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Abstract
Recent work has shown the potential of know-
ledge injection into transformer-based pre-
trained language models for improving model
performance for a number of NLI benchmark
tasks. Motivated by this success, we test the
potential of knowledge injection for an ap-
plication in the political domain and study
whether we can improve results for policy do-
main prediction, that is, for predicting fine-
grained policy topics and stance for party man-
ifestos. We experiment with three types of
knowledge, namely (1) domain-specific know-
ledge via continued pre-training on in-domain
data, (2) lexical semantic knowledge, and (3)
factual knowledge about named entities. In
our experiments, we use adapter modules as
a parameter-efficient way for knowledge in-
jection into transformers. Our results show a
consistent positive effect for domain adapta-
tion via continued pre-training and small im-
provements when replacing full model train-
ing with a task-specific adapter. The injected
knowledge, however, only yields minor im-
provements over full training and fails to out-
perform the task-specific adapter without ex-
ternal knowledge, raising the question which
type of knowledge is needed to solve this task.

1 Introduction

Identifying policy domains in political text such as
parliamentary speeches or party manifestos is an
important ingredient for many analyses in politi-
cal science. This type of information is crucial for
studying party competition and voting behaviour
or for investigating agenda setting and framing,
and for many other research questions in the field.
Many research projects have thus addressed this
problem, either by creating annotated data sets
for manual and automated analyses (Baumgartner
et al., 2006; Bevan, 2019; Volkens et al., 2019b)
or by developing systems for policy domain pre-
diction (Subramanian et al., 2017; Glavaš et al.,
2017; Abercrombie et al., 2019; Koh et al., 2021).

This task, however, is quite challenging, due to the
large number of fine-grained topic labels in the re-
spective coding schemes. For many of these labels,
only a small number of annotated instances exist
in the training set. Furthermore, as this type of
annotation has been adopted in different research
projects and across countries and time, the anno-
tations themselves include inconsistencies, as the
defined classes might have been interpreted differ-
ently by the coders, depending on their background,
situational context and training.

One way to address (at least part of) this problem
is to enrich the models with external information, in
order to make them more robust to inconsistencies
in the data and to provide more information espe-
cially for the infrequent labels. A number of stud-
ies have looked into this problem, with promising
results. Previous work has demonstrated improve-
ments for various natural language understanding
tasks by incorporating general human knowledge
presented in knowledge bases (Zhang et al., 2019;
Sun et al., 2019; Peters et al., 2019; Lauscher et al.,
2020b) and by adapting pre-trained language mod-
els (PLMs) to specific domains (Lee et al., 2020;
Beltagy et al., 2019; Gururangan et al., 2020). How-
ever, these approaches are resource intensive as
they typically require either re-training the entire
model from scratch (Lauscher et al., 2020b) or tun-
ing pre-trained parameters (Zhang et al., 2019) on
auxiliary pre-training tasks.

To alleviate these problems, researchers have
turned to the lightweight adapter architecture
(Houlsby et al., 2019; Pfeiffer et al., 2021) for
knowledge integration. The adapter module (or
simply adapter) is a set of parameters inserted into
the original transformer layers in the pre-trained
model. Unlike the standard fine-tuning of BERT-
based models where the entire model is updated,
the adapter-based tuning only updates the newly in-
serted adapter parameters when the model is tuned
on downstream tasks, while the underlying pre-
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trained model is frozen. This approach makes
model tuning more efficient, due to the smaller size
of parameters that need to be trained. In addition to
its efficiency, several studies have demonstrated the
effectiveness of adapters for knowledge injection
into BERT-based models (Hung et al., 2022; Meng
et al., 2021; Lauscher et al., 2020a).

Building upon this body of work, we use the
adapter-based approach to incorporate multiple
knowledge sources into multilingual RoBERTa
(XLM-R) (Conneau et al., 2020). Different from
past studies that mostly focused on integrating sin-
gle knowledge sources, we enrich the pre-trained
language model with multiple types of knowledge:
(i) domain knowledge, (ii) lexical semantic know-
ledge (such as word synonyms) and (iii) factual
knowledge about named entities (e.g., Angela
Merkel is a politician). The main research ques-
tions addressed in this paper are:

RQ1 How does external knowledge, such as do-
main knowledge and structured knowledge
from knowledge bases, impact the language
model’s capability to understand natural lan-
guage in the political science domain?

RQ2 Can we use adapters to inject this knowledge
into a pre-trained language model in a more
parameter-efficient manner?

The paper is structured as follows. In Section
2, we outline related work on topic and policy
prediction in the political domain and review re-
cent studies that incorporate adapters into PLMs.
Section 3 presents our approach for adapter-based
knowledge injection, and Section 4 discusses our
results for predicting policy domains from party
manifestos, using adapters and external domain
and world knowledge. In Section 5, we conclude
and outline future work.

