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Introduction

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scien-
tific conference for the study, development and evaluation of spoken language translation technology.
Launched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003),
IWSLT is the main venue for scientific exchange on all topics related to speech-to-text translation, speech-
to-speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual commu-
nication including all multimodal, emotional, paralinguistic, and stylistic aspects and their applications
in the field. The conference organizes evaluations around challenge areas, and presents scientific papers
and system descriptions. IWSLT is organized by the Special Interest Group on Spoken Language Tran-
slation (SIGSLT), which is supported by ACL, ISCA and ELRA.

This year, IWSLT featured nine shared tasks in spoken language translation: (i) simultaneous and (ii)
offline translation, (iii) automatic subtitling and (iv) dubbing, (v) speech-to-speech translation, (vi) mul-
tilingual, (vii) dialect and (viii) low-resource speech translation, and (ix) formality control. Each shared
task was coordinated by one or more chairs. The resulting evaluation campaigns attracted a total of 31
teams, from academia, research centers, and industry. System submissions resulted in system papers
that will be presented at the conference. Following our call for papers, this year 51 submissions were
received. In a blind review process, 8 research papers were selected out of 15 for oral presentation (57%)
in addition to 37 system papers.

The program committee is excited about the quality of the accepted papers and expects lively discussion
and exchange at the conference. The conference chairs and organizers would like to express their grati-
tude to everyone who contributed and supported IWSLT. In particular, we wish to thank our Diamond
sponsors Apple and Translated, our Gold sponsor aiXplain, and our Silver sponsor AppTek. We thank
the shared tasks chairs, organizers, and participants, the program committee members, as well as all the
authors that went the extra mile to submit system and research papers to IWSLT, and make this year’s
conference a big success. We also wish to express our sincere gratitude to ACL for hosting our confe-
rence and for arranging the logistics and infrastructure that allow us to hold IWSLT 2023 as a hybrid
conference.

Welcome to IWSLT 2023, welcome to Toronto!

Marine Carpuat, Program Chair
Marcello Federico and Alex Waibel, Conference Chairs
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Hugo Riguidel, Salima Mdhaffar, Gaëlle Laperrière, Lucas Maison, Sameer Khurana and Yannick
Estève . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

BUT Systems for IWSLT 2023 Marathi - Hindi Low Resource Speech Translation Task
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Abstract

This paper reports on the shared tasks orga-
nized by the 20th IWSLT Conference. The
shared tasks address 9 scientific challenges
in spoken language translation: simultane-
ous and offline translation, automatic subti-
tling and dubbing, speech-to-speech transla-
tion, multilingual, dialect and low-resource
speech translation, and formality control. The
shared tasks attracted a total of 38 submis-
sions by 31 teams. The growing interest to-
wards spoken language translation is also wit-
nessed by the constantly increasing number
of shared task organizers and contributors to
the overview paper, almost evenly distributed
across industry and academia.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier an-
nual scientific conference for all aspects of spoken
language translation (SLT). IWSLT is organized
by the Special Interest Group on Spoken Lan-
guage Translation (SIG-SLT), which is supported
by ACL, ISCA and ELRA. Like in all previous
editions (Akiba et al., 2004; Eck and Hori, 2005;
Paul, 2006; Fordyce, 2007; Paul, 2008, 2009; Paul

et al., 2010; Federico et al., 2011, 2012; Cettolo
et al., 2013, 2014, 2015, 2016, 2017; Niehues
et al., 2018, 2019; Ansari et al., 2020; Anasta-
sopoulos et al., 2021, 2022b),this year’s confer-
ence was preceded by an evaluation campaign
featuring shared tasks addressing scientific chal-
lenges in SLT.

This paper reports on the 2023 IWSLT Eval-
uation Campaign, which offered the following 9
shared tasks:

• Offline SLT, with focus on speech-to-text
translation of recorded conferences and inter-
views from English to German, Japanese and
Chinese.

• Simultaneous SLT, focusing on speech-to-
text translation of streamed audio of confer-
ences and interviews from English to German,
Japanese and Chinese.

• Automatic Subtitling, with focus on speech-
to-subtitle translation of audio-visual docu-
ments from English to German and Spanish.

• Multilingual SLT, with focus on speech-to-
text translation of recorded scientific talks from

1



Team Organization
ALEXA AI Amazon Alexa AI, USA (Vishnu et al., 2023)
APPTEK AppTek, Germany (Bahar et al., 2023)
BIGAI Beijing Institute of General Artificial Intelligence, China (Xie, 2023)
BIT Beijing Institute of Technology, China (Wang et al., 2023b)
BUT Brno University of Technology, Czechia (Kesiraju et al., 2023)
CMU Carnegie Mellon University, USA (Yan et al., 2023)
CUNI-KIT Charles University, Czechia, and KIT, Germany (Polák et al., 2023)
FBK Fondazione Bruno Kessler, Italy (Papi et al., 2023)
GMU George Mason University, USA (Mbuya and Anastasopoulos, 2023)
HW-TSC Huawei Translation Services Center, China (Li et al., 2023; Wang et al., 2023a)

(Guo et al., 2023; Shang et al., 2023; Rao et al., 2023)
I2R Institute for Infocomm Research, A*STAR, Singapore (Huzaifah et al., 2023)
JHU Johns Hopkins University, USA (Hussein et al., 2023; Xinyuan et al., 2023)
KIT Karlsruhe Institute of Technology, Germany (Liu et al., 2023)
KU Kyoto University, Japan (Yang et al., 2023)
KU X UPSTAGE Korea University X Upstage, South Korea (Wu et al., 2023; Lee et al., 2023)
MATESUB Translated Srl, Italy (Perone, 2023)
MINETRANS U. of Sci. and Techn. of China, Tancient AI Lab, State Key Lab. of Cognitive Intelligence (Du et al., 2023)
NAIST Nara Institute of Science and Technology, Japan (Fukuda et al., 2023)
NAVER NAVER Labs Europe, France (Gow-Smith et al., 2023)
NIUTRANS NiuTrans, China (Han et al., 2023)
NPU-MSXF Northwestern Polytechnical U., Nanjing U., MaShang Co., China (Song et al., 2023)
NEURODUB NeuroDub, Armenia
NEMO NVIDIA NeMo, USA(Hrinchuk et al., 2023)
ON-TRAC ON-TRAC Consortium, France (Laurent et al., 2023)
QUESPA Northeastern U, USA, U. de Pompeu Fabra, Spain, CMU, USA(Ortega et al., 2023)
UPC Universitat Politècnica de Catalunya, Spain (Tsiamas et al., 2023)
SRI-B Samsung R&D Institute Bangalore, India (Radhakrishnan et al., 2023)
UCSC U. of California, Santa Cruz, USA (Vakharia et al., 2023)
UM-DFKI U. of Malta, Malta, and DFKI, Germany (Williams et al., 2023)
USTC U. of Science and Technology of China (Deng et al., 2023; Zhou et al., 2023)
XIAOMI Xiaomi AI Lab, China (Huang et al., 2023)

Table 1: List of Participants

English into Arabic, Chinese, Dutch, French,
German, Japanese, Farsi, Portuguese, Russian,
and Turkish.

• Speech-to-speech translation, focusing on
natural-speech to synthetic-speech translation
of recorded utterances from English to Chinese.

• Automatic Dubbing, focusing on dubbing of
short video clips from German to English.

• Dialect SLT, focusing on speech translation of
recorded utterances from Tunisian Arabic to
English.

• Low-resource SLT, focusing on speech trans-
lation of recorded utterances from Irish to En-
glish, Marathi to Hindi, Maltese to English,
Pashto to French, Tamasheq to French, and
Quechua to Spanish.

• Formality Control for SLT, focusing on for-
mality/register control for spoken language
translation from English to Korean, Viet-
namese, EU Portuguese, and Russian.

The shared tasks attracted 38 submissions by 31
teams (see Table 1) representing both academic
and industrial organizations. The following sec-
tions report on each shared task in detail, in par-
ticular: the goal and automatic metrics adopted for
the task, the data used for training and testing data,
the received submissions and the summary of re-
sults. Detailed results for some of the shared tasks
are reported in a corresponding appendix.

2 Offline SLT

Offline speech translation is the task of translating
audio speech in one language into text in a differ-
ent target language, without any specific time or
structural constraints (as, for instance, in the si-
multaneous, subtitling, and dubbing tasks). Un-
der this general problem definition, the goal of
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the offline ST track (one of the speech tasks with
the longest tradition at the IWSLT campaign) is to
constantly challenge a technology in rapid evolu-
tion by gradually introducing novelty aspects that
raise the difficulty bar.

2.1 Challenge
In continuity with last year, participants
were given three sub-tasks correspond-
ing to three language directions, namely
English→German/Japanese/Chinese. Partici-
pation was allowed both with cascade architec-
tures combining automatic speech recognition
(ASR) and machine translation (MT) systems
as core components, or by means of end-to-end
approaches that directly translate the input speech
without intermediate symbolic representations.
Also this year, one of the main objectives was
indeed to measure the performance difference
between the two paradigms, a gap that recent
research (Bentivogli et al., 2021) and IWSLT find-
ings (Ansari et al., 2020; Anastasopoulos et al.,
2021, 2022b) indicate as gradually decreasing.

The other main objective of this round was to
assess the ability of SLT technology to deal with
complex scenarios involving different types of in-
put characterized by phenomena like spontaneous
speech, noisy audio conditions and overlapping
speakers. In light of this, the main novelty of the
2022 offline SLT task lies in a richer variety of
speech data to be processed. To this aim, in addi-
tion to the classic TED talks test set, two novel test
sets were released:

• ACL presentations, in which a single
speaker is presenting on a stage. Although
similar to the TED talks scenario, additional
challenges posed by this test set include the
presence of non-native speakers, different ac-
cents, variable recording quality, terminol-
ogy, and controlled interactions with a second
speaker.

• Press conferences and interviews, in which
two persons interact on different topics.
Inherent challenges, therefore, include the
presence of spontaneous speech, non-native
speakers, different accents, and controlled in-
teraction with a second speaker.

All the test sets were used for evaluation in
the English-German sub-task, while only TED
Talks and ACL presentations were used to test the

submissions to the English-Japanese and English-
Chinese sub-tasks.

2.2 Data and Metrics

Training and development data. Participants
were offered the possibility to submit systems built
under three training data conditions:

1. Constrained: the allowed training data is
limited to a medium-sized framework in
order to keep the training time and re-
source requirements manageable. The com-
plete list1 of allowed training resources
(speech, speech-to-text-parallel, text-parallel,
text-monolingual) does not include any pre-
trained language model.

2. Constrained with large language models
(constrained+LLM ): in addition to all the con-
strained resources, a restricted selection1 of
large language models is allowed to give par-
ticipants the possibility to leverage large lan-
guage models and medium-sized resources.

3. Unconstrained: any resource, pre-trained
language models included, can be used with
the exception of evaluation sets. This setup is
proposed to allow the participation of teams
equipped with high computational power and
effective in-house solutions built on addi-
tional resources.

The development data allowed under the con-
strained condition consist of the dev set from
IWSLT 2010, as well as the test sets used for
the 2010, 2013-2015 and 2018-2020 IWSLT cam-
paigns. Besides this TED-derived material, ad-
ditional development data were released to cover
the two new scenarios included in this round of
evaluation. For the ACL domain, 5 presentations
from the ACL 2022 conference with translations
and transcriptions were provided. Due to addi-
tional constraints, these references were gener-
ated by human post-editing of automatic transcrip-
tions and translation. For the press conferences
and interviews domain, 12 videos (total duration:
1h:3m) were selected from publicly available in-
terviews from the Multimedia Centre of the Euro-
pean Parliament (EPTV)2.

1See the IWSLT 2023 offline track web page: https:
//iwslt.org/2023/offline

2https://multimedia.europarl.europa.
eu
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Test data. Three new test sets were created for
the three language directions. The new test sets
include heterogeneous material drawn from each
scenario. For the traditional TED scenario, a new
set of 42 talks not included in the current public
release of MuST-C was selected to build the en-de
test set.3 Starting from this material, the talks for
which Japanese and Chinese translations are avail-
able were selected to build the en-zh and en-ja test
sets (respectively, 38 and 37 talks). Similar to the
2021 and 2022 editions, we consider two different
types of target-language references, namely:

• The original TED translations. Since these
references come in the form of subtitles, they
are subject to compression and omissions
to adhere to the TED subtitling guidelines.4

This makes them less literal compared to
standard, unconstrained translations;

• Unconstrained translations. These references
were created from scratch5 by adhering to the
usual translation guidelines. They are hence
exact translations (i.e. literal and with proper
punctuation).

For the ACL presentation scenario, paper pre-
sentations from ACL 2022 were transcribed and
translated into the target languages. A detailed de-
scription of the data set can be found in Salesky
et al. (2023). There are 5 presentations in each of
the dev and test sets with a total duration 1h per
split. Talks were selected to include diverse paper
topics and speaker backgrounds. This test set is
shared with the Multilingual task (§5).

For the press conferences and interviews sce-
nario, the test set comprises 10 EPTV videos of
variable duration (6m on average), amounting to a
total of 1h:1m. The details of the new test sets are
reported in Table 2.

Metrics. Systems were evaluated with respect
to their capability to produce translations similar
to the target-language references. The similarity
was measured in terms of BLEU and COMET (Rei
et al., 2020a) metrics. The submitted runs were

3This set of 42 TED talks is also referred to as the
“Common” test set (not to be confused with MuST-C “tst-
COMMON”) because it serves in both Offline and Simul-
taneous https://iwslt.org/2023/simultaneous
tasks.

4http://www.ted.com/participate/
translate/subtitling-tips

5We would like to thank Meta for providing us with this
new set of references.

Talks / Videos Duration
English-German
TED 42 3h:47m:53s
ACL 5 59m:22s
EPTV 10 1h:1m
English-Chinese
TED 37 3h:2m:22s
ACL 5 59m:22s
English-Japanese
TED 38 3h:19m:34s
ACL 5 59m:22s

Table 2: Statistics of the official test sets for the IWSLT
2023 offline speech translation task.

ranked based on the BLEU calculated on the con-
catenation of the three test sets by using automatic
resegmentation6 of the hypotheses based on the
reference translations. For the BLEU computed
on the concatenation of the three test sets, the new
unconstrained ones have been used for the TED
data. As observed on IWSLT 2022 manual eval-
uation of simultaneous speech-to-text translation
(Macháček et al., 2023), COMET is correlating
with human judgments best and BLEU correlation
is also satisfactory. Moreover, to meet the requests
of last year’s participants, a human evaluation was
performed on the best-performing submission of
each participant.

2.3 Submissions
This year, 10 teams participated in the offline task,
submitting a total of 37 runs. Table 3 provides a
breakdown of the participation in each sub-task
showing, for each training data condition, the
number of participants, the number of submitted
runs and, for each training data condition (con-
strained, constrained+LLM , unconstrained), the
number of submitted runs obtained with cascade
and direct systems.

• BIGAI (Xie, 2023) participated both with
cascade and direct models for en-de, en-ja,
and en-zh translations, which were trained
under the constrained+LLM condition.
The cascade is the concatenation of an
ASR model and an MT system. The ASR
consists of the first 12 Transformer layers

6Performed with mwerSegmenter - https:
//www-i6.informatik.rwth-aachen.de/web/
Software/mwerSegmenter.tar.gz
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English-German
Participants Runs Constrained Constrained+LLM Unconstrained

Cascade 1 Cascade 1 Cascade 2
6 16 2

Direct 1
12

Direct 11
2

Direct -
English-Chinese

Participants Runs Constrained Constrained+LLM Unconstrained
Cascade 3 Cascade 1 Cascade 7

7 16 5
Direct 2

3
Direct 2

8
Direct 1

English-Japanese
Participants Runs Constrained Constrained+LLM Unconstrained

Cascade 1 Cascade 1 Cascade 1
3 5 2

Direct 1
2

Direct 1
1

Direct -

Table 3: Breakdown of the participation in each sub-task (English→German, English→Chinese,
English→Japanese) of the IWSLT offline ST track. For each language direction, we report the number of par-
ticipants, the number of submitted runs and, for each training data condition (constrained, constrained+LLM , un-
constrained), the number of submitted runs obtained with cascade and direct systems.

from wav2vec2-large-960h-lv60-self and
an adapter model to compress the feature
vectors. Transcripts are obtained through
a CTC greedy decoding step. The MT is
based on mbart-large-50-one-to-many-mmt.
The direct model consists of two separate
encoders for speech and text, followed by
a shared decoder. The speech and text
encoders are respectively based on the
cascade ASR and MT encoders. An adapter
model is introduced to connect the two
encoders. The direct model combines the
cross entropy loss for MT and the CTC loss
for ASR, together with a hyperparameter to
balance the weights between the two losses.
The training procedure involves dedicated
fine-tuning steps, data filtering and audio
re-segmentation into shorter segments.

• I2R (Huzaifah et al., 2023) participated
with a direct approach for en-de trans-
lation, which was trained under the
constrained+LLMcondition. The model
consists of two separate encoders for speech
and text, followed by a shared encoder and
a decoder. The speech encoder is initialised
with WavLM large, while DeltaLM base is
used to initialise the text encoder, the shared
encoder and the decoder. To leverage both
text and speech sources, the shared encoder
is induced to learn a joint multimodal repre-
sentation obtained through forced alignment
of speech and text data. The resulting mixed

speech-text representation is passed to the
shared encoder initially pre-trained on text
data only. A DeltaLM-based MT model
incrementally trained on in-domain and
out-of-domain data is used as a teacher
during fine-tuning of the ST system. The
ST model is built on a mix of ASR, ST and
synthetic data. Additional techniques applied
include on-the-fly audio augmentation to
increase robustness to variable audio quality,
domain tagging to condition the ST output
to the different output styles of the test data,
and ST model ensembling.

• HW-TSC (Li et al., 2023) participated with
cascade systems for all language directions
and in all three training data conditions. The
ASR model used for the constrained train-
ing condition is the Conformer. For the
constrained+LLM condition, the encoder of
wav2vec2 and the decoder of mBART50 are
combined to fine-tune on all data an ASR
model trained on MuST-C. Whisper (Rad-
ford et al., 2022), fine-tuned on MuST-C, is
instead used for the unconstrained training
condition. All models are built using au-
dio inputs augmented with SpecAugment and
CTC. The MT component is a Transformer-
based model trained in a one-to-many mul-
tilingual fashion. It exploits data filter-
ing and data augmentation techniques, com-
bined with dropout regularization and do-
main adaptation methods, as well as solutions
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to increase robustness to ASR noise (through
synthetic noise generation and data augmen-
tation).

• MINETRANS (Du et al., 2023) participated
with en-zh cascade systems trained under
constrained and unconstrained conditions.
The submitted runs are obtained with a
pipeline of ASR, punctuation recognition,
and MT components. The ASR is an RNN-
Transducer. For the unconstrained condi-
tion, GigaSpeech is added to the training
data allowed in the constrained setting. In
both conditions, pre-processing and filter-
ing techniques are applied to improve data
quality, while SpecAugment is used for data
augmentation. Before being passed to the
MT component, the unpunctuated ASR out-
put is processed by means of a BERT-based
punctuation recognition model. For the MT
component, two strategies are implemented.
The first one relies on different Transformer-
based models for supervised training. A
base Transformer and an M2M 100 model
are used for the constrained condition. A
translation model trained on additional in-
house corpora is used for the unconstrained
condition. The second strategy adopted for
the MT component relies on a large language
model (Chat-GPT) for prompt-guided trans-
lation.

• NIUTRANS (Han et al., 2023) participated
with a direct en-zh system trained under
the constrained condition. It consists of
two separate encoders for speech and text
with an adapter in between, followed by a
decoder. The speech encoder is pre-trained
with an ASR encoder, while the textual
encoder and the decoder with pre-trained
MT components. Different architectures
with variable size were tested both for ASR
(enhanced with CTC loss and inter-CTC loss
to speed up convergence) and MT (used to
generate pseudo-references so as to increase
the size of the SLT data). The final system
is an ensemble aiming at maximizing the
diversity between models.

• NEURODUB7 participated with a cascade

7Unofficial participant, as no system paper is available.

en-de system trained under the unconstrained
condition. It consists of a 4-staged process
including the ASR, the punctuation module
performing both sentence extraction and
punctuation placement, the speaker- and
gender distinction component, and the
translation model. Every stage is trained on
the crawled data from the web.

• NEMO (Hrinchuk et al., 2023) participated
with direct systems for all language di-
rections in the constrained training data
condition. Pre-trained models and synthetic
training data are exploited in different ways
to cope with the scarcity of direct ST data. A
Conformer-based ASR model trained on all
allowed speech-to-text data is used to initial-
ize the SLT encoder. A Transformer-based
NMT model trained on all allowed parallel
data and fine-tuned on TED talks is used to
generate synthetic translation alternatives for
all available speech-to-text and text-to-text
data. A TTS model based on Fast Pitch
(Łańcucki, 2021) and trained on the English
transcripts of all TED-derived data is used
to generate the synthetic speech version of
English texts in the available text corpora.
The submitted SLT systems are based on
a Conformer-based encoder followed by a
Transformer decoder trained on this mix
of (gold and synthetic) speech-to-text and
text-to-text data.

• XIAOMI (Huang et al., 2023) participated
with a direct en-zh system trained under the
constrained+LLM condition. It consists of
a speech encoder, a text encoder, and a text
decoder, with all parameters initialized using
the pre-trained HuBERT and mBART mod-
els. The speech encoder is composed of a
feature extractor based on convolutional neu-
ral networks and a Transformer encoder. In
addition to the cross-entropy loss, ASR, MT,
and a contrastive loss, which tries to learn an
encoder that produces similar representations
for similar instances independently from the
modalities, are added. Self-training is also
used to leverage unlabelled data. In addition
to the allowed datasets, a large set of pseudo
references are generated translating the
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transcripts of the ASR corpora. During train-
ing, a second fine-tuning is performed on
MuST-C as in-domain data. The final system
is an ensemble of the two best-performing
models.

• UPC (Tsiamas et al., 2023) participated
with a direct en-de system trained under the
constrained+LLM condition. It consists of
a speech encoder, a textual encoder, and a
text decoder. The speech encoder includes
a semantic encoder to align speech and
text encoder representations. The coupling
modules include the CTC and Optimal
Transport (OT) losses to the outputs of the
acoustic and semantic encoders, and the
addition of a second auxiliary OT loss for
the inputs of the semantic encoder. The
speech encoder is based on wav2vec 2.0,
while the textual encoder uses mBART50.
Knowledge distillation is used to generate
additional data to fine-tune part of the SLT
model architecture (the feature extractor, the
acoustic encoder, and the CTC module are
frozen during fine-tuning).

USTC (Zhou et al., 2023) participated with
cascade and direct en-zh models trained un-
der the unconstrained condition. For the ASR
of the cascade, two approaches are imple-
mented. The first one exploits a fusion mod-
els trained on the allowed data expanded with
speed perturbation, oversampling, concate-
nation of adjacent voices and synthetic data
generation via TTS. The second approach is
based on Whisper large (Radford et al., 2022)
and SHAS for audio segmentation. The MT
component of the cascade system exploits an
ensemble of Transformer-based models en-
hanced with knowledge distillation, domain
adaptation and robust training strategies. For
direct SLT, two approaches are implemented.
The first one is an encoder-decoder initial-
ized with the ASR and MT models of the
cascade. The second approach is a Stacked
Acoustic-and-Textual Encoding extension of
SATE (Xu et al., 2021). The final sub-
missions also include ensembles obtained by
combining cascade and direct systems.

2.4 Results

Also this year, the submissions to the IWSLT Of-
fline translation task were evaluated both with au-
tomatic metrics and through human evaluation.
The results for each sub-task are shown in detail
in the Appendix.

2.4.1 Automatic Evaluation
The results for each of the language pairs are
shown in the tables in Appendix B.1. We present
results for English-German (Table 14), English-
Chinese (Table 16) and English-Japanese (Table
15). The evaluation was carried out in terms of
BLEU (the primary metric, in continuity with pre-
vious years), and COMET. We report individual
scores for the three (or two, as in the case of en-ja
and en-zh) different test sets as well as metrics cal-
culated on the concatenation of the different test
sets. For each sub-task, systems are ranked based
on the BLEU score computed on the concatenated
test sets.

End-to-End vs Cascaded This year the cas-
caded systems performed in general better than
the end-to-end systems. For English-to-German,
for nearly all metrics, the cascaded systems are al-
ways ranked best. For English-to-Japanese, the
results show a similar situation to English-to-
German, with the cascade systems outperforming
the end-to-end model. The supremacy of the cas-
cade models is confirmed by all the metrics, with
a clear gap in performance between the worst cas-
cade and the best end-to-end models. For English-
to-Chinese, the picture is not as clear. However,
the only participant who submitted a primary sys-
tem using the cascaded and one using the end-
to-end paradigm (USTC), the cascaded performed
better in all metrics.

Metrics For English-to-German, in general, the
results of the BLEU metric correlate quite well
with the scores of the COMET metric. Except for
relatively small changes, e.g. the order is different
for the different HW-TSC systems. One excep-
tion is the submissions by UPC and NeMo that are
ranked differently in the two metrics. Therefore, a
comparison to the human evaluation will be inter-
esting. In the English-to-Japanese task, the scores
of the HW-TSC systems are very close to each
other and some swaps are visible between BLEU
and COMET. However, the changes are only re-
lated to the HW-TSC systems and do not mod-
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ify the overall evaluation of the systems. In the
English-to-Chinese task, there are two situations
where the metrics differ significantly. The rank-
ing for USTC end-to-end compared to the HW-
TSC systems is different with respect to COMET,
which rewards the HW-TSC submissions. A sim-
ilar situation is visible for NiuTrans and Xiaomi,
where BLEU favors the NiuTrans translations,
while COMET assigns higher scores, and ranking,
to the Xiaomi submissions.

Data conditions For the different data condi-
tions, the gains by using additional large language
models or additional data are not clear. HW-
TSC submitted three primary systems for each
data condition and they all perform very similarly.
However, for en-zh the unconstrained system by
USTC was clearly the best and for en-de the best
system except HW-TSC was also an unconstrained
one. The additional benefit of the pre-trained mod-
els is even less clear. There is no clear picture that
the systems with or without this technology per-
form better.

Domains One new aspect this year is the evalu-
ation of the systems on three different test sets and
domains. First of all, the absolute performance on
the different domains is quite different. The sys-
tems perform clearly worse on the EPTV test sets.
For the relationship between ACL and TED, the
picture is not as clear. While the BLEU scores
on ACL are higher, the COMET scores are lower.
Only for English-to-Japanese, both metrics are
higher on the ACL test set. One explanation could
be that the references for the ACL talks are gen-
erated by post-editing an MT output. This could
indicate that the post-edited references inflate the
BLEU score, while the COMET score seems to be
more robust to this phenomenon. When compar-
ing the different systems, the tendency is for all
cases the same. However, some perform slightly
better in one condition. For example, the end-
to-end system from USTC performs very well on
TED compared to other systems but less well on
ACL.

2.4.2 Human Evaluation

At the time of writing, human evaluation is still in
progress. Its results will be reported at the confer-
ence and they will appear in the updated version
of this paper in Appendix A.

3 Simultaneous SLT

Simultaneous speech translation means the system
starts translating before the speaker finishes the
sentence. The task is essential to enable people
to communicate seamlessly across different back-
grounds, in low-latency scenarios such as transla-
tion in international conferences or travel.

This year, the task included two tracks: speech-
to-text and speech-to-speech, covering three lan-
guage directions: English to German, Chinese and
Japanese.

3.1 Challenge
There are two major updates compared with pre-
vious years:

• Removal of the text-to-text track. The task
focuses on the real-world live-translation set-
ting, where the speech is the input medium.

• Addition of a speech-to-speech track. Trans-
lation into synthetic speech has gained in-
creasing attention within the research com-
munity, given its potential application to real-
time conversations.

To simplify the shared task, a single latency
constraint is introduced for each track: 2 sec-
onds of Average Lagging for speech-to-text, and
2.5 seconds of starting offset for speech-to-speech.
The participants can submit no more than one
system per track / language direction, as long as
the latency of the system is under the constraint.
The latency of the system is qualified on the open
MuST-C tst-COMMON test set (Di Gangi et al.,
2019a).

The participants made submissions in a format
of docker images, which were later run by orga-
nizers on the blind-test set in a controllable en-
vironment. An example of implementation was
provided with the SimulEval toolkit (Ma et al.,
2020a).

3.2 Data
The training data condition of the simultaneous
task follows “constrained with large language
models” setting in the Offline translation task, as
described in Section 2.2

The test data has two parts:

Common TED talks. It’s the the same as in the
Offline task, as described in Section 2.2 .For En-
glish to German, Chinese and Japanese
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Non-Native see Appendix A.1.1. For English to
German.

3.3 Evaluation
Two attributes are evaluated in the simultaneous
task: quality and latency.

For quality, we conducted both automatic and
human evaluation. BLEU score (Papineni et al.,
2002a) is used for automatic quality evaluation.
For speech output, the BLEU score is computed
on the transcripts from Whisper (Radford et al.,
2022) ASR model. The ranking of the submis-
sion is based on the BLEU score on the Com-
mon blind test set. Furthermore, we conducted
BLASER (Chen et al., 2022) evaluation on the
speech output. We also conducted human evalu-
ation on speech-to-text translation quality, includ-
ing general human evaluation for all three lan-
guage pairs, and task specific human evaluation on
German and Japanese outputs.

For latency, we only conducted automatic eval-
uation. We report the following metrics for each
speech-to-text systems.

• Average Lagging (AL; Ma et al., 2019,
2020b)

• Length Adaptive Average Lagging (LAAL;
Polák et al., 2022; Papi et al., 2022)

• Average Token Delay (ATD; Kano et al.,
2023)

• Average Proportion (AP; Cho and Esipova,
2016)

• Differentiable Average Lagging (DAL;
Cherry and Foster, 2019)

We also measured the computation aware version
of the latency metrics, as described by Ma et al.
(2020b). However, due to the new synchronized
SimulEval agent pipeline design, the actual com-
putation aware latency can be smaller with care-
fully designed parallelism.

For speech-to-speech systems, we report start-
offset and end-offset. The latency metrics will not
be used for ranking.

3.4 Submissions
The simultaneous shared task received submis-
sions from six teams, whereas all the teams par-
ticipated in at least one language direction in
speech-to-text translation. Among the teams, five

teams entered the English-to-German track; four
teams entered the English-to-Chinese track; three
teams entered the English-to-Japanese track. Even
though this year is our first time introducing the si-
multaneous speech-to-speech track, four teams out
of six, submitted speech-to-speech systems.

• CMU(Yan et al., 2023) participated in both
the speech-to-text and speech-to-speech
tracks for English-German translation.
Their speech-to-text model combined
self-supervised speech representations, a
Conformer encoder, and an mBART decoder.
In addition to the cross-entropy attentional
loss, the translation model was also trained
with CTC objectives. They used machine
translation pseudo labeling for data aug-
mentation. Simultaneous decoding was
achieved by chunking the speech signals
and employing incremental beam search.
For their speech-to-speech system, they
incorporated a VITS-based text-to-speech
model, which was trained separately.

• HW-TSC (Guo et al., 2023; Shang et al.,
2023) participated in both the speech-to-
text and speech-to-speech tracks for all
three language directions. Their model was
a cascaded system that combined an U2
ASR, a Transformer-based machine trans-
lation model, and a VITS-based text-to-
speech model for speech-to-speech transla-
tion. The MT model was multilingual and
offered translation in all three directions by
conditioning on language embeddings. For
data augmentation, they adopted data di-
versification and forward translation tech-
niques. Their simultaneous decoding policy
employed chunk-based incremental decod-
ing with stable hypotheses detection. They
also utilized additional TTS models for the
speech-to-speech track.

• NAIST(Fukuda et al., 2023) participated in
the speech-to-text translation direction for
all three language directions and English-to-
Japanese speech-to-speech translation. Their
system consisted of a HuBERT encoder and
an mBART decoder. They employed three
techniques to improve translation quality:
inter-connection to combine pre-trained rep-
resentations, prefix alignment fine-tuning for
simultaneous decoding, and local agreement
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to find stable prefix hypotheses. They also
utilized an additional Tacotron2-based TTS
model for speech-to-speech translation with
the wait-k decoding policy.

• FBK(Papi et al., 2023) participated in the
English-to-German speech-to-text translation
track, using an end-to-end Conformer-based
speech-to-text model. Considering computa-
tional latency, their focus was on efficient us-
age of offline models. They employed three
simultaneous policies, including local agree-
ment, encoder-decoder attention, and EDATT
v2, to achieve this.

• CUNI-KIT(Polák et al., 2023) partici-
pated in the English-to-German speech-to-
text translation track. Their system utilized
WavLM and mBART as the base framework.
The key highlights of their system were in the
decoding strategy and simultaneous policies.
They applied empirical hypotheses filtering
during decoding and adopted CTC to detect
the completion of block inference.

• XIAOMI(Huang et al., 2023) participated
in both the speech-to-text and speech-to-
speech tracks for English-Chinese transla-
tion. Their end-to-end system utilized Hu-
BERT and mBART with a wait-k decoding
strategy and an Information-Transport-based
architecture. They further enhanced their sys-
tem by applying data filtering on long sen-
tences and misaligned audio/text, data aug-
mentation with pseudo labeling, and punctu-
ation normalization. They also incorporated
contrastive learning objectives.

3.5 Automatic Evaluation
We rank the system performance based on BLEU
scores. The detailed results can be found in Ap-
pendix B.2.

3.5.1 Speech-to-Text
English-German On the Common test set, the
ranking is HW-TSC, CUNI-KIT, FBK, NAIST,
CMU, as shown in Table 17. Meanwhile, on the
Non-Native test set, the ranking differs consider-
ably. While HW-TSC performs best on Common
test set, they end up second to last on Non-Native.
The situation is reversed for NAIST and CMU
who end up at the tail of Common scoring but
reach the best scores on the Non-Native set. We

attribute this to better robustness of NAIST and
CMU towards the noise in Non-Native test set.

English-Chinese The ranking is HW-TSC,
CUNI-KIT, XIAOMI, NAIST, as shown in
Table 18.

English-Japanese The ranking is HW-TSC,
CUNI-KIT, NAIST, as shown in Table 19.

3.5.2 Speech-to-Speech
Despite the great novelty and difficulty of speech-
to-speech track, there are 5 submissions in total:
2 in German, 2 in Chinese and 1 in Japanese.
The full results can be seen in table Table 20.
For English-to-German, the ranking is CMU, HW-
TSC. For English-to-Chinese, HW-TSC is the
only participant. For English-to-Japanese, the
ranking is HW-TSC, NAIST.

We also provide the BLASER scores, which
directly predict the quality of translations based
on speech embeddings. We note that since refer-
ence audios are not available in our datasets, we
use text LASER (Heffernan et al., 2022) to embed
reference text to compute the scores. While the
BLASER scores indicate the same quality rank-
ing for English to German as BLEU scores, on
the Japanese output they are similar. It’s pos-
sible that BLASER is adequately developed on
Japanese outputs

3.6 Human Evaluation

In the Simultaneous task, speech-to-text track,
English-German and English-Japanese were man-
ually evaluated, each with a different scoring
method.

3.6.1 English-German
For English-to-German, we used the same human
evaluation method as last year, originally inspired
by Javorský et al. (2022). We evaluated (1) the
best system selected by BLEU score, and (2) tran-
scription of human interpretation, the same as used
in last year evaluation (more details can be found
in Anastasopoulos et al. (2022a), Section 2.6.1).

Figure 1 plots automatic and manual evalua-
tion in relation with each other. We confirm the
generally good correlation with BLEU (Pearson
.952 across the two test set parts), as observed by
Macháček et al. (2023), although individual sys-
tem results are rather interesting this year.
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Figure 1: Manual and automatic evaluation of Simulatenous speech-to-text English-to-German translation on the
Common (TED talks) and Non-Native test sets. The error bars were obtained by bootstrap resampling, see the
caption of Table 22.

On the Common test set, HWTSC performed
best in terms of BLEU but the manual scor-
ing seems to prefer CUNI-KIT and FBK. CMU
and NAIST are worst in BLEU but on par with
HWTSC in terms of manual scores.

The situation is very different on the Non-
Native test set: CMU and NAIST score best both
in manual scores and in BLEU while CUNI-KIT
and esp. FBK get much worse scores, again, both
manual and automatic.

The Non-Native test set is substantially harder
with respect to sound conditions, and the striking
difference drop observed for both CUNI-KIT and
FBK can be an indication of some form of over-
fitting towards the clean input of Common (TED
talks).

Appendix A.1.1 presents details of the human
evaluation and results are shown in Table 22.

3.6.2 English-Japanese

For English-to-Japanese, we also followed the
methodology in the last year. We hired a profes-
sional interpreter for human evaluation using JTF
Translation Quality Evaluation Guidelines (JTF,
2018) based on Multidimensional Quality Metrics
(MQM; Lommel et al., 2014). We applied the
error weighting by Freitag et al. (2021a). Ap-
pendix A.1.2 presents details of the human eval-
uation.

The human evaluation results are shown in Ta-
ble 23. The error score almost correlates with
BLEU against the additional reference, but the dif-
ference in the error scores was very small between
HW-TSC and CUNI-KIT in spite of the 0.8 BLEU
difference.

3.7 Final remarks
This year, we simplified the conditions by focus-
ing solely on low-latency systems to reduce the
burden of submission and evaluation. We also
introduced the novel and challenging speech-to-
speech track, and were happy to receive 5 submis-
sions.

We note potential modifications for future edi-
tions:

• Providing further simplified submission for-
mat.

• Ranking with better designed metrics to ad-
dress the overfitting towards BLEU scores.

• Aligning more with offline tasks on more test
domains and evaluation metrics.

4 Automatic Subtitling

In recent years, the task of automatically creating
subtitles for audiovisual content in another lan-
guage has gained a lot of attention, as we have
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seen a surge in the amount of movies, series and
user-generated videos which are being streamed
and distributed all over the world.

For the first time, this year IWSLT proposed a
specific track on automatic subtitling, where par-
ticipants were asked to generate subtitles of audio-
visual documents, belonging to different domains
with increasing levels of complexity.

4.1 Challenge

The task of automatic subtitling is multi-faceted:
starting from speech, not only the translation has
to be generated, but it must be segmented into
subtitles compliant with constraints that ensure
high-quality user experience, like a proper read-
ing speed, synchrony with the voices, the maxi-
mum number of subtitle lines and characters per
line, etc. Most audio-visual companies define
their own subtitling guidelines, which can differ
slightly from each other. Participants were asked
to generate subtitles according to some of the tips
listed by TED, in particular:

• the maximum subtitle reading speed is 21
characters / second;

• lines cannot exceed 42 characters, white
spaces included;

• never use more than two lines per subtitle.

It was expected that participants used only the au-
dio track from the provided videos (dev and test
sets), the video track being of low quality and pro-
vided primarily as a means to verify time syn-
chronicity and other aspects of displaying subtitles
on screen.

The subtitling track requires to automatically
subtitle in German and/or Spanish audio-visual
documents where the spoken language is always
English, and which were collected from the fol-
lowing sources:

• TED talks from the MuST-Cinema8 corpus;

• press interviews from the Multimedia Centre
of the European Parliament (EPTV)9;

• physical training videos offered by Peloton10

• TV series from ITV Studios.11

8https://ict.fbk.eu/must-cinema
9https://multimedia.europarl.europa.eu

10https://www.onepeloton.com
11https://www.itvstudios.com

domain set AV hh:m ref subtitles
docs h:mm de es

TED
dev 17 04:11 4906 4964
test 14 01:22 1375 1422

EPTV
dev 12 01:03 960 909
test 10 01:01 891 874

Peloton
dev 9 03:59 4508 4037
test 8 02:43 2700 2661

ITV
dev 7 06:01 4489 4763
test 7 05:08 4807 4897

Table 4: Statistics of the dev and test sets for the subti-
tling task.

4.2 Data and Metrics

Data. This track proposed two training condi-
tions to participants: constrained, in which only
a pre-defined list of resources is allowed, and un-
constrained, without any data restrictions. The
constrained setup allowed to use the same train-
ing data as in the Offline Speech Translation task
(see Section 2.2 for the detailed list), with the ob-
vious exclusion of the parallel resources not in-
volving the English-{German, Spanish} pairs. In
addition, two monolingual German and Spanish
text corpora built on OpenSubtitles, enriched with
subtitle breaks, document meta-info on genre and
automatically predicted line breaks, have been re-
leased.

For each language and domain, a development
set and a test set were released. Table 4 provides
some information about these sets.

The evaluation was carried out from three per-
spectives, subtitle quality, translation quality and
subtitle compliance, through the following auto-
matic measures:

• Subtitle quality vs. reference subtitles:

– SubER, primary metric, used also for
ranking (Wilken et al., 2022)12;

– Sigma (Karakanta et al., 2022b)13.

• Translation quality vs. reference translations:

– BLEU14 and CHRF15 via sacreBLEU

– BLUERT (Sellam et al., 2020)

12https://github.com/apptek/SubER
13https://github.com/fyvo/EvalSubtitle
14sacreBLEU signature: nrefs:1|case:mixed|

|eff:no|tok:13a|smooth:exp|version:2.0.0
15sacreBLEU signature: nrefs:1|case:mixed|

|eff:yes|nc:6|nw:0|space:no|version:2.0.0

12
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Automatic subtitles are realigned to the ref-
erence subtitles using mwerSegmenter (Ma-
tusov et al., 2005a)16 before running sacre-
BLEU and BLEURT.

• Subtitle compliance:17

– rate of subtitles with reading speed
higher than 21 char / sec (CPS);

– rate of lines longer than 42 char (CPL);
– rate of subtitles with more than two lines

(white spaces included) (LPB).

4.3 Submissions

Three teams submitted automatically generated
subtitles for the test sets of this task.

• APPTEK (Bahar et al., 2023) submitted runs
in the constrained setup for both language
pairs. The primary submissions came from a
cascade architecture composed of the follow-
ing modules: neural encoder-decoder ASR,
followed by a neural Machine Translation
model trained on the data allowed in the con-
strained track, with the source (English) side
lowercased and normalized to resemble raw
ASR output, as well as adapted to the IWSLT
subtitling domains, followed by a subtitle line
segmentation model (intelligent line segmen-
tation by APPTEK). A contrastive run was
generated for the en→de pair only by a direct
speech translation system with CTC-based
timestamp prediction, followed by the intel-
ligent line segmentation model of APPTEK.
The system was trained on the constrained al-
lowed data plus forward translated synthetic
data (translations of allowed ASR transcripts)
and synthetic speech data for selected sen-
tences from the allowed parallel data. For the
en→de pair, APPTEK also submitted a run in
the unconstrained setup, where a cascade ar-
chitecture was employed consisting of: neu-
ral encoder-decoder CTC ASR, followed by
a neural punctuation prediction model and
inverse text normalization model, followed
by an MT model adapted to the IWSLT do-
mains (sentences similar in embedding sim-
ilarity space to the development sets of the

16https://www-i6.informatik.
rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

17https://github.com/hlt-mt/
FBK-fairseq/blob/master/examples/speech_
to_text/scripts/subtitle_compliance.py

four domains TED, EPTV, ITV, Peloton), fol-
lowed by a subtitle line segmentation model
(intelligent line segmentation by APPTEK).

• FBK (Papi et al., 2023) submitted primary
runs for the two language pairs, generated
by a direct neural speech translation model,
trained in the constrained setup, that works
as follows: i) the audio is fed to a Subtitle
Generator that produces the (un-timed) sub-
title blocks; ii) the computed encoder repre-
sentations are passed to a Source Timestamp
Generator to obtain the caption blocks and
their corresponding timestamps; iii) the sub-
title timestamps are estimated by the Source-
to-Target Timestamp Projector from the gen-
erated subtitles, captions, and source times-
tamps.

• MATESUB (Perone, 2023) submitted primary
runs for the two language pairs, automatically
generated by the back-end subtitling pipeline
of MATESUB, its web-based tool that sup-
ports professionals in the creation of high-
quality subtitles (https://matesub.com/). The
MATESUB subtitling pipeline is based on a
cascade architecture, composed of ASR, text
segmenter and MT neural models, which al-
lows covering any pair from about 60 lan-
guages and their variants, including the two
language pairs of the task. Since MATESUB

is a production software, its neural models
are trained on more resources than those al-
lowed for the constrained condition, there-
fore the submissions fall into the uncon-
strained setup.

4.4 Results

Scores of all runs as computed by automatic met-
rics are shown in Tables 24 and 25 in the Ap-
pendix. Averaged over the 4 domains, APPTEK

achieved the lowest SubER scores with their pri-
mary submission for en→de in the constrained and
unconstrained condition, with the overall best re-
sults for the latter. For en→es, MATESUB obtained
the overall lowest SubER with their unconstrained
system.

We observe that in terms of domain difficulty,
the TV series (from ITV) pose the most challenges
for automatic subtitling. This has to do with di-
verse acoustic conditions in which speech is found
in movies and series - background music, noises,

13
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shouts, and cross-talk. All of this makes the task
of recognizing speech quite challenging, which
results in error accumulation in the downstream
components. Unconstrained systems by APPTEK

and MATESUB perform significantly better on this
domain, which shows the importance of training
on additional data that is more representative of
real-life content.

The second-hardest domain are the fitness
videos from Peloton. Here, despite a gener-
ally clear single-speaker audio with reduced back-
ground noise, the challenge is the MT: some of the
fitness- and sports-specific terminology and slang
pose significant challenges in translation to their
German and Spanish equivalents.

Surprisingly, even the EPTV interviews pose
significant challenges for subtitling, despite the
fact that the topics discussed in the interviews
are found in abundance in the allowed speech-
to-text and text-to-text parallel data for the con-
strained condition (Europarl, Europarl-ST). Here,
the issues such as spontaneous speech with many
pauses, as well as speaker separation may have
been cause of some of the errors.

The TED talks which have been the main
domain for the IWSLT evaluations in the past
years are the easiest to be automatically subti-
tled. Whereas the current level of subtitle quality
for TED talks may require minimal human cor-
rections or can even be shown unedited on the
screen, for the other three domains the automatic
subtitles will require significant post-editing. This
shows the importance of running evaluations not
only under very controlled conditions as in the
case of TED talks, but on a variety of real-life con-
tent where multiple research challenges in speech
translation are yet to be overcome.

This year’s direct speech translation systems
seem to be too weak to compete with the cascaded
approaches. In particular, a full end-to-end ap-
proach like the one from FBK that directly gen-
erates subtitle boundaries is currently inferior in
comparison with the systems that adopt a specific
solution for segmenting the text (intelligent line
segmentation by APPTEK and a neural text seg-
menter by MATESUB). Such specific solutions
lead to almost perfect subtitle compliance. But
even in terms of pure speech translation quality as
measured e.g. with BLEU and BLEURT the cas-
caded systems currently provide better translations
even under constrained training data conditions.

Regarding the automatic metrics used in the
evaluation, we observed that the metric Sigma pro-
vides scores which are not consistent with the
other measures: for example, German subtitles
from MATESUB seem to be the worst as measured
by Sigma, but this is unlikely based on the val-
ues of the other metrics. Yet the pure MT quality
metrics also exhibit some discrepancies in how the
performance of the same system on the four do-
mains is ranked. This ranking sometimes differs
depending on whether you choose BLEU, ChrF, or
BLEURT as the “primary” metric. The two most
striking cases are:

• the en→de APPTEK unconstrained primary
submission, for which the BLEU score for
the ITV test data was 14.43 and for Pelo-
ton 10.47, but the BLEURT scores were very
similar: 0.4069 and 0.4028;

• the en→de FBK constrained primary system,
for which the BLEU score was 7.73 on the
Peloton part of the test data vs. 8.05 on the
ITV part, but the BLEURT scores showed a
better quality for Peloton translations: 0.3137
vs. 0.2255.

All of these discrepancies highlight the impor-
tance of human evaluation, which we have not
conducted this time. One of the reasons for this
is that in most prior research (Matusov et al.,
2019; Karakanta et al., 2022a) the automatic sub-
titling quality is evaluated in post-editing scenar-
ios, which are too expensive to be run on signifi-
cant amounts of data as they require professional
subtitle translators. On the other hand, as men-
tioned above, for 3 out of 4 domains the quality of
the automatically generated subtitle translations is
low, so that an evaluation of user experience when
watching subtitles would be also challenging, es-
pecially if the users would have to assign evalu-
ation scores to individual subtitles or sentences.
With all of this in mind, we decided to postpone
any human evaluation to the next edition of the
subtitling track at IWSLT.

Overall, this first edition of the subtitling track
emphasised the crucial role of the following com-
ponents related to speech processing: noise re-
duction and/or speech separation, speaker diariza-
tion, and sentence segmentation. So far they
have been underestimated in speech translation re-
search. Current automatic solutions do not reach
the level of quality that is necessary in subti-
tling. Therefore, we encourage further research
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into these areas, for which subtitle translation is
a good test case.

5 Multilingual SLT

The NLP and speech communities are rapidly ex-
panding with increasing focus on broader lan-
guage coverage and multilinguality. However, de-
spite the community’s efforts on ASR and SLT, re-
search is rarely focused on applying these efforts
to the data within the scientific domain. It is clear
from recent initiatives to caption technical presen-
tations at NLP and speech conferences that tran-
scription and translation in the technical domain
is needed, desired, and remains a disproportionate
challenge for current ASR and SLT models com-
pared to standard datasets in these spaces. Mo-
tivated by the ACL 60-60 initiative18 to translate
the ACL Anthology to up to 60 languages for the
60th anniversary of ACL, which will be reported
on at this year’s ACL conference co-located with
IWSLT, this year’s Multilingual Task evaluates the
ability of current models to translate technical pre-
sentations to a set of ten diverse target languages.

5.1 Challenge

Translating technical presentations combines sev-
eral challenging conditions: domain-specific ter-
minology, recording conditions varying from
close-range microphones to laptop microphones
with light background noise or feedback, diverse
speaker demographics, and importantly unseg-
mented speech typically 10-60 minutes in dura-
tion. This task focuses on one-to-many translation
from English to ten target languages. Providing
English ASR was optional though encouraged. In-
domain data is scarce, particularly parallel data,
though all language pairs are covered by current
publicly available corpora; further challenging for
current domain adaptation techniques, monolin-
gual data is typically available for the source lan-
guage (English) only. We present two conditions:
constrained (using only the out-of-domain data
allowed and provided for other tasks this year)
and unconstrained (allowing any additional data,
included crawled, which may facilitate e.g., do-
main adaptation). To evaluate submissions, we
use evaluation sets curated from presentations at
ACL 2022 which were professionally transcribed

18https://www.2022.aclweb.org/
dispecialinitiative

and translated with the support of ACL and the 60-
60 initiative as described in Salesky et al. (2023).

5.2 Data and Metrics

Data. We use the ACL 60-60 evaluation sets cre-
ated by Salesky et al. (2023) to evaluate this chal-
lenge task. The data comes from ACL 2022 tech-
nical presentations and is originally spoken in En-
glish, and then transcribed and translated to ten
target languages from the 60/60 initiative: Ara-
bic, Mandarin Chinese, Dutch, French, German,
Japanese, Farsi, Portuguese, Russian, and Turk-
ish. The resulting dataset contains parallel speech,
transcripts, and translation for ten language pairs,
totaling approximately one hour for the develop-
ment set and one hour for the evaluation set.

During the evaluation campaign, the only in-
domain data provided is the development set. To
simulate the realistic use case where recorded
technical presentations would be accompanied by
a research paper, in addition to the talk audio
we provide the corresponding paper title and ab-
stract, which are likely to contain a subset of
relevant keywords and terminology and could be
used by participants to bias or adapt their systems.
Constrained training data follows the Offline task
(see Sec. 2.2) with pretrained models and out-of-
domain parallel speech and text provided for all
10 language pairs. The unconstrained setting al-
lowed participants to potentially crawl additional
in-domain data to assist with adaptation, as was
done by one team (JHU). For the official rankings,
we use the official evaluation set, which was held
blind until after the evaluation campaign.

To mimic realistic test conditions where the
audio for technical presentations would be pro-
vided as a single file, rather than gold-sentence-
segmented, for both the development and evalu-
ation sets we provided the full unsegmented wav
files, as well as an automatically generated base-
line segmentation using SHAS (Tsiamas et al.,
2022) to get participants started. Two teams used
the baseline segmentation, while one (JHU) used
longer segments which improved the ASR qual-
ity of their particular pretrained model. To evalu-
ate translation quality of system output using any
input segmentation, we provided gold sentence-
segmented transcripts and translations, which sys-
tem output could be scored with as described be-
low in ‘Metrics.’
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Metrics. Translation output was evaluated us-
ing multiple metrics for analysis: translation out-
put using chrF (Popović, 2015a), BLEU (Pap-
ineni et al., 2002b) as computed by SACREBLEU
(Post, 2018), and COMET (Rei et al., 2020b) and
ASR output using WER. For BLEU we use the
recommended language-specific tokenization in
SACREBLEU for Chinese, Japanese, Korean, and
the metric-default otherwise. Translation metrics
were calculated with case and punctuation. WER
was computed on lowercased text with punctua-
tion removed. NFKC normalization was applied
on submitted systems and references. All offi-
cial scores were calculated using automatic reseg-
mentation of the hypothesis based on the refer-
ence transcripts (ASR) or translations (SLT) by
mwerSegmenter (Matusov et al., 2005b), using
character-level segmentation for resegmentation
for those languages which do not mark whites-
pace. The official task ranking is based on average
chrF across all 10 translation language pairs.

5.3 Submissions

We received 11 submissions from 3 teams, as de-
scribed below:

• BIT (Wang et al., 2023b) submitted a single
constrained one-to-many multilingual model
to cover all 10 language pairs, trained using a
collection of multiple versions of the MuST-
C dataset (Di Gangi et al., 2019b). They use
English ASR pre-training with data augmen-
tation from SpecAugment (Park et al., 2019),
and multilingual translation finetuning for all
language pairs together. The final model is an
ensemble of multiple checkpoints. No adap-
tation to the technical domain is performed.

• JHU (Xinyuan et al., 2023) submitted two
cascaded systems, one constrained and one
unconstrained, combining multiple differ-
ent pretrained speech and translation mod-
els, and comparing different domain adap-
tation techniques. Their unconstrained sys-
tem uses an adapted Whisper (Radford et al.,
2022) ASR model combined with NLLB
(NLLB Team et al., 2022), M2M-100 (Fan
et al., 2020), or mBART-50 (Tang et al.,
2020) MT models depending on the lan-
guage pair, while the constrained system
uses wav2vec2.0 (Baevski et al., 2020a) and
mBART-50 or M2M-100. They compare us-

ing talk abstracts to prompt Whisper to train-
ing in-domain language models on either the
small amount of highly-relevant data in the
talk abstract or larger LMs trained on signifi-
cantly more data they scraped from the ACL
Anthology and release with their paper. They
see slight improvements over the provided
SHAS (Tsiamas et al., 2022) segments us-
ing longer segments closer what Whisper ob-
served in training. They show that prompting
Whisper is not competitive with in-domain
language models, and provide an analysis of
technical term recall and other fine-grained
details.

• KIT (Liu et al., 2023) submitted multiple
constrained multilingual models, both end-
to-end and cascaded, which combine several
techniques to adapt to the technical domain
given the absence of in-domain training data,
using pretrained speech and translation mod-
els as initializations (WavLM: Chen et al.
2021, DeltaLM: Ma et al. 2021, mBART-
50: Tang et al. 2020). These include kNN-
MT to bias generated output to the techni-
cal domain; data diversification to enrich pro-
vided parallel data; adapters for lightweight
finetuning to the language pairs for trans-
lation (though they note that this does not
necessarily stack with data diversification);
and for their cascaded model, adaptation of
the ASR model to the target technical do-
main using n-gram re-weighting, noting that
it is typically easier to adapt or add lexical
constraints to models with separate LMs, as
opposed to encoder-decoder models. Addi-
tional techniques (ensembling, updated ASR
encoder/decoder settings, knowledge distilla-
tion, synthesized speech) are also used for
further small improvements.

5.4 Results

All task results are shown in Appendix B.4. The
official task ranking was determined by the aver-
age chrF across all 10 target languages after reseg-
mentation to the reference translations.Table 26.
Scores for all submissions by individual language
pairs are shown in Table 28 (chrF), Table 29
(COMET), and Table 30 (BLEU).

Overall, the majority of approaches combined
strong pretrained speech and translation mod-
els to do very well on the ACL 60-60 evalua-

16



tion data. For this task, cascaded models per-
formed consistently better than direct/end-to-end
approaches; all of the top 6 submissions were cas-
cades, and 4/5 of the lowest-performing systems
were direct. Optional English ASR transcripts
were submitted for 3 systems (JHUunconstrained,
KITprimary, JHUconstrained), all of which were
cascades; we see that WER aligns with speech
translation performance in these cases. The only
unconstrained model, from JHU, utilized larger
pretrained models and crawled in-domain lan-
guage modeling data for ASR to great success, and
was the top system on all metrics (Table 26). The
remaining submissions were all constrained (here
meaning, used the white-listed training data and
smaller pretrained models). The KITprimary sys-
tem was the best performing constrained model.
While BIT trained models from scratch on TED
to reasonable performance on MuST-C, large pre-
trained models and domain adaptation were key
for high performance on the technical in-domain
test set. chrF and BLEU result in the same sys-
tem rankings, while COMET favors the end-to-
end models slightly more, though not affecting
the top 3 systems (JHUunconstrained, KITprimary,
KITconstrastive1).

Domain adaptation techniques had consistent
positive impact on system performance. The KIT
team submitted constrained systems only and thus
were limited to the dev bitext and talk abstracts
for domain adaptation. Despite its small size
(<500 sentences) they were able to generate con-
sistent improvements of up to ∼1chrF and ∼ 1
BLEU using kNN-MT (primary/contrastive1 vs
contrastive2); with this method, extending the dev
data to include the abstracts for the evaluation set
talks (primary vs contrastive1) had neglible ef-
fect on all 3 metrics. The JHU submissions saw
that decoding with interpolated in-domain lan-
guage models outperformed knowledge distilla-
tion or prompting pretrained models with informa-
tion for each talk in this case; small talk-specific
LMs did provide slight improvements in WER, but
significant improvements of 2-3 WER were gained
by extending the limited highly relevant data from
talk abstracts and the dev set to the larger domain-
general data crawled from the 2021 ACL confer-
ence and workshop proceedings.

Without in-domain target-language monolin-
gual data, conventional techniques for adaptation
of end-to-end ST models did not apply (finetun-
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Figure 2: Official task metric performance (chrF) vs
terminology recall for teams’ primary submissions.

ing, backtranslation, ...). The data diversifica-
tion applied by KIT via TTS ‘backtranslation’
(contrastive5, contrastive7) did not affect chrF or
BLEU, but did provide small (0.5-0.6) improve-
ments on COMET.

In addition to the overall evaluation set, we look
at the recall of specific terminology annotated for
the ACL evaluation sets. For the three submissions
(JHUunconstrained, KITprimary, JHUconstrained)
which provided supplementary ASR, we first in-
vestigate terminology recall and propagation be-
tween ASR and downstream ST. Recall that the
overall WER of these systems was 16.9, 23.7, and
34.1, respectively. Of the 1107 labeled terminol-
ogy words and phrases from the ACL 60-60 eval-
uation set annotations, 87.8% / 77.3% / 71.7% in-
dividual instances were correctly transcribed by
these systems, respectively. Of these, 12.0% /
7.4% / 7.9% were then maintained and correctly
translated to each target language respectively on
average. We plot the official task metric (chrF)
against terminology recall in Figure 2 for all pri-
mary submissions. We see that there were consis-
tent differences across languages in how terminol-
ogy was maintained, which generally but not fully
corresponds to overall performance (ex: Dutch,
Turkish). While the domain adaptation techniques
used ensured strong transcription performance for
the JHU and KIT submissions, this was not gen-
erally maintained for translation with a significant
drop, converging with BIT which did not perform
domain adaptation. Additional work is needed to
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ensure targeted lexical terms are correctly tran-
scribed and translated, both in general as well as
comparably across different languages.

While the JHU submissions finetuned to each
target language individually, the KIT systems fine-
tuned multilingually; no contrastive systems were
submitted with which to ablate this point, but both
teams’ papers describe consistently worse perfor-
mance finetuning multilingually rather than bilin-
gually, which KIT was able to largely mitigate
with language adapters in development in isola-
tion but in their final submission on eval language
adapters were consistently slightly worse (con-
trastive4 ‘with’ vs contrastive3 ‘without.’). It re-
mains to be seen the degree to which one-to-many
models can benefit from multilingual training.

The Offline task additionally used the ACL 60-
60 evaluation sets as part of their broader evalu-
ation for 3 language pairs (en→ de, ja, zh), en-
abling a wider comparison across 25 total sys-
tems. We show the Multilingual task submissions
compared to the Offline on these languages in Ta-
ble 27. On these three language pairs, perfor-
mance is generally higher than the remaining lan-
guage pairs in the Multilingual task. We again
consistently see stronger performance on this task
from cascaded models, and unconstrained sub-
missions or those with larger pretrained LLMs,
though there are notable outliers such as the HW-
TSC constrained model. The Offline submissions
did not perform domain adaptation specifically to
the technical ACL domain, but appear to be benefit
from better domain-general performance in some
cases, particularly for submissions targeting only
Chinese. We note slight differences in system
rankings between metrics (COMET and BLEU)
and target languages, particularly for Japanese and
Chinese targets, possibly highlighting the differ-
ence in metric tokenization for these pairs.

6 Speech-to-Speech Translation

Speech-to-speech translation (S2ST) involves
translating audio in one language to audio in an-
other language. In the offline setting, the transla-
tion system can assume that the entire input audio
is available before beginning the translation pro-
cess. This differs from streaming or simultaneous
settings where the system only has access to par-
tial input. The primary objective of this task is to
encourage the advancement of automated methods
for offline speech-to-speech translation.

6.1 Challenge
The participants were tasked with creating speech-
to-speech translation systems that could translate
from English to Chinese using various methods,
such as a cascade system (ASR + MT + TTS or
end-to-end speech-to-text translation + TTS), or
an end-to-end / direct system. They were also al-
lowed to use any techniques to enhance the per-
formance of the system, apart from using uncon-
strained data.

6.2 Data and Metrics
Data. This task allowed the same training data
from the Offline task on English-Chinese speech-
to-text translation. More details are available in
Sec. 2.2. In addition to the Offline task data,
the following training data was allowed to help
build English-Chinese speech-to-speech models
and Chinese text-to-speech systems:

• GigaS2S, target synthetic speech for the Chi-
nese target text of GigaST (Ye et al., 2023)
that was generated with an in-house single-
speaker TTS system;

• aishell 3 (Shi et al., 2020), a multi-speaker
Chinese TTS dataset.

It’s noted that several datasets allowed for the
Offline task such as Common Voice (Ardila
et al., 2019) actually contain multi-speaker Chi-
nese speech and text data that could help for this
task.

Metrics. All systems were evaluated with both
automatic and human evaluation metrics.

Automatic metrics. To automatically evaluate
translation quality, the speech output was auto-
matically transcribed with a Chinese ASR sys-
tem19 (Yao et al., 2021), and then BLEU20 (Pa-
pineni et al., 2002a), chrF21 (Popović, 2015b),
COMET22 (Rei et al., 2022) and SEScore223 (Xu
et al., 2022) were computed between the generated
transcript and the human-produced text reference.
BLEU and chrF were computed using SacreBLEU

19https://github.com/wenet-e2e/wenet/
blob/main/docs/pretrained_models.en.md

20sacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:zh|smooth:exp|version:2.3.1

21sacreBLEU signature: nrefs:1|case:mixed|
eff:yes|nc:6|nw:0|space:no|version:2.3.1

22https://huggingface.co/Unbabel/
wmt22-comet-da

23https://github.com/xu1998hz/SEScore2
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(Post, 2018). Furthermore, the output speech
could be evaluated directly using BLASER (Chen
et al., 2022). More information could be found at
stopes24 (Andrews et al., 2022).

Human evaluation. Output speech translations
were evaluated with respect to translation quality
and speech quality.

• Translation quality: Bilingual annotators
were presented with the source audio, source
transcript and the generated target audio, then
gave scores on the translation quality be-
tween 1 and 5 (worst-to-best)). There were
4 annotators per sample and we retained the
median score.

