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Abstract

The similar translation sentences has been
widely employed in machine translation
task (MT), such as the NFR model (Bulte and
Tezcan, 2019) and the Retrieve-Edit-Rerank
framework (Hossain et al., 2020; Tamura et al.,
2023). The source sentences concatenated with
its similar translation sentences are used as the
input for training the NFR model with the aim
of leveraging the attention mechanism to ex-
tract beneficial information from these simi-
lar translations. However, the retrieved simi-
lar translations also contain noise, which may
lead to decrease in translation accuracy. In
this paper, we introduce kNN Machine Trans-
lation (kNN-MT) (Khandelwal et al., 2021;
Zheng et al., 2021; Jiang et al., 2022) meth-
ods to address the issue caused by retrieved
noisy similar translations. We show that kNN-
MT methods significantly improve the overall
translation accuracy of the framework. Mean-
while, we enhance the Retrieve-Edit-Rerank
framework by incorporating the COMET-QE
score (Rei et al., 2020, 2021) into the rerank-
ing function proposed by Tamura et al. (2023).
Our proposed metric achieves the highest ac-
curacy compared to all the previous studies
when evaluated using sacreBLEU (Post, 2018).
Furthermore, it demonstrates a significant im-
provement compared to prior research when
evaluated using COMET22 (Rei et al., 2022).

1 Introduction

Translation Memory (TM), which is a set that
contains high-quality parallel data, has been fre-
quently utilized in recent research. The NFR (Neu-
ral Fuzzy Repair) model proposed by Bulte and
Tezcan (2019) employs a method where the source
sentence retrieves fuzzy matches from the TM and
concatenates them as input to the neural machine
translation (NMT) model, aiming to enhance the
accuracy of machine translation task.

Based on the original NFR model, Hossain et al.
(2020) proposed the Retrieve-Edit-Rerank frame-

work, which generates translation candidates by
inputting the same source sentence concatenated
with different similar target sentences into a trained
NFR model, followed by reranking with the objec-
tive of maximizing the log-likelihood. Tamura et al.
(2023) further improved the Retrieve-Edit-Rerank
framework from retrieval and reranking steps. In
addition to the existing Python library edit-distance
+ SetSimilaritySearch1 (ed+sss) method for re-
trieval, they incorporated mSBERT (Reimers and
Gurevych, 2020) and LaBSE (Feng et al., 2022)
to generate sentence embeddings, and then per-
formed cross-language retrieval using Faiss2 (John-
son et al., 2019). Moreover, Tamura et al. (2023)
improved the reranking score by considering log-
likelihood of output with normalization by token-
level sentence length and the similarity between the
input and candidate sentences based on sentence
embeddings. However, the characteristic of seman-
tic retrieval of LaBSE+Faiss and mSBERT+Faiss
introduces a challenge, where the retrieved simi-
lar target sentences may not align with the source
sentence at the token level, which could potentially
have a negative impact when these similar transla-
tions are used for translation task.

To tackle this problem, we introduce kNN-
MT (Khandelwal et al., 2021; Zheng et al., 2021;
Jiang et al., 2022) methods into the editing phase
of Retrieve-Edit-Rerank framework. In kNN-MT,
the final hidden representations of predicted to-
kens for all the training data generated by decoder
of the trained NMT model (Vaswani et al., 2017)
are stored as ground truth tokens’ hidden repre-
sentations into a datastore. When incorporating
the kNN-MT method into the NFR model, during
the process of creating datastore, although the hid-
den representation of predicted tokens may deviate
from their ground truth values due to the influence
of similar translations, they are still recorded as

1https://github.com/ardate/SetSimilaritySearch
2https://github.com/facebookresearch/faiss

https://github.com/ardate/SetSimilaritySearch
https://github.com/facebookresearch/faiss


Figure 1: The prediction framework of Retrieve-Edit-Rerank model.

ground truth hidden representations and stored in
the datastore. Therefore, during the inference stage,
when the hidden representation of tokens is affected
by noise from similar translations, it becomes pos-
sible to retrieve the ground truth token depending
on the deviated representations in the datastore. In
addition, the kNN-MT method considers the out-
put distributions of both kNN-MT and the original
NMT model, which possibly reduces the negative
impact of similar translations acting as noise. In
addition to that, this paper introduces COMET-QE
score (Rei et al., 2020, 2021) into the reranking
function proposed by Tamura et al. (2023), and the
coefficients of various indicators are fine-tuned on
the validation data.

In summary, our contributions are as below:

1. In the Retrieve-Edit-Rerank framework (Hos-
sain et al., 2020) depicted in Figure 1, during
the editing phase, kNN-MT methods (Khan-
delwal et al., 2021; Zheng et al., 2021; Jiang
et al., 2022) are incorporated to slightly ele-
vate the overall accuracy of the framework,
while addressing the issue of noise caused by
the retrieved similar translations.

2. In the reranking step, we augment the exist-
ing reranking function proposed by Tamura
et al. (2023) with COMET21-QE (Rei et al.,
2021), a metric that enables direct evaluation
of candidate quality without reference. Our
proposed metric achieves the highest accuracy
compared to all previous studies when evalu-
ated using sacreBLEU (Post, 2018). Further-
more, it demonstrates a significant improve-
ment compared to prior research when evalu-
ated using COMET22 (Rei et al., 2022).