2 Related Work

2.1 Predicting Manifesto Policy Domains

Many studies in the context of computational po-
litical text analysis have focused on topic or policy
issue prediction, using dedicated datasets created
within the Comparative Agenda Project (Baumgart-
ner et al., 2006; Bevan, 2019) or the Comparative
Manifesto Project (CMP) (Mikhaylov et al., 2012;
Werner et al., 2014). In our work, we use the Mani-
festo Corpus from the CMP which includes a large

Label Policy Domain % of quasi-sentences

1 External Relations 6.6
2 Freedom & Democracy 4.7
3 Political System 10.6
4 Economy 24.9
5 Welfare & Quality of Life 30.9
6 Fabric of Society 11.2
7 Social Groups 10.0
0 Not Categorized 1.1

Table 1: Distribution of major policy domains in the
manifesto dataset of Koh et al. (2021).

collection of party manifestos from over 50 coun-
tries. Each document in the corpus has been seg-
mented into “quasi-sentences” (mostly clauses) and
has been manually categorized into eight coarse-
grained policy domains (see Table 1). Those main
classes are further subdivided into a set of 57 fine-
grained policy goals and issues that also encode
the author’s stance towards a specific policy issue
(positive/negative), as illustrated in Example 2.1.

Ex. 2.1
“We view the diversity of our nation not as a liabil-
ity, but rather as a shared strength and source of
pride”
Main topic: FABRIC OF SOCIETY

Minor topic: MULTICULTURALISM→ POSITIVE

2.2 Introducing domain-specific knowledge
into PLMs

Transfer learning based on large, pre-trained lan-
guage models (PLMs) has shown to improve model
performance of transformer-based architectures for
a wide range of NLP tasks (Devlin et al., 2019;
Liu et al., 2019). The model is trained on large
amounts of text, using self-supervision, which pro-
vides the model with information about language
structure and the meaning of words in context. Ex-
ploiting this generic knowledge to specific down-
stream tasks reduces the amount of training data
needed for each task. However, many domains
require the model to understand specialised vocab-
ulary terms and information that the model cannot
learn from generic corpora such as Wikipedia. Be-
low, we describe a number of techniques that have
been proposed to address this shortcoming.

Domain adaptation Many studies have demon-
strated that continued pre-training of PLMs on
domain-specific corpora before fine-tuning them
for the final task can improve model performance
of transformer-based models. BioBERT (Lee et al.,
2020) and ClinicalBERT (Alsentzer et al., 2019)
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both adopted the continual pre-training framework.
Other work has skipped pre-training on generic
text collections and, instead, pre-trained domain-
specific models from scratch (Beltagy et al., 2019;
Gu et al., 2022). In our work, we use PolSciBERT,
a PLM that has been adapted to the political domain
through continual pre-training.

External knowledge injection Numerous stud-
ies have shown that integrating knowledge graphs
into BERT-based models is beneficial for nat-
ural language understanding tasks (Sun et al.,
2019; Zhang et al., 2019; Peters et al., 2019;
Lauscher et al., 2020b; Peinelt et al., 2021). These
studies mainly focused on two types of know-
ledge: facts about entities and linguistic knowledge.
Zhang et al. (2019) aligned named entities in the
Wikipedia corpora with entities in the knowledge
base Wikidata (Vrandečić and Krötzsch, 2014)
and trained the model, ERNIE, to learn the align-
ment, based on an entity alignment masking objec-
tive. Sun et al. (2019) proposed Baidu-ERNIE,
which was pre-trained via knowledge masking
strategies. Specifically, the authors used entity-
level and phrase-level masking techniques on Chi-
nese Wikipedia and in-house text collections in
their masked language model pre-training. Peters
et al. (2019) utilized the multi-head attention mech-
anism to fuse knowledge from multiple knowledge
bases, while Peinelt et al. (2021) adopted the gating
mechanism to combine linguistic embeddings and
contextual embeddings from BERT. Lauscher et al.
(2020b) effectively introduced word-level seman-
tic similarity information into BERT via additional
pre-training by predicting semantic relations in a
knowledge graph.

Building on this line of work, we propose to
enrich PolSciBERT with (1) lexical semantic infor-
mation and (2) knowledge about named entities.

Adapter-based architectures Most of the work
described above involves re-training the entire
model with additional pre-training objectives
which, due to the large number of parameters, is
computationally expensive and might suffer from
catastrophic forgetting (McCloskey and Cohen,
1989). To alleviate this problem, adapters have
been proposed as an alternative strategy for down-
stream fine-tuning (Rebuffi et al., 2017; Houlsby
et al., 2019; Pfeiffer et al., 2020a). Unlike the stan-
dard fine-tuning approach, adapter-based tuning
does not require re-training the entire model. In-

stead, it injects a lightweight task-specific adapter
layer in each transformer layer. During fine-tuning,
these newly added adapter layers are trained along
with the final classification layer, while the origi-
nal pre-trained parameters are frozen. Fixing the
original pre-trained model makes it easier to share
its parameters across several different tasks. In
addition, the adapter layer typically has a much
smaller number of parameters than the original pre-
trained model, making adapter-based fine-tuning
much more efficient.

A number of studies have leveraged the adapter-
based approach and demonstrated its potential not
only for domain adaptation (Lu et al., 2021; Hung
et al., 2022; Meng et al., 2021), but also for integrat-
ing structured knowledge bases into transformer-
based models (Wang et al., 2021; Lauscher et al.,
2020a). Inspired by these studies, this work focuses
on incorporating knowledge bases into PolSci-
BERT using adapters, to investigate whether se-
mantic similarity and/or entity knowledge can also
be beneficial for NLP tasks in the political domain.
We compare different methods for combining mul-
tiple adapters, namely adapter stacking (Pfeiffer
et al., 2020b) and adapter fusion (Pfeiffer et al.,
2021).