• Output speech quality: In addition to trans-
lation quality (capturing meaning), the qual-
ity of the speech output was also human-
evaluated. The annotators were requested to
give an overall score by considering three di-
mensions: naturalness (voice and pronunci-
ation), clarity of speech (understandability),
and sound quality (noise and other artifacts).
Each sample was assessed by 4 annotators
and scored on a scale of 1-5 (worst-to-best)),
with a minimum score interval of 0.5.

The detailed guidelines for output speech qual-
ity evaluation were similar to last year (Anasta-
sopoulos et al., 2022a).

6.3 Submissions

We received eight submissions from five teams.
The MINETRANS team submitted four systems
and each of the other teams submitted one system.

• HW-TSC (Wang et al., 2023a) submitted a
cascaded system composed of an ensemble
of Conformer and Transformer-based ASR
models, a multilingual Transformer-based
MT model and a diffusion-based TTS model.
Their primary focus in their submission is to
investigate the modeling ability of the diffu-
sion model for TTS tasks in high-resource
scenarios. The diffusion TTS model takes
raw text as input and generates waveform
by iteratively denoising on pure Gaussian
noise. Based on the result, they conclude that
the diffusion model outperforms normal TTS

24https://github.com/facebookresearch/
stopes/tree/main/demo/iwslt_blaser_eval

models and brings positive gain to the entire
S2ST system.

• KU (Yang et al., 2023) submitted a cascade
system composed of a speech-to-text transla-
tion (ST) model and a TTS model. Their ST
model comprises a ST decoder and an ASR
decoder. The two decoders can exchange in-
formation with each other with the interactive
attention mechanism. For the TTS part, they
use FastSpeech2 as the acoustic model and
HiFi-GAN as the vocoder.

• NPU-MSXF (Song et al., 2023) submitted a
cascaded system of separate ASR, MT, and
TTS models. For ASR, they adopt ROVER-
based model fusion and data augmentation
strategies to improve the recognition accu-
racy and generalization ability. Then they use
a three-stage fine-tuning process to adapt a
pre-trained mBART50 model to translate the
output of ASR model. The three-stage fine-
tuning is based on Curriculum Learning and
it involves three sets of data: (1) the original
MT data, (2) the MT data in ASR transcrip-
tion format and (3) the ASR outputs. For
TTS, they leverage a two-stage framework,
using network bottleneck features as a ro-
bust intermediate representation for speaker
timbre and linguistic content disentangle-
ment. Based on the two-stage framework,
pre-trained speaker embedding is leveraged
as a condition to transfer the speaker timbre
in the source speech to the translated speech.

• XIAOMI (Huang et al., 2023) submitted a cas-
cade system composed of a speech-to-text
translation (ST) model and a TTS model. The
ST model is the same as the one they sub-
mitted to the Offline SLT track. It is based
on an encoder-decoder architecture from the
pre-trained HuBERT and mBART models.
For the TTS model, they use the Tacotron2
framework. It is first trained with AISHELL-
3 dataset and then finetuned with GigaS2S
dataset. Furthermore, they implement sev-
eral popular techniques, such as data filtering,
data augmentation, speech segmentation, and
model ensemble, to improve the overall per-
formance of the system.

• MINETRANS (Du et al., 2023) submitted
three end-to-end S2ST systems (MINE-
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TRANS E2E, including primary, con-
trastive1, and contrastive2), and a cascade
S2ST system (MINETRANS Cascade). Their
end-to-end systems adopt the speech-to-unit
translation (S2UT) framework. The end-
to-end S2UT model comprises a speech
encoder, a length adapter and an unit de-
coder. The S2UT model is trained to convert
the source speech into units of target speech.
A unit-based HiFi-GAN vocoder is finally
applied to convert the units into waveform.
Based on their results, they conclude that the
widely used multi-task learning technique
is not important for model convergence
once large-scale labeled training data is
available, which means that the mapping
from source speech to target speech units
can be learned directly and easily. Further-
more, they apply other techniques, such as
consistency training, data augmentation,
speech segmentation, and model ensemble
to improve the overall performance of the
system. Their cascade system consists of
ASR, MT and TTS models. Their ASR and
MT replicates those used for the Offline
SLT submission. Their TTS model is a
combination of FastSpeech2 and HiFi-GAN.

6.4 Results

Results as scored by automatic metrics are shown
in Table 31 and human evaluation results are
shown in Table 32 in the Appendix.

Overall results. According to the automatic
metrics used in the evaluation, XIAOMI obtained
the highest score in ASR-BLEU, ASR-chrF, ASR-
COMET and ASR-SEScore2. NPU-MSXF ob-
tained the second highest score, followed sub-
sequently by HW-TSC, MINETRANS E2E, KU
and MINETRANS Cascade. The BLEU, chrF,
COMET and SEScore2 rankings were exactly the
same. The scores for the test-expanded data were
lower than those for the test-primary data, likely
due to a domain mismatch with the training data.
For human evaluation along the translation quality
perspective, XIAOMI obtained the highest score,
followed by NPU-MSXF, then HW-TSC and
MINETRANS E2E, then MINETRANS Cascade,
and finally KU. This ranking was mostly con-
sistent with the automatic ranking, showing that
automatic metrics were useful in evaluating the
translation quality of systems. For human evalu-

ation along the speech quality perspective, NPU-
MSXF obtained the highest score, followed by
HW-TSC, XIAOMI, MINETRANS E2E, MINE-
TRANS Cascade and KU. With a equal weighting
of translation quality and speech quality, NPU-
MSXF obtained the highest overall score in hu-
man evaluation, followed by XIAOMI and the oth-
ers.

S2ST approaches. This year, all systems but
MINETRANS E2E were cascaded systems, with
three systems adopting an ASR + MT + TTS ap-
proach and two systems adopting an end-to-end
S2T + TTS approach. This showed that cascade
approach was still dominant in the community. Al-
though MINETRANS E2E performed better than
MINETRANS Cascade in all evaluation metrics,
we could not draw conclusions on the comparison
between cascade and end-to-end given the limited
data points. Future challenges can encourage more
direct or end-to-end submissions.

6.5 Conclusion

This is the second time that speech-to-speech
translation (S2ST) is presented in one of the
IWSLT tasks. S2ST is an important benchmark for
general AI as other NLP tasks, e.g. dialogue sys-
tem, question answering and summarization can
also be implemented in speech-to-speech manner.
Compared to the setting last year, the size of the
training data set available to the participants is
much larger. The BLEU scores obtained in this
challenge is high in general, compared to MT and
ST of the same language direction. Although not
required by the task, NPU-MSXF is the only
team that implemented speaker timbre transfer in
their system. We plan to include evaluation met-
rics addressing this aspect in the next edition.

7 Dialect SLT

The Dialect Speech Translation shared task is a
continuation of last year’s task. We use the same
training data as 2022 and evaluated systems on
the 2022 evaluation set to measure progress; in
addition, we added a new 2023 evaluation set as
blind test. From the organizational perspective, we
merged the call for shared task with the the Low-
Resource tasks (Section 8) in order to encourage
cross-submission of systems.
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7.1 Challenge
Diglossic communities are common around the
world. For example, Modern Standard Arabic
(MSA) is used for formal spoken and written com-
munication in most parts of the Arabic-speaking
world, but local dialects such as Egyptian, Moroc-
can, and Tunisian are used in informal situations.
Diglossia poses unique challenges to speech trans-
lation because local “low” dialects tend to be low-
resource with little ASR and MT training data, and
may not even have standardized writing, while re-
sources from “high” dialects like MSA provides
opportunities for transfer learning and multilin-
gual modeling.

7.2 Data and Metrics
Participants were provided with the following
datasets:

• (a) 160 hours of Tunisian conversational
speech (8kHz), with manual transcripts

• (b) 200k lines of manual translations of the
above Tunisian transcripts into English, mak-
ing a three-way parallel data (i.e. aligned au-
dio, transcript, translation) that supports end-
to-end speech translation models

• (c) 1200 hours of Modern Standard Arabic
(MSA) broadcast news with transcripts for
ASR, available from MGB-2

• Approximately 42,000k lines of bitext in
MSA-English for MT from OPUS (specifi-
cally: Opensubtitles, UN, QED, TED, Glob-
alVoices, News-Commentary).

In 2022, we constructed three conditions: The
basic condition trains on (a) and (b), provided by
the Linguistic Data Consortium (LDC); the di-
alect adaptation condition trains on (a), (b), (c),
(d); the unconstrained condition can use any addi-
tional data and pre-trained models. In 2023, due
to the coordinated organization with other Low-
Resource Tasks this year, we renamed basic con-
dition as “constrained condition”, and the other
two conditions are merged as the “unconstrained
condition”.

All train and test sets are time-segmented at
the utterance level. Statistics are shown in Table
5. There are three test sets for evaluation with
BLEU25.

25
SacreBLEU signature for dialect speech translation task:

nrefs:1|case:lc|eff:no|tok:13a|smooth:exp|version:2.0.0

• test1: Participants are encouraged to use this
for internal evaluation since references are
provided. This is part of LDC2022E01 re-
leased to participants for training and devel-
opment, obtained by applying the standard
data split and preprocessing26.

• test2: official evaluation for 2022, from
LDC2022E02

• test3: official evaluation for 2023, from
LDC2023E09

7.3 Submissions
We received submission from four teams:

• GMU (Mbuya and Anastasopoulos, 2023)
participated in five language-pairs in the
Low-Resource tasks as well as this task.
They focused on investigating how different
self-supervised speech models (Wav2vec 2.0,
XLSR-53, and HuBERT) compare when ini-
tialized to an end-to-end (E2E) speech trans-
lation architecture.

• JHU (Hussein et al., 2023) submitted both
cascaded and E2E systems, using transformer
and branchformer architectures. They inves-
tigated the incorporation of pretrained text
MT models, specifically mBART50 and dis-
tilled NLLB-200. Further, they explored dif-
ferent ways for system combination and han-
dling of orthographic variation and channel
mismatch.

• ON-TRAC (Laurent et al., 2023) partici-
pated in two language-pairs in the Low-
Resource task as well as this task. For this
task, they focused on using SAMU-XLS-R
as the multilingual, multimodal pretrained
speech encoder and mBART as the text de-
coder.

• USTC (Deng et al., 2023) proposed a
method for synthesis of pseudo Tunisian-
MSA-English paired data. For the cascaded
system, they explored ASR with different
feature extraction (VGG, GateCNN) and neu-
ral architectures (Conformer, Transformer).
For E2E, they proposed using SATE and a
hybrid SATE architecture to take advantage

26https://github.com/kevinduh/
iwslt22-dialect
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Dataset Speech Text (#lines) Use
(#hours) Tunisian MSA English

LDC2022E01 train 160 200k - 200k Constrained condition
LDC2022E01 dev 3 3833 - 3833 Constrained condition
LDC2022E01 test1 3 4204 - 4204 Participant’s internal evaluation
LDC2022E02 test2 3 4288 - 4288 Evaluate progress from 2022
LDC2023E09 test3 3 4248 - 4248 Official evaluation for 2023
MGB2 1100 - 1.1M - Unconstrained condition
OPUS - - 42M 42M Unconstrained condition
Any other data - - - - Unconstrained condition

Table 5: Datasets for Dialect Shared Task.

of the pseudo Tunisian-MSA-English text
data. Additionally, methods for adapting to
ASR errors and system combination were ex-
amined.

7.4 Results

The full set of BLEU results on the English trans-
lations are available in Tables 33 and 34. We also
evaluated the WER results for the ASR component
of cascaded systems, in Table 35.

In general, there is an improvement compared to
2022. On test2, the best system in 2022 (achieved
by the CMU team) obtained 20.8 BLEU; several
systems this year improved upon that result, for
example USTC’s primary system achieved 23.6
BLEU and JHU’s primary system achieved 21.2
BLEU. On the official evaluation on test3, the best
system achieved 21.1 BLEU in the unconstrained
condition and 18.1 BLEU in the constrained con-
dition.

From the system descriptions, it appears the in-
gredients for strong systems include: (a) effective
use of pretrained speech and text models, (b) sys-
tem combination among both cascaded and E2E
systems, and (c) synthetic data generation to in-
crease the size of dialectal data.

We do not plan to continue this shared task next
year. Instead, the plan is to make the data available
from the LDC. We encourage researchers to con-
tinue exploring dialectal and diglossic phenomena
in the future.

8 Low-resource SLT

The Low-resource Speech Translation shared task
focuses on the problem of developing speech tran-
scription and translation tools for low-resourced
languages.

8.1 Challenge

This year, the task introduced speech translation of
recorded utterances from Irish to English, Marathi
to Hindi, Maltese to English, Pashto to French,
Tamasheq to French, and Quechua to Spanish.
The different language pairs vary by the amount
of data available, but in general, they have in
common the dearth of high-quality available re-
sources, at least in comparison to other much
higher-resourced settings.

8.2 Data and Metrics

We describe the data available for each language
pair below. Table 6 provides an overview of the
provided datasets.

Irish–English Irish (also known as Gaeilge) has
around 170,000 L1 speakers and 1.85 million peo-
ple (37% of the population) across the island (of
Ireland) claim to be at least somewhat proficient
with the language. In the Republic of Ireland,
it is the national and first official language. It is
also one of the official languages of the European
Union (EU) and a recognized minority language
in Northern Ireland with the ISO ga code.

The provided Irish audio data were compiled
from Common Voice (Ardila et al., 2020a),27

and Living-Audio-Dataset.28 The compiled data
were automatically translated into English and
corrected by an Irish linguist. The Irish–English
corpus consists of 11.55 hours of Irish speech data
(see Table 6), translated into English texts.

Marathi–Hindi Marathi is an Indo-Aryan lan-
guage which has the ISO code mr, and is domi-

27https://commonvoice.mozilla.org/en/
datasets

28https://github.com/Idlak/
Living-Audio-Dataset
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Language Pairs Train Set Dev Set Test Set Additional Data

Irish–English ga–eng 9.46 1.03 0.44 n/a
Marathi–Hindi mr–hi 15.3 3.7 4.4 monolingual audio with transcriptions

(ASR), monolingual text
Maltese–English mlt–eng 2.5 - 1.35 monolingual audio with transcriptions

(ASR), monolingual text
Pashto–French pus–fra 61 2.5 2 n/a
Tamasheq–French tmh–fra 17 - - untranscribed audio, data in other re-

gional languages
Quechua–Spanish que–spa 1.60 1.03 1.03 60 hours of monolingual audio with

transcriptions (ASR) and MT data (not
transcribed)

Table 6: Training, development and test data details (in hours) for the language pairs of the low-resource shared
task.

nantly spoken in the state of Maharashtra in India.
It is one of the 22 scheduled languages of India
and the official language of Maharashtra and Goa.
As per the 2011 Census of India, it has around 83
million speakers which covers 6.86% of the coun-
try’s total population.29 Marathi is the third most
spoken language in India.

The provided Marathi–Hindi corpus consists of
22.33 hours of Marathi speech data (see Table 6)
from the news domain, extracted from News On
Air30 and translated into Hindi texts.31 The dataset
was manually segmented and translated by Panlin-
gua.32 Additionally, the participants were directed
that they may use monolingual Marathi audio data
(with transcription) from Common Voice (Ardila
et al., 2020a),33 as well as the corpus provided
by He et al. (2020)34 and the Indian Language Cor-
pora (Abraham et al., 2020).35

Maltese–English Maltese is a Semitic lan-
guage, with about half a million native speakers,
spoken in the official language of Malta and the
EU. It is written in Latin script.

The provided data was divided into three parts.
First, around 2.5 hours of audio with Maltese tran-
scription and an English translation were released,

29https://censusindia.gov.in/nada/
index.php/catalog/42561

30https://newsonair.gov.in
31https://github.com/panlingua/

iwslt2023_mr-hi
32http://panlingua.co.in/
33https://commonvoice.mozilla.org/en/

datasets
34https://www.openslr.org/64/
35https://www.cse.iitb.ac.in/˜pjyothi/

indiccorpora/

along with about 7.5 hours of audio with only Mal-
tese transcriptions. Last, the participants were di-
rected to several monolingual Maltese textual re-
sources. The provided datasets were taken from
the MASRI corpus (Hernandez Mena et al., 2020).

Pashto–French Pashto is spoken by approxi-
mately forty to sixty million people in the world.
It is particularly spoken by the Pashtun people in
the south, east and southwest of Afghanistan (it
is one of the two official languages), as well as
in the north and northwest Pakistan but also in
Iran, Tajikistan and India (Uttar Pradesh and Cash-
mere) and one of the two official languages of
Afghanistan.

The corpus was totally provided by ELDA,
and is available on the ELRA catalog: TRAD
Pashto Broadcast News Speech Corpus (ELRA
catalogue, 2016b) that consists of audio files and
TRAD Pashto-French Parallel corpus of tran-
scribed Broadcast News Speech - Training data
(ELRA catalogue, 2016a) which are their tran-
scriptions.

This dataset is a collection of about 108 hours of
Broadcast News with transcriptions in Pashto and
translations into French text. The dataset is built
from collected recordings from 5 sources: Ashna
TV, Azadi Radio, Deewa Radio, Mashaal Radio
and Shamshad TV. Original training data contains
99 hours of speech in Pashto, which corresponds
to 29,447 utterances translated into French. Train-
ing data corresponds to 61 hours of speech (Ta-
ble 6).

Tamasheq–French Tamasheq is a variety of Tu-
areg, a Berber macro-language spoken by nomadic
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tribes across North Africa in Algeria, Mali, Niger
and Burkina Faso. It accounts for approximately
500,000 native speakers, being mostly spoken in
Mali and Niger. This task is about translating spo-
ken Tamasheq into written French. Almost 20
hours of spoken Tamasheq with French transla-
tion are freely provided by the organizers. A ma-
jor challenge is that no Tamasheq transcription is
provided, as Tamasheq is a traditionally oral lan-
guage.

The provided corpus is a collection of radio
recordings from Studio Kalangou36 translated to
French. It comprises 17 hours of clean speech
in Tamasheq, translated into the French language.
The organizers also provided a 19-hour version of
this corpus, including 2 additional hours of data
that was labeled by annotators as potentially noisy.
Both versions of this dataset share the same vali-
dation and test sets. Boito et al. (2022a) provides
a thorough description of this dataset.

In addition to the 17 hours of Tamasheq audio
data aligned to French translations, and in light of
recent work in self-supervised models for speech
processing, we also provide participants with un-
labeled raw audio data in the Tamasheq language,
as well as in other 4 languages spoken from Niger:
French (116 hours), Fulfulde (114 hours), Hausa
(105 hours), Tamasheq (234 hours) and Zarma
(100 hours). All this data comes from the ra-
dio broadcastings of Studio Kalangou and Studio
Tamani.37

Note that this language pair is a continuation of
last year’s shared task. An additional separate test
set was provided this year.

Quechua–Spanish Quechua is an indigenous
language spoken by more than 8 million peo-
ple in South America. It is mainly spoken in
Peru, Ecuador, and Bolivia where the official high-
resource language is Spanish. It is a highly inflec-
tive language based on its suffixes which aggluti-
nate and are found to be similar to other languages
like Finnish. The average number of morphemes
per word (synthesis) is about two times larger than
in English. English typically has around 1.5 mor-
phemes per word and Quechua has about 3 mor-
phemes per word.

There are two main regional divisions of
Quechua known as Quechua I and Quechua II.
This data set consists of two main types of

36https://www.studiokalangou.org/
37https://www.studiotamani.org/

Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO: quy) and Cusco, Peru (Quechua
Collao ISO: quz) which are both part of Quechua
II and, thus, considered a “southern” languages.
We label the data set with que - the ISO norm for
Quechua II mixtures.

The constrained setting allowed a Quechua-
Spanish speech translation dataset along with the
additional parallel (text-only) data for machine
translation compiled from previous work (Ortega
et al., 2020). The audio files for training, valida-
tion, and test purposes consisted of excerpts of the
Siminchik corpus (Cardenas et al., 2018) that were
translated by native Quechua speakers. For the un-
constrained setting, participants were directed to
another larger data set from the Siminchik corpus
which consisted of 60 hours of fully transcribed
Quechua audio (monolingual).

8.2.1 Metrics
We use standard lowercase BLEU as well as
charF++ to automatically score all submissions.
Additional analyses for some language pairs are
provided below.

Due to the exceptionally hard setting, which
currently leads to generally less competent transla-
tion systems, we did not perform the human eval-
uation of the outputs.

8.3 Submissions

Below we discuss all submissions for all language
pairs, given that there were several overlaps. A
brief summary per language is below:

• Irish–English received four submissions from
one team (GMU);

• Marathi–Hindi received submissions from
four teams (ALEXA AI, BUT, GMU, and
SRI-B);

• Maltese–English received five submissions
from one team (UM-DFKI);

• Pashto–French received submissions from
two teams (GMU, ON-TRAC);

• Tamasheq–French received submissions
from four teams (ALEXA AI, GMU,
NAVER, and ON-TRAC);

• Quechua-Spanish received three submissions
(GMU, NAVER, and QUESPA).
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Below we discuss each team’s submission in de-
tail:

• ALEXA AI (Vishnu et al., 2023) submitted
one primary and three contrastive systems,
all of these are in the unconstrained condition
(Table 44) for Tamasheq-French, and one pri-
mary and five contrastive systems on the un-
constrained condition for Marathi–Hindi. For
Marathi–Hindi, their systems relied on an
end-to-end speech translation approach, us-
ing the wav2vec 2.0 base model finetuned
on 960 hours of English speech (Baevski
et al., 2020b) as encoder baseline and it was
also finetuned on 94 hours of Marathi au-
dio data. The team focused on evaluating
three strategies including data augmentation,
an ensemble model and post-processing tech-
niques. For Tamasheq–French, they reuse
the same end-to-end AST model proposed
by the ON-TRAC Consortium in the last
year’s IWSLT edition (Boito et al., 2022b).
This model consists of a speech encoder that
is initialized by the wav2vec 2.0 (Baevski
et al., 2020a) base model pre-trained on 243
hours of Tamasheq audio data released by
the ON-TRAC Consortium 38. The decoder
of this model is a shallow stack of 2 trans-
former layers with 4 attention heads. A
feed-forward layer is put in between the en-
coder and the decoder for matching the di-
mension of the encoder output and that of
the decoder input. In this work, they fo-
cus on leveraging different data augmenta-
tion techniques including audio stretching,
back translation, paraphrasing, and weighted
loss. Another important endeavor of their
work is experimenting with different post-
processing approaches with LLMs, such as
re-ranking, sentence correction, and token
masking. Besides, they also ensemble AST
models trained with different seeds and data
augmentation methods, which is proven to
improve the performance of their systems.
Their primary system scores 9.30 BLEU on
the 2023 test set.

• BUT (Kesiraju et al., 2023) submitted one
primary and one contrastive system using the

38https://huggingface.
co/LIA-AvignonUniversity/
IWSLT2022-tamasheq-only

ESPnet (Inaguma et al., 2021) toolkit. The
primary system was built with the end-to-
end and bilingual ASR model while the con-
trastive was built with a cascade which uses
various backbone models including ASR, the
bilingual ASR, transformer-based seq2seq
MT, LM for re-scoring and XLM.

• GMU (Mbuya and Anastasopoulos, 2023)
focused on end-to-end speech translation
systems. End-to-end (E2E) transformer-
based encoder-decoder architecture (Vaswani
et al., 2017) was used for primary con-
strained submission. For unconstrained sub-
missions, they explored self-supervised pre-
trained speech models and used wav2vec 2.0
(Baevski et al., 2020a) and HuBERT (Hsu
et al., 2021) for the low resource task. They
used wav2vec 2.0 - with removing the last
three layers - for their primary submission.
HuBERT was used for the contrastive1 sub-
mission - without removing any layer. For
contrastive2, End-to-end with ASR (E2E-
ASR) architecture uses the same architec-
ture as the E2E. The difference is that a pre-
trained ASR model was used to initialize its
encoder.

• ON-TRAC (Laurent et al., 2023) partic-
ipated in the Pashto–French (one primary
and three contrastive systems, both for con-
strained and unconstrained settings) and
Tamasheq–French (one primary and five con-
trastive systems, all of which are uncon-
strained (c.f. Table 44). For Pashto–French,
the primary cascaded system is based on a
convolutional model (Gehring et al., 2017)
upgraded, while contrastive3 is based on
small basic transformers. For Primary and
contrastive1 systems, SAMU-XLS-R (Khu-
rana et al., 2022) was used with pre-trained
encoder with 100 and 53 languages. The two
constrained contrastive E2E systems share
the same encoder-decoder architecture using
transformers (Vaswani et al., 2017). The dif-
ference lies in the use or not of a transformer
language model trained from scratch on the
provided dataset.

All of their systems for Tamasheq–French
are based on the same end-to-end encoder-
decoder architecture. In this architec-
ture, the encoder is initialized by a pre-
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trained semantic speech representation learn-
ing model named SAMU-XLS-R (Khurana
et al., 2022), while the decoder is initialized
with the decoder of the pre-trained mBART
model. Their work heavily relies on different
versions of the SAMU-XLS-R model, which
are pre-trained on different combinations of
multilingual corpora of 53, 60, and 100 lan-
guages. In addition, they leverage training
data from higher resource corpora, such as
CoVoST-2 (Wang et al., 2020a) and Europarl-
ST (Iranzo-Sánchez et al., 2020), for train-
ing their end-to-end models. Their primary
system, which scores 15.88 BLEU on the
Tamasheq–French 2023 test set, was trained
on the combination of (CoVoST-2, Europarl-
ST and the IWSLT 2022’s test set), with the
encoder is initialized by the SAMU-XLS-R
model trained on the data gathered from 100
languages.

• NAVER (Gow-Smith et al., 2023) submit-
ted one primary and two contrastive sys-
tems to the Tamasheq–French track, as well
as one primary and two contrastive sys-
tems for the unconstrained condition in the
Quechua–Spanish track. In their work for
the Tamasheq–French track, they concentrate
on parameter-efficient training methods that
can perform both ST and MT in a multilin-
gual setting. In order to do so, they initial-
ize their models with a pre-trained multilin-
gual MT model (mBART (Liu et al., 2020) or
NLLB (NLLB Team et al., 2022)), which is
then fine-tuned on the ST task by inputting
features extracted with a frozen pre-trained
speech representation model (wav2vec 2.0 or
HuBERT (Hsu et al., 2021)). The encoder
of their translation model is slightly modified
where they stack several modality-specific
layers at the bottom. In addition, adapter
layers are also inserted in between layers of
the pre-trained MT model at both the en-
coder and decoder sides. While these new
components get fine-tuned during the train-
ing process, the pre-trained components of
the MT model are frozen. One of the appeal-
ing characteristics of their approach is that it
allows the same model to do both speech-to-
text and text-to-text translation (or transcrip-
tion). Furthermore, their method maximizes
knowledge transfer to improve low-resource

performance. Their primary system, which is
ensembled from 3 different runs on the com-
bination of both ST and ASR data, scores
23.59 BLEU on the 2023 test set.

For the Quechua–Spanish track, the overall
architecture for their systems consists of first
initializing a PLM which was then fine-tuned
on the speech translation task by inputting
features from a frozen pre-trained speech rep-
resentation. Similar adaptations were done
with an MT model to control domain and
length mismatch issues. One of the interest-
ing takeaways from their approaches is that
their contrastive 2 system (1.3 billion pa-
rameters (NLLB Team et al., 2022)) outper-
formed their contrastive 1 system (3.3 billion
parameters (NLLB Team et al., 2022)) de-
spite it having less parameters. NAVER’s
primary submission was an ensemble ap-
proach that included the use of PLMs for
both the ASR (Baevski et al., 2020a) and
MT systems ((NLLB Team et al., 2022))
and included training on both Tamasheq and
Quechua data. Their submissions to QUE–
SPA did not include the use of mBART or
HuBERT (Hsu et al., 2021) as was done for
other language pairs that NLE submitted.

• QUESPA (Ortega et al., 2023) submitted
to both conditions (constrained and uncon-
strained) a total of six systems including a
primary, contrastive 1, and contrastive 2 for
each condition. They also claim to have tried
several other combinations but did not sub-
mit those systems. For the constrained condi-
tion, their primary system scored second best,
slightly less than team GMU with a BLEU
score of 1.25 and chrF2 of 25.35. They also
scored third best for the constrained condi-
tion with 0.13 BLEU and 10.53 chrF2 us-
ing their contrastive 1 system. It is worth-
while to note that chrF2 was used by the
organizers when BLEU scores were below
five. For their constrained systems, a di-
rect speech translation system was submit-
ted similar to the GMU team’s primary ap-
proach that used Fairseq (Wang et al., 2020b).
QUESPA extracted mel-filter bank (MFB)
features similar to the S2T approach in previ-
ous work Wang et al. (2020b). The main dif-
ference between QUESPA’s submission and
GMU’s submissions was that the GMU team
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increased the number of decoder layers to
6 which resulted in a slightly better system
for GMU. The other systems submitted for
the constrained setting were cascade systems
where ASR and MT were combined in a
pipeline setting. Their contrastive 1 and 2
system submissions for the constrained task
respectively used wav2letter++ (Pratap et al.,
2019) and a conformer architecture similar
to previous work (Gulati et al., 2020) along
with an OpenNMT (Klein et al., 2017) trans-
lation system trained on the constrained ST
and MT data. Both of those systems per-
formed poorly scoring less than 1 BLEU. For
the unconstrained condition, the three sys-
tems that were presented by QUESPA con-
sisted of pipeline approaches of PLMs that
were fine-tuned on the additional 60 hours
of Siminchik audio data along with the con-
strained data. Their primary and contrastive
1 unconstrained ASR systems were trained
using the 102-language FLEURS (Conneau
et al., 2023) model and used the MT sys-
tem that was based on NLLB (NLLB Team
et al., 2022) which just so happens to in-
clude Quechua as one of its languages. Their
contrastive 2 ASR system was based on
wav2letter++ (Pratap et al., 2019) while their
contrastive 2 MT system was identical to the
MT systems used for their Primary and Con-
trastive 1 submissions.

• SRI-B (Radhakrishnan et al., 2023) submit-
ted four systems. For Marathi–English, they
submitted one primary and one contrastive
system in the constrained setting and one
primary and one contrastive system in the
unconstrained setting. They used end-to-
end speech translation networks comprising a
conformer encoder and a transformer decoder
for both constrained and unconstrained.

• UM-DFKI (Williams et al., 2023) submit-
ted five systems. It included one primary and
four contrastive systems in unconstrained set-
tings. They used a pipeline approach for all
of their submissions. For ASR, their system
builds upon (Williams, 2022) on fine-tuning
XLS-R based system. mBART-50 was used
for fine-tuning the MT part of the pipeline.

8.4 Results

Irish–English As discussed earlier, only the
GMU team participated in the GA–ENG trans-
lation track and submitted one primary system to
constrained, one primary system to unconstrained
and the rest of the two systems to contrastive
on unconstrained conditions. The end-to-end and
end-to-end with ASR models submitted primary
constrained and contrastive2 unconstrained sys-
tems. Both the systems achieved 15.1 BLEU
scores. They did not perform well in comparison
to the wav2vec 2.0 and HuBERT models. The de-
tail of the results of this track can be found in Ta-
ble 36 and 37.

Marathi–Hindi The results of this translation
track can be found in Table 38 and 39. Over-
all we see varying performances among the sys-
tems submitted to this track, with some perform-
ing much better on the test set. Out of the 16
submissions, the SRI-B team’s primary system
achieved the best result of 31.2 and 54.8 in BLEU
and in charF++ respectively on the constrained
condition while the BUT team’s primary system
achieved the best results of 39.6 in BLEU and
63.3 in charF++ on the unconstrained condition.
In both constrained and unconstrained conditions,
the GMU systems achieved the lowest results of
3.3 and 5.9 in BLEU and 16.8 and 20.3 in charF++
respectively.

Maltese–English The results of this translation
track can be found in Table 42. UM-DFKI used
contrastive approaches in training their ASR sys-
tem. For their contrastive1 system, their fine-
tuning consisted of using Maltese, Arabic, French
and Italian corpora. Their contrastive2, con-
trastive3, and contrastive4 approaches respectively
use a subset from Arabic, French and Italian ASR
corpus along with Maltese data. The best result
of 0.7 BLEU was achieved with their contrastive1
system.

Pashto–French The detailed results can be
found in Table 41 and Table 40 of the Appendix.
We rank the system performance based on test
BLEU scores. The best score BLEU was achieved
by ON-TRAC primary system (SAMU-XLS-R
model trained on 100 languages). For the con-
strained condition, the cascaded approach based
on convolutional models, gives the best perfor-
mance.
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Tamasheq-French The results of this transla-
tion track can be found in Table 43 and 44. Com-
pared to the last year’s edition, this year has wit-
nessed a growing interest in this low-resource
translation track in terms of both quantity and
quality of submissions. Almost all submissions
achieve relatively better results than the last year’s
best system (5.7 BLEU on test2022 (Boito et al.,
2022b)). Furthermore, it is notable that cascaded
systems are not favorable in this track while none
of the submitted systems is of this kind.

This year, this language pair remains a chal-
lenging low-resource translation track. There is
only one submission to the constrained condi-
tion from GMU with an end-to-end model scor-
ing 0.48 BLEU on this year’s test set. For
this reason, all the participants are in favor of
exploiting pre-trained models, hence being sub-
ject to the unconstrained condition. Among
these pre-trained models, self-supervised learn-
ing (SSL) from speech models remains a popu-
lar choice for speech encoder initializing. Us-
ing a wav2vec2.0 model pre-trained on unlabelled
Tamasheq data for initializing their speech en-
coder, GMU gains +7.55 BLEU score in compari-
son with their Transformer-based encoder-decoder
model training from scratch (their primary con-
strained system). At the decoder side, pre-trained
models such as mBART or NLLB are commonly
leveraged for initializing the decoder of the end-to-
end ST model. Besides, data augmentation and en-
sembling are also beneficial as shown by ALEXA
AI when they consistently achieve ∼ 9 BLEU in
all of their settings.

Outstanding BLEU scores can be found in the
work of the ON-TRAC team. An interesting pre-
trained model named SAMU-XLS-R is shown to
bring significant improvements. This is a multilin-
gual multimodal semantic speech representation
learning framework (Khurana et al., 2022) which
fine-tunes the pre-trained speech transformer en-
coder XLS-R (Babu et al., 2021) using semantic
supervision from the pre-trained multilingual se-
mantic text encoder LaBSE (Feng et al., 2022).
Exploiting this pre-trained model and training
end-to-end ST models on the combinations of dif-
ferent ST corpora, they achieve more than 15
BLEU in all of their settings.

NAVER tops this translation track by a multilin-
gual parameter-efficient training solution that al-
lows them to leverage strong pre-trained speech

and text models to maximize performance in low-
resource languages. Being able to be trained on
both ST and ASR data due to the multilingual na-
ture, all of their submissions heavily outperform
the second team ON-TRAC by considerable mar-
gins. Their primary system, which is ensembled
from 3 different runs, uses NLLB1.3B as the pre-
trained MT system, and wav2vec2.0 Niger-Mali 39

as the speech presentation extractor. After be-
ing trained on a combination of both ST corpora
(Tamasheq-French, mTEDx fr-en, mTEDx es-fr,
mTEDx es-en, mTEDx fr-es (Salesky et al., 2021))
and AST corpora (TED-LIUM v2 (Rousseau et al.,
2014), mTEDx fr, mTEDx es), this system estab-
lishes an impressive state-of-the-art performance
of the Tamasheq-French language pair, scoring
23.59 BLEU on the 2023 test set.

Quechua–Spanish The QUE–SPA results for
all systems submitted to this low-resource trans-
lation track can be found in Table 45 and 46 of
the appendix. To our knowledge, this first edi-
tion of the QUE–SPA language pair in the low-
resource track of IWSLT has witnessed the best
BLEU scores achieved by any known system in
research for Quechua. The two best performing
systems: 1.46 BLEU (constrained) and 15.70 (un-
constrained) show that there is plenty of room to
augment approaches presented here. Nonetheless,
submissions from the three teams: GMU, NAVER,
and QUESPA have shown that it is possible to use
PLMs to create speech-translation systems with as
little as 1.6 hours of parallel speech data. This is
a notable characteristic of this task and surpasses
previous work in the field.

We have found that the NLLB (NLLB Team
et al., 2022) system’s inclusion of Quechua in re-
cent years has had a greater impact than expected
for ease-of-use. Similarly, the use of Fairseq
(Wang et al., 2020b) seems to be the preferred
toolkit for creating direct S2T systems, cascaded
or not. The QUE–SPA submissions for the un-
constrained conditions preferred the use of a cas-
cading system in a pipeline approach where pre-
trained models were fine-tuned first for ASR and
then for MT.

The constrained setting leaves much room for
improvement. Nonetheless, GMU and QUESPA’s
near identical submissions have shown that the in-

39https://huggingface.
co/LIA-AvignonUniversity/
IWSLT2022-Niger-Mali
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crease of 3 layers during decoding can be powerful
and should be explored further. It would be worth-
while for the organizers of the QUE–SPA track to
obtain more parallel data including translations for
future iterations of this task.

The unconstrained setting clearly can benefit
from an ensembling technique and training with
multiple languages – in these submissions, the
training of a model with an additional language
like Tamasheq alongside Quechua does not seem
to have a negative impact on performance. Al-
though, it is hard to ascertain whether the slight
performance gain of less than 1 BLEU point of the
NLE team’s submission compared to QUESPA’s
submission was due to the ensembling, freezing of
the models, or the language addition.

As a final takeaway, the NLE team’s submis-
sions scored quite well under the unconstrained
condition. It should be noted that for other lan-
guage pairs NLE’s high system performance was
also due to the ensembling of systems that were
executed using different initialization parameters
on at least three unique runs. As an aside, small
gains were achieved under the constrained condi-
tion when comparing the GMU submission to the
QUESPA system due to the increase in decoding
layers. QUESPA’s inclusion of a language model
on top of a state-of-the-art dataset (Fleurs) allowed
them to achieve scores similar to NAVER’s with-
out additional tuning or ensembling. State-of-the-
art performance was achieved by all three teams
that submitted systems.

General Observations As in previous years, the
low-resource shared task proved particularly chal-
lenging for the participants, but there are several
encouraging signs that further reinforce the need
for more research in the area.

First, more teams than ever participated in the
shared task, showing a continued interest in the
field. Second, we note that for the language
pair that was repeated from last year (Tamasheq–
French), almost all submissions outperformed last
year’s best submission, with an accuracy increase
of more than 17 BLEU points in the unconstrained
setting. Last, we highlight the breadth of different
approaches employed by the participants, ranging
from the use of finetuned pre-trained models to
pre-training from scratch, to parameter efficient
dine-tuning as well as cascaded pipeline systems,
all of which seem to have benefits to offer, to a
certain extent, to different language pairs.

Limitations As noted by some participants,
the Irish–English and Maltese–English transla-
tion track data has limitations. For Irish–English,
the speech translation systems can achieve very
high BLEU scores on the test set if the built
systems have used wav2vec 2.0 and/or the Irish
ASR model which is trained on the Common
Voice (Ardila et al., 2020b) dataset. Similarly,
the GMU team has achieved high BLEU scores
especially when they used wav2vec 2.0 and Hu-
BERT models. We plan to continue this translation
track next year by updating the test and training
data to thoroughly investigate the data quality as
well as the reason to obtain the high BLEU scores.
For Maltese–English, some participants reported
issues with the data quality, which we hope to re-
solve in future iterations of the shared task.

9 Formality Control for SLT

Different languages encode formality distinctions
in different ways, including the use of honorifics,
grammatical registers, verb agreement, pronouns,
and lexical choices. While machine translation
(MT) systems typically produce a single generic
translation for each input segment, SLT requires
adapting the translation output to be appropriate to
the context of communication and target audience.
This shared task thus challenges machine transla-
tion systems to generate translations of different
formality levels.

9.1 Challenge

Task Given a source text, X in English, and a
target formality level, l ∈ {F, IF}, the goal in
formality-sensitive machine translation (Niu et al.,
2017) is to generate a translation, Y , in the target
language that accurately preserves the meaning of
the source text and conforms to the desired formal-
ity level, l. The two formality levels typically con-
sidered are “F” for formal and “IF” for informal,
resulting in two translations: YF and YIF respec-
tively. For example, the formal and informal trans-
lations for the source text “Yeah Did your mom
know you were throwing the party?” (originally
informal) in Korean are shown in the table below:

This shared task builds on last year’s offering,
which evaluated systems’ ability to control for-
mality on the following translation tasks: trans-
lation from English (EN) into Korean (KO) and
Vietnamese (VI) in the supervised setting, and
from English (EN) into Portugal Portuguese (PT)
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Source: Yeah Did your mom know you were
throwing the party?

Korean Informal: 그, 어머님은 [F]네가[/F]
그파티연거 [F]아셔[/F]?

Korean Formal: 그,어머님은 [F]님이[/F]그
파티연거 [F]아세요[/F]?

Table 7: Contrastive formal and informal translations
into Korean. Grammatical formality markers are anno-
tated with [F]text[/F].

and Russian (RU) in the zero-shot setting. Re-
sults showed that formality-control is challeng-
ing in zero-shot settings and for languages with
many grammatical and lexical formality distinc-
tions. This year’s edition invited participants to
advance research in effective methods for bridg-
ing the gap in formality control for zero-shot cases
and for languages with rich grammatical and lexi-
cal formality distinctions.

9.2 Data and Metrics

Participants were provided with test data, as well
as MT quality and formality control metrics. In
addition, we provided training data, consisting of
formal and informal translation of texts for the su-
pervised language pairs (EN-KO, EN-VI).

9.2.1 Formality Annotated Dataset

We provide targeted datasets comprising source
segments paired with two contrastive reference
translations, one for each formality level (informal
and formal) for two EN-VI, EN-KO in the super-
vised setting and EN-RU, EN-PT in the zero-shot
setting (see Example 7)40. The sizes and proper-
ties of the released datasets for all the language
pairs are listed in Table 8. Formal translations tend
to be longer than informal texts for Vietnamese
compared to other language pairs. The number
of phrasal formality annotations ranges from 2 to
3.5 per segment, with Korean exhibiting a higher
diversity between the formal and informal transla-
tions as indicated by the TER score.

9.2.2 Training Conditions

We allowed submissions under the constrained
and unconstrained data settings described below:

40https://github.com/amazon-science/
contrastive-controlled-mt/tree/main/
IWSLT2023

Constrained (C) Participants were allowed to
use the following resources: Textual MuST-C v1.2
(Di Gangi et al., 2019b), CCMatrix (Schwenk
et al., 2021), OpenSubtitles (Lison and Tiede-
mann, 2016) and dataset in the constrained set-
ting from the Formality Control track at IWSLT22
(Anastasopoulos et al., 2022a).

Unconstrained (U) Participants could use any
publicly available datasets and resources: the use
of pre-trained language models was also allowed.
Additionally, using additionally automatically an-
notated bitext with formality labels was also al-
lowed.

9.3 Formality Classifier
We release a multilingual classifier (MC) trained
to predict the formality of a text for all the lan-
guage pairs: EN-KO, EN-VI, EN-RU, and EN-
PT. We finetune an xlm-roberta-base (Con-
neau et al., 2020) model on human-written formal
and informal translations following the setup from
Briakou et al. (2021). Our classifier achieves an
accuracy of > 98% in detecting the formality of
human-written translations for the four target lan-
guages (Table 10). Participants were allowed to
use the classifier both for model development and
for evaluation purposes as discussed below.

9.4 Automatic Metrics
We evaluate the submitted system outputs along
the following two dimensions:

1. Overall translation quality, evaluated using
SacreBLEU v2.0.0 (Papineni et al., 2002b;
Post, 2018), and COMET (Rei et al., 2020b)
on both the shared task-provided test sets
based on topical chat (Gopalakrishnan et al.,
2019) and on the FLORES devtest (NLLB
Team et al., 2022; Goyal et al., 2022).

2. Formality control, evaluated using:

• Matched-Accuracy (mACC), a reference-
based corpus-level automatic metric that
leverages phrase-level formality markers
from the references to classify a system-
generated hypothesis as formal, informal,
or neutral (Nadejde et al., 2022).

• Classifier-Accuracy (cACC), a reference-
free metric that uses the multilingual for-
mality classifier discussed above to label a
system-generated hypothesis as formal or
informal.
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LANGUAGE TYPE SIZE LENGTH # PHRASAL ANNOTATIONS TER(F, IF)
SOURCE FORMAL INFORMAL FORMAL INFORMAL

EN-VI
Train 400 20.35 28.52 25.48 2.71 1.49 23.70
Test 600 21.82 29.59 26.77 2.79 1.55 23.00

EN-KO
Train 400 20.00 13.41 13.40 3.35 3.35 24.52
Test 600 21.22 13.56 13.55 3.51 3.51 25.32

EN-RU Test 600 21.02 18.03 18.00 2.06 2.05 13.59

EN-PT Test 600 21.36 20.22 20.27 1.93 1.93 10.46

Table 8: Formality Track Shared Task Data Statistics.

PARTICIPANT SETTINGS CLASSIFIER USE LANGUAGES MODEL TYPE FORMALITY

UMD-baseline U ✓ All Multilingual Exemplars

COCOA-baseline C ✗ EN-{VI, KO} Bilingual Side-constraint

APPTEK U ✗ EN-{PT, RU} Bilingual Side-constraint

HW-TSC U+C ✓ All Bilingual Side-constraint

KUXUPSTAGE U ✓ All Bilingual N/A

UCSC U ✗ EN-{VI, KO} Multilingual Style-Embedding

Table 9: Formality Track Submissions Summary. Most participants train bilingual systems but leverage a diverse
set of formality encoding mechanisms for control.

Target Language Accuracy
Korean 99.9%

Vietnamese 99.3%
Russian 99.9%

Portuguese 98.6%

Table 10: The multilingual classifier can identify the
target formality for human written text across all lan-
guages with > 98% accuracy.

The final corpus-level score for each of the
two metrics described above is the percent-
age of system outputs that matches the de-
sired formality level. For example, the cACC

for the target formality, Formal (F), is given
by, cACC(F ) = 1

M ∑M
i=1 1[MC(Y ) == F ],

where M is the number of system outputs.

9.5 Submissions

We provide methodology descriptions and a sum-
mary of the two baseline systems and four sub-
missions received for the shared task below and in
Table 9. Three out of six submissions made use
of the formality classifier released for system de-
velopment. We received two multilingual and four
bilingual systems. We refer the reader to the sys-
tem description papers for more details.

• COCOA (baseline) uses a supervised method
where a generic neural MT model is fine-
tuned on labeled contrastive translation pairs
(Nadejde et al., 2022). For the constrained,
supervised setting, the generic neural MT
model was trained on parallel data allowed
for the constrained task and fine-tuned on for-
mal and informal data released for the shared
task. Following Nadejde et al. (2022), con-
trastive pairs were upsampled with a fixed up-
sampling factor of five for all language pairs.

• UMD (baseline) uses 16 few-shot tar-
get formality-specific exemplars to prompt
XGLM-7.5B (Lin et al., 2021) to generate
style-controlled translations. For the su-
pervised setting, these examples are drawn
from the official training data, whereas for
the zero-shot setup, the examples from the
Tatoeba corpus (Artetxe and Schwenk, 2019)
are filtered and marked with target formality
using the provided formality classifier.

• APPTEK (Bahar et al., 2023) submitted out-
puts using their production quality translation
systems that support formality-controlled
translation generation for EN-PT and EN-
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RU. These are Transformer-Big models
trained on a large public dataset from the
OPUS collection (Tiedemann, 2012), auto-
matically marked with formality using a se-
quence of regular expressions. The formality
level is encoded with a pseudo-token at the
beginning of each training source sentence
with one of 3 values: formal, informal, or no
style.

• HW-TSC (Wang et al., 2023a) describes a
system that uses a multi-stage pre-training
strategy on task-provided data to train strong
bilingual models. Using these bilingual mod-
els, they employ beam re-ranking on the out-
puts generated using the test source. The gen-
erated hypothesis are ranked using the for-
mality classifier and phrasal annotations, it-
eratively fine-tuning the model on this data
until test performance convergences. Initial
formality control is enabled by a special to-
ken and re-affirmed through classifier output
and annotations from training.

• KUXUPSTAGE (Lee et al., 2023) uses large-
scale bilingual transformer-based MT sys-
tems trained on high-quality datasets and
MBART for the supervised and zero-shot set-
tings respectively. They generate a formality-
controlled translation dataset for supervision
in the zero-shot setting using GPT-4 and fil-
ter the generated source-translation pairs us-
ing the formality classifier. All bilingual
models are then finetuned independently for
the two target formality directions to gen-
erate formality-controlled outputs, resulting
in #(Language-pairs) × 2 (Formal/Informal)
models.

• UCSC (Vakharia et al., 2023) focused on us-
ing a single multilingual translation model
for all the language pairs under the uncon-
strained setting. They finetune the pre-trained
model, mBART-large-50 (Tang et al.,
2020), using the provided contrastive transla-
tions (§ 9.2.1) with an added style embedding
intervention layer.

9.6 Results

Tables 47 and 48 in the Appendix show the main
automatic evaluation results for the shared task.

Overall Results For the supervised language
pairs in both constrained and unconstrained set-
tings, most submitted systems were successfully
able to control formality. The average mAcc
scores ranged from 78-100. Controlling formality
in Korean was found to be more challenging than
translating with formality control in Vietnamese
as reflected by the relatively lower mAcc scores
which we believe to be due to the variation in for-
mality expression of Korean honorific speech re-
flected in pretraining data.

HW-TSC consistently achieves the best scores
across the board for all language pairs and both
settings due to the use of transductive learning.
Interestingly, the constrained submission by HW-
TSC achieves better or competitive results com-
pared to their unconstrained system suggesting
that the use of a pre-trained language model or
additional resources is not necessary to gener-
ate high-quality formality-controlled translations.
Generally, the systems generate higher quality out-
puts in the formal setting relative to the informal
setting for both supervised language pairs accord-
ing to BLEU and COMET, which might be due
to the bias of the dataset used during pre-training
which is typically news and hence more formal.

In the zero-shot unconstrained setting, this for-
mality bias is even more prominent. We observe
a much wider distribution in the formality scores
for English-Portuguese (mAcc: F 90-100, IF: 58-
100), possibly due to the high ambiguity in the
informal language and the confounding dialectal
influence of Brazilian Portuguese dominant in the
pre-training corpora, which is known to use for-
mal register even in typically informal contexts
(Costa-jussà et al., 2018). HW-TSC and APPTEK

achieve the best translation quality for English-
Portuguese and English-Russian respectively. The
lowest scoring submission in both quality and for-
mality control (UCSC) did not include any fine-
tuning or adaptation of the base MBART model to
the two zero-shot language pairs: English-Russian
and English-Portuguese. This suggests that for-
mality information is not transferred from the un-
related language pairs, EN-KO and EN-VI, and
that some language-specific supervision is needed
to mark grammatical formality appropriately in
Russian and Portuguese.

How well do systems match the desired tar-
get formality? We show the distribution of the
scores generated using the formality classifier for
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Figure 3: Formality Classifier Scores’ Distribution on the submitted system outputs in the Unconstrained setting:
HW-TSC can precisely match the target formality as depicted by the peaky distribution.

all the systems submitted to all language pairs un-
der the unconstrained setting in Figure 3. For su-
pervised language pairs, formal (blue) and infor-
mal (orange) output scores peak at 1.0 and 0.0 re-
spectively. In the zero-shot setting, for both Por-
tuguese (APPTEK, UCSC) and Russian (UCSC)
translations, the informal outputs have a bimodal
distribution, highlighting that these models gener-
ate many formal translations under informal con-
trol.

How contrastive are the generated transla-
tions? We show the Translation Edit Rate (TER)
between the formal and informal outputs for all
submitted systems across all language pairs in Fig-
ure 4. While the references are designed to be min-
imally contrastive, the formal and informal system
outputs exhibit a much larger edit distance. HW-
TSC has the lowest TER rate for all language pairs
except English-Korean.

Discussion Overall, the shared task results
show that finetuning a strong supervised general-
purpose MT system with as low as 400 in-
domain contrastive samples seems to be sufficient
in generating high-quality contrastive formality-
controlled translations. However, several avenues
for improvement remain open. The languages that

Figure 4: TER between the Formal (F) and Informal
(IF) Outputs for all submitted systems across all lan-
guage pairs.

exhibit an ambiguous or richer formality distinc-
tion either due to close dialectal variations (like
Portuguese) or due to multiple levels of honorifics
(like Korean and Japanese) still remain challeng-
ing. Unsupervised transfer of formality knowl-
edge between related languages remains relatively
unexplored (Sarti et al., 2023). Furthermore, this
year’s task only considered two levels of formal-
ity distinctions with minimal edits. It remains un-
clear whether the models are also capable of mod-
eling multiple levels of formality potentially with
minimal edits in the generated translations. Fi-
nally, no submissions have explored monolingual
editing of translations as a potential solution for
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formality-controlled MT, despite the edit-focused
nature of the contrastive translations. We recom-
mend that future work on formality-controlled ma-
chine translation targets these challenges.

10 Automatic Dubbing

10.1 Challenge
This task focuses on automatic dubbing: translat-
ing the speech in a video into a new language such
that the new speech is natural when overlayed on
the original video (see Figure 5).

Participants were given German videos, along
with their text transcripts, and were asked to pro-
duced dubbed videos where the German speech
has been translated in to English speech.

Automatic dubbing is a very difficult/complex
task (Brannon et al., 2023), and for this shared
task we focus on the characteristic which is per-
haps most characteristic of dubbing: isochrony.
Isochrony refers to the property that the speech
translation is time aligned with the original
speaker’s video. When the speaker’s mouth is
moving, a listener should hear speech; likewise,
when their mouth isn’t moving, a listener should
not hear speech.

To make this task accessible for small academic
teams with limited training resources, we make
some simplifications: First, we assume the input
speech has already been converted to text using an
ASR system and the desired speech/pause times
have been extracted from the input speech. Sec-
ond, to alleviate the challenges of training a TTS
model, the output is defined to be phonemes and
their durations. These phonemes and durations are
played through an open-source FastSpeech2 (Ren
et al., 2022) text-to-speech model to produce the
final speech.41

10.2 Data and Metrics
Official training and test data sets were provided42

by the organizers. The training data was derived
from CoVoST2 (Wang et al., 2021) and consists
of:

1. Source (German) text

2. Desired target speech durations (e.g. 2.1s of
speech, followed by a pause, followed by 1.3s
of speech)

41https://github.com/mtresearcher/
FastSpeech2

42https://github.com/amazon-science/
iwslt-autodub-task/tree/main/data

3. Target (English) phonemes and durations cor-
responding to a translation which adheres to
the desired timing

The test data was produced by volunteers and
consists of videos of native German speakers
reading individual sentences from the German
CoVoST-2 test set.43 This test set was divided in to
two subsets; Subset 1 where there are no pauses in
the speech and Subset 2 where there is one or more
pause in the speech. More details on this data are
presented in (Chronopoulou et al., 2023).

10.3 Submissions

Despite high initial interest, we received only
one submission, which was from the Huawei
Translation Services Center (HW-TSC) (Rao
et al., 2023). However, we had two systems
(Chronopoulou et al., 2023; Pal et al., 2023) built
for the task for which we had not yet performed
human evaluation, so we still had enough systems
for a interesting comparison.

• Interleaved (Baseline): Our first baseline
and the basis for this shared task is from
Chronopoulou et al. (2023). They propose to
jointly model translations and speech timing,
giving the model the freedom to change the
translation to fit the timing, or and make scar-
ifies in translation quality to meet timing con-
straints or relax timing constraints to improve
translation quality. This is achieved by sim-
ply binning target phoneme durations and in-
terleaving them with target phonemes during
training and inference. To avoid teaching the
model that speech durations should be prior-
itized over translation quality44, noise with
standard deviation 0.1 is added to the target
phrase durations to simulate the source dura-
tions used at inference.

• Factored (Baseline): Pal et al. (2023) build
on the first baseline by using target factors
(Garcı́a-Martı́nez et al., 2016), where along-
side predicting phoneme sequences as the
target, we also predict durations for each
phoneme as a target factor. Additionally, they
propose auxiliary counters, which are simi-
lar to target factors except the model is not

43Each volunteer provided their consent to use this data
for automatic dubbing task.

44Median speech overlap is just 0.731 in a large corpus of
human dubs (Brannon et al., 2023)
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Figure 5: To illustrate, here’s an example in which “hallo! wei gehts?” is translated to “hi! how are you?” such
that the output will fit in the desired target speech durations of 0.4s and 1.3s, with a pause in between

trained to predict them. Instead, they pro-
viding additional information to the decoder
consisting of (1) the total number of frames
remaining, (2), the number of pauses remain-
ing, and (3) the number of frames remaining
in the current phrase. As in the first base-
line, noise of standard deviation 0.1 is added
to the target phrase durations during training
to simulate source durations.

• Text2Phone (Baseline): As a sanity check,
we added a third, non-isochronic baseline
trained to take in German text and produce
English phonemes, without any duration in-
formation. We train on the same data as the
first two baselines, but exclude duration in-
formation from training and instead predict
phoneme durations using the duration model
from the FastSpeech2 model.

• HW-TSC: In contrast to our three baselines,
(Rao et al., 2023) took a more traditional
approach to dubbing and followed the prior
works on verbosity control (Lakew et al.,
2021, 2019) to first generate a set of transla-
tion candidates and later re-rank them. Their
system consists of four parts: 1) voice ac-
tivity detection followed by pause alignment,
2) generating a list of translation candidates,
3) phoneme duration prediction, followed by
4) re-ranking/scaling the candidates based on
the durations (see Figure 6). With the last
step in the pipeline, the top scored candidate
is ensured to have the best speech overlap
with the source speech amongst all candidate
translations.

10.4 Evaluation & Metric
The dubbed English videos were judged by a mix-
ture of native and non-native speakers, all of which

Figure 6: System diagram for HW-TSC dubbing sys-
tem. Image from Rao et al. (2023).

were researchers in automatic dubbing. For each
video in the the test set, one judge was shown the
four system outputs in random order and asked to
rate them from 1-6. The judges were not given
a defined rubric or guidelines to follow but were
asked to be consistent.

As a metric we opted for mean opinion score
(MOS) methodology where the scores for a system
as judged by humans are averaged in one score.45

Feedback from the judges indicate that the base-
line and submitted systems often produce poor
translations (perhaps due to the small amount of
training data used by each system), and the voice
quality from the FastSpeech 2 model was far from
perfect. However, they felt that having all systems
share the same voice made it much easier to com-
pare across dubbing systems.

When we looked at the distribution of scores per

45https://en.wikipedia.org/wiki/Mean_
opinion_score
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annotator (judge) level, the numbers showed that
each annotator had a bias towards dubbing, some
liked dubbing more than others which is intuitive
but has not been studied before in the context of
automatic dubbing. As shown in Table 11, it is
clear that annotator A2 had a significantly higher
preference for dubbing as compared to annotator
A4 in terms of MOS.

Annotator MOS↑ CI
A1 3.34 ±0.16
A2 3.74 ±0.19
A3 3.53 ±0.13
A4 3.07 ±0.15

Table 11: MOS (on a scale of 1-6) with confidence in-
terval (CI) at 95% per annotator showing the biases to-
wards general purpose dubbed content.

We also looked at MOS for the two different
subsets to understand whether it was difficult for
the submitted systems to dub the videos. As it
turns out, Subset 1 has an significantly higher
MOS of 3.54 (± 0.11) compared to Subset 2 with
a MOS of 3.31 (± 0.11). This shows it is signifi-
cantly more difficult for all systems to dub Subset
2 than Subset 1.

10.5 Results

Results are shown in Table 12. All three
dubbing systems outperform the non-isochronic
Text2Phone baseline (Chronopoulou et al., 2023),
as expected. The factored baseline improves over
the interleaved baseline, consistent with the auto-
matic metric results reported by Pal et al. (2023).

The HW-TSC system (Rao et al., 2023) outper-
forms all the baselines in terms of mean opinion
score, making it the clear winner of the IWSLT
2023 dubbing shared task. Unfortunately, since
HW-TSC system was unconstrained (it trains on
additional bitext compared to the baselines) and
uses fundamentally different approaches than the
baselines, it is not possible to attribute it’s perfor-
mance to any single factor.

Lip-sync is an important feature of dubbing,
it is important that the final generated audio is
in sync with the lip movements of the on-screen
speaker in the original video. As an analy-
sis, we looked at Lip-Sync Error Distance (LSE-
D) (Chung and Zisserman, 2016) following the
evaluation methodology in Hu et al. (2021). LSE-
D is not a perfect metric but it is an indication to

MOS↑
System Constrained? Mean CI
Text2Phone Yes 3.16 ±0.19
Interleaved Yes 3.33 ±0.18
Factored Yes 3.43 ±0.19
HW-TSC No 3.77 ±0.19

Table 12: Mean opinion score for baselines 1)
Text2Phone 2) Interleaved (Chronopoulou et al., 2023)
3) Factored (Pal et al., 2023) and 4) submitted system
of HW-TSC (Rao et al., 2023).

LSE-D↓
System Subset1 Subset2
Original 7.39 7.67

Text2Phone 11.64 13.31
Interleaved 11.71 12.35
Factored 11.73 12.48

HW-TSC 12.11 12.77

Table 13: Results of Lip-Sync Error Distance (LSE-D)
via Syncnet pre-trained model (Chung and Zisserman,
2016). Lower the better.

the amount of Lip-Sync errors in the video. From
Table 13, Subset 1 consistently has a lower lip-
sync error than Subset 2 in all cases pointing that
its difficult to generate lip-synced dubs for Sub-
set 2. This result is also in line with the MOS
scores we obtained for two subsets where the an-
notators preferred dubs for Subset 1. Secondly,
original videos show significantly lower lip-sync
error distance (12.x v/s 7.x) than dubbed videos
showing that automatic dubbing research still has
a long way to go to reach lip-sync quality in origi-
nal videos.
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Turchi, and Changhan Wang. 2020. Findings of the
IWSLT 2020 Evaluation Campaign. In Proceedings
of the 17th International Conference on Spoken Lan-
guage Translation (IWSLT 2020), Seattle, USA.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M Tyers, and
Gregor Weber. 2019. Common voice: A massively-
multilingual speech corpus. arXiv preprint
arXiv:1912.06670.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M Tyers, and
Gregor Weber. 2020a. Common voice: A
massively-multilingual speech corpus. In LREC.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020b. Common voice: A massively-
multilingual speech corpus. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 4218–4222.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika

37

https://doi.org/10.18653/v1/2022.iwslt-1.10
https://doi.org/10.18653/v1/2022.iwslt-1.10
https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288


Singh, Patrick von Platen, Yatharth Saraf, Juan Pino,
et al. 2021. XLS-R: Self-supervised cross-lingual
speech representation learning at scale. arXiv
preprint arXiv:2111.09296.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020a. wav2vec 2.0: A frame-
work for self-supervised learning of speech repre-
sentations. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 12449–12460.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020b. wav2vec 2.0: A frame-
work for self-supervised learning of speech repre-
sentations. Advances in Neural Information Pro-
cessing Systems, 33:12449–12460.

Parnia Bahar, Patrick Wilken, Javier Iranzo-Sánchez,
Mattia Di Gangi, Evgeny Matusov, and Zoltán
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A Human Evaluation

Human evaluation was carried out for the Simultaneous and Offline SLT shared tasks. At the time of
writing, only the former evaluation has been completed which is reported here. The human evaluation of
the Offline Task will be recounted during the conference and possibly in an update version of this report.

A.1 Simultaneous Speech Translation Task

Simultaneous Speech Translation Task ran two different types of manual evaluation: “continuous rating”
for English-to-German and MQM for English-to-Japanese.

A.1.1 Human Evaluation for the English-to-German Simultaneous Task
We used a variant of “continuous rating” as presented by Javorský et al. (2022). The evaluation process
and the guidelines presented to annotators were the same as during the last year evaluation (consult
Section A.1.1 in Anastasopoulos et al. (2022a) for more details).

Time Shift for Better Simultaneity Last year, we reduced the delay by shifting the subtitles ahead in
time to ease the memory overload of the evaluators. Since this year only a low latency regime was used,
we left the subtitles intact for the system outputs. For interpreting, we used the same shift as last year.

Two Test Sets: Common and Non-Native The main part of the test set for the English-to-German
task was the Common test set. The Common test set is a new instance (different from previous years)
consisting of selected TED talks and it serves both in the Offline Speech Translation task as well as in
the Simultaneous Translation task. Following the last year, we also added the Non-Native part that was
created and is in use since IWSLT 2020 Non-Native Translation Task. The Non-Native part is described
in Ansari et al. (2020) Appendix A.6.

