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Abstract

Cross-lingual annotation projection is a practi-
cal method for improving performance on low
resource structured prediction tasks. An im-
portant step in annotation projection is obtain-
ing alignments between the source and target
texts, which enables the mapping of annota-
tions across the texts. By manually correcting
automatically generated alignments, we exam-
ine the impact of alignment quality—automatic,
manual, and mixed—on downstream perfor-
mance for two information extraction tasks and
quantify the trade-off between annotation effort
and model performance.

1 Introduction

Cross-lingual annotation projection (Yarowsky and
Ngai, 2001) involves mapping source annotations
to target text through alignments. Recent studies
such as Yarmohammadi et al. (2021) and Chen
et al. (2022) suggest that word alignment quality
substantially impacts downstream performance.

Automatic word alignments are inexpensive to
obtain but may be of low quality. On the other
side of the alignment quality spectrum (Figure 1)
are manual (human-labeled) alignments, which are
expensive but accurate. Our goals are to quantify
the impact of automatic vs. manual alignments
on downstream task performance and to explore
the quality spectrum to quantify the trade-off be-
tween automatic and manual alignments in terms
of downstream performance and cost.

We investigate the alignment quality spectrum
on two structured prediction tasks: shallow seman-
tic parsing (BETTER Basic IE1) and named en-
tity recognition (NER). In the BETTER IE sce-
nario, we start with a typical fully automatic trans-
late, align, and project pipeline, so-called “silver”
data creation, and compare with manually labeled

*Equal contribution
1https://ir.nist.gov/better

Figure 1: Alignment annotation spectrum. It is often
easier to annotate alignments than to train annotators for
a complex downstream task. Higher quality alignments
improve performance but are more costly.

data (annotated by two of the authors). For NER,
the dataset we use already has annotations in two
languages (with gold bitext and gold word align-
ments).

Rather than manually annotate alignments for
every example, which is expensive as shown on the
right end of the spectrum in Figure 1, we collect
manual annotations on the data for which two align-
ment methods—silver data creation and an unsuper-
vised embedding-based span alignment tool—point
to different target spans (§5). Our contributions are:
1) evidence that manually correcting alignments
improves downstream performance, 2) evidence
that downstream performance correlates with the
amount of manual alignment effort, and 3) analysis
on the types of spans that are manually corrected.

2 Related Work

Cross-lingual projection is a method of transfer-
ring annotations from a source language to a target
language that has often been used to increase per-
formance on the target language (Yarowsky and
Ngai, 2001; Yarmohammadi et al., 2021; Chen
et al., 2022, i.a.), but its utility depends on ob-
taining reliable alignments between the source and
target text. There has been extensive research on su-
pervised and unsupervised alignment at the word,
phrase, and sentence levels (Zhang et al., 2016;
Jalili Sabet et al., 2020; Nagata et al., 2020; Chousa
et al., 2020; Chen et al., 2021; Li et al., 2022, i.a.).
However, these studies report primarily intrinsic
evaluation of alignment quality and leave extrinsic

244

https://ir.nist.gov/better


BETTER (%) NER (%)

Unique source spans 4896 3180
Identical automatic spans 2432 (50%) 1942 (61%)
Candidates for correction 2464 (50%) 1238 (39%)

Table 1: Number of source spans in total and in the
candidate subset for correction. Candidates are spans
that are non-identical (different or overlapping), based
on two automatic alignment results. BETTER candidate
spans are shown to humans for re-alignment. NER can-
didate spans are corrected according to gold alignments
from the original resource.

evaluation on downstream tasks underexplored.
Stengel-Eskin et al. (2019) showed that gold

alignment data has a greater impact on word align-
ment performance than the amount of pre-training
bitext does, suggesting that the benefits of manu-
ally correcting alignments may also extend to the
creation of higher-quality projected data.

Our work responds to these lines of prior work
by examining the extrinsic downstream impact of
our approaches and how the incorporation of dif-
ferent amounts of gold alignment data affects per-
formance. In contrast to prior work on projection,
such as Yarmohammadi et al. (2021), our work fo-
cuses on the impact of the alignment component of
the projection pipeline on the overall effectiveness
of cross-lingual projection and explicitly adjusts
automatic alignments with manual corrections.

