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Abstract

There are several ways of implementing
multilingual NLP systems but little con-
sensus as to whether different approaches
exhibit similar effects. Are the trends that
we observe when adding more languages
the same as those we observe when shar-
ing more parameters? We focus on en-
coder representations drawn from modu-
lar multilingual machine translation sys-
tems in an English-centric scenario, and
study their quality from multiple aspects:
how adequate they are for machine trans-
lation, how independent of the source lan-
guage they are, and what semantic infor-
mation they convey. Adding translation di-
rections in English-centric scenarios does
not conclusively lead to an increase in
translation quality. Shared layers increase
performance on zero-shot translation pairs
and lead to more language-independent
representations, but these improvements
do not systematically align with more se-
mantically accurate representations, from a
monolingual standpoint.

1 Introduction

Multilinguality, within the scope of neural NLP,
can mean either ensuring that computations for dif-
ferent languages are homogeneous, or ensuring that
models are trained with data coming from different
languages. These two definitions are not as equiv-
alent as they might appear: for instance, modular
architectures, where some parameters are specific
to a single language, can only be conceived as mul-
tilingual under the latter definition.

Both of these trends have been explored across
multiple works. Machine translation studies have
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looked into sharing no parameters at all (Escolano
et al., 2021; Lyu et al., 2020), sharing across lin-
guistically informed groups (Fan et al., 2021; Pura-
son and Tättar, 2022), sharing only some compo-
nents across all languages (Dong et al., 2015; Fi-
rat et al., 2016; Vázquez et al., 2020; Liao et al.,
2021; Zhu et al., 2020; Kong et al., 2021; Black-
wood et al., 2018; Sachan and Neubig, 2018; Zhang
et al., 2021), and sharing the entire model (John-
son et al., 2017). Concerns about multilinguality
have spearheaded research on how to make repre-
sentations and systems more reliable for typolog-
ically and linguistically diverse data (Bojanowski
et al., 2017; Adelani et al., 2022), the distinction
between multilingual and monolingual represen-
tations (Wu and Dredze, 2020), the specificity of
massively-multilingual representations (Kudugunta
et al., 2019) or the effects of having more diverse
data (Arivazhagan et al., 2019; Aharoni et al., 2019;
Costa-jussà et al., 2022; Siddhant et al., 2022; Kim
et al., 2021; Voita et al., 2019). In this paper, we
study whether these different implementations of
multilinguality yield qualitatively different types of
representations—in other words: Are the effects of
parameter sharing orthogonal to those of adding
new languages?

To broach this question, we make three simplify-
ing assumptions. First, we only consider the task
of multilingual machine translation—an exhaustive
study of the impact of all multilingual NLP tasks
is beyond the scope of this paper. Moreover, mas-
sively multilingual language models are known to
leverage parallel data to enhance semantic abstrac-
tions (Hu et al., 2021; Ouyang et al., 2021; Kale
et al., 2021). Second, we only consider parameter
sharing in the last layers of the encoders: we fo-
cus on the intermediary representations acquired
directly after the encoder and leave decoders for
future study. As language selection tokens would
compromise the language independence of the rep-
resentations, this rules out fully shared decoders.
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Third, we focus on an English-centric scenario: i.e.,
all translation directions seen during training con-
tain English as a source or target language. While
such an approach is not without issues (Gu et al.,
2019; Zhang et al., 2020), it makes it possible to
select translation directions for zero-shot evalua-
tions in a principled manner. Furthermore, most
multilingual translation datasets are highly skewed
in any case and contain orders of magnitude more
English examples (e.g., Costa-jussà et al., 2022).

We conduct our study by testing encoder out-
puts on three aspects: task fitness, language inde-
pendence and semantic content. These features
have been discussed in earlier literature: probing
pretrained language models for semantic content
in particular has proven very fecund (e.g., Rogers
et al., 2021; Doddapaneni et al., 2021). As for ma-
chine translation, these studies are less numerous,
although similar aspects have been investigated
(Raganato and Tiedemann, 2018). For instance,
Kudugunta et al. (2019) study how the learned
representations evolve in a multilingual scenario,
whereas Vázquez et al. (2020), Raganato et al.
(2019) or Mareček et al. (2020) focus on the use of
multilingual-MT as a signal for learning language.
As we will show, studying representations under
different angles is required in order to highlight the
differences underpinning distinct implementations
of multilinguality.1

