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Abstract

Domain adaptation through fine-tuning is a
well-established strategy to tailor a neural net-
work model trained on a general-domain for a
specific target-domain. During the fine-tuning
process, the parameters of the model are up-
dated while keeping the general-domain tok-
enizer unchanged. However, this tokenizer is
trained on general-domain data and hence, not
entirely optimal for the target-domain. Pre-
vious research has shown that simultaneously
updating a tokenizer during training a model
can enhance the performance of tasks such as
classification and machine translation. Build-
ing on this concept, our objective is to enhance
translation performance in the target-domain by
jointly adapting the tokenizer during both pre-
training and fine-tuning. Our results demon-
strate that domain adaptation of the tokenizer
enables the acquisition of a suitable tokenizer
for target-domain translation, resulting in im-
proved translation performance for domain-
specific inputs.

1 Introduction

The neural machine translation (NMT) model
achieves state-of-the-art translation performance
in scenarios where abundant resources are avail-
able (Bojar et al., 2017; Nakazawa et al., 2017).
However, the NMT model has limitations when
it comes to accurately translating sentences from
domains that differ significantly from those of the
training data (Koehn and Knowles, 2017). Fur-
thermore, high-quality training of an NMT model
requires a large amount of parallel data, which
is only available for a few specific domains. To
overcome this problem, domain adaptation—the
process of adapting a model to a target-domain—is
employed. Luong and Manning (2015) fine-tuned a
NMT model with a small amount of target-domain
data and demonstrated that this approach improves
translation performance for target-domain inputs.

src The electrophotographic process is widely applied ...

ULM _The/_electro/pho/t/ographic/_process/_is/_widely/applied/...

Tgt _The/_electro/pho/t/ographic/_process/_is/_widely/applied/...

Gen→Tgt _The/_electro/photo/graph/ic/_process/_is/_widely/applied/...

(a) Segmentations by tokenizers trained using each method.

ref 電子写真プロセスは， ... 広く応用されている。

✗ ULM .../広く/応用/さ/れ/て/いる/。

✗ Tgt 電気/泳動/法/は/，/.../広く/応用/さ/れ/て/いる/。

✓ Gen→Tgt 電子/写真/プロセス/は/，/.../広く/応用/さ/れ/て/いる/。

(b) Translations from the model trained using each method.
The input for each model is the output from (a).

Table 1: Results of tokenization and En-Ja translation.
ULM: general-domain tokenization. Tgt: trained only
on target-domain data. Gen→Tgt (proposed): simulta-
neous domain adaptation of tokenization and translation.
“ ...” is an omission symbol, and “_” is a space symbol.

In domain adaptation, the tokenizer is typi-
cally left unchanged during fine-tuning (Figure 1a).
However, previous studies have demonstrated that
appropriate tokenization varies depending on sev-
eral factors, and adapting a tokenizer could enhance
task performance (Xu et al., 2008; Chang et al.,
2008; Nguyen et al., 2010; Hiraoka et al., 2020).
We hypothesize that using a suitable tokenizer for
target-domain translation has the potential to en-
hance translation performance in that domain.

In this study, our objective is to improve transla-
tion performance for a target-domain through do-
main adaptation of a tokenizer and a translation
model. Initially, we pre-train the tokenizer with a
large amount of general-domain data using joint
optimization of a tokenizer and a translation model
(OpTok4AT) (Hiraoka et al., 2021). Then, we fine-
tune the tokenizer and the translation model with a
small amount of target-domain data. We evaluate
the effectiveness of our approach through experi-
ments on English–Japanese (En-Ja) and English–
German (En-De) domain-specific translation tasks.



(a) Conventional domain adaptation of only a translation
model in machine translation tasks.

(b) Domain adaptation of a translation model and a tokenizer
in machine translation tasks.

Figure 1: Outline of (a) conventional domain adaptation
and (b) proposed method．

Our results demonstrate that domain adaptation of
a tokenizer achieves suitable tokenization for trans-
lation in a target-domain, such as the medical field,
resulting in improved translation performance in
that domain. Table 1 illustrates an example of how
the proposed method enhances tokenization and
translation. The proposed method has been shown
to prevent mistranslation and untranslation.