3 Methods

Fully Automatic We consider improving the
zero-shot learning scenario where the gold train-
ing data is in a different language than the target
data we want to evaluate on. For both tasks, we ex-
plore multiple setups that include training on gold
English data alone (zero-shot) or combined with
projected target-language data. Projected data is
created by transferring the gold source labels to
translated target text via automatically obtained or
manually corrected word alignments.
Silver Data Creation To create silver data, we fol-
lowed the process of Yarmohammadi et al. (2021).
First, if there was no gold translation of the source
text (as in BETTER), we translated the source text
into the target language using a state of the art
translation system (Xu et al., 2021). Second, we
obtained word alignments between the original and
target parallel text using awesome-align (Dou and
Neubig, 2021), a state of the art contextualized
embedding-based word aligner (see Appendix A

for further details). Finally, we projected the an-
notations from the source language to the target
language based on the word alignments. For multi-
word spans, the target span is a contiguous span
containing all aligned words from the same source
span.
Unsupervised Span Alignment We implemented
a span alignment tool by extending the techniques
of SimAlign (Jalili Sabet et al., 2020) to compute
similarities between the representations of spans
rather than of tokens.2 We used a frozen pre-
trained encoder and did not update any model pa-
rameters. We performed a hyperparameter search
(Appendix C) to configure an aligner that most
frequently produces spans identical to those of
awesome-align.
Alignment Correction After obtaining “silver
spans” from awesome-align and “unsupervised
spans” from the span aligner, we selected source
spans which the two methods aligned to different
target spans. Around half the total source spans
were selected for re-alignment (Table 1). For BET-
TER, we asked human annotators to re-align se-
lected spans from scratch. For NER, we simulated
manually correcting automatic alignments by re-
trieving gold alignments from the original manually
annotated resource.3 Further details are given in §5.
We refer to data projected after the alignment cor-
rection step as semi-automatic because it is created
from a mix of automatic and manual alignments.

4 Tasks

We investigate the impact of alignment quality us-
ing established models, as modeling improvements
are outside the scope of this work.

4.1 NER
Data We utilized GALE (Li et al., 2015), which
includes word-aligned Chinese and English paral-
lel text. Alignments were obtained from multiple
rounds of human annotations. As a part of the
OntoNotes corpus (Weischedel et al., 2013), a por-
tion of the Chinese section of GALE was annotated
for NER. The gold-aligned NER data consists of
2385, 287, and 189 sentences in the train, dev, and

2We considered all spans of up to a certain length, giving
a linear number of spans per sentence.

3To avoid issues with labeling overlapping spans in the
BIO-tagged NER data, we use the gold alignments for the
entire sentence rather than for individual spans. In many cases,
identical awesome-align silver spans and unsupervised spans
present in the sentence that should not have been re-aligned
closely match the gold-aligned spans anyway.
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test splits, respectively. Further human annotation
was not necessary for this task because data and an-
notations were already available in both languages.
Model We used a BERT-based token tagging
NER model,4 which outputs tag probabilities via
a softmax on logits from a linear layer on top of a
bert-base-multilingual-cased encoder (Devlin et al.,
2019). We select the checkpoint from the epoch
that achieved the best F1 performance on the gold
Chinese dev set. We evaluate our models using
micro-averaged F1.

4.2 BETTER
Data The Better Extraction from Text Towards
Enhanced Retrieval (BETTER) Program5 develops
methods for event extraction in a target language,
given gold annotations only in English. We focus
on the “Basic” events level, where the goal is to
identify events and their arguments (agents and
patients), i.e. shallow semantic parsing, with Farsi
as the target language.
Model Our BETTER IE system is based on the
Spanfinder model (Xia et al., 2021), consisting of a
contextualized encoder and a BiLSTM-CRF span
tagger. The model first extracts event anchors and
labels them with event types. Conditioned on an
anchor span, the model then identifies argument
spans (agents and patients). We report the program-
defined “combined F1” metric, which is the prod-
uct of “event match F1” and “argument match F1”
based on an alignment of predicted and reference
event structures.
Annotation Task We gather alignment correc-
tions through the TASA6 human annotation inter-
face (Stengel-Eskin et al., 2019). Additional infor-
mation about the interface is given in Appendix B.
2,464 candidate source spans (training and analy-
sis) occur across 1,012 sentence pairs. Each sen-
tence pair, containing one or more source spans
highlighted for alignment, is considered a task.
Tasks took 1 minute on average for a total annota-
tion time of ∼ 16 hours.