2 Related Work

Retrieval-based approaches to NMT have achieved
noticeable performance in recent years in machine
translation task via providing additional informa-
tion to the source sentence through retrieving fuzzy
matches in Translation Memory (TM). Bulte and
Tezcan (2019) introduced a strategy by directly
concatenating the entire fuzzy matches alongside
the input, leveraging the attention mechanism to
extract effective information from similar transla-
tions. However, aforementioned approaches rely
on searching for similar translations within the
bilingual corpus, retrieving in the same language as
the input. Cai et al. (2021) presented a method that
uses a monolingual corpus in the target language,
and put forward a learnable cross-lingual retrieval
model which is simultaneously optimized with the
NMT model. Hossain et al. (2020) proposed the
Retrieve-Edit-Rerank framework, which generate
translation candidates via inputting sentences con-
catenated with multiple similar translations into the
trained NFR model and then rerank them based on
log-likelihood.

Recent research has expanded beyond word em-
bedding at the token level, prompting exploration to
sentence embedding (Reimers and Gurevych, 2019,
2020; Feng et al., 2022; Mao and Nakagawa, 2023),
which considers sentences as the fundamental unit
of analysis. Reimers and Gurevych (2019) in-
troduced Sentence-BERT (SBERT) and Sentence-
RoBERTa (SRoBERTa), based on BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), which
utilized Siamese and triplet networks (Schroff et al.,
2015) for fine-tuning. The following year, they
also released mSBERT (Reimers and Gurevych,
2020), a multilingual version of SBERT. Feng et al.



(2022) proposed LaBSE model, which efficiently
leverages negative examples during training and
achieves the state-of-art performance in the field of
sentence embedding. Mao and Nakagawa (2023)
proposed a lightweight version of the LaBSE model
through knowledge distillation, which significantly
reduces the number of the model’s parameters at
the cost of a slight decrease in accuracy. Tamura
et al. (2023) incorporated sentence embedding into
Retrieve-Edit-Rerank framework for cross-lingual
retrieval in monolingual corpus, and performed
reranking via a more efficacious reranking func-
tion.

Furthermore, in recent years, kNN-MT has
shown a high potential in the realm of machine
translation tasks. Initially proposed by Khandel-
wal et al. (2021), the kNN-MT approach entails
storing representations of all output tokens from
the training data as ground truth tokens in a data-
store. In the decoding process, the context repre-
sentation obtained from the NMT model is used to
query the datastore to retrieve k nearest neighbors
and form the kNN-MT output distribution. Zheng
et al. (2021) introduced an enhanced form of the
kNN-MT architecture known as Adaptive kNN-
MT, which incorporates a set of possible values
for k that are constrained within an upper bound
K, as opposed to a fixed value for k. The Robust
kNN-MT model, proposed by Jiang et al. (2022),
is trained with two networks: one utilizes the out-
put distribution of NMT to refine the output dis-
tribution of kNN-MT, while the other adjusts the
weights of the two output distributions in the final
output distribution.

Figure 2: Retrieving Fuzzy Matches from Translation
Memory

3 Retrieval

3.1 Translation Memory
Retrieval-based models demonstrate great poten-
tial in recent research, using the method of search-
ing for the relevant target sentences in a massive
size of high-quality parallel sentence pairs, which
have been manually translated in the past, known
as Translation Memory (TM). In Computer-Aided
Translation (CAT) workflows, when a source lan-
guage sentence cannot be retrieved with a high
fuzzy match surpassing a certain threshold, ma-
chine translation (MT) is employed as a backoff
mechanism for generating the output. However,
even in cases where direct retrieval from TM is not
possible, fuzzy matches with high similarity can
still be beneficial for MT process. In this paper, we
define the target language sentence which is similar
to the source language sentence as “similar target
sentence or similar translation”.

As shown in Figure 2, we define the Translation
Memory TMpara as a parallel corpus consisting
of source sentences set Spara and target sentences
set Tpara, As for a monolingual corpus that solely
consists of target language sentences set Tmono, it
is defined as TMmono.

3.2 Retrieval based on Sparse Representation
Based on lexical similarity metrics, represen-
tative ones include BM25, tf-idf, and edit-
distance (Levenshtein, 1966). Edit-distance, de-
fined as ∆ed(x, y), considers the operational steps
required to transform sentence x into sentence y,
including deletion, insertion, and substitution. The
common characteristic of lexical similarity met-
rics is limited to retrieval within the language that
is the same as the source sentence, and the com-
putation costs are the overhead when used for re-
trieval in large-scale TM. Furthermore, research by
Reimers and Gurevych (2021) suggested that the
performance of lexical similarity metrics as sparse
representation for retrieval is inferior to retrieval
based on dense representation generated by Distil-
RoBERTa (Sanh et al., 2019) trained with negative
examples.

