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5Eötvös Loránd University, Doctoral School of Informatics
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Abstract

An entire generation that predominantly used
email for official communication throughout
their lives is about to leave behind a signif-
icant amount of preservable digital heritage.
Memory institutions in the USA (e.g. Internet
Archive, Stanford University Library) recog-
nised this endeavor of preservation early on,
therefore, available solutions are focused on
English language public archives, neglecting
the problem of different languages with differ-
ent encodings in a single archive and the het-
erogeneity of standards that have changed con-
siderably since their first form in the 1970s.
Since online services enable the convenient
creation of email archives in MBOX format it
is important to evaluate how existing tools han-
dle non-homogeneous longitudinal archives
containing diverse states of email standards, as
opposed to often archived monolingual pub-
lic mailing lists, and how such data can be
made ready for research. We use distant read-
ing methods on a real-life archive, the legacy
of a deceased individual containing 11,245
emails from 2010 to 2023 in multiple lan-
guages and encodings, and demonstrate how
existing available tools can be surpassed. Our
goal is to enhance data homogeneity to make
it accessible for researchers in a queryable
database format. We utilise rule-based meth-
ods and GPT-3.5 to extract the cleanest form
of our data.

1 Introduction

We live in a time when many people’s email corre-
spondence is preserved as a digital legacy. As these
people have mostly used email for official com-
munication throughout their lives (because of their
habits) it is possible to look back over the majority
of their electronic written communication (Jaillant,

2019). However, such digital email legacy raises a
number of moral and legal questions. For example,
data protection and privacy legislation, such as the
General Data Protection Regulation (GDPR) (Eu-
ropean Union, 2016), demands a challenging com-
pliance process and encourages institutions not to
implement long-term preservation for their own
safety, which may become a relevant issue in the
future. Furthermore, in most cases, there is not nec-
essarily a complete separation between private and
corporate emails (Cocciolo, 2016; Srinivasan and
Baone, 2008). While from the technical perspec-
tive, email has undergone many changes since its
inception and has become heterogeneous in terms
of standards and implementation (Partridge, 2008),
which makes longitudinal archives difficult to pro-
cess, analyse and aggregate.

While different tools can be used to create e-
mail archives in different formats (Digital Preser-
vation Coalition and Prom, 2019) in our case it is
assumed that the mail archive is already available
as an MBOX file (e.g. Google Takeout or sim-
ilar services). We got legal authorisation to use
(without publishing partially or fully) a real-life
email archive of a deceased public figure’s corre-
spondence (Hungarian, Romanian, English) for our
pilot study to uncover and solve possible technical
difficulties. Our aim was to create a methodology
that could successfully process a real-life MBOX
file that contains a longitudinal correspondence and
produce an output that could be searched, visual-
ized, and analyzed by researchers interested in the
author’s official communication.

2 Evaluation of the Available Tools

Several tools exist for processing MBOX archives
and all of them are built by adopting alternative ap-
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proaches with specific perspectives in mind. Since
these approaches are very diverse, each tool has its
own strengths and weaknesses which should not be
ignored when pursuing our goal (Carlson, 2020).
In this section, we introduce a selection of the tools
we evaluated (divided into two classes) before we
decided to write our own.

For each test we used two MBOX files. One
is an artificially created demo MBOX file (Willi-
son, 2022b) containing only two emails. It lacks
misspelled emails, notifications, circulars, returned
error messages from mailer-daemons (i.e. mail
delivery systems), etc. The other is the aforemen-
tioned real-life MBOX file that we want to process
covering more than one decade and therefore con-
taining many of the errors mentioned above.

All examined tools more or less handle the im-
portant metadata headers (FROM, TO, CC, BCC,
SUBJECT, DATE, etc.) but most of them fail when
it comes to decoding the textual data that particular
email bodies contain. We can classify these tools
into two main classes: a) those often abandoned
and only half done, and b) the complex monolith
solutions of institutions that are hard to use without
appropriate expertise. We will use this classifica-
tion in the rest of this chapter.