3 Training Knowledge Adapters

To introduce knowledge into PolSciBERT, we pre-
train a number of specialized adapters, each of
which encodes a certain type of knowledge. These
pre-trained modular adapters allow us to transfer
knowledge from external sources into our model.
We first describe our base model, PolSciBERT, and
then explain the training procedure of the adapters.

All models are implemented in PyTorch, using
the HuggingFace Transformers library (Wolf et al.,
2020)1 and the adapter-transformer library from
AdapterHub (Pfeiffer et al., 2020a).2

3.1 PolSciBERT

PolSciBERT is based on the multilingual XLM-
R model (Conneau et al., 2020) and was further
pre-trained in a multilingual setting with full fine-
tuning. Specifically, the pre-training corpus is
a collection of parliamentary speeches in 5 lan-
guages, German, English, Spanish, French and Ital-
ian, including debates from the European parlia-
ment (Koehn, 2005) and transcripts from parlia-

1v4.17.0. https://huggingface.co/transformers.
2v3.0.0. https://docs.adapterhub.ml.

https://huggingface.co/transformers.
https://docs.adapterhub.ml.
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mentary meetings (Rauh and Schwalbach, 2020;
MIT Election Data and Science Lab, 2017).3 Start-
ing with the pre-trained XLM-R, we continued pre-
training of PolSciBERT on the political text corpus,
using the masked language modelling (MLM) ob-
jective.

3.2 Corpora for knowledge injection

We explore two publicly available datasets to ac-
quire different types of knowledge: ConceptNet
(Speer et al., 2017) for semantic (dis)similarity and
the KELM corpus (Agarwal et al., 2021) for factual
information about entities.

ConceptNet (Speer et al., 2017) is a large multi-
lingual knowledge base which encodes common-
sense knowledge, such as the causes of an event
(e.g., exercise causes sweat) or the synonyms of a
word. It integrates multiple knowledge sources,
including Wiktionary and a subset of DBPedia
(Lehmann et al., 2012). The latest version (Con-
ceptNet 5.7) comprises 34 million edges and sup-
ports hundreds of languages. ConceptNet has
been used in NLP research to incorporate external
knowledge into large language models (Camacho-
Collados et al., 2017; Zhong et al., 2019; Lauscher
et al., 2020a; Yasunaga et al., 2021).

Since we are interested in enriching PolSciBERT
with semantic similarity and dissimilarity informa-
tion, we extract edges from the knowledge graph
for three types of lexical relations (IsA, Synonym
and Antonym relations) and 5 languages (DE, EN,
IT, FR, ES) as training data for our knowledge
adapters. For each relation type, we extract all
word pairs connected by this relation. Then we per-
form a simple clean-up and split the data into train-
ing (85%) and test set (15%) for adapter training.
We only keep word pairs where both words exist
in each of the 5 languages and remove duplicates
from the data. We also remove triplets whose enti-
ties contain numbers or have a word length of ≤ 1
character. Note that the triplets can be cross-lingual
(e.g., <Synonym, énorme (FR), enorme (IT)>).

To train the CN-SIMILARITY adapter, we merge
the IsA and Synonym relation triplets into one
training and test set since they both encode in-
formation on semantic similarity. This results in
1.3 million training instances for CN-SIMILARITY.
The CN-ANTONYM adapter was trained solely on

3For a detailed list of datasets and information on prepro-
cessing and pre-training, please refer to §A in the Appendix.

Task Train Size Test Size

CN-SIMILARITY TCL 1,317,027 232,417
CN-ANTONYM TCL 30,501 5,383
KELM-ADAP MLM 13,284,213 2,344,273

Table 2: Summary of adapter training tasks and data
(TCL: triple classification; MLM: masked language
modelling).

triplets from the Antonym relation, which com-
prises 30,000 training instances.

KELM In addition to word or phrase level
semantic information, factual knowledge about
named entities has also proven to improve the per-
formance of pre-trained language models (Zhang
et al., 2019; Sun et al., 2019). Thus, we utilize
the Corpus for Knowledge-Enhanced Language
Model pre-training (KELM) (Agarwal et al., 2021)
to inject factual knowledge into PolSciBERT. The
KELM corpus is a synthetic corpus generated by a
T5 model (Raffel et al., 2020). The model has been
fine-tuned on aligned data from English Wikidata
(Vrandečić and Krötzsch, 2014) and Wikipedia by
training the model to convert the Wikidata triples
to natural text (Agarwal et al., 2021).

The raw dataset4 includes more than
15 million instances. Each instance is a
JSON object with three fields: (1) a list of
triples where each triple is in the format
[head entity, relation, tail entity], (2)
the serialized triple sequence which is concatenated
by the list of triples and input to the T5 model, and
(3) the generated text output of the T5 model. For
an example, refer to Figure 1 in the Appendix. The
average length of the generated sentences in the
KELM corpus is 15.2 tokens.

To create the dataset for training the KELM
adapter (KELM-ADAP), we extract the generated
text (the gen_sentence field) from each instance
in the raw dataset and split the resulting dataset into
training set (85%) and test set (15%). The train-
ing (test) set includes about 13 million (2 million)
sentences, as summarized in Table 2.