Therefore, in comparison to cross-lingual re-
trieval using dense representation, we only con-
sider edit-distance (denoted as “ed” hereafter in
this paper) as a representative lexical similarity
metric, incorporating the similarity measure pro-
posed by Vanallemeersch and Vandeghinste (2015)
that takes into account the length of sentence x and



sentence y.

sim(x, y) = 1− ∆ed(x, y)

max(|x|, |y|)

where ∆ed(x, y) is the edit-distance between two
sentences x, y, and |x| is the token-level length
of sentence x. Moreover, in light of the com-
putational explosion triggered by the computa-
tion of edit-distance for all the sentences con-
tained within TMpara, we adapt the retrieval ap-
proach of Bulte and Tezcan (2019), which only
calculates edit-distance for candidate sets of anal-
ogous sentences obtained through the utilization
of the containmentmax similarity measure, facili-
tated by the Python library SetSimilaritySearch
(sss):

containmentmax(vx, vy) =
||vx ∩ vy||

max(||vx||, ||vy||)

where vx and vy are defined as the sets of unique
tokens contained in the source sentences x and y
respectively.

3.3 Retrieval based on Dense Representation
The application of dense representation for retrieval
refers to the utilization of a pre-trained Language
Model (LM) (Devlin et al., 2018; Reimers and
Gurevych, 2020; Feng et al., 2022; Mao and Nak-
agawa, 2023) to embed sentences from multiple
languages, and subsequently, these sentences are
mapped to a densely shared vector space, followed
by the retrieval using the source sentence x within
this vector space. Therefore, when leveraging
dense representation for retrieval, it can be utilized
without the confines of a single language but ex-
tended to encompass diverse languages.

Among several cross-lingual sentence embed-
ding Language Models (LMs) frequently employed
in recent researches, LaBSE (Feng et al., 2022)
model, which efficiently leverages negative exam-
ples during training, and performs state-of-art ac-
curacy in the field of cross-lingual retrieval, is used
in our research.

In this paper, LaBSE is introduced for cross-
lingual retrieval, and the similarity used between
the sentence x and the sentence y is cosine similar-
ity:

sim(x, y) = Emb(x)·Emb(y)
|Emb(x)||Emb(y)|

where Emb(x) is the sentence embedding for the
sentence x, and |Emb(x)| denotes its magnitude.

Regarding the retrieval component, we utilize
Faiss (Johnson et al., 2019) , a library for nearest
neighbor search in dense space, to extract the simi-
lar translations with top-k similarity scores across
languages in TMmono.

4 Edit by kNN-MT

This section introduces edit procedures by kNN-
MT methods, while their detailed explanations are
presented in Section A.

4.1 kNN-MT

Vanilla kNN-MT (Khandelwal et al., 2021) is
the initially proposed Nearest Neighbor Machine
Translation (kNN-MT), which is a retrieval-based
machine translation method. Moreover, the entire
process of kNN-MT is independent of the NMT
model, indicating that a pre-trained NMT model
does not require further training when applying the
kNN-MT method. The kNN-MT method consists
of two steps. The first step involves establishing a
datastore based on the training data of the NMT
model. The second one entails using the hidden
representation of the predicted token by the NMT
model as a query to retrieve k nearest neighbors
from the datastore to form the kNN-MT output
distribution. Finally, output distribution of the
NMT model is combined with the kNN-MT output
distribution using the weight λ.

Robust kNN-MT (Jiang et al., 2022) is two train-
able networks, where one network is employed to
adjust the output distribution of kNN-MT method
based on the output distribution of the NMT model,
while the other network is used to balance the
weight between the kNN-MT method and the NMT
model. The Robust kNN-MT method has achieved
significant success in handling noise in the datas-
tore.

4.2 Candidates Generation with kNN-MT

Preprocess. The complete process of the
Retrieve-Edit-Rerank framework is illustrated in
Figure 1. First, we train the NFR model as the n-
best framework used by Bulte and Tezcan (2019).
Specifically, for given source sentence s, we ex-
tract n-best similar translations t′1, t

′
2, . . . , t

′
n in

TM based on ed or LaBSE, and concatenate the
source sentence s with each corresponding simi-
lar translation sentence t′k respectively using the
special token "⟨sep⟩" (i.e., "s⟨sep⟩t′i") as the input



Source Sentence
This paper examines a method to divide the images into regions where the statistical properties are resemble and a coding method
which describes the region as a previous step of the regional division encoding.

Noisy Similar Translation (NST)
原画の局所領域を特異値分解して得た固有ベクトルをその領域の構造情報とみなし，構造情報の比較により
カテゴリーに分類する手法を提案した。 (The eigenvector obtained by singular value decomposition of a local region in the original image

is regarded as the structural information of the region, and a method is proposed to classify the region into categories by comparing the structural information.)

Reference Sentence
ここでは，領域分割符号化の前段階として，画像を統計的性質の似た領域に分割する手法とその領域を
記述する符号化手法を検討した。

Output Sentences Sentence-BLEU

Benchmark Translation
by NFR w/o NST

まず，統計的特徴を記述する領域と，類似の領域を記述するコーディングと，地域区分
19.45符号化の前段階として記述する方法について述べた。 (First, the regions for describing statistical properties, the

coding for describing similar regions, and a method for describing them as a previous step of the regional division encoding are described.)

Output Translation
by NFR w/NST

統計的特徴が類似している地域，及び地域熱心化の既報の領域として記述される符号化
1.59e-78方法について考察した。 (Regions with similar statistical properties and a coding method that can be described as the

previously reported region of regional eagerness are discussed.)