We summarize our main contributions as fol-
lows:

• We propose simultaneous domain adaptation
of a tokenizer and a translation model to en-
hance translation performance for a target-
domain.

• We demonstrate the effectiveness of our
method in En-Ja and En-De translation tasks.
Our experiments demonstrate that an addi-
tional pre-training of a few epochs is sufficient
for pre-training the generic tokenizer.

• Our analysis reveals that the adapted tokenizer
splits target-domain-specific words into sub-
words that are semantically appropriate and
suitable for translation.

2 Related Work

2.1 Optimization of Subword Tokenization

In many NLP tasks, subwords, which are units
smaller than words, have proven to be effective in
handling unknown words and rare words (Sennrich
et al., 2016; Song et al., 2021). Kudo (2018) pro-
posed a subword tokenization method based on a
unigram language model (ULM). In this method,
a sentence s is transformed into a series of sub-
words s′ = w1, ..., wI such that the likelihood (the
product of unigram probabilities from ULM) is
maximized. This method trains a tokenizer based
on the given training data using EM algorithm, and
the tokenizer does not change while the model is
trained.

Various methods have been proposed to automat-
ically optimize a tokenizer based on a task (Salesky
et al., 2020; He et al., 2020; Hiraoka et al., 2020).
Recently, Hiraoka et al. (2021) proposed Op-
Tok4AT. This method comprises a tokenizer and
a model and trains them simultaneously in an
end-to-end manner. It uses a neural unigram lan-
guage model (NULM) as a tokenizer; NULM is
a ULM comprising a neural network. They re-
ported improved performance in several tasks, in-
cluding a machine translation task. However, they
did not pre-train tokenizers and translation models
on general-domain data, but trained them only on
target-domain data. It is unclear whether domain
adaptation of a tokenizer improves the performance
of a target-domain translation model; hence, we
verify it.

2.2 Domain Adaptation of NMT

Previous studies have proposed several domain
adaptation methods for NMT. For example, Fre-
itag and Al-Onaizan (2016) trained a model on
large data and then fine-tuned it on small target-
domain data. They reported improvements in the
translation performance on the target-domain. Chu
et al. (2017) proposed mixed fine-tuning, which
combines general-domain data and target-domain
data to fine-tune a model on these data. However,
in both studies, only the model parameters are up-
dated through domain adaptation, and the tokenizer
is fixed. As tokenization affects translation per-
formance, we propose simultaneous domain adap-
tation of a tokenizer and a translation model to
improve the translation performance on the target-
domain.



3 Simultaneous Domain Adaptation of a
tokenizer and a translation model

This section provides an overview of the NULM
used as the tokenizer and the procedure for do-
main adaptation of the tokenizer using OpTok4AT.
Figure 1b illustrates the simultaneous domain adap-
tation process for the tokenizer and the translation
model.

First, the NULM vocabulary V is initialized us-
ing ULM (Kudo, 2018). In NULM, the unigram
probability p(w) is computed for each subword w
in the vocabulary V using scalar values dw based
on the word embedding vw and the multilayer per-
ceptron MLP(·) as follows:

dw = MLP(vw) (1)

p(w) =
exp(dw)∑

ŵ∈V exp(dŵ)
(2)

NULM updates its parameters based on losses in
tasks such as machine translation.

Second, we employ OpTok4AT to train the tok-
enizers. In current NLP research, it is common to
use publicly available pre-trained models, whose
tokenizers are fixed. Following this trend, we in-
vestigate two possibilities: (1) training a tokenizer
in both pre-training and fine-tuning steps and (2)
using a general-domain tokenizer with additional
pre-training and fine-tuning. Our proposed meth-
ods are as follows:

Gen→Tgt In this setting, we train a tokenizer
during pre-training and fine-tuning. The pro-
cess consists of three steps. First, we train a
ULM (Kudo, 2018) on general-domain data. We
use the ULM to initialize the vocabulary of NULM.
Second, we pre-train a NULM and a translation
model on general-domain data. Third, we fine-tune
the tokenizer and the translation model using target-
domain data.