3.3 Adapter Training

For all our experiments, we adopt the adapter ar-
chitecture proposed in Pfeiffer et al. (2021). That
is, we insert a single adapter with a bottleneck hid-
den size M after the feed-forward sub-layer in the
transformer layer (Vaswani et al., 2017).

4Downloaded from https://github.com/google-rese
arch-datasets/KELM-corpus on April 23, 2022.

https://github.com/google-research-datasets/KELM-corpus
https://github.com/google-research-datasets/KELM-corpus
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CN-SYNONYM and CN-ANTONYM The Concept-
Net adapters aim at enriching PolSciBERT with se-
mantic similarity and dissimilarity information. To
learn this type of knowledge, we follow Lauscher
et al. (2020b) and train the adapter in a relation
classification task where we input a word pair from
our data and predict whether a CN-SYNONYM (CN-
ANTONYM) relation holds between the two words.

The negative samples needed for training have
been created, using an approach similar to Yao et al.
(2019). For each relation, a triple from the data is
corrupted by replacing either its head h or its tail
t (but not both) by a randomly selected entity h′

or t′ from the dataset. We make sure that the new,
corrupted triple does not appear in the dataset, to
avoid inserting false negatives. This way, we create
k corrupted triples for k true triples, resulting in 2k
triples in total. The set of negative samples can be
presented as

D−R = {(h′, r, t)|r ∈ R ∧ h′ ∈ E ∧ h′ 6= h ∧ (h′, r, t) /∈ D+
R}

∪ {(h, r, t′)|r ∈ R ∧ t′ ∈ E ∧ t′ 6= t ∧ (h, r, t′) /∈ D+
R},

where E is the set of all entities in a semantic
relation R, and D+

C is the set of positive triples for
the semantic relation R.

Similar to previous work (Yao et al., 2019;
Lauscher et al., 2020b), we model a word pair (h, t)
as a sequence pair to perform the relation classifi-
cation task. Specifically, each word pair (h, t) in
a semantic relation,5 including both positive and
negative examples, is turned into a sequence pair
that starts with the <s> token and is separated by
the </s> token. For illustration, the true word pair
in the Similarity relation <color blind, farbenblind>
is transformed into

[s] _color _blind [/s][/s] _far ben blind [/s]

The relation classification task can thus be mod-
eled as a standard sequence pair classification task
for transformer models (Devlin et al., 2019; Liu
et al., 2019; Conneau et al., 2020). The last output
hidden state of the [s] token is used for prediction.
For a true positive instance, the correct label is 1,
and 0 for the generated negative examples.

KELM-ADAP For the KELM adapter, we seek to
encode facts about named entities in the world. To
achieve this goal, we train the adapter with the
masked language modeling objective (MLM) (De-
vlin et al., 2019; Lauscher et al., 2020a; Lu et al.,

5Synonym and IsA for CN-SYNONYM; Antonym for CN-
ANTONYM

2021) on the KELM dataset described above. We
follow the standard MLM procedure to randomly
mask 15% of the tokens in each input sequence and
use the last hidden state of the masked token for
prediction.6

4 Experiments

We now want to test our knowledge adapters on
the task of predicting policy positions in political
manifestos.

Baselines As baselines, we use multilingual
RoBERTa (XLM-R) (Conneau et al., 2020)
and PolSciBERT, our multilingual in-domain
RoBERTa model, to assess whether domain-
specific knowledge improves model performance
(RQ1) and whether the effect of inserting addi-
tional lexical and/or factual knowledge in the model
can further improve results (RQ2).

4.1 Predicting Manifesto Policy Domains
The Manifesto Project Database (Volkens et al.,
2019a) has been widely used in political text anal-
ysis (Laver et al., 2003; Abercrombie et al., 2019;
Menini et al., 2017; Glavaš et al., 2017; Koh
et al., 2021).7 It comprises a large collection of
party manifestos from over 50 countries. The
text in the party manifestos has been segmented
into “quasi-sentences” (similar to clauses). Each
quasi-sentence contains exactly one unique state-
ment (Werner et al., 2021) and has been catego-
rized into one of 57 fine-grained classes reflecting
the most relevant policy goal and issue preference
for this statement. These 57 policy goals and is-
sues are grouped into 8 coarse-grained policy do-
mains. Thus, each quasi-sentence in the dataset has
a coarse-grained policy domain label (the “major
label”) and a fine-grained label capturing the policy
goal and issue (the “minor label”). For illustration,
see Example 2.1.8

To compare our results with related work, we
evaluate our models on the dataset of Koh et al.
(2021) which includes a subset of the manifesto
corpus (version 2019) (Volkens et al., 2019a,c) con-
sisting of all English manifestos.9 Koh et al. (2021)
split this subset into training, validation and test

6For training details and hyperparameters, see §B in the
Appendix.

7https://manifesto-project.wzb.eu/
8For more information, schema please refer to the code-

book of the Manifesto Project (Volkens et al., 2019b,d)
9Note that there are two versions 2019a and 2019b, but the

authors did not specify which version they used.

https://manifesto-project.wzb.eu/
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Major topics Minor topics

Number of labels 8 57
Number of quasi-sent.