2 Experimental setup

2.1 Datasets

We focus on datasets derived from the OPUS-100
corpus (Zhang et al., 2020), built by randomly
sampling from the OPUS parallel text collection
(Tiedemann, 2012). We construct datasets contain-
ing 3, 6, 9, 12, 24, 36, 48, 60 and 72 languages
other than English and refer to them as opus-03,
opus-06, and so on. To test the impact on the
model performance when adding languages, we
build the datasets with an incremental approach, so
that smaller datasets are systematically contained
in the larger ones. Languages are selected so as to
maximize the number of available datapoints—for
training, zero-shot evaluation and probing—as well
as linguistic diversity. See Appendix A for details.
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Figure 1: Example model architectures for varying
number of shared encoder layers s. Modules with a
light grey background are language-specific, mod-
ules with a dark grey background are fully shared.

2.2 Models

We train modular sequence-to-sequence Trans-
former models (Escolano et al., 2021), with 6 layers
in the encoder and the decoder. Decoders are sys-
tematically language-specific, whereas encoders
contain s ∈ {0, . . . , 6} fully-shared layers on
top of 6− s language-specific layers, as shown in
Figure 1. We train distinct models for each value
of s and each dataset; due to the computational
costs incurred, we consider s ≥ 2 only in com-
bination with datasets up to opus-12, as well as
opus-36. Models vary along two axes: models
trained on larger datasets are exposed to more lan-
guages, whereas models with higher values of s
share more parameters. When training models over
a dataset, we consider the translation directions
L-to-English, English-to-L, and a L-to-L denois-
ing task, for all languages L in the dataset.2 The
noise model for the denoising auto-encoding ob-
jective follows Lewis et al. (2020). An illustration
of opus-03 models is shown in Figure 1. Training
details are given in Appendix B

3 Experiments

3.1 Task fitness: Machine Translation

The first aspect we consider is the models’ perfor-
mance on machine translation. We report BLEU
scores in Figure 2. Where relevant, we also include
supervised results for translation directions present
in opus-06 so as to provide comparable scores.3

1Code available at: https://github.com/
Helsinki-NLP/FoTraNMT/tree/who-would-win.

2I.e., a model trained over the opus-n dataset is trained
over 3n tasks: 2n translation tasks, plus n denoising tasks for
languages other than English.

3Note that all available zero-shot translation directions are
systematically present in opus-06 and all larger datasets.
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Figure 2: Average BLEU scores

The most obvious trend present is that models
trained on opus-03 with s ≥ 5 underfit, and per-
form considerably worse than their s < 5 counter-
part. Otherwise, models with an equivalent number
of shared layers s tend to perform very reliably
across datasets: e.g., across all supervised transla-
tion directions we tested, we found that the maxi-
mum variation in BLEU scores for s < 2 was of
±4.8.4 In Figure 2b, we also observe consistent
improvement on zero-shot translation when increas-
ing the number of shared layers s from 0 to 4, and
for opus-36 this trend only breaks when the full
stack is shared (s = 6). Lastly, results in Figure 2a
suggest that adding more translation directions de-
creases zero-shot translation performances, but this
trend seems to reverse when a significant number of
layers are shared (s > 3), as displayed in Figure 2b.
In all, under the setup we consider here, it appears
that task fitness and zero-shot generalization are
best achieved by sharing more parameters, rather
than adding translation directions—although ex-

4See also Aharoni et al. (2019) or Conneau et al. (2020).

cessive sharing also impacts performances.5

3.2 Language Independence: XNLI
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Figure 3: Average XNLI macro-f1 scores

To test to what degree encoder representa-
tions are language-independent, we train classifier
probes on XNLI (Conneau et al., 2018). We train
models on English and report results for all lan-
guages: the gap between English and non-English
performances quantifies how language-dependent
the representations are. We report macro-f1 on the
validation split; if no such split is available, we
randomly select 10% instead. See Appendix C for
details.

Figure 3 underscores that our English-centric
scenario prevents language-independent encoder
representations: English targets fare better than
their counterparts. Variation seems driven by the
number of shared parameters: in Figure 3a, models
with s = 1 outperform models with s = 0, whereas
in Figure 3b, higher values of s tend to close the gap
between English and other targets. Interestingly,

5Previous fully-shared models achieved high zero-shot
performances, e.g. Johnson et al. (2017).
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Figure 4: Average macro-f1 scores (z-scaled) on NLU monolingual tasks

higher values of s yield lower f1 scores in smaller
datasets, both for English and other languages. In
particular, we observe a drop for all languages on
opus-03 with s > 4, matching the underfitting we
saw in Section 3.1; this trend is also attested in
all datasets except opus-36. But on the whole, a
greater number of shared parameters leads to more
language-independent representations.