Gennep-Tok→Tgt / Gennep→Tgt We perform
additional pre-training on general-domain data
for n epochs after pre-training a translation
model. This setting follows the same processes
as Gen→Tgt, except for the second step. In the sec-
ond step, we pre-train a translation model solely on
general-domain data while keeping the tokenizer
fixed. Then, we additionally pre-train either the
tokenizer alone (Gennep-Tok→Tgt) or both the to-
kenizer and the translation model (Gennep→Tgt)
using general-domain data.

4 Experiment

4.1 Settings

Datasets As general-domain data, we used
JParaCrawl v3.0 (Morishita et al., 2020, 2022) for
En-Ja translation and ParaCrawl v9 (Esplà et al.,
2019) for En-De translation. We extracted eight
million sentence pairs per language pair from the
entire data as training data. As target-domain data,
we used IWSLT2017 (Cettolo et al., 2017) and AS-
PEC (Nakazawa et al., 2016) for En-Ja translation
and IWSLT2017 and EMEA (Tiedemann, 2012)
for En-De translation. IWSLT is created from TED
talks, ASPEC from scientific and technical papers,
and EMEA from medical documents. We randomly
down-sampled the training data of ASPEC and
EMEA to match the number of sentences in the
IWSLT training data, approximately two hundred
thousand. Following the methodology described
in the previous study (Hiraoka et al., 2021), we
trained the ULM using SentencePiece (Kudo and
Richardson, 2018) after applying MeCab (Kudo,
2006) (IPA dictionary) for the Japanese side and
Moses tokenizer (Koehn et al., 2007) for the En-
glish and German sides. All the tokenizers had a
vocabulary size of 32,000.

Training settings We used Trans-
former (Vaswani et al., 2017) (base) as the
translation model 1. To validate the effectiveness
of simultaneous domain adaptation of the tokenizer
and the translation model, we compared the
proposed method with three baselines: ULM,
Gen, and Tgt. These baselines correspond to
settings in which the tokenizer is fixed during both
pre-training and fine-tuning, fine-tuning only, and
pre-training only, respectively. Table 2 summa-
rizes the settings for each method 2. We trained
tokenizers for the source and target languages
simultaneously. Subword regularization (Kudo,
2018; Provilkov et al., 2020) was applied in all
settings.

Evaluation settings We evaluated the transla-
tion performance of each method using automatic
and human evaluations. For automatic metrics,
we used BLEU (Papineni et al., 2002) with Sacre-

1Our implementation is based on the existing code:https:
//github.com/tatHi/optok4at

2We present the settings without pre-training the transla-
tion model in Appendix A

https://github.com/tatHi/optok4at
https://github.com/tatHi/optok4at


En-Ja En-De

Setting
Pre-train Add Pre-train Fine-tune IWSLT ASPEC IWSLT EMEA

TM Tok TM Tok TM Tok bleu comet bleu comet bleu comet bleu comet

ULM ✓ ✓ 14.83 0.118 27.51 0.634 26.06 0.463 35.17 0.533
Gen ✓ ✓ ✓ 14.94 0.119 27.24 0.634 26.37 0.466 35.19 0.532
Tgt ✓ ✓ ✓ 14.40 0.092 27.12 0.626 26.23 0.462 34.92 0.529
Gen→Tgt ✓ ✓ ✓ ✓ 15.16 0.126 27.68 0.641 26.58 0.473 35.52 0.541

Gen2ep→Tgt ✓ ✓ ✓ ✓ ✓ 14.72 0.104 27.27 0.630 26.16 0.463 35.12 0.524
Gen3ep→Tgt ✓ ✓ ✓ ✓ ✓ 14.96 0.113 27.53 0.634 26.48 0.468 35.30 0.528
Gen4ep→Tgt ✓ ✓ ✓ ✓ ✓ 14.97 0.121 27.71 0.638 26.46 0.470 35.26 0.526
Gen5ep→Tgt ✓ ✓ ✓ ✓ ✓ 15.01 0.125 27.64 0.641 26.59 0.475 35.45 0.538