We show the size of the corpus, as well as the amount of annotation collected in Table 21.

Processing of Collected Rankings Once the results are collected, they are processed as follows. We
first inspect the timestamps on the ratings, and remove any ratings that have timestamps more than 20
seconds greater than the length of the audio. Because of the natural delay (even with the time-shift) and
because the collection process is subject to network and computational constraints, there can be ratings
that are timestamped greater than the audio length. If the difference is however too high, we judge it to
be an annotation error. We also remove any annotated audio where there is fewer than one rating per 20
seconds, since the annotators were instructed to annotate every 5-10 seconds.

Obtaining Final Scores To calculate a score for each system, we average the ratings across each
annotated audio,47 then average across the multiple annotations for each audio to obtain a system score
for that audio. Finally we average across all audios to obtain a score for each system. This type of
averaging renders all input speeches equally important and it is not affected by the speech length.

We show the results in Table 22. We observe that all systems perform better on the Common part
of the test set than on the Non-Native one. The difference in scores between the best and the worst
system is not so significant: It makes only ∼0.3. When examining the evaluation of Non-Native audios,
we can see that best systems on the Common part are worst on Non-Native. Given that the quality of
the recordings in the non-native part is low on average and the speakers are not native, we hypothesize
that systems with worse performance on Common part are more robust. Such systems then achieve an
increased performance given noisy inputs.

A.1.2 Human Evaluation for the English-to-Japanese Simultaneous Task
For the English-to-Japanese Simultaneous Translation Task, we conducted a human evaluation using a
variant of Multidimensional Quality Metrics (MQM; Lommel et al., 2014). MQM has been used in recent
MT evaluation studies (Freitag et al., 2021a) and WMT Metrics shared task (Freitag et al., 2021b). For
the evaluation of Japanese translations, we used JTF Translation Quality Evaluation Guidelines (JTF,

47Note that the ratings could be also weighted with respect to the duration of time segments between the ratings but
Macháček et al. (2023) documented on 2022 data that the difference is negligible.
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2018), distributed by Japan Translation Federation (JTF). The guidelines are based on MQM but include
some modifications in consideration of the property of the Japanese language.

We hired a Japanese-native professional interpreter as the evaluator, while the evaluator was a trans-
lator in the last year (Anastasopoulos et al., 2022a). The evaluator checked translation hypotheses along
with their source speech transcripts and chose the corresponding error category and severity for each
translation hypothesis using a spreadsheet. Here, we asked the evaluator to focus only on Accuracy and
Fluency errors, because other types of errors in Terminology, Style, and Locale convention would not
be so serious in the evaluation of simultaneous translation. Finally, we calculated the cumulative error
score for each system based on the error weighting presented by Freitag et al. (2021a), where Critical
and Major errors are not distinguished.

48



Appendix B. Automatic Evaluation Results and Details

49



B.1 Offline SLT

⋅ Systems are ordered according to the BLEU score computed on the concatenation of the three test sets
(Joint BLEU, third column).⋅ The “D” column indicates the data condition in which each submitted run was trained, namely: Con-
strained (C), constrained+LLM (C+), Unconstrained (U).⋅ For the BLEU scores computed on the TED test set, “Orig” and “New” respectively indicate the results
computed on the original (subtitle-like) TED translations and the unconstrained (exact, more literal)
translations as references.⋅ Direct systems are indicated by gray background.⋅ “*” indicates a late submission.⋅ “+” indicates an unofficial submission.

System D Joint TED ACL EPTV
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Ref New Orig Both New Orig
HW-TSC C 32.4 0.8213 34.8 30.2 42.1 0.8327 0.8208 38.1 0.8090 16.7 0.3829
HW-TSC U 32.3 0.8209 34.9 30.9 42.4 0.8331 0.8223 36.9 0.8073 16.9 0.3819
HW-TSC C+ 31.9 0.8210 34.4 30.6 41.9 0.8332 0.8230 37.2 0.8063 16.8 0.3823
NeuroDub+ U 30.4 0.8089 31.8 25.8 38.5 0.8205 0.8082 41.1 0.7956 15.4 0.3784
NEMO C 28.5 0.7759 30.5 26.4 37.7 0.7977 0.7871 31.9 0.7171 15.6 0.3680
UPC C+ 27.9 0.7892 29.8 25.5 36.6 0.8098 0.7985 32.1 0.7473 15.6 0.3746
I2R C+ 22.4 0.7070 24.0 20.3 29.5 0.7248 0.7172 23.9 0.6841 13.3 0.3506
BIGAI∗ C+ 20.3 0.6945 22.3 19.3 27.4 0.7128 0.7055 19.6 0.6295 11.5 0.3555

Table 14: Official results of the automatic evaluation for the Offline Speech Translation Task, English to German.

System D Joint TED ACL
BLEU COMET BLEU COMET BLEU COMET

Ref New Orig Both New Orig
HW-TSC U 21.0 0.8177 18.8 22.6 29.1 0.8111 0.8029 30.7 0.8473
HW-TSC C 20.9 0.8181 18.7 22.7 29.0 0.8123 0.8042 30.1 0.8443
HW-TSC C+ 20.9 0.8177 18.7 22.6 28.9 0.8114 0.8034 30.7 0.8463
NeMo C 18.1 0.7741 16.5 20.4 25.6 0.7734 0.7666 24.9 0.7769
BIGAI∗ C+ 10.7 0.7122 10.7 13.2 16.8 0.7201 0.7228 10.4 0.6769

Table 15: Official results of the automatic evaluation for the Offline Speech Translation Task, English to Japanese.

System D Joint TED ACL
BLEU COMET BLEU COMET BLEU COMET

Ref New Orig Both New Orig
USTC U 54.7 0.8627 53.9 36.8 62.1 0.8648 0.7992 58.0 0.8535
USTC U 52.8 0.8357 52.9 35.5 60.6 0.8439 0.7798 52.5 0.7999
HW-TSC C 51.1 0.8499 50.6 34.5 57.8 0.8521 0.7876 53.0 0.8404
HW-TSC C+ 51.1 0.8494 50.6 34.5 57.9 0.8514 0.7870 53.0 0.8406
HW-TSC U 51.0 0.8497 50.6 34.5 57.8 0.8519 0.7874 52.8 0.8401
NIUTRANS C 49.4 0.8255 50.0 34.3 57.9 0.8376 0.7740 47.1 0.7733
XIAOMI C+ 47.1 0.8279 47.2 32.4 54.1 0.8375 0.7773 46.5 0.7866
NeMo C 45.6 0.8032 46.5 31.8 53.8 0.8177 0.7575 41.8 0.7404
MINETRANS U 45.0 0.7920 46.3 32.0 53.2 0.8134 0.7546 39.9 0.6997
BIGAI∗ C+ 31.9 0.7260 33.0 23.3 38.6 0.7428 0.7014 27.4 0.6534
MINETRANS C 28.7 0.6371 27.7 18.6 32.2 0.6375 0.5976 31.8 0.6354

Table 16: Official results of the automatic evaluation for the Offline Speech Translation Task, English to Chinese.
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B.2 Simultaneous SLT

Team BLEU LAAL AL AP DAL ATD

Common

HW-TSC 29.63 2.26 (3.93) 2.11 (3.86) 0.83 (1.59) 3.17 (8.99) 2.28 (6.77)
CUNI-KIT 28.51 2.35 (3.63) 2.24 (3.56) 0.79 (1.11) 2.88 (4.50) 2.26 (2.96)
FBK 28.38 2.25 (2.99) 2.09 (2.88) 0.84 (1.03) 2.70 (3.65) 2.15 (2.48)
NAIST 26.05 2.36 (3.30) 2.22 (3.21) 0.82 (1.07) 3.05 (4.45) 2.25 (3.06)
CMU 25.78 1.99 (3.39) 1.92 (3.33) 0.82 (1.31) 3.78 (6.56) 2.46 (4.63)

Non-Native

NAIST 22.96 2.43 (3.52) 1.95 (3.22) 0.845 (1.02) 3.37 (4.71) 3.13 (3.92)
CMU 22.84 2.47 (3.74) 2.36 (3.63) 0.798 (1.16) 4.54 (6.77) 3.77 (5.47)
CUNI-KIT 19.94 3.42 (5.00) 3.24 (4.87) 0.744 (1.04) 4.14 (5.87) 3.82 (4.84)
HW-TSC 17.91 3.57 (6.67) 3.44 (6.61) 0.705 (1.65) 4.39 (12.91) 4.04 (11.13)
FBK 15.19 4.10 (5.34) 3.94 (5.22) 0.89 (1.12) 4.53 (5.85) 3.76 (4.65)

Table 17: Simultaneous Speech-to-Text Translation, English to German. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team BLEU LAAL AL AP DAL ATD

HW-TSC 44.95 2.13 (3.80) 2.06 (3.76) 0.78 (1.48) 3.21 (8.66) 0.99 (5.31)
CUNI-KIT 44.16 2.13 (3.30) 2.06 (3.25) 0.77 (1.08) 2.78 (4.38) 0.89 (1.54)
XIAOMI 43.69 2.30 (3.03) 2.23 (2.98) 0.80 (1.08) 2.93 (4.08) 0.90 (1.47)
NAIST 36.80 2.00 (2.80) 1.88 (2.74) 0.76 (1.03) 2.66 (4.22) 0.77 (1.49)

Table 18: Simultaneous Speech-to-Text Translation, English to Chinese. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team BLEU LAAL AL AP DAL ATD

HW-TSC 16.63 2.60 (4.38) 2.56 (4.36) 0.71 (1.31) 3.62 (9.07) 0.83 (5.12)
CUNI-KIT 14.92 2.20 (3.55) 2.16 (3.53) 0.68 (1.06) 2.74 (5.17) 0.53 (1.50)
NAIST 14.66 2.52 (3.43) 2.45 (3.39) 0.75 (1.03) 3.24 (5.16) 0.60 (1.57)

Table 19: Simultaneous Speech-to-Text Translation, English to Japanese. Except for AP, the latency is measured
in seconds. Numbers in brackets are computation aware latency.
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Target Language Team ASR BLEU BLASER Start Offset End Offset ATD

German
CMU 22.62 0.122 2.37 5.21 4.22

HW-TSC 19.74 -0.442 2.04 5.09 3.75

Japanese
HW-TSC 15.53 -1.70 2.37 3.48 3.56
NAIST 10.19 -1.68 2.58 4.32 3.49

Chinese HW-TSC 31.68 -0.696 1.92 3.12 3.23

Table 20: Simultaneous Speech-to-Speech from English Speech. The latency is measured in seconds. The BLEU
scores are computed based on transcript from the default Whisper (Radford et al., 2022) ASR model for each
language direction.

Common Non-native

Number of audios 42 43
Mean audio length (seconds) 400.3 208.8
Mean ratings per audio 65.6 36.5

Table 21: Human evaluation for the English-to-German task on two test sets: the Common one (used also in
automatic scoring) and the Non-native one. We show the size of the test sets, and the number of ratings collected.
On average, our annotators provide a quality judgement ever 6 seconds.

Common Non-native

CUNI-KIT 3.103.04→3.16 1.631.54→1.72

FBK 3.083.02→3.14 1.261.20→1.30

HWTSC 2.912.85→2.98 2.041.92→2.15

NAIST 2.842.78→2.91 2.272.18→2.34

CMU 2.792.72→2.87 2.382.30→2.46

Interpreter – 2.792.71→2.87

Table 22: Human evaluation results for English-to-German Simultaneous task on the 1–5 (worst-to-best) scale,
with 95% confidence intervals. We calculate a mean score for each annotated audio file, then a mean across
annotators (for each audio), then a mean across all audio files for each system. To compute confidence intervals,
we take the scores for annotated audios, perform 10,000x bootstrap resampling, compute the mean score for each
resample, then compute [2.5,97.5] percentiles across the resampled means.

Team
BLEU (on two talks)

Error score
Number of errors

TED ref. Additional ref. Critical Major Minor
HW-TSC 26.59 18.71 383 1 56 98
CUNI-KIT 24.21 17.95 384 0 56 104
NAIST 25.10 16.75 398 0 61 93
Baseline 7.69 6.27 1,074 3 205 34

Table 23: Human evaluation results on two talks (107 lines) in the English-to-Japanese Simultaneous speech-to-
text translation task. Error weights are 5 for Critical and Major errors and 1 for Minor errors.
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B.3 Automatic Subtitling

team con- system domain Subtitle quality Translation quality Subtitle compliance
dition SubER Sigma Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry ALL 70.64 73.35 15.38 38.36 .4376 87.74 100.00 100.00
ted 59.72 74.33 23.74 49.14 .5683 92.58 100.00 100.00

eptv 73.98 67.09 15.81 45.21 .5229 86.65 100.00 100.00
pltn 77.63 72.79 10.47 33.18 .4069 88.98 100.00 100.00
itv 69.83 74.48 14.43 35.27 .4028 86.01 100.00 100.00

MATESUB U prmry ALL 75.41 65.22 14.81 39.50 .4591 84.97 99.25 100.00
ted 67.70 62.01 20.37 50.05 .5500 90.55 98.61 100.00

eptv 87.04 57.73 12.08 43.59 .4705 88.59 99.20 100.00
pltn 79.72 68.27 10.06 34.46 .4264 89.17 99.29 100.00
itv 73.11 67.04 14.92 37.13 .4501 80.21 99.47 100.00

APPTEK C prmry ALL 77.05 72.50 12.74 34.31 .3420 93.35 100.00 100.00
ted 59.61 74.29 26.78 50.93 .5539 97.33 100.00 100.00

eptv 76.25 68.49 14.43 42.37 .4604 95.76 100.00 100.00
pltn 80.72 69.56 9.40 31.20 .3419 93.45 100.00 100.00
itv 80.87 72.62 9.08 27.74 .2612 91.14 100.00 100.00

FBK C prmry ALL 79.70 75.73 11.22 33.32 .3172 69.98 83.50 99.98
ted 63.85 76.79 21.48 50.31 .5511 71.39 79.83 100.00

eptv 79.76 69.04 13.20 42.69 .4722 74.95 82.08 99.91
pltn 83.71 74.02 7.73 30.17 .3137 70.02 84.20 99.96
itv 82.67 77.17 8.05 26.10 .2255 67.75 85.12 100.00

APPTEK C cntrstv ALL 83.53 70.39 9.73 30.51 .2914 89.60 100.00 100.00
ted 68.47 72.97 19.07 46.17 .4921 90.53 100.00 100.00

eptv 81.69 66.36 11.46 39.25 .4150 94.57 100.00 100.00
pltn 86.37 69.79 7.08 27.89 .2780 91.50 100.00 100.00
itv 87.25 68.29 6.70 23.85 .2204 86.85 100.00 100.00

Table 24: Automatic evaluation results for the Subtitling Task: en→de. C and U stand for constrained and uncon-
strained training condition, respectively; prmry and cntrstv for primary and contrastive systems.

team con- system domain Subtitle quality Translation quality Subtitle compliance
dition SubER Sigma Bleu ChrF Bleurt CPS CPL LPB

MATESUB U prmry ALL 68.11 68.37 22.34 47.38 .5059 86.07 99.52 100.00
ted 45.94 66.85 40.36 65.72 .7047 92.62 99.48 100.00

eptv 74.47 59.59 21.06 54.11 .5728 90.15 99.44 100.00
pltn 74.87 70.99 15.96 41.86 .4666 88.27 99.60 100.00
itv 71.25 71.06 18.50 41.07 .4592 81.93 99.51 100.00

APPTEK C prmry ALL 71.68 74.99 18.67 40.21 .3637 95.42 100.00 100.00
ted 45.81 74.50 39.37 62.11 .6562 97.20 100.00 100.00

eptv 66.60 73.31 23.57 51.94 .5379 96.27 100.00 100.00
pltn 76.00 74.63 14.03 36.95 .3664 95.18 100.00 100.00
itv 80.20 75.90 11.37 29.75 .2487 94.67 100.00 100.00

FBK C prmry ALL 73.31 74.44 17.79 39.54 .3419 77.00 91.34 99.99
ted 45.68 74.31 40.21 65.09 .6737 78.95 88.14 100.00

eptv 68.47 69.63 23.92 52.19 .5490 79.81 88.05 100.00
pltn 78.45 75.78 12.84 35.89 .3513 77.79 92.67 99.96
itv 82.00 76.16 9.33 27.14 .2063 74.67 92.94 100.00

Table 25: Automatic evaluation results for the Subtitling Task: en→es. Legenda in Table 24.
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B.4 Multilingual Speech Translation
Below we show the Multilingual task (§5) results and overall rankings, ordered according to the

average chrF across all 10 target languages after resegmentation to the reference translations.

We also compare to the Offline submissions on the ACL 60-60 evaluation set
on the 3 language pairs used for the Offline task.

Finally, we show the scores for each metric (chrF, COMET, BLEU) per language pair for all systems.

System Constrained? chrF COMET BLEU English WER

1 JHUunconstrained 61.1 82.3 39.3 16.9
2 KITprimary ✓ + LLM 57.5 77.0 34.9 23.7
3 KITcontrastive1 ✓ + LLM 57.5 76.8 34.8 —
4 KITcontrastive2 ✓ + LLM 56.4 76.5 34.0 —
5 KITcontrastive4 ✓ + LLM 56.2 76.4 33.7 —
6 KITcontrastive3 ✓ + LLM 55.9 76.3 33.5 —
7 KITcontrastive5 ✓ + LLM 54.5 76.7 31.7 —
8 KITcontrastive7 ✓ + LLM 53.9 76.6 31.1 —
9 KITcontrastive6 ✓ + LLM 53.7 75.9 30.9 —

10 JHUconstrained ✓ + LLM 48.1 65.3 24.5 34.1
11 BITprimary ✓ 31.0 51.7 11.7 —

Table 26: Overall task ranking with metrics averaged across all ten language pairs on the evaluation set.
We show the official task metric (chrF) as well as the unofficial metrics (COMET, BLEU, and English WER).
All metrics are calculated after resegmentation to reference transcripts and translations. Direct / end-to-end systems
are highlighted in gray.

de ja zh

System Task Constrained? COMET BLEU COMET BLEU COMET BLEU

USTC Off. 85.4 (1) 58.0 (1)
HW-TSC Off. ✓ 80.9 (2) 38.1 (3) 84.4 (3) 30.1 (7) 84.0 (2) 53.0 (2)
JHU Mult. 81.3 (1) 41.2 (1) 84.7 (1) 33.9 (4) 82.0 (3) 46.5 (11)
HW-TSC Off. 80.7 (3) 36.9 (6) 84.7 (1) 30.7 (6) 84.0 (2) 52.8 (3)
HW-TSC Off. ✓ + LLM 80.6 (4) 37.2 (5) 84.6 (2) 30.7 (6) 84.0 (2) 53.0 (2)
NeuroDub Off. 79.6 (5) 41.1 (2)
USTC Off. 80.0 (4) 52.5 (4)
KITpr Mult. ✓ + LLM 74.9 (6) 37.5 (4) 82.0 (4) 35.7 (1) 79.3 (5) 49.4 (6)
KITc1 Mult. ✓ + LLM 74.6 (8) 36.5 (7) 82.0 (4) 35.2 (2) 79.3 (5) 49.7 (5)
KITc2 Mult. ✓ + LLM 74.3 (9) 36.5 (7) 81.6 (6) 34.0 (3) 78.6 (10) 49.4 (6)
KITc3 Mult. ✓ + LLM 74.7 (7) 36.1 (9) 81.4 (7) 33.3 (5) 78.4 (11) 48.6 (7)
KITc4 Mult. ✓ + LLM 74.2 (10) 36.4 (8) 81.7 (5) 33.9 (4) 78.4 (11) 48.2 (8)
KITc5 Mult. ✓ + LLM 74.9 (6) 33.8 (10) 80.3 (8) 27.3 (8) 79.1 (6) 46.7 (10)
UPC Off. ✓ + LLM 74.7 (7) 32.1 (12)
KITc6 Mult. ✓ + LLM 73.9 (11) 32.9 (11) 80.0 (9) 26.6 (9) 78.9 (7) 45.7 (13)
KITc7 Mult. ✓ + LLM 73.9 (11) 32.9 (11) 80.3 (8) 25.6 (10) 78.8 (8) 46.0 (12)
Xiaomi Off. ✓ + LLM 78.7 (9) 46.5 (11)
NiuTrans Off. ✓ 77.3 (12) 47.1 (9)
NeMo Off. ✓ 71.7 (12) 31.9 (13) 77.7 (10) 24.9 (11) 74.0 (13) 41.8 (14)
I2R Off. ✓ + LLM 68.4 (13) 23.9 (14)
JHU Mult. ✓ + LLM 59.0 (15) 23.7 (15) 69.3 (11) 18.9 (12) 67.9 (15) 37.4 (16)
MINE-Trans Off. 70.0 (14) 39.9 (15)
BIGAI* Off. ✓ + LLM 63.0 (14) 19.6 (16) 67.7 (12) 10.4 (13) 65.3 (16) 27.4 (18)
MINE-Trans Off. ✓ 63.5 (17) 31.8 (17)
BIT Mult. ✓ 47.2 (16) 11.1 (17) 56.2 (13) 8.0 (14) 55.7 (18) 19.8 (19)

Table 27: Submissions from all tracks on the ACL 60-60 evaluation sets on the three language pairs shared across
tracks (En → De, Ja, Zh), ordered by average metric ranking. Direct / end-to-end systems are highlighted in gray.
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Submission ar de fa fr ja nl pt ru tr zh Avg.

JHUunconstrained 62.4 67.6 57.8 73.4 42.0 71.6 75.0 56.8 62.5 42.2 61.1
KITprimary 56.9 64.8 55.4 67.8 42.3 67.6 69.6 51.2 57.3 42.5 57.5
KITcontrastive1 56.9 64.6 55.6 67.8 42.0 67.6 69.6 51.2 56.7 42.7 57.5
KITcontrastive2 56.1 63.6 52.9 67.3 40.8 66.5 69.2 50.6 55.6 41.3 56.4
KITcontrastive4 56.2 63.3 53.0 67.2 40.7 66.5 68.8 50.4 55.1 40.3 56.2
KITcontrastive3 55.5 63.7 52.1 66.9 40.3 66.0 68.9 50.0 55.2 40.6 55.9
KITcontrastive5 55.3 61.3 53.8 65.2 35.9 63.7 67.3 48.6 54.9 39.2 54.5
KITcontrastive7 54.7 60.3 54.0 64.4 34.5 63.4 67.2 47.8 54.2 38.2 53.9
KITcontrastive6 54.6 60.3 52.7 64.3 35.5 62.7 66.4 48.2 53.8 38.4 53.7
JHUconstrained 45.2 53.4 44.5 62.4 26.8 62.1 62.2 46.8 46.3 30.8 48.1
BIT 28.9 36.8 28.8 45.2 14.5 41.7 43.0 28.4 25.9 17.2 31.0

Table 28: chrF with resegmentation for each target language on the evaluation set, sorted by the system average.
Direct / end-to-end systems are highlighted in gray.

Submission ar de fa fr ja nl pt ru tr zh Avg.

JHUunconstrained 82.7 81.3 80.6 81.4 84.7 84.1 84.9 78.9 82.5 82.0 82.3
KITprimary 78.0 74.9 75.8 74.4 82.0 77.7 78.4 72.5 76.6 79.3 77.0
KITconstrastive1 77.7 74.6 75.7 74.5 82.0 77.6 78.4 72.2 76.4 79.3 76.8
KITconstrastive5 78.5 74.9 75.9 74.6 80.3 76.8 78.5 71.6 76.9 79.1 76.7
KITconstrastive7 78.2 73.9 76.3 74.2 80.3 76.7 80.3 71.3 76.2 78.8 76.6
KITconstrastive2 77.3 74.3 74.9 74.3 81.6 77.3 78.4 72.1 75.8 78.6 76.5
KITconstrastive4 77.2 74.2 75.0 74.3 81.7 77.3 78.2 72.0 75.5 78.4 76.4
KITconstrastive3 76.9 74.7 74.6 74.2 81.4 76.9 78.2 71.8 75.7 78.4 76.3
KITconstrastive6 77.8 73.9 75.2 73.3 80.0 75.4 77.7 70.8 75.7 78.9 75.9
JHUconstrained 67.9 59.0 66.1 63.2 69.3 66.2 67.8 62.0 64.0 67.9 65.3
BIT 52.8 47.2 48.7 52.2 56.2 53.8 54.8 47.7 48.0 55.7 51.7

Table 29: COMET with resegmentation for each target language on the evaluation set, sorted by the system average.
Direct / end-to-end systems are highlighted in gray.

ar de fa fr ja nl pt ru tr zh Avg.

JHUunconstrained 33.4 41.2 35.0 50.0 33.9 44.8 51.7 27.9 28.1 46.5 39.3
KITprimary 25.9 37.5 29.8 41.3 35.7 40.4 44.3 22.4 21.8 49.4 34.9
KITconstrastive1 25.6 37.5 30.1 41.1 35.2 40.6 44.5 22.6 21.3 49.7 34.8
KITconstrastive2 24.7 36.5 28.0 42.4 34.0 38.8 43.8 21.9 20.6 49.4 34.0
KITconstrastive4 24.4 36.4 28.4 42.1 33.9 38.9 43.0 21.6 20.3 48.2 33.7
KITconstrastive3 24.0 36.1 27.6 41.9 33.3 38.2 43.6 21.5 20.1 48.6 33.5
KITconstrastive5 23.7 33.8 28.7 39.6 27.3 35.9 40.7 19.6 20.6 46.7 31.7
KITconstrastive7 23.4 32.9 28.6 38.8 25.6 36.0 40.9 19.1 20.1 46.0 31.1
KITconstrastive6 23.0 32.9 28.3 38.9 26.6 35.0 39.7 19.7 19.1 45.7 30.9
JHUconstrained 15.0 23.7 21.9 33.1 18.9 31.3 33.2 17.2 12.8 37.4 24.5
BIT 5.7 11.1 7.4 19.7 8.0 16.3 18.6 6.3 4.1 19.8 11.7

Table 30: BLEU with resegmentation for each target language on the evaluation set, sorted by the system average.
BLEU scores in grey are calculated using language-specific tokenization (ja) or at the character-level (zh); see §5.2
for specific tokenization details. Direct / end-to-end systems are highlighted in gray.
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B.5 Speech-to-Speech Translation

System Test-primary Test-expanded Overall
Ref BLEU chrF COMET SEScore2 BLEU chrF COMET SEScore2 BLEU chrF COMET SEScore2

Cascade Systems
XIAOMI 47.9 41.0 79.91 -12.27 34.5 29.2 79.07 -20.15 38.4 32.3 79.35 -17.48
NPU-MSXF 47.4 40.7 79.90 -12.21 34.0 28.5 78.68 -20.23 37.7 31.8 79.09 -17.52
HW-TSC 43.2 36.9 76.96 -14.23 32.4 27.7 76.43 -21.61 35.3 30.1 76.61 -19.12
KU 36.7 31.3 69.09 -17.07 25.0 21.7 67.94 -25.68 28.2 24.3 68.33 -22.77
MINETRANS Cascade 33.9 28.6 67.49 -17.68 24.7 21.5 64.71 -26.34 27.2 23.4 65.65 -23.41
E2E Systems
MINETRANS E2E (contrastive2) 45.0 38.3 74.83 -13.62 31.1 26.4 73.28 -22.03 34.9 29.6 73.81 -19.18
MINETRANS E2E (contrastive1) 44.5 38.0 74.14 -13.92 31.0 26.4 72.90 -22.20 34.8 29.5 73.32 -19.40
MINETRANS E2E (primary) 44.4 38.0 74.40 -13.86 31.1 26.4 73.00 -22.12 34.7 29.5 73.47 -19.32

Table 31: Official results of the automatic evaluation for the English to Chinese Speech-to-Speech Translation
Task.

System Translation Quality Score Speech Quality Score Overall
Cascade Systems
NPU-MSXF 3.70 3.98 3.84
XIAOMI 3.72 3.67 3.70
HW-TSC 3.58 3.75 3.67
MINETRANS Cascade 3.16 3.26 3.21
KU 2.92 3.01 2.97
E2E Systems
MINETRANS E2E (contrastive2) 3.58 3.50 3.54

Table 32: Official results of the human evaluation for the English to Chinese Speech-to-Speech Translation Task.
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B.6 Dialectal SLT

Tunisian Arabic→English (Unconstrained Condition)
test2 test3

Team System BLEU bp pr1 chrF TER BLEU bp pr1 chrF TER
USTC primary 23.6 1.0 52.7 46.7 64.6 21.1 1.0 49.0 43.8 69.0
USTC contrastive1 22.8 1.0 51.7 45.7 65.7 20.2 1.0 47.7 42.9 70.7
JHU contrastive5 21.6 .99 50.7 45.0 66.9 19.1 1.0 46.6 41.9 72.3
JHU primary 21.2 1.0 50.0 44.8 67.7 18.7 1.0 46.0 41.9 73.1
JHU contrastive4 20.7 1.0 49.3 44.2 68.4 18.3 1.0 45.5 41.3 73.7
JHU contrastive3 19.9 .98 49.0 43.0 68.7 18.2 1.0 45.5 40.5 73.1
JHU contrastive1 19.4 .99 48.2 42.4 69.8 17.1 1.0 44.3 39.7 74.9
JHU contrastive2 18.7 .97 48.4 41.8 69.4 17.1 1.0 44.7 39.2 74.1
ON-TRAC post-eval 18.2 1.0 45.9 42.7 73.8 16.3 1.0 41.6 40.3 79.6
GMU contrastive1 15.0 1.0 41.4 38.4 78.2 13.4 1.0 37.2 36.1 83.9
GMU contrastive2 14.1 1.0 40.1 37.5 79.8 12.9 1.0 36.6 35.4 84.7
GMU primary 16.6 1.0 44.5 39.7 74.1 14.6 1.0 40.4 37.6 79.6
ON-TRAC primary 7.0 1.0 27.3 36.4 86.9 6.2 1.0 24.2 34.3 92.0
2022 best:CMU 20.8 .93 53.1 44.3 64.5 - - - - -

Table 33: Automatic evaluation results for the Dialect Speech Translation task, Unconstrained Condition. Systems
are ordered in terms of the official metric BLEU on test3. We also report brevity penalty (bp) and unigram precision
(pr1) of BLEU, chrF, and TER.

Tunisian Arabic→English (Constrained Condition)
test2 test3

Team System BLEU bp pr1 chrF TER BLEU bp pr1 chrF TER
USTC primary 20.5 .99 49.9 43.6 67.6 18.1 1.0 45.7 40.8 73.1
JHU primary 19.1 .94 50.5 42.4 67.2 17.6 .96 46.6 39.9 71.9
GMU primary 5.0 1.0 20.3 21.9 102.2 4.5 1.0 18.4 20.7 105.5
2022 best:CMU 20.4 .94 52.2 43.8 65.4 - - - - -
baseline 11.1 .88 40.0 31.9 77.8 10.4 .90 36.6 29.9 81.4

Table 34: Automatic evaluation results for the Dialect Speech Translation task, Constrained Condition.

Tunisian Arabic ASR Automatic Evaluation Results

ASR System test2 WER↓ test2 CER↓ test3 WER↓ test3 CER↓
Orig Norm Orig Norm Orig Norm Orig Norm

JHU / constrained / primary 70.3 43.7 30.7 22.7 74.0 44.9 33.1 24.8
JHU / unconstrained / primary 69.3 40.6 29.0 20.7 72.9 41.6 31.5 22.9
USTC / constrained / primary 49.5 40.8 24.2 20.9 52.3 43.2 27.1 23.8
USTC / unconstrained / primary 47.4 39.3 23.1 20.0 49.2 40.5 25.2 22.1
2022best:ON-TRAC/unconstrained 65.7 41.5 28.1 21.1 - - - -

Table 35: Word Error Rate (WER) and Character Error Rate (CER) of the ASR component of submitted cascaded
systems on test2 and test3. The original version (Orig) matches the minimal text pre-processing provided by the
organizer’s data preparation scripts, and results in relatively high WER. As diagnosis, we ran additional Arabic-
specific normalization (Norm) for e.g. Alif, Ya, Ta-Marbuta on the hypotheses and transcripts before computing
WER/CER. We are grateful to Ahmed Ali for assistance on this.
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B.7 Low-Resource SLT

Irish→English (Constrained Condition)
Team System BLEU chrF2
GMU primary 15.1 26.5

Table 36: Automatic evaluation results for the Irish to English task, Constrained Condition.

Irish→English (Unconstrained Condition)
Team System BLEU chrF2
GMU primary 68.5 74.5
GMU contrastive1 77.4 81.6
GMU contrastive2 15.1 26.5

Table 37: Automatic evaluation results for the Irish to English task, Unconstrained Condition.

Marathi→Hindi (Constrained Condition)
Team System BLEU chrF2
GMU primary 3.3 16.8
SRI-B primary 31.2 54.8
SRI-B contrastive 25.7 49.4

Table 38: Automatic evaluation results for the Marathi to Hindi task, Constrained Condition.

Marathi→Hindi (Unconstrained Condition)
Team System BLEU chrF2

Alexa AI primary 28.6 49.4
Alexa AI contrastive1 25.6 46.3
Alexa AI contrastive2 23 41.9
Alexa AI contrastive3 28.4 49.1
Alexa AI contrastive4 25.3 46.3
Alexa AI contrastive5 19.6 39.9

BUT primary 39.6 63.3
BUT contrastive 28.6 54.4
GMU primary 7.7 23.8
GMU contrastive1 8.6 24.7
GMU contrastive2 5.9 20.3
SRI-B primary 32.4 55.5
SRI-B contrastive 29.8 53.2

Table 39: Automatic evaluation results for the Marathi to Hindi task, Unconstrained Condition.
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Pashto→French (Unconstrained Condition)
BLEU

Team System valid test
ON-TRAC primary 24.82 24.87
ON-TRAC contrastive1 23.38 23.87
GMU primary 11.99 16.87
GMU contrastive1 11.27 15.24
ON-TRAC contrastive2 12.26 15.18
ON-TRAC contrastive3 12.16 15.07
GMU contrastive2 9.72 13.32

Table 40: Automatic evaluation results for the Pashto to French task, Unconstrained Condition.

Pashto→French (Constrained Condition)
BLEU

Team System valid test
ON-TRAC primary 14.52 15.56
ON-TRAC contrastive1 11.06 15.29
ON-TRAC contrastive2 11.11 15.06
ON-TRAC contrastive3 10.5 9.2
GMU primary 2.66 5.92

Table 41: Automatic evaluation results for the Pashto to French task, Constrained Condition.

Maltese→English (Unconstrained Condition)
Team System BLEU
UM-DFKI primary 0.6
UM-DFKI contrastive1 0.7
UM-DFKI contrastive2 0.4
UM-DFKI contrastive3 0.3
UM-DFKI contrastive4 0.4

Table 42: Automatic evaluation results for the Maltese to English task, Unconstrained Condition.

Tamasheq→French (Constrained Condition)
Team System BLEU chrF2 TER
GMU primary 0.48 19.57 106.23

Table 43: Automatic evaluation results for the Tamasheq to French task, Constrained Condition.
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Tamasheq→French (Unconstrained Condition)
Team System BLEU chrF2 TER

NAVER primary 23.59 49.84 64.00
NAVER contrastive1 21.31 48.15 66.41
NAVER contrastive2 18.73 46.11 70.32

ON-TRAC primary 15.88 43.88 73.85
ON-TRAC contrastive1 16.35 44.22 74.26
ON-TRAC contrastive2 15.46 43.59 75.30
ON-TRAC contrastive3 15.49 43.74 75.07
ON-TRAC contrastive4 16.25 44.11 74.26
ON-TRAC contrastive5 15.54 43.91 75.08
Alexa AI primary 9.30 32.29 81.25
Alexa AI contrastive1 8.87 32.04 81.03
Alexa AI contrastive2 9.50 33.67 80.85
Alexa AI contrastive3 9.28 32.86 82.33

GMU primary 8.03 33.03 87.81
GMU contrastive1 1.30 23.63 96.72
GMU contrastive2 2.10 24.33 94.58

Table 44: Automatic evaluation results for the Tamasheq to French task, Unconstrained Condition.

Quechua→Spanish (Constrained Condition)
Team System BLEU chrF2
GMU primary 1.46 21.46

QUESPA primary 1.25 25.35
QUESPA contrastive1 0.13 10.53
QUESPA contrastive2 0.11 10.63

Table 45: Automatic evaluation results for the Quechua to Spanish task, Constrained Condition. ChrF2 scores
were only taken into account for those systems that scored less than 5 points BLEU.

Quechua→Spanish (Unconstrained Condition)
Team System BLEU
GMU primary 1.78
GMU contrastive1 1.86
GMU contrastive2 1.63

NAVER primary 15.70
NAVER contrastive1 13.17
NAVER contrastive2 15.55

QUESPA primary 15.36
QUESPA contrastive1 15.27
QUESPA contrastive2 10.75

Table 46: Automatic evaluation results for the Quechua to Spanish task, Unconstrained Condition. ChrF2 scores
were only taken into account for those systems that scored less than 5 points BLEU.
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B.8 Formality Control for SLT

Model
EN-KO EN-VI

BLEU COMET mACC cACC BLEU COMET mACC cACC

C
O

N
ST

R
A

IN
E

D

COCOA (baseline)
F 11.1 0.5044 28.5 55 43.2 0.6189 99 99
IF 11.1 0.5125 80.4 58 41.5 0.6021 98 99

HW-TSC
F 25.6 0.7512 89 100 51.3 0.7522 100 100
IF 26.1 0.7367 100 100 49.8 0.7209 100 100

U
N

C
O

N
ST

R
A

IN
E

D

UMD (baseline)
F 4.9 0.2110 78 99 26.7 0.3629 96 95
IF 4.9 0.1697 98 99 25.3 0.3452 97 98

HW-TSC
F 25.4 0.7347 87 100 48.2 0.7214 100 100
IF 26.2 0.7218 100 100 48.3 0.7102 100 100

KUXUPSTAGE
F 26.6 0.7269 87 100 47.0 0.6685 99 100
IF 27.1 0.7145 98 95 45.6 0.6373 99 100

UCSC
F 23.3 0.5210 86 98 44.6 0.6771 99 98
IF 22.8 0.4724 98 96 43.5 0.6281 99 100

Table 47: Results for the Formality Track (Supervised Setting). Most systems perform well in this setting, though
MT quality on formal (F) tends to be higher than informal (IF)

Model
EN-PT EN-RU

BLEU COMET mACC cACC BLEU COMET mACC cACC

C
O

N
ST

R
A

IN
E

D

HW-TSC
F 47.4 0.7337 100 100 36.5 0.6472 100 100
IF 47.9 0.7442 100 100 35.6 0.6442 100 100

U
N

C
O

N
ST

R
A

IN
E

D

UMD (baseline)
F 27.3 0.4477 96 98 21.3 0.3492 96 92
IF 30.9 0.4161 93 91 21.0 0.3475 84 85

APPTEK
F 34.6 0.6089 99 99 35.4 0.6165 99 98
IF 42.4 0.6776 64 65 33.3 0.6026 98 97

HW-TSC
F 45.4 0.7737 100 100 33.7 0.5804 100 100
IF 49.1 0.7845 100 100 32.4 0.5558 100 100

KUXUPSTAGE
F 31.0 0.5251 100 100 25.8 0.4446 100 100
IF 19.9 0.2486 68 90 26.3 0.4181 100 100

UCSC
F 26.6 0.4048 90 91 18.4 -0.1713 99 79
IF 28.4 0.4252 58 42 14.9 -0.2766 52 67

Table 48: Results for the Formality Track (Zero-shot Setting). Appreciable differences in formality control exist
between formal (F) and informal (IF), suggesting that formality bias exists in participant systems.
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Abstract

We present the ACL 60/60 evaluation sets for
multilingual translation of ACL 2022 technical
presentations into 10 target languages. This
dataset enables further research into multilin-
gual speech translation under realistic record-
ing conditions with unsegmented audio and
domain-specific terminology, applying NLP
tools to text and speech in the technical domain,
and evaluating and improving model robustness
to diverse speaker demographics.

1 Introduction

The NLP and speech communities are rapidly ex-
panding, which has motivated increased interest in
multilingual scientific communication and accessi-
bility. From the automatic captioning at NAACL
2019 provided by Microsoft to the current ACL
60-60 initiative1 for the 60th anniversary of ACL
at 2022, it is clear that transcription and translation
in the technical domain is needed, desired, and still
a disproportionate challenge for current models
compared to standard datasets in these spaces.

Translating technical presentations presents chal-
lenging conditions, from domain-specific terminol-
ogy and adaptation, to recordings often captured
with a laptop microphone and light background
noise, diverse speaker demographics as well as
unsegmented speech typically 10-60 minutes in
duration. We have curated evaluation sets from
presentations at ACL 2022 which have been pro-
fessionally transcribed and translated with the sup-
port of ACL and the 60-60 initiative. In this pa-
per we describe the methodology to create this
dataset, considerations and methods to evaluate
speech translation models with it, and open chal-
lenges we believe this dataset may support research
towards. We release all data and intermediate steps
to support further research in this space.

1https://www.2022.aclweb.org/dispecialinitiative

Figure 1: Multilingual translation of ACL presentations.

We present the ACL 60/60 evaluation sets to en-
able greater development of tools by the field for
the field. Specifically, we hope that this data en-
ables further research into speech translation and
other NLP applications in the technical domain
with resegmentation and terminology, given a di-
verse speaker set and realistic recording conditions,
with the goal of increased accessibility and multi-
linguality. Our dataset is publicly available through
the ACL Anthology.2

2 Evaluation under realistic conditions

To evaluate transcription and translation under real-
istic conditions may require different metrics than
with e.g. provided segmentation. Here we present
the necessary metrics in order to discuss the dataset
creation process.

2.1 Resegmentation

While most offline speech translation models are
trained with provided segmentation, in an applica-
tion setting segmentation is unlikely to be provided.

2https://aclanthology.org/2023.iwslt-1.2
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Most models are typically unable to maintain out-
put quality given audio of typical talk lengths (10+
minutes), necessitating the use of automatic seg-
mentation methods. In order to evaluate output
with variable segmentation, resegmentation to a
fixed reference is necessary.

The standard tool within the field for many years
has been mwerSegmenter (Matusov et al., 2005),
which resegments model output to match a refer-
ence segmentation for downstream evaluation with
various metrics. This is done by dynamically re-
segmenting the output using a given tokenization
to minimize word error rate to the reference.3 We
use mwerSegmenter for all scores in this paper and
suggest that resegmentation be the scoring standard
for the ACL 60/60 dataset.

2.2 Evaluation metrics

We compare a variety of evaluation metrics to ana-
lyze both transcription and translation quality using
the evaluation sets, as well as the results of interme-
diate steps in corpus creation such as post-editing.

For translation, we compare chrF (Popović,
2015) which is tokenization-agnostic and more ap-
propriate for a wider array of target languages than
BLEU; BLEU (Papineni et al., 2002) as computed
by SACREBLEU (Post, 2018); and the model-
based metric COMET (Rei et al., 2020), which
often has higher correlation with human judge-
ments (Mathur et al., 2020) though is limited by
language coverage in pretrained models. For BLEU
we use the suggested language-specific tokenizers
in SACREBLEU for our non-space delimited tar-
get languages, Japanese (MeCab4) and Chinese
(character-level).

To analyze both automatic and post-editing tran-
scription quality, we use word error rate (WER).
We note that we use case-sensitive and punctuation-
sensitive WER here as these are both maintained in
system output during dataset creation in order to be
post-edited and translated. For downstream evalua-
tion of ASR model quality using the final dataset,
it may be desired to compute WER without case
and without punctuation; if so, the scores would
not be directly comparable to those presented here.
We also use translation error rate (TER) (Snover
et al., 2006) to assess the expected level of editing
necessary to match the final reference quality.5

3We use word-level tokenization for all languages except
Japanese and Chinese here, where we use character-level.

4https://taku910.github.io/mecab/
5We calculate TER with --ter-normalized and

We caution against using any one translation
metric in isolation, and suggest chrF and COMET
as the standard evaluation metrics for this dataset.

3 Creating the ACL 60/60 evaluation sets

3.1 Languages

All data is originally spoken in English and then
transcribed and translated to ten diverse languages
from the 60/60 initiative for which publicly avail-
able speech translation corpora are available (see
Table 5: §A.3): Arabic, Mandarin Chinese, Dutch,
French, German, Japanese, Farsi, Portuguese, Rus-
sian, and Turkish. The resulting dataset contains
three-way parallel (speech, transcripts, transla-
tions) one-to-many data for ten language pairs, and
multi-way parallel text data for 100 language pairs.

3.2 Data selection

Data was selected from the ACL 2022 paper pre-
sentations for which precorded audio or video pre-
sentations were provided to the ACL Anthology.
Talks were selected such that each of the two evalu-
ation sets, development and evaluation, would have
approximately one hour total duration. Oral pre-
sentations were advised to be up to 12 minutes per
recording, resulting in 5 talks for each set with rel-
atively balanced durations of ∼11.5 minutes each.

From the 324 available recordings, the final 10
were selected in order to balance speaker demo-
graphics, accents, and talk content, while lightly
controlling for recording conditions. The major-
ity of recordings were created using laptop micro-
phones in quiet conditions, but background noise,
microphone feedback, speech rate and/or volume
in some cases affected understanding of the content.
We selected talks with representative but minimal
noise where conditions did not affect understand-
ing of the content. We aimed for a gender balance
representative of conference participation,6 result-
ing in a 3:7 female:male speaker ratio. This is also
a global field with a wide variety of native and non-
native English accents, which remains a necessary
challenge for speech models to address to mitigate
performance biases (Sanabria et al., 2023; Feng
et al., 2021; Koenecke et al., 2020; Tatman and
Kasten, 2017). Talks were chosen and assigned to
each set to maximize accent diversity, aiming for
L1s from all continents with language families fre-

--ter-asian-support in SACREBLEU.
6Aggregate conference participation statistics provided by
ACL 2022; see §A.2.
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Figure 2: Distribution of English segment lengths via speech duration (seconds) and text length (word count) for
each of three segmentations: VAD, subtitles, and sentences.

quently represented in the ACL community while
balancing topic diversity and gender. We note na-
tive language and country where available. Talks
were chosen to cover a diverse set of tracks and
topics and therefore diverse technical vocabulary
representative of the needs of the field. Where pre-
sentations were chosen within the same track, they
covered different focuses and methodology, e.g.
math word problems versus release note generation
or few-shot adaptation for structured data. Meta-
data for all talks with exact durations and track and
speaker annotations are shown in Table 3 in §A.1.

Holding out speakers and topics per set opti-
mizes for overall system generalization but reduces
the match between dev and eval sets; this e.g. re-
duces the benefit of finetuning on the dev set to
maximize test set performance and overfitting the
model or chosen hyperparameters to the dev set
will adversely affect test set performance. How-
ever, high performance on both sets is more likely
to indicate generalizable systems and representa-
tive performance beyond these data points than if
the dev and eval data were more closely matched.

3.3 Automatic transcription
The first pass through the data used automatic seg-
mentation and transcription to provide initial tran-
scripts. We used the Azure API speech-to-text
service,7 which has the best cost and quality bal-
ance of currently available models. In addition to
transcription, the service performs speaker diariza-
tion, with implicit voice activity detection (VAD),
segmenting the initially ∼11.5 minute audio files
into segments of approximately 30 seconds or less
7https://azure.microsoft.com/en-us/products/
cognitive-services/speech-to-text

based on pauses, speech, and non-speech phenom-
ena. Figure 2 shows the resulting distribution of
segment lengths. Evaluating these initial automatic
transcripts against the final released version with
resegmentation (§2.1), the automatic transcription
yielded a WER of 15.4 and 22.4 for the develop-
ment and evaluation sets, respectively.

3.4 Human post-editing: Transcription

We contracted with aiXplain Inc. to professionally
post-edit the ASR output. There was a three tier
review process: an initial annotator post-edited per
segment, followed by a quality assurance (QA) an-
notator who went through each full talk to ensure
quality and consistency, and then finally 10-20%
of the segments were randomly chosen for a final
check. In addition to semantic content, annotators
may theoretically also fix segmentation boundaries
but in practice this rarely occurs. The annotators
provided additional information about the speak-
ers, namely gender (male, female) and age (child,
young adult, adult, elderly). The annotators were
also shown the video of the presentation to aid them
ing recognizing technical terms, which may appear
in the slides. Disfluencies were standardized such
that false starts and repetitions were kept where
there were perceivable pauses between them, and
two hesitation spelling variations (ah, um) were
used. The annotator guidelines and LabelStudio
interface are shown in §A.4. After the professional
post-editing pass, a domain expert verified and cor-
rected the technical terms.

Post-editing analysis. ASR output is strongly
monotonic with respect to the original speech, and
accordingly most post-edits are for incorrectly tran-

64

https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text
https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text


REF: we find a BILSTM ** CRF model using flare
HYP: we find a BIAS TM CRF model using flare

S D

REF: also FASTTEXT CHARACTER EMBEDDINGS
HYP: also FASTTEX KITCHEN BEDDINGS

S S S

REF: multilingual BERT PERFORMS better than BETO
HYP: multilingual BIRD PERFORM better than BETTER

S S S

Figure 3: Sample ASR errors from dev using SCLITE.
Corrections are emphasized with CASE.

scribed words, case, and punctuation. 93% of
words were correctly transcribed by the initial ASR
pass. Spurious punctuation and casing in the ASR
output (ex ‘Thank. You.’) accounted for 43% of the
errors captured by WER. Setting punctuation and
case aside, in the professional post-editing pass,
60% of sentences had at least one correction made.
The majority of post-edits were word-level sub-
stitutions for incorrectly transcribed words (62%).
Dropped words were not common, with only 1.6%
of words dropped by the ASR model and later in-
serted. Slightly more common (1.8%) were inser-
tions due to words incorrectly transcribed as multi-
ple tokens by the ASR system, and later corrected.
Examples are shown in Figure 3.

Further corrections by a domain expert were
made for 3% of words. While the majority were
corrections to terminology requiring technical con-
text (‘CONEL’→ ‘CONLL’ or ‘position or’→ ‘po-
sitional’), some fixes were for subtle number and
tense changes in the ASR transcription possibly in-
fluenced by recording conditions or pronunciation.

Technical terms. The subset of technical terms
appearing in the terminology lists created by the
60-60 initiative were automatically tagged on the
source side (see Figure 4). These lists were not
exhaustive but provide an initial keyword set to
bootstrap identification and translation of technical
terms and their evaluation, and which future work
may find beneficial.

Technical terms comprised the majority of ASR
errors. 86% of the tagged terminology were cor-
rectly transcribed the ASR model, 8% were cor-
rected by the professional post-editors, and the re-
maining 6% were corrected by a domain expert.

3.5 Sentence segmentation
While it is common in speech corpora to segment
based on voice activity detection or subtitle-like cri-

Figure 4: Example of tagged terminology from dev.
Terminology lists were not exhaustive; [text-to-speech]
did not appear, leading [text] and [speech] to be tagged
separately.

teria, this may result in segments which are not par-
allel across languages (in the case of multilingual
speech), which are too short to translate without
additional context, or which are too long for effec-
tive system evaluation. For a multilingual dataset
intended to be multi-way parallel and to be used
for translation, it is critical to have consistent seg-
mentation across all languages and for all segments
to contain the necessary context to translate to the
desired target languages.

The VAD segments facilitated transcription, but
resulted in a wide distribution of segment lengths,
some just one to two words long, and others con-
taining multiple sentences, potentially skewing
downstream evaluation metrics and providing a
mismatch to common training conditions. One
option would be to subdivide the segments using
subtitle guidelines,8 where those segments which
do not conform to particular length guidelines are
realigned into smaller segments which is done us-
ing forced alignment. However, subtitle segments
often contain partial sentences, which, particularly
when including languages with different word or-
ders or degrees of reordering from the source lan-
guage (English), may place verbs across segment
boundaries for some languages and not others. Sen-
tences, then, may be a more appropriate unit for
multi-way parallel segments. We resegmented the
final post-edited English transcriptions into sen-
tences manually to avoid noise from currently avail-
able tools. Examples of all three segmentations
(VAD, subtitles, and sentences) are shown in Fig-
ure 12 in § A.8. To ensure the speech and text
were correctly aligned given the final sentence seg-
ments, they were re-force aligned using WHISPER-
TIMESTAMPED (Louradour, 2023), an extension
of OpenAI’s Whisper model (Radford et al., 2022)
which uses DTW (Giorgino, 2009) to time align at
the word level, and were manually rechecked by
the annotators.

8Subtitle guidelines are shown in §A.7.
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Metric ar de fa fr ja nl pt ru tr zh
de

v
chrF 75.3 72.8 54.9 80.0 56.9 82.7 82.3 59.3 69.0 60.5
BLEU 54.1 48.3 25.3 63.0 50.7 63.6 65.9 30.5 39.1 65.9
COMET 86.2 83.6 76.8 84.5 89.1 88.1 87.9 82.5 85.9 87.4

ev
al

chrF 77.2 71.7 56.3 83.7 53.6 86.6 84.8 65.3 77.0 62.7
BLEU 55.4 48.5 27.1 68.3 47.3 71.5 68.7 39.4 51.6 67.9
COMET 86.2 83.6 79.5 84.5 89.1 88.1 87.9 82.5 85.9 87.4

Table 1: Evaluating the initial commercial MT from ground-truth transcripts against the final released references.
BLEU scores in grey are calculated using language-specific tokenization (ja) or at the character-level (zh); see §2.2.

We compare the distribution of segment lengths
for each of the three approaches (VAD, subtitles,
and sentences) in terms of both duration (seconds)
and number of words (English) in Figure 2. VAD
results in the most uneven distribution, with seg-
ments ranging from <1 second to >30 seconds. Sub-
titles result in more uniform but distinctly shorter
segments, with 58% containing less than 10 words
and 19% shorter than two seconds, likely too short
for some downstream tasks or metrics. Sentences
result in less extreme segment lengths. Examples
of each segmentation are shown in §A.8. The final
data contains 468 sentences in the development set
and 416 sentences in the evaluation set.

3.6 Machine translation
The first translation pass used publicly available
bilingual MT models to translate the final sentence
segments. We used the ModernMT API9 for the
9 of 10 language pairs supported, and the Azure
API10 for English-Farsi. We evaluate the commer-
cial machine translation output against the final
released translation references (§3.7) using the met-
rics discussed in §2.2, shown in Table 1.

Each metric suggests a different story about
translation quality and the degree to which it is
language-specific. While COMET suggests rel-
atively consistent performance across languages,
chrF and BLEU do not. chrF and BLEU sug-
gest significantly worse performance for a subset
of target languages, including all but one of the
non-Latin script and non-Indo European languages.
BLEU yields 1.7× greater variance than chrF. By
all metrics, though, MT quality was consistent be-
tween the development and evaluation sets. We see
in the next section that the amount of post-editing
required to create the final references, however, is
9https://www.modernmt.com/api/
10https://azure.microsoft.com/en-us/products/
cognitive-services/translator

not necessarily indicated by these metrics.

3.7 Human post-editing: Translation
Post-editing has become the industry standard due
its increased productivity, typically reducing pro-
cessing time and cognitive load compared to direct
translation, particularly for domain-specific texts
(O’Brien, 2007; Groves and Schmidtke, 2009; Tat-
sumi, 2009; Plitt and Masselot, 2010).

We contracted with Translated to professionally
post-edit the MT output. There was a two tier re-
view process: an initial annotator who was a native
speaker of the target language post-edited per seg-
ment, followed by a second to review the output
and consistency of the first. Annotator guidelines
and the post-editing interface are shown in §A.5.

Technical terms. Terminology was not handled
separately during the MT step nor automatically
tagged, given that the MT systems may omit or
incorrectly translate technical terms. We did not
use constrained decoding given the terminology
lists translations as their validity could be context-
dependent and some terms had multiple possible
translations. Instead, translation post-editors were
instructed to correct the translations of tagged ter-
minology on the source if they were not maintained
and then tag the appropriate target translations
for each source tagged source span. Capitalized
acronyms and terminology not on the lists and un-
known to the translators was left in English.

Post-editing analysis. While the metrics in the
previous section give a sense for the automatic
translation quality, they do not necessarily reflect
the effort required to post-edit the translations to
final reference quality. Using TER to assess the
degree of post-editing necessary, we see in Fig-
ure 5 that this varies by language. Most noticeably,
we see that Farsi, Russian, Japanese as target lan-
guages required the highest amount of post-editing.
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Figure 5: Estimated translation post-editing effort re-
quired per target language, as measured by TER.

For Farsi and Japanese, we see that this is pre-
dominantly due to reordering. Isolating reorder-
ing from semantic corrections by looking only at
those tokens11 which did not need to be corrected,
we use Levenshtein distance to assess the degree
of reordering from the MT output required. We
observed a strong bias towards source language
word order in the machine translation output, caus-
ing a greater degree of post-editing for languages
with differing word orders. Figure 6 shows that
reordering requirements are moderately correlated
with overall post-editing effort for most languages
(ρ = 0.41), while TER is only weakly suggested
by COMET (ρ = 0.29) and is negatively correlated
with chrF and BLEU (−0.63,−0.21 respectively).

For most target languages, there was no signifi-
cant difference in post-editing effort between dev
and test, but where there was a difference it was the
dev talks that required additional editing, most no-
ticeably for Turkish and Russian and to a lesser de-
gree Dutch. Dividing the data into individual talks,
which each vary in content within the technical do-
main, there was some variation in the quality of the
first-pass MT (Figure 7). We found that which talks
require similar levels of post-editing is moderately
to strongly correlated across languages, suggesting
this was due to topic rather than language, with the

11Characters rather than words were used for this analysis for
Japanese and Chinese.
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fa
ja

Figure 6: Degree of reordering done in MT post-editing.

exception of Farsi and Japanese (Figure 8). This
correlation does not appear to be influenced by lan-
guage family and was not related to the proportion
of tagged terminology per talk. For Russian and
Turkish, a particular talk skewed overall dev TER,
possibly due to a greater proportion of polysemous
terms with domain-specific meaning in that area.

Terminology. Tagged terminology was more of-
ten correctly automatically transcribed than trans-
lated. Between 70-75% of the tagged spans were
translated correctly by the initial MT model de-
pending on the target language, as measured by an
exact match with the final tagged post-edited span.
The remaining 25-30% were manually corrected
by the post-editors. In addition, 2-5% of words
overall were left in English, predominantly made
up of additional terminology and names.

4 Challenges to Address with ACL 60/60

4.1 Segmentation

Speech translation datasets customarily provide a
segmentation for translation and evaluation, seg-
mented either manually (e.g. CoVoST) or automat-
ically (e.g. MuST-C). In realistic use cases, such
segmentation is unavailable and long audio cannot
be processed directly, resulting in mismatched con-
ditions at inference time. There can be a noticeable
performance gap between manual segmentation
and automatic methods (Tsiamas et al., 2022).

We illustrate the impact of different speech seg-
mentations on downstream transcription and trans-
lation quality by comparing manual sentence seg-
mentation to the initial VAD segments as well as
to SHAS (Tsiamas et al., 2022), using the top line
commercial ASR and MT systems used during the
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Figure 8: Correlation in TER across languages.

dataset creation pipeline. As seen in Table 2,12

under certain circumstances automatic segmenta-
tion methods can perform as well as manual sen-
tence segmentation, though this is not always the
case and small resulting differences in ASR perfor-
mance may cascade into larger performance gaps
in downstream MT, meriting further research.

Variation due to segmentation also depends on
model training conditions. Models are typically
optimized for the segment lengths observed in
training and/or may use additional internal seg-
mentation. For example, when we compare the
Whisper LARGE model (Radford et al., 2022) which
is trained on longer segments, sentences are sub-
optimal compared to SHAS and VAD (0.1-0.9
WER), and when they are further segmented up
to 4× by its internal VAD this cascades to dispro-
portionately worse downstream MT performance
(by up to 8 chrF) than with the Azure ASR.

ASR MT
Segmentation dev test dev test

Manual sentences 15.2 21.4 69.4 71.5
Commercial VAD 15.4 22.4 62.0 59.6
SHAS 16.4 21.5 61.9 60.4

Table 2: Comparison between manual sentence segmen-
tation and high quality automatic segmentation for ASR
and cascaded ST in WER and avg. chrF, respectively.

Segmentation is an important open challenge,
and we suggest that this dataset be used to evalu-
ate segmentation by making the dataset standard
scoring with resegmentation.

12chrF for individual languages is shown in Table 6.

4.2 Demographic fairness

The field is diverse and rapidly growing with a wide
variety of speaker demographics and native and
non-native English accents. As we train increas-
ingly large and multilingual models it is important
to evaluate their fairness to ensure any biases we
may find decrease rather than increase over time,
which we believe this dataset may help with.

The variety of speaker demographics in both the
field and these evaluation sets remain disproportion-
ately challenging to current ASR models. Looking
at the average WER among talks of each gender,
we see a margin of 10.5. 15% of dev sentences
and 26% of eval sentences were misclassified as
non-English languages when using the multilingual
Whisper BASE model, showing a bias against varied
pronunciations and L1s that it is necessary to ad-
dress when pursuing multilingual modelling. WER
is 23% better when the model is prompted to gen-
erate English only, however, there is still a further
16% gap to the English-only BASE model. Mov-
ing to the larger multilingual model, the discrep-
ancy in performance with and without language
prompting becomes 2.4× larger, though overall
performance improves. At worst, the ∆WER be-
tween speakers is 62.2, and at best, 8.0, highlight-
ing a significant discrepancy which needs to be
improved.

Demographic fairness is an important issue
which requires targeted research to address. We
hope these evaluations sets may facilitate further
research in this space, despite their small size.

4.3 Domain adaptation and terminology

Terminology. Constrained decoding of techni-
cal terms or domain-specific translations is an area
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of active research (Hu et al., 2019; Post and Vi-
lar, 2018; Hokamp and Liu, 2017). The terminol-
ogy lists were not exhaustive, containing just over
250 terms, but provide an initial keyword set to
bootstrap identification and translation of technical
terms in context and their evaluation, which future
work may find beneficial.

We highlight the reduction in terminology re-
call between the strong ASR and MT systems
used in the dataset creation pipeline below in Fig-
ure 9. It is clear that even commercial systems
struggle with domain-specific terminology particu-
larly without adaptation. While there are discrep-
ancies across language pairs, terminology recall is
strongly correlated with overall translation perfor-
mance (ρ = 0.8) as measured by chrF.

ar de fa fr ja nl pt ru tr zh
Language
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Figure 9: Terminology recall of ASR vs MT, with over-
all translation performance shown behind (chrF).

Lightweight domain adaptation. There are few
publicly available datasets with technical content,
and fewer translated. While it is possible to scrape
in-domain material e.g. from the ACL Anthology,
this would be in the source language (English) only
rather than the target languages. While only having
target-domain data in the source language is a real-
istic scenario, it is not the setting typically found
in current research or approaches, and highlights
the need for new methods for domain adaptation
which can make use of this data. We additionally
provide paper titles and abstracts, which are likely
to contain both particularly important vocabulary
and cue the talk topic. We hope this data may prove
beneficial for lightweight methods to adapt to the
technical domain or specific talk settings or to lexi-
cally constrain or prompt particular translations.

5 Related work

Previous work has studied data from the ACL An-
thology for term mining and identification (Schu-
mann and Martínez Alonso, 2018; Jin et al., 2013)
and concept relation (Gábor et al., 2016) in the
scientific domain.

Few speech translation datasets in the technical
domain exist but those that do such as the QCRI
Educational Corpus (Abdelali et al., 2014; Guzman
et al., 2013) have primarily targeted educational
lectures and videos. Additional datasets specifi-
cally for speech translation evaluation (Conneau
et al., 2023) are primarily ‘general domain.’

Significant previous work has studied various
aspects of translation post-editing, including post-
editing effort (Scarton et al., 2019), evaluating post-
editing quality and reference bias (Bentivogli et al.,
2018), bias from the initial MT quality and output
patterns (Zouhar et al., 2021; Picinini and Ueffing,
2017), and the the efficacy of post-editing in highly
technical domains (Pinnis et al., 2016) and resulting
translation biases (Čulo and Nitzke, 2016).