Output Translation
by NFR+Vanilla kNN-MT w/NST

統計的特徴が類似している地域に分ける像と，地域区分の前段階として記述される領域
20.08を記述する符号化方法について考察した。 (Images that are divided into regions with similar statistical properties

and a coding method which describes the regions which is described as a previous step of the regional division encoding are discussed.)

Output Translation
by NFR+Robust kNN-MT w/NST

統計的特徴が似た地域に分けるべき画像と，地域分割符号化の前段階としてその領域
31.16を記述する符号化方法について考察した。 (Images that should be divided into regions with resemble

statistical properties and a coding method which describes the regions as a previous step of the regional division encoding are discussed.)

Table 1: Examples of the Noisy Similar Translation and the results edited by kNN-MT meth-
ods (For ASPEC, discussions on the underlined portions “統計的特徴が類似している地域”
(regions with similar statistical properties) are given in section 4.2.

)

format for training the NFR model. For each of
the trained NFR models with ed or LaBSE, and
the NMT model (the Vanilla Transformer (Vaswani
et al., 2017)), we create a datastore based on the
training data, and apply the three kNN-MT meth-
ods introduced in Section 4.1 to the validation data
for determining the optimal hyperparameters of
Vanilla kNN-MT as well as obtaining the networks
of Robust kNN-MT.

Edit. First, for each retrieval method, we desig-
nate the output sentence obtained by directly in-
putting the source sentence s which is not con-
catenated with any similar translation into the
trained NFR model as the “benchmark transla-
tion” o

w/o sim
∗ for s, where ∗ represents a retrieval

method. Subsequently, during the inference stage,
we define the translation obtained by inputting
s concatenated with its k-th most similar trans-
lation t′k into the NFR model as “output transla-
tion” o

w/simk
∗ . For determining whether the re-

trieved similar translation is noise, we evaluate
both benchmark translation o

w/o sim
∗ and output

translation o
w/simk
∗ referring to the reference trans-

lation oref . In cases where the evaluation value of
o
w/simk
∗ is lower than o

w/o sim
∗ , the corresponding

similar translation is defined as a “Noisy Similar
Translation (NST)” in this paper. For a given
source sentence si, we concatenate it with k-th
most similar translation "t′(∗,i),k" (k = 1, . . . , N )
out of the top-N most similar translations and in-
put them into the NFR model for obtaining output
translations o

w/sim1

(∗,i) , o
w/sim2

(∗,i) , . . . , o
w/simN

(∗,i) . The
proportion of NST is then calculated as "Rate of

Noise (RoN)", which represents the percentage of
these N output translations that show a decrease in
accuracy when compared to the benchmark transla-
tion o

w/o sim
(∗,i) .

RoN∗(si) =
N∑
k=1

1
QE(o

w/simk
(∗,i) )<QE(o

w/o sim
(∗,i) )

/N

Here, QE(·) represents the quality evaluation by
Sentence-BLEU or COMET22, ∗ represents ed or
LaBSE, and in this paper, N = 32 is used. Finally,
for the test data consisting of n sentence pairs, we
calculate the “Mean Rate of Noise (MRoN)” and
compare them across retrieval methods.

MRoN∗ =
n∑

i=1

RoN∗(si)
n

Table 1 shows a concrete example of the noisy
similar translation, and the results edited by kNN-
MT methods. For the output translation of the
“NFR w/NST” model, it can be observed that
the underlined “統計的特徴が類似している地域”
(regions with similar statistical properties) portion is the
same as the output translations edited by Vanilla
kNN-MT. However, thereafter, discrepancies
emerge, leading to a significant decrease in transla-
tion accuracy of the original NFR model. This
phenomenon can be attributed to the impact of
similar translation acting as noise for the original
NFR model. Nevertheless, the decoding process is
guided back on the right track after the application
of kNN-MT methods, and we show this process
in Figure 3. During the ninth step of decoding,
the NFR model predicts a higher probability for



Figure 3: Decoding Process of Vanilla kNN-MT

"," than for "に". However, upon incorporating
the Vanilla kNN-MT method to form the final out-
put distribution, the final output probability of “に”
becomes larger than “,”, which may lead the sub-
sequent decoding process towards a more accurate
track.
Generation. In this paper, for any given source
sentence s in the test data, we retrieve m similar
translations t′1, t

′
2, . . . , t

′
m in the TM using two dif-

ferent strategies, searching on sparse representation
or dense representation, and then concatenate s and
t′k (k = 1, . . . ,m) as in Figure 1 respectively and
input into the trained NFR model, with the edit of
kNN-MT methods for m times decoding to gain
the candidates c1, c2, . . . , cm, and their adjusted
output probability, preparing for the reranking step.

5 Rerank Candidates by Proposed
Reranking Functions

During the editing stage, we input the source sen-
tence s concatenated with m similar translations
t′1, t

′
2, . . . , t

′
m respectively, to generate m transla-

tion candidates c1, c2, . . . , cm, and we define the
set of translation candidates as C. In the reranking
step, the main objective is to obtain a final output ĉ
from these m translation candidates by maximizing
the score function Q∗.