Gen5ep-Tok→Tgt ✓ ✓ ✓ ✓ 14.97 0.120 27.29 0.636 26.43 0.467 35.43 0.533

Table 2: Automatic metrics scores of baselines and our proposed method for each target-domain data. “TM” and
“Tok” represent the translation model and the tokenizer, respectively. The “✓” represents training the relevant
component. “Add Pre-train” means additional pre-training, as mentioned in Section 3. Note that we use general-
domain data in the “Pre-train” and “Add Pre-train” processes and target-domain data in the “Fine-tune” process.

BLEU 3 (Post, 2018) and COMET 4 (Rei et al.,
2020) and reported the average score over three
seeds. For human evaluation, we performed a pair-
wise comparison of the translations of ULM and
Gen→Tgt for En-Ja translation based on two at-
tributes: adequacy and fluency. We randomly sam-
pled 100 outputs per method in each target-domain
data for human evaluation. Tie was allowed, and
system identifiers were shuffled and masked dur-
ing annotation. We evaluated each output by two
annotators 5 and reported the average results.

4.2 Results
Automatic evaluation Table 2 shows BLEU
and COMET scores for each target-domain
data. The experimental results demonstrate that
Gen→Tgt achieving the highest scores. These re-
sults indicate that simultaneous domain adaptation
of a tokenizer and a translation model improves
translation performance for target-domain inputs.
Conversely, Tgt performed poorly compared with
ULM except in terms of the BLEU score on IWSLT
(En-De). This result suggests that it is insufficient
to train a tokenizer (NULM) using only a small
amount of target-domain data.

In the settings where additional pre-training
is performed, the BLEU and COMET scores of
Gen5ep-Tok→Tgt are higher than those of Tgt
but lower than those of Gen→Tgt. The scores
of Gennep→Tgt improve progressively with each
epoch and are similar to those of Gen→Tgt after

3https://github.com/mjpost/sacrebleu
4https://github.com/Unbabel/COMET
5They are native Japanese speakers and students pursuing

a Masters in NLP.

five epochs. These results indicate that additional
pre-training of the general-domain tokenizer of a
pre-trained model can improve translation perfor-
mance in the target-domain. Moreover, during ad-
ditional pre-training, updating both the tokenizer
and the translation model further improves transla-
tion performance compared to just updating only
a tokenizer. The translation performance improve-
ment with additional pre-training of a small number
of epochs can be attributed to the tokenizer be-
ing based on MLP and having a simpler structure
than the translation model. These results indicate
that our approach works well for converged mod-
els trained with a fixed tokenizer, such as publicly
available pre-trained models.

Human evaluation Figure 2 shows the results
of human evaluations for each En-Ja target-domain
data. Regarding adequacy, Gen→Tgt outputs are
preferred over ULM outputs by more than ten
points in both target-domain data. In terms of flu-
ency, Gen→Tgt and ULM outputs are comparable.
Moreover, we report the results of a confusion ma-
trix and Cohen’s Kappa (Cohen, 1960) between the
two annotations to measure inter-rater reliability.
Figure 3 shows the confusion matrix between an-
notators’ evaluations for each attribute. In terms
of adequacy, the evaluations of the two annotators
often agree whether on ULM, Tie and Gen→Tgt,
and Kappa is 0.746 on IWSLT and 0.707 on AS-
PEC. According to Landis and Koch (1977), we
can determine that the two annotations are substan-
tially consistent and highly reliable. Conversely, in
terms of fluency, the evaluations of the two annota-
tors often agree only on Tie and not much on the

https://github.com/mjpost/sacrebleu
https://github.com/Unbabel/COMET


Figure 2: Head-to-head comparison of ULM and Gen→Tgt outputs for En-Ja translation in terms of adequacy and
fluency.