The impact of automatic segmentation quality
on various ST metrics has been evaluated in recent
IWSLT shared tasks (Ansari et al., 2020; Anasta-
sopoulos et al., 2021, 2022) and research (Tsiamas
et al., 2022; Sen et al., 2022; Ansari et al., 2021)
using other datasets (TED) with longer reference
segmentations than ours. With longer sequences
there is greater potential for variation, and past cam-
paigns have observed larger differences between
segmentations than seen here and even improve-
ments over the provided segmentation. Significant
additional work has been done in the simultaneous
translation space, which we do not address here.

6 Conclusions

We introduced a new dataset to evaluate multilin-
gual speech translation from English into ten target
languages specifically in the technical NLP domain.
We have discussed in detail the steps to create the
corpus and the tools and considerations required.
We have also provided a further view into evalua-
tion methodology mimicking realistic conditions
where segmentation is not provided. We hope that
this dataset may be useful for the field to study the
effectiveness of the tools we develop both for trans-
lation and additional applications in the technical
domain in an increasingly multilingual space.
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Limitations

While we have done our best to create high-quality
evaluation data, there are limitations that should be
kept in mind when using these datasets. It is known
that creating translations by post-editing may bias
data towards the output of the MT systems used
for initial translations; however, many transcription
and translation vendors now exclusively use post-
editing rather than translation from scratch and so
direct translation may not be an option in all cases.
This could influence metrics toward similar MT
systems. The presented evaluation sets are moder-
ately sized compared to datasets in other domains
with plentiful mined data, and may be best used
in conjunction by reporting on both the develop-
ment and evaluation sets for statistical significance.
The evaluation sets also have a necessarily limited
set of speakers which may not be fully representa-
tive. Systems which tune to the development set
run the risk of over-fitting to specific speakers or
content. We do not perform a comparison to hu-
man evaluation here, but refer interested readers to
the IWSLT’23 evaluation campaign findings paper
which runs this comparison for a variety of systems
with the ACL 60/60 data (Agarwal et al., 2023).

Ethical Considerations

This dataset is constructed from a small set of
speakers where each speaker may be the only rep-
resentative of certain cross-sectional axes, and as
such, even reporting aggregate metadata may break
anonymity. While we do not distribute speaker an-
notations with the data some information is inher-
ently recoverable due to the link to the Anthology.
We nonetheless believe this data will be beneficial
to the community in order to study language pro-
cessing on technical data, and it is necessary to
have a diverse evaluation set to provide a more real-
istic and representative measure for generalization.
It is difficult and costly to construct datasets with
human-edited transcripts and translations and this
was the largest set possible to collect. Post-editors
were compensated with professional wages.
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Vĕra Kloudová, Surafel Lakew, Xutai Ma, Prashant
Mathur, Paul McNamee, Kenton Murray, Maria
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A Appendix

A.1 Additional Metadata for ACL 60/60 Evaluation Sets
Below we list the duration for talks in the evaluation sets, along with additional demographic metadata
about the presenting author (speaker) and content (conference track). Conference tracks are taken from the
ACL 2022 handbook. Gender annotations were checked with speakers’ listed pronouns13 and validated
by speakers where available. For speaker demographics and accent we list L1 and native country where
available, as well as country of affiliation as a rough proxy.

Gender L1 Country Affiliation Time Track

M Kinyarwanda Rwanda USA 0:11:35 Theme: Language Diversity (Best Paper)
M — — USA 0:11:35 Dialogue and Interactive Systems
F Spanish Spain Spain 0:12:17 Resources and Evaluation
F Marathi India USA 0:12:09 Question Answering
M Polish Poland Poland 0:09:37 Machine Learning for NLP

0:57:13 Total development set duration

M Chinese China China 0:12:03 NLP Applications
M — Belgium Netherlands 0:12:02 Resources and Evaluation
F Romanian Romania Germany 0:09:22 Language Grounding, Speech and Multimodality
M Japanese Japan Japan 0:14:02 NLP Applications
M Hebrew Israel Israel 0:11:53 NLP Applications

0:59:22 Total evaluation set duration

Table 3: Additional metadata for talks in the evaluation sets.

A.2 ACL 2022 Conference Participation Statistics
Aggregate statistics for self-identified gender as listed on conference registrations were provided by ACL.

Gender # %

Woman 909 28.7
Man 2164 68.3
Non-binary / Genderqueer / Third gender 14 <1
Genderfluid / Gender non-confirming <10 <1
Prefer not to say 77 2.4
Specify your own <10 <1

TOTAL 3170 100

Table 4: Aggregate statistics on gender of ACL 2022 conference participants.

13Though we note pronouns do not always indicate gender.
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A.3 Publicly Available Corpora

Below are the current publicly available multi-way parallel speech translation corpora with English as the
speech source. We note that for MuST-C not all target languages are available in all versions of the corpus
as successive versions added additional language coverage. For full coverage v1.2 or above is required.

Corpus Src Tgt

MuST-C (Di Gangi et al., 2019) en all (10) ar, de, fa, fr, ja, nl, pt, ru, tr, zh
CoVoST (Wang et al., 2020) en all (10) ar, de, fa, fr, ja, nl, pt, ru, tr, zh
Europarl-ST (Iranzo-Sánchez et al., 2020) en some (4) de, fr, pt, tr

Table 5: Current publicly available aligned speech translation corpora covering the ACL 60/60 language pairs.
Target languages are abbreviated using ISO 639-1 codes as follows – Arabic: ar, German: de, Farsi: fa, French: fr,
Japanese: ja, Dutch: nl, Portuguese: pt, Russian: ru, Turkish: tr, Mandarin Chinese: zh.

A.4 Transcription Post-editing Guidelines and Interface

The following guidelines were used for transcription post-editing by aiXplain. The acceptance criterion
was word accuracy >95%.

• Accuracy. Only type the words that are spoken in the audio file. Phrases or words you don’t
understand should NOT be omitted. Instead, they should be annotated using the label “#Unclear”.

• Keep everything verbatim. Include every utterance and sound exactly as you hear. All filler words
should be included (ex. #ah, #hmm). If the user corrects his/her self, all the utterances should be
transcribed and corrected words need to preceded with a # mark (ex. She says #said that).

• Do not paraphrase. Do not correct the speaker’s grammar nor rearrange words. Also, do not cut
words that you think are off-topic or irrelevant. Any words not spoken should not be included. Type
the actual words spoken. If the speaker makes a grammatical mistake, the transcript must reflect the
mistake (ex. If the speaker says: “he were”, it should be transcribed as is without correction).

• Repeat repeated words in the transcript. For example, if the user says: I I said, you must include both
instances of I.

• Do not add additional information such as page numbers, job numbers, titles or your comments in
your submission.

• Foreign words should be transliterated using Latin letters.

• All abbreviations need to be spelled out. For example, doctor should NOT be spelled as Dr. Similarly,
percent should NOT be spelled as %.

• All numbers and special symbols (ex.: %, $, +, @, =, etc.), or combinations of both must be spelled
out as words, and must match what the speaker says exactly.

• All proper names (ex. Google, NATO, Paris) should be transliterated in English.

• Proper punctuation needs to be placed in the text (ex. He, the boy, .). Please pay special attention
and do not miss/omit these punctuation marks: , . ? ! : )(

• Personally identifiable information (like phone number, address, IDs) should be marked in the text as
<PII></PII>. For example: My address is <PII>address</PII>

• Use double dashes “--” to indicate truncated words, attached whether at the beginning or the end of
the word (ex. transfor–).
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Figure 10: LabelStudio interface for transcription post-editing.

A.5 Translation Post-editing Instructions and Interface
The translation post-editing task was carried out in Matecat14, an open-source CAT tool that allows
annotators to collaborate and get suggestions from ModernMT in real-time. Matecat also offers an
embedded glossary feature that ensures effective and consistent terminology management (as shown in
the interface image in Figure 11 below, featuring Matecat glossary suggestions).

The following guidelines were used for translation post-editing:

• Any term found in the 60-60 terminologies list, should be translated using the translation in the
terminologies list.

• Any abbreviation if not found in the terminologies list, should be kept it in the English form
• The terms in the terminologies list may contain one or more translation for each term separated by

‘:::’. The translator should pick the proper one based on the context
• If the translator thinks that none of the given translations for a specific term makes sense in the given

context, the translators can use a better translation if they are very confident. If not very confident,
keep the word in the English form

14https://site.matecat.com/
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Figure 11: Matecat interface for translation post-editing.

A.6 Segmentation Comparison

Set Segmentation ar de fa fr ja nl pt ru tr zh Avg.

de
v

Sentences 66.9 68.7 53.4 73.9 47.8 74.3 74.0 55.0 62.4 50.4 62.7
Commercial VAD 66.6 68.5 52.7 74.1 46.2 73.6 73.7 53.9 60.6 49.8 62.0
SHAS 66.5 68.6 52.8 73.7 46.9 73.8 73.5 54.3 59.9 49.7 62.0

ev
al

Sentences 64.0 66.1 51.3 69.0 43.9 71.0 71.9 55.8 63.8 46.0 60.3
Commercial VAD 63.5 66.3 51.1 69.0 43.7 70.4 72.0 55.1 62.9 47.1 60.1
SHAS 64.4 66.4 51.5 69.6 42.0 71.4 72.4 55.7 63.1 45.4 60.2

Table 6: Cascaded ST by language for different source speech segmentations, resegmented and scored with chrF.

A.7 Subtitle Guidelines

Subtitle guidelines following industry standards, see for example Netflix15 and TED16:

• No one segment is allowed to be longer than 30 seconds.

• Each line can not be longer than 42 characters.

• A maximum of 2 lines of text can be shown on screen at once.

• The subtitle reading speed should kept to a maximum of ∼20 characters per second.17

If one of the segments created by the VAD does not adhere to the above guidelines, an English model is
used to force alignment the long audio segment and its transcript to get the timestamp of each token, and
then the segment is split into shorter subsegments. Note that these guidelines are automatically applied;
the above means that if a VAD segment conforms to these guidelines it will not be resegmented, and
subtitle segments may differ from manually created subtitles were semantic coherence may be prioritized
over longer segments within these guidelines, or text may be lightly changed from what is spoken to
optimize subtitle quality (here not allowed).

15https://partnerhelp.netflixstudios.com/hc/en-us/articles/217350977-English-Timed-Text-Style-Guide
16https://www.ted.com/participate/translate/subtitling-tips
17Varies by program audience, commonly between 17 and 21.
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A.8 Segmentation Examples
Examples of each transcript segmentation approach discussed (VAD, subtitles, and sentences) for sample
data from the development set. Examples were chosen to show segments from the longest and shortest
VAD quartiles, and the resulting subtitles following subtitle guidelines from §A.7.

Figure 12: Examples of each discussed transcript segmentation approach for sample data from the development set.
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Abstract

This paper presents the MINETRANS English-
to-Chinese speech translation systems devel-
oped for two challenge tracks of IWSLT 2023:
Offline Speech Translation (S2T) and Speech-
to-Speech Translation (S2ST). For the offline
S2T track, MINETRANS employs a practi-
cal cascaded system consisting of automatic
speech recognition (ASR) and machine transla-
tion (MT) modules to explore translation per-
formance limits in both constrained and uncon-
strained settings. To this end, we investigate the
effectiveness of multiple ASR architectures and
two MT strategies, i.e., supervised in-domain
fine-tuning and prompt-driven translation using
ChatGPT. For the S2ST track, we propose a
novel speech-to-unit translation (S2UT) frame-
work to build an end-to-end system, which en-
codes the target speech as discrete units via
our trained HuBERT and leverages the stan-
dard sequence-to-sequence model to learn the
mapping between source speech and discrete
units directly. We demonstrate that with a large-
scale dataset, such as 10,000 hours of training
data, this approach can well handle the map-
ping without any auxiliary recognition tasks
(i.e., ASR and MT tasks). To the best of our
knowledge, we are the first and only one to suc-
cessfully train and submit the end-to-end S2ST
model on this challenging track.

1 Introduction

In this paper, we describe the MINETRANS

English-to-Chinese speech translation systems
which participate in two challenge tracks of the
IWSLT 2023 (Agarwal et al., 2023) evaluation
campaign: Offline Speech Translation (S2T) and
Speech-to-Speech Translation (S2ST).

The annual IWSLT evaluation campaign com-
pares the models produced by different institutions
on the task of automatically translating speech from
one language to another. Traditional S2T/S2ST sys-
tems typically use a cascade approach (Ney, 1999;
Sperber et al., 2017; Zhang et al., 2019; Wang et al.,

2021b; Hrinchuk et al., 2022), which combines au-
tomatic speech recognition (ASR), machine trans-
lation (MT), and text-to-speech (TTS, for S2ST)
components. Recent advances in end-to-end mod-
els (Liu et al., 2019; Jia et al., 2019; Lee et al.,
2022; Du et al., 2021, 2022; Zhang et al., 2022b,a)
that directly translate one language speech to an-
other without intermediate symbolic representa-
tions, have shown great potential in overcoming
the problems inherent in cascaded systems, such
as error propagation and slow inference. Despite
this, there is still a gap between the two approaches,
as end-to-end models have much less supervised
training data than sub-tasks, i.e., ASR, MT, and
TTS. Last year’s IWSLT offline S2T track (Anasta-
sopoulos et al., 2022) confirmed this, with the best
end-to-end model submission scoring 1.7 BLEU
points lower than the top-ranked cascade system.
This year’s competition aims to answer the ques-
tion of whether cascade solutions remain domi-
nant, particularly in the S2ST track, where there
has large-scale data for training.

In the offline S2T track, MINETRANS employs
a practical cascaded system to explore the limits
of translation performance in both constrained and
unconstrained settings, in which the entire system
consists of automatic speech recognition (ASR),
and machine translation (MT) modules. We also
investigate the effectiveness of multiple ASR ar-
chitectures and explore two MT strategies: super-
vised in-domain fine-tuning (Wang et al., 2022) and
prompt-driven translation using ChatGPT1 (Jiao
et al., 2023; He et al., 2023).

In the S2ST track, MINETRANS utilizes a
speech-to-unit translation (S2UT) framework to
construct an end-to-end system, which is simi-
lar to Lee et al. (2021a) but removes all auxil-
iary recognition tasks (i.e., ASR and MT tasks).
This framework converts target speech into dis-
crete units via our pre-trained HuBERT and then

1https://chat.openai.com
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leverages the standard sequence-to-sequence model
to learn the mapping between source speech and
discrete units directly. We found that with a large-
scale dataset, such as 10,000 hours of training data,
the previous multi-task learning technique (Jia;
Lee et al., 2021a,b; Popuri et al., 2022; Dong
et al., 2022) is not necessary for model conver-
gence, and this approach can successfully han-
dle the mapping between source speech and dis-
crete units. We also explore various initializa-
tion strategies and several techniques to improve
model performance, including (1) different self-
supervised pre-trained speech encoders and pre-
trained text-to-unit models, (2) data filtering and
augmentation, consistency training, and model en-
sembles. To the best of our knowledge, we are
the first and only one to successfully train and sub-
mit the end-to-end S2ST model on this challeng-
ing track. Our code is open-sourced at: https:
//github.com/duyichao/MINETrans-IWSLT23.

The remainder of this paper is organized as fol-
lows: Section 2 describes data preparation, includ-
ing data statistics, data preprocessing, and data
filtering. Section 3 describes our solution for the
offline speech translation track. Section 4 describes
our solution to the speech-to-speech track. In Sec-
tion 5, we conclude this paper.

2 Data Preparation

2.1 Data Statistics

Table 1 lists statistics of the speech corpus we used
for MINETRANS training, which can be divided
into four categories: unlabeled speech, ASR, TTS
and S2ST Corpus.

Unlabeled Speech. As shown in Table 1, we in-
tegrate source side speech from VoxPopuli (Wang
et al., 2021a) and GigaSS2 to build a large-scale un-
labeled English speech corpus for self-supervised
training of speech encoders Wav2vec2.0 (Baevski
et al., 2020) and HuBert (Hsu et al., 2021), which
are used for initializing the S2UT model in the
S2ST track. Similarly, we also integrate target
speech from GigaSS and AISHELL-3 (Shi et al.,
2020) to train the Chinese HuBert, which is used
for discretizing Chinese speech.

ASR Corpus. To train data-constrained English
ASR models, we merge MuST-C (Gangi et al.,
2019), Common Voice v11 (Ardila et al., 2019),

2https://github.com/SpeechTranslation/GigaS2S

Librispeech (Panayotov et al., 2015), and Europarl-
ST (Iranzo-Sánchez et al., 2019), resulting in ap-
proximately 4500 hours of labeled ASR corpus, as
shown in Table 1. For MuST-C and Europarl-ST,
we collect source speech for all translation direc-
tions and de-duplicated them based on audio identi-
fiers. In addition, GigaSpeech (Chen et al., 2021) is
used to construct data-unconstrained ASR model,
which includes 10k hours data covering various
sources (audiobooks, podcasts, and stream media),
speaking styles (reading and spontaneous), and top-
ics (arts, science, sports, etc.). Of these corpus, we
use MuST-C as the in-domain for the Offline track
and the rest as the out-of-domain.

MT Corpus. To train data-constrained English-
to-Chinese MT models, MuST-C v1&v2 are
considered in-domain corpora, while OpenSubti-
tles2018 (Lison et al., 2018) and NewsCommen-
tary3 corpora are considered out-of-domain. Addi-
tionally, we utilize in-house corpora to train data-
unconstrained MT models, although we cannot pro-
vide further details about it.

TTS Corpus. To ensure target speech timbre
matching with the S2ST track, we consider the
single-speaker GigaSS-S, a small subset of GigaSS,
as in-domain and the multi-speaker AISHELL-
3 (Shi et al., 2020) as out-of-domain. These corpora
are used to train the TTS model and its correspond-
ing vocoder.

S2ST Corpus. The full version of GigaSS is
used to train our end-to-end S2UT model, which
is an large-scale S2ST corpora derived from Gi-
gaSpeech (Chen et al., 2021) via MT and TTS.
We also construct S2ST pseudo-data, the details of
which will be presented in Section 4.1.2.

2.2 Data Pre-processing and Filtering
In general, a simple way to improve model perfor-
mance is to provide them with better data. How-
ever, through a careful review of the data, we iden-
tified issues with the quality of the original data.
To address this, we performed the following pre-
processing and filtering:

• We convert all audio data to mono-channel
16kHz wav format. Since the sentences of spo-
ken translation are generally short, we discarded
sentences with text longer than 100 and speech
frames longer than 3000. Then 80-dimensional

3https://opus.nlpl.eu/News-Commentary.php
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Corpus Utterances (k) Duration (h) S2T CST. S2ST CST.

Unlabeled VoxPopuli 22,905 28,708 ✓ ✓

ASR

MuST-C ASR v1&v2 342 617 ✓ –
Common Voice v11.0 1680 3,098 ✓ –
Librispeech 281 960 ✓ –
Europarl-ST 34 81 ✓ –
GigaSpeech 8,030 10,000 × –

MT
NewsCommentary 32 – ✓ –
OpenSubtitles 9,969 – ✓ –
MuST-C v1&v2 543 – ✓ –
In-house – – × –

TTS
AISHELL 3 88 85 – ✓
GigaSS-S 210 244 – ✓

S2ST
GigaSS 7,635 9,000 – ✓
CoVoST synthetic 288 288 – ✓
MuST-C synthetic 358 587 – ✓

Table 1: Statistics of the training data. The "CST." indicates that a corpus is in the task constrained corpus list of
corresponding S2T or S2ST. The "-" indicates this corpus is not available in that column.

log-mel filter banks acoustic features are ex-
tracted with a stepsize of 10ms and a window
size of 25ms. The acoustic features are normal-
ized by global channel mean and variance.

• We use a pre-trained ASR model on Librispeech
to filter the audio with very poor quality, i.e.,
word error rate (WER) more than 75.

• Since the annotation format is not uniform across
multiple datasets, we remove non-printing char-
acters, speaker names, laughter, applause and
other events. In addition, we also regularize punc-
tuation marks.

• For the English-to-Chinese direction of MuST-C,
we first merge the v1 and v2 versions and then
remove duplicates based on audio identifiers.

3 Offline Speech Translation

3.1 Cascaded MINETRANS S2T System

3.1.1 Speech Recognition
A standard RNN-Transducer (Graves, 2012) model
is used for speech recognition. It consists of an
acoustic encoder, a prediction network and a joint
network. The acoustic encoder contains 18 Con-
former (Gulati et al., 2020) layers with the follow-
ing dimensions: attention size is 512, feed-forward
size is 2048, number of attention heads is 4, and
convolutional kernels is 31. The prediction network

is a standard 1-layer LSTM with a hidden size of
1024. The joint network is linear with a size of
512. The input acoustic features are 80-dim Fbank
plus 3-dim pitch, which are down-sampled by a
2-layer CNN with a factor of 6 in the time-axis
before being fed into the acoustic encoder. The
overall parameter budget is 126M. During training,
SpecAugment (Park et al., 2019) is consistently
adopted for data augmentation. The training on
both GigaSpeech and MuST-C datasets lasts for
50 epochs each, which consumes 32 Nvidia V100
GPUs. The Adam optimizer is adopted, with peak
learning rate of 5e-3, warmup steps of 25k and in-
verse square root decay schedule(Vaswani et al.,
2017a). Model weights from the last 10 epochs are
averaged before decoding. The default decoding
method described in Graves (2012) is adopted with
a beam size of 10. External language models in
any form are not adopted.

ASR Output Adaptation. In the realm of au-
tomatic speech recognition (ASR) and machine
translation (MT), it is common for ASR output to
lack punctuation, whereas MT models are sensitive
to punctuation. To address this issue, we propose
an ASR output adaptation method by incorporating
a punctuation model between ASR and MT. Specif-
ically, we adopt a BERT-based punctuation model
that can automatically recover the original punctu-
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ation. The objective of this approach is to bridge
the disparity between ASR and MT, leading to im-
proved overall performance in speech translation
tasks.

Speech Segmentation. Speech translation is a
multi-faceted task that requires overcoming the
challenges of bridging the gap between automatic
speech recognition (ASR) and machine translation
(MT) systems. To address these challenges, we
employ several text augmentation techniques to
improve the quality and accuracy of our training
data. Specifically, we have utilized speech-based
audio segmentation (SHAS (Tsiamas et al., 2022))
to identify and segment meaningful units of speech
that can be accurately translated by the MT system.

3.1.2 Machine Translation
In our systems, we adopt four different types of
translation strategies:

• TRANSFORMER is a system trained on the
constrained data. We train the Transformer-
base (Vaswani et al., 2017b) model on the con-
strained general data and finetune the model on
the in-domain MuST-C data.

• M2M-1004 (Fan et al., 2021) is a multilingual
model trained for many-to-many multilingual
translation. We employ the supervised in-domain
fine-tuning strategy to finetune the M2M-100
1.2B-parameter model on the downstream MuST-
C data.

• CHATGPT is a large language model product de-
veloped by OpenAI. Previous studies (Jiao et al.,
2023; Wang et al., 2023) have demonstrated that
ChatGPT is a good translator on high-resource
languages. Therefore we utilize the proper trans-
lation prompts with ChatGPT to carry out the
translation task.

• IN-HOUSE MODEL We fine-tune our in-house
translation model (Huang et al., 2021) using
the MuST-C data. Our in-house model is a
Transformer-big (Vaswani et al., 2017b) model
with a deep encoder (Dou et al., 2018).

Data Re-Annotation. We have identified two is-
sues with the annotation of the English-to-Chinese
translation direction in the MuST-C v2.0 test set5.

4https://github.com/facebookresearch/fairseq/
tree/main/exa\mples/m2m_100

5https://ict.fbk.eu/MuST-C/

Firstly, we have observed samples of incorrect lit-
eral translations. For example, for the parallel sen-
tence pair, “I remember my first fire. ||| 记得我
第一场火”, we usually translate the English word
“fire” into Chinese word “火灾 (huo zhai)” not “火
(huo)”. Secondly, we have noticed inconsisten-
cies in the punctuation annotation, as most Chinese
translations lack proper full stop marks. To address
these challenges, we have employed the services of
a professional translator to accurately translate the
English sentences. We will release the data, aiming
to facilitate future research in the field.

Domain Augmentation. The MuST-C v2.0 train-
ing data contains considerable bilingual sentence
pairs that are partially aligned. In the specific
pair “Thank you so much Chris. ||| 非常谢谢，
克里斯。的确非常荣幸”, we are unable to lo-
cate the corresponding translation for the Chinese
phrase “的确非常荣幸" in the English sentence.
As Koehn and Knowles (2017); Wang et al. (2018)
pointed out, data noise (partially aligned data) has
been demonstrated to impact the performance of
Neural Machine Translation (NMT). To address
this issue, we employ a data rejuvenation strat-
egy (Jiao et al., 2020). Specifically, we first fine-
tune the model using the raw parallel data and then
rejuvenate the low-quality bilingual samples to en-
hance the training data.

3.2 Experiment

The Cascaded MINETRANS S2T System we pro-
pose comprises an Automatic Speech Recogni-
tion (ASR) model and a machine translation (MT)
model. In our evaluation, we assess the perfor-
mance of each component separately. For the ASR
system evaluation, we employ the Word Error Rate
(WER) metric, while the BLEU score is utilized to
evaluate the performance of our machine transla-
tion model.

The evaluation results obtained on the MuST-C
dataset, with and without fine-tuning, are presented
in Table 2. When the GigaSpeech ASR system
is used without fine-tuning, we observe a WER
of 10.0 on the MuST-C test set. However, when
the system is fine-tuned using the MuST-C dataset,
a significant improvement in performance is ob-
served, resulting in a noticeable decrease in the
error rate from WER of 10.0 to 5.8. This highlights
the effectiveness of fine-tuning on the MuST-C
dataset in enhancing the overall performance of our
system.

82

https://github.com/facebookresearch/fairseq/tree/main/exa \ mples/m2m_100
https://github.com/facebookresearch/fairseq/tree/main/exa \ mples/m2m_100
https://ict.fbk.eu/MuST-C/


System Dev Test

Gigaspeech 9.3 10.0
+ MuST-C Finetune 4.8 5.8

Table 2: ASR performance measured in terms of word
error rates.

We evaluate various translation strategies us-
ing the MuST-C test set. The experimental re-
sults are presented in Table 2. In the constrained
scenario, TRANSFORMER achieved a test BLEU
score of 25.04, whereas M2M-100 attained a
marginally higher score of 25.40. In the uncon-
strained setting, CHATGPT demonstrated superior
performance with a BLEU score of 28.25, while IN-
HOUSE MODEL obtained the highest BLEU score
of 30.91. These results emphasize the significance
of utilizing in-domain data for achieving optimal
performance in spoken language translation.

System Dev tst-COMMON

TRANSFORMER 13.93 25.04
M2M-100 16.53 25.40
CHATGPT — 28.25
IN-HOUSE MODEL 21.52 30.91

Table 3: Offline speech translation performance mea-
sured in terms of the BLEU score.

4 Speech-to-Speech Translation

4.1 End-to-End MINETRANS S2ST System
As shown in Figure 1, we construct an end-to-
end S2UT (Lee et al., 2021a) model comprising a
speech encoder, length adapter, and unit decoder.
Following (Lee et al., 2021a), we encode target
speech as discrete units via our trained Chinese
HuBert and remove consecutive repetitive units
to generate a reduced unit sequence. Unlike (Lee
et al., 2021a), our S2UT model directly learns the
mapping between source speech and discrete units
without any auxiliary recognition tasks (i.e., ASR
and MT tasks), which hyper-parameters are diffi-
cult to tune. Then we leverage a unit-based HiFi-
GAN Vocoder to achieve unit-to-waveform con-
version (Polyak et al., 2021). Next, we detail the
efforts making in pre-training for model initializa-
tion, data augmentation, consistency training and
model ensemble, which are used to improve the
translation quality of our system.

Speech

Encoder

Unit

Decoder

Unit Hifigan
Vocoder

Target unit

Source waveform

Target waveform

Length

Adapter

Figure 1: The overall architecture of the end-to-end
S2ST system.

4.1.1 Pretrained Models
Previous experiences (Dong et al., 2022; Popuri
et al., 2022) shown that better initialization can
reduce learning difficulty, we explore pre-training
of both the speech encoder and unit decoder.

Speech Encoder Pre-training. We use Wav2vec
2.0 (Baevski et al., 2020) and HuBert (Hsu et al.,
2021), which are trained in a self-supervised man-
ner, as speech encoders. Due to the data limitation
of the S2ST track, we use the unlabeled speech
described in Table 1 for training speech encoder:

• Wav2vec 2.0 uses a multi layer convolution neu-
ral network to encode audio and then uses a
transformer-based context encoder to construct a
contextual representation. The model is trained
by having a masked span of contrast loss on the
input of the context encoder. In this paper, we
modify Transformer as Conformer to obtain bet-
ter performance.

• HuBert has the same model architecture as
Wav2vec 2.0. However, its training process dif-
fers primarily in the use of cross-entropy and ad-
ditionally in the construction of targets through a
separate clustering process.

Unit Decoder Pre-training. We use the standard
sequence-to-sequence model to model the Text-to-
unit (T2U) task on GigaSS, and the decoder of
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this model will be used for the initialization of the
unit decoder of S2UT. The T2U model contains
12 transformer layers for the encoder and coder,
respectively. More specifically, we set the size of
the self-attention layer, the feed-forward network,
and the head to 1024, 4096, and 8, respectively.

4.1.2 Model Finetuning
We combine the pre-trained speech encoder and
unit decoder, and adding a randomly initialized
length adapter between the pre-trained modules.
The length adapter consists of a one-dimensional
convolutional layer with a stride of 2, which miti-
gates the length difference between the source au-
dio and the reduced target unit, as well as the mis-
match between representations.

Consistency Training. To further improve the
consistency of our model, we employ the R-Drop
algorithm (Liang et al., 2021) with a weight α set to
5. The R-Drop algorithm reduces inconsistencies
predicted by the model between training and infer-
ence through dropout, thereby improving general-
ization. Specifically, it randomly drops out parts
of the model during training, forcing it to learn
more robust representations that are less sensitive
to small changes in the input. For a more detailed
description of the R-Drop algorithm and its imple-
mentation, please refer to the paper by (Liang et al.,
2021).

4.1.3 Unit-based Vocoder
We utilize the unit-based HiFi-GAN (Polyak et al.,
2021) vocoder to convert discrete units into wave-
form for the speech-to-unit model. Following
the (Lee et al., 2021a) setup, we augment the
vocoder with a duration prediction module for the
reduced unit output, which consists of two 1D con-
volutional layers, each with ReLU activation, fol-
lowed by layer normalization and a linear layer.

4.1.4 Ensemble
Model ensemble can reduce the inconsistency of
the system to some extent, and we consider the
ensemble of four variants of S2UT models:

• W2V2-CONF-LARGE: The speech encoder is
initialized using Conformer-based Wav2vec 2.0
LARGE model. The unit decoder is initialized
randomly.

• W2V2-CONF-LARGE+T2U: The speech en-
coder is initialized using Conformer-based

Wav2vec 2.0 LARGE model. The unit decoder is
initialized from the T2U model.

• W2V2-TRANS-LARGE+T2U: The speech en-
coder is initialized using Transformer-based
Wav2vec 2.0 LARGE model. The unit decoder is
initialized from the T2U model.

• HUBERT-TRANS-LARGE+T2U: The speech
encoder is initialized using Transformer-based
HuBert LARGE model. The unit decoder is ini-
tialized from the T2U model.

4.1.5 Data Augmentation
We utilize well trained Fastspeech2 (Ren et al.,
2020) TTS models (see Section 4.2 for details) to
generate speech for MuST-C and CoVoST Chinese
texts to construct pseudo-corpora. These pseudo-
corpora are used as training data together with the
original labeled S2ST corpus.

4.2 Experiments

4.2.1 Implementation Details
All end-to-end S2UT models are implemented
based on the FAIRSEQ6 (Ott et al., 2019) toolkit.
We use pre-trained Chinese HuBERT model and
k-means model to encode Chinese target speech
into a vocabulary of 250 units. The Chinese Hu-
BERT and k-means models are learned from the
TTS data in Table 1. The architectural details of the
S2UT models are detailed in section 4.1.4. During
training, we use the adam optimizer with a learning
rate set to 5e-5 to update model parameters with 8K
warm-up updates. The label smoothing and dropout
ratios are set to 0.15 and 0.2, respectively. In prac-
tice, we train S2UT with 8 Nvidia Tesla A100
GPUs with 150K update steps. The batch size in
each GPU is set to 1200K, and we accumulate the
gradient for every 9 batches. For the first 5K steps
of S2UT model training, we freeze the update of the
speech encoder. The Unit HiFi-GAN Vocoder is
trained using SPEECH-RESYNTHESISRES7 toolkit
for 500k steps. For FastSpeech2 and HiFi-GAN,
we followed the paddlespeech AISHELL recipe8

for training. During inference, we average the
model parameters on the 30 best checkpoints based
on the performance of the GigaSS dev set, and
adopt beam search strategy with beam size of 10.

6https://github.com/facebookresearch/fairseq
7https://github.com/facebookresearch/

speech-resynthesis
8https://github.com/PaddlePaddle/PaddleSpeech/

tree/develop/examples/aishell3/tts3
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ID Model BLEU chrF

1 W2V2-CONF-LARGE 27.7 23.4
2 W2V2-CONF-LARGE+T2U 27.8 23.7
3 W2V2-TRANS-LARGE+T2U 25.2 22.3
4 HUBERT-TRANS-LARGE+T2U 26.2 23.2
5 HUBERT-TRANS-LARGE+T2U* 25.7 22.6

6 Ensemble(1, 2, 4) 28.0 23.9
7 Ensemble(2, 4, 5) 27.2 23.0

Table 4: ASR-BLEU and ASR-chrF on GigaSS valida-
tion set. ‘*’ indicates adding the GigaST test set to the
training data and fine-tuning it for one round.

4.2.2 Results
To evaluate the speech-to-speech translation sys-
tem, we use a Chinese ASR system9 trained on
WenetSpeech (Zhang et al., 2021) to transcribe
the speech output with the ctc_greedy_serach
mode. Based on this, we report case-sensitive
BLEU and chrF scores between the produced tran-
script and a textual human reference using sacre-
BLEU. The results on the GigaSS validation set
is shown in Table 4. Comparing W2V2-CONF-
LARGE+T2U and W2V2-TRANS-LARGE+T2U,
using Conformer-based architecture pre-trained
speech encoder for initialization has better perfor-
mance. In addition, we find that adding the GigaST
test set to training leads to a weak performance
degradation on the validation set, possibly because
the annotations of the test set are calibrated by hu-
mans and their style differs from that of the training
data.

5 Conclusion

This paper presents the MINETRANS system for
two challenge tracks of the IWSLT 2023: Offline
Speech Translation (S2T) and Speech-to-Speech
Translation (S2ST). For the S2T track, MINE-
TRANS employs a cascaded system to investigate
the limits of translation performance in both con-
strained and unconstrained settings. We explore
two machine translation strategies: supervised in-
domain fine-tuning and prompt-guided translation
using a large language model. For the S2ST track,
MINETRANS builds an end-to-end model based on
the speech-to-unit (S2U) framework. To the best
of our knowledge, we are the first and only team to
successfully train and submit the end-to-end S2ST

9https://github.com/wenet-e2e/wenet/blob/main/
docs/pretrained_models.en.md

on this track. This model uses our trained Hu-
BERT to encode the target speech as discrete units
and leverages the standard sequence-to-sequence
model to directly learn the mapping between source
speech and discrete units without the need for auxil-
iary recognition tasks such as ASR and MT. We use
several techniques to improve MINETRANS’s per-
formance, including speech encoder pre-training
on large-scale data, data filtering, data augmen-
tation, speech segmentation, consistency training,
and model ensemble.
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Surafel Melaku Lakew, Xutai Ma, Prashant Mathur,

85

https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.en.md
https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.en.md


Paul McNamee, Kenton Murray, Maria Nadejde,
Satoshi Nakamura, Matteo Negri, Jan Niehues, Xing
Niu, John E. Ortega, Juan Miguel Pino, Elizabeth
Salesky, Jiatong Shi, Matthias Sperber, Sebastian
Stüker, Katsuhito Sudoh, Marco Turchi, Yogesh
Virkar, Alexander H. Waibel, Changhan Wang, and
Shinji Watanabe. 2022. Findings of the iwslt 2022
evaluation campaign. In IWSLT.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M. Tyers, and
Gregor Weber. 2019. Common voice: A massively-
multilingual speech corpus. In International Confer-
ence on Language Resources and Evaluation.

Alexei Baevski, Henry Zhou, Abdel rahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in Neural Information Processing Systems.

Guoguo Chen, Shuzhou Chai, Guan-Bo Wang, Jiayu
Du, Weiqiang Zhang, Chao Weng, Dan Su, Daniel
Povey, Jan Trmal, Junbo Zhang, Mingjie Jin, San-
jeev Khudanpur, Shinji Watanabe, Shuaijiang Zhao,
Wei Zou, Xiangang Li, Xuchen Yao, Yongqing Wang,
Yujun Wang, Zhao You, and Zhiyong Yan. 2021. Gi-
gaspeech: An evolving, multi-domain asr corpus
with 10, 000 hours of transcribed audio. ArXiv,
abs/2106.06909.

Qianqian Dong, Fengpeng Yue, Tom Ko, Mingxuan
Wang, Qibing Bai, and Yu Zhang. 2022. Leverag-
ing pseudo-labeled data to improve direct speech-to-
speech translation. In Interspeech.

Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi, and
Tong Zhang. 2018. Exploiting deep representations
for neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4253–4262.

Yichao Du, Weizhi Wang, Zhirui Zhang, Boxing Chen,
Tong Xu, Jun Xie, and Enhong Chen. 2022. Non-
parametric domain adaptation for end-to-end speech
translation. In Conference on Empirical Methods in
Natural Language Processing.

Yichao Du, Zhirui Zhang, Weizhi Wang, Boxing Chen,
Jun Xie, and Tong Xu. 2021. Regularizing end-to-
end speech translation with triangular decomposition
agreement. In AAAI Conference on Artificial Intelli-
gence.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric multi-
lingual machine translation. The Journal of Machine
Learning Research, 22(1):4839–4886.

Mattia Antonino Di Gangi, R. Cattoni, L. Bentivogli,
Matteo Negri, and M. Turchi. 2019. Must-c: a multi-
lingual speech translation corpus. In NAACL.

Alex Graves. 2012. Sequence transduction with
recurrent neural networks. arXiv preprint
arXiv:1211.3711.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented Trans-
former for Speech Recognition. In Proc. Interspeech
2020, pages 5036–5040.

Zhiwei He, Tian Liang, Wenxiang Jiao, Zhuosheng
Zhang, Yujiu Yang, Rui Wang, Zhaopeng Tu, Shum-
ing Shi, and Xing Wang. 2023. Exploring human-
like translation strategy with large language models.
arXiv preprint arXiv:2305.04118.

Oleksii Hrinchuk, Vahid Noroozi, Ashwinkumar
Ganesan, Sarah Campbell, Sandeep Subramanian,
Somshubra Majumdar, and Oleksii Kuchaiev. 2022.
Nvidia nemo offline speech translation systems for
iwslt 2022. In IWSLT.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:3451–3460.

Guoping Huang, Lemao Liu, Xing Wang, Longyue
Wang, Huayang Li, Zhaopeng Tu, Chengyan Huang,
and Shuming Shi. 2021. Transmart: A practical in-
teractive machine translation system. arXiv preprint
arXiv:2105.13072.

Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà,
Javier Jorge, Nahuel Roselló, Adrià Giménez, Al-
berto Sanchís, Jorge Civera Saiz, and Alfons Juan-
Císcar. 2019. Europarl-st: A multilingual corpus for
speech translation of parliamentary debates. ICASSP
2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 8229–8233.

Ye Jia, Ron J Weiss, Fadi Biadsy, Wolfgang Macherey,
Melvin Johnson, Zhifeng Chen, and Yonghui Wu.
2019. Direct speech-to-speech translation with
a sequence-to-sequence model. arXiv preprint
arXiv:1904.06037.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is chatgpt a good
translator? a preliminary study. arXiv preprint
arXiv:2301.08745.

Wenxiang Jiao, Xing Wang, Shilin He, Irwin King,
Michael Lyu, and Zhaopeng Tu. 2020. Data reju-
venation: Exploiting inactive training examples for
neural machine translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2255–2266.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In First Work-
shop on Neural Machine Translation, pages 28–39.
Association for Computational Linguistics.

86



Ann Lee, Peng-Jen Chen, Changhan Wang, Jiatao Gu,
Xutai Ma, Adam Polyak, Yossi Adi, Qing He, Yun
Tang, Juan Miguel Pino, and Wei-Ning Hsu. 2021a.
Direct speech-to-speech translation with discrete
units. In Annual Meeting of the Association for Com-
putational Linguistics.

Ann Lee, Peng-Jen Chen, Changhan Wang, Jiatao Gu,
Sravya Popuri, Xutai Ma, Adam Polyak, Yossi Adi,
Qing He, Yun Tang, Juan Pino, and Wei-Ning Hsu.
2022. Direct speech-to-speech translation with dis-
crete units. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3327–3339, Dublin,
Ireland. Association for Computational Linguistics.

Ann Lee, Hongyu Gong, Paul-Ambroise Duquenne,
Holger Schwenk, Peng-Jen Chen, Changhan Wang,
Sravya Popuri, Juan Miguel Pino, Jiatao Gu, and
Wei-Ning Hsu. 2021b. Textless speech-to-speech
translation on real data. ArXiv, abs/2112.08352.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang,
Qi Meng, Tao Qin, Wei Chen, M. Zhang, and Tie-Yan
Liu. 2021. R-drop: Regularized dropout for neural
networks. ArXiv, abs/2106.14448.

Pierre Lison, Jörg Tiedemann, and Milen Kouylekov.
2018. Opensubtitles2018: Statistical rescoring of
sentence alignments in large, noisy parallel corpora.
In International Conference on Language Resources
and Evaluation.

Yuchen Liu, Hao Xiong, Zhongjun He, Jiajun Zhang,
Hua Wu, Haifeng Wang, and Chengqing Zong. 2019.
End-to-end speech translation with knowledge distil-
lation. In INTERSPEECH.

H. Ney. 1999. Speech translation: coupling of recogni-
tion and translation. 1999 IEEE International Con-
ference on Acoustics, Speech, and Signal Process-
ing. Proceedings. ICASSP99 (Cat. No.99CH36258),
1:517–520 vol.1.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
S. Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In NAACL.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
S. Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5206–5210.

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V.
Le. 2019. Specaugment: A simple data augmen-
tation method for automatic speech recognition. In-
terspeech 2019.

Adam Polyak, Yossi Adi, Jade Copet, Eugene
Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux. 2021.
Speech resynthesis from discrete disentangled self-
supervised representations. ArXiv, abs/2104.00355.

Sravya Popuri, Peng-Jen Chen, Changhan Wang,
Juan Miguel Pino, Yossi Adi, Jiatao Gu, Wei-Ning
Hsu, and Ann Lee. 2022. Enhanced direct speech-to-
speech translation using self-supervised pre-training
and data augmentation. In Interspeech.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2020. Fastspeech
2: Fast and high-quality end-to-end text to speech.
ArXiv, abs/2006.04558.

Yao Shi, Hui Bu, Xin Xu, Shaojing Zhang, and Ming
Li. 2020. Aishell-3: A multi-speaker mandarin tts
corpus and the baselines. In Interspeech.

Matthias Sperber, Graham Neubig, J. Niehues, and
A. Waibel. 2017. Neural lattice-to-sequence mod-
els for uncertain inputs. In EMNLP.

Ioannis Tsiamas, Gerard I Gállego, José AR Fonollosa,
and Marta R Costa-jussà. 2022. Shas: Approaching
optimal segmentation for end-to-end speech transla-
tion. arXiv preprint arXiv:2202.04774.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017a. Attention is all
you need. Advances in neural information processing
systems, 30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017b. Attention is all
you need. Advances in neural information processing
systems, 30.

Changhan Wang, Morgane Rivière, Ann Lee, Anne Wu,
Chaitanya Talnikar, Daniel Haziza, Mary Williamson,
Juan Miguel Pino, and Emmanuel Dupoux. 2021a.
Voxpopuli: A large-scale multilingual speech corpus
for representation learning, semi-supervised learning
and interpretation. In Annual Meeting of the Associa-
tion for Computational Linguistics.

Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang,
Dian Yu, Shuming Shi, and Zhaopeng Tu. 2023.
Document-level machine translation with large lan-
guage models. arXiv preprint arXiv:2304.02210.

Minghan Wang, Yuxia Wang, Chang Su, Jiaxin Guo,
Yingtao Zhang, Yujiao Liu, M. Zhang, Shimin Tao,
Xingshan Zeng, Liangyou Li, Hao Yang, and Ying
Qin. 2021b. The hw-tsc’s offline speech translation
system for iwslt 2022 evaluation. In IWSLT.

Wei Wang, Taro Watanabe, Macduff Hughes, Tetsuji
Nakagawa, and Ciprian Chelba. 2018. Denoising
neural machine translation training with trusted data
and online data selection. In Proceedings of the Third
Conference on Machine Translation: Research Pa-
pers, pages 133–143.

Wenxuan Wang, Wenxiang Jiao, Yongchang Hao, Xing
Wang, Shuming Shi, Zhaopeng Tu, and Michael Lyu.
2022. Understanding and improving sequence-to-
sequence pretraining for neural machine translation.

87

https://doi.org/10.18653/v1/2022.acl-long.235
https://doi.org/10.18653/v1/2022.acl-long.235


In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2591–2600.

Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao,
Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu Chen,
Chenchen Zeng, Di Wu, and Zhendong Peng. 2021.
Wenetspeech: A 10000+ hours multi-domain man-
darin corpus for speech recognition. ICASSP 2022
- 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6182–
6186.

Peidong Zhang, Boxing Chen, Niyu Ge, and Kai Fan.
2019. Lattice transformer for speech translation. In
ACL.

Weitai Zhang, Zhongyi Ye, Haitao Tang, Xiaoxi Li,
Xinyuan Zhou, Jing Yang, Jianwei Cui, Dan Liu,
Junhua Liu, and Lirong Dai. 2022a. The ustc-nelslip
offline speech translation systems for iwslt 2022. In
IWSLT.

Ziqiang Zhang, Junyi Ao, Shujie Liu, Furu Wei, and
Jinyu Li. 2022b. The yitrans end-to-end speech
translation system for iwslt 2022 offline shared task.
ArXiv, abs/2206.05777.

88



Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023), pages 89–101
July 13-14, 2023 c©2023 Association for Computational Linguistics

Improving End-to-End Speech Translation by Imitation-Based Knowledge
Distillation with Synthetic Transcripts

Rebekka Hubert∗
Computational Linguistics

Heidelberg University, Germany
hubert@cl.uni-heidelberg.de

Artem Sokolov
Google Research
Berlin, Germany

artemsok@google.com

Stefan Riezler
Computational Linguistics & IWR
Heidelberg University, Germany
riezler@cl.uni-heidelberg.de

Abstract

End-to-end automatic speech translation (AST)
relies on data that combines audio inputs with
text translation outputs. Previous work used ex-
isting large parallel corpora of transcriptions
and translations in a knowledge distillation
(KD) setup to distill a neural machine transla-
tion (NMT) into an AST student model. While
KD allows using larger pretrained models, the
reliance of previous KD approaches on manual
audio transcripts in the data pipeline restricts
the applicability of this framework to AST. We
present an imitation learning approach where a
teacher NMT system corrects the errors of an
AST student without relying on manual tran-
scripts. We show that the NMT teacher can
recover from errors in automatic transcriptions
and is able to correct erroneous translations of
the AST student, leading to improvements of
about 4 BLEU points over the standard AST
end-to-end baseline on the English-German
CoVoST-2 and MuST-C datasets, respectively.
Code and data are publicly available.1

1 Introduction

The success of data-hungry end-to-end automatic
speech translation (AST) depends on large amounts
of data that consist of speech inputs and corre-
sponding translations. One way to overcome the
data scarcity issue is a knowledge distillation (KD)
setup where a neural machine translation (NMT)
expert (also called oracle) is distilled into an AST
student model (Liu et al., 2019; Gaido et al., 2020).
The focus of our work is the question of whether the
requirement of high-quality source language tran-
scripts, as in previous applications of KD to AST,
can be relaxed in order to enable a wider applicabil-
ity of this setup to AST scenarios where no manual
source transcripts are available. Examples for such

∗All work was done at Heidelberg University.
1https://github.com/HubReb/imitkd_ast/

releases/tag/v1.1

scenarios are low-resource settings (e.g., for lan-
guages without written form for which mostly only
audio-translation data are available), or settings
where one of the main uses of source transcripts
in AST — pre-training the AST encoder from an
automatic speech recognition (ASR) system— is
replaced by a large-scale pre-trained ASR system
(which itself is trained on hundreds of thousands
hours of speech, but the original training transcripts
are not available (Radford et al., 2022; Zhang et al.,
2022b)). Relaxing the dependence of pre-training
AST encoders on manual transcripts has recently
been studied by Zhang et al. (2022a). Our focus
is instead to investigate the influence of manual
versus synthetic transcripts as input to the student
model in an imitation learning (IL) approach (Lin
et al., 2020; Hormann and Sokolov, 2021), and to
lift this scenario to AST. To our knowledge, this has
not been attempted before. We present a proof-of-
concept experiment where we train an ASR model
on a few hundred hours of speech, but discard the
manual transcripts in IL training, and show that
this ASR model is sufficient to enable large NMT
models to function as error-correcting oracle in
an IL setup where the AST student model works
on synthetic transcripts. Focusing on the IL sce-
nario, we show that one of the key ingredients to
make our framework perform on synthetic ASR
transcripts is to give the AST student access to the
oracle’s full probability distribution instead of only
the expert’s optimal actions. Furthermore, when
comparing two IL algorithms of different power —
either correcting the student output in a single step,
or repairing outputs till the end of the sequence —
we find that, at least in the setup of a reference-
agnostic NMT teacher, the single-step correction
of student errors is sufficient.

One of the general reasons for the success of
our setup may be a reduction of data complexity
and an increase of variations of outputs, similar to
applications of KD in NMT (Zhou et al., 2020).
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To investigate the special case of imitation-based
KD on synthetic speech inputs, we provide a man-
ual analysis of the NMT expert’s behavior when
faced with incorrect synthetic transcripts as input,
or when having to correct a weak student’s transla-
tion in the IL setting. We find that the NMT oracle
can correct errors even if the source language input
lacks semantically correct information, by utiliz-
ing its language modeling capability to correct the
next-step token. This points to new uses of large
pre-trained ASR and NMT models (besides initial-
ization of encoder and decoder, respectively) as
tools to improve non-cascading end-to-end AST.

2 Related Work

Imitation learning addresses a deficiency of
sequence-to-sequence learning approaches, nick-
named exposure bias (Bengio et al., 2015; Ranzato
et al., 2016), that manifests as the inference-time
inability to recover from own errors, leading to
disfluent or hallucinated translations (Wang and
Sennrich, 2020). IL aims to replace the standard
learning paradigm of teacher forcing (Williams and
Zipser, 1989) (which decomposes sequence learn-
ing into independent per-step predictions, each con-
ditioned on the golden truth context rather than
the context the model would have produced on its
own) by enriching the training data with examples
of successful recovery from errors. We build upon
two previous adaptations of IL to NMT (Lin et al.,
2020; Hormann and Sokolov, 2021) and lift them
to AST.

Knowledge distillation (Hinton et al., 2015)
transfers the knowledge encoded in a large model,
called teacher, to a far smaller student model by
using the teacher to create soft labels and train the
student model to minimize the cross-entropy to the
teacher. KD has been successfully used for ma-
chine translation (Kim and Rush, 2016), speech
recognition (Wong and Gales, 2016) and speech
translation (Liu et al., 2019).

Synthetic speech translation training datasets
have been used previously to train AST models:
Pino et al. (2020) used an ASR-NMT model cas-
cade to translate unlabeled speech data for aug-
mentation. To obtain more machine translation
(MT) training data, Jia et al. (2019); Pino et al.
(2019) generated synthetic speech data with a text-
to-speech model. Liu et al. (2019) applied KD
between an NMT expert and an AST student with
manual transcriptions as expert input to improve

AST performance. Gaido et al. (2020) improved
upon this by increasing the available training data
by utilizing a MT model to translate the audio tran-
scripts of ASR datasets into another language, yet
they still use manual transcripts for distillation in
the following finetuning phase.

Further attempts focused on improving AST
models by utilizing MT data for multitask learn-
ing with speech and text data (Tang et al., 2021b,a;
Bahar et al., 2019; Weiss et al., 2017; Anastasopou-
los and Chiang, 2018), such as XSTNet (Ye et al.,
2021) and FAT-MLM (Zheng et al., 2021).

A question orthogonal to ours, concerning the
influence of pre-training encoder and/or decoder on
source transcripts, has been investigated by Zhang
et al. (2022a). They achieved competitive results
without any pretraining via the introduction of pa-
rameterized distance penalty and neural acoustic
feature modeling in combination with CTC regular-
ization with translations as labels. Their question
and solutions are orthogonal to ours and are likely
to be yield independent benefits.

3 Imitation-based Knowledge Distillation

We view an auto-regressive NMT or AST system
as a policy π that defines a conditional distribution
over a vocabulary of target tokens v ∈ V that is con-
ditioned on the input x and the so far generated pre-
fix y<t: π(v|y<t;x). This policy is instantiated as
the output of the softmax layer. When training with
teacher-forcing, the cross-entropy (CE) loss ℓ(·) is
minimized under the empirical distribution of train-
ing data D: LCE(π) = E(y,x)∼D[

∑T
t=1 ℓ(yt, π)].

To perform well at test time we are interested in the
expected loss under the learned model distribution:
L(π) = E(y,x)∼π[

∑T
t=1 ℓ(yt, π)].

As shown by Ross et al. (2011), the discrepancy
between L and LCE accumulates quadratically with
the sequence length T , which in practice could
manifest itself as translation errors. They proposed
the Dagger algorithm which has linear worst-case
error accumulation. It, however, relies on the ex-
istence of an oracle policy π∗ that, conditioned on
the same input x and the partially generated π’s pre-
fix y<t, can produce a single next-step correction
to y<t. Ross and Bagnell (2014) further proposed
the AggreVaTe algorithm which relies on an even
more powerful oracle that can produce a full contin-
uation in the task-loss optimal fashion: For NMT,
this means continuing the y<t in a way that maxi-
mizes BLEU, as done for example in Hormann and
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Figure 1: Diagram of AST training with imitation
learning and synthetic transcripts coming from ASR
models. (1) With probability 1 − β the AST student
creates a hypothesis ŷ that replaces the reference trans-
lation y. (2) The ASR model generates the synthetic
transcript x̂s for the audio sample xa to feed the NMT
oracle as input. (3) Calculation of Dagger or AggreVaTe
loss as shown in Algorithm 1.

Sokolov (2021).

IL for NMT We pretrain a large NMT model to
serve as an oracle π∗ that either simply predicts the
next-step optimal output vocabulary token v∗t given
a source sentence x and any (potentially, erroneous)
partial NMT student hypothesis y<t (Dagger):

v∗t = argmax
v∈V

π∗(v | y<t;x), (1)

or continues y<t till the end (AggreVaTe):

y∗>t = argmax
y>t

π∗(y<t + at + y≥t | y<t;x), (2)

where y>t is the continuation, at is an exploratory
action, and the last argmax is implemented as
beam search. The predicted v∗t or y∗>t are viewed
as one-step or multi-step corrections of the current
policy, and the student is updated to increase the
probability of the correction via the cross-entropy
loss on triples (yt, x, v∗t ) in case of Dagger, or to
decrease a square loss between logit Q of the se-
lected action at and the BLEU of the predicted
suffix2 from that action in case of AggreVaTe.

2We use the difference between the BLEU values of the
full sequence and that of the prefix (Bahdanau et al., 2016).

Both algorithms proceed iteratively, where the
newly generated set of triples form a provisional
training data set Di. Originally, Dagger and Ag-
greVaTe train the student’s πi on the aggregated
dataset ∪j≤iDj and use a probabilistic mixture for
the current roll-out policy, which queries the oracle
with probability βi and the student otherwise. This
setup guarantees that the prediction error scales
at most linearly with time, unlike the quadratic
scaling of the standard teacher forcing (Ross et al.,
2011), which is standardly used in sequence-level
KD. This makes Dagger and AggreVaTe promising
candidates to improve over KD.

In our implementation, we follow Lin et al.
(2020), who save memory via training on individ-
ual Di in each iteration i, instead of training on
the set union. They further speed up training by
keeping the reference translation y with probability
βi, and otherwise generate a translation ŷ of the
source sentence x from the student policy (see Al-
gorithm 1). For each t in the algorithm, AggreVaTe
needs to generate an exploration token at and cal-
culate the BLEU it would lead to, according to the
oracle continuation starting off this action.

IL for AST Adapting Dagger and AggreVaTe to
an AST student is relatively straightforward (see
Figure 1): We feed the NMT oracle the source lan-
guage transcript xs of the audio data sample xa that
is also given to the AST student. We define an algo-
rithm IKD (imitation knowledge distillation) that
optimizes the cross-entropy of the student’s policy
w.r.t. the optimal expert prediction:

LIKD(π) = E

[
−

T∑

t=1

log π(v∗t | y<t;xa)

]
, (3)

with v∗t as in (1). Algorithm IKD+ optimizes the
cross-entropy w.r.t. the expert’s policy:

LIKD+(π) = (4)

E

[
−
∑

v∈V
π∗(v | y<t;xs) · log π(v | y<t;xa)

]
.

An important modification to these objectives
that we propose in this work is to replace the
gold source language transcripts xs fed to the
NMT oracle by synthetic transcripts generated by
a pretrained ASR model. We call this algorithm
SynthIKD, with a respective SynthIKD+ variant.
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Algorithm 1: Dagger/AggreVaTe for distil-
lation in NMT; combined from (Lin et al.,
2020) and (Hormann and Sokolov, 2021).

Data: Let D be original bi-text dataset, π∗ the NMT
oracle policy, I the total number of iterations,
T the max sequence length, Q the final logits,
and B the batch size.

Initialize π1 arbitrarily.
for i = 1 . . . I do

Initialize Di ← ∅
for b = 1 . . . B do

Sample an example (x, y) ∼ D.
Sample uniformly u ∼ [0, 1]
if u > βi then

Generate ŷ from πi given x.
Replace y with ŷ.

if Dagger then
for t = 1 . . . T do

Predict v∗t = argmax
v∈V

π∗(v | y<t;x)

Append (y<t, x, v
∗
t ) to Di

else // AggreVaTe
Sample uniformly t ∈ {1, .., T}.
Predict at = argmax

v∈V
π(v | y<t;x)

Predict
y∗
>t = argmax

y>t

π∗(y>t | y<t + at;x)

Append (y<t, x, at,BLEU(y∗
>t)) to Di

LDagger = EDi

[
−

T∑
t=1

log πi(v
∗
t | y<t;x)

]

LAggreVaTe =

EDi

[
T∑

t=1

(
σ(Q(at | y<t;x))− BLEU(y∗

>t)
)2
]

Let πi+1 = πi − αi · ∂L
∂πi

.

4 Experiments

We experiment with English-German AST on the
CoVoST2 (Wang et al., 2021) (430 hours) and
the MuST-C (Di Gangi et al., 2019) datasets (408
hours)3. As expert model, we use the Transformer
from Facebook’s submission to WMT19 (Ng et al.,
2019), which is based on the Big Transformer
architecture proposed by (Vaswani et al., 2017).
Our sequence-to-sequence models for students are
RNNs and Base Transformers. All models are
based on the fairseq framework (Ott et al.,
2019; Wang et al., 2020), but use different set-
tings of meta-parameters and preprocessing than
the default models. More details on models, meta-
parameters and training settings are given in the
Appendix A.

Our training setups are summarized in Table 1.
We compare our trained student models with sev-
eral baseline approaches: “Standard” denotes AST

3We also experimented with a smaller Europarl-ST dataset
and to save space we report results in Appendix B. Overall,
they are similar to these on larger datasets.

Variant Expert Input Loss

Standard - CE

KD+ (Liu et al., 2019) gold CE
SynthKD+ synthetic CE

IKD (Lin et al., 2020) gold LIKD
IKD+ (Lin et al., 2020) gold LIKD+

SynthIKD (ours) synthetic LIKD
SynthIKD+ (ours) synthetic LIKD+

Table 1: Summary of training variants: “Standard” de-
notes AST trained via cross-entropy (CE) on ground
truth targets with a label smoothing. KD+ denotes word-
level knowledge distillation between the expert’s and
student’s full output probability. IKD and IKD+ denote
imitation knowledge distillation where student model is
corrected by the optimal expert action or the full expert
policy (Lin et al., 2020), respectively. SynthIKD and
SynthIKD+ are our variants with synthetic transcripts.
Expert Input indicates whether the NMT expert is given
the original transcripts from the dataset or synthetic
transcripts created by ASR. All IKD methods use the
exponential decay schedule for β that (Lin et al., 2020)
found to work best.

trained by teacher forcing on ground truth targets
with a label smoothing (Szegedy et al., 2016) factor
of 0.1. KD+ (Liu et al., 2019) denotes word-level
knowledge distillation between the expert’s and
student’s full output probability. IKD and IKD+

denote imitation knowledge distillation, where stu-
dent model is corrected by the empirical distribu-
tion of the optimal expert actions or the full expert
policy (Lin et al., 2020), respectively. SynthIKD
and SynthIKD+ are our variants with synthetic tran-
scripts. We used the same same exponential decay
schedule (β = 1

T ) used by (Lin et al., 2020) as
early experiments showed that this performed best
in our setup.

All AST models’ encoders are initialized with
the encoder of the corresponding ASR model,
trained on the respective datasets with cross-
entropy and the label-smoothing factor of 0.1. Be-
cause of the relatively small size of these datasets,
our experiments should seen as proof-of-concept,
showing that ASR models trained on a few hun-
dred hours of audio provide synthetic transcripts
of sufficient quality to enable imitation-based KD
for AST. The standalone performance of our ASR
models is listed in Table 2.
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Model CoVoST2 MuST-C
dev test dev test

RNN 26.68 33.94 23.42 24.44
Transformer 20.93 26.60 21.10 20.68

Table 2: WER↓ results for ASR models pretrained on
CoVoST2 and MuST-C. These models are used to cre-
ate the synthetic transcripts for respective experiments.
Standard development and test splits were used for CoV-
oST2. For MuST-C, we tested on tst-COMMON.

4.1 Feasibility of Oracle Correction

The idea of using synthetic transcripts in place of
gold transcripts has merit only if the NMT oracle’s
translations have higher quality than the transla-
tions the AST model generates. Therefore, we first
verify if the NMT oracle is capable of complet-
ing an AST models’ partial hypotheses y<t while
improving quality at the same time.

We follow Lin et al. (2020) and let the AST
models trained with label-smoothed CE on ground
truth targets translate the audio input with greedy
decoding up to a randomly chosen time step. Then,
we feed the NMT expert the gold transcript as input
and the partial translation as prefix, and let the
oracle finish the translation with greedy decoding.

As Table 2 shows, the out-of-the-box ASR per-
formance is relatively low (high WER), so errors
in synthetic transcripts will be propagated through
the NMT oracle. The question is whether the ex-
pert’s continuation can be of higher quality than
the student’s own predictions despite the partially
incorrect synthetic transcripts. In Table 3, lines 1
and 2 (or, 5 and 6) set the lower (end-to-end) and
upper (cascade) bounds on the performance. We
see that the NMT expert is able to complete the
student hypotheses successfully (lines 3, 4 and 7,
8), bringing gains in both gold and synthetic setups,
and reaching the upper bound (lines 3 vs. 2 and
7 vs. 6) for gold ones. Although the mistakes in
the synthetic transcripts do result in lower BLEU
scores (lines 4 and 8) they still improve over the
AST student complete translations (lines 1 and 5).

4.2 Main Results

Table 4 shows the main results of applying Algo-
rithm 1 for training an AST student with imitation-
based knowledge distillation on CoVoST2 and
MuST-C.

Dagger First we present results for the Dagger
algorithm. In Table 4, for both CoVoST2 and

MuST-C models, Dagger with the Transformer ar-
chitecture outperforms all baselines4, and matching
full teacher distributions (the ‘+’-versions of losses)
gives consistent gains. Distillation with RNNs, on
the other hand, fails to improve BLEU scores over
baselines, most likely due to their overall lower
translation quality. This leads to the student hy-
potheses that are too far from the reference so that
the expert’s one-step corrections are not able to
correct them.