3.3 Semantic Content: NLU benchmarks

To verify the semantic contents captured by our rep-
resentations, we test them on monolingual GLUE-
style benchmarks. We focus on benchmarks for
languages present in opus-03: Arabic (ALUE,
Seelawi et al. 2021), Chinese (CLUE, Xu et al.
2020), English (GLUE, Wang et al. 2018) and
French (FLUE, Le et al. 2020). We select tasks
that can be learned using a simple classifier; see
Table 4 in Appendix C for a full list of the mono-
lingual classification tasks considered. We follow
the same methodology as in Section 3.2.

Results are displayed in Figure 4. Instead of
plotting raw macro-f1 scores, we first z-normalize
them so as to convert them to a comparable scale.
Looking across datasets (Figures 4a to 4d), we do
not see a clear variation; at best, we can argue
English performances improves when using more
language pairs. This is consistent with the English-
centric scenario under which we trained our models.
Arabic and Chinese results would suggest that s =
1 models fare better than s = 0 models, but this
trend does not carry on convincingly for French.

Comparing across number of shared layers (Fig-

ures 4e to 4h) suggests this trend might be more
complex: all languages tend to lose in accuracy for
higher values of s, and this effect is all the more
pronounced for non-English languages and models
trained on smaller datasets. For instance, the opti-
mal number of shared layers for Chinese is either
s = 3 or s = 4, depending on the task under con-
sideration and the number of language pairs in the
training dataset, but the gain over s < 3 models is
minimal. This differs crucially from what we ob-
served in Section 3.1, where only s = 6 impacted
BLEU scores, and in Section 3.2, where there was a
clear improvement from low to mid values of s. In
sum, probing encoder representations for their se-
mantic contents paints a more nuanced picture, one
where semantic accuracy does not clearly align
with task fitness or language-independence.

4 Conclusions

We have studied whether different means of achiev-
ing multilinguality—sharing parameters and mul-
tiplying languages—bring about the same effects.
What transpires from our experiments is that the
two means are not equivalent: we generally observe
higher performances and more reliable represen-
tations by setting the optimal number of shared
parameters. Crucially, this optimum depends on
the criteria chosen to evaluate representations: ma-
chine translation quality (Section 3.1), language
independence (Section 3.2) and semantic accuracy
(Section 3.3) all differed in that respect.

These two approaches are not dichotomous: it is
possible to both scale the number of languages and
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select optimal parameter sharing. What is possible
may however not be practical. As guidance to NLP
practitioners, we recommend spending effort on
tuning the level of parameter sharing for the task
at hand. Sharing either too little (0–1 layers in our
experiments) or too much (sharing the entire en-
coder) results in sub-optimal performance overall,
but the optimal number of layers to share depends
on the task. Spending significant effort on acquir-
ing data for additional language pairs may not yield
improved representations past the initial stages of
data collection (opus-03 in our experiments).
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A Selected Languages

When constructing larger datasets, we select the
additional languages based on four criteria:

(a) maximise the number of datapoints available
for training

(b) the presence of zero-shot translation test sets

(c) the existence of XNLI data for the languages

(d) maximize language diversity in the dataset

The information we considered is listed in Table 1,
with the exception of criterion (b): only languages
in opus-03 and opus-06 are relevant to this crite-
rion.

ISO 2 Dataset Train size XNLI

ar opus-03 1,000,000 ✓

fr opus-03 1,000,000 ✓

zh opus-03 1,000,000 ✓

de opus-06 1,000,000 ✓

nl opus-06 1,000,000 ✓

ru opus-06 1,000,000 ✓

th opus-09 1,000,000 ✓

tr opus-09 1,000,000 ✓

vi opus-09 1,000,000 ✓

bg opus-12 1,000,000 ✓

el opus-12 1,000,000 ✓

es opus-12 1,000,000 ✓

bn opus-24 1,000,000 –
eu opus-24 1,000,000 –
fa opus-24 1,000,000 –
fi opus-24 1,000,000 –
he opus-24 1,000,000 –
id opus-24 1,000,000 –
it opus-24 1,000,000 –
ja opus-24 1,000,000 –
ko opus-24 1,000,000 –
lv opus-24 1,000,000 –
mk opus-24 1,000,000 –
sv opus-24 1,000,000 –

bs opus-36 1,000,000 –

(Continued on next column)