Figure 3: Confusion matrix between the annotators’ evaluations for each attribute.

others, and Kappa is 0.372 on IWSLT and 0.177
on ASPEC, which are fair and slight agreement
rates, respectively. This finding could be attributed
to the tendency of ULM and Gen→Tgt to have
lower fluency, making them equivalent, and differ-
ences in the annotator’s preference might account
for the disparities in evaluations. These results
indicate that the proposed method improves the
translation performance of target-domain data in
terms of adequacy but not fluency. We suppose that
the improvement in adequacy is driven by enabling
a suitable tokenization for the target-domain. We
analyze this in Section 5.1.

5 Discussion

5.1 Examples of tokenization and translation
In this section, we analyze how tokenizers alter
segmentation through domain adaptation and how
these changes subsequently lead to improving trans-
lation performance. Table 1 presents examples
of tokenization and translation for three settings:
ULM, Tgt, and Gen→Tgt. We focus on the string
“The electrophotographic process,” which is written
as “電子写真プロセス” in Japanese. While ULM
and Tgt tokenize “electrophotographic” as “_elec-
tro / pho / t / ographic,” Gen→Tgt tokenizes it as

“_electro / photo / graph / ic.” Consequently, the
translation of the relevant part remains untranslated
in ULM 6 and is incorrectly translated as “電気
泳動法,” meaning “The electrophoresis method,”
in Tgt, whereas Gen→Tgt produces the correct
translation. This result suggests that domain adap-
tation enables the tokenizer to tokenize in-domain
words into appropriate subwords for translating
target-domain data. Therefore, acquiring a suitable
tokenizer for the target-domain leads to improved
translation performance.

5.2 Changes in tokenizers by fine-tuning

We also analyze how the tokenizer, pre-trained on
general-domain data, changes when fine-tuned on
target-domain data.

Subwords with a large increase in unigram prob-
ability Our analysis indicates that fine-tuning a
tokenizer on target-domain data increases the uni-
gram probability of subwords that play an impor-
tant role in the target-domain. Tables 3 and 4 show
the subwords with a substantial increase in uni-
gram probability after fine-tuning the tokenizer on

6Therefore, the ULM translation in Table 1 does not in-
clude a part corresponding to “電子写真プロセス.”



IWSLT ASPEC

En Ja En Ja

_verifi TED ic ラーゼ (-lase)
_obsess プリ (pre, pri) _augment ED
_sounds シティ (-city, -sity) _defect _SYN

Table 3: Top three subwords exhibiting a significant
increase in unigram probability due to fine-tuning during
En-Ja translation.

IWSLT EMEA

En De En De

_boost _Sch g kin
_sup liz _mugg tro
ory rie ara ati

Table 4: Top three subwords exhibiting a significant
increase in unigram probability due to fine-tuning during
En-De translation.

target-domain data for En-Ja and En-De translation,
respectively.

On the Japanese side of IWSLT, there is a notable
increase in the unigram probability of “TED.” 7 As
IWSLT is a corpus derived from TED talk subtitles,
texts containing the word “TED” frequently appear
in the training data, approximately 900 times. In
the ASPEC training data, adjectives with the suffix
“ic,” such as “magnetic,” are commonly encoun-
tered, leading to an increased unigram probability
of “ic” on the English side.

On the German side of EMEA, the most signifi-
cant increase in unigram probability is observed for
“kin.” The EMEA training data include the term
“pharmakokinetik,” a word specific to the medi-
cal field, which occurs frequently (approximately
1,500 times). Tokenizing this word into “pharmako
/ kin / etik” is considered a semantically reasonable
segmentation. Moreover, medical words ending in
“kin,” such as “Interleukin” and “Hodgkin,” are fre-
quent, indicating that “kin” is a subword that plays
an important role on the German side of EMEA.
On the English side, the largest increase in unigram
probability is seen for “g.” As EMEA pertains to
the medical domain, many sentences describe the
mass of drugs and other substances. Therefore,
mass units such as “g,” “mg,” and “ng” appear fre-
quently in EMEA.