5 Experiments and Results

We compare the performance of models trained
on various combinations of gold, silver, and semi-
automatic training data. We evaluate the models on

4Adapted from http://github.com/kamalkraj/
BERT-NER and Stengel-Eskin et al. (2019).

5https://www.iarpa.gov/index.php/
research-programs/better

6https://github.com/hltcoe/tasa

Micro-F1 on
Training Data Gold Zh Test Set

En (zero-shot baseline) 17.6
Gold Zh (upper bound) 74.7

Silver Zh 44.0
Semi-automatic Zh 56.0
Gold projection Zh 58.9

En + Silver Zh 35.1
En + Semi-automatic Zh 51.9
En + Gold projection Zh 60.7

En→ Silver Zh 45.5
En→ Semi-automatic Zh 53.8
En→ Gold projection Zh 51.7

Table 2: NER results on GALE Chinese gold test set.
In general, as alignment quality increases, downstream
performance increases.

the target language test sets: the Chinese gold test
set for NER and Farsi semi-automatic analysis set
for BETTER.

We also use English training data in two different
ways: combined with the target language data (‘En
+’ in Table 2 and Table 3) and as pre-training before
we fine-tune on the target data (‘En →’ in Table 2).

5.1 NER
The results in Table 2 show that by augmenting
the source language training data (En) with data
in the target language (Zh), zero-shot performance
can be much improved. When projection is per-
formed via gold word alignments (Gold projection
Zh), there is 15.8% absolute performance degrada-
tion compared to when gold Chinese data (Gold
Zh) is used for training. Thus, there is some loss
in performance when using projected data. Train-
ing on alignment-corrected (semi-automatic) data
outperforms training on silver Chinese data in all
settings. Performance per entity type in a repre-
sentative experimental setting is shown in Table 5.
Overall, performance correlates with the amount
of manual effort used in creating the data.

5.2 BETTER
The results in Table 3 show that using projected
training data, either by itself or combined with
source language (En) training data, outperforms
the zero-shot setting. Even though the majority of
the semi-automatic spans match the silver spans
(see §6.2 for details), replacing the silver data with
the semi-automatic data improves the BETTER
scores. However, the gain is not as substantial as
that for NER. This could be due to the BETTER an-
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Test on
Train Semi-automatic Fa
En (zero-shot baseline) 36.9

Silver Fa 40.1
Semi-automatic Fa 40.7

En + Silver Fa 44.8
En + Semi-automatic Fa 45.1

Table 3: BETTER results on semi-automatic Farsi an-
alysis set.

alysis data being non-gold or the BETTER scorer’s
sensitivity to small changes in predictions.

6 Analysis

6.1 Annotation Budget Constraints

Annotation budgets constrain how much of the data
can be projected along gold alignments. Further-
more, it is cheaper to annotate alignments than to
train annotators on a complex task. Note that our
annotation task took only ∼ 16 hours for all data.
We analyze downstream performance as a function
of the amount of data correction.

For both NER and BETTER, we subsample 10%,
25%, and 50% of the tasks (sentences) in which
the two automatic alignment methods have a dis-
agreement, and then replace their silver alignments
with the correct alignments: gold (for NER) and
manually corrected (for BETTER). The remain-
ing portion of the data comes from the silver data
aligned with awesome-align (i.e., semi-10% con-
sists of 10% corrected data and 90% automatic
silver data). We do the sampling process 5 times
and report the average performance.

The results in Figure 2a show that the perfor-
mance consistently improves as subsampling per-
centage increases. In all of the cases where pro-
jected Zh is combined with En, either added or
fine-tuned, any percentage of manual correction
outperforms training on silver Zh only (see Ap-
pendix E for the plot for the fine-tuning setting).