ĉ = arg max
c∈C

Q∗(s, t′, c)

In this paper, we introduce the following five
reranking functions:

• Q(Hossain) (Hossain et al., 2020), computed
based solely on the log-likelihood of the out-
put probabilities.

Q(Hossain) = log2 p(c|s, t′)

• Q(Tamura) (Tamura et al., 2023), based on
the average log-likelihood normalized by sen-
tence length |deSW(c)|, which is the number
of words after detokenizing the subwords of
the translation candidate c, and the similarity
between the source sentence s and the candi-
date c using LaBSE sentence embeddings.

Q(Tamura) = α log2 p(c|s,t′)
|deSW(c)| + (1− α) sim(s, c)

△
= αL(s|t′, c) + (1− α)E(s, c)



• Q(COMET21) (Rei et al., 2021), a reference-
free quality evaluation score obtained through
a pre-trained COMET-QE model, which
achieves remarkable performance in the WMT
2021 Metrics Shared Task (Freitag et al.,
2021)).

• Q(Proposed), the reranking function proposed
in this paper, introducing the COMET21-QE
score CM(s, c) into Q(Tamura), with all the
terms being linearly combined.

Q(proposed) = αL(s|t′, c) + βE(s, c) + γCM(s, c)

• Oracle, the reference translation is used to
identify the candidate with the highest value
for the evaluation metric, serving as the abso-
lute maximum evaluation score.

The final output probability is calculated as fol-
lows:

p(c|s, t′) = λpkNN(c|s, t′) + (1− λ)pNFR(c|s, t′)

where the value of λ depends on the specific kNN-
MT method being used and those procedures are
presented in section A. Here, pNFR(c|s, t′) repre-
sents the output probability of c when s concate-
nated with t′ is input to the trained NFR model,
while pkNN(c|s, t′) represents the output probabil-
ity via kNN-MT methods. They are calculated as
below:

p∗(c|s, t′) =
∏

c(l)∈c
p∗(c

(l)|s, t′, c(<l))

where p∗(c
(l)|s, t′, c(<l)) represents the output

probability at the l-th step of decoding, c(<l) rep-
resents the token sequence already output at the
l-th step, and c(l) represents the token output by the
decoder at the l-th step.

6 Experiment

6.1 Datasets

In this paper, we use English-Japanese (en-ja)
dataset of Asian Scientific Paper Excerpt Cor-
pus (Nakazawa et al., 2016) (ASPEC), which is ex-
tracted from scientific papers, and English-French
(en-fr) dataset of EU bookshop Corpus (Skadin, š
et al., 2014) (EUbookshop), which is compiled
from publications sourced from diverse European
institutions available on the EU bookshop website.
As for the EUbookshop dataset, it is downloaded

from the OPUS website3, and we randomly sam-
pled 1,000,000 sentence pairs for training, 2,000
sentences for validation, and 2,000 sentences for
testing. In our experiments, we solely employ the
training data as the TMpara. Additionally, we uti-
lize the target language sentences of all the data, ex-
cluding the validation and test sets, as the TMmono.
Table 2 shows the detailed size of these datasets.

ASPEC EUbookshop
English→Japanese English→French

training 100,000 1,000,000
validation 1,790 2,000

test 1,812 2,000
TMpara 100,000 (En-Jp) 1,000,000 (En-Fr)
TMmono 2,000,000 (Jp) 8,421,120 (Fr)

Table 2: Number of sentences in training, validation and
test datasets (According to the experiments conducted
by Morishita et al. (2022) and the research findings of
Neubig (2014), we perform experiments using a subset
of 2 million sentences which exhibits higher alignment
scores from original ASPEC training dataset.)

During the preprocessing stage of the data, we
utilize MeCab4 and Moses5 to tokenize Japanese
sentences and English&French sentences, respec-
tively. Furthermore, the preprocessing module of
fairseq6 (Ott et al., 2019) in version 0.10.1 is used
to split the tokens into sub-words via byte pair en-
coding (BPE) (Sennrich et al., 2016).

6.2 Experiment Setting

For the reranking process, we use the NFR model
trained with 2-best similar translations7 for generat-
ing 32 candidates, a number determined by valida-
tion data, as the evaluation metrics for the reranking
process tend to converge with this candidate count.

We employ the Vanilla Transformer (Vaswani
et al., 2017) from fairseq 0.10.1, which consists
of 6 layers for both the encoder and decoder with
512 hidden dimensions, 2048 dimensions in the
feedforward layers and 8 multi-heads. In addition,
we utilize a warm-up of 6,000 steps for ASPEC,
and 8,000 steps for EUbookshop, while train 30
epochs with a batch size of 96 sentences.