The results show that Transformers and RNNs
with synthetic transcripts show statistically insignif-
icant differences in performance to the ones that
are using gold transcripts. This is notable since
the partially synthetic transcripts provided to the
NMT oracle are often incorrect, yet do not result in
a noticeable effect on the final student performance
if used in the IL framework. A similar observa-
tion can be made when comparing the use of gold
transcripts versus synthetic transcripts: Transform-
ers on both datasets perform comparably and erro-
neous transcripts do not seem to harm the trained
AST model.

AggreVaTe Finally, we evaluate the performance
of AggreVaTe both with gold and synthetic tran-
scripts. During training we targeted and evalu-
ated with the non-decomposable BLEU metric (i.e.
training with sentence-BLEU and evaluating with
corpus-BLEU) as well as with the decomposable
TER metric (Table 5). Following Hormann and
Sokolov (2021) we warm-started AggreVaTe with
differently trained standard or Dagger models, and
trained with AggreVaTe objectives for up to 50
epochs with early stopping on respective develop-
ment sets.

Surprisingly, we found that AggreVaTe does not
bring additional benefits on top of Dagger despite
the promise for a better matching between training
and inference objectives. Also there is no signifi-
cant difference between the results with the TER
rewards objective and sentence-BLEU rewards on
both CoVoST2 and MuST-C. We explain these re-
sults by the sufficiency of one-step corrections to
correct a “derailed” student, with little benefit of
continuing demonstration till the end of translation.
The fact that Dagger turns out to reap all of the ben-
efits from training with IL is good news in general,
since running beam search during training (to get
AggreVaTe’s full continuations) is more expensive

4p-value < 0.005 using the paired approximate random-
ization test (Riezler and Maxwell, 2005)
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Architecture Hypotheses # Decoding Setup Source Transcripts dev-BLEU↑

RNN
full 1 AST - 11.9

2 ASR transcribes, NMT expert translates - 21.8

partial 3 AST starts, NMT expert completes gold 21.9
4 AST starts, NMT expert completes synthetic 15.6

Transformer
full 5 AST - 16.7

6 ASR transcribes, NMT expert translates - 25.4

partial 7 AST starts, NMT expert completes gold 25.4
8 AST starts, NMT expert completes synthetic 19.9

Table 3: Feasibility experiment: BLEU score on CoVoST2 development set of NMT expert’s completion of AST
model full or partial hypotheses with greedy decoding; gold denotes the usage of the dataset’s source language
transcripts as NMT inputs and synthetic denotes synthetic transcripts created by the respective ASR model.

Achitecture Models CoVoST2 MuST-C
dev test dev test

RNN ba
se

lin
e Standard 13.6 10.0 14.6 14.1

KD+ 14.6 11.1 17.9 17.2
IKD+ 13.1 10.1 15.7 14.9

ou
rs SynthKD+ 14.1 10.6 16.9 15.9

SynthIKD+ 12.8 9.7 16.3 15.1

Transformer ba
se

lin
e Standard 18.4 14.2 19.5 19.4

KD+ 21.3 17.7 17.7 22.2
IKD+ 21.8 18.4 23.2 23.3

ou
rs SynthKD+ 21.7 18.0 22.5 22.6

SynthIKD+ 21.8 18.5 23.5 23.5

Table 4: Main results: RNN and Transformer student
models trained on expert inputs and loss variants of Ta-
ble 1, using Dagger for IL. We used the tst-COMMON
as the test set for MuST-C. (Synth)IKD is not included
since its performance is worse than (Synth)KD+. Trans-
formers trained with IL outperform all baselines, while
pure KD is the best for generally lower-quality RNN-
based models. Synthetic transcripts do not harm perfor-
mance for Transformer student models.

than greedily selecting one action (as does Dagger).

4.3 Quality of Synthetic Transcripts

In this section, we investigate explanations for
the high performance of Dagger on synthetic tran-
scripts: The first hypothesis is that synthetic tran-
scripts are already “good enough” and per-step IL
corrections add nothing on top. Second, the gains
could be due to the known NMT “auto-correcting”
ability and due to general robustness to the quality
of the source (cf. the success of back-translation in
NMT), and all benefits could be reached with KD
alone. To test both hypotheses, we create new train-
ing datasets where we replace references with trans-
lated gold or synthetic transcripts by the same NMT
expert with beam size 5. Evaluating on the unmodi-
fied references, we trained Transformer-based base-
lines and the IL model from Lin et al. (2020) on

these two new corpora.
As Table 6 shows, Transformer KD+ trained on

translated gold transcripts outperforms its coun-
terparts trained on translated synthetic transcripts,
confirming errors in the synthetic transcripts. This
refutes the first hypothesis.

Regarding the second hypothesis, we compare
the KD+ to IKD+ from the synthetic translated part
in Table 6. Were “auto-correction” sufficient we
would see similar performance in both lines. This
rejects the second hypothesis and suggests that IL
adds value on top of general NMT robustness to
inputs.

4.4 Qualitative Analysis

Here, we perform a human evaluation of success-
ful IL corrections, aiming at an explanation of the
performance of Dagger on synthetic transcripts.

We randomly sample 100 examples from the
CoVoST2 training set on which the ASR Trans-
former has a non-zero sentence-wise word error
rate, and compare the NMT expert’s probability
distributions over time for the given synthetic tran-
scripts. From the WER histogram in Figure 2 we
see that most of the sentences have a single-digit
number of errors.

Figure 2: Histogram of sentence-wise WER of ASR
Transformer on 100 samples from CoVoST2.
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IL Algorithm Model Data
CoVoST2 MuST-C

BLEU↑ TER↓ BLEU↑ TER↓
dev test dev test dev test dev test

Dagger
Standard gold 18.4 14.2 69.1 77.1 19.5 19.4 70.8 69.4
IKD+ gold 21.8 18.4 63.7 70.0 23.2 23.3 67.4 65.6
SynthIKD+ synth 21.8 18.5 63.6 69.8 23.5 23.5 67.2 65.6

Warm-start Model Data BLEU↑ TER↓ BLEU↑ TER↓
dev test dev test dev test dev test

AggreVaTe

sentence-BLEU reward-to-go
Standard gold 18.7 14.6 68.2 76.0 19.9 19.9 70.2 68.1
Standard synth 18.7 14.6 68.2 75.9 20.0 19.7 70.1 68.7
IKD+ gold 22.1 18.5 63.1 69.6 23.5 23.4 67.4 65.7
SynthIKD+ synth 22.1 18.5 63.1 69.7 23.5 23.6 67.0 65.6

TER reward-to-go
Standard gold 18.7 14.7 67.8 75.4 20.0 19.9 70.0 68.5
Standard synth 18.7 14.6 67.9 75.6 19.9 19.6 69.8 68.4
IKD+ gold 22.0 18.5 63.1 69.4 23.3 23.4 67.3 65.5
SynthIKD+ synth 22.1 18.5 63.1 69.6 23.5 23.6 67.0 65.3

Table 5: Comparison of Dagger with warm-started AggreVaTe with a maximum of 50 epochs on CoVoST2 and
MuST-C.

Training CoVoST2 MuST-C
dev test dev test

training on translated gold transcripts
Standard 18.1 14.9 20.0 20.0
KD+ 21.3 17.6 23.4 23.1
IKD+ 22.6 18.6 23.5 23.7

training on translated synthetic transcripts
Standard 17.8 14.2 19.2 19.2
KD+ 20.2 16.5 22.1 22.5
IKD+ 21.0 17.4 23.0 23.1

Table 6: BLEU scores of Transformer models trained
on the training set with original references replaced by
translations of gold and synthetic transcripts in com-
parison to using the original training set (lower part of
Table 4).

As WER cannot be used to differentiate between
small but inconsequential (to the understanding of
the sentence) errors and mistakes that change the
meaning of the sentence, we further compare the
generated transcript to the gold transcript and look
at the top-8 output probabilities of the expert at
each time step for each sample to classify each er-
ror in the synthetic transcripts. We further feed the
sampled sentences to the NMT expert and find that
in 36 out of 100 samples (all but the last two lines
in Table 7), the expert is able to generate output
probability distributions that favor the correct tar-
get token despite errors in the transcript. Although
the expert can put large probability mass on the
correct target token, whether it does so depends
on the error type in the generated transcript. The
expert is often able to deal with surface form errors,

Error Type Freq

omitted tokens 2
surface form error 17
contentual error, correct target in top-1 5
contentual error, correct target in top-8 12
critical error, expert predicts correctly due to prefix 32
critical error, expert does not predict correctly 32

Table 7: Error types in the synthetic transcripts created
by the ASR model.

such as different spellings, punctuation errors and
different word choice (17 occurrences). When the
synthetic transcripts contain critical errors, e.g. par-
tially hallucinated transcript, the expert is still able
to produce the correct translation if the missing or
wrong information can be still inferred from the
prefix (32 occurrences).

Next, we verify that the decoder language mod-
eling capability is what primarily drives the cor-
rection process. We do this by feeding parts of
reference translations as prefix conditioned on erro-
neous synthetic transcripts. Consider the transcript
“The king had taken possession of Glamis Castle
and plywood.” generated by the ASR model. Its
gold transcript reads “plundered it” instead of “ply-
wood”. In Figure 3 we illustrate output probabili-
ties that the expert generates in the last time-steps.
Assume as in Figure 3a that the expert has been

given the prefix “Der König hatte Glamis Castle
in Besitz genommen und”. According to the out-
put probabilities, the next output symbol is the
subword unit “Sperr” and would not be a proper
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(a) with y<t = “Der König hatte Glamis Castle in Besitz
genommen und ”

(b) with y<t = “Der König hatte Glamis Castle in Besitz
genommen und ge”

Figure 3: NMT expert top-8 output probabilities when translating the incorrect synthetic transcript “The king had
taken possession of Glamis Castle and plywood it.”

(a) with y<t = “S” (b) with y<t = “Sagte , ”

Figure 4: NMT expert top-8 output probabilities when translating the incorrect synthetic transcript “Slow down!”

correction. At the next timestep, however, the last
symbol in the prefix is the subword unit “ge” and,
as Figure 3b shows, the expert, being driven by its
decoder language modeling capability, puts highest
probabilities on subword units that are most likely
to produce a fluent output (the correct one “pl@@”,
and less probable “pflan@@” and “kl@@” rather
then paying attention to the (wrong) information in
the synthetic transcripts.

Similar situations can be observed in samples
with entirely wrong synthetic transcripts. In Fig-
ure 4, the expert has received the synthetic tran-
script “Slow down!” as input, which shares no
meaning with the gold transcript “Said he’d con-
sider it.” As shown in Figure 4a, the expert as-
signs the highest probability to “@@low” if it is
given the prefix “S” (as the expert has a shared
vocabulary, it can complete the output this way),
which turns the partial translation into an exact
copy of the transcript. Again, the top-8 predic-

tions do not share similar meaning with the tran-
script. After, in Figure 4b, the expert has received
the prefix “Sagte,”, it still attempts to complete
y<t by generating output symbols that would turn
y into a valid translation of this wrong transcript
(“langsam” (slow), “ruhig” (quiet), “langs@@”))
with the rest of options being mostly driven by
language modeling rather then reproducing source
semantics (“ent@@”, “verlan@@”).

Overall, with the SynthIKD+ training, the expert
induces smoothed output distributions and fluency
on the student more than it enforces the student to
predict one-hot labels produced by the expert as is
done by sequence-level KD.

5 Conclusion

We showed that a pretrained NMT model can suc-
cessfully be used as an oracle for an AST student,
without requiring gold source language transcripts
as in previous approaches to imitation learning for
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AST. This widens the applicability of imitation
learning approaches to datasets that do not con-
tain manual transcripts or to pre-trained ASR mod-
els for which training transcripts are not available.
Our qualitative analysis suggests an explanation of
the fact that the NMT oracle is robust against mis-
matches between manual and synthetic transcripts
by its large language model capabilities that allow
it to continue the prefix solely based on its learned
contextual knowledge.

6 Limitations

There are several limitations of this study. First, it is
done on one language pair although we believe this
should not qualitatively change the results. Second,
only one set of standard model sizes was evaluated
for AST student and NMT expert; we expect it
be in line with reported findings for NMT (Ghor-
bani et al., 2021). Finally, while alluding to the
potential of using large pre-trained ASR models in-
stead of manual transcripts for IL-based AST, our
current work must be seen as a proof-of-concept
experiment where we train ASR models on a few
hundred hours of audio, and discard the manual
transcripts in IL training, showing the feasibility of
our idea.
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Model BLEU↑
dev test

original dataset
Standard 13.8 14.4
KD+ 17.4 17.8
SynthKD+ 17.5 18.0
IKD+ 17.0 17.1
SynthIKD+ 17.0 17.0

translated gold training set
Standard 15.3 15.3
KD+ 18.2 18.4
IKD 16.8 17.0
IKD+ 17.1 17.5
synthetic translated training set
Standard 14.7 15.3
KD+ 17.0 16.8
IKD 16.1 16.0
IKD+ 16.3 16.6

Table A.1: Results on Europarl-ST

A Models, Meta-parameters, and
Training Settings

We use the speech-to-text module of the fairseq
framework (Ott et al., 2019; Wang et al., 2020)
for all experiments and train both RNNs with con-
volutional layers for time dimension reduction as
in Berard et al. (2018) and small Transformers as
in Wang et al. (2020), which consist of a convo-
lutional subsampler of two convolutional blocks,
followed by 12 encoder layers and 6 decoder layers.
The dimension of the self-attention layer is 256 and
the number of attention heads is set to 4. For the
NMT oracle, we use the trained Transformer model
from the Facebook’s submission to WMT19 (Ng
et al., 2019) 5, which is based on the big Trans-
former (Vaswani et al., 2017) which has 6 encoder
and decoder layers, 16 attention heads and the di-
mension of 1024, with a larger feed-forward layer
size of 8192. This NMT oracle had been trained
on all available WMT19 shared task en-de training
data and on back-translated english and german
portions of the News crawl dataset.

For all models we use Adam (Kingma and Ba,
2015) with gradient clipping at norm 10 and stop
training if the development set loss has not im-
proved for 10 epochs. For RNN architectures, we
return the best model on the development set and

5As the WMT19 submission consists of an ensemble of
models, we use the model1.pt for our experiments.

for Transformers, we create each model by aver-
aging over the last 10 checkpoints. For inference,
a beam size of 5 was used and we report case-
sensitive detokenized BLEU (Papineni et al., 2002)
computed with sacreBLEU (Post, 2018). We tested
for statistical significance with the paired approx-
imate randomization test (Riezler and Maxwell,
2005).

For all experiments, we preprocess the datasets
as follows: We extract log mel-scale filterbanks
with a povey window, 80 bins, a pre-emphasis filter
of 0.97, a frame length of 25 ms and a frame shift
of 10 ms. We discard samples with less than five or
more than 3000 frames and subtract the mean of the
waveform from each frame and zero-pad the FFT
input. For the text data, we normalize punctuation,
remove non-printable characters, use the Moses
tokenizer (Koehn et al., 2007) for tokenization and
segment the text data into subword units with byte-
pair encoding (Sennrich et al., 2016). We used a
random seed of 1 for all experiments.

We list the final used and best performing hy-
perparameters in Table A.2. Parameters that do
not differ between the training methods are not re-
peated in the table. We determine the batch size by
defining a maximum number of input frames in the
batch.

B Europarl-ST

We performed additional experiments on the
Europarl-ST dataset (Iranzo-Sánchez et al., 2020)
that provides 83 hours of speech training data. We
train RNNs with a learning rate of 0.002 and a max-
tokens size of 40,000 for a total of 80,000 updates.
All other hyper-parameters are the same as listed
for MuST-C in Table A.2. We only trained RNNs
on the Europarl-ST dataset due to the small amount
of available training data. We present the results in
Table A.1.

Both improvements over standard training and
by training on both the gold-translated and
synthetic-translated translated training data corre-
spond with the results presented in the main body
of this work. Hence, the results presented here hold
for relatively small datasets, too.

C Additional Example of NMT Expert
Correction

Here we give another example of the NMT expert
predicting the correct output token despite receiv-
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Model Hyperparameter CoVoST2 MuST-C

RNN
standard learning rate 1e-3 1e-3

max-tokens 60000 40000
scheduler fixed fixed

warmup-updates 20000 20000
encoder freezing updates 10000 10000

dropout 0.2 0.2
KD+ learning rate 1e-3 2e-3

max-tokens 50000 30000
warmup-updates 25000 20000

max-update 250000 250000
encoder-freezing updates 20000 10000

scheduler inverse square root inverse square root

Transformer
ASR learning rate 2e-3 1e-3

max-tokens 50000 40000
max-update 60000 100000

scheduler inverse square root inverse square root
warmup-updates 10000 10000

dropout 0.15 0.1
AST
standard learning rate 2e-3 2e-3

max-update 30000 100000
encoder-freezing updates 1000 -

KD+ max-tokens 50000 20000

Table A.2: list of hyperparameters that are dependent on model and dataset; we list only parameters which differ
from the previous model’s

Figure C.1: NMT expert top-8 output probabilities with
y<t = “ Er wurde später von der Canadian Cancer Soci-
ety und der Weltgesundheits”.

ing a transcript with incomplete or false informa-
tion.

Figure C.1 shows the expert’s output probabili-
ties in response to receiving factually false informa-
tion in the transcript. The ASR model transcribed

“World Health Organization” as “World Health Ser-
vice Scheme”, yet the expert produces a probability
distribution that is skewed in favor of the correct
proper name due to its learned context knowledge.
Note that the probability of generating the correct
output token “organisation” (organization) is above
0.8.
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Abstract
This paper presents the USTC system for
the IWSLT 2023 Dialectal and Low-resource
shared task, which involves translation from
Tunisian Arabic to English. We aim to investi-
gate the mutual transfer between Tunisian Ara-
bic and Modern Standard Arabic (MSA) to en-
hance the performance of speech translation
(ST) by following standard pre-training and
fine-tuning pipelines. We synthesize a substan-
tial amount of pseudo Tunisian-English paired
data using a multi-step pre-training approach.
Integrating a Tunisian-MSA translation mod-
ule into the end-to-end ST model enables the
transfer from Tunisian to MSA and facilitates
linguistic normalization of the dialect. To in-
crease the robustness of the ST system, we op-
timize the model’s ability to adapt to ASR er-
rors and propose a model ensemble method.
Results indicate that applying the dialect trans-
fer method can increase the BLEU score of
dialectal ST. It is shown that the optimal sys-
tem ensembles both cascaded and end-to-end
ST models, achieving BLEU improvements of
2.4 and 2.8 in test1 and test2 sets, respectively,
compared to the best published system.

1 Introduction

In this paper, we present the USTC’s submission
to the Dialectal and Low-resource track of IWSLT
2023 Evaluation Campaign (Agarwal et al., 2023),
aiming to translate Tunisian Arabic speech to En-
glish text. Modern Standard Arabic (MSA) is the
official language of Arabic-spoken countries. How-
ever, Arabic dialects like Tunisian and Egyptian are
prevalent in everyday communication, exhibiting
a similar relation between Chinese and Cantonese.
MSA benefits from an abundant supply of unla-
beled speech and text data, as well as relatively
adequate automatic speech recognition (ASR) and
machine translation (MT) paired data. In contrast,
dialectical forms of Arabic have much less paired
data and more irregularities in both pronunciation
and writing (Ben Abdallah et al., 2020).

This paper aims to explore the transfer between
high-resource MSA and low-resource Tunisian di-
alects, as well as effective training and decoding
strategies for speech translation (ST) tasks related
to low-resource dialects. To facilitate dialect trans-
fer, we introduce two approaches. Firstly, we pre-
train a model using high-resource MSA data, which
is then fine-tuned using low-resource Tunisian data.
This approach involves transferring model parame-
ters and can be used to train various models, e.g.,
ASR, MT, end-to-end ST. Secondly, we also de-
velop two transformation models for explicit di-
alect transfer. On one hand, for the augmentation
of MT data, we build an MT model that translates
MSA into Tunisian, resulting in a vast amount of
pseudo Tunisian-English paired data. On the other
hand, the Tunisian-MSA MT encoder module is
built and then integrated into the end-to-end ST
model, which can implicitly normalize dialectal
expressions. In addition, we also propose robust
training and decoding strategies from two perspec-
tives. To improve the robustness of the MT model
against ASR errors, we fine-tune the MT model
with the ASR output from the CTC (Graves et al.,
2006) layer or the ASR decoder. The model ensem-
ble method is exploited to decode multiple models
synchronously, which is shown to be rather benefi-
cial for the performance.

The rest of this paper is organized as follows.
Section 2 describes data preparation (e.g., datasets,
pre-processing). Section 3 presents the methods for
training and decoding ASR, MT and ST models.
Experimental setup and results are given in Section
4. Finally, Section 5 concludes this work.

2 Data Preparation

2.1 Datasets

In this year’s shared task, there are two types of
data conditions: constrained and unconstrained. In
order to provide a fair comparison with last year’s
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Task Dataset Condition Utterances Hours

ASR
Tunisian A 0.2M 160
MGB2 B 1.1M 1100
MGB2+Private data C 3.4M 4600

ST Tunisian A 0.2M 160

Table 1: The summary of the Audio data.

Dataset Condition Ta-En MSA-En

C
ol

le
ct

ed Tunisian A 0.2M -
OPUS B - 42M
OPUS+Private data C - 61M

Fi
lte

re
d Tunisian A 0.2M -

OPUS B - 32M
OPUS+Private data C - 47M

Table 2: The summary of the text data.

Translation direction Training data MT model

Tunisian-English Ta-En Ta2En
English-Tunisian En-Ta En2Ta

MSA-English MSA-En MSA2En
English-MSA En-MSA En2MSA

Tunisian-MSA Ta-MSA Ta2MSA
MSA-Tunisian MSA-Ta MSA2Ta

Tunisian-MSA-English Ta-MSA-En -

Table 3: Summary of abbreviations used in this paper.

results, we subdivided the unconstrained condition
into the dialect adaption condition and the fully
unconstrained condition. For convenience, we de-
note the constrained condition as condition A, the
dialect adaption condition as condition B, and the
fully unconstrained condition as condition C.

Table 1 summarizes statistics of the ASR and
ST datasets. The Tunisian dataset1 in condition A
is Arabic dialect data. In addition to the MGB2
data (Ali et al., 2016) of condition B, we used ad-
ditional private data mainly from MSA for ASR
training in condition C. Table 2 summarizes the
statistics of the MT datasets. The MT data for con-
dition A are Tunisian-English (Ta-En) paired data,
while for condition B/C, the MT data consist of
MSA-English (MSA-En) paired data(Tiedemann
and Thottingal, 2020). All MT data undergoes pre-
processing, which includes cleaning and filtering.
Table 3 summarizes the abbreviations for MT mod-
els and training data associated with the translation
direction that are used in the sequel.

1The LDC Catalog ID of the Tunisian dataset for IWSLT
is LDC2022E01.

2.2 Audio data pre-processing
As the audio data of condition B/C had a sampling
rate of 16kHz, we upsampled the speech signal in
the Tunisian dataset from 8kHz to 16kHz using the
sox toolkit2. We extracted 40-dimensional log-mel
filterbank features with a frame length of 25ms and
a frame shift of 10ms, and then normalized these
features with a zero mean and unit variance. We
applied SpecAugment (Park et al., 2019) in the
time dimension with mask parameters (mT , T ) =
(2, 70). Afterwards, we filtered out audio data that
is longer than 3k frames. Further, we introduced
speech perturbations at ratios of 0.9 and 1.1.

2.3 Text Processing & Filtering
We kept the MSA and Tunisian text data in their
original form without any normalization such as re-
moving diacritical marks or converting Alif/Ya/Ta-
Marbuta symbols. We removed punctuations from
MSA, Tunisian, and English text while we con-
verted the English text to lowercase. Our data fil-
tering process in condition B/C includes Length
Match and Inference Score.

• Length Match: Text samples exceeding 250
words were dropped first. Next, we calculated
the length ratio between the source and target
language text. Text samples with length ra-
tios exceeding 2 or below 0.4 were deemed to
be length mismatching cases and were subse-
quently removed. As such, approximately 6M
text data in condition B were eliminated.

• Inference Score: Initially, a basic MT model
(scoring model) was trained on raw MSA-En
data in condition B. Subsequently, the scoring
model was used to infer the same MSA-En
raw data, resulting in inference scores based
on logarithmic posterior probabilities. Finally,
MSA-En data associated with lower inference
scores were removed, leading to another 4M
text data being eliminated from condition B.

Table 2 summarizes the filtered data used for train-
ing. In total, 10M text data in condition B and 4M
text data in condition C were removed.

3 Methods

3.1 Automatic Speech Recognition
We employed several ASR models with differ-
ent structures in experiments, including the VGG-

2http://sox.sourceforge.net
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Figure 1: The data augmentation method for Tunisian-English Text, where * indicates the pseudo text.

Conformer model (Simonyan and Zisserman, 2014;
Gulati et al., 2020), VGG-Transformer model
(Vaswani et al., 2017) and GateCNN-Conformer
model (Dauphin et al., 2017). These ASR mod-
els differ in their feature extractor modules (VGG,
GateCNN) and acoustic modules (Conformer,
Transformer). We chose diverse models with the
expectation that increasing the variability of ASR
models would improve the final ASR performance
when using model ensemble methods. For dialect
transfer in condition B/C, we pre-trained an ASR
model using MSA data, which was then fine-tuned
using the Tunisian data. Note that for condition
A, we initially attempted to pre-train a phoneme
recognition model for Tunisian but found it to be
useless after fine-tuning the pre-trained model.

3.2 Data Augmentation for MT

We considered various data augmentation tech-
niques for MT. To augment the Tunisian-English
(Ta-En) dialect MT data, we used the back transla-
tion and forward translation (BTFT) method to cre-
ate a synthetic parallel corpus that can be merged
with the true bilingual data. To accomplish dialect
transfer from MSA to Tunisian, we constructed
a pivot MT model that converts MSA to Tunisian
and produces abundant synthetic Ta-En data.

BTFT: Two MT models were first trained from
Tunisian to English (Ta2En) and from English to
Tunisian (En2Ta) using MT data of condition A.
The Tunisian text and English text were then re-
spectively fed to the corresponding MT models for
inference, resulting in paired Tunisian to synthetic-
English text and paired synthetic-Tunisian to En-
glish text. It is worth noting that the Ta2En model
implements the forward translation approach simi-
larly to the sequence-level knowledge distillation
method (Kim and Rush, 2016), while the En2Ta
model employs the backward translation (Sennrich

et al., 2016a) approach. Ultimately, the obtained
synthetic data and the original data were merged to
form the BTFT dataset.

Dialect Transfer: In the IWSLT 2022 dialect
ST track, (Yang et al., 2022) presented an ef-
fective Ta2En-bt-tune model that generates syn-
thetic Tunisian-English data by converting MSA
to pseudo-Tunisian with an MSA2Ta MT model.
In Figure 1, we modified this approach by intro-
ducing a multi-step pre-training technique that im-
proves the quality of pseudo-Tunisian and enhances
downstream translation tasks. Our dialect transfer
method is outlined as follows:

(1) Firstly, the En2MSA (English to MSA)
model was pre-trained using condition B/C MT
data and then fine-tuned using the MT data from
condition A to create the En2Ta model.

(2) The En2MSA and En2Ta models were uti-
lized separately with the English texts from con-
dition A and condition B/C as inputs to generate
paired Ta-MSA-En triple text data for condition
A/B/C. The pseudo-text in condition A is the MSA*
text, whereas the pseudo-text in condition B/C is
the Tunisian* text (* representing pseudo-text). No-
tably, during this step, the pseudo-Tunisian* text
derived from condition B/C is marked as the first
iteration.

(3) Next, we trained an MSA2Ta (MSA to
Tunisian) model, which serves as a pivot MT model.
We pre-trained the model with the MSA-Ta* data
of condition B/C and fine-tuned it using the MSA*-
Ta data of condition A from step 2.

(4) Lastly, we input the MSA text of condition
B/C to the MSA2Ta model for inference, generat-
ing the second iteration of the pseudo-Tunisian text
(marked as pseudo-Tunisian**). We re-created the
paired triple text data of Ta-MSA-En text by merg-
ing the pseudo-Tunisian** text with the primary
MSA-English text from condition B/C.
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Figure 2: The top figure shows the SATE model (Xu et al., 2021), which implements a forward dialect transfer
system from MSA to Tunisian through pre-training and fine-tuning techniques. The bottom part shows the Hybrid
SATE model with a hierarchical text encoder, which can be used to reversely transfer from Tunisian to MSA.

3.3 End-to-end ST Model
The end-to-end ST approaches can mitigate issues
of error propagation that often appears in low-
resource scenarios. We developed an E2E ST sys-
tem utilizing the SATE model (Xu et al., 2021) due
to its effectiveness and simplicity for implementa-
tion, which is shown in Figure 2. In particular, we
suggest two dialect transfer approaches for condi-
tion B/C, specifically the forward dialect transfer
system from MSA to Tunisian and the reverse di-
alect transfer method from Tunisian to MSA.

3.3.1 Forward dialect transfer system
The forward dialect transfer system aims to transfer
information from MSA to Tunisian by pre-training
the ASR and MT models on the MSA dataset, re-
spectively. These models are then fine-tuned us-
ing the Tunisian dataset to transfer from MSA to
Tunisian. Note that the forward dialect transfer
system is treated as a transfer of model parameters.
In order to create an E2E ST system, we utilize
the SATE model with pre-trained Tunisian ASR
and MT models, followed by fine-tuning the SATE
model with Tunisian ST dataset.

During training, the SATE model utilizes multi-
task optimization, including the CTC loss of the
source language LTaCTC, the cross-entropy loss for
the target language LEnCE and the knowledge distil-
lation (KD) losses for both the source and target
languages, i.e., LTaKD and LEnKD. The overall loss
function reads

L = λ1LTaCTC + λ2LEnCE + λ3LTaKD + λ4LEnKD, (1)

with four respective hyper weight parameters. The
SATE model utilizes an adaptor to map speech fea-
tures into the text feature space but suffers from
inconsistent in-between sequence lengths. For this,
we proposed a robust training method. Specifi-
cally, the Tunisian ASR model was first decoded

by retaining both the repeated tokens and blank
symbols of the CTC output. The resulting output
was then combined with its corresponding English
text to fine-tune the Ta2En MT model. The modi-
fied Ta2En MT model was well-suited to initialize
the MT module of the SATE model.

3.3.2 Reverse dialect transfer system
It is a common issue that the Tunisian Arabic di-
alect is considered as being non-standardized at
the linguistic level (Ben Abdallah et al., 2020). To
address this, we proposed a reverse dialect transfer
system that converts the Tunisian dialect to MSA,
serving as a regularization of the dialect, which
is illustrated in Figure 2. We modified the SATE
model with a hierarchical text encoder (resulting in
Hybrid SATE) to enable the reverse dialect trans-
fer system. The proposed Hybrid SATE model
primarily comprises a speech encoder, a Ta2MSA
text encoder and an MSA2En MT module.

In order to initialize the model parameter for the
Ta2MSA text encoder module in the Hybrid SATE
model, we trained a Ta2MSA MT model. Based
on the generated Ta-MSA* data in condition A
and Ta**-MSA paired data in condition B/C from
Section 3.2, we first pre-trained a Ta2MSA MT
model with the Ta**-MSA data from condition
B/C. Notably, the Ta2MSA MT model is equipped
with a CTC layer on top of its encoder and is trained
with an additional CTC loss for MSA. Then, we
fine-tuned the model using the Ta-MSA* data from
condition A. Finally, the encoder attached with a
CTC layer of the Ta2MSA MT model was used to
initialize the Ta2MSA text encoder.

The hybrid SATE model is optimized with an
additional CTC loss for MSA, denoted as LMSA

CTC ,
resulting in the overall loss function

L =λ1LTaCTC + λ2LEnCE + λ3LTaKD + λ4LEnKD

+ λ5LMSA
CTC . (2)
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3.4 Model Ensemble Method

As training a single model can lead to implicit
model bias, it is expected that a model ensemble
decoding method can improve system robustness,
especially in low-resource ST scenarios. We imple-
mented synchronous decoding with multiple mod-
els and averaged the posterior probabilities pre-
dicted by each model at each time step. Consistent
with single model decoding, the beam search de-
coding strategy was used with a beam size of 10.
Subsequently, multiple models decoded the next to-
kens based on the same historical tokens. It should
be noted that either E2E ST or MT models can
be used for the model ensemble. Consequently,
we can form ensembles of E2E ST and cascaded
ST systems by using transcriptions from the ASR
models as inputs for the MT models.

4 Experiments and results

4.1 Model Configurarions

ASR: For condition A, we employed the base
model configurations, whereas the large model
configurations were used for the experiments on
condition B/C. Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016b) subword segmentation with the
Tunisian text was trained and the dictionary size
was 1000. The detailed model configurations are
given in Appendix A.

MT: We considered two encoder-decoder archi-
tectures for MT: the normal transformer model
(Vaswani et al., 2017) and the macaron-like trans-
former model (Lu et al., 2019). The latter uses
several FFN-attention-FFN layers instead of the
attention-FFN layer used in the former. Our MT
model has three variants based on the number of
layers in the encoder and decoder and the type of
model architecture: MT base, MT large, and MT
macaron. For detailed model and dictionary sizes,
please refer to Table 13 in Appendix A.

E2E ST: Since both the SATE and hybrid SATE
models are initialized by pre-trained ASR and MT
modules, the model parameters can be inferred
straightforwardly from the aforementioned ASR
and MT model settings.

4.2 Results

4.2.1 Automatic Speech Recognition
Table 4 shows the ASR performance in terms of
word error rate (WER) of MSA. Among the three
different model structures, the VGG-Conformer

Model
B C

dev test dev test

VGG-Conformer 14.3 13.2 12.5 12
VGG-Transformer 16.6 15.5 14.2 13.3
GateCNN-Conformer 15.1 14.2 14.3 13.4

Table 4: The WER of the MSA MGB2 corpus.

Model
A B C

dev test1 dev test1 dev test1

VGG-Conformer 48.5 55.4 45.4 53.2 42 49.7
VGG-Transformer 49.2 57 49 56.8 44.7 52.1
GateCNN-Conformer 46.6 53.4 47.2 53.7 46.1 53.3

Ensemble 44.5 51.7 43.4 50.9 40.8 48.7

Table 5: The original WER on Tunisian. Due to the
non-standard orthography and grammar in Tunisian,
the value of original WER is relatively higher than the
normalized WER in Table 11.

model achieves the best performance. It is clear
that the performance can be further improved by
using additional private data in condition C.

The pre-trained MSA ASR models are fine-
tuned using Tunisian data for dialect transfer in
condition B/C. As shown in Table 5, the VGG-
Conformer model continues to perform best among
different single models in condition B/C, while the
GateCNN-Conformer model performs best in con-
dition A. We further ensemble the three single mod-
els mentioned above and get the final ASR model
results for each condition3. This demonstrates that
model ensemble can significantly improve the ASR
performance, especially in condition A. Comparing
the ASR results in condition B/C with that in con-
dition A, we find that pre-training on high-resource
MSA data can improve the ASR performance in
low-resource Tunisian.

4.2.2 Cascaded Speech Translation
We will demonstrate the usage of the BTFT data
via an ablation study on condition A. For condition
B/C, we compare the quality of different versions
of Ta-En pseudo data. Besides, we introduce two
methods for robust training, called constrained
fine-tune and error adaptation fine-tune.

BTFT and Constrained Fine-Tune Our base-
line MT model of condition A is trained using the
original Ta-En MT data. From Table 6, we see

3For model ensemble of condition B, the VGG Trans-
former and GateCNN-Conformer models are from condition
A, and the VGG-Conformer model is from condition B.
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Data & Method MT Cascaded ST
dev test1 dev test1

Baseline 26.3 23.0 19.4 16.7

BTFT data 28.2 24.0 20.3 17.1
+ Constrained FT 28.5 24.3 20.6 17.3

Table 6: The BLEU score of MT and cascaded MT
experiments in condition A.

Model Pretrain Model
MT BLEU

dev test1

En2Ta - 12.4 10.0
En2Ta En2MSA 16.6 12.5
MSA2Ta* - 8.3 6.8
MSA*2Ta MSA2Ta* 12.1 9.6

Table 7: The BLEU score of different pivot MT models
using Ta-MSA*-En triple text data of condition A.

that combining the training data with BTFT data
brings a considerable performance gain for both
MT and cascaded ST. The MT model trained by
the BTFT data are further fine-tuned by the original
true paired Ta-En data. In order to prevent exces-
sive over-fitting while fine-tuning, we proposed a
constrained fine-tune method, as depicted in Figure
3. Specifically, the student model is constrained
by the teacher model using KL divergence loss to
avoid catastrophic forgetting and over-fitting. In
case of using the constrained fine-tune method, the
MT training objective function is given by

L = LKL + LCE. (3)

Pseudo Ta-En paired data From Table 7, we see
that the model initialized by a pre-trained model
generates higher quality translations, i.e., higher
quality pseudo-data. However, the performance
comparison between the En2Ta model and the
MSA*2Ta model may not be convincing since the
input for the two models is different.

Comparing the performance of the Ta2En MT
model is more appropriate to directly reveal the
quality of the two versions of pseudo Ta-En data.
In Table 8, it is clear that pre-training the MT model
using Ta-En pseudo-data performs better than using
MSA-En data. Moreover, the second version of Ta-
En pseudo data outperforms the first when used
for pre-training the Ta2En MT model. We believe
that the MSA2Ta model is preferable for the En2Ta
model due to the consistent use of MSA data during
training and decoding. The En2Ta model employs
English text from condition A for training, but uses

Model
MT Cascaded ST

dev test1 dev test1

MSA2En-large - - - -
+ BTFT data FT 29.3 26.0 22.2 19.0

+ Constrained FT 30.1 26.2 22.5 19.2

Ta*2En-large 16.3 15.6 13.3 11.4
+ BTFT data FT 29.9 26.5 22.5 19.3

+ Constrained FT 30.4 26.6 22.8 19.5

Ta**2En-large 16.7 15.5 13.3 12.0
+ BTFT data FT 30.4 26.6 23.1 19.2

+ Constrained FT 30.8 27.0 23.2 19.5

Table 8: The BLEU score of the MT and the cascaded
ST systems in condition C.

Model
MT Cascaded ST

dev test1 dev test1

Condition A Best 28.5 24.3 20.6 17.3
+ Error Adapation FT 28.3 23.9 20.5 17.1

Condition C Best 30.8 27.0 23.2 19.5
+ Error Adapation FT 30.7 26.6 23.3 19.7

Table 9: The BLEU score of the MT and the cascaded
ST systems in condition A/C when using error adaption
fine-tune method.

MTstudent
Initialize

XClean input

Yteacher YstudentlossKL

lossCE

YGround Truth

MTteacher

Ta2En MT

MTstudent
Initialize

XClean input

Y'ASR YASRlossKL

XASR output

lossCE

YGround Truth

YClean

lossKD

MTteacher

Ta2En MT

Figure 3: Left: Constrained Fine-tune, Right: Error
Adaptation Fine-tune.

English text from condition B/C to generate pseudo-
Tunisian text. In comparison, the MSA2Ta model
consistently uses MSA data from condition B/C for
both training and decoding.

Error Adaptation Fine-tune As shown in Fig-
ure 3, the error adaptation fine-tune method (Zhang
et al., 2022) slightly adjusts the MT model to mit-
igate potential ASR prediction errors. This tech-
nique fine-tunes the Ta2En MT model using a com-
bination of the ASR output text and the text from
the target language. It is based on the constrained
fine-tune method by incorporating true text from
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Model SATE Hybrid-SATE

Speech encoder Conformer Transformer Conformer Ensemble

MT module MT MT-Macaron MT MT

A
dev 20.2 20.1 19.5 - 21.2
test1 17.2 17.3 16.6 - 18.2

B
dev 22.0 22.0 20.9 22.0 23.4
test1 19.0 19.1 18.0 18.9 20.3

C
dev 23.8 23.7 23.4 23.1 24.9
test1 20.7 20.2 20.0 20.2 22.0

Table 10: The BLEU scores of our E2E ST in condition A/B/C, where the speech encoder and MT module represent
the sub-modules, and MT and MT-Macaron represent MT large and MT macaron models, respectively.

the source language as soft-labels to enhance the
training with the KD loss LKD. The loss function
for the error adaptation fine-tune method is given
by

L = 0.5LKD + 0.5LKL + LCE. (4)

From Table 9, we can observe that the error adap-
tion fine-tune method enhances the performance
of the cascaded ST system, albeit at a cost of MT
performance decline. This reveals that this method
is not effective in condition A but rather useful in
condition B/C.

4.2.3 End-to-end Speech Translation
The SATE model can be instantiated in various
structures by using different speech encoder and
MT modules. Table 10 demonstrates that the con-
former encoder outperforms the transformer en-
coder, showing an average improvement of 0.7
BLEU in condition A/B/C. For the different MT
modules, the normal MT module is slightly better
than the MT module in the macaroon form. Again,
the results indicate model ensemble increases about
1.1 BLEU on the test1 set in condition A/B/C. The
results of dialect transfer show an improvement
for ST by 2.1 BLEU in condition B compared to
condition A, and this is even greater in condition
C, i.e., 3.8 BLEU. Additionally, the hybrid SATE
model significantly improves the ST performance
when used as a sub-model for model ensemble.

4.2.4 Model Ensemble
Table 11 presents the overall results of our
ASR/MT/ST systems. The ASR results in terms of
the normalized WER are derived from the model
ensemble method in Table 5. It is worth noting that
the ASR models are trained on original transcrip-
tions but evaluated in a normalized form, which

# data condition A B C

ASR WER↓
JHU-IWSLT2022 44.8 43.8 44.5

A1 ASR Ensemble 43.0 42.9 40.6

MT BLEU↑
CMU-IWSLT2022 22.8 23.6 -

M1 MT base 23.8 26.5 26.5
M2 MT large 23.9 26.3 26.6
M3 MT macaron 23.8 26.6 26.9
M4 MT Ensemble 24.3 26.9 27.4

Cascaded ST BLEU↑
CMU-IWSLT2022 17.5 17.9 -

C1 A1 + M1 17.7 19.3 19.6
C2 A1 + M2 17.8 19.5 20.0
C3 A1 + M3 17.6 19.5 19.9
C4 A1 + M4 18.4 19.9 20.2

E2E ST BLEU↑
CMU-IWSLT2022 (Mix) 18.7 18.9 -

E1 Ensemble of SATE 18.2 20.0 21.3
E2 Ensemble of SATE + Hybrid SATE - 20.3 22.0

Cascaded and E2E ST BLEU↑
CMU-IWSLT2022 (Ensemble) 19.2 19.5 -

E3 Ensemble of C4 + E1 19.0 20.5 21.4
E4 Ensemble of C4 + E2 - 20.8 21.9

Table 11: The overall results of our ASR/MT/ST sys-
tems on test1 set. The hypothesis and reference are
normalized before computing normalized WER in or-
der to be consistent with last year’s ASR system. We
substituted the MT base model of condition C with the
MT base model of condition B. JHU-IWSLT2022 and
CMU-IWLST2022 are taken from (Yang et al., 2022)
and (Yan et al., 2022), respectively.

may cause a performance drop. The ensemble of
three single MT models achieves an average im-
provement of 0.4 BLEU in text translation and cas-
caded ST systems of condition A/B/C, compared to
the best single model of each data condition. The
results of the E2E ST systems are derived from
Table 10. We find that the E2E ST system falls
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slightly behind the cascaded system in condition A
but significantly surpasses it in condition B/C.

In the constrained condition, the primary system
of our submission comprises an ensemble of cas-
caded and E2E ST models (see row E3 of condition
A). Additionally, for the unconstrained condition,
we add the hybrid SATE model to the ensemble of
cascaded and E2E ST models, which leads to a sig-
nificant improvement of approximately 0.4 BLEU.
Although the ensemble of cascaded and E2E ST
system shows a 0.1 BLEU drop in condition C, it
helps achieve the best performance in condition
A/B. Therefore, the primary system of the submis-
sion for the unconstrained condition is in row E4
of condition C. Moreover, we submit a contrastive
system (i.e., row E4 of condition B) to compare the
performance without using private data.

5 Conclusion

This paper presents the methods and experimen-
tal results of the USTC team for the dialect ST
(Tunisian Arabic to English) task in IWSLT 2023.
The proposed forward and reverse dialect trans-
fer methods, which were shown to be effective for
augmenting text data and building hybrid SATE
models. We utilized various model structures for
implementing ASR, MT and ST tasks, and im-
proved the robustness through model ensembling
and error adaptation during training. The experi-
ments showed a significant improvement in dialec-
tal ST through the use of dialect transfer method.
In unconstrained condition, our E2E ST system
performs better than the cascaded ST system but is
slightly less effective in constrained condition. Fu-
ture studies might include the exploration of E2E
ST models for unified modeling of multiple dialects
(e.g., Tunisian, Egyptian) with MSA.
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A Appendix. Model configurations

The detailed model configurations for ASR systems
are as following:

• Condition A: The model configurations are
almost identical to the ESPnet (Inaguma et al.,
2020) baseline. There are 12-layer encoder
and 6-layer decoder. The attention module of
both the encoder and decoder comprises 256
hidden units and 4 attention heads. The size
of the FFN module is 1024 for the encoder
but 2048 for the decoder. We use two VGG
blocks as the feature extractor for both the
VGG-Conformer and the VGG-Transformer
models. For the GateCNN-Conformer model,
the feature extractor has a 6-layer GateCNN.

• Condition B/C: The model difference be-
tween the condition A and the condition B/C
lies in the model size. For condition B/C, the
attention module has 512 hidden units and 8
attention heads, and the size of FFN is 4096.

110

https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2022.iwslt-1.27
https://doi.org/10.18653/v1/2022.iwslt-1.27
https://doi.org/10.18653/v1/2022.iwslt-1.29
https://doi.org/10.18653/v1/2022.iwslt-1.29
https://doi.org/10.18653/v1/2022.iwslt-1.15
https://doi.org/10.18653/v1/2022.iwslt-1.15


Condition Training Stage lr Max-tokens Warmup Dropout rate Training steps

A Stage1: BTFT Pretrain 5e-4 12000 4000 0.3 120000
Stage2: Constrained Fine-tune - 4096 - 0.3 40000

B/C

Stage1: MSA-En Pretrain 1e-3 40000×8 4000 0.1 200000
Stage2: Ta**-En Pretrain 5e-4 40000×8 None 0.1 20000
Stage3: BTFT Fine-tune 4e-5 6144 4000 0.3 120000
Stage4: Constrained Fine-tune - 2048 - 0.3 80000
Stage5: Error Adaptation Fine-tune 1e-5 4096 None 0.3 10000

Table 12: Hyper parameters in different stages ("-" means reuse from the former stage and "×" the GPU numbers).

Condition A B/C

Encoder dim 256 512
Encoder FFN dim 1024 2048
Encoder attn heads 4 8

Decoder dim 256 512
Decoder FFN dim 1024 2048
Decoder attn heads 4 8

Tunisian BPE units 1000 1000
MSA BPE units - 32000
English BPE units 4000 32000

Table 13: The model sizes and dictionary sizes for MT
training, where "attn" represents attention module.

For MT models, the 6-layer encoder and 6-layer
decoder are used for both MT base and MT mac-
aron models, but 12-layer encoder and 6-layer de-
coder for MT large model. The details of the MT
system are summarized in Table13.

B Appendix. Training and Inference

ASR: We used the fairseq tool (Ott et al., 2019)
for training and inference. During training, we used
a dropout rate of 0.3, set the label-smoothing rate
to 0.1 and used a CTC loss weight of 0.3. The max
tokens and max sentences per batch were 32000
and 120, respectively. We used the inverse square
learning rate schedule for training, with a learning
rate of 1e-3 and warmup steps of 8000 for condition
A. For condition B/C, we pre-trained with MSA
ASR data and used a learning rate of 1e-3 and
warmup steps of 30000. We used a learning rate of
2e-4 and warmup steps of 8000 while fine-tuning
with in-domain Tunisian ASR data. The models
were optimized through the Adam optimizer with
β1 = 0.9, β2 = 0.98. During inference, we used
an attention-based decoding strategy with a beam
size of 10. We averaged the model parameters of 5
best model based on the WER on the dev set.

# A B C

test2 ASR WER↓
IWSLT2022 43.8 42.9 41.5
A1 40.8 40.5 39.3

test2 ST BLEU↑
IWSLT2022 20.4 20.8 18.7
E3 20.5 - -
E4 - 22.8 23.6

test3 ASR WER↓
A1 43.2 42.3 40.5

test3 ST BLEU↑
E3 18.1 - -
E4 - 20.2 21.1

Table 14: The overall results of our ASR/ST systems
on test2 set (IWSLT 2022 evaluation set) and test3 set
(IWSLT 2023 evaluation set).

MT: The MT model training was also conducted
using the fairseq toolkit. We conducted all train-
ing stages on the NVIDIA A40 GPU, varying the
specific GPU number depending on the stage. Dif-
ferent training methods and hyper-parameters were
used for optimal results depending on the condition,
where we classified them into condition A and B/C.
Specifically, we divided our training method into
several stages, see Table 12. In Stage2 and Stage5
of condition B/C, the number of training steps is
significantly lower than other stages. This was be-
cause the model had a tendency to overfit quickly
during these stages; hence learning rate warmup
method was not used during training. During in-
ference, the beam size of decoding is 10. We used
the official sacrebleu tool (Post, 2018) to calculate
the normalized case-insensitive BLEU score. We
averaged the model parameters of 5 best models
based on the BLEU score on the dev set.

E2E ST: The hyper-parameters of the model
training and inference are almost consistent with
those used for ASR. The knowledge distillation
weight (KD) for ASR is set to 0.2 but 0.3 for MT.
The CTC loss weight for the speech encoder is set
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to 0.2 while it is 1.2 for the Ta2MSA text encoder
of hybrid SATE. Note that the CTC loss weight for
the Ta2MSA text encoder is much larger because
translating Tunisian to MSA with pseudo Ta-MSA
MT data is challenging.

C Appendix. Official Evaluation Results

The official evaluation results of our submitted sys-
tems on both test2 and test3 sets (both being blind
tests) are summarized in Table 14. Our submis-
sions outperformed last year’s best performance in
all data conditions (constrained and unconstrained)
for both ASR and ST evaluations (e.g, see the re-
sults of test2 set).
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Abstract

Many existing speech translation benchmarks
focus on native-English speech in high-quality
recording conditions, which often do not match
the conditions in real-life use-cases. In this
paper, we describe our speech translation sys-
tem for the multilingual track of IWSLT 2023,
which focuses on the translation of scientific
conference talks. The test condition features
accented input speech and terminology-dense
contents. The tasks requires translation into
10 languages of varying amounts of resources.
In absence of training data from the target do-
main, we use a retrieval-based approach (kNN-
MT) for effective adaptation (+0.8 BLEU for
speech translation). We also use adapters to
easily integrate incremental training data from
data augmentation, and show that it matches
the performance of re-training. We observe
that cascaded systems are more easily adapt-
able towards specific target domains, due to
their separate modules. Our cascaded speech
system outperforms its end-to-end counterpart
on scientific talk translation, although their per-
formance remains similar on TED talks.

1 Introduction

This paper summarizes Karlsruhe Institute of Tech-
nology’s speech translation system for the multilin-
gual track of IWSLT 2023 (Agarwal et al., 2023).
In this track, the task is to translate scientific talks
in English into 10 languages: Arabic (ar), Chinese
(zh), Dutch (nl), French (fr), German (de), Japanese
(ja), Persian/Farsi (fa), Portuguese (pt), Russian
(ru), Turkish (tr). The talks are from presentations
in the 60th Annual Meeting of the Association for
Computational Linguistics (ACL 2022).

Translating scientific talks presents several chal-
lenges. On the source side, most speakers are
non-native, and the recording conditions often vary.
This requires acoustic robustness to accents and
noise. On the target side, domain-specific termi-
nologies are frequently used, calling for accurate

translation of these words that rarely occur in the
training data. The styles of the talks, e.g. formal-
ity, also differ from other domains. As no training
data from the same domain is provided, effective
few-shot or zero-shot adaptation is crucial.

As the task focuses on one-to-many translation,
it is also an interesting testbed for whether mul-
tilinguality improves speech translation quality.
For text-to-text translation, the gain from multi-
linguality is mostly concentrated in many-to-one
translation (Aharoni et al., 2019; Fan et al., 2021),
i.e., multilinguality on the source side. In con-
trast, for X-to-many translation, it remains unclear
whether incorporating more target languages im-
proves translation quality.

In this system description paper, we present
cascaded and end-to-end systems for the English-
to-many speech translation task. We lever-
age pretrained models, including WavLM (Chen
et al., 2022), mBART50 (Tang et al., 2020), and
DeltaLM (Ma et al., 2021). The systems do not use
additional data beyond the allowed corpora, and
therefore fall under the constrained data condition.

For the cascaded system, to handle the unique
style of scientific talks, we use kNN-MT (Khan-
delwal et al., 2021) to bias the output generation
towards the target domain. Moreover, as no target
monolingual data is provided, we use data diversi-
fication (Nguyen et al., 2020) to enrich the existing
parallel data. We also use adapters (Rebuffi et al.,
2017; Bapna and Firat, 2019) as a lightweight ap-
proach for incremental learning and language adap-
tation. For the ASR model, we improve over last
year’s performance by using a more recent audio
encoder (Chen et al., 2022) and adding a dedicated
decoder. To adapt the ASR system to the target
domain, we use n-gram re-weighting and synthe-
sized data for the target domain. For the end-to-end
system, we use our machine translation model for
knowledge distillation. We also ensemble models
trained with and without synthesized speech data.
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Our main findings are as follow:

• For cascaded ST systems, we can effectively
adapt the model towards a target domain/style
using kNN-MT (Khandelwal et al., 2021). A
datastore as small as a few hundred sentence
pairs was sufficient for achieving consistent
gains (avg. +0.8 BLEU over 10 languages).

• Besides the common use-case of adding
language-specific capacity, adapters (Bapna
and Firat, 2019) is also an effective method
when subsequently adding training data. Em-
pirically, we show it matches the performance
of re-training on all new data.

• For ASR, lexical constraints for domain adap-
ation are more easily integrated in CTC mod-
els. For encoder-decoder model, the control
could be achieved by TTS-synthesized source
speech, but it requires more careful tuning.

2 Data and Preprocessing

After describing the evaluation data (§2.1), we out-
line the training data and preprocessing steps for
our automatic speech recognition (ASR; §2.2), ma-
chine translation (MT; §2.3), casing/punctuation
restoration (§2.4), and speech translation (ST; §2.5)
models.

2.1 Development and Test Data
In the multilingual track, the testing condition is
scientific conference talks. Therefore, we primarily
rely on the ACL development (dev) set for valida-
tion. It consists of English transcripts of the talks
and translations into the 10 target languages. The
systems are then evaluated on a blind test set. The
dev and test sets consist of 5 talks each. The paper
abstracts for all talks are available in English. The
talks are pre-segmented. In all experiments, we use
the given segmentation.

We also report performance on tst-COMMON
of MuST-C (Di Gangi et al., 2019), tst2019 and
tst2020 from previous years’ evaluations (Anasta-
sopoulos et al., 2021, 2022).

An overview of the development and test data is
in Table 1.

2.2 Speech Recognition Data
For the ASR training, we use Common
Voice (Ardila et al., 2020), LibriSpeech (Panayotov
et al., 2015), MuST-C v2 (Di Gangi et al., 2019),
TED-LIUM v3 (Hernandez et al., 2018), and

Dev/Test set Hours # Utterances Domain

ACL dev 1.0 468 ACL conference talks
tst-COMMON 4.9 2823 TED talks
tst2019 4.8 2279 TED talks
tst2020 4.1 1804 TED talks

Table 1: Overview of development and test data.

Corpus / Data Source Hours # Utterances

Common Voice 1667 1225k
LibriSpeech 963 281k
MuST-C v2 482 251k
TED-LIUM v3 452 268k
VoxPopuli 501 177k

TTS 7284 4.7M

Table 2: ASR data overview.

VoxPopuli (Wang et al., 2021). The data overview
is in Table 2.

Synthesized Speech Data To adapt the ASR
model to the ACL talks, we add synthesized speech
created by a text-to-speech (TTS) model. Specifi-
cally, from the MT bitext English side (Table 3), we
select sentences similar to the ACL domain based
on similarity with the provided ACL dev bitext and
abstracts. Inspired by data selection strategies for
MT (Eck et al., 2005; Koneru et al., 2022), we
use n-gram overlap as similarity metric. 4.7M sen-
tences are selected and then synthesized to speech
by a VITS (Kim et al., 2021) model trained on
MuST-C. The synthesized data amount is shown in
the last row of Table 2.

2.3 Machine Translation Data

The MT training data include the following
text-to-text translation corpora: Europarl v7
and v10 (Koehn, 2005), NewsCommentary v16,
OpenSubtitles v2018 (Lison and Tiedemann,
2016), Tatoeba (Tiedemann, 2012), and ELRC-
CORDIS_News, JParaCrawl (Morishita et al.,
2022) for Japanese, and TED2020 (Reimers and
Gurevych, 2020) for German1. We also include
the text translation part of the following ST cor-
pora: MuST-C (Di Gangi et al., 2019), CoVoST
v2 (Wang et al., 2020), and Europarl-ST (Iranzo-
Sánchez et al., 2020). The aggregated data amount
per language is summarized in the “Original” col-
umn of Table 3.

1This dataset has deplication with past evaluation sets:
tst2019 tst2020 and tst-COMMON. The deplications were
removed prior to training.
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Original After Diversification

Lang. # sent. (M) # sent. (M) # tokens (M)

ar 26.0 65.2 865.0
zh 11.2 21.5 254.3
nl 33.1 82.1 1162.7
fr 38.9 91.6 1427.8
de 23.0 54.4 860.0
ja* 2.6 27.2 832.7
fa 5.8 11.3 162.1
pt 29.0 72.3 1024.3
ru 22.1 51.5 685.3
tr 36.7 89.7 1021.2

Total 228.4 566.8 8295.4

Table 3: MT data overview. *: For ja, the original data
of 2.6M sentences did not include JParaCrawl, which
was announced later as allowed data.

As preprocessing, we perform truecasing, dedu-
plication, length ratio filtering, and histogram filter-
ing using the statistics by Fan et al. (2021). Then
we perform subword segmentation using Sentence-
piece (Kudo and Richardson, 2018) based on the
vocabulary of mBART50 (Tang et al., 2020).

Data Diversification Different from last years’
shared tasks (Anastasopoulos et al., 2021, 2022),
no monolingual (non-English) data is provided.
This means conventional data augmentation tech-
niques like backward translation are not directly
applicable. On the other hand, forward translation
from existing English monolingual data may intro-
duce undesirable errors in the translation targets,
especially on lower-resource languages. In this
light, we use data diversification (Nguyen et al.,
2020), a data augmentation method that enriches
existing parallel data by forward and backward
translating the training bitext. As the model has
seen the parallel data in training, the synthetic trans-
lations are expected to have relatively high quality.
Moreover, either the source or target side of the
synthetic data is from the original bitext. The di-
versified data amount after deduplication is shown
in Table 3. Here we perform one round of forward
and backward translation, as Nguyen et al. (2020)
have empirically shown further rounds do not lead
to substantial gains.

2.4 Casing/Punctuation Restoration Data

The ASR outputs are lower-cased and unpunctu-
ated, while the MT model expects cased and punc-
tuated inputs. We randomly sample 1.5 million En-
glish sentences from the MT training data (Table 3),
and remove the casing and punctuation marks as

training source data. We then train a model to re-
store the casing and punctuation marks.

2.5 Speech Translation Data
The speech translation data are shown in Ta-
ble 4. We additionally use our trained MT model
to create forward translations based on the fol-
lowing transcript-only datasets: Common Voice,
TEDLIUM, and VoxPopuli. The TTS data de-
scribed in §2.2 is also used.

Lang. Corpus / Data Source Hours # Utterances

ar CoVoST 429 289k
MuST-C 463 212k
TTS 283 203k

zh CoVoST 429 289k
MuST-C 596 358k
TTS 204 183k

nl MuST-C 434 248k
europarl-ST 75 32k
TTS 1138 713k

fr MuST-C 485 275k
europarl-ST 76 32k
TTS 1768 998k

de CoVoST 429 289k
MuST-C 440 269k
europarl-ST 77 33k
TTS 1891 779k

ja CoVoST 429 289k
MuST-C 541 329k
TTS 73 56k

fa CoVoST 429 289k
MuST-C 347 182k
TTS 89 88k

pt MuST-C 377 206k
europarl-ST 75 32k
TTS 1678 639k

ru MuST-C 482 265k
TTS 331 331k

tr CoVoST 429 289k
MuST-C 446 236k
TTS 428 511k

all Common Voice 1488 948k
TEDLIUM 453 268k
VoxPopuli 502 177k

Table 4: ST data overview. The last section “all” indi-
cates forward translated synthetic targets from transcript-
only corpora, which are available for all 10 languages.

3 Cascaded System

For the cascaded system, we introduce our ASR
(§3.1) and MT (§3.2) models.

3.1 Automatic Speech Recognition Module
Baseline Models The first baseline is our ASR
model for last year’s offline track (Pham et al.,
2022). It is a Wav2vec 2.0 (Baevski et al., 2020)
with LARGE configuration pretrained on 960 hours
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of Librispeech data. This year, after seeing ini-
tial favourable results compared to Wav2vec, we
opt for WavLM (Chen et al., 2022) as audio en-
coder. We use the LARGE configuration with 24
layers. We use the mBART50 (Tang et al., 2020)
decoder along with the WavLM encoder. As the
ASR model only needs to transcribe English2, we
trim the mBART50 vocabulary from 256k down to
62k tokens by removing all non-alphabetic tokens.

In-Domain TTS Data We also use the synthe-
sized TTS data. Compared to the same model
without TTS data, the word error rate (WER) im-
proves from 11.6% to 10.7% on ACL dev, but de-
grades from 8.4% to 9.0% on the TEDLIUM test
set. There are two potential explanations: First, the
noisy TTS speech may be helpful for handling the
non-native utterances prominent in the ACL dev
set. Second, the target side of the TTS data is more
relevant to the ACL domain, as we selected them
based on n-gram overlap with ACL data. This in
turn improves ASR performance on the ACL dev
set.

As shown in Table 5, compared to last year’s sub-
mission, this year’s ASR model achieves consistent
gains across domains on ACL dev, tst-COMMON,
and tst2020.

Model ACL dev tstCom. tst2020

ASR 2022 (Pham et al., 2022) 12.5 5.4 5.6
WavLM + mBART50 10.7 3.9 4.8

Table 5: ASR results in WER(↓) in comparison to our
submission last year (Pham et al., 2022) which used
Wav2vec trained with CTC and a 5-gram LM. By using
WavLM audio encoder and the mBART decoder, we
achieve consistent gains across domains (ACL and TED,
i.e., tst*).

Language Model (LM) Adaptation Aside from
using TTS data, we also investigate other meth-
ods to adapt towards the ACL domain using the
provided paper abstracts. On preliminary experi-
ments with Connectionist Temporal Classification
(CTC) + n-gram LM models, we integrate ACL
abstract 5-grams statistics into the language mod-
els. As shown in the upper section of Table 6, this
improves on ACL dev (WER 13.8% → 13.0%)
while preserving the performance on TED talks
(tst-COMMON WER stays at 7.6%).

2BART, the English-only predecessor of mBART, is not
among the allowed pretrained models.

As our final system is an encoder-decoder model
(WavLM + mBART50), adapting the LM alone
is less straightforward. We create pseudo ASR
training data with ACL data on the transcript side.
Specifically, we use our TTS model to synthesize
speech from the ACL dev and test abstracts. As the
amount of ACL abstract data is very limited (less
than 100 sentences in total), we heavily upsampled
them, so that they consist of 60% of the training
data. As shown in the lower section of Table 6, this
leads to a minor improvement of WER for ACL
dev. However, the gain does not carry over to ST
performance when later cascading with our MT
model. Therefore, our final ASR system did not
use the abstracts. The lack of improvement could
be related to the low amount of ACL abstract data,
which requires heavy upsampling of the TTS data,
and as a result hinders the ability of transcribing
real speech.

The contrast between the two sets of experiments
may be related to diminishing gains as WER im-
proves, i.e., for the Wav2vec + CTC + LM model,
gaining over a WER of 13.8% is easier than starting
from a 10.7% WER. Another interpretation of the
difference could be that adding specific constraints
to “end-to-end” ASR models is more challenging
than the counterparts with separate LMs.