Figure 2b shows a similar trend for BETTER.
The plots suggest, however, that to outperform
training on silver data, more than 50% of the align-
ments need to be corrected. We hypothesize this
is in part due to the evaluation set being non-gold,
so correcting the training data shifts away from the
distribution of the evaluation data.

(a) NER: Micro-F1 on gold Chinese test set

(b) BETTER: Combined F1 on semi-
automatic (corrected) Farsi analysis set

Figure 2: Performances for (a) NER and (b) BETTER
for systems trained on gold English combined with:
automatic (silver), subsampled semi-automatic (semi-
x%), or gold projection (gold proj) data.

6.2 Extent of Alignment Disagreements

Around 86% and 60% of all manually corrected
BETTER target spans match, either fully or par-
tially, the automatic silver spans or the automatic
unsupervised spans, respectively. We consider two
spans to be partially matching or overlapping if the
length of the longest consecutive common charac-
ter sequence is larger than 30% of the length of
the longer span. As Table 4 shows, most of the
silver and manually annotated spans are identical
(73.4%), whereas the unsupervised and manually
annotated spans mostly are overlapping (52.4%).

6.3 Alignment Agreement Per Span Type

Table 4 shows that there is no substantial difference
between the types of spans that have been catego-
rized as identical, overlapping, or different. The
silver and unsupervised span alignment approaches
do not seem to do particularly better or worse on
event anchors, agents, or patients.

For the NER task we observe that overall, the sil-
ver span extraction setup gave better quality spans
compared to the unsupervised span alignment ap-
proach. See Appendix F for results per entity type.
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Identical Spans Overlapping Spans Different Spans
Anchor Agent Patient Total (%) Anchor Agent Patient Total (%) Anchor Agent Patient Total (%)

Silver 669 679 473 73.4 163 75 73 12.5 117 107 126 14.1
Unsupervised 59 66 64 7.6 470 450 380 52.4 420 345 228 40.0

Table 4: (Dis)agreement of semi-automatic spans with automatic spans in BETTER.

7 Conclusion and Future Work

In this paper, we investigated how much the qual-
ity of alignments impacts downstream task perfor-
mance when annotations are projected from En-
glish to another language. Our experimental re-
sults show that the utilization of different align-
ment methodologies, followed by corrections of
the disagreements arising from such approaches,
can reduce human effort while improving results.

There are several promising avenues for future
research in cross-lingual annotation projection. Al-
though this study did not investigate the influ-
ence of translation quality on downstream perfor-
mance (which is the first step of the data projection
pipeline), we believe this could yield important
findings. Another direction involves the investiga-
tion of active learning techniques for prioritizing
which alignments to correct.

Limitations

The automatic data creation procedure can intro-
duce errors during both the translation and align-
ment steps. This study is limited to the errors dur-
ing the alignment step. Even though we used state
of the art machine translation techniques in this
work, the translation errors could still affect the
quality of the alignments or projected data, espe-
cially in silver data creation.

Moreover, we studied only two tasks, NER
and BETTER, and considered only two target lan-
guages, Chinese and Farsi. Tasks with significantly
different structures (e.g., deep parsing) may be af-
fected differently by alignment corrections.
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A awesome-align Hyperparameters

We used awesome-align (Dou and Neubig, 2021),
a contextualized embedding-based word aligner
that extracts word alignments based on token em-
bedding similarities. We fine-tuned the underlying
XLM-R encoder on around two million parallel
sentences from the OSCAR corpus (Abadji et al.,
2022) of English-Farsi and English-Chinese pairs.
We further fine-tuned the encoder for BETTER on
English-Farsi gold alignments on 1500 sentence
pairs by Tavakoli and Faili (2014). We reused
empirically-chosen awesome-align hyperparam-
eters from prior work for a similar task (Yarmo-
hammadi et al., 2021): softmax normalization with
probability thresholding of 0.001, 4 gradient ac-
cumulation steps, 1 training epoch with a learn-
ing rate of 2× 10−5, alignment layer of 16, and
masked language modeling (“mlm”), translation
language modeling (“tlm”), self-training objective
(“so”), and parallel sentence identification (“psi”)
training objectives. We further fine-tuned the re-
sulting model on the gold word alignments with
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with a learning rate of 10−4 and only “so” as the
training objective.