7“TED” is used here instead of “_TED” because “_TED” is
not registered in the vocabulary. This is due to the vocabulary
being based on JParaCrawl, which has few words that begin
with “TED” and many that contain or end with “TED.”

En-Ja En-De

IWSLT ASPEC IWSLT EMEA

source（En） 0.98 4.29 0.52 6.68
target（Ja/De） 0.11 0.18 0.35 6.13

Table 5: Percentage of sentences in which tokenization
changed due to fine-tuning of tokenizers．

Percentage of sentences with changed tokeniza-
tion Table 5 presents the percentage of sentences
that exhibit different tokenization when comparing
the pre-trained tokenizer trained on general-domain
data with the fine-tuned tokenizer trained on target-
domain data. Notably, in the En-Ja language pair,
the difference in tokenization is more prominent
in ASPEC compared to IWSLT. This result can be
attributed to the fact that the domain of ASPEC is
more dissimilar to the domain of JParaCrawl than
the domain of IWSLT (Appendix C), resulting in
greater changes in the tokenizer after fine-tuning.

Similarly, for the En-De language pair, the per-
centage of sentences with altered tokenization is
higher in EMEA than in IWSLT. These findings
indicate that as the target-domain corpus becomes
more distinct in its characteristics (further deviating
from the general-domain), the tokenizer undergoes
more significant changes during the fine-tuning pro-
cess. Even in the case of EMEA, which exhibits
the highest percentage, the change in tokenization
is relatively low at 6.68 %. This result indicates
that the tokenizer does not change considerably by
fine-tuning and also retains knowledge learned in
general-domain. Consequently, these results sug-
gest that fine-tuning the tokenizer on target-domain
data requires slight adjustments to enhance transla-
tion performance.

6 Conclusion

This study proposed simultaneous domain adapta-
tion of a tokenizer and a translation model. The ex-
periments demonstrated that the proposed method
improved the translation performance of the model
on target-domain data by training a suitable tok-
enizer for the target-domain. We also found that
the proposed method works well for a pre-trained
translation model with additional pre-training of
the general-domain tokenizer.

Several studies have demonstrated that pre-
trained masked language models (MLMs), such as
BART (Lewis et al., 2020) and MASS (Song et al.,
2019), enhance translation performance. However,



we did not investigate whether our approach works
well when the task of pre-training is different from
that of fine-tuning. In the future, we will verify
whether our approach can improve translation per-
formance when using pre-trained MLMs.
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A Without Pre-training

Table 6 presents the BLEU scores for each target-
domain data in scenarios where we do not pre-train
the tokenizer and the translation model (i.e., we
train them only on target-domain data). The exper-
imental result demonstrate that the performance in
the setting in which the tokenizer is trained only
on target-domain data tends to be lower compared
to the setting in which the tokenizer is not trained.
This observation aligns with the trend described
earlier.

En-Ja En-De

TM Tok IWSLT ASPEC IWSLT EMEA

✓ 12.06 25.99 22.78 28.42
✓ ✓ 11.87 25.65 22.92 28.22

Table 6: BLEU scores for each target-domain data in
each setting, without pre-training the tokenizer and the
translation model.

B Analysis of Human Evaluation

In this section, we present examples of inter-rater
agreement in human evaluation. Table 7 presents
examples in which Gen→Tgt is better than ULM
in human evaluations. Gen→Tgt is evaluated su-
perior to ULM based on translation of “spinal bi-
fida.” While ULM tokenizes “bifida” as “_b/ifi/da,”
Gen→Tgt tokenizes it as “_bi/fi/da.” Although
“bifida” is a rare word, Gen→Tgt can translate it
correctly by splitting it into “_bi/fi/da,” and learn-
ing the meaning of “_bi” etc. from other words. On
the other hand, table 8 presents examples in which
ULM are better than Gen→Tgt in human evalu-
ations. ULM is evaluated superior to Gen→Tgt
based on translation of “azoospermic men.” This
result could be achieved because the subwords that
constitute azoospermic do not often appear in the
training data of target-domain data, and their mean-
ings cannot be learned correctly.