3https://opus.nlpl.eu/
4https://github.com/neologd/

mecab-ipadic-neologd
5https://www.statmt.org/moses/
6https://github.com/facebookresearch/fairseq
7According to the description in Section B, since the mod-

els trained with the 2-best similar translations demonstrate
higher performance in most cases, we choose it as the founda-
tion for subsequent editing and reranking steps.

https://opus.nlpl.eu/
https://github.com/neologd/ mecab-ipadic-neologd
https://github.com/neologd/ mecab-ipadic-neologd
https://www.statmt.org/moses/
https://github.com/facebookresearch/fairseq


(a) Result of ASPEC

Retrieval Edit

sacreBLEUbase COMETbase

Average time for inference
per sentence (sec.)

w/o
Reranking

w/Reranking w/o
Reranking

w/Reranking

Q(Proposed) Oracle Q(Proposed) Oracle

Transformer
w/o Retrieval

w/NMT 24.51 - - 0.9206 - - 0.0145
w/vanilla-kNN 24.83 - - 0.9228† - - 0.0175
w/robust-kNN 25.42† - - 0.9236† - - 0.0192

Transformer
w/ed

w/NFR 24.54 26.59 31.37 0.9218 0.9395 0.9444 1.0190
w/vanilla-kNN 24.66 26.95† 31.60† 0.9231† 0.9402 0.9451 1.0880
w/robust-kNN 25.23† 27.41† 31.86† 0.9250† 0.9407† 0.9455† 1.1443

Transformer
w/LaBSE

w/NFR 25.01 27.41 33.42 0.9240 0.9465 0.9527 0.9470
w/vanilla-kNN 25.44 27.59 33.58 0.9251† 0.9465 0.9530 1.0019
w/robust-kNN 25.71† 28.24† 33.98† 0.9267† 0.9480† 0.9537† 1.0519

(b) Result of EUbookshop

Retrieval Edit

sacreBLEUbase COMETbase

Average time for inference
per sentence (sec.)

w/o
Reranking

w/Reranking w/o
Reranking

w/Reranking

Q(Proposed) Oracle Q(Proposed) Oracle

Transformer
w/o Retrieval

w/NMT 26.57 - - 0.6445 - - 0.0210
w/vanilla-kNN 26.86† - - 0.6478† - - 0.0278
w/robust-kNN 27.61† - - 0.6535† - - 0.0311

Transformer
w/ed

w/NFR 26.70 26.84 26.98 0.6424 0.6451 0.6473 1.7973
w/vanilla-kNN 26.95 27.06† 27.23† 0.6476† 0.6509† 0.6528† 2.0148
w/robust-kNN 27.42† 27.70† 27.86† 0.6533† 0.6568† 0.6588† 2.1205

Transformer
w/LaBSE

w/NFR 28.29 29.33 33.49 0.6519 0.6837 0.7092 1.2153
w/vanilla-kNN 28.68† 30.37† 33.93† 0.6520 0.6849† 0.7129† 1.4328
w/robust-kNN 29.16† 30.44† 34.04† 0.6573† 0.6875† 0.7129† 1.5385

Table 3: Experiment results of the translation models with reranking methods (sacreBLEUbase and COMETbase

represent the models that achieve the highest scareBLEU score or COMET22 score on the validation data. “w/o
Reranking” represents that no reranking has been performed. “Oracle” represents that the reference translation is
used to identify the candidate with the highest value for the evaluation metric. † for significant (p<0.05) difference
with “w/NMT” or “w/NFR” in each retrieval method in each row. “Average time for inference” represents the
average time required for the final output of each method, where, in the case of “w/o Retrieval”, it does not include
the processes of candidate generation and reranking, while in “w/ ed or LaBSE”, these two processes are included.")

For the implementation of kNN-MT methods,
we use the kNN-BOX8 provided by Zhu et al.
(2023). All the experiments are conducted on two
NVIDIA RTX A6000 GPUs.

6.3 Result
As in Figure 4, “NFR” represents the proportion of
noisy similar translations when generating output
translations by the NFR model, and we utilize 32
similar translations used for candidate generation
to perform an analysis of Noisy Similar Transla-
tion (NST). For ASPEC, without considering the
kNN-MT methods, it can be observed that the noise
percentages of LaBSE is lower than ed. However,
for the EUbookshop, due to the inadequacy of 32
similar translations by ed, some source sentences
lack concatenated similar translations, resulting in
that their output translations are the same as the
benchmark translation, causing the low rate MRoN.

After applying the kNN-MT methods for noise
reduction, there is a decreasing trend in the MRoN
for two retrieval methods. In most cases, regardless
of evaluation method, with the edit of Robust kNN-
MT, the similar translations exhibit the lowest noise
level for both ed and LaBSE.

8https://github.com/NJUNLP/knn-box

The result of all the experiments with different
retrieval and edit methods is shown in Table 39. We
employ sacreBLEU and COMET22 for evaluation.
For sacreBLEU, we utilize mteval10 to perform sig-
nificance test (p<0.05) by bootstrap method with
resampling 1,500 samples 1,000 times, while for
COMET22, the comet-compare11 module is used
for the t-test method.

As we employ the 32 output translations for
NST (Noisy Similar Translation) analysis, which
simultaneously serves as the 32 translation can-
didates for reranking, we combine the results of
MRoN and translation accuracy for discussion. The
Robust kNN-MT method, which exhibits the least
noise in most cases, also achieves the highest trans-
lation accuracy. Furthermore, for EUbookshop,
when evaluated using COMET22, the MRoN of
editing with the Vanilla kNN-MT is lower than edit-
ing with the Robust kNN-MT for LaBSE, while the
Robust kNN-MT outperforms the Vanilla kNN-MT

9Although we omit the detailed results for Q(Tamura) and
Q(COMET21) for brevity, Q(Proposed) achieves the highest
translation accuracy, where significant improvements over
Q(Tamura) and Q(COMET21) are observed.