(Continued from previous column)

ISO 2 Dataset Train size XNLI

cs opus-36 1,000,000 –
et opus-36 1,000,000 –
hu opus-36 1,000,000 –
is opus-36 1,000,000 –
lt opus-36 1,000,000 –
mt opus-36 1,000,000 –
ro opus-36 1,000,000 –
sk opus-36 1,000,000 –
sq opus-36 1,000,000 –
sr opus-36 1,000,000 –
uk opus-36 1,000,000 –

ca opus-48 1,000,000 –
da opus-48 1,000,000 –
hr opus-48 1,000,000 –
mg opus-48 590,771 –
ml opus-48 822,746 –
ms opus-48 1,000,000 –
no opus-48 1,000,000 –
pl opus-48 1,000,000 –
pt opus-48 1,000,000 –
si opus-48 979,109 –
sl opus-48 1,000,000 –
ur opus-48 753,913 –

af opus-60 275,512 –
cy opus-60 289,521 –
eo opus-60 337,106 –
ga opus-60 289,524 –
gl opus-60 515,344 –
gu opus-60 318,306 –
hi opus-60 534,319 –
ka opus-60 377,306 –
ne opus-60 406,381 –
nn opus-60 486,055 –
sh opus-60 267,211 –
xh opus-60 439,671 –

as opus-72 138,479 –
az opus-72 262,089 –
br opus-72 153,447 –
km opus-72 111,483 –
ku opus-72 144,844 –
nb opus-72 142,906 –
pa opus-72 107,296 –
rw opus-72 173,823 –
ta opus-72 227,014 –
tg opus-72 193,882 –
uz opus-72 173,157 –
wa opus-72 104,496 –

(Continued on next column)
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(Continued from previous column)

ISO 2 Dataset Train size XNLI

Table 1: Languages selected matched with the first
sub-dataset they appear in

B Hyperparameters & Training details

Hyperparameters Models were trained for a to-
tal of 100K steps to minimize the negative log-
likelihood of the target translation. We accumu-
late gradients over all translation directions before
back-propagation. We optimize our models using
AdaFactor (Shazeer and Stern, 2018).

Training occurred on SLURM clusters of A100
NVIDIA GPUs. Each GPU contains the param-
eters for 3 languages (i.e., 9 translation direc-
tions); groups of 4 GPUs form a node. In other
words, models for opus-03 were trained on a sin-
gle A100 GPU, whereas models for opus-72 were
trained over 24 A100 GPUs, distributed across 6
nodes. We did not go beyond opus-72 because
this matches the largest setup in the computing
cluster we used for our experiments. Using the
modular training approach with unlimited compute
resources, the ideal setup in terms of throughput
would contain only one translation direction per
GPU as it would allow concurrent training of all
translation directions. However, this can intro-
duce larger communication overheads unless all
communication calls are not also performed asyn-
chronously and concurrently. A detailed study as-
sessing the training performance, including com-
munication overheads, remains a subject for future
work. In this study, all individual models were
trained under 36 hours, cf. table 2.

s = 0 s = 1

opus03 1 day 08:15:00 1 day 09:46:00
opus06 1 day 03:55:00 1 day 04:08:00
opus09 1 day 04:04:00 1 day 03:44:00
opus12 1 day 04:08:00 1 day 11:25:00
opus24 1 day 04:44:00 1 day 04:37:00
opus36 1 day 05:32:00 1 day 05:43:00
opus48 1 day 05:46:00 1 day 06:30:00
opus60 1 day 05:40:00 1 day 06:02:00
opus72 1 day 05:53:00 1 day 06:21:00

Table 2: Models runtimes

Hyperparameters shared across all models are
shown in Table 3; they were set a priori so as to

not use the validation split of opus-100, as it has
been reported to significantly overlap with the test
set (Yang et al., 2021). Input data is pre-tokenized
using language-specific sentence piece models with
32,000 pieces, except for Chinese and Japanese,
where we use 64,000 pieces.