C Domain Distance of the Corpora

This section discusses the remoteness of the cor-
pus domain utilized in this study. In accordance
with Aharoni and Goldberg (2020), we extracted
the vectors of the hidden layer of the pre-trained
BERT model for each source-side sentence in the
corpus. These vectors were then subjected to a
2D visualization using PCA. The results of this vi-
sualization for each language pair are presented
in Figures 4 and 5. Figure 4 demonstrates that

there is a significant overlap between the sentences
in IWSLT and JParaCrawl, whereas most of the
sentences in ASPEC do not overlap with those in
JParaCrawl. This observation indicates that the do-
main of ASPEC is more distant from JParaCrawl
compared to IWSLT. Similarly, Figure 5 suggests
that EMEA, as a domain, is further removed from
ParaCrawl than IWSLT.

Figure 4: 2D visualization of the BERT hidden layer for
the En-Ja dataset using PCA.

Figure 5: 2D visualization of the BERT hidden layer for
the En-De dataset using PCA.



src
From clinical laboratory findings, pathohistological findings and image examination findings, linear scleroderma with spinal bifida was
diagnosed.

ULM
_From/_clinical/_laboratory/_findings/_,/_path/oh/ist/ological/_findings/_and/_image/_examination/_findings/_,/_linear/_s/cle/rod/er/ma/
_with/_spin/al/_b/ifi/da/_was/_diagnos/ed/_.

Gen→Tgt
_From/_clinical/_laboratory/_findings/_,/_path/oh/ist/ological/_findings/_and/_image/_examination/_findings/_,/_linear/_s/cle/rod/er/ma/
_with/_spin/al/_bi/fi/da/_was/_diagnos/ed/_.

(a) Segmentations by tokenizers trained using each method.

ref 臨床検査所見，病理組織学的所見及び画像検査所見から，二分脊椎を合併した線状強皮症と診断した。

✗ ULM 臨床/検査/所見/,/病理/組織/学/的/所見/,/画像/検査/所見/から/,/脊髄/線/状/強/皮/症/と/診断/し/た/。

✓ Gen→Tgt 臨床/検査/所見/,/病理/組織/学/的/所見/および/画像/検査/所見/から/,/二/分/脊椎/を/有する/線形/強/皮/症/と/診断/し/た/。

(b) Translations from the model trained using each method. The input for each model is the output from (a).

Table 7: Examples in which Gen→Tgt translation is better than ULM translation in human evaluations. “_” is a
space symbol.

src In some azoospermic men, the region of a Y chromosome including a heat shock transcription factor on a Y chromosome (HSFY) is lost.

ULM
_In/_some/_a/zo/os/per/mic/_men/_,/_the/_region/_of/_a/_Y/_chromosome/_including/_a/_heat/_shock/_transcription/_factor/_on/_a/_Y/
_chromosome/_(/_HS/FY/_)/_is/_lost/_.

Gen→Tgt
_In/_some/_/az/oo/s/per/mic/_men/_,/_the/_region/_of/_a/_Y/_chromosome/_including/_a/_heat/_shock/_transcription/_factor/_on/_a/_Y/
_chromosome/_(/_HS/FY/_)/_is/_lost/_.

(a) Segmentations by tokenizers trained using each method.

ref 一部の無精子症の男性はＹ染色体上熱ショック転写因子（ＨＳＦＹ）を含むＹ染色体の領域を消失している。

✓ ULM
幾つ/か/の/アゾスペルマミック/男性/で/は/,/Y/染色/体/(/HSFY/)/上/の/熱/ショック/転写/因子/を/含む/Y/染色/体/の/領域/が/失わ
/れ/て/いる/。

✗ Gen→Tgt Y/染色/体/(/H/SFY/)/上/の/熱/ショック/転写/因子/を/含む/Y/染色/体/の/領域/が/失わ/れる/こと/が/ある/。

(b) Translations from the model trained using each method. The input for each model is the output from (a).

Table 8: Examples in which ULM translation is better than Gen→Tgt translation in human evaluations. “_” is a
space symbol.