The first group of programs (Vestal, 2018; Willi-
son, 2022a; Sharma and Bhattacharya, 2023; Mi-
neev, 2021; Juopperi, 2016) promises to process
MBOX files and insert the output into various data
formats (e.g. CSV, JSON, SQL) for further process-
ing. For the artificial data set, this group of tools
worked well but with our non-artificial test data,
they failed to produce usable output (i.e. contained
raw undecoded string fragments e.g. in Quoted-
Printable or Base64 form) if any. We examined the
root cause of the errors and it turned out that these
programs apply false assumptions and are beyond
repair. In general, if one wants to process a very
complex data set, their use is not recommended
without technical expertise, and we decided it was
better to start with a clean slate.

For people without technical skills, viewing
an MBOX file in Mozilla Thunderbird or MBOX
Viewer is a great opportunity to interact with the
data (i.e. read it), as these tools are halfway be-
tween the two mentioned groups: they can handle
non-artificial data and do not require expertise (nei-
ther technical nor archiving) to operate. However,
we found that the export functionality of MBOX
Viewer is half broken: it can produce a CSV file

for our non-artificial data set, but we could not
properly load it with MS Excel or LibreOffice Calc
probably because the garbled delimiters, limiting
further deeper analysis. We assumed that it did
not escape characters with syntactical meaning in
tabular format, breaking the data structure.

In the second group, we tested two well-
established solutions that promise more than ex-
tracting MBOX to common data formats. Mail-
bagit (University at Albany, 2023b) can import
various kinds of email archives and convert them
to MAILBAG format (University at Albany, 2023a)
while exporting the data to other formats (TXT,
WARC, PDF, etc.). For our non-artificial data set it
yielded a lot of error messages, but could produce
a good CSV file with the mandatory metadata and
individual files for the payload of each message.
When necessary it uses automatic character encod-
ing detection but detects absurd encodings (e.g.
Turkish code page), and there is no way to correct
such mistakes manually due to its complexity.

ePADD (Stanford University’s Special Collec-
tions, 2021; Schneider et al., 2019) is developed by
the Stanford University Library primarily for En-
glish email archives. It offers various features for
importing data and allows you to choose how and
from where to import it. The same errors were iden-
tified as in Mailbagit, but it offered no possibilities
for manual repair. It is a comprehensive solution
when it comes to email archiving and is the most
advanced tool we could find for those who possess
archiving expertise but lack technical skills.

In the long run, the bugs may be fixed in some of
the aforementioned programs by their maintainers.
However, as they did not fit our primary goals, we
decided to implement our own lightweight solution
for this specific archive which can be easily ex-
tended with little technical skills if an error occurs
while processing other archives.

3 Our method

To accommodate storing a sequence of multiple
emails, the format of raw MBOX data contains
encoded fragments, i.e. one-byte long ASCII char-
acters with no syntactical meaning chunked into 80-
byte long lines, which allows easy handling. Non-
ASCII byte sequences are encoded by a binary-
to-text encoding scheme such as Quoted-Printable
or Base64 which when decoded returns the origi-
nal values (i.e. string or binary) of the individual
emails. One email record is composed of multiple
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case-insensitive key-value-style (standard and non-
standard) headers and the payload consisting of
recursively embedded payload parts (e.g. HTML,
text, or binary attachment). To get the character
representation of non-ASCII, byte-represented text
segments, bytes need to be decoded with the sup-
plied character encoding. In some cases, no or
wrong character encoding was specified e.g. binary
data erroneously has character encoding. We used
the built-in email module of Python which contains
utility functions for most of the aforementioned
steps. Proceeding carefully from the headers to
the payload we realised they posed different chal-
lenges, therefore in the following, we discuss them
separately.

3.1 Headers

We gathered the frequency distribution of all head-
ers and their values in a case-insensitive manner.
This showed us the irregularities of the data and the
non-standard headers which were to be normalised
or ignored. We classified headers into three types
which we identified by the name of their keys: a)
date, b) plain text, and c) address list.

The date values in some cases contained lo-
calised human-readable statements on the time-
zone – sometimes with additional character en-
coding errors – or contained timezone informa-
tion in a form that was not handled by Python
(-0000 instead of +0000 for UTC time). For-
tunately, there is a specific built-in function
(email.utils.parsedate to datetime()) in the email
module that handles all but the negative UTC case
which we replaced beforehand.