Parameter Value

src.seq. length 200
tgt.seq. length 200
subword type sentencepiece
mask ratio 0.2
replace length 1
batch size 4,096
batch type tokens
normalization tokens
valid batch size 4,096
max generator batches 2
encoder type transformer
decoder type transformer
rnn size 512
word vec size 512
transformer ff 2,048
heads 8
dec layers 6
dropout 0.1
label smoothing 0.1
param init 0.0
param init glorot true
position encoding true
valid steps 500,000
warmup steps 10,000
report every 50
save checkpoint steps 25,000
keep checkpoint 3
accum count 1
optim adafactor
decay method none
learning rate 3.0
max grad norm 0.0
seed 3435
model type text

Table 3: Set of hyper-parameters shared across all
our models

C Classifiers training procedure

In Sections 3.2 and 3.3, we train classifier probes to
investigate the information contained in the encoder
spaces. All classifiers correspond to two-layer per-
ceptrons with a hidden layer size of 128, dropout
applied to the input layer, and trained with Adam
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(Kingma and Ba, 2015) to optimize cross-entropy.
We define sentence embeddings by simply taking
the sum of the encoder output vectors; the input
features of the classifiers are the concatenation of
these sentence embeddings. For each set of tar-
gets, we train 10 classifiers with different random
seeds and report the mean and standard deviation of
macro-f1 scores. In Section 3.2, we set the learning
rate for XNLI to 5 · 10−5 with a dropout of p = 0.1
and use minibatches of 100 examples. Note that
we consider each language in XNLI as a different
set of targets, and therefore use different classifiers
to compute macro-f1 scores.

Dataset Task Size

ar

NSURL-2019 Task 8 question similarity 10,797
OSACT4 Task-A offensive speech detection 6,839
OSACT4 Task-B hate speech detection 6,839

en

COLA linguistic acceptability 8,551
MRPC sentence similarity 3,668
QNLI NLI 104,743
QQP question similarity 363,846

fr

PAWSX paraphrase detection 49,399
STSB paraphrase detection 5,749
XNLI NLI 392,702

zh

AFQMC question similarity 34,334
CMNLI NLI 391,783
TNEWS news topic classification 53,360

Table 4: NLU monolingual classification tasks

The classification tasks selected for studying the
semantic contents of encoder representations in
Section 3.3 are shown in Table 4. Due to the limited
number of usable tasks in FLUE, we also include
a STSB French translation6 which we binarize by
considering similarity judgments > 3 as indicat-
ing near-paraphrases. Classifiers discussed in Sec-
tion 3.3 are trained for 10 epochs with a dropout
of 0.1 and a learning rate of 5 · 10−5, using mini-
batches of 100 datapoints. We reduced the number
of epochs to 5 for all Arabic tasks and used mini-
batches of 10 examples for the OSACT4 shared
tasks A & B due to the longer length of the training
examples.

D Limitations

D.1 Material Limitations
As stated in the introduction, we make multiple
explicit assumptions that limit the scope of this
research. It is plausible that parameter-sharing in
the decoder or that replicating our experiments in a

6https://huggingface.co/datasets/stsb_multi_mt

non-English-centric scenario will yield a different
set of conclusions.

Also worth highlighting are the computational re-
quirements underlying this work: the most demand-
ing experiments require up to 24 A100 NVIDIA
GPUs. A side-effect of these demanding computa-
tional requirements is that we have not been able
to replicate model training across multiple seeds,
and therefore report results based on a single model
per dataset and number of shared layers. It is also
plausible that greatly scaling up the total number
of parameters in the networks would affect the con-
clusions.

Lastly, our use of classifiers to probe for lan-
guage independence and semantic contents of the
representations can be discussed. We have avoided
discussing the raw performances of our classifiers,
and instead discussed the trends that we observed
across our different MT models. Results from our
classifiers should be taken as indicators of the as-
pects we are trying to probe, rather than accurate
measures of said aspects: replication studies and
further evidence from other settings would be re-
quired to establish our models’ performances on
the criteria we outlined.

D.2 Ethics Considerations
In the present paper, we have argued against adding
languages if practical implementation costs are a
relevant constraint. We acknowledge that this rec-
ommendation may push NLP researchers and en-
gineers towards constructing models specifically
for high-resource languages, which would further
the coverage gap between low- and high-resource
languages.

Nonetheless, it must be stressed that our experi-
ments say nothing of linguistic diversity, as we have
ensured that even our smallest dataset (opus-03)
would contain maximally different languages. Also
relevant to the discussion at hand is that one sce-
nario where practical implementation costs are a
known constraint is that of developing low-resource
languages systems and NLP tools. We believe that
providing evidence as to which approach is most
effective can prove valuable in such scenarios as
well, so as to ensure that efforts can be focused
on the most viable path towards endowing lower-
resource languages with more efficient and suitable
tools.
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