Total 99,279 99,279
Train (0.70) 69,499 69,499
Validation (0.15) 14,887 14,887
Test (0.15) 14,893 14,893

Table 3: Number of labels and examples in the final
manifesto dataset

sets with a ratio of 70/15/15. We first remove ex-
amples with empty text fields from the data, and
then follow the same split to evaluate our models.
The final dataset includes 99,279 quasi-sentences
(see Table 3).

Following Koh et al. (2021), we perform the
quasi-sentence classification task for both major
and minor topics. We model the task as a text clas-
sification problem and use the last hidden state of
the [S] token as a pooled representation of the in-
put sequence to predict labels and compute the loss.
During evaluation, we noticed some preprocessing
problems in the dataset, specifically missing tokens
at the end of most quasi-sentences. We therefore
tried to recreate the dataset with complete quasi-
sentences and report results for both datasets (see
Appendix, C for a more detailed description of the
problem and information on the recreated dataset).

4.2 Experimental setup

To investigate the effectiveness of knowledge injec-
tion via adapters, we experiment with three differ-
ent model setups for our semantic similarity know-
ledge adapters (CN-SIMILARITY) and the factual
knowledge adapter KELM-ADAP, following previ-
ous work in this area (Lauscher et al., 2021; Pfeiffer
et al., 2020b, 2021):

• Adapter full fine-tuning inserts one single
pre-trained knowledge adapter into PolSci-
BERT and tunes the entire model, including
the PolSciBERT parameters and the inserted
adapter. That is, the model is initialized with
the pre-trained parameters and updated during
fine-tuning on the downstream task.

• AdapterStack utilizes the AdapterStack
architecture (Pfeiffer et al., 2020b) and
stacks adapters –the pre-trained knowledge
adapter(s) and a randomly initialized task
adapter on top– and only tunes the task adapter
during fine-tuning while PolSciBERT and all
knowledge adapters are frozen. This setup dif-

fers from Adapter full fine-tuning in that the
model learns the task-specific information sep-
arately, which might be better at preserving
the in-domain information encoded in PolSci-
BERT and the knowledge encoded in the pre-
trained adapters (Lauscher et al., 2021).

• AdapterFusion (Pfeiffer et al., 2021) com-
bines multiple pre-trained knowledge adapters
and a pre-trained task adapter, using a ran-
domly initialized fusion layer. Similar to the
attention mechanism (Vaswani et al., 2017),
the fusion layer learns to weight the different
pre-trained adapters for the downstream task.
During downstream fine-tuning, PolSciBERT
and all adapters are frozen, only the parame-
ters in the fusion layer are updated.

For all three setups, the final task-specific pre-
diction head is randomly initialized. Additional
task adapters are pre-trained for the AdapterFusion
(Pfeiffer et al., 2021) setup. Specifically, we follow
the standard single task training for adapters (Pfeif-
fer et al., 2021; Houlsby et al., 2019), in which
randomly initialized task adapters are inserted into
PolSciBERT and fine-tuned on the downstream
task while PolSciBERT is kept frozen. For training
details, also see Appendix B.1 and B.2.

4.3 Results

Table 4 reports results for major and minor topics
on our dataset. Results for the original dataset from
Koh et al. (2021) are included in the Appendix.

4.4 Baseline Results

Our baseline models (XLM-R, PolSciBERT) out-
perform the BERT-GRU and BERT-CNN models
of Koh et al. (2021) by 2-3% Micro-F1 for the ma-
jor topics and by around 5% Micro-F1 for minor
topics (see Appendix, Table 8). For Macro-F1, the
improvements are more profound, with around 10%
for the fine-grained minor topics.

When training the same models on our new
dataset (without missing tokens), we observe a
slight increase in results across most settings, with
one noteworthy exception. For Macro-F1 on the
minor topics, results on the corrupted training (and
test) data were higher (around 5% for PolSciBERT,
from 36% to 31%). We will look into this issue in
§4.7.
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Major Topics Minor Topics
Model Setup Micro-F1 Macro-F1 Micro-F1 Macro-F1

Baselines (w/o adapters) XLM-R 62.3(0.2) 51.0(0.3) 49.1(0.4) 32.8(1.2)
PolSciBERT 64.6(0.6) 53.4(0.8) 50.8(0.3) 31.2(2.2)

(with adapter) PolSciBERT + task adapter 65.0∗(0.1) 54.5(0.4) 51.8∗(0.3) 36.5(0.2)

CN-SYNONYM
Full 62.6(0.8) 52.5(0.9) 49.6(0.7) 35.0(0.8)
AdapterStack 64.1(0.8) 53.3(0.8) 51.3(0.6) 35.5(1.2)
AdapterFusion 65.0(0.5) 54.3(0.2) 51.7∗(0.3) 36.0(0.5)

KELM-ADAP
Full 62.5(0.7) 53.3(0.4) 50.0(0.6) 34.3(1.9)
AdapterStack 64.8(0.3) 54.1(0.3) 51.5∗(0.3) 36.0(0.4)
AdapterFusion 64.7(0.2) 54.0(0.2) 51.8∗(0.2) 36.2(0.5)

CN-SYNONYM & KELM-ADAP
AdapterStack 63.8(0.2) 52.9(0.3) 51.2(0.2) 35.4(0.6)
AdapterFusion 65.2∗(0.4) 54.4(0.3) 51.6∗(0.2) 36.2(0.8)