The email.header.decode header() built-in func-
tion did the heavy lifting on decoding the above-
mentioned binary-to-text encoded plain text chunks
while keeping the data in bytes form with their spec-
ified character encoding because only binary-to-
text encoding is safely decipherable. The returned
chunks had to be converted to character strings
with our own code using the supplied character en-
coding and handling possible encoding errors. In
some cases, the built-in function did not return any
character encoding. This either meant strings were
already decoded (i.e. were in string type) or it was
left up to us to interpret the remaining bytes-type
part (in our case all of which were in ASCII). Fi-
nally, string chunks needed to be concatenated to
restore the original value.

The address sequences could be uniformly split

with the email.utils.getaddresses() function to
name-address pairs (the format defined in the email
standards). However, this function leaves the de-
coding of the binary-to-text data to the user, there-
fore, the aforementioned decoding heuristics had
to be reused here.

These methods cover the common header types,
which are required for average use cases. Our pro-
gram lets the user include or map non-standard
headers at will for special use cases (e.g. thread-id,
delivered-to, etc.) as they probably do not need
extra decoding steps.

3.2 Payload

The email payload is recursively built from parts.
Nowadays, most emails’ body is in HTML, but
have a plain-text variant as a separate part which
may or may not represent the same textual content
as the HTML. Binary parts are also common due to
attachments or inline elements (e.g. images) which
HTMLs are often augmented with. These compo-
nents are stored as individual payload parts, but are
difficult to distinguish them. As our goal was to
extract text only we could ignore attachments and
inline binary blobs. However, according to the stan-
dards only one of the HTML or plain text content
is required – but both are allowed and commonly
used side by side –, therefore we decided to keep
all textual information and examine them later.

For each payload part, we created a table of
values of the available features (which can be ex-
tracted by the built-in functions) to define the be-
haviour of our program by inspecting the groups of
values. The used features are listed in Table 1.

Name Value
filename str/None
is multipart True/False
content type MIME-type/None
payload bytes+encoding/None
content charset str/None
content disposition str/None
has parts True/False

Table 1: Features used to classify payload parts

We found significant connections between the
features. Some were expected1, but others were
not. For example, content disposition turned out to
be unusable as it had inconsistent values, therefore,

1is multipart and has parts had the same values: when
they were True payload was None.
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we used the filename instead. Besides that, con-
tent type were missing in some cases, so we had to
utilise libmagic to detect one. We broke down the
data set into the following classes (Table 2.):

Class name Action

multipart
recurse on
subparts

filename is not None
attachment,
ignore

content charset is None
and not text MIME-type

inline image,
ignore

content charset is None
and text MIME-type

text
w/o encoding

content charset is not None
and strange MIME-type

textual data
(CSV, iCal, etc.)

not multipart
and no filename and
content charset is not None
and text MIME-type

proper text

Table 2: Payload class-action pairs

4 Using GPT for Curation

The remaining problems turned out to be the re-
sult of non-standard behaviour, which was easier
to solve with a solution more capable of handling
semi-structured data, therefore we chose to use
GPT-3.5 (Ouyang et al., 2022) (to facilitate afford-
able reproducibility) adopting a few-shot method-
ology (see Appendix A.1.). Upon replying to, or
forwarding an email the old text is separated by
the main metadata of the email (in string form for-
matted in a non-standard, language-specific way)
from the new text which is usually written at the
top of the email body, however, in some cases at
the discretion of the user, the reply is inlined (in-
serted between the lines of the old email). This
process often results in concatenated email-body
texts requiring separation. To solve these issues,
we identified the following tasks: a) decoding the
use of non-standard string form metadata inside the
email body, and b) separating concatenated email-
body texts. Furthermore, we also used GPT-3.5 to
fix the remaining edge-case encoding errors that
were caused by “lossy” decoding (e.g. replacement
characters, omitting faulty byte sequences, incor-
rectly decoded characters).

GPT-3.5 performed best on metadata extraction,
where it was able to extract FROM and TO ad-
dresses, dates, and SUBJECT strings even with sim-

ple prompts. Handling concatenated email-body
texts, however, proved to be a more difficult task,
therefore, for testing their separation accuracy, we
chose 100 examples with varying numbers of previ-
ous email text recursively included in the payload.
77 were successfully separated, failing mostly on
inputs with more complex text structures that did
not contain proper helper annotation (e.g. “>” used
for indenting previous email text lines) (see Figure
3. in Appendix A.1.).