10https://github.com/odashi/mteval
11https://unbabel.github.io/COMET/html/running.

html

https://github.com/NJUNLP/knn-box
https://github.com/odashi/mteval
 https://unbabel.github.io/COMET/html/running.html
 https://unbabel.github.io/COMET/html/running.html


Figure 4: Results of Mean Rate of Noise (MRoN).

in both sacreBLEU and COMET22.

6.4 Speed of Translation System

As in Table 3, the speed of the Retrieve-Edit-
Rerank Framework is notably slower than normal
NMT model or kNN-MT methods. This disparity
arises from the additional processes of retrieval and
reranking introduced in the former. The methods
using the LaBSE model is slightly faster compared
to using edit-distance for retrieval. This is because
the LaBSE model utilizes Faiss for retrieval on
GPU, whereas ed relies on CPU. Compared to
NMT/NFR models, after applying the kNN-MT
methods, the overall time consumption increases
due to the additional time required for loading data-
store and k nearest neighbors searching. Further-
more, the Robust-kNN method, building upon the
Vanilla-kNN approach, incorporates two additional
networks, resulting in even longer inference times.

6.5 Domain Analysis of Noisy Similar
Translation

In this section, we aim to investigate whether the
translation accuracy damaged by NST is corre-
lated with differences in the domain of the source
sentence by human evaluation. We conduct sep-
arate random samplings of 100 NST and non-
NST (nNST) samples12 from both the ASPEC and
EUbookshop datasets. The result is shown in Ta-
ble 4. After employing a chi-squared test to discern
whether there is a relationship between NST and
the domain, the p-values for the ASPEC and EU-

12We require the sentence-BLEU of each NST sample to be
less than that of the benchmark translation minus 10, while that
of each nNST sample to be more than that of the benchmark
translation plus 10.

(a) ASPEC
In domain Out of domain Total

NST 54 46 100
nNST 52 48 100
Total 100 100 200

(b) EUbookshop

In domain Out of domain Total
NST 55 45 100
nNST 57 43 100
Total 100 100 200

Table 4: Domain Analysis of NST and non-NST (nNST)

bookshop dataset are determined to be 0.7773 and
0.7760. Therefore, it cannot be considered that
the domain is a significant factor causing similar
translations to be classified as NST13.

7 Conclusion

This paper introduces the kNN-MT method in the
Edit stage of the Retrieve-Edit-Rerank framework,
effectively addressing the issue caused by noisy
similar translations, and enhancing the accuracy
in reranking phase. Additionally, a novel rerank-
ing function is proposed, which surpasses previous
research with higher precision.

13We observe that even in cases where nNST not belong-
ing to the same domain as the source sentence can lead to
improvement of translation accuracy. This may be attributed
to a higher degree of cross-lingual alignment between source
sentence and nNST, albeit lacking domain vocabulary in these
alignments. Similarly, for NST, we notice that translation accu-
racy can decrease even when the source sentence is within the
same domain. We suggest that this could be due to a situation
where although domain-specific terms align, the alignment
of common vocabulary is relatively weaker, resulting in an
overall reduction in translation precision.
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training dataset (s, t) ∈ (S, T ), the datastore is
created as below:
(K,V) =⋃

(s,t)∈(S,T )

{(f(t(l)|s, t(<l)), t(l)), ∀t(l) ∈ t
∣∣∣ (s, t) ∈ (S, T )}

Prediction During the prediction of Vanilla kNN-
MT, given a source sentence x, the NMT model
can output a target sentence y with l-th token y(l)

in every generation step. Moreover, the generated
hidden representation f(y(l)|x, y(<l)) in each step
is used to query the datastore for the k nearest
neighbors N (l) according to squared-L2 distance
d.

N (l) = {(hi, vi), i = 1, 2, . . . , k}

where vi represents the i-th token retrieved from
the datastore and hi denotes its corresponding key
vector.

Finally, the distribution by Vanilla kNN-MT over
the vocabulary is calculated as follows:

pkNN(y
(l)|x, y(<l)) ∝∑

(hi,vi)∈N (l)

1y(l)=vi
exp(

−d(hi, f(y
(l)|x, y(<l)))

T
) (1)

where T indicates the temperature, and d rep-
resents squared-L2 distance. The final output
probability consisting of pNMT(y

(l)|x, y(<l)) and
pkNN(y

(l)|x, y(<l)) is computed as below:

p(y(l)|x, y(<l)) = λpkNN + (1− λ)pNMT

where pNMT indicates the output probability by the
NMT model and λ is the interpolation.