Experiments including antonym relations

CN-SYNONYM & CN-ANTONYM
AdapterStack 61.8(1.0) 50.6(1.3) 51.3∗(0.5) 35.7(0.6)
AdapterFusion 65.0(0.5) 54.2(0.4) 51.7∗(0.3) 36.4(0.3)

CN-SYNONYM & CN-ANTONYM
& KELM-ADAP

AdapterStack 62.1(0.5) 51.0(0.8) 50.9(0.5) 34.9(1.0)
AdapterFusion 65.1∗(0.2) 54.5(0.2) 51.5∗(0.1) 34.7(2.5)

Table 4: Test set results of the manifesto quasi-sentence domain classification (Major topics). The first column
specifies the model setup, including the knowledge adapter(s) and the fine-tuning strategy applied. All evaluation
metrics reported for our model setups were averaged over 5 random initializations. The number in the parenthesis
indicates the standard deviation of the 5 runs. Micro-F1 results marked with ∗ are significantly better than the
PolSciBERT baseline w/o adapters (Cochran’s Q with p <= .001).

4.5 Domain Adaptation

We observe an increase in results of around 2% (ma-
jor topics) for PolSciBERT, compared to the vanilla
XLM-R. For the minor topics, results are mixed,
with improvements in the same range for Micro-
F1 while Macro-F1 decreases, probably caused by
a high number of infrequent topics. Our results
show that domain adaptation through continuous
pre-training on in-domain data from the political
domain has a positive effect (RQ1). When replac-
ing full finetuning with a task adapter, we see fur-
ther improvements especially for the minor topics.
In addition, the task adapter seems more robust
(increase in standard deviation). Next, we look into
the performance of the knowledge adapters.

4.6 Knowledge Adapters

Full fine-tuning vs. freezing the LM parame-
ters In general, PolSciBERT equipped with a sin-
gle knowledge adapter, either CN-SIMILARITY or
KELM-ADAP, brings performance benefits across
different fine-tuning strategies compared to PolSci-
BERT without any adapters. When comparing
results for AdapterStack and AdapterFusion with
full fine-tuning, we see that for all settings it is
beneficial to freeze the LM parameters as well as
the knowledge adapter parameters and update only
the weights for the task-specific adapter and (for
AdapterFusion) the fusion layer.

Stacking vs. Fusion Our second observation
concerns the performance of AdapterStack versus
AdapterFusion. When inserting only one know-
ledge adapter, AdapterFusion works better or on
par with AdapterStack. However, when combin-
ing multiple knowledge adapters, adapter fusion
substantially outperforms stacking and yields im-
provements in the range of 3-4% for the major
topics. This shows that letting the model learn
the weights for the different adapters is beneficial.
Overall, however, the knowledge adapters do not
outperform the task-specific adapter.

Micro-F1 vs. Macro-F1 For the fine-grained mi-
nor topics, we observe more significant improve-
ments for Macro-F1 than for the Micro-F1 met-
ric. This implies that the improvements we gain
from adapter training are mostly driven by improve-
ments for the rare labels in the dataset. That is,
the adapters seem to be mostly helpful for sparse
data (i.e., topics with few instances). This obser-
vation is interesting, as it shows that the adapters
seem to have learned additional information that
our in-domain PolSciBERT has not yet learned (as
evidenced by the lower Macro-F1 of PolSciBERT,
compared to the vanilla XLM-R model).

Type of knowledge adapters When comparing
the different types of knowledge that we inserted,
we do not see any crucial differences between the
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entity-based knowledge and the semantic similarity
adapters. Both types of information yield simi-
larly small improvements. This raises some doubts
whether the information we inserted is crucial to
solve our task. We will come back to this question
in §4.7.

Lessons learned Our results show that freezing
the LM parameters and training only the weights
of the adapter(s) can outperform full fine-tuning, at
least in our setup. This provides more evidence that
adapters are a good way to prevent “catastrophic
forgetting” (Kirkpatrick et al., 2017; Lauscher et al.,
2021).

4.7 Error Analysis

We will now look into some open questions men-
tioned above. First, we would like to know why
Macro-F1 for PolSciBERT for the minor classes de-
creased (as compared to the vanilla XLM-R model)
when training on the new dataset while, at the same
time, Micro-F1 for PolSciBERT increased. This
was in contrast to the results on the original dataset
of Koh et al. (2021) where both, Micro and Macro-
F1 for PolSciBERT were around 2% higher than
the ones for the generic XLM-R. When looking
into the data, we found that PolSciBERT trained
on the newly created dataset does not predict la-
bels for 14 out of the 57 classes. Those classes
are the ones with few training (and test) instances
only and the underlying reason for the different be-
haviour of the two models lies in the way the data
was sampled. Koh et al. (2021) decided to create a
training set where the different classes are equally
distributed over the train/dev/test sets. In contrast
to this approach, we did not distribute sentences
from the same file over train, dev and test but se-
lected 33 unseen manifestos and put all sentences
from those documents in the test set. This results
in a slightly less balanced, but more realistic test
case. We assume that, as a result of our sampling
decision, the model had more difficulties to pre-
dict the low-frequency classes which resulted in
a lower Macro-F1 but higher accuracies for most
other predicted classes.