We found that many of the erroneously encoded
emails that were left had the same problem: an
automatic mechanism (antivirus) had pasted a foot-
note to the payload, but with wrong encoding,
which caused the decoding of the whole message to
fail. Although GPT-3.5 successfully handled these
cases, we also implemented a rule-based method
of splitting the text and applying another encoding
to the footnote part, fully eliminating this type of
encoding problem. Only a few complex encoding
errors remained that neither GPT-3.5 nor a rule-
based method could solve, as they were products
of several layers of incorrect processing, and the
resulting character combinations were indecipher-
able even for humans. Our experiments show that a
rule-based workflow could potentially be expanded
by using Large Language Models, if tasks are well
compartmentalised and split into separate problem
areas.

5 Visualising the Resulting Data

With the data cleaned and normalised to the limit,
as a final step to facilitate access to authorised digi-
tal humanists who prefer visual representations of
data, we loaded it into an off-the-shelf application
suitable for n-gram based data exploration (N-gram
Trend Viewer (Indig et al., 2022)). One example
of exploring the metadata-rich text-based corpora –
using only metadata that is safe from compromis-
ing GDPR – is the frequency of different email
providers that the owner of the account interacted
with over time (see Figure 1.). Naturally, those
who have legal access to the data can make more
in-depth queries that the system supports.

6 Evaluation and Conclusion

Our experiments with the automatic character en-
coding recognizer systematically resulted in Turk-
ish code pages, which can be safely ruled out from
the set of possibly used languages and code pages,
therefore, we opted to manually observe each oc-
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Figure 1: Usage count of selected anonymized email domains (FROM, TO, CC, and BCC) over time. There was
a drop in traffic around 2017 when the subject passed away, however, strangely enough after a period of inactivity
the account started interacting with several domains again, most likely due to someone gaining access.

currence and guess the most likely encoding. With
the described payload classification only a few (37
from 11,245) email payload parts remained that
had trivially erroneous encoding specified, or failed
to decode with the specified/suggested encoding.
This could be further reduced by using GPT and the
string-splitting technique. The existing methods
we evaluated found the same number of character
encoding errors as our method did, however, the
final error rate was worse for the evaluated methods
due to the automatic mechanisms and the lack of
possibility for correction.

Our method and ePADD both found that many
email addresses had different names associated
with them, which enables these names to be added
as an alias along with a canonical name to a se-
mantic database (e.g. the “Also known as” field
in Wikidata (Vrandečić and Krötzsch, 2014)) for
later use. ePADD used English word lists with little
success to recognise named entities in the text. The
lists can be changed but due to the monolithic na-
ture of the program, the clearly not state-of-the-art
method cannot.

We conclude our pilot project a success2, as we
recovered most of the errors and created an intu-
itive WebUI for the MBOX data to help researchers
explore the email archive. To open up more pos-
sibilities in the future, the conversion of emails to
standard TEI XMLs (DeRose, 1999) is an option
worth exploring as it could additionally handle the

2The code is published under GPL 3.0 license at https:
//github.com/elte-dh/mbox-parser.

complex philological aspects of inline replies. Try-
ing other MBOX files is also desirable to make
our tool more robust and handle more non-standard
headers since it was built with extensibility and
customisability in mind.
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A Appendices

A.1 The Used Prompt for Email Separation

MODEL
gpt-turbo-0613
TEMPERATURE
0
SYSTEM
You are a [LANGUAGE] email analysis assistant.
Your job is to take an email body text and if it contains the text of previously sent emails
as an email correspondence,
then separate it into individual emails, and finally return the separate emails annotated
with ”SEPARATE EMAIL:”. You also need to remove any characters
that are in some cases added to the email body text to annotate forwarded emails,
emails sent as replies, or references to the original email.
These characters are usually a greater-than character: ”>”.
Not all previous correspondences are annotated with a greater-then character.
If encounter strings following the format ”[DATE] [NAME] wrote, [EMAIL]:”
then leave it in the output as if it were part of the email text.
Some input texts may be a single email, others may be a sequence of emails
that contain the latest email and other previously sent emails that are replies, forwards,
or the original message.

USER-ASSISTANT pairs of example email and example email with separation tags (x 3)
USER {input email text}

Table 3: Example prompt details of OpenAI chat API requests for separating augmented email payload texts, with a
few-shot approach. USER-ASSISTANT email pairs are omitted for privacy reasons. Fourth USER input email text
is to be replaced for each request with the actual email payload text.
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