attention scores towards values close to
zero while in the hate class, the same loss func-
tion encourages the attentions to diverge further



Task Dataset Experiment Accuracy ↑
BanglaBERT 74.46

Sentiment Classification (Bangla) SentNoB BanglaBERT+EDAL 75.59
BERT 84.68

Sentiment Classification (English) IMDB BERT+EDAL 87.04
BERT 86.23

Intended Sarcasm (English) iSarcasm BERT+EDAL 87.97
BanglaBERT 96.65

Fake News Detection (Bangla) BanFake BanglaBERT+EDAL 98.43
BERT 97.63

Question Classification (English) TREC BERT+EDAL 98.72

Table 5: Extending EDAL for different text classification task for both Bangla and English Laguage

from zero. In comparison to the model with only
CE loss, the utilization of EDAL loss achieves a
better balance in attention allocation, contributing
to a more refined and contextually-aware model
performance.

5.5 Extending EDAL for Any Classification
Problem

EDAL can be easily adapted to any text classi-
fication problem. Table 5 showcases the perfor-
mance of EDAL across various text classification
tasks. In this experiment, we employed the Bangla
Sentiment Classification dataset named SentNoB
(Islam et al., 2021) and the Bangla Fake News
Classification dataset called BanFakeNews (Hos-
sain et al., 2020). For these tasks, we utilized
BanglaBERT (Bhattacharjee et al., 2022) with
Cross Entropy (CE) loss and BanglaBERT with
both CE and EDAL. Additionally, we employed the
IMDB Movie Review dataset (Maas et al., 2011),
the Question Classification dataset TREC (Li and
Roth, 2002), and the Intended Sarcasm Detection
dataset named ISarcasm (Oprea and Magdy, 2020)
for the English language, using the BERT model.

From Table 5, it is evident that EDAL consis-
tently outperforms vanilla BERT across different
classification datasets and languages. This demon-
strates the versatility of EDAL, making it applica-
ble to any language and text classification problem.

6 Conclusion

In this paper, we introduce the Entropy based Dy-
namic Attention Loss (EDAL loss) to address the
challenges of model interpretability and to enhance
classifier transparency. EDAL loss is calculated
by using an additional attention layer. Through
extensive experimentation, we demonstrate the ef-

fectiveness of EDAL in improving classification
performance while maintaining a clear understand-
ing of the decision-making process. The attention
scores are more refined with the EDAL loss that
helps the pretrained model for detecting the hate
content. Our research emphasizes the necessity of
model interpretability and highlights EDAL as a
promising solution for building robust and transpar-
ent hate speech classifiers. Importantly, EDAL’s
utility extends beyond hate speech and can applied
to various NLP tasks.
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A Model Experiment

We also experiment the effectiveness of our EDAL loss in different pretrained models while finetuning
them in OLID dataset. Eight different language models [BERT (Devlin et al., 2019) (both cased and
uncased versions), RoBERTa (Liu et al., 2019) (both base and large model), Electra (Clark et al., 2020),
DeBerta (He et al., 2021) (v1 base and v3 base), and XL-Net (Yang et al., 2019)] were used in this
experiment. The results are listed down below:

Model Name Loss Performance Metrics
Accuracy F1 Score ROC-AUC

CE 79.5 78.8 84.8

bert-base-cased CE + EDAL 80.3 80.5 86.6

CE 78.8 77.6 84.0

bert-base-uncased CE + EDAL 79.5 79.1 85.8

CE 79.4 79.5 86.5

roberta-base CE + EDAL 81.2 80.1 87.1

CE 79.2 79.3 85.5

roberta-large CE + EDAL 80.4 80.6 86.2

CE 79.5 78.4 85.2

electra-base CE + EDAL 81.4 80.7 87.5

CE 80.1 79.8 86.5

deberta-base CE + EDAL 80.0 79.3 86.3

CE 80.7 80.1 86.1

deberta-v3-base CE + EDAL 81.5 81.7 87.6

CE 80.0 80.0 86.6

xlnet-base CE + EDAL 81.5 81.8 87.3

Table 6: Effects of Different Models in OLID Dataset