B Annotation Interface

In each task, a pair of tokenized sentences, one
in English (source) on the top and one in Farsi
(target) on the bottom are shown to the user. In
each English sentence, there are one or more spans
to align, as highlighted in Figure 3. The user needs
to annotate the English spans word by word.

C Unsupervised Span Alignment
Hyperparameters

We did a random search to find the best hyperpa-
rameters for the unsupervised span aligner. We
selected the following for NER:

• Span enumeration strategy: full (all spans of
length up to maximum width)

• Max target span width: 5 tokens
• Alignment decoding method: greedy (decode

alignments in decreasing order of similarity
score)

• Allow overlap: true (alignments can contain
overlapping spans)

• Span representation: diff-sum (Toshniwal
et al., 2020)

• Encoder and layer: bert-base-multilingual-
cased (Devlin et al., 2019), layer 7 (0-indexed)

• Coupled: false (encode source and target text
separately)

and the following for BETTER:
• Span enumeration strategy: full (all spans of

length up to maximum width)
• Max target span width: 4 tokens
• Alignment decoding method: greedy (decode

alignments in decreasing order of similarity
score)

• Allow overlap: true (alignments can contain
overlapping spans)

• Span representation: endpoint (concatenate
embeddings of first and last subtokens)

• Encoder and layer: EnFav1.0 (internal bilin-
gual model), layer 15 (0-indexed)

• Coupled: true (encode source and target text
as a single sequence)

D NER Model Hyperparameters

• Encoder: bert-base-multilingual-cased (De-
vlin et al., 2019)

• Max sequence length: 128 WordPieces
• Batch size: 32

• Optimizer: Adam (Kingma and Ba, 2014)
• Learning rate: 5×10−5

• Learning rate linear warmup: 10% of training
steps

• Epochs: 25

E Annotation Budget Constraints in
Fine-tuning Setting

Figure 4 shows the results of semi-automatic data
subsampling experiments for NER when the mod-
els are pre-trained on English and fine-tuned on
Chinese data. The performance improves with in-
creasing subsampling percentage. However, there
is a slight degradation when using the entire semi-
automatic data compared to 50%. Gold projection
is unexpectedly lower than the semi-50% and semi-
100% settings.

Experiments for BETTER in which we train on
only Farsi data, not combined with gold English,
show inconsistent results. We hypothesize this is
due to training and validating on noisy non-gold
data. Further investigations of these phenomena
are left as future work.

F Alignment Agreement Per Entity Type

The entity types that needed the most correction
in both extraction settings were NORP (nationali-
ties or religious or political groups) and PERCENT
(percentage, including “%”). PERSON (people,
including fictional), MONEY (monetary values, in-
cluding unit), and WORK-OF-ART (titles of books,
songs, etc.) were among the entity types with the
highest number of identical spans for both the sil-
ver span extraction and unsupervised approaches
(Figure 5).
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Figure 3: An example of the annotation interface for BETTER.

Figure 4: NER Micro-F1 on gold Chinese test set. Mod-
els are pre-trained on English data and fine-tuned on
projected Chinese data.

Type # Train # Test F1 (%)
GPE 921 41 75.6
CARDINAL 440 17 50.0
DATE 351 24 63.6
ORG 335 32 47.4
NORP 256 17 37.5
PERSON 230 31 51.5
MONEY 139 6 100.0
ORDINAL 107 6 20.0
PERCENT 100 0 NA
LOC 80 9 31.6
FAC 59 7 0.0
QUANTITY 55 3 57.1
EVENT 48 4 50.0
TIME 30 3 66.7
WORK-OF-ART 20 8 0.0
LAW 6 0 NA
LANGUAGE 1 0 NA
PRODUCT 1 1 0.0
Micro-avg — — 53.8

Table 5: NER per-type performance on the test set when
pre-trained on English data and fine-tuned on semi-
automatic projected Chinese data.

(a) Semi-automatic vs unsupervised spans

(b) Semi-automatic vs silver spans

Figure 5: Disagreements of semi-automatic spans with
automatic spans in NER.
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