Model ACL dev tst-COMMON

Wav2vec + CTC + 5-gram 13.8 7.6
+ ACL abstract 5-gram 13.0 7.6

WavLM + mBART50 10.7 3.9
+ ACL abstract TTS (upsampled) 10.5 4.3

Table 6: ASR adaptation results in WER(↓). On prelim-
inary experiments with Wav2vec + CTC + LM models,
we improve ASR performance on ACL dev by integrat-
ing n-gram statistics from the ACL abstracts. For the
WavLM + mBART 50 model, adding synthesized audio-
transcript data based ACL dev abstracts does not give
consistent gain.

Casing/Punctuation Restoration We take a
sequence-to-sequence approach to the casing and
punctuation restoration problem. Specifically,
we train a punctuation model initializing from
DeltaLM-base (Ma et al., 2021) to restore the cas-
ing and punctuation information, using the training
data described in §2.4.

3.2 Machine Translation Module
Baseline Model We start with the pretrained
DeltaLM (Ma et al., 2021) with LARGE configura-
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ACL dev (en→X) TED (en→de)

ID de ja zh ar nl fr fa pt ru tr Avg. tst2019 tst2020

From ground-truth transcripts (MT alone)
(1) base 39.8 44.2 47.4 30.4 45.7 48.9 23.6 51.1 19.5 22.9 37.4 29.5 32.9
(2) data divers. all 41.6 44.5 49.8 33.6 50.7 51.1 25.4 52.5 21.5 24.6 39.5 30.0 33.7
(3) (1) + data divers.; adapter 41.4 45.8 48.8 33.3 49.8 51.5 25.2 54.1 21.9 24.1 39.6 29.5 33.2
(4) ensemble (2) + (3) 41.7 46.1 49.6 33.7 50.8 52.1 25.9 54.3 23.1 24.8 40.2 30.4 33.7
(5) (4) + kNN-MT 43.7 47.3 49.8 35.4 52.3 52.8 27.2 55.3 23.9 27.1 41.5 30.4 33.4

From ASR outputs (cascaded ST)
(1) base 34.3 38.2 41.6 25.3 36.6 39.9 19.1 40.7 16.7 18.9 31.1 26.5 28.0
(2) data divers. all 35.4 38.6 44.3 26.8 39.2 41.5 20.5 42.6 18.7 19.5 32.7 27.0 29.3
(3) (1) + data divers.; adapter 35.5 39.0 43.6 26.4 38.9 41.9 20.2 43.0 19.3 19.6 32.7 26.7 28.3
(4) ensemble (2) + (3) 36.1 39.8 44.4 26.9 39.8 42.3 20.7 43.5 19.2 19.7 33.2 26.9 28.7
(5) (4) + kNN-MT 36.8 40.2 44.6 28.2 40.8 42.0 21.8 44.5 19.7 21.1 34.0 26.9 28.5

End-to-end ST
(6) WavLM + mBART50 decoder 31.7 29.2 40.7 25.0 36.7 40.5 19.5 43.0 16.9 18.5 30.2 27.0 29.3
(7) (6) + TTS 33.2 29.2 40.5 25.5 37.9 41.0 20.1 43.9 16.5 18.9 30.7 27.0 29.1
(8) ensemble (6) + (7) 34.0 29.9 41.7 25.5 38.2 42.0 20.2 44.4 18.3 20.2 31.4 27.3 29.6

Table 7: MT and ST results in BLEU(↑).

tion. The pretrained model has 24 and 12 encoder
and decoder Transformer layers respectively. It
uses postnorm layer normalization. It is a fully
multilingual model where all parameters are shared
across languages. The target language tokens are
prepended to the source target sentences. We use
temperature-based sampling (Arivazhagan et al.,
2019) with τ = 5.0 to counteract the data imbal-
ance between languages. When training, we use
a relatively large effective batch size of 128k as
preliminary experiments with smaller batch sizes
showed more instabilities in training. This might
be a side effect of the postnorm layer normaliza-
tion (Nguyen and Salazar, 2019). The results of the
baseline are shown in Row (1) of Table 7, with an
average score of 37.4 BLEU3 on ACL dev.

Data Diversification As motivated in §2.3, we
use data diversification as an alternative data aug-
mentation method in absence of monolingual target
data for backtranslation. As data diversification
needs forward and backward translations on the
training data, we additionally train a 10-to-English
model to create the backward translations. Row (2)
of Table 7 shows the results after data diversifica-
tion on all languages pairs. On average, this data
augmentation approach improves MT quality by
2.1 BLEU and (37.4 → 39.5), and ST quality by
1.6 BLEU (31.1→ 32.7).

3By default using tok.13a from sacreBLEU (Post,
2018), except for zh and ja where we use tok.zh and
tok.ja-mecab-0.996-IPA.

Adapters for Incremental Data Retraining on
the new training data after diversification (Row
(2) of Table 7) is time-consuming and costly.
To adapt the initial model (Row (1) of Table 7)
rapidly towards to the augmented data, we use
adapters (Bapna and Firat, 2019; Philip et al., 2020).
In this case, the adapters are target-language-
specific. The adapters are inserted after each en-
coder and decoder layer. We initialize from the
trained baseline (Row (1) in Table 7), freeze trained
parameters and update the adapters only. We use
the efficient implementation from Baziotis et al.
(2022). As shown in Row (3) of Table 7, only train-
ing the adapters on the new diversified training data
performs on par with the re-training setup in Row
(2) (39.6 on MT and 32.7 on ST on average for
ACL dev). These results demonstrate that adapters
are suitable for fast and effective incremental learn-
ing when additional training data emerges later.

To our surprise, adding adapters to the model
trained with full data diversification (Row (2) from
Table 7) does not bring further gain. A similar
observation was reported by Pires et al. (2023),
who opted for training the full network from scratch
along with adapters instead. In our case, it therefore
would be interesting to see the impact of training
on data diversification with adapters from scratch.

Multilingual vs Bilingual To investigate the im-
pact of interference from multiple target languages,
in preliminary experiments, we also compare the
multilingual and bilingual translation performance
for selected language pairs. As shown in Table 8,
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compared to bilingual models, the multilingual
model lags behind especially on higher-resource
languages. Adding the adapters partly closes this
gap. Note the score difference to main result table
(Table 7) is because the preliminary experiments
did not fully use diversified data for all languages.

Model ACL dev tst-COMMON

en-de en-ru en-fa en-de en-ru en-fa

bilingual 41.0 20.0 24.2 34.3 22.7 16.0
multilingual 39.8 19.5 23.6 34.1 21.9 15.9
+ adapters 40.9 20.2 23.7 34.7 22.2 16.3

Table 8: Comparison of bilingual vs multilingual trans-
lation performance in BLEU (↑) on German (de), Rus-
sian (ru), Farsi (fa), which are high-, mid-, low-resource
in the training data (Table 3). Multilingual system falls
behind bilingual system, while adapters partly closes
the gap. Note the score difference to main result table
(Table 7) is because the experiments here did not fully
use diversification.

Ensemble Although the models in Row (2) and
(3) in Table 7 are trained on the same data and
share the same base architecture, we expect their
representations to be sufficiently different, as (3)
additionally uses adapters. We therefore ensemble
these two models. The results are in Row (4) of Ta-
ble 7. On MT and ST, for ACL, ensembling shows
an improvement of 0.6 and 0.5 BLEU respectively
over the single models in Row (2) and (3). On
TED, however, ensembling does not seem to im-
pact the scores compared to the single models. One
explanation is that the adapter model from Row
(3) performs worse than its non-adapter counter-
part (Row (2)) on TED, which limits the overall
effectiveness of ensembling.

kNN-MT We also adapt the MT model to the tar-
get domain of scientific talks. A challenge is that
we do not have sufficient training data to fully fine-
tune the MT model towards the desired domain or
style. In this case, we use kNN-MT (Khandelwal
et al., 2021) to adapt the model at inference time.
In kNN-MT, bitexts are passed through a trained
MT model. For each target token, its decoder hid-
den state is stored in a datastore. At inference time,
based on the current decoder hidden state, k candi-
date target tokens are retrieved from the datastore
using a nearest neighbor lookup. The retrieved to-
ken distribution is then interpolated with the MT
target distribution, which in turn generates the out-
put tokens. Hyperparameters for kNN-MT include

Source (ASR output): ... in a zero shot evaluation setup,
meaning that pre trained word embedding models are ap-
plied out of the box without any additional fine tuning
w/o kNN-MT (Table 7 row (4)): ... in einer
Null-Shot-Bewertungs-Setup (zero-shot evaluation setup),
was bedeutet, dass vorgebildete (pre-educated) Wort-
Einbettungsmodelle ohne zusätzliche Feinabstimmung di-
rekt angewendet werden.
w/ kNN-MT (Table 7 row (5)): ... in einer Null-Shot-
Bewertung (zero-shot evaluation), was bedeutet, dass
vortrainierte (pretrained) Wort-Einbettungsmodelle ohne
zusätzliche Feinabstimmung direkt angewendet werden.

Source (ASR output): Hello. My name is Ramachandra,
and I will present our paper.
w/o kNN-MT (Table 7 row (4)): 你好 (Hello; addressing
a single person),我叫拉玛钱德拉 我要发表 (publish)我
们的论文
w/ kNN-MT (Table 7 row (5)):大家好 (Hi all; addressing
a group of audience),我叫拉玛钱德拉,我要介绍 (intro-
duce)我们的论文。

Table 9: Examples of kNN-MT improving transla-
tion quality for en→de (upper) and en→zh (lower).
kNN-MT creates more accurate terminology transla-
tions (“pre trained” for en→de) and create more context-
appropriate translation (“Hello” for en→zh).

the number of retrieved neighbors k, the tempera-
ture for smoothing the kNN distribution T , and the
interpolation weight w.

In our experiments, we use systems (2) and (3)
from Table 7 for creating the datastores. As differ-
ent models’ hidden states (which serve as keys in
the datastore) also differ substantially, the datastore
is MT-model-dependent. To use kNN-MT when
ensembling systems (2) and (3), we therefore need
two datastores for systems (2) and (3) respectively.
The kNN-MT candidate tokens are interpolated
with the output vocabulary distribtuion before the
ensembling operation.

We use hyperparameters k = 8, T = 50,
w = 0.3, after an initial search with T ∈
[10, 50, 100], w ∈ [0.1, 0.3, 0.5]. Our implemen-
tation mostly follows Zheng et al. (2021), which
uses the FAISS toolkit (Johnson et al., 2019) for
efficient kNN operations. Comparing the infer-
ence speed of system (4) and (5), with the same
batch size of 64 sentences4, using kNN-MT takes
roughly 50% more time on a Nvidia Titan RTX
GPU with 24GB memory.

Naively using all ACL dev bitext as datastore
would lead the model to copying the oracle targets.
To simulate the scenario on the blind test set, when

4System (5) requires more GPU memory than system (4).
The latter would be able to use a larger batch size of 128
sentences.
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translating the i-th talk, we use the other jj ̸=i ∈
[n] talks’ bitext as datastore, where n is the total
number of talks.

As shown in Row (5) of Table 7, kNN-MT
brings an additional gain of 1.3 BLEU on MT and
0.8 BLEU on ST. These results shows a datastore
as small as hundreds of sentence pairs can be effec-
tively used for inference-time domain adaptation.

Table 9 shows two examples of kNN-MT im-
proving translation quality, apart from generic im-
provements in fluency and accuracy, in these ex-
amples kNN-MT also helps generate correct termi-
nologies and context-appropriate greetings.

4 End-to-End System

For the end-to-end system, similar to our ASR
model, after seeing initial favourable results of
WavLM over Wav2vec, we choose WavLM as
the audio encoder. Following last year’s submis-
sion (Pham et al., 2022), we use the mBART50
decoder. The results are shown in Row (6) of Ta-
ble 7. Contrasting Row (6) and (7) reveals that
adding the TTS data does not substantially change
ST performance. However, ensembling the two
models trained with and without TTS data (Row
(8)) improves over the single models (on average
+0.7 for ACL, +0.4 for TED), despite them having
the identical architecture.

Compared to the strongest cascaded system
(Row (5)), the end-to-end system falls behind 2.6
BLEU on ACL dev. On TED, however, it appears
to slightly outperform the cascaded system. One
explanation is that the MT model of the cascaded
system has not been separately adapted to TED
texts (although parts of the full training data do
cover TED data), which was shown essential in im-
proving performance on TED test sets (Zhang et al.,
2022; Pham et al., 2022). The end-to-end system,
on the other hand, has seen a larger proportion of
TED data in training (Table 4).

Similar to the previous year (Polák et al., 2022),
we also adapt our end-to-end offline model for si-
multaneous track (Polák et al., 2023).

5 Conclusion

In this paper, we described our systems for the mul-
tilingual speech translation track of IWSLT 2023,
which translates English speech into 10 target lan-
guages. To tackle the task of translating scien-
tific conference talks, which feature non-native in-
put speech and terminology-dense contents, our

systems have several novelties. Lacking suitable
training data for the target domain, we used kNN-
MT for inference-time adaptation and showed an
improvement of +0.8 BLEU for cascaded speech
translation system. We also used adapters to in-
tegrate incremental data from augmentation, and
achieved performance on-par with re-training on
all data. In our experiments, we observed that cas-
caded systems are more easily adaptable towards
desired target domains due to their separate mod-
ules. Our cascaded speech system outperforms
its end-to-end counterpart on scientific talk transla-
tion, although their performance remains similar on
TED talks. For future work, we are interested in the
feasibility of applying the adaptation approaches
shown effective on MT to end-to-end ST.
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Abstract
This paper describes the BIGAI’s submission
to IWSLT 2023 Offline Speech Translation task
on three language tracks from English to Chi-
nese, German and Japanese. The end-to-end
systems are built upon a Wav2Vec2 model for
speech recognition and mBART50 models for
machine translation. An adapter module is ap-
plied to bridge the speech module and the trans-
lation module. The CTC loss between speech
features and source token sequence is incorpo-
rated during training. Experiments show that
the systems can generate reasonable transla-
tions on three languages. The proposed models
achieve BLEU scores of 22.3, 10.7 and 33.0
on tst2023 en→de, en→ja and en→zh TED
datasets. It is found that the performance is
decreased by a significant margin on complex
scenarios like presentations and interviews.

1 Introduction

Speech translation aims to solve the problem of
translating speech waveform in source language
into written text in target language. Cascade sys-
tems decompose the problem into automatic speech
recognition (ASR) to transcribe source speech into
source text and machine translation (MT) to trans-
late source text into target text (Wang et al., 2021b;
Zhang et al., 2022a). It is clear that such architec-
ture has the advantage of ensembling results from
state-of-the-art (SOTA) ASR models and MT mod-
els and the disadvantages of accumulating subsys-
tem errors and discarding paralinguistic features.
Recent end-to-end speech translation (E2E ST) sys-
tems have shown the potential to outperform cas-
cade systems (Hrinchuk et al., 2022; Shanbhogue
et al., 2022). However, due to the lack of high-
quality parallel training data, it is difficult to quan-
tify the gap between the two categories.

Inspired by Zhang et al.’s (2022b) work, this
submission explores various techniques to address
problems in speech translation. 1) Perform fine-
grained data filtering by calculating WERs for

speech data and alignment scores for translation
data. 2) Apply a straightforward split-and-merge
method to split long audio clips into short seg-
ments. 3) Employ a three-stage training strategy to
concatenate the finetuned speech module and the
translation module. 4) Incorporate connectionist
temporal classification (CTC) loss to leverage the
divergence between speech features and source to-
ken sequences (Graves et al., 2006). Experiments
are carried out to perform speech translation at sen-
tence level and corpus level. The performance of
the three PT36 models is finally evaluated on the
tst2023 datasets with automatic metrics.

The rest of this paper is organized as follows.
Section 2 describes how speech data and translation
data are processed in the experiments. Section 3
explains how finetuned models are assembled to
perform speech translation on all three languages.
Section 4 illustrates experiment setups, results and
analysis. Section 5 concludes the submission.

2 Data Processing

2.1 Speech Corpora

Under the constrained condition, there are five
speech datasets used to train ASR models, namely
LibriSpeech (Panayotov et al., 2015), Mozilla Com-
mon Voice v11.0 (Ardila et al., 2019), MuSTC (Cat-
toni et al., 2021), TEDLIUM v3 (Hernandez et al.,
2018) and VoxPopuli (Wang et al., 2021a). Statis-
tics on each dataset are shown as Table 1. Note that
only the MuSTC datasets are used to train speech
translation systems on the three language tracks,
English-to-German (en→de), English-to-Japanese
(en→ja) and English-to-Chinese (en→zh).

In general, all speech files are unified to single
channel 16kHz format. During training, utterances
shorter than 0.2s or longer than 20s are removed.
An extra W2V model with 24 Transformer layers is
finetuned on the LibriSpeech dataset and calculates
WER scores by performing CTC greedy decoding
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Table 1: Statistics on speech datasets

Dataset Utterances Hours
CommonVoice 948,736 1,503.28

LibriSpeech 281,241 961.05
MuSTC en→de v3 269,851 440.18
MuSTC en→ja v2 328,637 541.04
MuSTC en→zh v2 358,852 596.20

TEDLIUM 268,263 453.81
VoxPopuli 182,466 522.60

Total, loaded 2,638,046 5,018.17
Total, filtered 2,528,043 4,713.35

Table 2: Statistics on translation datasets

Dataset en→de en→ja en→zh
MuSTC 0.269m 0.328m 0.358m

OpenSubtitles 22.512m 2.083m 11.203m
Commentaries 0.398m 0.002m 0.322m

Total 23.181m 2.414m 11.884m

at character level on the other speech datasets, so ut-
terances with WER scores over 75% are discarded
as well. As a result, the speech corpora contains
nearly 2.53 million valid utterances with the total
duration of 4,713.35 hours.

2.2 Translation Corpora
In addition to the MuSTC datasets, the OpenSubti-
tles v2018 (Lison et al., 2018) and the News Com-
mentaries v16 (Farhad et al., 2021) datasets are
added up to train MT models. Statistics on these
translation datasets are described as Table 2. Since
translation pairs do not perfectly match all the
time, the translation quality is measured by the fast-
align1 toolkit in terms of the percentage of aligned
words. Word sequences are obtained by splitting
English texts and German texts using whitespaces
and converting Chinese texts and Japanese texts
into character sequences. Parallel training exam-
ples are filtered out if: 1) the source sentence con-
tains more than 150 words; 2) the alignment score
in either forward translation or backward transla-
tion is lower than a certain threshold.

3 Method

3.1 Pretrained Models
Two state-of-the-art models pretrained with self-
supervised objectives are employed as base models
for downstream tasks with labeled data, namely the

1https://github.com/clab/fast_align

wav2vec2-large-960h-lv60-self 2 model for speech
recognition and the mbart-large-50-one-to-many-
mmt3 model for machine translation.

The W2V models (Baevski et al., 2020) are
trained with contrastive learning to distinguish
whether two transformations of convolution fea-
tures result in similar latent representations. The
first transformation is to learn high-level contex-
tual speech representations through a sequence of
Transformer layers (Vaswani et al., 2017). The sec-
ond transformation is to create discrete targets for
self-training by the quantization module. The best
partial representations chosen from multiple code-
books with the Gumbel softmax (Jang et al., 2016)
are concatenated and transformed to a quantized
representation with a linear layer.

The mBART25 models (Liu et al., 2020) are
Transformer-based encoder-decoder models that
are pretrained on monolingual sentences from
many languages and finetuned with parallel trans-
lation data on 25 languages. The pretraining ob-
jective is a denoising loss so that the model learns
to reconstruct corrupted sentences to their original
forms. The noise function randomly masks 35% of
input sentences in consecutive spans and permutes
sentence orders for document-level MT if multiple
sentences are given. The mBART50 models (Tang
et al., 2020) extend embedding layers with an extra
set of 25 languages and are finetuned on translation
task from English to the other 49 languages.

3.2 Finetuned Models

The two base models result in one ASR model,
three MT models and three E2E ST models. Writ-
ten texts in the four languages are tokenized into
subword tokens in byte-pair encoding (BPE) us-
ing the SentencePiece toolkit (Kudo and Richard-
son, 2018). The tokenizer is inherited from the
mBART50 model with a multilingual configura-
tion by prepending language symbols and the total
number of BPE tokens in the vocabulary is 250k.

For speech recognition, the finetuned model
(ASR12) takes the first 12 Transformer layers from
the base model. An adapter module (Li et al., 2020;
Shanbhogue et al., 2022) compresses the feature
vectors by a factor of eight, which consists of three
one-dimensional convolution layers with a stride
of two. A linear layer transforms the compressed
representations into output probabilities.

2facebook/wav2vec2-large-960h-lv60-self
3facebook/mbart-large-50-one-to-many-mmt

124

https://github.com/clab/fast_align
https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt


For end-to-end speech translation, the mod-
els have similar architecture as the PT36 mod-
els in Zhang et al.’s (2022b) work instead of the
PT48 models to reduce computational complex-
ity. Within a PT36 model, the speech module
and the translation module are initialized with the
ASR12 model and the MT24 model respectively.
The adapter module that connects the two modules
is not trained from random initialization, because
it has been trained with the ASR12 model on the
first stage. The training loss combines the cross
entropy loss for machine translation and the CTC
loss for speech recognition with a hyperparameter
to balance the weights between the two losses.

3.3 Speech Resegmentation
Past years’ systems (Anastasopoulos et al., 2021;
Antonios et al., 2022) have proved that speech re-
segmentation has a great impact on the translation
performance at corpus level. During evaluation,
audio clips are splitted into segments with a simple
two-stage strategy using the WebRTCVAD4 toolkit.
On the split stage, long audios are processed with
three-level settings of aggressiveness modes in-
creasing from 1 to 3 and frame sizes decreasing
from 30ms to 10ms. In this way, most segments are
no longer than a maximum duration durmax and
the outliers are further segmented into ⌊duration0.75×θ ⌋
chunks brutally. On the merge stage, consecutive
segments are merged into final segments no shorter
than a minimum duration durmin.

4 Experiments

4.1 Settings
All the models are implemented with the Speech-
Brain toolkit (Ravanelli et al., 2021). The total num-
ber of parameters in a PT36 model is about 794.0M,
183.2M in the speech module and 610.9M in the
translation module. The feature extractor processes
speech waveform with seven 512-channel convo-
lution layers, in which kernel sizes and strides are
[10,3,3,3,3,2,2] and [5,2,2,2,2,2,2]. There are 12
Transformer layers with 16 attention heads, model
dimension of 1024 and inner dimension of 4096
in speech encoder, text encoder and decoder. The
adapter module has three Conv1D layers with ker-
nel sizes and strides being [3,3,3] and [2,2,2].

On the first stage, the ASR12 model is finetuned
on the speech corpora using 16 NVIDIA A100
GPUs for 21 epochs with the batch size of 3 and

4https://github.com/wiseman/py-webrtcvad

Table 3: WER scores on test speech datasets

LibriSpeech TEDLIUM MuSTC
27.23 32.17 34.73

Table 4: BLEU scores on tst-COMMON datasets

Model en→de en→ja en→zh
MT24 31.04 14.74 22.80

+ finetune 33.00 17.11 23.44
PT36 26.45 14.28 19.65

the update frequency of 8. The parameters in the
Wav2Vec2 module and the linear layer are sepa-
rately optimized by the Adam optimizer (Kingma
and Ba, 2014). The learning rates are initialized
with 1e−4 and 4e−4 with the annealing factors set
to 0.9 and 0.8. The learning rates are updated based
on the improvement of the training losses between
the previous epoch and the current epoch. During
training, speech waveform is perturbed with a ran-
dom speed rate between 0.9 and 1.1 and speech fea-
tures are augmented with the SpecAugment tech-
nique (Park et al., 2019).

On the second stage, three MT24 models are
finetuned on the translation corpora with the batch
size of 12 and the update frequency of 4. The
en→de MT24 model is trained using 8 A100 GPUs
for 2 epochs and the other two models are trained
using 4 A100 GPUs for 6 epochs and 3 epochs. The
model parameters are optimized with the Adam
optimizer and the initial learning rates are set to
5e−5 with the annealing factor set to 0.9.

On the third stage, three PT36 models are fine-
tuned on the corresponding MuSTC datasets, each
of which is trained using 4 A100 GPUs for 10
epochs with the batch size of 12 and the update
frequency of 4. The learning rates are initialized
to 3e−5 for the W2V module and 5e−5 for the
mBART module with the annealing factors set to
0.9. The loss weights are set to 0.1 for the ASR
module and 0.9 for the MT module since the per-
formance of the ASR module is not good enough.

4.2 Speech Recognition

Table 3 lists WER scores on test speech datasets,
where 34.73% is the average WER score of the
three MuSTC datasets. Obviously, the performance
of the ASR12 model is much worse than that of
other systems (Zhang et al., 2022b; Wang et al.,
2021b) with WERs around 10%. Due to extremely
large vocabulary size, the model requires a long
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Table 5: Statistics on short segments in the tst2020 dataset with different durmin and durmax settings.

id durmin durmax level1 level2 level3 brutal split merge
1 5 20 3,473 342 449 185 4,449 2,621
2 10 30 3,568 146 258 69 4,041 1,699
3 15 60 3,624 35 115 0 3,774 1,237
4 20 90 3,635 9 73 0 3,717 970

Table 6: BLEU scores on calculated on past years’ IWSLT en→de test sets with hypotheses automatically reseg-
mented by the mwerSegmenter toolkit (Ansari et al., 2021) based on source transcriptions and target translations.

id durmin durmax 2010 2013 2014 2018 2019 2020 ∆

1 5 20 21.44 27.37 25.87 12.41 18.95 20.14 21.03
2 10 30 23.79 30.33 28.53 16.29 21.22 22.60 +2.76
3 15 60 24.17 31.16 29.23 18.38 22.04 23.46 +3.71
4 20 90 24.31 31.73 30.05 17.98 22.16 23.55 +3.93

time to train. As a result, the model is still far from
converge at the time of this submission.

4.3 Sentence-level Translation
The tst-COMMON datasets are used to evaluate the
translation performance at sentence level and the
BLEU scores are calculated by the SacreBLEU5

toolkit, where Japanese texts are tokenized by the
Mecab6 morphological analyzer and Chinese texts
are tokenized into characters. The BLEU scores on
the three datasets are listed in Table 4.

For machine translation, compared with the
base MT24 models, the performance of the fine-
tuned MT24 models is improved by 1.96 (~6.3%),
2.37 (~16.1%) and 0.64 (~2.8%) BLEU scores on
en→de, en→ja and en→zh translations. It indi-
cates that adding out-of-domain corpora like Open-
Subtitles and NewsCommentaries is able to boost
the machine translation quality.

For speech translation, compared with the fine-
tuned MT24 models, the performance of PT36
models is degraded by a large margin with 6.55
(~19.8%), 2.83 (~16.5%) and 3.79 (~16.2%) BLEU
scores on en→de, en→ja and en→zh translations.
Compared with the base MT24 models, the gaps
are still relatively large with 4.59 (~14.8%), 0.46
(~3.1%) and 3.15 (~13.8%) BLEU scores.

4.4 Corpus-level Translation
The translation performance of en→de PT36 model
is further evaluated on past years’ test datasets with
challenging scenarios. To keep consistency, all test
audios are resegmented using the method described

5https://github.com/mjpost/sacrebleu
6https://github.com/taku910/mecab

in Section 3.3. Statistics on short segments in the
tst2020 dataset are shown as Table 5. It is noticed
that the number of brutal segments is decreased to
zero when durmin is set to more than 15s.

Table 6 lists BLEU scores on past years’ test
datasets with different durmin and durmax set-
tings. It is found that the performance is boosted
as the segment duration gets longer, which means
that more contextual information is provided to
the model. When durmin and durmax are set to
20s and 90s, the best BLEU scores are achieved
on most test datasets with an increment of 3.93
(~18.7%) mean BLEU score. Further investigation
on long audio segments finds that avoiding brutal
segmentation is another factor of such improve-
ment. Comparing experiment 2 and experiment 3,
the mean BLEU score is increased by 0.95 (~3.9%)
points, when the number of brutal segments is de-
creased from 69 to 0. Comparing experiment 3
and experiment 4, the mean BLEU score is merely
increased by 0.22 (~0.8%) points.

4.5 Submissions

The three PT36 models are finally evaluated on
tst2023 datasets (Agarwal et al., 2023) with more
challenging scenarios like presentations and inter-
views. Test audios are resegmented with durmin

and durmax set to 20s and 90s. Official metrics are
presented as Table 7 for en→de datasets, Table 8
for en→ja datasets and Table 9 for en→zh datasets.

Comparing the performance between in-domain
TED datasets and out-of-domain ACL datasets, the
BLEU scores are decreased by 2.7 (~12.1%), 0.3
(~2.8%) and 5.6 (~16.9%) points on en→de, en→ja
and en→zh translations. Noticeably, the perfor-
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Table 7: Official metrics on the tst2023 en→de subsets with hypotheses automatically resegmented by the mwerSeg-
menter toolkit (Ansari et al., 2021) based on source transcriptions and target translations.

TED ACL Sub
Comet BLEU chrF Comet BLEU chrF Comet BLEU chrf

ref2 ref1 ref2 ref1 both ref1 ref2
0.7128 0.7055 22.3 19.3 27.4 0.49 0.50 0.6295 19.6 0.46 0.3555 11.5 0.45

Table 8: Official metrics on the tst2023 en→ja subsets.

TED ACL
Comet BLEU Comet BLEU

ref2 ref1 ref2 ref1 both
0.7201 0.7228 10.7 13.2 16.8 0.6769 10.4

mance is almost halved (~48.4%) with only 11.5
BLEU scores on the en→de Sub dataset. The re-
sults indicate that the proposed PT36 models have
inadequate abilities of handling non-native speak-
ers, different accents, spontaneous speech and con-
trolled interaction with a second speaker.

5 Conclusion

In conclusion, this paper describes the end-to-end
speech translation systems for IWSLT 2023 of-
fline tasks. Built upon pretrained models, the sys-
tems are further trained on large amount of parallel
data using the three-stage finetuning strategy. The
PT36 model consists of an ASR12 module with
an adapter module for ASR and an MT24 module
for MT. The training loss sums up the CTC loss
for ASR and the cross entropy loss for MT. Experi-
ments demonstrate that the proposed methods have
the potential to achieve a reasonable performance.
However, due to limited resources, some modules
has not well trained, which has a negative impact
on subsequent tasks. Therefore, the end-to-end
models still underperform SOTA systems.
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Abstract

We present a simple yet efficient method to en-
hance the quality of machine translation models
trained on multimodal corpora by augmenting
the training text with labels of detected objects
in the corresponding video segments. We then
test the effects of label augmentation in both
baseline and two automatic speech recognition
(ASR) conditions. In contrast with multimodal
techniques that merge visual and textual fea-
tures, our modular method is easy to imple-
ment and the results are more interpretable.
Comparisons are made with Transformer trans-
lation architectures trained with baseline and
augmented labels, showing improvements of
up to +1.0 BLEU on the How2 dataset.

1 Introduction

Video streams are rich sources of content and the
application of machine translation to videos present
open research challenges. Specifically, we are in-
terested in translating the speech content present
in videos, using the visual modality as auxiliary
input to improve translation quality. Intuitively, vi-
sual signals may help disambiguate under-specified
words or correct speech recognition errors.

There has been much research in speech trans-
lation, which focuses on speech input, and multi-
modal machine translation, which focuses on vi-
sual and textual inputs; this work combines aspects
of both areas. We assume a cascaded pipeline,
where the speech in a video input is first passed to
a speech recognition component, then the text tran-
scripts together with the video frames are passed to
a multimodal machine translation (MMT) system.
Our contribution is a MMT system that augments
text-based training data with labels obtained from
a computer vision object detector (Fig. 1).

In contrast to more complex multimodal fusion
techniques that combine vision and translation neu-
ral networks into end-to-end models, our modu-
lar approach is simple to implement, requiring no

toolkit changes, and allows for easier interpretation
of results.

On the How2 dataset (Sanabria et al., 2018), we
experiment with using clean transcripts and au-
tomatic speech recognition transcripts of varying
quality as input to our translation systems. This
tests the effectiveness of our multimodal approach
in noisy conditions, beneficial in real-world use
cases. Results show gains of +0.4 to +1.0 BLEU
on the How2 held-out test set.

src: And then you’re going to stir it so have your
stirrer available. PERSON CUP BOTTLE

tgt: E então você vai mexer, então tenha seu
agitador disponível.

Figure 1: Demonstration of augmenting source data
with detected object labels to provide additional context.

2 Object Class Label Augmentation

When considering the translation of instructional
videos, the speaker’s narration may use ambiguous
language when describing the steps to the task as
the viewer may be able to infer the intent through
objects or actions in the scene. If MT systems
are trained on the speaker’s words and translations,
these cues from the scene are not present. We
proposed to address this omission by analyzing
clips of the video and augmenting the text data
with objects found in that clip.

Augmentation Process: To augment training
data with object labels, an object recognition model
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An ounce of amaretto, an ounce
of 151 and then sour mix.

PERSON
CUP
BOTTLE
BOTTLE
BOTTLE
BOTTLE
BOTTLE

PERSON
CUP
BOTTLE

An ounce of amaretto, an ounce of 151
and then sour mix. PERSON CUP BOTTLE

YoloV5 Objects Classes

Figure 2: Illustration of the object label augmentation processing pipeline.

was applied to each of the videos in the training
set in order to generate lists of objects present. To
that end, we apply the YOLOv51 (Jocher et al.,
2021) model (specifically yolov5s) to the 189k
video clips corresponding to the utterances from the
How2 training data. The object detection model
can detect 80 types of objects as outlined in the
COCO (Lin et al., 2015) dataset.

The detected labels for the time-slices in the
video clip are collated and collapsed in order to
keep final sentence length to a manageable size -
we are interested in the presence of an object class
versus how many times that class has occurred in
the scene or the time slices in the video clip.

Once processed, the per-clip labels are appended
to the source side of the training, dev and test sets
as “context-markers”. We do not apply these labels
to the target side as we wish to generate coherent
sentences in the target language. This processing
pipeline is illustrated in Figure 2.

In particular, we note in the example in Figure 1
that the transcription discusses a stirrer but does not
give context to what kind of stirrer: A laboratory
sample stirrer, a paint stirrer, or in this case a stirrer
to mix a drink. Using the object labels from the
example, we see that the stirrer in this case refers
to a drink - adding valuable context.

The augmented How2 corpus will be available
for download at a future date.

Distribution of Augmentation Labels: When
examining the counts of per-segment object class
annotations in the training set (shown in Figure
3), we note that over 64% of the segments have
between one and three object classes present, 13%
have no detected object classes, and the remain-
ing 23% have four or greater classes present with

1You Only Look Once
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Figure 3: Training segments with N object classes de-
tected.

higher class counts forming a long tail. Full class
object counts are shown in Table 1.

Observing the most-detected class labels in train-
ing segments (shown in Figure 4), we see that PER-
SON is by far the most common object class with
over 164k occurrences, while CUP and BOTTLE
are the next most common with around 23.8k occur-
rences each. As How2 is comprised of instructional
videos in which the authors are demonstrating how
to perform a task, PERSON’s high occurrence rate
seems reasonable. The figure shows the top 15
object classes detected, the full list of detection
counts is shown in Table 2.

While the above analyses focus on the train-
ing portion of the dataset, similar distributions are
present in both the validation and test sets.

3 How2 Dataset

The How2 (Sanabria et al., 2018) dataset is a collec-
tion of instructional videos hosted on YouTube that
are paired with spoken utterances, English subtitles
and a set of crowdsourced Portuguese translations.
Additional metadata such as video descriptions and
summaries are also available. The dataset contains
upwards of 2,000 hours of videos, but only a 300
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Classes Segments Classes Segments Classes Segments

0 15,544 6 7,508 12 143
1 44,496 7 4,300 13 79
2 41,950 8 2,259 14 42
3 32,077 9 1,166 15 14
4 21,428 10 626 16 7
5 13,011 11 293 17 3

Table 1: Video segments with n object classes present.

Class Count Class Count Class Count

PERSON 164,605 MICROWAVE 4,298 TOILET 1,333
CUP 23,870 REFRIGERATOR 4,014 BROCCOLI 1,327
BOTTLE 23,809 CAKE 3,911 SURFBOARD 1,281
CHAIR 17,806 DONUT 3,729 HORSE 1,222
CELL_PHONE 17,016 DOG 3,496 BED 1,141
REMOTE 16,127 TOOTHBRUSH 2,839 BOAT 1,056
BOWL 13,524 SUITCASE 2,730 BACKPACK 1,034
POTTED_PLANT 13,045 APPLE 2,714 TRUCK 924
TV 11,455 BASEBALL_GLOVE 2,682 TRAFFIC_LIGHT 919
SPORTS_BALL 10,290 SPOON 2,636 ORANGE 841
TIE 9,971 HANDBAG 2,352 COW 794
LAPTOP 9,066 COUCH 2,316 SANDWICH 763
VASE 9,033 BASEBALL_BAT 2,293 FIRE_HYDRANT 722
BOOK 7,612 BIRD 2,292 TEDDY_BEAR 713
WINE_GLASS 7,229 BANANA 2,145 AIRPLANE 576
DINING_TABLE 6,315 PIZZA 2,103 BUS 516
TENNIS_RACKET 5,922 CAT 2,054 SKIS 456
KNIFE 5,355 CARROT 1,986 SNOWBOARD 387
CAR 5,198 BENCH 1,899 TRAIN 338
MOUSE 5,107 MOTORCYCLE 1,872 ELEPHANT 265
SINK 4,688 BICYCLE 1,856 STOP_SIGN 246
FRISBEE 4,675 HOT_DOG 1,652 PARKING_METER 218
OVEN 4,450 SCISSORS 1,529 SHEEP 215
CLOCK 4,382 FORK 1,480 BEAR 198
KEYBOARD 4,353 UMBRELLA 1,408 GIRAFFE 177
SKATEBOARD 4,304 KITE 1,384 ZEBRA 158

Table 2: Detected class counts for training segments.

hour subset contains the full set of annotations.
This work focuses on that subset.

Videos Hours Sentences

train 13,168 298.2 184,949
validation 150 3.2 2,022
test 175 3.7 2,305

Table 3: How2 300h subset statistics

This portion consists of 13,493 videos consist-
ing of a total run-time of 305.1 hours from which
189,276 utterances are extracted. These videos and
segments are then segregated into training, vali-
dation and test sets as shown in Table 3. These
segments are then used to train systems in down-
stream tasks such as MT.
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Figure 4: Top 15 classes present in training video snip-
pets.

4 Experiments

To gauge the effectiveness of the label augmenta-
tion approach, we train baseline and object-label
augmented systems in Marian (Junczys-Dowmunt
et al., 2018) with a transformer-base (Vaswani et al.,
2017) architecture. We also replicate the base-
line and image feature augmented shallow recur-
rent neural network (RNN systems) described in
(Sanabria et al., 2018) for comparison.

4.1 Training Hyperparameters
The Marian (Junczys-Dowmunt et al., 2018) sys-
tems trained for our experiments use transformer-
base settings as described in Vaswani et al. (2017):
6-layer encoder, 6-layer decoder, 8 transformer
heads, 2048 hidden units. These training sessions
were performed on 2 NVidia Titan-X Pascal de-
vices each with 12Gb GPU RAM, taking 6.5-7.5
hours per model.

4.2 Data preprocessing
In order to prepare the augmented data for use in
training MT systems, we employ SentencePiece
(Kudo and Richardson, 2018) unigram-model sub-
word processing with a disjoint2 vocabulary size
of 32k. One important change we introduce is to
preserve each of the COCO class labels as atomic
tokens that are not broken apart. These labels are
additionally in all caps to both disambiguate from
natural occurrences of the label words and provide
a convenient marker for diagnosis.

4.3 Pruning Over-represented Object Labels
As noted in Section 2, PERSON is by far the
most represented object class label. We posit this
prevalence may have a negative effect on perfor-
mance. To investigate this hypothesis, we examine

2Separate vocabularies for English and Portuguese.

three methods to prune over-prevalent or under-
represented object class labels: naïve dropping of
the N most-represented labels, inverse document
frequency (IDF) thresholding and normalized term
frequency-inverse document frequency (TF-IDF)
thresholding. For the first method, object labels are
simply removed in the most common order - e.g.
drop-3 removes the three most common classes:
PERSON, CUP, and BOTTLE.

IDFT = log2
Total Corpus Lines

# Lines with T present
(1)

Inverse document frequency thresholding (as cal-
culated by Equation 1) removes labels that fall be-
low a specified threshold compared to a precom-
puted table of IDF scores for each class, effectively
removing the most represented labels.

Lastly, normalized TF-IDF thresholding does the
same using the product of TF (calculated by the
number of times an object label occurs in video
time-slices3) and IDF scores normalized from 0
to 1 - this tries to bring a balance between most
represented labels and more unique labels that may
add a distinct contribution to a translation.

4.4 ASR-Degraded experiments
The How2 dataset is provided with reference
speech transcription, but in realistic settings one
may need to derive these automatically. Automatic
speech recognition (ASR) errors may lead to ad-
ditional ambiguity in the MT input, but hopefully
can be recovered partially with image context. We
build Kaldi (Povey et al., 2011) ASR systems to
recognize the speech of the speakers in the How2
videos, then match the ASR output timings to those
of the gold-standard utterances. These new utter-
ances are used as the source side of the training
corpus for both the baseline and object label aug-
mented condition.

In a second experiment, we add 5 dB of back-
ground noise to the audio in the How2 videos using
noise samples from the MUSAN corpus (Snyder
et al., 2015). The same ASR system described
above is then evaluated on the noisy audio to pro-
duce a second set of ASR hypotheses.

The English speech recognition system was
trained using the Kaldi ASR toolkit. The acoustic
models utilized 2400 hours of audio from Fisher

3This is different than our use of object class occurrences
in augmentation; the larger video-timeslice object count is
needed for the TF-IDF calculation to work properly.
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(Cieri et al., 2004–2005), TEDLIUM-v3 (Hernan-
dez et al., 2018), and ATC (Godfrey, 1994); the
language models (LM) were estimated on 1 bil-
lion words from Fisher, News-Crawl 2007-2017
(Kocmi et al., 2022), News-Discuss 2014-2017
(Kocmi et al., 2022), and TED. This system used
Mel frequency cepstral coefficient (MFCC) fea-
tures as input to a factorized time delay neural
network (TDNN) with residual network style skip
connections. Initial decoding was performed using
a finite state transducer (FST) built from a bigram
LM, and the resulting lattices were rescored with a
RNN LM. The vocabulary included 100k words.

4.5 Results
Armed with an array of label pruning strategies,
we run a series of experiments to determine the
effectiveness of each method.

4.5.1 Marian Label Augmented Systems
Marian label augmentation and pruning results are
shown in Table 4 reporting scores for BLEU (Pap-
ineni et al., 2002), chrF2 (Popović, 2015) and TER
(Snover et al., 2006) as calculated by SacreBLEU
(Post, 2018) and COMET (Rei et al., 2020) with
the default wmt20-comet-da model.

We note that drop-3, tfidf at 0.20, and idf at 4.0
each yield a +0.9-1.0 gain in BLEU over baseline.
We also report the number of labels pruned at each
experimental threshold noting that drop and tfidf
remove approximately 42-43% of object class la-
bels at maximum performance, while idf removes
a much larger 74.73%.

As we see from the results, each of the three label
pruning methods yields improvements over both
the text-only and non-pruned augmented systems.
Using the compare-mt (Neubig et al., 2019) tool,
we take a closer look at various characteristics of
the translation hypotheses of each of these five
systems to see if any trends emerge. Table 5 shows
averaged sentence BLEU scores for hypotheses
with outputs of varying lengths. The intuition is
that these average scores will help determine if a
given system or pruning strategy is better at certain
output lengths.

From these averaged scores, we note that plain
label augmentation tends to improve over base-
line with hypothesis lengths between 30 and 60
tokens but performs worse when outside of those
ranges. Of the three pruning strategies, drop 3
tends to bring the most improvement, especially
with shorter hypotheses and idf 4.0 tends to help

the longer sequences.

4.5.2 Nmtpytorch Baseline Experiments
For nmtpytorch baseline comparison systems, we
note that maximum training sequence has an ef-
fect on system performance, most likely due to the
shallow RNN architecture. Table 6 shows that us-
ing the default 120 max token limit from Sanabria
et al. (2018) yields better performance (+0.9-1.1
BLEU) with both the visual perturbation and our
label augmentation approach. These results show
our approach yields a similar performance gain.

4.5.3 ASR Noise Experiments
For the ASR-based experiments shown in Table 7,
we see improvements of +0.7 BLEU with both the
clean and noisy Kaldi systems. We expect that
the speech-recognition based systems would not
perform as well as the gold-standard systems, but
the use of object labels can help mitigate this loss
in performance.

4.6 Analyzing Attention Outputs
We use Marian’s ability to output soft attention
weights to compare an augmented system against
its baseline counterpart, as shown in Figure 5. For
this example, line 221 of the test set, the baseline
system scores a sentence-BLEU of 30.66 versus the
augmented system’s 61.32. We note the attention
contributions of the object labels on the output
tokens. Utilizing this feature as part of an unaltered
MT toolkit allows for quick and easy analysis of
the benefits of object label augmentation.

5 Related Work

Perhaps most closely related to our approach is
ViTA (Gupta et al., 2021), which adds object labels
extracted from images in an image captioning trans-
lation task. While the motivation of adding object
labels are similar, there are important differences
with our setup: 1) We work on video narration of
an author’s task demonstration where objects ap-
pear at different points in the clip, which differs
significantly from static image captions. 2) Our
work focuses on training MT systems from scratch
as opposed to fine-tuning existing models.

For a broad survey of multimodal translation,
refer to Sulubacak et al. (2020). Specifically
for video translation on How2, Sanabria et al.
(2018) investigates a MT system that adds a 2048-
dimensional feature vector averaging features for
every 16 frames to create a global feature vector for
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System BLEU chrF2 TER COMET Dropped Labels

Marian baseline 57.9 75.0 29.6 0.6819 –
nmtpy baseline 56.2 74.2 30.7 0.6234 –
nmtpy visual 55.9 74.0 31.1 0.6090 –

drop 0 57.6 74.9 29.9 0.6732 0 (0%)
drop 1 58.6 75.4 28.9 0.6785 164,605 (33.55%)
drop 2 58.7 75.5 28.9 0.6840 188,475 (38.41%)
drop 3 58.9 75.7 28.7 0.6907 212,284 (43.26%)
drop 4 58.5 75.3 29.1 0.6766 230,090 (46.89%)
drop 5 58.5 75.2 29.3 0.6687 247,106 (50.36%)

tfidf 0.10 58.3 75.1 29.5 0.6778 162,762 (33.17%)
tfidf 0.20 58.8 75.4 28.8 0.6817 205,938 (41.97%)
tfidf 0.30 58.8 75.5 29.0 0.6812 398,643 (81.24%)

idf 3.0 58.4 75.2 29.2 0.6832 212,284 (43.26%)
idf 4.0 58.9 75.5 29.0 0.6887 366,695 (74.73%)
idf 5.0 58.5 75.4 29.0 0.6857 428,655 (87.36%)

Table 4: Marian system scores for How2 en–pt test set, measured in BLEU, chrF2, TER and COMET. There are
490,697 object class labels present in the entire augmented training corpus.

Figure 5: Attention grid for the same output sentence for
Baseline (top, 30.66 sentence-BLEU) and Augmented
(bottom, 61.32 sentence-BLEU) systems. We note the
attention contributions of the augmented object labels.

length base aug drop3 tfidf0.2 idf4.0

<10 52.7 51.8 53.4 52.8 53.1
[10,20) 57.6 57.1 58.7 58.3 57.8
[20,30) 53.7 53.6 54.8 55.1 55.2
[30,40) 53.1 54.1 55.4 54.9 55.8
[40,50) 52.4 52.0 52.9 52.6 53.1
[50,60) 48.3 49.3 52.1 49.8 48.8
>=60 46.6 44.6 45.5 47.3 48.8

Table 5: Averaged sentence BLEU scores for hypotheses
in incremental length bins.

that entire video. This differs from our approach
of creating labels solely for the objects in a clip
directly corresponding to that text segment. Mad-
hyastha et al. (2017) uses a similar approach as
How2 on static imagery.

The Vatex (Wang et al., 2020) video description
dataset includes a Video-guided Machine Transla-
tion (VMT) approach that utilizes an action detec-
tion model feeding a video encoder with temporal
attention and a text source encoder with attention
that both inform the target decoder, producing trans-
lated output from a unified network. The authors
perform experiments in an video captioning setting,
as opposed How2’s task narration setting.

As part of the work in Calixto and Liu (2017),
the authors project static image features into the
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System Max Tok BLEU

nmtpy base 120 55.0
nmtpy vis 120 56.1
nmtpy aug 120 55.9

nmtpy base 250 56.2
nmtpy vis 250 55.9
nmtpy aug 250 55.7

Table 6: Max token length effect on BLEU for nmtpy-
torch baseline, visual perturbation and our label aug-
mented systems.

System BLEU COMET

Kaldi clean base 52.0 0.556
Kaldi clean aug 52.7 0.583

Kaldi 5 dB noise base 50.8 0.459
Kaldi 5 dB noise aug 51.5 0.459

Table 7: Results for clean and noisy Kaldi systems for
both baseline and augmented conditions.

word embedding space to produce image-based
first and last words to influence word choice in
their bidirectional RNN systems.

While there are a few examples of object detec-
tion as a separate task (including our work), Bal-
trusaitis et al. (2019) notes the rapid jump to joint
representations as neural networks became popular
tools for a variety of multimodal tasks, explaining
the prevalence of work following that approach.

6 Future Work

Having proven our object label augmentation tech-
nique on How2, future work includes applying
label augmentation to other datasets such as the
VATEX (Wang et al., 2020) video description
and VISA (Li et al., 2022) ambiguous subtitles
datasets. Further research into the effects of
ASR degraded speech and examining task-agnostic
image-language models such as CLIP (Radford
et al., 2021) for label augmentation may also be
useful.

7 Conclusion

We present a straight-forward method to improve
MT context quality by augmenting training data
with objects detected in corresponding video clips.
Using these augmented corpora, we realize gains of
up to +1.0 BLEU over baselines without changes

to the underlying MT toolkits used to build mod-
els. We additionally show improvements of up to
+0.7 BLEU with object label augmentation when
substituting ASR speech for gold standard inputs.
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Abstract

This paper presents the submission of Huawei
Translation Services Center for the IWSLT
2023 dubbing task in the unconstrained set-
ting. The proposed solution consists of a
Transformer-based machine translation model
and a phoneme duration predictor. The Trans-
former is deep and multiple target-to-source
length-ratio class labels are used to control tar-
get lengths. The variation predictor in Fast-
Speech2 is utilized to predict phoneme dura-
tions. To optimize the isochrony in dubbing, re-
ranking and scaling are performed. The source
audio duration is used as a reference to re-rank
the translations of different length-ratio labels,
and the one with minimum time deviation is
preferred. Additionally, the phoneme duration
outputs are scaled within a defined threshold to
narrow the duration gap with the source audio.

1 Introduction

Automatic dubbing (AD) (Federico et al., 2020;
Brannon et al., 2022; Chronopoulou et al., 2023)
technology uses artificial intelligence (AI) to auto-
matically generate dubbed audio for video content.
Dubbing is the process of replacing the audio with
a translation of the original audio in a different
language. AI dubbing technology automates this
process by using machine learning algorithms to
translate the original audio and synthesize a new
voice that sounds natural and resembles a human
voice. The synthesized voice is then synchronized
with the lip movements of the characters in the
video to produce dubbed audio. This technology
has the potential to significantly reduce the time
and cost of creating dubbed audio and make it eas-
ier to reach a global audience by translating video
content into multiple languages.

Recent advances in the field of automatic dub-
bing have contributed to the development of more
efficient and cost-effective methods for producing
localized content. Researchers have utilized var-

ious techniques and technologies, including ma-
chine translation (MT) (Lopez, 2008; Vaswani
et al., 2017), speech synthesis (Wang et al., 2017b;
Ren et al., 2022), and speech recognition (Gulati
et al., 2020; Schneider et al., 2019), to improve the
accuracy and quality of automatic dubbing systems.

NMT

Variation 

Predictor

Re-ranking & 

Scaling

Source AudioSource Text

Pause 

Alignment

Target 1 Target 2 Target 3 Target 4 Target 5

<Equal><Xlonger> <Longer> <Shorter> <Xshorter>

Segmented Source

Figure 1: System pipeline.

Isometric machine translation (Lakew et al.,
2022; Li et al., 2022) is a technique used in au-
tomatic dubbing where translations should match
a given length to allow for synchronicity between
source and target speech. For neural MT, generat-
ing translations of length close to the source length,
while preserving quality is a challenging task. Con-
trolling MT output length comes at a cost to trans-
lation quality, which is usually mitigated with a
two-step approach of generating N-best hypotheses
and then re-ranking based on length and quality.

Another area of research focuses on the syn-
chronization of the dubbed audio with the original
source audio. This is essential for ensuring that the
dubbed audio matches the timing and intonation of
the original speech. Researchers have developed
various methods for achieving accurate synchro-
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nization, including the use of phoneme duration
predictors and machine learning algorithms to de-
tect and align speech segments (Virkar et al., 2021;
Effendi et al., 2022; Virkar et al., 2022).

One of the latest developments in automatic dub-
bing research is the use of deep neural networks for
speech synthesis (Chronopoulou et al., 2023; Ren
et al., 2022). These networks enable the creation of
more naturalistic and expressive speech, improving
the overall quality of the dubbed audio. In con-
clusion, recent research in automatic dubbing has
shown significant progress and promise for the fu-
ture of localized content production. By combining
advanced machine learning techniques with speech
synthesis, speech recognition, and sentiment analy-
sis, researchers are developing more accurate, ef-
ficient, and cost-effective automatic dubbing sys-
tems.

The IWSLT 2023 (Agarwal et al., 2023) dubbing
task focuses on isochrony in dubbing, which refers
to the property that the speech translation is time
aligned with the original speaker’s video. The task
assumes that the front Automatic Speech Recog-
nition (ASR) output text and subsequent Text-to-
Speech (TTS) models already exist, and the goal is
to predict the phonemes and their durations. Our
proposed solution involves using a Transformer-
based (Vaswani et al., 2017) machine translation
model and a phoneme duration predictor. A Deep
Transformer (Wang et al., 2017a, 2019) model is
utilized to handle multiple target-to-source length-
ratio class labels, which are used to control target
lengths. The phoneme duration predictor is based
on the variation predictor used in FastSpeech2 (Ren
et al., 2022). To optimize isochrony in dubbing, the
solution utilizes re-ranking and scaling techniques.
The translations generated by different length-ratio
labels are re-ranked based on their time deviation
from the source audio duration, with the minimum
deviation one preferred. The phoneme duration out-
puts are also scaled within a predefined threshold
to narrow the duration gap with the source audio.
These techniques help to ensure that the translated
speech is synchronized with the original speaker’s
video.

2 Data

The data provided in the constrained setting is de-
rived from CoVoST2 (Wang et al., 2020) De-En
data, consisting of German source text, English tar-
get text, speech durations, and English phonemes

and durations (Brannon et al., 2022). We addition-
ally apply WMT2014 De-En data for training the
MT model. The amount of data for both sets is
shown in Table 1.

Data Size
CoVoST2 0.289M
WMT2014 4.5M

Table 1: The bilingual data sizes.

To achieve better training results of the MT
model, we used some data pre-processing methods
to clean the bilingual data, including removing du-
plicate sentences, using Moses (Koehn et al., 2007)
to normalize punctuation, filtering out overly long
sentences, using langid (Lui and Baldwin, 2011,
2012) to filter out sentences that do not match the
desired language, and using fast-align (Dyer et al.,
2013) to filter out unaligned sentence pairs.

3 System

The system consists of four parts: Pause Alignment,
Machine Translation, Phoneme Duration Variation
Predictor, and Re-ranking and Scaling. Figure 1
shows the system pipeline. The following describes
the four parts in detail.

3.1 Pause Alignment

During inference, we use a Voice Activity Detector
(VAD) (Team, 2021) to obtain speech segments
and their durations from the source audio. The
test data for the task already provides text seg-
ments separated by pauses. However, we found
that the number of speech segments obtained by
VAD sometimes does not match the number of text
segments provided, resulting in incorrect matching
of pause counts. This can cause significant dis-
crepancy between the synthetic dubbing and the lip
movements of the character in the video when the
pause duration is long.

To address this issue, we first perform pause
alignment between the source text and the source
audio. We use the proportion of tokens in each
text segment to the total number of tokens, and
the proportion of duration of each speech segment
to the total duration, to find the best alignment
between the text and speech segments. When the
number of text segments is less than the number of
speech segments, we merge the audio segments to
reduce the number of speech segments. The final
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speech segments that need to be retained are split
at the following points:

i
′
= argmin

j

∣∣∣∣
|s1..j |
S
− |t1..i|

T

∣∣∣∣ ; j ≥ i

Where |t1..i| means total number of tokens from
the first to the i-th text segment. |s1..j | means total
duration from the first to the j-th speech segment.
T and S represent the total number of tokens in
the text and the total duration of the speech, respec-
tively. i

′
is the i-th speech segmentation point after

merging, corresponding to the i-th text segment.
Conversely, when the number of speech seg-

ments is less than the number of text segments,
we merge the text segments. The final retained text
segmentation points are:

j
′
= argmin

i

∣∣∣∣
|t1..i|
T
− |s1..j |

S

∣∣∣∣ ; i ≥ j

3.2 Machine Translation
We trained a Neural Machine Translation (NMT)
model using Deep Transformer, which features pre-
layer normalization, 25 encoder layers, and 6 de-
coder layers. Other structural parameters are con-
sistent with the Transformer-Base model.

Following existing length control methods, we
divided the bilingual data into 5 categories based
on the target-to-source character length ratio (LR)
for each sample (Lakew et al., 2022; Li et al.,
2022). The labels were defined based on LR
thresholds: Xshorter < 0.8 < Shorter <
0.9 < Equal < 1.1 < Longer < 1.2 <
Xlonger. During training, we added a length tag
<Xshorter/Shorter/Equal/Longer/Xlonger> at the
beginning of each source sentence. In the inference
process, text segments are sent to the translation
model separately and the required tag is prepended
at the beginning of each input segment.

3.3 Phoneme Duration Variation Predictor
As with FastSpeech2 (Ren et al., 2022), after us-
ing an open-source grapheme-to-phoneme tool
(Park, 2019) to convert the NMT output transla-
tion sequence into a phoneme sequence, the pre-
trained variation predictor module in FastSpeech2
was used to generate initial phoneme durations.
The variation predictor takes the hidden sequence
as input and predicts the variance of the mean
squared error (MSE) loss for each phoneme’s du-
ration. It consists of a 2-layer 1D-convolutional

network with ReLU activation, followed by layer-
normalization and dropout layers, and an additional
linear layer to project the hidden state into the out-
put sequence. The final output is the length of each
phoneme.

3.4 Re-ranking and Scaling

To select the best isochrony dubbing, we used
source texts with 5 different tags prepended as in-
puts for the NMT model. After converting the
output translations into phoneme durations using
the phoneme duration variation predictor, we re-
ranked them based on the source audio duration
as reference, and selected the output with the least
duration deviation.

Additionally, we used the ratio of the source
audio duration to the total predicted phoneme du-
ration as a reference, and scaled the predicted
phoneme duration within a certain threshold to
further optimize the synchronization between the
synthesized dubbing and the source video.

s
′
j = argmin

s
′
jk

(
∣∣∣s′jk

∣∣∣− |sj |); k ∈ [1, 5]

s
′
j = s

′
j · Scale(

|sj |∣∣∣s′j
∣∣∣
)

Scale(r) =





1.1, r > 1.1
r, 0.9 < r < 1.1
0.9, r < 0.9

Where |sj | is the total duration of source speech
segment sj ,

∣∣∣s′j
∣∣∣ is the total duration of generated

dubbing segment s
′
j . And Scale() is a scaling func-

tion.

4 Experiments

We used SentencePiece (Kudo and Richardson,
2018) to process NMT bilingual text and obtain
subword vocabularies, resulting in a German vo-
cabulary of 29k and an English vocabulary of 25k.
We trained a Transformer NMT model using fairseq
(Ott et al., 2019), with an encoder of 25 layers, a
decoder of 6 layers, 8 attention heads, embeddings
of 512, and FFN embeddings of 2048. The model
was optimized using Adam (Kingma and Ba, 2017)
with an initial learning rate of 5e-4, and warmup
steps of 4000. Dropout was set to 0.1. The model
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was trained on 8 GPUs, with a batch size of 2048
tokens and an update frequency of 4.

During the inference phase, an open-source VAD
tool was used to process the source speech and ob-
tain speech segments and durations for subsequent
selection of NMT translated text lengths and adjust-
ing the duration of synthetic dubbings. The NMT
translated text was then converted to phoneme
sequences using an open-source grapheme-to-
phoneme tool, and the initial phoneme durations
were predicted using a pre-trained variation predic-
tor module in FastSpeech2.

As the main evaluation method for this task
is manual evaluation, and our method allows for
adjustment of phoneme duration prediction, We
mainly experiment and compare BLEU (Papineni
et al., 2002) under different strategies of machine
translation. To measure the synchronicity between
source and dubbed speech, we use speech overlap
(SO) (Chronopoulou et al., 2023) metric. It should
be noted that the metrics presented don’t take into
account speech naturalness, which is extremely im-
portant to people viewing dubs. (Brannon et al.,
2022) showed that human dubbers produces natural
speech even at the cost of isochrony. The experi-
mental results on the two test sets of the task are
shown in Table 2.

Strategy subset1 subset2
BLEU SO BLEU SO

Xlonger 24.8 0.71 22.0 0.49
Longer 28.0 0.82 26.1 0.70
Equal 37.4 0.83 32.4 0.83
Shorter 42.7 0.79 37.4 0.85
Xshorter 45.7 0.73 43.3 0.83
Re-ranking 31.2 0.92 33.8 0.93
Scaling 31.2 0.97 33.8 0.98
- w/o PA 31.6 0.89 34.7 0.87

Table 2: Experimental results of NMT.

We present the BLEU and SO results using five
different LR tags, re-ranking and scaling strategies.
The results of the two test sets have the same trend
in BLEU, that is, the shorter the generated transla-
tion, the higher the BLEU value. Since subset2 has
pause punctuation, it is more difficult to translate,
so under the same LR tag at all levels, the BLEU
value of subset2 will be lower than that of subset1.
In terms of SO, both too long or too short trans-
lations will cause SO to decrease. The results of
medium LR settings can achieve the highest SO

value.
Too long translations will result in lower quality

of machine translation, while short translations will
result in insufficient duration for generating dub-
bing. After re-ranking, the translations can achieve
more moderate results in translation quality and
duration. Moreover, by setting appropriate scaling
thresholds, scaling operation can further improve
the isochrony without affecting BLEU.

We also compared the results without pause
alignment, as shown in the last row of Table 2.
The SO of both test sets decreased significantly,
but the BLEU increased slightly. After analysis,
the MT translation is more likely to mismatch with
the shorter segment duration, so the shorter transla-
tion is selected during re-ranking. While our results
show that the shorter the translation, the higher the
BLEU.

5 Conclusion

This paper describes the submission of Huawei
Translation Services Center for the IWSLT 2023
dubbing task under the unconstrained setting. Our
solution consists of four parts: pause alignment,
machine translation, phoneme duration variation
predictor, re-ranking and scaling. Pause alignment
is used to align source audio and source text to im-
prove synchronization between synthetic dubbing
and source video. The machine translation model
is trained using the Deep Transformer structure.
To control the output translation length, multiple
target-to-source length-ratio tags are used to adjust
the length. Pre-trained variation predictor in Fast-
Speech2 is used to predict phoneme durations. In
order to optimize the isochrony in dubbing, the re-
sults of different lengths of the machine translation
output are re-ranked and scaled. Using the source
audio duration as a reference, the translations with
different length ratios are re-ranked, and the output
with the smallest time deviation is preferred. In
addition, the phoneme duration output is scaled
within a defined threshold, further narrowing the
duration gap from the source audio. We compare
the experimental results of different length-ratio
strategies, and our method can achieve a balanced
result in BLEU and speech overlap.