4.8 Zero-shot experiments for German

In our final experiment, we test our multilingual
model on German data in a zero-shot setup where
we predict policy domains and preferences in a
new, unseen language. We apply our model that
has been fine-tuned exclusively on English data

F1 (Major) F1 (Minor)
Model Setup Mic. Mac. Mic. Mac.

E
ng

lis
h XLM-R 62.3 51.0 49.1 31.8

PolSciBERT 64.6 53.4 50.8 31.2
PolSciB+Adap 65.0 54.5 51.8 36.5
CN-SYN AdaptFus 65.0 54.3 51.7 36.0
KELM AdaptFus 64.7 54.0 51.8 36.2

G
er

m
an

XLM-R 51.5 41.8 35.7 22.5
PolSciBERT 56.8 48.0 41.4 24.6
PolSciB+Adap 56.3 47.9 41.5 27.6
CN-SYN AdaptFus 56.5 47.3 40.2 26.8
KELM AdaptFus 56.5 48.8 41.8 25.8

Table 5: Results for English (from Tab. 4) and zero-
shot results for German manifestos.

to German manifestos that have been annotated
within the same framework.10 We are interested to
see (i) how well the model does without any task-
specific German training data and (ii) which of the
different methods (if any) is able to improve results
over the baseline.

Our results for German show a decrease of more
than 10% for the vanilla XLM-R for major topics
(62.4% vs. 51.5% Macro-F1) and around 15-20%
for the minor topics. The in-domain PolSciBERT is
able to improve results for major and minor topics
by around 5% (Micro-F1). However, as seen for En-
glish, none of the knowledge adapters is able to ob-
tain further significant improvements over the best
model trained without external knowledge, again
questioning whether the information that we in-
jected in the model is needed for solving the task at
hand. The adapters, however, provide competitive
results without the need to retrain the full model.

5 Conclusions

Inspired by previous work on enhancing
transformer-based LMs with domain knowledge,
common-sense knowledge and semantic similarity
information, we tested the impact of knowledge
injection for the task of policy domain prediction
from party manifestos. Our results showed that
(a) in-domain pre-training can yield substantial
improvements (PolSciBERT vs. vanilla XLM-R);
(b) freezing the LM parameters and training
task-specific adapters can yield comparable or
better results, compared to full model finetuning;
and (c) adapter fusion is especially important when
integrating more than one adapter in the model.

10Our test set includes German manifestos from 1998 –
2021 (88,694 quasi-sentences), downloaded from https://
manifesto-project.wzb.eu (see Table 3 in the Appendix).

https://manifesto-project.wzb.eu
https://manifesto-project.wzb.eu
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6 Limitations

While our results showed the effectiveness of
adapters as a parameter-efficient alternative to full
fine-tuning, our attempts to improve model per-
formance based on the injection of external know-
ledge were not successful. This, however, does
not prove that knowledge injection for the task at
hand is not feasible. More thorough testing of dif-
ferent types of knowledge is needed to answer the
question whether knowledge injection can improve
results for policy domain prediction from party
manifestos.

7 Ethical Considerations

While the task of policy domain prediction from
party manifestos has attracted a lot of attention
especially in the political sciences and in the field
of Text-as-Data, it is clear that the results so far
are not yet good enough for applications in the
real world. We thus advise researchers not to use
the output of our system for political text analyses
without any manual post-correction.
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Supplementary Material

A PolSciBERT

We list the collection of corpora utilized for pre-
training PolSciBERT in Table 6. The raw texts
have been split into sentences using Spacy (Version
2.3.1. https://spacy.io). Sentences without
any lower-case Latin characters have been removed
from the data.

A.1 Hyperparameters for PolSciBERT
pre-training

The pre-training of PolSciBERT was continued on
the political text corpus, using a batch size of 16.
Note that the gradient accumulation step was set to
be 4, meaning model weights were updated once
every 4 batches. The learning rate was 5e− 05. A
new checkpoint was saved every 50,000 steps. We
use the checkpoint at the 5950000-th step as our
base model.

A.2 The KELM Corpus

{
"triples": [
["Valentin Lavigne", "member of sports team", "FC Lorient"],
["Valentin Lavigne", "FC Lorient", "start time", "01 January 2014"],
["Valentin Lavigne", "FC Lorient", "end time", "01 January 2016"]
],

"serialized_triples":
"Valentin Lavigne member of sports team FC Lorient, FC Lorient"
"end time 01 January 2016, FC Lorient start time 01 January 2014.",

"gen_sentence":
"Valentin Lavigne played for FC Lorient between 2014 and 2016."

}

Figure 1: An example instance in the KELM corpus

https://spacy.io
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B Training Details

B.1 Baseline models

We perform downstream fine-tuning for all model
setups with a batch size of 16 and a linear learning
rate decay and use AdamW (Loshchilov and Hutter,
2019) as optimizer. The learning rate is 5e−5 for
the baseline models and adapter full fine-tuning.
The maximum number of epochs is 30, with early
stopping and a patience of 5, meaning the model
will stop training if the evaluation results on the
development set stop improving for 5 consecutive
epochs.