A.2 Robust kNN-MT
As for Robust kNN-MT(Jiang et al., 2022), which
exhibits superior robustness in handling scenarios
with considerable noise presenting in the datastore,
and achieves the state-of-art accuracy among all
kNN-MT methods, comprises two newly trained
networks: the Distribution Calibration (DC) net-
work and the Weight Prediction (WP) network.
The DC network leverages the output distribution
of the NMT model as ground truth to calibrate the
kNN-MT distribution, and the WP network works
on estimating the weight λ(l) for combining these
two distributions to form the final output. The
distribution by Robust kNN-MT is computed as
follows:

pkNN(y
(l)|x, y(<l))

∝
∑

(hi,vi)∈N (l)

1y(l)=vi
exp(

−di

T (l)
+ c

(l)
i )

where di indicates the squared-L2 distance between
hi and f(y(l)|x, y(<l))), T (l) and c

(l)
i are the output

parameters from the DC network for each step of
token generation. The final output distribution by
Robust kNN-MT is computed as follows:

p(y(l)|x, y(<l)) = λ(l)pkNN + (1− λ(l))pNMT

where λ(l) is also calculated for each step of gener-
ation by the WP network.

All the hyperparameters of kNN-MT methods
are fine-tuned on the validation data, and we in-
clude all of them in Table 7.

B Detailed Experiment Settings and
Results

We employ three retrieval methods to search for
n-best similar translations for each source sentence,
and subsequently train the NFR model, while “w/o
Retrieval” represents the NMT model trained with-
out similar translations. Specifically, for instance,
when training with the 2-best similar translations,
the input format is defined as below:

• 2-best format:
input 0 : s⟨sep⟩
input 1 : s⟨sep⟩t′1
input 2 : s⟨sep⟩t′2

where t′i represents the similar translation ranked
at the top-i in terms of similarity, and input 0 rep-
resents the scenario that the source sentence is not
concatenated with any similar translation, which
makes the implementation of generating a bench-
mark translation in Section 4.2 for the judgment of
noisy similar translations become reasonable.

For the trained NFR model, we use the strategy
of concatenating the source sentence in the test
data with its top-1 similar translation as the input
for the inference step. As depicted in Table 5, in
most cases, the approach of training with the 2-best
similar translations achieves the highest accuracy.
Therefore, we employ the NFR model trained with
the 2-best similar translations retrieved via these
three methods for the subsequent Edit and Candi-
date Generation steps.



n-best Similar Translations ASPEC EUbookshop

Training Inference
En→Jp En→Fr

scareBLEUbase COMET22base scareBLEUbase COMET22base

w/o Retrieval 0-best - 24.51 0.9206 26.57 0.6445

1-best 24.60 0.9234 27.21† 0.6482†

w/ed
2-best

top 1
24.54 0.9218 26.70 0.6424

3-best 24.32 0.9222 26.42 0.6401
4-best 24.50 0.9210 26.28 0.6395
1-best 24.43 0.9237 27.51† 0.6489†

w/LaBSE
2-best

top 1
25.01† 0.9240† 28.29† 0.6589†

3-best 24.78 0.9222 27.52† 0.6497†

4-best 24.74 0.9199 27.38† 0.6477†

Table 5: Experiment results of the training and inference (For different retrieval methods, the translation models
are trained by concatenating from zero to up to four similar translations for each source sentence, while 0-best
represents the situation for “w/o Retrieval”. However, during the inference stage, only the similar translation with
the highest similarity is concatenated to the test sentence as the input. († for significant (p < 0.05) difference with
“w/o Retrieval”. ))

Retrieval Edit
ASPEC EUbookshop

Sentence-BLEUbase COMET22base Sentence-BLEUbase COMET22base

ed
MRoN of NFR 0.4196 0.4097 0.2263 0.2217
MRoN of NFR w/Vanilla-kNN 0.4134 0.3970 0.2250 0.2210
MRoN of NFR w/Robust-kNN 0.3961 0.3880 0.2210 0.2174

LaBSE
MRoN of NFR 0.3894 0.3812 0.3638 0.3599
MRoN of NFR w/Vanilla-kNN 0.3801 0.3672 0.3615 0.3546
MRoN of NFR w/Robust-kNN 0.3634 0.3510 0.3588 0.3551

Table 6: Results of Mean Rate of Noise (MRoN). (“MRoN of NFR” represents the average of Rate of Noise (RoN)
among the 32 similar translations retrieved for each test sentence. “MRoN of NFR w/kNN-MT method” represents
the average RoN of the 32 output translations obtained from 32 similar translations, which were edited using
kNN-MT methods and still judged as noisy similar translations. Sentence-BLEU and COMET22 are metrics utilized
as indicators to assess whether a similar translation is considered noise. In the table, the smaller the values are, the
smaller number of similar translations are identified as noise. The portion marked with an underline denotes the
minimum value for each retrieval method, while the bold text for the minimum value among all the editing methods
used.)

Retrieval Edit
ASPEC EUbookshop

λ k T α0 β λ k T α0 β

Transformer
w/o Retrieval

w/NMT - -
w/vanilla-kNN 0.1 8 10 - - 0.1 16 10 - -
w/robust-kNN - 16 - 1.0 100 - 16 - 1.0 1,000

Transformer
w/ed

w/NFR - -
w/vanilla-kNN 0.1 8 10 - - 0.1 16 10 - -
w/robust-kNN - 16 - 1.0 100 - 16 - 1.0 1,000

Transformer
w/LaBSE

w/NFR - -
w/vanilla-kNN 0.1 8 10 - - 0.1 8 5 - -
w/robust-kNN - 16 - 1.0 100 - 16 - 1.0 1,000

Table 7: The respective hyperparameters of the kNN-MT methods used in the experiments