References
Milind Agarwal, Sweta Agrawal, Antonios Anasta-
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Abstract
This paper presents NAVER LABS Europe’s
systems for Tamasheq-French and Quechua-
Spanish speech translation in the IWSLT 2023
Low-Resource track. Our work attempts to
maximize translation quality in low-resource
settings using multilingual parameter-efficient
solutions that leverage strong pre-trained mod-
els. Our primary submission for Tamasheq
outperforms the previous state of the art by
7.5 BLEU points on the IWSLT 2022 test set,
and achieves 23.6 BLEU on this year’s test set,
outperforming the second best participant by
7.7 points. For Quechua, we also rank first and
achieve 17.7 BLEU, despite having only two
hours of translation data. Finally, we show that
our proposed multilingual architecture is also
competitive for high-resource languages, out-
performing the best unconstrained submission
to the IWSLT 2021 Multilingual track, despite
using much less training data and compute.

1 Introduction

The vast majority of speech pipelines are developed
for high-resource languages, a small percentage of
languages that have ample amounts of annotated
data available (Joshi et al., 2020). However, the
assessment of systems’ performance based only on
high-resource settings can be problematic, since it
fails to reflect the real-world performance these ap-
proaches will have in diverse and smaller datasets.
Moreover, as around half of the world’s languages
are considered to be not only low-resource, but
also from oral tradition (i.e., without a written
form), there is an urgent need for speech technol-
ogy that can operate robustly in such low-resource
settings (Bird, 2011). In this context, the IWSLT
conference1 proposes low-resource speech trans-
lation (ST) challenges that allow the speech com-
munity to realistically benchmark ST approaches

∗Work done during an internship at NAVER LABS Eu-
rope.

†Equal contribution
1https://iwslt.org/

using diverse and representative datasets. This
paper describes NAVER LABS Europe’s (NLE)
submission to two of the language pairs from the
IWSLT 2023 (Agarwal et al., 2023) Low-Resource
Track: Tamasheq-French (Taq-Fr) and Quechua-
Spanish (Que-Es).

Most successful approaches for tackling scenar-
ios where ST data is scarce perform transfer learn-
ing across languages and modalities, leveraging
multilingual pre-trained models for both speech
and text (Anastasopoulos et al., 2022). However,
due to the large number of parameters of cur-
rent Transformer-based (Vaswani et al., 2017) ap-
proaches, training such systems is computationally
expensive and not accessible to everyone. NLE’s
submission focuses on a multilingual parameter-
efficient training solution that allows us to lever-
age strong pre-trained speech and text models
to maximize performance in low-resource lan-
guages.

We present new SOTA results for the Taq-
Fr pair (17 hours of training data) that represent
a 57% BLEU increase compared to the results
achieved by Khurana et al. (IWSLT 2022 post-
evaluation).2 This same system achieves 23.6
BLEU on the IWSLT 2023 test set, an improve-
ment of 7.71 BLEU compared to the second best
result submitted this year. We also present SOTA
results in the unconstrained setting for the Que-
Es pair (2 hours of training data), while main-
taining most of the performance in the Taq-Fr
pair. In addition, to showcase the usefulness of
our parameter-efficient multilingual solution we
evaluate it on the high-resource setting of the
IWSLT 2021 Multilingual Task (Anastasopoulos
et al., 2021). We find that our approach outper-
forms the best IWSLT 2021 submission (FAIR,
Tang et al., 2021), despite training considerably
fewer parameters (-64%), and using substantially

2https://www.clsp.jhu.edu/
jsalt-2022-closing-presentations/
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Figure 1: An illustration of our multilingual ST architecture as described in Section 2. The bold arrow path
corresponds to the speech-to-text training path. At decoding time, we can choose between producing speech-to-text
or text-to-text translations. Figure best seen in color.

less training data and compute.
This paper is organized as follows. We first de-

scribe the architecture and training settings of our
multilingual ST systems in Section 2. We next
list the resources we use in Section 3. Section 4
presents our results in both low and high-resource
settings. Lastly, we highlight the zero-shot poten-
tial of our approach in Section 5 and present our
concluding remarks in Section 6.

2 System Description

In this work we focus on a parameter-efficient train-
ing solution that allows us to input the features
from a pre-trained speech representation model
into a pre-trained multilingual MT model, produc-
ing translations from both speech and text in mul-
tilingual settings. This setting also allows us to
leverage automatic speech recognition (ASR; i.e.
speech-to-transcript) data. The general architecture
is presented in Figure 1. The architecture is consid-
ered parameter-efficient because a small portion of
its parameters are trained (bottom encoder layers
and small adapters layers).

Architecture. We initialize our models with a
pre-trained multilingual MT model, which we
adapt to the ST task by inputting features extracted
with a frozen pre-trained speech representation
model. The MT model is also frozen, except for
the bottom 2 or 3 encoder layers and small adapter
modules (those introduced by Bapna and Firat
(2019), with bottleneck dimension 64) added af-
ter each encoder and decoder layer. As we show in
our results, the fine-tuned encoder layers are able

to map the speech features into the representation
space of the pre-trained MT model and the adapters
can help with domain adaptation (and possibly help
alleviate the length mismatch). At inference, this
model can be used for MT with very little memory
overhead: the convolutional layers and adapters
are disabled, and the bottom encoder layers are
swapped with those of the initial pre-trained model.

Training settings. We train on 4 V100
GPUs (80GB) for up to 200 000 updates, with a
maximum batch size of 4 000 source features (or
80 seconds of audio) and accumulated gradients
over two batches.3 We sample language pairs
with a temperature of 3.4 We validate every 5 000
updates and perform early stopping on valid
BLEU for the language pair(s) of interest, with
a patience of 5, averaging model weights across
the last 3 checkpoints.5 We find best results using
a single convolutional layer with stride 2, which
downsamples the sequence of speech features by a
factor of 2. The other hyperparameters are listed in
Appendix Section A.1.

3This corresponds to a total of 32 000 features per update,
or 640 seconds of audio. In practice, with padding, each
update corresponds to approximately 80 utterances or 530 sec-
onds of audio.

4pk = u
1/3
k /

∑
u
1/3
i where uk is the utterance count for

language pair k.
5While all the configurations presented in this paper use

checkpoint averaging, we later re-trained our contrastive sub-
mission for Taq-Fr and found virtually the same results with-
out it.
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Model # params Transformer
layers

Feature
dimension

Tamasheq (Boito et al., 2022b) 95M 12 768
Niger-Mali (Boito et al., 2022b) 95M 12 768
mHuBERT-Tamasheq 95M 12 768

XLSR-53 (Conneau et al., 2021) 317M 24 1024
XLS-R (Babu et al., 2022) 317M 24 1024

Table 1: Speech representation models. The top portion
presents Tamasheq-dedicated models, while the bottom
lists large general purpose multilingual models.

3 Resources

3.1 Pre-trained Speech Representation
Models

We experiment with different versions of two
speech representation models: HuBERT (Hsu et al.,
2021) and wav2vec 2.0 (Baevski et al., 2020). We
do not fine-tune these models in any of our con-
figurations, but instead use them as feature extrac-
tors (see Figure 1). Because of this, our models
are sensitive to the layer we extract features from.
Pasad et al. (2021) argue that, for wav2vec 2.0 mod-
els that are not fine-tuned on ASR, speech features
from middle layers tend to have a higher abstrac-
tion from the speech signal, which is beneficial to
downstream tasks. The results from Boito et al.
(2022b) seem to confirm this observation holds for
low-resource ST. To the best of our knowledge,
there is no similar investigation for HuBERT mod-
els.6

Table 1 presents the speech representation mod-
els we experiment with. The Tamasheq model is
a monolingual wav2vec 2.0 Base model trained
on 243 h of Tamasheq speech. The Niger-Mali
is a wav2vec 2.0 Base model trained on the
same Tamasheq speech data plus 111 h of French,
109 h of Fulfulde, 100 h of Hausa, and 95 h of
Zarma. This gives 658 h in total. The data for
both models is sourced from the Niger-Mali audio
collection (Boito et al., 2022a). The unreleased
mHuBERT-Tamasheq model uses this same audio
collection for training, while also including Com-
mon Voice (Ardila et al., 2020) data in four other
languages (English, French, Arabic and Kabyle),
resulting in 5 069 h of speech. XLSR-53 (56k hours)
and XLS-R (500k hours) are massively multilingual
wav2vec 2.0 Large models covering 53 and 128 lan-
guages, respectively. Neither of these two multi-
lingual models have seen Tamasheq or Quechua

6We hypothesize that layer selection is less important for
HuBERT architectures due to the multi-iteration approach that
increases signal abstraction at each iteration.

Task Source Target hours:minutes # utterances

ASR Quechua Quechua 51:39 8,301

ST Quechua Spanish 2:42 698
ST Tamasheq French 15:43 5,025

Table 2: Speech Translation (ST) and Speech Recogni-
tion (ASR) data provided by the organizers (train+valid).
The ASR data is outside of the constrained setting.

speech during training.7

3.2 Pre-trained Multilingual MT Models
To initialize our ST models, we first experi-
mented with mBART for many-to-many transla-
tion (mBART50NN; Tang et al., 2020), but found
the NLLB-200 models (Costa-jussà et al., 2022)
to give better results. We experiment with the
dense NLLB models of various sizes: the distilled
600M-parameter and 1.3B-parameter versions, and
the 3.3B-parameter version. We end up using the
larger versions in our submissions (1.3B and 3.3B).
Note that NLLB covers 202 languages, including
Tamsheq and Quechua, which is not the case for
mBART. At the same model size, despite covering
more languages, NLLB is also a stronger machine
translation model overall than mBART. Also, un-
like mBART, it is not English-centric.

Contrary to Tang et al. (2021), we keep the orig-
inal mBART or NLLB vocabularies of size 250k
and do not train any embeddings. Instead, like
Berard et al. (2021), we find that it is possible to
filter the vocabulary at test time to only cover the
languages of interest, significantly reducing the
memory footprint of the model with a minor re-
duction in performance.8 We can also filter the
vocabulary and embeddings before ST fine-tuning
and achieve the same performance as with the full
vocabulary without needing to train any embed-
dings. See Table 14 in Appendix for a comparison
of these approaches. In order to study the zero-shot
translation capabilities of our models (i.e., trans-
lating to languages and language pairs unseen at
training), we do not apply vocabulary filtering to
the configurations presented in the main paper.

7Appendix Table 16 lists all models with links for down-
loading checkpoints, when available.

8With NLLB, 44k tokens are enough for a 100% cov-
erage of the training data (mTEDx, TED-LIUM, Quechua,
Tamasheq), or 35k when restricting to our Taq-Fr setting. This
represents a reduction of more than 200M parameters.
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Task Source Target hours:minutes # utterances

ASR English English 208:00 91,003
ASR French French 218:59 117,081
ASR Spanish Spanish 214:15 103,076

ST French English 57:39 31,207
ST French Spanish 42:14 21,862
ST Spanish English 79:37 37,168
ST Spanish French 9:34 4,568

Table 3: ASR and ST data in English, French and Span-
ish sourced from TED talks (unconstrained setting).

3.3 Datasets
We tackle the low-resource setting by building mul-
tilingual systems that utilize both ASR and ST
data in the languages of interest (Tamasheq and
Quechua), and in high-resource directions whose
target language is of interest (French and Span-
ish). Note that we also include X→English data,
as we initially planned to participate in the Irish-
English task. Including more data in high-resource
languages has several advantages. Firstly, it has a
regularization effect that prevents us from immedi-
ately overfitting the low-resource training data. Sec-
ondly, this enables knowledge transfer from com-
mon target languages and from similarly-sounding
source languages.9 Thirdly, as we build multilin-
gual ST systems by mapping the speech representa-
tion vectors into the same space as the multilingual
MT model, our goal is to produce a model that is
as multilingual as possible, not specializing in one
specific language. Our results show that training
on multiple languages at once achieves this effect,
while also producing good zero-shot ST results.

Table 2 presents statistics for the datasets pro-
vided by the IWSLT 2023 organizers. The Que-Es
dataset10 is an unreleased dataset prepared for this
year’s challenge. It corresponds to a translated
subset of the Quechua ASR data (“Siminchik”)
from Cardenas et al. (2018). The Taq-Fr dataset
was introduced by Boito et al. (2022a). Table 3
presents statistics for the datasets in high-resource
languages. English ASR data comes from TED-
LIUMv2 (Rousseau et al., 2014), and the other
data comes from mTEDx (Salesky et al., 2021).
Appendix Table 15 lists the datasets used in each
of our submissions. In Section 4.3, we also run

9Manual inspection revealed that audio from both datasets
presents some degree of target language borrowing (e.g.,
Spanish words present in the Quechua speech, French words
present in the Tamasheq speech).

10We are aware the dataset reference is Que-Spa. We chose
to use the ISO 639-1 two letters abbreviation for Spanish for
consistency with the other datasets used in this work.

Taq-Fr Que-Es
IWSLT

2022
IWSLT

2023
IWSLT

2023

Taq-
Fr

primary 20.75 23.59 ✗
contrastive 1 19.06 21.31 ✗
contrastive 2 18.58 18.73 17.74

Que-
Es

primary 18.58 18.73 17.74
contrastive 1 16.84 ✗ 15.67
contrastive 2 16.21 ✗ 15.25

Table 4: Results on the official test sets for the IWSLT
2023 Low-Resource Task. We also show results on the
IWSLT 2022 Taq-Fr test set. Note that all Quechua
models are trained on Tamasheq data, but the reverse
is not true (see Appendix Table 15). Lines 3 and 4
correspond to the same model.

experiments in the setting of the IWSLT 2021 Mul-
tilingual Task to measure how good our approach
is on high-resource languages. The datasets used
for this setting are presented in Appendix Table 10.

4 Experiments and Results

All our submissions to the low-resource ST task
are in the unconstrained setting, due to the use of
pre-trained models, and from training on data in
other languages. The datasets used in each submis-
sion are listed in Appendix Table 15. This section
is organized as follows. We present our Taq-Fr re-
sults (4.1) with a detailed ablation study justifying
our architectural choices. We then present our Que-
Es results (4.2). Lastly, we evaluate and analyze
our approach in a high-resource setting (4.3).

4.1 Tamasheq-French Results
We submit two systems that have Taq-Fr as the
only low-resource language pair (primary and con-
trastive 1). Additionally, we take our primary sub-
mission for Que-Es, which has also been trained
on Taq-Fr, and submit this as contrastive 2. The
top portion of Table 4 gives the test BLEU scores,
and the top portion of Appendix Table 11 presents
the valid BLEU scores. Table 12 shows statistics
(average and standard deviation) over multiple runs
when applicable.

System description. The contrastive 1 model
uses as a speech feature extractor the Niger-Mali
wav2vec 2.0 model (8th layer). It was initialized
with NLLB 1.3B, whose bottom 3 encoder layers
were finetuned. We took three runs of this setting
with different random seeds and picked the best
performing one on the validation set (in terms of
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Taq-Fr BLEU) as our contrastive submission. We
then ensembled the three runs as our primary sub-
mission. Finally, constrastive 2 is the ensemble
model used as primary submission to the Que-Es
task, which covers both low-resource languages,
and combines XSL-R Large with NLLB 3.3B.

Results. Our primary submission significantly
outperforms the previous state of the art of
13.2 BLEU (+7.5 BLEU) on the IWSLT 2022 test
set by Khurana et al. (2022).11 It also ranks first in
this year’s edition, with +7.7 BLEU over the second
best primary submission. Our contrastive submis-
sions rank second and third (beating the second
best primary submission by +5.4 and +2.8 BLEU).

4.1.1 Ablation Study
In Appendix Table 18 we compare our con-
trastive 1 model (the non-ensembled version of
our primary submission) with other architectures
trained on the same data to validate our choice of
hyperparameters.

Speech features. The wav2vec 2.0 models
trained with Tamasheq (Niger-Mali and Tamasheq)
largely outperform the well-known massively mul-
tilingual models (XLSR-53 and XLS-R) on Taq-Fr
(e.g. +2.5 BLEU Tamasheq compared to XLS-R L).
These models are larger and trained on consider-
ably more data, but do not include any Tamasheq
speech. Similar to previous works (Pasad et al.,
2021; Boito et al., 2022b), when extracting fea-
tures from wav2vec 2.0 we find that the 8th layer
gives better results than the 11th (penultimate) layer
(+2.5 BLEU for Niger-Mali).

For HuBERT, on the contrary, features from the
11th layer give the best results (+0.2 BLEU com-
pared to 8th layer). When using the right layer, we
find that wav2vec 2.0 outperforms HuBERT (+2.7
BLEU Niger-Mali compared to mHuBERT-Taq).

Finally, Niger-Mali is as good on Taq-Fr as the
Tamasheq wav2vec 2.0, but performs considerably
better on Fr-En (+4.1 BLEU), probably because
it was trained with French audio. The best Fr-En
performance is achieved with XLS-R L. We find
worse performance on Fr-En with XLS-R XL (-2.0
BLEU), but this may be due to layer selection.

Pre-trained MT model. The larger the model
used for initialization, the better the perfor-

11Here we are referencing the model pre-trained
using the Niger-Mali dataset that was presented at
JSALT 2022: https://www.clsp.jhu.edu/
jsalt-2022-closing-presentations/

mance (even more so for Fr-En). However, we
find that the gain from using NLLB 3.3B over
NLLB 1.3B is too small to justify the increase in
model size and decoding latency (3 times slower).
At the same model size, NLLB 600M performs
considerably better than mBART (+1.7 BLEU on
Taq-Fr, +3.6 BLEU on Fr-En).

Trained parameters. Fine-tuning too many en-
coder layers results in overfitting, which hurts
Taq-Fr and Fr-En performance. On the other
hand, fine-tuning just 1 or 2 layers instead of
3 does not result in a large BLEU drop. Simi-
larly, adapter modules are not always needed. Dis-
abling decoder adapters does not degrade Taq-
Fr performance (+0.2 BLEU), but results in a
slight drop in Fr-En performance (-0.9 BLEU),
which could be attributed to a domain adaptation
effect (to the mTEDx domain). Disabling en-
coder adapters has more impact on performance for
Taq-Fr (-0.8 BLEU), with similar effect on perfor-
mance for Fr-En (-1.0 BLEU). Section 4.3 shows
that these adapters are important for domain adap-
tation.

Convolutions. The number of convolutional lay-
ers does not impact performance much (range of
1.1 BLEU on Taq-Fr and 3.2 BLEU on Fr-En for
0 to 3 layers), but it can have a large impact on
decoding speed: each layer divides the input length
by a factor of 2 resulting in a roughly 3.5× speed-
up from 0 to 3 layers. Interestingly, even though
it was trained on much shorter sequences, the MT
model seems to adapt quite well to any input length,
even without any convolutions – we achieve a bet-
ter Taq-Fr result without any convolutions, but a
worse Fr-En result.12 However, models with fewer
convolutional layers seem to converge faster (as
shown in Appendix Figure 2).

Stacked layers. While our approach described
in Section 2 fine-tunes some parameters of the pre-
trained MT model, we can instead plug new Trans-
former layers at the bottom of the encoder, without
changing any existing parameter. These “stacked
layers” result in slightly larger models but are con-
ceptually simpler, as they try to map the speech
features into the same representation space as the
input text embeddings of the MT model. Appendix
Table 17 compares this architecture with the one
used in our submission to the Taq-Fr task. We see

12Without any convolution, the speech feature to target
token ratio is 12:1.

148

https://www.clsp.jhu.edu/jsalt-2022-closing-presentations/
https://www.clsp.jhu.edu/jsalt-2022-closing-presentations/


that it performs similarly well (sometimes better)
and that it does not add any noticeable decoding
latency. We can even reach the same Taq-Fr perfor-
mance as our contrastive submission by just adding
a single Transformer layer plus one convolution
layer and small adapters (28M trained parameters
in total). Finally, disabling all adapters only results
in a small BLEU drop, suggesting that it is indeed
possible to map the speech features into the text
input space, with only one Transformer layer. This
is surprising, considering that the input to this layer
is 6 times as long as the target sequence on average.

4.2 Quechua-Spanish Results
The test and validation scores of our submissions to
the Que-Es task are reported in the second half of
Table 4 and 11, respectively. Because these models
are also trained on Taq-Fr data, we additionally
report their performance on that task.

System description. As we do not have a
speech feature extractor specialized to Quechua
speech, our contrastive 1 submission uses a mas-
sively multilingual wav2vec 2.0 model: XLS-R
Large (18th layer). Compared to our Tamasheq
submission, it is also initialized with a larger MT
model (NLLB 3.3B), which we found to perform
better in this setting. The training settings are the
same as for the Tamasheq models, except that we
only fine-tune the bottom 2 encoder layers (instead
of 3) and validate every 2 500 updates, since this
larger model tends to converge faster. Another
difference is that we train on both Tamasheq and
Quechua data (in addition to the mTEDx and TED-
LIUM data). Like in our Tamasheq submission,
we train 3 models with different random seeds and
ensemble them as our primary submission. Our
constrastive 2 submission uses a single model with
the same training settings, but starts from a smaller
pre-trained MT model (NLLB 1.3B).

Results. Our primary submission in the Que-Es
task also ranked first, with 17.7 BLEU on the of-
ficial test set. The full ranking results were not
communicated in time to this camera-ready. They
will be made available later through the conference
findings paper (Agarwal et al., 2023).

Data contamination. We found shortly after our
submission that all the audio files used in the of-
ficial test and validation sets are also present in
the ASR training data shared by the organizers
for the unconstrained setting. This means that our

Que-Es ST models are evaluated in an unrealistic
setting, where they are tasked to translate Quechua
utterances of which they already know the tran-
scription into Quechua. For this reason, we filtered
the ASR data to remove all audio files also present
in the validation and test sets for Que-Es, and we
re-trained models on this filtered data.13 While our
official submission results presented in Table 4 use
the “contaminated” dataset for comparison with the
other submissions, we think any future comparison
to our work should be done with the updated results
in Appendix Table 11. Note that similar care should
be taken with the results of other participants.

4.3 Results and Analysis in a High-Resource
Setting

The results of our ablation studies (Section 4.1.1)
seem to indicate that our models are reasonably
good on Fr-En translation, even though we do
early stopping and tune our hyper-parameters based
on Taq-Fr performance. Here, we further inves-
tigate the performance of our approach on high-
resource ST by training models in the setting of the
IWSLT 2021 Multilingual Task (Anastasopoulos
et al., 2021). This task evaluates the performance
of multilingual ST models in 4 training directions,
for which in-domain training data is provided, and
3 zero-shot directions, for which no training data is
provided.

We use XLS-R Large as the speech feature
extractor, experiment with both NLLB 1.3B and
NLLB 3.3B as the MT model, and perform early
stopping based on the average validation BLEU
across the 4 official training directions. We train
our models on all the mTEDx language pairs that
are not zero-shot, along with TED-LIUM (English
ASR) and the Tamasheq and Quechua data (see
Table 15). Note that the use of pre-trained models
and English ASR means our models fall into the
unconstrained setting.

Table 5 presents our results on this task,
compared with the best unconstrained submis-
sion (FAIR; Tang et al., 2021).14 We find that both
our models outperform FAIR’s ensemble submis-
sion in the training directions, even though they
require substantially less compute and data to train,
and they are not ensembled. In the zero-shot direc-

13In the updated version, we use NLLB 1.3B by default
instead of NLLB 3.3B, like for Taq-Fr. Appendix Table 11
presents uncontaminated results.

14SacreBLEU signature (Post, 2018): nrefs:1|
case:mixed|eff:no|tok:13a|smooth:exp|version:2.1.0
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Model Total Trained Training directions Zero-shot directions
params params Es-En Fr-En Fr-Es Pt-En Pt-Es It-En It-Es

FAIR at IWSLT 2021 700M 40.4 36.4 34.4 29.0 34.4 28.4 34.6
(Tang et al., 2021) 3×700M (ensemble) 42.2 38.7 36.5 31.0 38.2 29.4 37.3

XLS-R + NLLB 1.3B 317M + 1.38B 70M 43.7 39.4 38.0 31.5 35.9 28.9 35.0
XLS-R + NLLB 3.3B 317M + 3.36B 115M 44.0 39.9 38.3 33.1 38.1 29.3 36.9

XLS-R + NLLB 1.3B, ASR + MT cascade 41.8 35.6 34.4 29.7 35.8 29.3 35.2

Table 5: Results on the IWSLT 2021 Multilingual task. We report BLEU scores on the IWSLT 2021 test sets. Our
NLLB 1.3B and 3.3B models took respectively 34 and 46 h to train on 4 V100 GPUs, while FAIR’s models each
took 7 days to train on 8 V100 GPUs. Also note that FAIR’s models were trained on much larger amounts of data,
including data for the “zero-shot” directions (which, in their case is only zero-shot w.r.t the in-domain TED data).

Model New params Taq-Fr

Joint training 0 21.06

Adapters 64 (all) 6.4M 17.60
Adapters 256 (all) 15.9M 18.18
Adapters 256 (bottom) 1.6M 19.24
Conv + Adapters 256 (bottom) 2.5M 19.13

Table 6: BLEU scores on the Taq-Fr validation set,
when training jointly with IWSLT 2021 and Tamasheq
data; versus incremental (2-stage) training. The “New
params” columns give the number of Tamasheq-specific
parameters added.

tions, our NLLB 1.3B version performs worse than
FAIR’s ensemble, which is not surprising since
they used training data for the zero-shot language
directions (from other datasets), whilst we do not.15

We find that using the larger NLLB 3.3B model for
initialization considerably improves our zero-shot
results.

4.3.1 Incremental Learning
A limitation of our approach for low-resource ST
is that we need to know in advance (when training
the multilingual ST model) the set of low-resource
languages to cover. Here, we show that it is pos-
sible to add a new low-resource language into an
existing model without re-training it, similar to
what has been previously done by Berard (2021)
for text-to-text MT. We train a model following
the IWSLT 2021 setting presented above, but with-
out any Tamasheq or Quechua data. Then, we
attempt to adapt it to Taq-Fr using four different
approaches: 1) adding adapters of dimension 64 in
the bottom layers and training all adapters (includ-
ing in the decoder layers and top encoder layers); 2)
adding adapters of dimension 256 in the bottom lay-
ers and fine-tuning all adapters; 3) adding adapters

15NLLB has been pretrained on these language pairs for
MT, but we do not train on ST data for them.

of dimension 256 in the bottom layers and training
only those; 4) adding adapters of dimension 256 in
the bottom layers and training both those and the
convolutional layer.

We keep the same training settings as before, ex-
cept that: we train on Taq-Fr data only; we train
only the parameters mentioned above; we validate
more often (every 1 000 updates); and we disable
checkpoint averaging. Table 6 shows the perfor-
mance of these four incremental training methods,
compared to training on the entire language set
from scratch. Even though incremental training
does not perform quite as well, it appears to be a vi-
able option that can achieve decent results. Lastly,
we highlight that our experiments were limited to
these four incremental learning settings (without
hyper-parameter search), and that better results may
be obtained with other parameter-efficient adapta-
tion methods, or with more regularization.

4.3.2 Multimodality and Domain Transfer
Since our systems are initialized with an MT model,
of which just a few encoder layers are modified, it
is straightforward to use our ST models for text-to-
text translation: we just need to store both the MT
and ST bottom layers and route tokens through the
MT ones (see Figure 1). However, one question
that remains is whether the ST adapters can be used
for text-to-text decoding.

As an investigation of this, Appendix Table 19
measures the MT performance (NLLB 1.3B) on
the IWSLT 2021 test sets (same domain as the
mTEDx training data) with and without the ST
adapters. Surprisingly, we see that not only can we
use these adapters for both text and speech modali-
ties, but they actually improve the MT scores (+2.7
BLEU on average), even though they were only
trained with ST and ASR data. This suggests that
the fine-tuned bottom layers are able to fully map
the speech representations into the text represen-
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Adapter
Size

Encoder
Adapters

Decoder
Adapters

Taq-Fr
BLEU

Taq-En
BLEU

Taq-Ko
BLEU

Taq-Fr
chrF

Taq-En
chrF

Taq-Ko
chrF

64 ✓ ✓ 19.1 17.1 12.6 44.2 40.8 18.2
128 ✓ ✓ 19.2 16.7 9.6 44.7 40.3 14.5
64 ✓ ✗ 19.3 16.8 14.6 44.4 42.4 21.5
✗ ✗ ✗ 17.5 16.2 14.4 43.0 40.8 21.5

ST (contrastive 1) + MT (NLLB 1.3B) cascade ✗ 15.0 15.7 ✗ 38.6 22.2

Table 7: BLEU and chrF results for Taq-{Fr, En, Ko} using contrastive 1 and its variants (models trained without
adapters or with larger adapters), on the IWSLT 2022 Taq-Fr test set or silver-standard Korean and English references
obtained with MT. The last row is a cascade of speech translation followed by text translation (Taq→Fr→X).

tation space and that the adapters further improve
performance by allowing domain adaptation of the
MT model (which is hard to do at the very bottom
layers). Note that the encoder adapters seem to be
the most important ones, which is consistent with
the findings of Cooper Stickland et al. (2021) that
adapting the encoder is the most effective strategy
for domain adaptation. Lastly, we highlight that
adapting the MT model directly with MT data (mT-
EDx’s transcriptions and translations) gives even
better results (+4.6 BLEU on average), but this
cross-modality domain transfer is an interesting
by-product of our parameter-efficient approach.

5 Zero-Shot Capabilities

Throughout this paper we have argued that one ad-
vantage of the multilingual models we propose is
their potential for zero-shot translation, a setting in
which a system produces translation in an unseen
language pair by leveraging its existing knowledge
of both languages. In Section 4.3 we showed that
our models are competitive with the best submis-
sion to IWSLT 2021 on the three zero-shot high-
resource language pairs, despite the fact that these
pairs were not truly zero-shot for that system. In
this section, we further illustrate the zero-shot ca-
pabilities of our models by translating Tamasheq
speech in two settings: 1) target language seen dur-
ing both MT pre-training and ST adaptation (En-
glish); 2) target language only seen during MT
pre-training (Korean).

Evaluation settings. To score BLEU and chrF16

in the chosen target languages, we use a commer-
cial translation service to translate the French side
of the IWSLT 2022 test set to English and Korean.

16SacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:X|smooth:exp|version:2.3.1, (En:
X=13a, Ko: X=ko-mecab-0.996/ko-0.9.2-KO).
chrF signature: nrefs:1|case:mixed|
eff:yes|nc:6|nw:0|space:no|version:2.3.1

Note that this is only a silver-standard made of syn-
thetic data, and thus the evaluation will inevitably
be biased.17 Our goal is solely to assess whether
our systems have some zero-shot ST abilities. We
evaluate our Taq-Fr contrastive 1 system, and vari-
ants of this system with fewer or larger adapters.
We compare with a cascade baseline, in which we
first perform Taq-Fr ST, followed by Fr-En or Fr-
Ko MT using the text-to-text path from Figure 1. In
this setting, the adapters are disabled during MT.

Results. In Table 7, we measure the zero-shot
translation capabilities of our approach on this
silver-standard test set. We evaluate four mod-
els: our contrastive 1 submission presented in Sec-
tion 4.1, and variants of this model with increased
adapter size, adapters only in the encoder, or no
adapters. We compare against a cascade baseline
that is not zero-shot, which consists in translating
the Tamasheq speech into French text and then
translating this text into English or Korean.

We observe that, in the case of English, which
was seen during ST adaptation, adapters can be
helpful (+2 BLEU over the cascade baseline). On
the other hand, for Korean, unseen during ST adap-
tation, systems with adapters in the decoder (first
two rows) perform worse, as they likely bring some
degree of language confusion. Results are even
worse with larger adapters, with over 40% of out-
put sentences being in the wrong language. In
this setting, the best results are achieved with only
encoder adapters or no adapters at all (-1 BLEU
compared to the baseline).

Appendix Table 13 measures the percentage of
output sentences in the correct language and the
percentage of Hangul versus Latin character in
each system’s outputs. We find that models with

17For instance, we observe that these generated translations
contain both the Korean transliteration in Hangul of named
entities and the original version in the Latin script. This will
likely penalize our produced translation during scoring.
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Utterance id Target Content

2016-11-23_id_7

Ref Chers auditeurs, rappelez-vous que vous écoutez Studio Kalangou en ce moment.
Fr Chers auditeurs, n’oubliez pas que vous êtes avec le Studio Kalangou.
En Well, listeners, don’t forget that you are with Studio Kalangou right now.
Ko 청취자여러분,지금 Studio Kalangou와함께있는것을잊지마세요.

2016-06-27_id_5 Ref Les examens du BEPC sont terminés et les corrections ont commencé hier après-midi dans la ville de Niamey.
Fr Les examens du BEPC sont terminés et sur toute l’étendue du territoire, les travaux de leur suivi ont débuté hier après-midi à Niamey.
En The BEPC exams are over and throughout the country, the monitoring activities started yesterday afternoon in Niamey.
Ko BEPC시험은끝났습니다. 전국에서검사작업은어제오후 Niamey에서시작되었습니다.

2016-10-27_id_39

Ref D’autres informations que nous apportons aujourd’hui concernent un projet appelé aniamey.com qui informe que l’État du Nigéria a refoulé
des Nigériens, au nombre de 53, qui arrivent (), qui habitent dans la ville de Mina sur le territoire du Niger ou Neja.

Fr D’autres informations que nous apportons aujourd’hui concernent les informations apportées par un programme dénommé Niamey Point Com qui a
apporté des informations selon lesquelles le Nigeria a accueilli 53 Nigériens qui habitent la ville de Mena qui se trouve sur le territoire du Niger ou le Niger.

En Today, we’re going to talk about the information about a program called Niamey Point Com, which reports that Nigeria has brought back 53 Nigerians
who live in the town of Mena in Niger.

Ko 우리게임의오늘기사에서는 Niamey Point Com라는프로그램으로나이지리아가미네에거주하는 53명의니그르인을귀환시켰다는소식이있습니다.

Table 8: Some decoding examples for Taq-Fr, Taq-En and Taq-Ko language pairs, accompanied by the French
reference (Ref). Utterance id corresponds to the suffix of the audio files in the IWSLT 2022 test set.

adapters in the decoder (first two rows) generate
more Latin characters. Note that the ideal transla-
tion is not necessarily 100% Hangul, as it might
sometimes be best to keep the foreign named en-
tities in the Latin alphabet. Table 8 illustrates this
with a few examples of translations from our con-
trastive 1 system.

6 Conclusion

In this paper we presented our parameter-efficient
multilingual systems as submissions to the
IWSLT 2023 Low-Resource Task in the Tamasheq-
French and Quechua-Spanish language pairs. The
architecture we propose has several advantages:
it is computationally and data efficient, it allows
the same model to do both speech-to-text and text-
to-text translation (or transcription), it maximizes
knowledge transfer to improve low-resource per-
formance, and it has good zero-shot translation
capabilities. Our submissions reach a new state of
the art performance, winning both speech transla-
tion challenges, especially for Tamasheq-French,
where we outperform the previous state of the art
by more than 7 BLEU points.

Future work will include a comprehensive eval-
uation of the ASR capabilities of our architecture,
and the investigation of adapters inside the speech
representation model. Moreover, when the speech
representation model is frozen, a more in-depth
analysis of the optimal layer is needed.
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A Appendix

A.1 Hyperparameters

Hyper-parameter Value

Batch size 4 000
Data-parallel GPUs 4

Update freq 2
Max learning rate 0.0005

Initial LR 10−7

Schedule inverse square root
Warmup steps 10 000
Adam betas 0.9, 0.999

Mixed precision True
Label smoothing 0.2

Weight decay 0.0
Dropout 0.3†

Attention dropout 0.1
Gradient clipping none

1D Convolutions 1
Conv channels 80⋆

Conv kernel size 5
Conv stride 2

Embed scaling factor
√
1 024

Positional encoding sinusoidalα

Encoder layers 24
Decoder layers 24

Embed dim 1 024‡

FFN dim 8 192
Activation ReLU

Attention heads 16
Pre-norm True

Adapter dim 64

Vocab size 250k
Lang-pair temperature 3
Heterogeneous batches True

Valid freq 5 000
Checkpoint averaging 3

Patience 5
Early stopping metric BLEU

Beam size 5

Table 9: Hyper-parameters used to train our models.
⋆: a linear layer followed by a ReLU activation is trained
to project the input features (of dimension 768 or 1 024)
to the input dimension of the CNN (80).
†: dropout is also applied to the source and target embed-
dings (after the convolutions and positional encoding)
and FFN activations.
‡: 2 048 when the pre-trained MT model is NLLB 3.3B.
α: learned positional embeddings in the decoder when
the pre-trained model is mBART.

A.2 Additional Results
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Figure 2: Training loss and Taq-Fr validation BLEU
of variants of our contrastive 1 model, that have 0 to 3
convolutional layers (1 by default).
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Figure 3: Taq-Fr validation BLEU of variants of our
contrastive 1 model that are initialized with various MT
models (NLLB 1.3B by default).
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Task Source Target hours:minutes # utterances

ASR French French 218:59 117,081
ASR Italian Italian 118:39 50,895
ASR Portuguese Portuguese 179:33 91,257
ASR Spanish Spanish 214:15 103,076

ST French English 57:39 31,207
ST French Spanish 42:14 21,862
ST French Portuguese 26:53 14,322
ST Portuguese English 63:13 31,868
ST Spanish French 9:34 4,568
ST Spanish English 79:37 37,168
ST Spanish Italian 11:50 5,616
ST Spanish Portuguese 47:01 22,012

Table 10: Statistics for all the mTEDx lan-
guages (train+valid) seen by our systems for the IWSLT
2021 evaluation setup described in Section 4.3.

Taq-Fr valid Que-Es valid Que-Es test

Taq-Fr
primary 26.13 ✗ ✗

contrastive 1 24.53 ✗ ✗

contrastive 2 22.88 20.29 17.74

Que-Es
primary 22.88 20.29 17.74
contrastive 1 20.81 19.03 15.67
contrastive 2 21.31 16.78 15.25

Que-Es
(updated)

primary 22.36 16.52 15.70
contrastive 1 20.97 15.15 15.55
contrastive 2 20.31 16.30 13.17

Table 11: Validation and test results on the IWSLT 2023
low-resource track. Lines 3 and 4 correspond to the
same model. The “Que-Es (updated)” results corre-
spond to new models trained on filtered Quechua ASR
data, where we removed audio files that are also in the
ST valid and test sets. In this updated version, primary
and contrastive 1 use NLLB 1.3B and contrastive 2
uses NLLB 3.3B.

Taq-Fr test Que-Es valid

Taq-Fr contrastive 1 19.13 ± 0.06 ✗

contrastive 2 16.89 ± 0.18 18.34 ± 0.59

Que-Es contrastive 1 16.89 ± 0.18 18.34 ± 0.59

Que-Es
(updated)

contrastive 1 16.51 ± 1.12 14.98 ± 0.16
contrastive 2 16.56 ± 0.30 15.66 ± 0.60

Table 12: Statistics (BLEU average and standard devia-
tion) for the submitted models which have 3 runs with
different seeds. The Taq-Fr and Que-Es BLEU scores
are respectively over the IWSLT 2022 test set and the
IWSLT 2023 validation set.

Adapter
Size

Encoder
Adapters

Decoder
Adapters

Taq-En
Lang ID

Taq-Ko
Lang ID

Hangul
Percentage

64 ✓ ✓ 100% 97% 88%
128 ✓ ✓ 99% 84% 59%
64 ✓ ✗ 100% 100% 95%
✗ ✗ ✗ 100% 100% 96%

✗ ✗ ✗ 100% 100% 93%

Table 13: Percentage of output sentences in the correct
language according to the NLLB language ID (Costa-
jussà et al., 2022). The last column shows the percentage
of output characters that are in the Korean alphabet.

Train vocab Inference vocab Inference Taq-Fr Fr-En Speedparams BLEU BLEU

Full (256k) Full (256k) 1.38B 19.1 36.6 12.5×
Filtered (35k) 1.19B 18.9 35.8 13.0×

Filtered (35k) Filtered (35k) 1.19B 20.0 35.5 13.0×

Table 14: Speech Translation performance on the
IWSLT 2022 Taq-Fr and mTEDx Fr-En test sets of
our contrastive Taq-Fr submission (non-ensemble ver-
sion of our primary submission) with several vocabulary
filtering strategies: no filtering (first row, corresponds to
our submission); inference-time filtering (second row);
or training-time filtering (third row). See Table 18 for
an explanation of the “speed” column.
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Figure 4: Validation BLEU by language direction (Fr-
En, Taq-Fr and Que-Es) of a multilingual model (XLS-
R + NLLB 1.3B) which includes both Tamasheq and
Quechua (our updated constrastive 1 submission).
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IWSLT 2023 TED-LIUM v2 mTEDx ASR mTEDx ST
Submission Taq-Fr Que-Es Que-Que En-En Fr-Fr Es-Es It-It Pt-Pt Fr-En Fr-Es Es-Fr Es-En Fr-Pt Pt-En Es-It Es-Pt

Taq-Fr primary ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Taq-Fr contrastive 1 ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Taq-Fr contrastive 2 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Que-Es primary ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Que-Es contrastive 1 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Que-Es contrastive 2 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

IWSLT 2021 setup ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 15: Extensive list of datasets used for training (✓) each system presented in this paper.

Model URL

mHuBERT-Tamasheq Unavailable
Tamasheq https://huggingface.co/LIA-AvignonUniversity/IWSLT2022-tamasheq-only
Niger-Mali https://huggingface.co/LIA-AvignonUniversity/IWSLT2022-Niger-Mali
XLSR-53 https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
XLS-R large and xlarge https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec/xlsr

Table 16: Downloading sources for the speech representation models checkpoints used in our experiments.

Stacked FT Adapters Total Trained Taq-Fr Fr-En Speedlayers layers params params BLEU BLEU

1 0 enc+dec (64) 1.40B 28M 19.2 35.0 12.0×
1 0 none 1.39B 22M 17.9 33.8 12.2×
0 1 enc+dec (64) 1.38B 28M 18.2 35.1 12.0×
0 1 none 1.37B 22M 17.5 33.3 12.6×
2 0 enc+dec (64) 1.42B 49M 19.2 35.1 11.9×
2 0 none 1.41B 43M 18.4 35.0 12.5×
0 2 enc+dec (64) 1.38B 49M 19.0 36.2 12.0×
0 3 enc+dec (64) 1.38B 70M 19.1 36.6 12.5×

Table 17: Training stacked layers (i.e. adding and training new bottom encoder layers) versus fine-tuning the
existing bottom layers; with or without adapters. The other hyper-parameters are identical to our constrastive
submission (underlined scores).
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Speech features MT model Conv. FT Adapters Total Trained Taq-Fr Fr-En Speedlayers layers params params BLEU BLEU

Tamasheq (layer 11)

NLLB 1.3B 1 3 enc+dec (64)

1.38B 70M 16.8 32.5 11.6×
Tamasheq (layer 8) 1.38B 70M 19.3 31.6 12.0×

mHuBERT-Taq (layer 11) 1.38B 70M 16.4 37.1 12.1×
mHuBERT-Taq (layer 8) 1.38B 70M 16.2 36.7 12.1×

Niger-Mali (layer 11) 1.38B 70M 16.6 34.6 11.8×
Niger-Mali (layer 8) 1.38B 70M 19.1 36.6 12.5×
XLSR-53 (layer 18) 1.38B 70M 15.9 38.0 12.4×
XLS-R L (layer 18) 1.38B 70M 16.8 39.4 12.7×

XLS-R XL (layer 46) 1.38B 70M 15.4 37.4 11.7×

Niger-Mali (layer 8)

mBART (600M)

1 3 enc+dec (64)

0.61B 41M 16.3 28.9 22.9×
NLLB (600M) 0.62B 41M 18.0 32.5 24.2×
NLLB (1.3B) 1.38B 70M 19.1 36.6 12.5×
NLLB (3.3B) 3.36B 165M 19.3 37.3 4.5×

Niger-Mali (layer 8) NLLB 1.3B

3

3 enc+dec (64)

1.38B 70M 18.5 33.4 25.5×
2 1.38B 70M 19.4 35.4 19.5×
1 1.38B 70M 19.1 36.6 12.5×
0 1.38B 70M 19.6 34.4 7.1×

Niger-Mali (layer 8) NLLB 1.3B 1

24

enc+dec (64)

1.37B 508M 16.7 30.7 11.9×
4 1.38B 91M 19.6 36.8 12.3×
3 1.38B 70M 19.1 36.6 12.5×
2 1.38B 49M 19.0 36.2 12.0×
1 1.38B 28M 18.2 35.1 12.0×

Niger-Mali (layer 8) NLLB 1.3B 1

1 enc (64) 1.37B 25M 19.1 34.2 12.4×
none 1.37B 22M 17.5 33.3 12.6×

3

enc+dec (256) 1.40B 88M 18.8 35.8 12.2×
enc+dec (128) 1.38B 76M 19.2 36.3 12.1×
enc+dec (64) 1.38B 70M 19.1 36.6 12.5×

enc (64) 1.37B 67M 19.3 35.7 12.7×
none 1.37B 64M 18.3 35.6 13.1×

Table 18: Ablation study on Taq-Fr ST, with various speech feature extractors, pre-trained MT models used for
initialization, and trained parameters. The total parameter counts do not include the parameters of the speech feature
extractors. The BLEU scores reported are on the IWSLT 2022 Taq-Fr and mTEDx Fr-En test sets. The speed metric
is relative to real time (i.e., seconds in the test set divided by seconds spent decoding) and does not include feature
extraction time. It is obtained by decoding the Taq-Fr test set on a single T4 with a batch size of 10 utterances
(averaged over 3 decoding runs). The underlined numbers all correspond to the same model, which is our first
contrastive submission to the task (the non-ensemble version of our primary submission). All of these models are
trained with the same data (see Table 15) and early stopping is done based on Taq-Fr valid BLEU scores. The
numbers inside parentheses in the Adapters column correspond to the bottleneck dimension of the trained adapter
modules. Adapters are not added in the encoder layers that are being fine-tuned. These models took between 15 and
47 h each to train on 4 V100 GPUs, with an average training time of 26 h.

Task Model Adapters Training directions Zero-shot directions
Es-En Fr-En Fr-Es Pt-En Pt-Es It-En It-Es

ST NLLB 3.3B enc+dec 44.0 39.9 38.3 33.1 38.1 29.3 36.9

ST NLLB 1.3B

enc+dec 43.7 39.4 38.0 31.5 35.9 28.9 35.0
none 36.7 35.0 31.7 23.8 30.5 25.2 31.3
enc 41.4 38.3 36.0 30.8 36.2 26.2 35.1
dec 39.1 38.2 33.1 26.9 31.9 27.9 32.9

MT NLLB 3.3B none 47.4 39.5 39.2 39.8 48.6 34.0 42.4

MT NLLB 1.3B

none 47.9 38.9 39.6 39.8 48.5 33.8 41.9
enc+dec 50.2 40.7 42.2 42.1 51.0 37.6 45.2

enc 49.9 41.3 42.6 41.9 50.6 36.5 44.9
dec 48.8 39.2 41.0 41.1 49.7 35.6 43.9

MT NLLB 1.3B (DA) enc+dec 51.3 43.2 45.2 44.7 53.2 37.8 47.1

Table 19: Top half: Speech translation BLEU scores on the IWSLT 2021 test sets, when deactivating encoder
adapters, decoder adapters, or both in an ST model at inference time. The ST model is the same one as in Table 5,
trained with encoder and decoder adapters. Bottom half: Text-to-text MT BLEU scores when using the ST adapters
in the initial model and disabling the ST bottom layers and convolutions.
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Abstract

This paper describes the FBK’s participation
in the Simultaneous Translation and Automatic
Subtitling tracks of the IWSLT 2023 Evaluation
Campaign. Our submission focused on the use
of direct architectures to perform both tasks:
for the simultaneous one, we leveraged the
knowledge already acquired by offline-trained
models and directly applied a policy to obtain
the real-time inference; for the subtitling one,
we adapted the direct ST model to produce
well-formed subtitles and exploited the same
architecture to produce timestamps needed for
the subtitle synchronization with audiovisual
content. Our English-German SimulST sys-
tem shows a reduced computational-aware la-
tency compared to the one achieved by the top-
ranked systems in the 2021 and 2022 rounds
of the task, with gains of up to 3.5 BLEU. Our
automatic subtitling system outperforms the
only-existing solution based on a direct system
by 3.7 and 1.7 SubER in English-German and
English-Spanish respectively.

1 Introduction

In recent years, the advances in natural language
processing and machine learning led to a surge of
interest in developing speech translation (ST) sys-
tems that can translate speech from one language
into text in another language without human inter-
vention. Significant progress has been specially
made toward end-to-end ST models (Bérard et al.,
2016; Weiss et al., 2017) trained to directly trans-
late speech without the intermediate steps of tran-
scription (through automatic speech recognition -
ASR) and translation (through machine translation
- MT). Along with this growing interest in direct
ST, also accompanied by a reduction of the perfor-
mance gap with respect to cascaded architectures
(Bentivogli et al., 2021), other trends have emerged
thanks to deep learning advancements, which made
it possible to deploy direct solutions to perform the
task in real-time (i.e. to produce partial translations

while continuing to process the input audio) or
to automatically generate subtitles for audiovisual
content (i.e. pieces of translated text which have to
conform to specific spatiotemporal constraints and
be synchronized with the video).

The International Workshop on Spoken Lan-
guage Translation (IWSLT) is playing an impor-
tant role in advancing the state-of-the-art in these
fields by organizing a series of evaluation cam-
paigns (Ansari et al., 2020; Anastasopoulos et al.,
2021, 2022) focused on simultaneous speech trans-
lation (SimulST) and, this year for the first time,
automatic subtitling. These campaigns provide a
unique opportunity for researchers to compare their
systems against others, share their findings, and
identify areas for further improvement.

In this paper, we describe FBK’s participation
in the IWSLT 2023 Evaluation Campaigns (Agar-
wal et al., 2023) for simultaneous translation and
automatic subtitling. Motivated by the promising
results reported in previous works (Ren et al., 2020;
Papi et al., 2022a), our approach is characterized by
the use of direct ST models to address both tasks.

For the simultaneous speech-to-text transla-
tion (SimulST) task, we participated in the
English→German track and leveraged an offline-
trained direct model without performing any adap-
tation to the real-time scenario, as this has recently
been shown not to be necessary to achieve com-
petitive results (Papi et al., 2022b). For the auto-
matic subtitling task, we participated in both the
English→German and English→Spanish tracks by
adapting a direct ST model to produce well-formed
subtitles and exploiting the same architecture to
produce the timestamps needed for their synchro-
nization with audiovisual contents, as in (Papi et al.,
2022a).

Our results demonstrate the effectiveness of our
approach. In SimulST, the computational-aware
latency of our models is lower compared to the
winning systems of the last two rounds (2021, and

159



2022) of the IWSLT SimulST Evaluation Cam-
paign, with gains up to 3.5 BLEU. In automatic
subtitling, our systems improve the results reported
in (Papi et al., 2022a) which, to the best of our
knowledge, represents the only-existing solution
based on a direct model. Specifically, on average
among the various dev sets available for the task,
we achieve 3.7 SubER on en-de and 1.7 SubER on
en-es.

2 Applied Direct Models

For this year’s submission, we applied the direct
ST models to the two different scenarios of simul-
taneous translation and automatic subtitling.

2.1 Simultaneous Translation

Recent trends in SimulST consist of using offline-
trained models for simultaneous inference (Papi
et al., 2022b). There are several motivations for
this choice: i) it avoids re-training or building spe-
cific architectures for SimulST, saving time and
computational resources; ii) only one model has to
be trained and maintained to perform both offline
and simultaneous ST; and iii) there is no need to
train several models, each specialized to support
different latency regimes.

A key aspect of SimulST, also critical when ap-
proaching the task with offline models at inference
time, is the so-called decision policy: the mecha-
nism that is in charge of deciding whether to read
more information or to emit a partial hypothesis.
One of the first and most popular policies is the
wait-k (Ma et al., 2019), initially introduced for
simultaneous MT, and then applied to the speech
scenario (Ma et al., 2020b; Chen et al., 2021; Zeng
et al., 2021; Karakanta et al., 2021b). The wait-k,
which prescribes waiting for an initial number of
k words before starting to translate, is defined as a
“fixed” policy (Zheng et al., 2020) because the de-
cision is taken independently from the source input
content. However, as the actual information con-
tained in the input (e.g. in terms of ambiguity, com-
pleteness, and syntactic/semantic cohesion) is also
important for the sake of good-quality incremental
translations, several “adaptive” policies have been
introduced, which instead adapt their decisions to
the input content. Some adaptive policies require
system re-training or the development of ad-hoc
modules (Liu et al., 2021b; Chang and Lee, 2022;
Zhang and Feng, 2022), while some others do not
(Liu et al., 2020; Nguyen et al., 2021; Papi et al.,

2022e). Since our objective is to avoid any modi-
fications to the offline-trained model, we pointed
our attention to the latter, more conservative cate-
gory. Among these policies, we analyzed the three
following alternatives:

• Local Agreement (LA) (Liu et al., 2020): this
policy prescribes generating a partial hypothe-
sis from scratch at every newly received audio
segment, and emitting it (or only a part of it)
if it coincides with one of those generated in
the previous time step;

• Encoder-Decoder Attention (EDATT) (Papi
et al., 2022e): it exploits the cross-attention
scores modeling the audio-translation relation
to decide whether to emit the words of a par-
tial hypothesis or not. If, for the current word,
the sum of the attention scores of the last λ re-
ceived speech frames exceeds a certain thresh-
old α (both λ and α are hyperparameters), the
emission is delayed because the system needs
more context to translate that word. Other-
wise, the word is emitted and we proceed to
the next word of the hypothesis;

• ALIGNATT (Papi et al., 2023b): as for
EDATT, the cross-attention scores are lever-
aged to decide what to emit but, in this case,
instead of summing the attention scores of
the last speech frames, each word is uniquely
assigned (or aligned) to the frame having the
maximum attention score. If the aligned frame
corresponds to one of the last f frames (f be-
ing a hyperparameter that controls the latency)
the emission is stopped. Otherwise, we pro-
ceed to the next word.

2.2 Automatic Subtitling
So far, the adoption of direct ST architectures to
address the automatic subtitling task has only been
explored in (Papi et al., 2022a). As a matter of fact,
all previous works on the topic (Piperidis et al.,
2004; Melero et al., 2006; Matusov et al., 2019;
Koponen et al., 2020; Bojar et al., 2021) rely on
cascade architectures that usually involve an ASR
component to transcribe the input speech, a subtitle
segmenter that segments the transcripts into subti-
tles, a timestamp estimator that predicts the start
and times of each subtitle, and an MT model that
translates the subtitle transcripts.

Cascaded architectures, however, cannot ac-
cess information contained in the speech, such as
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prosody, which related works proved to be an im-
portant source of information for the segmentation
into subtitles (Öktem et al., 2019; Federico et al.,
2020; Virkar et al., 2021; Tam et al., 2022). The im-
portance of such information has been further veri-
fied in (Karakanta et al., 2020a), which proved that
the direct ST models are better in subtitle segmenta-
tion compared to the cascade ones. Another study
by Karakanta et al. 2021a, also pointed out the
importance of consistency between captions (seg-
mented transcripts) and subtitles (segmented trans-
lations), showing that the predicted caption content
can also be useful for the translation. Specifically,
the authors obtained significant improvements by
using a Triangle Transformer-based architecture
(Anastasopoulos and Chiang, 2018) composed of
one encoder and two decoders: the first decoder
is in charge of emitting the transcripts and the
second one is in charge of emitting the transla-
tion by also attending to the output embeddings of
the predicted transcript. Therefore, in our submis-
sion, based on the findings of the aforementioned
work, we inspected the use of both a classic single
encoder-single decoder architectures, as in (Papi
et al., 2022a), and of the Triangle architecture for
automatic subtitling.

3 Experimental Setup

3.1 Data

Simultaneous We developed a pure offline
model trained on the same data used for our
last year’s (constrained) submission (Gaido et al.,
2022b).

Subtitling We used the same data settings of
(Papi et al., 2022a), for which we leverage the
multimodal segmenter by Papi et al. (2022d) to
segment into subtitles ST and machine-translated
ASR corpora as per (Gaido et al., 2021b, 2022a).1

No OpenSubtitles or text-only data were used to
train our models.

3.2 Training Settings

All the models used for our participation were im-
plemented using the newly released implementa-
tion of the Conformer architecture by Papi et al.

1All the corpora used in (Papi et al., 2022a) are
allowed ASR and ST training data for the Subtitling
task (https://iwslt.org/2023/subtitling#
training-and-data-conditions). Therefore, our
submission has to be considered “Constrained”.

(2023a)2 based on Fairseq-ST (Wang et al., 2020).
In their paper, the authors analyzed the most
popular open-source libraries for speech recogni-
tion/translation and found at least one bug affect-
ing all the existing Conformer implementations,
therefore claiming the importance of testing code
to avoid the propagation of unreliable findings
masked by good results.

Simultaneous We tested a Conformer-based ar-
chitecture (Gulati et al., 2020) with two configu-
rations: 12 encoder layers and 16 encoder layers.
The number of Transformer decoder layers is 6, we
set 512 features for the attention layers and 2,048
hidden units for the feed-forward layers. We used
0.1 dropout for the feed-forward layers, attention
layers, and convolutional modules. The kernel size
was set to 31 for the point- and depth-wise con-
volutions. We trained with the Adam optimizer
(Kingma and Ba, 2015) by setting β1 = 0.9 and
β2 = 0.98, a weight decay of 0.001, the learning
rate to 0.002 using the inverse square-root sched-
uler with 25,000 warm-up steps. Label smoothed
cross-entropy loss (0.1 smoothing factor) was used
together with the CTC loss (Graves et al., 2006)
with weight 0.5. We experimented also by apply-
ing the CTC compression mechanism (Gaido et al.,
2021a) to the source input to shrink its dimension
and reduce RAM consumption. Utterance Cep-
stral Mean and Variance Normalization (CMVN)
was applied during training. Also, we leveraged
SpecAugment (Park et al., 2019) with frequency
mask (F = 27, and N = 2), time mask (N = 10,
T = 300, and p = 0.05), and no time warp. Both
ST training and ASR pre-training were performed
with the same settings. The target vocabulary is of
size 16,000, and the source vocabulary is of size
10,000, and are both based on SentencePiece (Kudo
and Richardson, 2018). We differentiate between
original and machine-translated training data by
pre-pending a tag (nomt and mt, respectively) to
the target text as in all our last years’ submissions
(Gaido et al., 2020; Papi et al., 2021; Gaido et al.,
2022b). The total batch size was set to 1,280,000
and was performed on 4 NVIDIA A40 GPUs with
40GB of RAM by setting the mini-batch update
frequency to 8 and 40,000 maximum tokens. Max-
imum updates were set to 100,000.

2Code available at https://github.com/hlt-mt/
FBK-fairseq
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Automatic Subtitling Both the classic encoder-
decoder architecture and the triangle architecture
are composed of 12 layers of Conformer encoder
and 6 layers of Transformer decoder (which is
replicated twice in the triangle model). The di-
mension of the feed-forward layers is 2,048 and
d = 512 in the attention. The kernel size of the
point- and depth-wise convolutions in the convolu-
tional modules is 31. The dropout was set to 0.1.
CTC loss with compression is added with weight
0.5 to the cross entropy loss with label smoothing
(0.1 of smoothing factor) and optimized with Adam
(β1 = 0.9, β2 = 0.98). The source vocabulary is of
size 8,000 and the target vocabulary of size 16,000
(<eob> and <eol> included); both are obtained
by SentencePiece models. The ST pre-training was
done by setting the learning rate to 0.002 with in-
verse square-root scheduler and 25,000 warm-up
updates. The SubST fine-tuning was done by set-
ting a constant learning rate of 0.001. A second
fine-tuning was done with the same setting of (Papi
et al., 2022a), but we restored the punctuation of
the ASR datasets which do not contain any (i.e.,
the TEDLIUM corpus (Hernandez et al., 2018))
by using bert-restore-punctuation,3 be-
fore machine-translating and segmenting the target
texts into subtitles. We trained the standard archi-
tecture with 40,000 maximum tokens on 4 NVIDIA
A100 GPUs with 40GB of RAM and we set the
update frequency to 2. For the triangle architecture,
we set maximum tokens to 20,000 to fit the archi-
tecture in memory and the update frequency to 4
to hold the same total batch size of 320,000 tokens.
Maximum updates were set to 100,000 for both the
pre-training and training phases.

3.3 Evaluation Settings
Simultaneous We exploit the SimulEval tool
(Ma et al., 2020a). To be comparable with the
previous years, all the results except this year’s
submission are shown for the SimulEval v1.0.2,
which adopts BLEU (Post, 2018)4 to measure trans-
lation quality and Average Lagging or AL (Ma
et al., 2019) to measure latency. Instead, for
this year’s submission, we adopt the latest ver-
sion of SimulEval (1.1.0) with BLEU measured
with sacrebleu 2.3.0 and we also report Length-
Adaptive Average Lagging or LAAL (Papi et al.,
2022c) and Average Token Delay or ATD (Kano

3https://huggingface.co/felflare/
bert-restore-punctuation

4case:mixed|eff:no|tok:13a|smooth:exp|version:1.5.1

et al., 2022) as additional latency metrics. All the
evaluations were run on a single NVIDIA K80 with
12GB of RAM, by applying global CMVN to audio
input, whose features were estimated on the MuST-
C v2 training set. Computational aware metrics
(“_CA”) refer to the single NVIDIA K80 setting
and consider also the model computational time in
the delay calculation.

Automatic Subtitling We adopt the follow-
ing metrics: SubER-cased (henceforth, SubER)
(Wilken et al., 2022) for overall subtitle quality,
Sigma (Karakanta et al., 2022) for the subtitle seg-
mentation quality, and BLEU5 for translation qual-
ity. We also compute the conformity percentage
of 42 characters per line (CPL) and 21 characters
per second (CPS) or reading speed, as suggested
on the track website.6 We neglected the conformity
computation of the subtitles with more than two
lines since our model only produces subtitles with
two lines or less, thus being always 100% conform.
Conformity scores are computed by using the script
released for the paper (Papi et al., 2022a).7 Dev/test
audios are segmented with SHAS (Tsiamas et al.,
2022). No audio cleaning is applied.

4 Results

4.1 Simultaneous Translation

Since we directly employ an offline model for the
simultaneous inference, we show in Table 1 the
results of the offline ASR pre-training and ST train-
ing. Although the model with 12 encoder layers
(row 0) obtains lower – hence better – WER com-
pared to the 16 encoder-layers model (row 1), the
highest – hence better – BLEU in ST is achieved
by the bigger architecture. The performance is also
slightly enhanced by adding the CTC compression
(row 3) during training, which is particularly useful
also for the SimulST scenario since it speeds up
inference (of about 12/15%). Therefore, we select
this model for the final submission. Compared to
our last year’s submission (row 5), our 16 encoder-
layers model scores +0.4 BLEU even if, at this
time, we have not fine-tuned it on the in-domain
(TED talks) datasets. Our model also performs

5case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
6https://iwslt.org/2023/subtitling#

automatic-evaluation
7Script available at: https://github.com/

hlt-mt/FBK-fairseq/blob/master/examples/
speech_to_text/scripts/subtitle_
compliance.py
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better than the NAIST last year’s system (+11.1
BLEU) while is worse (-1.0 BLEU) compared to
the last year’s SimulST task winner CUNI-KIT
whose model, however, leveraged large pre-trained
models such as wav2vec 2.0 and mBART50. Com-
pared to last year’s cascade model by UPV, we
score -1.7 BLEU. This system, however, also out-
performed the CUNI-KIT system by 0.7 BLEU
points, indicating that a gap between direct and
cascade architectures still exists.

id Model WER% (↓) BLEU (↑)
1 12 encoder layers 9.7 31.6
2 16 encoder layers 9.9 31.9
3 + CTC compress. - 32.1
4 CUNI-KIT 2022† - 33.1
5 FBK 2022 - 31.7
6 NAIST 2022‡ - 21.0
7 UPV 2022 (Cascade)* 9.5 33.8

Table 1: Offline results of our Conformer-based archi-
tectures on MuST-C v2 tst-COMMON together with the
available results of the last year’s SimulST competitors.
†(Polák et al., 2022), ‡(Fukuda et al., 2022), *(Iranzo-
Sánchez et al., 2022).