B.2 Adapters

The training arguments and configurations for the
adapters are presented in Table 7. Following the
settings in Pfeiffer et al. (2021), all adapters are
trained with a learning rate of 1e − 4 with linear
learning rate decay. The warm-up ratio is 0.1. We
train adapters for different batch sized and number
of epochs, depending on the size of the training
data. For CN-SIMILARITY and CN-ANTONYM, we
perform early stopping based on the accuracy on
the test set: If the accuracy stops improving for 5
consecutive evaluation steps, the training is stopped.
We use AdamW (Loshchilov and Hutter, 2019)
with a weight decay of 0.01 for optimization.

C Results on the Koh et al. (2021) dataset

To compare our results with previous work, we
downloaded the data from Koh et al. (2021) from
their github repository.11 We found that, proba-
bly due to some preprocessing problem, the quasi-
sentences in the dataset were not complete (see
examples below). For a fair comparison, we pro-
ceeded as follows. First, we trained and tested our
models on the original dataset of Koh et al. (2021),
to assure that differences in results are not sim-
ply due to the missing tokens. We used the same
train/test splits as specified in the data. Next, in
order to evaluate the impact of the missing tokens
on the results, we downloaded English manifestos
from the Manifesto Project homepage12 and recre-
ated the dataset with manifestos from Australia,
Canada, Ireand, New Zealand, South Africa, the
UK and the US (Table 3). Our new dataset is sub-
stantially smaller than the original dataset and we

11https://github.com/allisonkoh/bertcnn-classi
fying-manifestos, (file: 02.FINAL_minor.csv).

12https://manifesto-project.wzb.eu

did not balance the label distribution across the dif-
ferent splits. To ensure replicability, we will make
our train/dev/test splits available upon publication.

A Once people have what
B Once people have offended, what next?
A The manifesto is
B The manifesto is comprehensive.
A not has turned things
B Choice, not chance, has turned things round.

Figure 2: Examples for missing tokens in the dataset
(A: quasi-sentence taken from Koh et al.; B: recreated
from the original manifestos data).

lang train dev test
Koh et al. (EN) 69,500 14,888 14,894
recreated (EN) 59,559 14,419 13,722
zero-shot (DE) – – 88,694

Figure 3: Statistics for the recreated manifestos dataset
(en) and for the German test set used for zero-shot pre-
diction.

https://github.com/allisonkoh/bertcnn-classifying-manifestos
https://github.com/allisonkoh/bertcnn-classifying-manifestos
https://manifesto-project.wzb.eu
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CN-SIMILARITY CN-ANTONYM KELM-ADAP

Training Arguments
batch size 32 32 16
number of epochs 10 30 1
learning rate 1e-4 1e-4 1e-4
warm-up ratio 0.1 0.1 0.1
weight decay 0.01 0.01 0.01
early stopping True True False
patience 5 5 5
evaluation steps 15000 500 15000
gradient accumulation steps 1 1 4

Adapter Configurations
adapter hidden size 96 96 96

Table 7: Training details for adapter training.

Major Topics Minor Topics
Model Setup Micro-F1 Macro-F1 Micro-F1 Macro-F1

(Koh et al., 2021) BERT-GRU (Base model) 59.3 47.9 43.2 23.9
BERT-CNN (Base model) 59.1 47.3 44.8 26.0

Baselines XLM-R 61.7(0.4) 50.6(1.0) 48.6(0.2) 34.1(1.7)
PolSciBERT 63.2(0.2) 51.9(0.7) 50.5(0.3) 36.1(0.7)

CN-SYNONYM
Full 61.7(0.3) 52.0(0.3) 49.4(0.3) 37.4(1.0)
AdapterStack 63.5(0.1) 52.2(0.5) 51.0(0.2) 37.7(1.1)
AdapterFusion 63.5(0.2) 52.3(0.5) 50.4(0.2) 35.7(2.3)

KELM-ADAP
Full 62.3(0.2) 52.5(0.4) 49.9(0.5) 37.9(0.5)
AdapterStack 63.8(0.2) 53.5(0.3) 51.2(0.2) 38.5(1.0)

AdapterFusion 63.5(0.2) 52.2(0.1) 50.8(0.2) 37.0(1.6)

CN-SYNONYM & KELM-ADAP
AdapterStack 62.8(0.5) 51.5(0.9) 50.6(0.3) 37.0(0.7)
AdapterFusion 63.6(0.2) 52.3(0.2) 50.8(0.3) 37.7(1.4)

Experiments with semantic dissimilarity knowledge

CN-SYNONYM & CN-ANTONYM
AdapterStack 62.1(0.8) 50.7(1.0) 50.3(1.1) 36.3(2.2)
AdapterFusion 63.6(0.2) 52.5(0.3) 50.7(0.3) 37.7(0.6)

CN-SYNONYM & CN-ANTONYM
& KELM-ADAP

AdapterStack 61.9(0.4) 50.3(0.6) 51.0(0.2) 37.8(0.8)
AdapterFusion 63.5(0.3) 52.3(0.2) 50.9(0.1) 38.4(0.9)

Table 8: Test set results for manifesto quasi-sentence policy domain classification (Koh et al., 2021). The results
for Koh et al. (2021) were taken from Table 7 in their paper. The first column specifies the model setup, including
the knowledge adapter(s) and the fine-tuning strategy applied. All evaluation metrics reported for our model setups
were averaged over 5 random initializations. The numbers in parentheses indicate standard deviation over the 5
runs.