In Figure 1, we show the simultaneous results of
the different policies mentioned in Section 2.1 ap-
plied to our offline model. The differences in terms
of quality-latency trade-off between the LA and
both EDATT and ALIGNATT are evident: the last
ones outperform the former with an improvement
peak of 1.5 BLEU at lower latency (approximately
1s). Moreover, when the computationally aware
AL is considered, EDATT and ALIGNATT are the
only policies able to reach a latency ≤ 2s. Regard-
ing the comparison between EDATT and ALIG-
NATT, ALIGNATT can span a latency between 1
and 2.6s ideally (when unlimited computing re-
sources are available), and between 1.8 and 3.7s
computationally aware, while EDATT is limited to
a latency of 1.4 to 2.5s ideally, and 2.3 to 3.6s com-
putationally aware. We hence select ALIGNATT as
it is able to reach a wider range of latency.

Lastly, we compare our policy with the two win-
ning systems of the last two years (2021, and 2022).
The 2021 winner (Liu et al., 2021a) was based on
an architecture named Cross Attention Augmented
Transducer (CAAT), which was specifically tai-
lored for the SimulST task (Liu et al., 2021b) and
still represents the state of the art in terms of low
latency (considering ideal AL only). The 2022 win-
ner (CUNI-KIT (Polák et al., 2022)) was based on
the wav2vec 2.0 + mBART50 offline architecture
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offline LA EDAtt AlignAtt

Figure 1: Comparison between the LA, EDATT, and
ALIGNATT policies described in Section 2.1 on MuST-
C v2 en→de tst-COMMON. Solid curves represent AL,
dashed curves represent AL_CA.

reported in Table 1, row 4. They applied the LA
policy, the same we analyze in Figure 1, to the
aforementioned architecture for simultaneous in-
ference. The comparison is reported in Figure 2.
As we can see, there is a 1.0-2.0 BLEU difference
between our approach and the IWSLT 2022 win-
ner, which is expected since their offline system
is superior compared to ours, as already observed
in Table 1. Compared to the IWSLT 2021 winner,
we observe a performance drop in our system with
AL ≤ 1.5s, while the situation is opposite with
AL > 1.5s. However, when we look at the com-
putationally aware metrics, the results completely
change. Our system clearly outperforms the 2021
winner, with a maximum improvement of about 2
BLEU points. Moreover, our system is the only
one able to reach a computational aware latency of
2s while, instead, the IWSLT 2022 winner curve
starts only at around 3s. Therefore, our system is
significantly faster and, at around 3s, we achieve
a relative improvement of more than 3.5 BLEU
compared to the IWSLT 2022 winner.

To sum up, when the computationally aware met-
ric is considered, our approach outperforms the
winners of both the 2021 and 2022 rounds of the
SimulST task. In addition, in this year’s round, the
systems are evaluated with the threshold AL = 2s
and with the new version of SimulEval.8 With re-
spect to these settings, our submitted system scores
30.7 BLEU with AL = 1.89s (LAAL = 2.07s,
ATD = 1.80s).

8https://iwslt.org/2023/simultaneous#
ranking
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Figure 2: Comparison with the 2021 and 2022 win-
ners of the SimulST Evaluation Campaigns MuST-C v2
en→{de, es} tst-COMMON. Solid curves represent AL,
dashed curves represent AL_CA.

4.2 Automatic Subtitling
In Table 2, we show a comparison between the
standard encoder-decoder and the Triangle architec-
tures for automatic subtitling. The results are com-
puted on MuST-Cinema (Karakanta et al., 2020b),
the only existing corpus for SubST. Unfortunately,
in contrast with the results achieved by (Karakanta
et al., 2021a), we found that the standard archi-
tectures perform better on all the considered met-
rics. While the differences in terms of translation
quality are not so big (0.8-9 BLEU drop in both
languages), there is a huge gap in the quality of
the segmentation into subtitles, with the standard
model improving by 3.3 and 4.7 Sigma the scores
obtained by the Triangle respectively on en-de and
en-es. This is also reflected by a worse SubER
score (the lower, the better) of the Triangle, exhibit-
ing a performance drop of, respectively, 0.9 and
1.6 SubER for en-de and en-es compared to the
standard architecture. Therefore, we can conclude
that the generated captions seem not to help with
subtitle generation. Rather, they negatively affect
subtitle generation to the detriment of segmenta-
tion quality. For this reason, we decided to employ
the standard encoder-decoder architecture for our
participation in the automatic subtitling task.

In the following, we present the results of our
model on the four dev sets released for the task,9

namely: MuST-Cinema or TED containing TED
talks videos, EuroParlTV or EPTV containing
recordings related to the European Parliament ac-

9https://iwslt.org/2023/subtitling#
development-and-evaluation-data

en-de
Model SubER BLEU Sigma CPL CPS
(Papi et al., 2022a) 59.9 23.4 77.9 86.9 68.9
Triangle 60.8 22.6 74.6 84.5 67.7

en-es
Model SubER BLEU Sigma CPL CPS
(Papi et al., 2022a) 46.8 37.4 81.6 93.2 74.6
Triangle 48.4 36.5 76.9 90.3 71.7

Table 2: Results of the direct ST models standard and
Triangle architectures described in Section 2.2 on MuST-
Cinema test set for en→{de, es}.

tivities, Peloton containing online fitness classes,
and ITV Studios or ITV containing videos from
a broad range of programming (drama, entertain-
ment, factual). For both language pairs (en-de and
en-es), Table 3 shows the results computed with
SubER, which is the primary metric used for the
task.10 As we can see, the models fine-tuned on
data with restored punctuation score the best re-
sults in both languages. Across the four dev sets,
there is a 3.7 SubER improvement for en-de, and
1.7 for en-es. Moreover, coherently among lan-
guages, the TED talks scenario results in the eas-
iest one for our model, as it is in-domain (e.g.,
MuST-Cinema, based on TED talks, was used to
train the model). Conversely, the ITV scenario
is the most difficult one since it contains TV se-
ries, which is a completely unseen domain for our
model. Indeed, its data contain a larger amount
of background music/noise, as well as dialogues
with multiple speakers which are not present in
our training data. In light of the results obtained
by the fine-tuned models, we select them for our
submission to the automatic subtitling task.

en-de
Model TED EPTV Peloton ITV Avg
(Papi et al., 2022a) 72.7 82.3 84.7 88.0 81.9

+ fine-tuning 69.4 80.6 79.1 83.7 78.2
en-es

Model TED EPTV Peloton ITV Avg
(Papi et al., 2022a) 54.8 75.3 82.3 84.1 74.1

+ fine-tuning 52.5 73.7 80.3 82.2 72.4

Table 3: SubER (↓) scores for en→{de, es} of the direct
ST models on the four dev sets of the competition. “fine-
tuning” represents the second fine-tuning on data with
restored punctuation mentioned in Section 3.2.

10https://iwslt.org/2023/subtitling#
automatic-evaluation
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5 Conclusions

We presented the FBK’s systems built to partici-
pate in the IWSLT 2023 Evaluation Campaigns for
simultaneous speech translation (en-de) and auto-
matic subtitling (en-{de, es}). Our submissions
are characterized by the use of direct speech trans-
lation models to address both tasks, without any
further modification nor adaptation for the simulta-
neous task, and with a fine-tuning on subtitle-like
translations for the automatic subtitling task. Our
SimulST system achieves a lower computational-
aware latency with up to 3.5 BLEU gain compared
to the last two years’ winners. Our automatic subti-
tling system achieves 3.7 and 1.7 SubER improve-
ment on en-de and en-es respectively, compared to
the only solution published in the literature based
on a direct system.
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sopoulos, Ondřej Bojar, Claudia Borg, Marine
Carpuat, Roldano Cattoni, Mauro Cettolo, Mingda
Chen, William Chen, Khalid Choukri, Alexandra
Chronopoulou, Anna Currey, Thierry Declerck, Qian-
qian Dong, Yannick Estève, Kevin Duh, Marcello
Federico, Souhir Gahbiche, Barry Haddow, Benjamin
Hsu, Phu Mon Htut, Hirofumi Inaguma, Dávid Ja-
vorský, John Judge, Yasumasa Kano, Tom Ko, Rishu
Kumar, Pengwei Li, Xutail Ma, Prashant Mathur,
Evgeny Matusov, Paul McNamee, John P. McCrae,
Kenton Murray, Maria Nadejde, Satoshi Nakamura,
Matteo Negri, Ha Nguyen, Jan Niehues, Xing Niu,
Atul Ojha Kr., John E. Ortega, Proyag Pal, Juan Pino,
Lonneke van der Plas, Peter Polák, Elijah Rippeth,
Elizabeth Salesky, Jiatong Shi, Matthias Sperber, Se-
bastian Stüker, Katsuhito Sudoh, Yun Tang, Brian
Thompson, Kevin Tran, Marco Turchi, Alex Waibel,
Mingxuan Wang, Shinji Watanabe, and Rodolfo Ze-
vallos. 2023. Findings of the IWSLT 2023 Evaluation
Campaign. In Proceedings of the 20th International
Conference on Spoken Language Translation (IWSLT
2023).

Antonios Anastasopoulos, Loïc Barrault, Luisa Ben-
tivogli, Marcely Zanon Boito, Ondřej Bojar, Roldano
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Dominik Macháček1 and Ondřej Bojar1 and Raj Dabre2

Charles University, Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics1

National Institute of Information and Communications Technology, Kyoto, Japan2

1{machacek,bojar}@ufal.mff.cuni.cz, 2raj.dabre@nict.go.jp

Abstract
There have been several meta-evaluation stud-
ies on the correlation between human rat-
ings and offline machine translation (MT)
evaluation metrics such as BLEU, chrF2,
BERTSCORE and COMET. These metrics have
been used to evaluate simultaneous speech
translation (SST) but their correlations with
human ratings of SST, which has been recently
collected as Continuous Ratings (CR), are un-
clear. In this paper, we leverage the evaluations
of candidate systems submitted to the English-
German SST task at IWSLT 2022 and conduct
an extensive correlation analysis of CR and the
aforementioned metrics. Our study reveals that
the offline metrics are well correlated with CR
and can be reliably used for evaluating machine
translation in simultaneous mode, with some
limitations on the test set size. We conclude
that given the current quality levels of SST,
these metrics can be used as proxies for CR, al-
leviating the need for large scale human evalua-
tion. Additionally, we observe that correlations
of the metrics with translation as a reference is
significantly higher than with simultaneous in-
terpreting, and thus we recommend the former
for reliable evaluation.

1 Introduction

The current approach to evaluate simultaneous
speech translation (SST, Cho and Esipova, 2016;
Ma et al., 2019) systems that have text as the output
modality is to use automatic metrics which are de-
signed for offline text-to-text machine translation
(MT), alongside other measures for latency and sta-
bility. Researchers tend to use offline metrics, such
as BLEU (Papineni et al., 2002), chrF2 (Popović,
2017), BERTSCORE (Zhang et al., 2020), COMET
(Rei et al., 2020) and others (Freitag et al., 2022) in
SST despite no explicit evidence that they correlate
with human ratings.

However, simultaneous speech-to-text transla-
tion has different characteristics compared to of-
fline text-to-text MT. For example, when the users

are following subtitles in real-time, they have lim-
ited time for reading and comprehension as they
cannot fully control the reading pace by themselves.
Therefore, they may be less sensitive to subtle
grammar and factual flaws than while reading a
text document without any time constraints. The
human evaluation of SST should therefore reflect
the simultaneity. The users may also prefer brevity
and simplicity over verbatim word-for-word trans-
lation. Even if the reference is brief and simpler
than the original, there may be lots of variants that
the BLEU score and other MT metrics may not
evaluate as correct.

Furthermore, SST and MT differ in their input
modalities. MT sources are assumed to originate
as texts, while the SST source is a speech given in
a certain situation, accompanied by para-linguistic
means and specific context knowledge shared by
the speaker and listener. Transcribing speech to
text for use in offline evaluation of SST may be
limiting.

In this paper, we aim to determine the suitabil-
ity of automatic metrics for evaluating SST. To
this end, we analyze the results of the simultane-
ous speech translation task from English to Ger-
man at IWSLT 2022 (Anastasopoulos et al., 2022),
where we calculate the correlations between MT
metrics and human judgements in simultaneous
mode. There are five competing systems and hu-
man interpreting that are manually rated by bilin-
gual judges in a simulated real-time event. Our
studies show that BLEU does indeed correlate with
human judgements of simultaneous translations un-
der the same conditions as in offline text-to-text
MT: on a sufficiently large number of sentences.
Furthermore, chrF2, BERTSCORE and COMET ex-
hibit similar but significantly larger correlations.
To the best of our knowledge, we are the first to ex-
plicitly establish the correlation between automatic
offline metrics with human SST ratings, indicating
that they may be safely used in SST evaluation in
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the currently achieved translation quality levels.
Additionally, we statistically compare the met-

rics with translation versus interpreting reference,
and we recommend the most correlating one:
translation reference and COMET metric, with
BERTSCORE and chrF2 as fallback options.

We publish the code for analysis and visualisa-
tions that we created in this study.1 It is available
for further analysis and future work.

2 Related Work

We replicate the approach from text-to-text MT re-
search (e.g. Papineni et al., 2002) that examined
the correlation of MT metrics with human judge-
ments. The strong correlation is used as the basis
for taking the metrics as reliable. As far as we
know, we are the first who apply this approach to
SST evaluation in simultaneous mode.

In this paper, we analyze four metrics that rep-
resent the currently used or recommended (Freitag
et al., 2022) types of MT metrics. BLEU and chrF2
are based on lexical overlap and are available for
any language. BERTSCORE (Zhang et al., 2020)
is based on embedding similarity of a pre-trained
BERT language model. COMET (Rei et al., 2020)
is a neural metric trained to estimate the style of
human evaluation called Direct Assessment (Gra-
ham et al., 2015). COMET requires sentence-to-
sentence aligned source, translation and reference
in the form of texts, which may be unavailable
in some SST use-cases; then, other metric types
may be useful. Another fact is that BERTSCORE

and COMET are available only for a limited set of
languages.

3 Human Ratings in SST

As far as we know, the only publicly available
collection of simultaneous (not offline) human
evaluation of SST originates from IWSLT 2022
(Salesky et al., 2022) English-to-German Simul-
taneous Translation Task, which is described in
“Findings” (Anastasopoulos et al., 2022, see high-
lights of it we discuss in Appendix A). The task
focused on speech-to-text translation and was re-
duced to translation of individual sentences. The
segmentation of the source audio to sentences was
provided by organizers, and not by the systems
themselves. The source sentence segmentation that
was used in human evaluation was gold (oracle).
It only approximates a realistic setup where the

1github.com/ufal/MT-metrics-in-SimST

segmentation would be provided by an automatic
system, e.g. Tsiamas et al. (2022), and may be par-
tially incorrect and cause more translation errors
compared to the gold segmentation.

The simultaneous mode in Simultaneous Trans-
lation Task means that the source is provided grad-
ually, one audio chunk at a time. After receiv-
ing each chunk, the system decides to either wait
for more source context, or produce target tokens.
Once the target tokens are generated, they can not
be rewritten.

The participating systems are submitted and stud-
ied in three latency regimes: low, medium and high.
It means that the maximum Average Lagging (Ma
et al., 2019) between the source and target on val-
idation set must be 1, 2 or 4 seconds in a “com-
putationally unaware” simulation where the time
spent by computation, and not by waiting for con-
text, is not counted. One system in low latency did
not pass the latency constraints (see Findings, page
44, numbered 141), but it is manually evaluated
regardless.

Computationally unaware latency was one of the
main criteria in IWSLT 2022. It means that the
participants did not need to focus on a low latency
implementation, as it is more of a technical and
hardware issue than a research task. However, the
subtitle timing in manual evaluation was created
in a way such that waiting for the first target token
was dropped, and then it continued with computa-
tionally aware latency.

3.1 Continuous Rating (CR)

Continuous Rating (CR, Javorský et al., 2022;
Macháček and Bojar, 2020) is a method for human
assessment of SST quality in a simulated online
event. An evaluator with knowledge of the source
and target languages watches a video (or listens to
an audio) document with subtitles created by the
SST system which is being evaluated. The evalua-
tor is asked to continuously rate the quality of the
translation by pressing buttons with values 1 (the
worst) to 4 (the best). Each evaluator can see every
document only once, to ensure one-pass access to
the documents, as in a realistic setup.

CR is analogous to Direct Assessment (Graham
et al., 2015), which is a method of human text-to-
text MT evaluation in which a bilingual evaluator
expresses the MT quality by a number on a scale.
It is natural that individual evaluators have differ-
ent opinions, and thus it is a common practice to
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have multiple evaluators evaluate the same outputs
and then report the mean and standard deviation of
evaluation scores, or the results of statistical sig-
nificance tests that compare the pairs of candidate
systems and show how confident the results are.

Javorský et al. (2022) showed that CR relates
well to comprehension of foreign language doc-
uments by SST users. Using CR alleviates the
need to evaluate comprehension by factual ques-
tionnaires that are difficult to prepare, collect and
evaluate. Furthermore, Javorský et al. (2022) show
that bilingual evaluators are reliable.

Criteria of CR In IWSLT 2022, the evaluators
were instructed that the primary criterion in CR
should be meaning preservation (or adequacy), and
other aspects such as fluency should be secondary.
The instructions do not mention readability due to
output segmentation frequency or verbalizing non-
linguistic sounds such as “laughter”, despite the
system candidates differ in these aspects.

3.2 Candidate Systems
Automatic SST systems There are 5 evaluated
SST systems: FBK (Gaido et al., 2022), NAIST
(Fukuda et al., 2022), UPV (Iranzo-Sánchez et al.,
2022), HW-TSC (Wang et al., 2022), and CUNI-
KIT (Polák et al., 2022).

Human Interpreting In order to compare the
state-of-the-art SST with human reference, the or-
ganizers hired one expert human interpreter to si-
multaneously interpret all the test documents. Then,
they employed annotators to transcribe the voice
into texts. The annotators worked in offline mode.
The transcripts were then formed as subtitles in-
cluding the original interpreter’s timing and were
used in CR evaluation the same way as SST. How-
ever, human interpreters use their own segmenta-
tion to translation units so that they often do not
translate one source sentence as one target sentence.
There is no gold alignment of the translation sen-
tences to interpreting chunks. The alignment has to
be resolved before applying metrics to interpreting.

3.3 Evaluation Data
There are two subsets of evaluation data used in
IWSLT22 En-De Simultaneous Translation task.
The “Common” subset consists of TED talks of
the native speakers.See the description in Findings
on page 9 (numbered as 106). The “Non-Native”
subset consists of mock business presentations of
European high school students (Macháček et al.,

2019), and of presentations by representatives of
European supreme audit institutions. This subset is
described in Findings on page 39 (numbered page
136). The duration statistics of audio documents in
both test sets are in Findings in Table 17 on page
48 (numbered 145).

4 Correlation of CR and MT Metrics

In this section, we study the correlation of CR
and MT metrics BLEU, chrF2, BERTSCORE and
COMET. We measure it on the level of documents,
and not on the test set level, increasing the number
of observations for significance tests. There are 60
evaluated documents (17 in the Common subset
and 43 in Non-Native) and 15 system candidates (5
systems, each in 3 latency regimes), which yields
900 data points.

We discovered that CUNI-KIT system outputs
are tokenized, while the others are detokenized.
Therefore, we first detokenized CUNI-KIT outputs.
Then, we removed the final end of sequence token
(</s>) from the outputs of all systems. Finally,
we calculated BLEU and chrF2 using sacreBLEU
(Post, 2018), BERTSCORE and COMET. See Ap-
pendix B for metric details and signatures.

In total, there are 1584 rating sessions of 900
candidate document translations. Each candidate
document translation is rated either twice with dif-
ferent evaluators, once, or not at all. We aggregate
the individual rating clicks in each rating session
by plain average (CR definition in Appendix C) to
get the CR scores. Then, we average the CR of the
same documents and candidate translations, and
we correlate it with MT metrics.

1.5 1.0 0.5 0.0 0.5
COMET

1.0

1.5

2.0

2.5

3.0

3.5

4.0

CR

system
FBK
HW-TSC
NAIST
UPV
CUNI-KIT
subset
Non-Native
Common

Figure 1: Averaged document CR vs COMET on both
Common and Non-Native subsets.
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Averaged document ratings
subsets num. BLEU chrF2 BERTS. COMET
both 823 0.65 0.73 0.77 0.80
Common 228 0.42 0.63 0.68 0.76
Non-Native 595 0.70 0.70 0.73 0.75

All document ratings
subsets num. BLEU chrF2 BERTS. COMET
both 1584 0.61 0.68 0.71 0.73
Common 441 0.37 0.57 0.60 0.68
Non-Native 1143 0.64 0.64 0.66 0.67

Table 1: Pearson correlation coefficients for CR vs MT
metrics BLEU, chrF2, BERTSCORE and COMET for
averaged document ratings by all 5 SST systems and 3
latency regimes (upper), and all ratings (lower). When
the coefficient is less than 0.6 (in italics), the correlation
is not considered as strong. Significance values are
p < 0.01 in all cases, meaning strong confidence.

Correlation Results In Table 1, we report cor-
relation coefficients with and without averaging,
together with the number of observations. Figure 1
displays the relation between CR and COMET.

Pearson correlation is considered as strong if the
coefficient is larger than 0.6 (Evans, 1996). The
results show strong correlation (above 0.65) of CR
with BLEU, chrF2, BERTSCORE and COMET at
the document level on both test subsets. When
we consider only one subset, the correlation is
lower, but still strong for chrF2, BERTSCORE and
COMET (0.63, 0.68 and 0.76, resp.). It is be-
cause the Common subset is generally translated
better than Non-Native, so with only one subset, the
points span a smaller part of the axes and contain a
larger proportion of outliers.

The strong correlation is not the case of BLEU
on the Common subset where the Pearson coeffi-
cient is 0.42. We assume it is because BLEU is
designed for use on a larger test set, but we use it
on short single documents. However, BLEU corre-
lates with chrF2 and COMET (0.81 and 0.62 on the
Common subset). BLEU also correlates with CR
on the level of test sets, as reported in Findings in
the caption of Table 18 (page 48, numbered 145).

We conclude that with the current overall lev-
els of speech translation quality, BLEU, chrF2,
BERTSCORE and COMET can be used for reliable
assessment of human judgement of SST quality at
least on the level of test sets. chrF2, BERTSCORE

and COMET are reliable also at the document level.

Translation vs Interpreting Reference There is
an open question whether SST should rather mimic
offline translation, or simultaneous interpreting. As

metric reference alignment corr.
COMET TRANSL SENT 0.80
COMET TRANSL SINGLESEQ 0.79
COMET TRANSL+INTP SINGLESEQ 0.79
BERTSCORE TRANSL SENT 0.77
BERTSCORE TRANSL+INTP SENT+MWER 0.77
COMET INTP SINGLESEQ 0.77
BERTSCORE TRANSL+INTP SINGLESEQ 0.76
BERTSCORE TRANSL SINGLESEQ 0.75
chrF2 TRANSL+INTP SENT+MWER 0.73
BLEU TRANSL+INTP SINGLESEQ 0.73
chrF2 TRANSL SENT 0.73
chrF2 TRANSL+INTP SINGLESEQ 0.72
chrF2 TRANSL SINGLESEQ 0.72
BLEU TRANSL SINGLESEQ 0.71
COMET INTP MWER 0.71
BERTSCORE INTP SINGLESEQ 0.69
BLEU TRANSL+INTP SENT+MWER 0.68
chrF2 INTP SINGLESEQ 0.66
BLEU TRANSL SENT 0.65
chrF2 INTP MWER 0.65
BLEU INTP SINGLESEQ 0.65
BERTSCORE INTP MWER 0.60
BLEU INTP MWER 0.58

Table 2: Pearson correlation of metric variants to av-
eraged CR on both subsets, ordered from the most to
the least correlating ones. Lines indicate “clusters of
significance”, i.e. boundaries between groups where all
metric variants significantly differ from all in the other
groups, with p < 0.05 for dashed line and p < 0.1 for
dotted line. See the complete pair-wise comparison in
Appendix D.

Macháček et al. (2021) discovered, translation may
be more faithful, word-for-word, but also more
complex to perceive by target audience. Simulta-
neous interpreting, on the other hand, tends to be
brief and simpler than offline translation. However,
it may be less fluent and less accurate. Therefore,
we consider human translation (TRANSL) and tran-
script of simultaneous interpreting (INTP) as two
possible references, and also test multi-reference
metrics with both.

Since interpreting is not sentence-aligned to SST
candidate translations, we consider two alignment
methods: single sequence (SINGLESEQ), and mW-
ERSegmenter (Matusov et al., 2005, MWER). SIN-
GLESEQ method means that we concatenate all the
sentences in the document to one single sequence,
and then apply the metric on it, as if it was one
sentence. mWERSegmenter is a tool for aligning
translation candidates to reference, if their sentence
segmentation differs. It finds the alignment with the
minimum WER when comparing tokens in aligned
segments. For translation, we also apply the default
sentence alignment (SENT).

In Table 2, we report the correlations of metric,
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reference and alignment variants and their signifi-
cance, with more details in Appendix D.

4.1 Recommendations
Taking CR as the golden truth of human quality,
we make the following recommendations of the
most correlating metric, reference and sentence
alignment method for SST evaluation.

Which metric? COMET, because it correlates
significantly better with CR than BERTSCORE does.
From the fall back options, chrF2 should be slightly
preferred over BLEU.

Which reference? The metrics give significantly
higher correlations with CR with translations than
with interpreting as a reference. Difference be-
tween translation reference and two references
(TRANSL+INTP) is insignificant. Therefore, we
recommend translation as a reference for SST.

Which alignment method? With an unaligned
reference, COMET and BERTSCORE correlate
significantly more with SINGLESEQ than with
MWER, probably because the neural metrics are
trained on full, complete sentences, which are of-
ten split to multiple segments by mWERSegmenter.
chrF2 correlates insignificantly better with MWER
than with SINGLESEQ.

5 Conclusion

We found correlation of offline MT metrics to hu-
man judgements of simultaneous speech transla-
tion. The most correlating and thus preferred met-
ric is COMET, followed by BERTSCORE and chrF2.
We recommend text translation reference over inter-
preting, and single sequence alignment for neural,
and mWERSegmenter for n-gram metrics.

6 Limitations

The data that we analyzed are limited to only one
English-German language pair, 5 SST systems
from IWSLT 2022, and three domains. All the
systems were trained in the standard supervised
fashion on parallel texts. They do not aim to mimic
interpretation with shortening, summarization or
redundancy reduction, and they do not use docu-
ment context. The used MT metrics are good for
evaluating individual sentence translations and that
is an important, but not the only subtask of SST.
We assume that some future systems created with
a different approach may show divergence of CR
and the offline MT metrics.

Furthermore, we used only one example of hu-
man interpreting. A precise in-depth study of hu-
man interpretations is needed to re-assess the rec-
ommendation of translation or interpreting as refer-
ence in SST.
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A Highlights of IWSLT22 Findings

The Findings of IWSLT22 (Anastasopoulos et al.,
2022) are available in PDF. The most up-to-date
version (version 2) is 61 pages long.2 We highlight
the relevant parts of Findings with page numbers
in Table 3 so that we can refer to them easily.

Note that findings are a part of the conference
proceedings (Salesky et al., 2022) as a chapter in a
book. The order of findings pages in PDF does not
match the page numbers at the footers.

Also note that in Section 2.4 on page 4 (in
PDF, 101 in Proceedings), there is a description
of MLLP-VRAIN which corresponds to the sys-
tem denoted as UPV in all other tables and figures.

B Metric Signatures

BLEU and chrF2 SacreBLEU metric signature is
case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1.

For BERTSCORE, we used F1 with signa-
ture bert-base-multilingual-cased_L9_no-idf_ver-
sion=0.3.12(hug_trans=4.23.1)_fast-tokenizer.

We use COMET model wmt20-comet-da (Rei
et al., 2020). For multi-reference COMET, we
run the model separately with each reference and
average the scores.

The standard way of using mWERSegmenter is
to segment candidate translation according to refer-
ence. However, COMET requires aligned source
as one of the inputs, and mWERSegmenter can not
align it because it is in other language. For COMET
INTP MWER variant, we therefore aligned inter-
preting to translation, which is already aligned to
source. For the other metrics with INTP MWER,
we aligned translation candidate to interpreting,
which is the standard way.

C Aggregating Continuous Ratings

We revisited the processing of the individual col-
lected clicks on the rating buttons into the aggregate
score of Continuous Rating.

2https://aclanthology.org/2022.iwslt-1.10v2.
pdf

We found two definitions that can yield differ-
ent results in certain situations: (1) The rating (as
clicked by the evaluator) is valid at the instant time
point when the evaluator clicked the rating button.
The final score is the average of all clicks, each
click has the equal weight. We denote this interpre-
tation as CR.

(2) The rating is assigned to the time interval
from the click time to the next click, or between
the last click and the end of the document. The
length of the interval is considered in averaging.
The final score is the average of ratings weighted
by interval lengths when the rating is valid. We
denote this interpretation as CRi. 3

To express them rigorously, let us have a docu-
ment of duration T , and n ratings (ri, ti), where
i ∈ {1, . . . , n} is an index, ri ∈ {1, . . . , 4} is the
rated value and 0 ≤ t1 < · · · < tn ≤ T are times
when the ratings were recorded.

Then, the definitions are as follows:

CR =
1

n

n∑

i=1

ri

CRi =
1

T − t1

( n−1∑

i=1

(ti+1 − ti)ri + (T − tn)rn
)

If the judges press the rating buttons regularly,
with a uniform frequency, then both definitions give
equal scores. Otherwise, the CR and CRi may
differ and may yield even opposite conclusions. For
example, pressing “1” twelve times in one minute,
then “4” and then waiting for one minute results in
different scores: CR = 1.2, CRi = 2.

To examine the relationship between these defini-
tions, we countedCR andCRi for each annotation
of each document in the evaluation campaign. The
results are in Figure 2 where we observe corre-
lation between the two definitions. The Pearson
correlation coefficient is 0.98, which indicates a
very strong correlation.

Summary Based on the correlation score we ob-
served, we conclude that both definitions are inter-
changeable, and any of them can be used in further
analysis.

3Other interpretations are also conceivable, for instance
assuming that the rating applies to a certain time before the
click and then till the next judgement.
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marker PDF page numbered page description
Section 2 3-5 100-102 Simultaneous Speech Translation Task
Figure 1 6 103 Quality-latency trade-off curves
Section 2.6.1 5 102 Description of human evaluation
Figure 5 8 105 Manual scores vs BLEU (plot)
Two Test Sets (paragraph) 39 136 Non-Native subset
Test data (paragraph) 9 106 Common (native) subset of test data
Automatic Evaluation Results 44 141 Latency and BLEU results (table)
A1.1 (appendix) 38-39 135-136 Details on human evaluation
Table 17 48 145 Test subsets duration
Table 18 48 145 Manual scores and BLEU (table)

Table 3: Relevant parts of IWSLT22 Findings (https://aclanthology.org/2022.iwslt-1.10v2.pdf) for En-
De Simultaneous Speech Translation task and human evaluation.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
CR

1.0

1.5

2.0

2.5

3.0

3.5

4.0

CR
i

Figure 2: Relation between weighted interval averaging
of continuous rating (CRi, y-axis) and average of all rat-
ings (CR, x-axis) for each annotation of each document
(blue data points).

D Pairwise Metrics Comparison

We test the statistical difference of correlations with
Steiger’s method.4 The method takes into account
the number of data points and the fact that all three
compared variables correlate, which is the case of
the MT metrics that are applied on the same texts.
We use two-tailed test.

We applied the test on all pairs of metric vari-
ants. The results for both subsets are in Figure 3.
Figure 4 displays results on the Common subset,
and Figure 5 for the Non-Native subset. These re-
sults are analogous to those in Table 1 in Section 4.
The correlation scores for the two subsets treated

4https://github.com/psinger/CorrelationStats/

separately are lower and the differences along the
diagonal are less significant. We explain it by the
fact that in smaller data set, there is larger impact
of noise.
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Figure 3: Results of significance test (p-values rounded to two decimal digits) for difference of correlations of the
metrics variants to CR. The metrics variants are ordered by Pearson correlation to CR on both subsets from most
correlating (top left) to least (bottom right). The bold numbers on the diagonal are the correlation coefficients to CR.
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Figure 4: Results of significance test (p-values rounded to two decimal digits) for difference of correlations of the
metrics variants to CR. The metrics variants are ordered by Pearson correlation to CR on the Common subset from
most correlating (top left) to least (bottom right). The bold numbers on the diagonal are the correlation coefficients
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Figure 5: Results of significance test (p-values rounded to two decimal digits) for difference of correlations of the
metrics variants to CR. The metrics variants are ordered by Pearson correlation to CR on the Non-Native subset from
most correlating (top left) to least (bottom right). The bold numbers on the diagonal are the correlation coefficients
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Abstract

This paper presents Huawei Translation Ser-
vice Center (HW-TSC)’s submission on the
IWSLT 2023 formality control task, which pro-
vides two training scenarios: supervised and
zero-shot, each containing two language pairs,
and sets constrained and unconstrained condi-
tions. We train the formality control models
for these four language pairs under these two
conditions respectively, and submit the corre-
sponding translation results. Our efforts are di-
vided into two fronts: enhancing general trans-
lation quality and improving formality control
capability. According to the different require-
ments of the formality control task, we use a
multi-stage pre-training method to train a bilin-
gual or multilingual neural machine translation
(NMT) model as the basic model, which can im-
prove the general translation quality of the base
model to a relatively high level. Then, under
the premise of affecting the general translation
quality of the basic model as little as possi-
ble, we adopt domain adaptation and reranking-
based transductive learning methods to improve
the formality control capability of the model.

1 Introduction

Machine translation (MT) (Lopez, 2008; Vaswani
et al., 2017) models typically return one single
translation for each input sentence. This means
that when the input sentence is ambiguous, the MT
model must choose a translation from among var-
ious valid options, without regard to the intended
use case or target audience. Therefore, there is a
need to control certain attributes (Schioppa et al.,
2021) of the text generated in a target language
such as politeness (Sennrich et al., 2016a; Feely
et al., 2019) or formality (Niu et al., 2017, 2018;
Viswanathan et al., 2020).

The lack of gold translation with alternate for-
mality for supervised training and evaluation has
lead researchers to rely on synthetic supervision
training and manual evaluation in past work (Niu

and Carpuat, 2020). Fortunately, the IWSLT for-
mality control task now provides a new benchmark1

(Nădejde et al., 2022; Agarwal et al., 2023) by
contributing high-quality training datasets and test
datasets for multiple language pairs.

This paper presents HW-TSC’s submission on
the IWSLT 2023 formality control task. How for-
mality distinctions are expressed grammatically
and lexically can vary widely by language. Thus,
we participate in the formality control task of all
these four language pairs to investigate a general
formality control method that can be applied to
different language pair. In addition, we also inves-
tigate the difference in formality control between
constrained and unconstrained conditions by intro-
ducing the mBART model (Liu et al., 2020) under
unconstrained condition.

2 Data

2.1 Pre-training Data
We use the CCMatrix2 and OpenSubtitles3 bilin-
gual data given by the organizers to train a NMT
model from scratch or fine-tune the mBART model
as the general basic model. The bilingual data size
of each language pair is shown in Table 1:

Language pair CCMatrix OpenSubtitles
EN-KO 19.4M 1.4M
EN-VI 50.1M 3.5M
EN-PT 173.7M 33.2M
EN-RU 139.9M 25.9M

Table 1: The bilingual data size of each language pair.

In order to achieve a better training effect, we
also use some data pre-processing methods to clean
bilingual data, such as: remove duplicate data, use

1https://github.com/amazon-science/
contrastive-controlled-mt

2https://opus.nlpl.eu/CCMatrix.php
3https://opus.nlpl.eu/

OpenSubtitles-v2018.php
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Moses4 to normalize punctuation, filter extremely
long sentences, use langid5 (Lui and Baldwin, 2011,
2012) to filter sentences that do not meet the lan-
guage requirements, use fast-align6 (Dyer et al.,
2013) to filter unaligned sentence pairs.

2.2 Formality-annotated Data
The formality-annotated data is provided by the
organizers, and the data size of each language pair
is shown in Table 2:

Setting Language pair Train Test
Supervised EN-KO 400 597
Supervised EN-VI 400 598
Zero-shot EN-PT 0 599
Zero-shot EN-RU 0 600

Table 2: The formality-annotated data size of each lan-
guage pair.

For supervised language pairs, we split the
formality-annotated train data into a train set and
a dev set with a ratio of 3:1, and use the formality-
annotated train set and a small amount of bilingual
data for formality control training, while for zero-
shot language pairs, we use formality-annotated
train set from the other two supervised language
pairs for formality control training.

3 Model

3.1 Constrained Model
Transformer (Vaswani et al., 2017) is the state-of-
the-art model in recent machine translation evalua-
tions. There are two parts of research to improve
this kind: the first part uses wide networks (eg:
Transformer-Big (Vaswani et al., 2017)), and the
other part uses deeper language representations (eg:
Deep Transformer (Wang et al., 2019; Wu et al.,
2022; Wei et al., 2022)). Under the constrained
conditions, we combine these two improvements,
adopt the Deep Transformer-Big model structure,
and train a one-to-many multilingual NMT model
(Johnson et al., 2017; Zhang et al., 2020) from
scratch using bilingual data of four language pairs
provided by the organizers. The main structure
of Deep Transformer-Big is that it features pre-
layer-normalization and 25-layer encoder, 6-layer

4https://github.com/moses-smt/
mosesdecoder

5https://github.com/saffsd/langid.py
6https://github.com/clab/fast_align

decoder, 16-head self-attention, 1024-dimensional
embedding and 4096-dimensional FFN embedding.

3.2 Unconstrained Model
Recently, multilingual denoising pre-training
method (Liu et al., 2020; Tang et al., 2021) pro-
duces significant performance gains across a wide
variety of machine translation tasks. As the ear-
liest sequence-to-sequence model using multilin-
gual denoising pre-training method, mBART (Liu
et al., 2020) has also achieved good results in var-
ious machine translation-related tasks. Under un-
constrained conditions, we use the mBART50 1n
model7 as the initial model of the unconstrained
formality control task. The mBART50 1n model
adopts Transformer structure, which features 12-
layer encoder, 12-layer decoder, 16-head self-
attention, 1024-dimensional embedding and 4096-
dimensional FFN embedding, and an additional
layer-normalization layer (Xu et al., 2019) on top
of both the encoder and decoder.

4 Method

In our implementation, we first use a multi-stage
pre-training method to train a general NMT model
with relatively high translation quality. Then,
we use domain adaptation method to fine-tune
the NMT model so that the model can have ba-
sic formality control capability. Finally, we use
the reranking-based transductive learning (RTL)
method to further improve the formality control
capability of the model.

4.1 Multi-stage Pre-training
There are four different types of formality control
tasks, which are constrained supervised task, con-
strained zero-shot task, unconstrained supervised
task, and unconstrained zero-shot task. For these
four different tasks, we formulate different pre-
training strategies and collectively refer to these
strategies as multi-stage pre-training method.

Under the constrained condition, we adopt the
Deep Transformer-Big model structure and use
bilingual data of all four language pairs to train
a one-to-many multilingual NMT model from
scratch, which is used as the basic model for con-
strained zero-shot task. For constrained supervised
task, we use the bilingual data of this task to further

7https://dl.fbaipublicfiles.com/
fairseq/models/mbart50/mbart50.ft.1n.
tar.gz
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pre-train the multilingual NMT model to obtain a
bilingual NMT model as the basic model.

While under the unconstrained condition, we fur-
ther pre-train the mBART50 1n model using bilin-
gual data from all these four language pairs as the
basic model for unconstrained zero-shot task. For
unconstrained supervised task, we use the bilingual
data of this task to further pre-train the pre-trained
model, and use the final pre-trained bilingual model
as the basic model.

4.2 Domain Adaptation for Formality Control
With the pre-trained basic model, we use domain
adaptation method (Chu et al., 2017) to achieve ba-
sic formality control. First, we treat formal formal-
ity and informal formality as two special domains,
and control the formality of the model’s translation
results using a tagging method (Chu et al., 2017;
Nădejde et al., 2022), which attaches a formality-
indicating tag to the source input. Then, in order to
affect the general translation quality as little as pos-
sible, we use a mix fine-tuning method (Chu et al.,
2017; Nădejde et al., 2022). Our specific implemen-
tation is to upsample the formality-annotated train
set by 5 times, and mix it with the same amount
of randomly sampled general bilingual data to fine-
tune the pre-trained basic model.

As mentioned in Section 2.2, for the zero-shot
task, due to the lack of formality-annotated data,
we have to use the formality-annotated data of the
two other supervised language pair, which is why
we set the basic model of zero-shot task to a mul-
tilingual NMT model. After using domain adap-
tation method, the cross-lingual transfer learning
capability of multilingual model can help zero-shot
language pair achieve basic formality control.

4.3 Reranking-based Transductive Learning
After using domain adaptation method, we can en-
able the model to have the basic formality control
capability. Inspired by the idea of transductive
learning (Shi et al., 2018; Lee et al., 2021), we pro-
pose a RTL method, which can further improve the
formality control capability of NMT model. Our
method is mainly divided into two steps:

In the first step, we adopt beam search based de-
coding method (Sennrich et al., 2016b) for the for-
mality control model, and then select the final trans-
lation result that meets the specified formality re-
quirements from the top100 decoding results based
on reranking idea (Dou et al., 2019). For supervised
task, we use a reference-free formality classifier

and the formality phrases from formality-annotated
training data for reranking. The implementation de-
tails are shown in Algorithm 1. For zero-shot task,
due to the lack of formality-annotated training data,
we just use a reference-free formality classifier for
reranking. Among them, the formality classifier
under the constrained condition comes from self-
training (Axelrod et al., 2011), while the formality
classifier under the unconstrained condition comes
from the organizer8 (Briakou et al., 2021).

Algorithm 1: Reranking by reference-free
formality classifier and formality phrases

Input: source sentence x, reference-free
formality classifier C, formality
control model M , formal and
informal formality phrases
WF = {wF

j }
|WF |
j=1 , WI = {wI

j }
|WI |
j=1

Output: the formality translation yF and yI
1 translate x by M , the top 100 formality

translations are respectively defined as:
DF = {yFi }100i=1, DI = {yIi }100i=1

2 yF = yF0
3 for yFi in DF do
4 Fflag = False
5 for wF

j in WF do
6 if wF

j in yFi then
7 Fflag = True
8 break
9 end

10 end
11 calculate the formality by C: C(yFi )
12 if Fflag and C(yFi )=="formal" then
13 yF = yFi
14 break
15 end
16 end
17 pick yI from DI in a similar way to yF
18 return yF , yI

In the second step, we add the source text of test
set and the reranked formality translation results
to the training data used for domain adaptation,
and then use the adjusted training data to further
fine-tune the formality control model.

We can also repeat the previous two steps until
the formality control capability of the model on test
set is no longer improved. We refer to this iterative

8https://github.com/amazon-science/
contrastive-controlled-mt/releases/tag/
classifier-v1.0.0
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EN-VI
To Formal To Informal Flores

M-Acc C-F BLEU COMET M-Acc C-F BLEU COMET BLEU COMET
AWS-baseline 99.40% 99.16% 43.2 0.6189 98.10% 98.49% 41.5 0.6021 - -
Multilingual pre-training 10.86% 1.67% 25.6 0.2023 89.14% 98.33% 30.0 0.2873 42.3 0.6653
+ Bilingual pre-training 8.80% 3.01% 24.8 0.1782 91.20% 96.99% 28.9 0.2630 42.4 0.6706
+ Domain adaptation 98.17% 97.83% 49.1 0.7248 99.37% 99.83% 48.0 0.6952 41.3 0.6576
+ RTL 99.59% 100.00% 49.5 0.7296 99.38% 100.00% 48.1 0.7034 41.7 0.6614
+ Iterative RTL 100.00% 99.83% 51.3 0.7522 100.00% 100.00% 49.8 0.7209 41.8 0.6730
UMD-baseline 96.00% 99.67% 26.7 0.3629 96.00% 98.16% 25.3 0.3452 - -
mBART50 1n 3.82% 1.51% 26.7 0.3516 96.18% 98.49% 31.0 0.4426 34.7 0.6040
+ Multilingual pre-training 9.44% 1.84% 25.4 0.2089 90.56% 98.16% 29.9 0.2975 42.2 0.6673
+ Bilingual pre-training 12.20% 2.51% 25.2 0.1579 87.80% 97.49% 29.4 0.2445 42.4 0.6698
+ Domain adaptation 99.02% 99.50% 47.8 0.7181 99.36% 100.00% 47.4 0.6930 43.2 0.6916
+ RTL 99.22% 100.00% 47.7 0.7190 99.16% 100.00% 47.8 0.7053 43.4 0.7033
+ Iterative RTL 100.00% 100.00% 48.2 0.7214 100.00% 100.00% 48.3 0.7102 43.4 0.6983

Table 3: The overall translation quality and formality control accuracy of EN-VI models.

EN-KO
To Formal To Informal Flores

M-Acc C-F BLEU COMET M-Acc C-F BLEU COMET BLEU COMET
AWS-baseline 28.50% 54.61% 11.1 0.5044 80.40% 57.62% 11.1 0.5125 - -
Multilingual pre-training 100.00% 69.85% 5.0 0.2408 0.00% 30.15% 4.5 0.2288 12.9 0.6497
+ Bilingual pre-training 100.00% 65.33% 5.5 0.2189 0.00% 34.67% 4.7 0.2105 13.8 0.6610
+ Domain adaptation 100.00% 97.49% 24.5 0.7234 100.00% 96.31% 25.1 0.7194 12.6 0.6528
+ RTL 100.00% 97.65% 25.8 0.7337 100.00% 98.51% 26.5 0.7337 13.0 0.6828
+ Iterative RTL 100.00% 99.83% 25.0 0.7434 100.00% 99.66% 27.0 0.7495 13.2 0.6729
UMD-baseline 78.30% 98.60% 4.9 0.2110 97.60% 99.50% 4.9 0.1697 - -
mBART50 1n 100.00% 98.49% 4.1 0.4468 0.00% 1.51% 3.2 0.3670 9.5 0.5854
+ Multilingual pre-training 100.00% 65.66% 5.0 0.2501 0.00% 34.34% 4.3 0.2338 13.3 0.6605
+ Bilingual pre-training 100.00% 64.66% 5.2 0.2240 0.00% 35.34% 4.6 0.2114 14.2 0.6734
+ Domain adaptation 100.00% 99.33% 24.9 0.7297 100.00% 99.66% 25.5 0.7379 12.8 0.6666
+ RTL 100.00% 99.66% 25.5 0.7393 100.00% 100.00% 26.2 0.7340 13.8 0.6845
+ Iterative RTL 100.00% 100.00% 24.2 0.7254 100.00% 100.00% 26.7 0.7311 14.0 0.6882

Table 4: The overall translation quality and formality control accuracy of EN-KO models.

process as iterative RTL method.

5 Experiments

5.1 Training Details
We use the Pytorch-based Fairseq framework9 (Ott
et al., 2019) to pre-train or fine-tune NMT model,
and use Adam optimizer (Kingma and Ba, 2014)
with parameters β1=0.9 and β2=0.98. During the
multi-stage pre-training phase, each model uses 8
GPUs for training, warmup steps is 4000, batch size
is 4096, learning rate is 5× 10−4, label smoothing
rate (Szegedy et al., 2016) is 0.1, and dropout is
0.1. In the domain adaptation and RTL phases, each
model only uses 1 GPU for training without warm-
up, batch size is 1024, learning rate is 3 × 10−5,
label smoothing rate is 0.1, and dropout is 0.3.

5.2 Evaluation Metrics
We evaluate the translation results of formality con-
trol model from the following two dimensions:

• We use SacreBLEU v2.0.0 10 (Papineni et al.,
9https://github.com/facebookresearch/

fairseq
10https://github.com/mjpost/sacrebleu

2002; Post, 2018) and COMET (eamt22-
cometinho-da)11 (Rei et al., 2022) to evaluate
the overall translation quality of formality con-
trol model on the official formality test sets
and FLORES-200 devtest sets12 (Goyal et al.,
2022).

• We also use the reference-based corpus-level
automatic metric Matched-Accuracy (M-Acc)
and the reference-free automatic metric (C-
F) that uses a multilingual formality classifier
provided by the organizer to evaluate the for-
mality control accuracy of the model on the
official formality test sets, respectively.

5.3 Evaluation Results
Based on the above evaluation metrics, we eval-
uate the formality control models trained at dif-
ferent phases for each language pair under con-
strained and unconstrained conditions, and com-
pare with constrained baseline (AWS-baseline)
(Nădejde et al., 2022) and unconstrained baseline

11https://github.com/Unbabel/COMET
12https://github.com/facebookresearch/

flores/tree/main/flores200
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EN-RU
To Formal To Informal Flores

M-Acc C-F BLEU COMET M-Acc C-F BLEU COMET BLEU COMET
Multilingual pre-training 99.27% 67.83% 29.7 0.4265 0.73% 32.17% 23.7 0.3869 32.2 0.7790
+ Domain adaptation 99.71% 90.67% 33.8 0.5977 85.49% 70.67% 31.2 0.5333 27.8 0.7040
+ RTL 99.74% 100.00% 34.5 0.6155 97.14% 100.00% 33.4 0.6019 29.4 0.7261
+ Iterative RTL 100.00% 100.00% 36.5 0.6472 100.00% 100.00% 35.6 0.6442 29.0 0.7153
UMD-baseline 96.20% 92.00% 22.0 0.3492 84.10% 85.17% 21.6 0.3475 - -
mBART50 1n 100.00% 91.67% 25.6 0.2916 0.00% 8.33% 19.3 0.2351 25.0 0.5950
+ Multilingual pre-training 98.15% 67.00% 28.9 0.4263 1.85% 33.00% 23.1 0.3904 32.1 0.7638
+ Domain adaptation 99.49% 98.17% 31.8 0.5336 99.73% 99.83% 30.8 0.5214 30.7 0.7386
+ RTL 98.76% 100.00% 32.3 0.5575 99.73% 99.83% 31.6 0.5363 30.9 0.7417
+ Iterative RTL 100.00% 100.00% 33.7 0.5804 100.00% 99.83% 32.4 0.5558 31.0 0.7521

Table 5: The overall translation quality and formality control accuracy of EN-RU models.

EN-PT
To Formal To Informal Flores

M-Acc C-F BLEU COMET M-Acc C-F BLEU COMET BLEU COMET
Multilingual pre-training 84.23% 77.46% 34.5 0.4750 15.77% 22.54% 31.4 0.4488 51.3 0.9047
+ Domain adaptation 100.00% 99.67% 43.0 0.6689 96.68% 96.49% 43.7 0.6689 45.0 0.7995
+ RTL 99.47% 100.00% 43.1 0.6769 92.76% 100.00% 44.1 0.6949 45.3 0.7994
+ Iterative RTL 100.00% 100.00% 47.4 0.7337 100.00% 100.00% 47.9 0.7442 44.9 0.7926
UMD-baseline 96.30% 97.66% 27.3 0.4477 93.20% 90.82% 30.9 0.4161 - -
mBART50 1n 86.81% 91.32% 32.2 0.5011 13.19% 8.68% 31.5 0.4955 33.8 0.6767
+ Multilingual pre-training 82.19% 77.96% 34.1 0.4872 17.81% 22.04% 31.4 0.4598 49.8 0.8753
+ Domain adaptation 100.00% 99.83% 39.9 0.7070 98.29% 90.32% 45.1 0.7170 46.7 0.8302
+ RTL 100.00% 100.00% 39.9 0.7165 94.97% 99.33% 45.0 0.7341 48.0 0.8457
+ Iterative RTL 100.00% 100.00% 45.4 0.7737 100.00% 99.66% 49.1 0.7845 48.1 0.8457

Table 6: The overall translation quality and formality control accuracy of EN-PT models.

(UMD-baseline) (Lin et al., 2022) provided by the
organizers.

5.3.1 EN-VI & EN-KO
The formality control task for EN-VI and EN-KO
language pairs is supervised, and we adopt the
same training methods on these two language pairs.
Table 3 and Table 4 are the evaluation results of
the models trained at different phases for these two
language pairs. From the experimental results, the
multi-stage pre-training method can improve the
translation quality of the model on the FLORES-
200 devtest sets, while domain adaptation and RTL
methods are effective in improving formality con-
trol capability of the model. Besides, domain adap-
tation and RTL methods have relatively little im-
pact on the general translation quality of the model
on the FLORES-200 devtest sets. Finally, we sub-
mit the Iterative RTL model as primary system.

5.3.2 EN-RU & EN-PT
The formality control tasks for the EN-RU and EN-
PT language pairs are zero-shot, and we only use
one-stage pre-training on these two tasks. Table 5
and Table 6 are the evaluation results of the models
trained in different phases for these two language
pairs. The experimental results show that domain
adaptation and RTL methods are still effective in
improving the zero-shot formality control capabil-

ity of multilingual model. Finally, we still submit
the Iterative RTL model as primary system.

6 Conclusions

This paper presents HW-TSC’s submission on the
IWSLT 2023 formality control task, in which we
participate in both constrained and unconstrained
tasks for all four language pairs. For the formal-
ity control task, we use a multi-stage pre-training
method to improve the general translation quality
of the basic model. We also adopt domain adap-
tation and RTL methods to improve the model’s
formality control capability. Experimental results
show that these methods we have adopted are ex-
tremely effective, but how to improve general trans-
lation quality more effectively and achieve formal-
ity control with less training resources is still wor-
thy of further research.
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Maria Nădejde, Anna Currey, Benjamin Hsu, Xing
Niu, Marcello Federico, and Georgiana Dinu. 2022.
CoCoA-MT: A dataset and benchmark for Con-
trastive Controlled MT with application to formality.
In Findings of the Association for Computational Lin-
guistics: NAACL 2022, Seattle, USA. Association for
Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Ricardo Rei, Ana C Farinha, José G.C. de Souza, Pe-
dro G. Ramos, André F.T. Martins, Luisa Coheur, and
Alon Lavie. 2022. Searching for COMETINHO: The
little metric that could. In Proceedings of the 23rd
Annual Conference of the European Association for
Machine Translation, pages 61–70, Ghent, Belgium.
European Association for Machine Translation.

Andrea Schioppa, David Vilar, Artem Sokolov, and
Katja Filippova. 2021. Controlling machine transla-
tion for multiple attributes with additive interventions.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6676–6696, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96.

Weiwei Shi, Yihong Gong, Chris Ding, Zhiheng MaXi-
aoyu Tao, and Nanning Zheng. 2018. Transductive

semi-supervised deep learning using min-max fea-
tures. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 299–315.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2021. Multilingual translation from de-
noising pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3450–3466.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Aditi Viswanathan, Varden Wang, and Antonina
Kononova. 2020. Controlling formality and style
of machine translation output using automl. In Infor-
mation Management and Big Data: 6th International
Conference, SIMBig 2019, Lima, Peru, August 21–23,
2019, Proceedings 6, pages 306–313. Springer.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F Wong, and Lidia S Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822.

Daimeng Wei, Zhiqiang Rao, Zhanglin Wu, Shaojun Li,
Yuanchang Luo, Yuhao Xie, Xiaoyu Chen, Hengchao
Shang, Zongyao Li, Zhengzhe Yu, et al. 2022. Hw-
tsc’s submissions to the wmt 2022 general machine
translation shared task. In Proceedings of the Seventh
Conference on Machine Translation, Online. Associ-
ation for Computational Linguistics.

Zhanglin Wu, Jinlong Yang, Zhiqiang Rao, Zhengzhe
Yu, Daimeng Wei, Xiaoyu Chen, Zongyao Li,
Hengchao Shang, Shaojun Li, Ming Zhu, et al. 2022.
Hwtsc translation systems for the wmt22 biomedical
translation task. In Proceedings of the Seventh Con-
ference on Machine Translation, Online. Association
for Computational Linguistics.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao,
and Junyang Lin. 2019. Understanding and improv-
ing layer normalization. Advances in Neural Infor-
mation Processing Systems, 32.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
2020 Annual Conference of the Association for Com-
putational Linguistics, pages 1628–1639. Associa-
tion for Computational Linguistics (ACL).

186

https://aclanthology.org/C18-1086
https://aclanthology.org/C18-1086
https://aclanthology.org/C18-1086
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://aclanthology.org/2022.eamt-1.9
https://aclanthology.org/2022.eamt-1.9
https://doi.org/10.18653/v1/2021.emnlp-main.535
https://doi.org/10.18653/v1/2021.emnlp-main.535


Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023), pages 187–193
July 13-14, 2023 c©2023 Association for Computational Linguistics

HW-TSC at IWSLT2023: Break the Quality Ceiling of Offline Track via
Pre-Training and Domain Adaptation

Zongyao Li, Zhanglin Wu, Zhiqiang Rao, Xie YuHao, Guo JiaXin,
Daimeng Wei, Hengchao Shang, Wang Minghan, Xiaoyu Chen

Zhengzhe YU, Li ShaoJun, Lei LiZhi, Hao Yang
Huawei Translation Service Center, Beijing, China

{lizongyao,wuzhanglin2,raozhiqiang,xieyuhao2,guojiaxin1,
weidaimeng,shanghengchao,wangminghan,chenxiaoyu35,

yuzhengzhe,lishaojun18,leilizhi,yanghao30}@huawei.com

Abstract

This paper describes HW-TSC’s submissions
to the IWSLT 2023 Offline Speech Transla-
tion task, including speech translation of talks
from English to German, English to Chinese
and English to Japanese. We participated in all
three tracks (Constrained training, Constrained
with Large Language Models training, Uncon-
strained training), with using cascaded architec-
tures models. We use data enhancement, pre-
training models and other means to improve
the quality of ASR, and use a variety of tech-
niques including R-Drop, deep model, domain
data selection, etc. to improve the quality of
NMT. Compared with last year’s best results,
we have improved by 2.1 BLEU in the MuST-C
English-German test set.

1 Introduction

The goal of the Offline Speech Translation Task
is to examine automatic methods for translating
audio speech in one language into text in the tar-
get language. In recent years, end-to-end system
and cascade system are fundamental pipelines for
speech translation tasks. Traditional cascade sys-
tem is comprised of continuing parts, automatic
speech recognition (ASR) is responsible for gener-
ating transcripts from audios and machine transla-
tion (MT) model aims at translating ASR outputs
from source language into target language. ASR
model like Conformer (Gulati et al., 2020) and S2T-
Transformer (Synnaeve et al., 2019) are commonly
used. MT models like Transformer (Vaswani et al.,
2017) can be considered as a standard configura-
tion. The End-to-end systems use a model to di-
rectly recognize speech into target text in another
language.

The cascade system will cause some "missing
information" due to the two encoding and decoding
processes of ASR and MT. At the same time, the
disadvantage of the end-to-end system is the lack
of sufficient training data. However, with a fully

trained cascade system, the accuracy of ASR and
MT will reach a higher level. So from the results,
the BLEU of the cascaded system will be higher
than that of the end-to-end system. Currently in
the industry, the mainstream speech translation sys-
tem is still based on the cascade system. We use
the cascade system for this task, mainly to further
improve the performance of speech translation.

In this work, we carefully filter and preprocess
the data, and adopt various enhancement tech-
niques, such as pre-training model, data enhance-
ment, domain adaptation, etc., to optimize the
performance of ASR. We build machine transla-
tion systems with techniques like back translation
(Edunov et al., 2018), domain adaptation and R-
drop (Wu et al., 2021), which have been proved to
be effective practices.

The main contribution of this paper can be sum-
marized as follows:

1) According to the characteristics of three dif-
ferent tracks (constrained, constrained with large
language models (LLM), and unconstrained), we
use different strategies to optimize the results of
ASR. After careful fine-tuning, the WER of the
ASR system of the three tracks have achieved good
performance.

2) Explored the multilingual machine translation
model, and tried a variety of model enhancement
strategies, and finally achieved good results on the
MUST-C test set.

Section 2 focuses on our data processing strate-
gies while section 3 describes the training tech-
niques of ASR, including model architecture and
training strategy, etc. Section 4 describes the train-
ing techniques of MT, and section 5 presents our
experiment results.

187



Dataset Duration(h)
LibriSpeech 960

MuST-C 590
CoVoST 1802

TEDLIUM3 453
Europarl 161

VoxPopuli 1270

Table 1: Data statistics of our ASR corpora.

2 Datasets and Preprocessing

2.1 ASR Data

There are six different datasets used in the training
of our ASR models, such as MuST-C V2 (Cat-
toni et al., 2021), LibriSpeech (Panayotov et al.,
2015), TED-LIUM 3 (Hernandez et al., 2018),
CoVoST 2(Wang et al., 2020), VoxPopuli (Wang
et al., 2021), Europarl-ST (Iranzo-Sánchez et al.,
2020), as described in Table 1. We use the ex-
actly same data processing strategy to train our
ASR models following the configuration of (Wang
et al., 2022). We extend one data augmentation
method (Zhang et al., 2022): adjacent voices are
concatenated to generate longer training speeches.
Tsiamas et al. (2022) propose Supervised Hybrid
Audio Segmentation (SHAS), a method that can
effectively learn the optimal segmentation from
any manually segmented speech corpus. For test
set, we use SHAS to split long audios into shorter
segments.

2.2 MT Data

We used all provided data, including text-parallel
and speech-to-text-parallel, text-monolingual data,
and use the exactly same data processing strategy
to process our MT data following (Wei et al., 2021).
Data sizes before and after cleaning are listed in
Table 2.

3 ASR Model

3.1 Constrained training

In this track, we trained the constrained ASR model
using the Conformer (Gulati et al., 2020) and U2
(Zhang et al., 2020b) model architectures. The
first model is standard auto-regressive ASR mod-
els built upon the Transformer architecture. The
last one is a unified model that can perform both
streaming and non-streaming ASR, supported by
the dynamic chunking training strategy. The model
configurations are as follows:

1) Conformer: The encoder is composed of 2
layers of VGG and 16 layers of Conformer, and the
decoder is composed of 6 layers of Transformer.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

2) U2: Two convolution subsampling layers with
kernel size 3*3 and stride 2 are used in the front of
the encoder. We use 12 Conformer layers for the
encoder and 6 Transformer layers for the decoder.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

During the training of ASR models, we set the
batch size to the maximum of 20,000 frames per-
card. Inverse sqrt is used for lr scheduling with
warm-up steps set to 10,000 and peak lr set as 5e-4.
Adam is used as the optimizer. All ASR models
are trained on 8 A100 GPUs for 100 epochs. Pa-
rameters for last 5 epochs are averaged. Audio fea-
tures are normalized with utterance-level CMVN
for Conformer, and with global CMVN for U2.
All audio inputs are augmented with spectral aug-
mentation (Park et al., 2019), and Connectionist
Temporal Classification (CTC) is added to make
models converge better.

3.2 Constrained with Large Language Models
training

Large Language Models (LLM) is currently the
mainstream method in the field of artificial intel-
ligence. In ASR, the pre-training model has been
proved to be an effective means to improve the
quality, especially the models such as wav2vec
(Schneider et al., 2019) and Hubert (Hsu et al.,
2021) have been proposed in recent years. Li et al.
(2020) combine the encoder of wav2vec2 (Baevski
et al., 2020) and the decoder of mBART50 (Tang
et al., 2020) to fine-tune an end2end model. We
also adopt a similar strategy, but combine the en-
coder of wav2vec2 and the decoder of mBART50
to fine-tune an ASR model (w2v2-mBART). Due
to the modality mismatch between pre-training and
fine-tuning, in order to better train cross-attention,
we freeze the self-attention of the encoder and de-
coder. We first use all the constrained data for
fine-tuning, and only use the MUST-C data after
30 epochs of training.

3.3 Unconstrained training
Whisper (Radford et al., 2022) is an automatic
speech recognition (ASR) system trained on
680,000 hours of multilingual and multitask su-
pervised data collected from the web. It show that
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language pairs Raw Data Filter Data LaBSE Filter Data Domain Selection
En2De 19.8M 14.5M 5.8M 0.4M
En2Zh 8.1M 5.5M 2.2M 0.4M
En2Ja 16.4M 14.1M 5.6M 0.4M

Table 2: Bilingual data sizes before and after filtering used in tasks.

the use of such a large and diverse dataset leads to
improved robustness to accents, background noise
and technical language. The Whisper architecture
is a simple end-to-end approach, implemented as an
encoder-decoder Transformer. Even though it en-
ables transcription in multiple languages, we only
use its speech recognition feature, transcribing au-
dio files to English text. In this task, we use it as a
pre-trained model, and use the MUST-C dataset for
fine-tuning to improve its performance in specific
domains. We trained for 2 epochs with a small
learning rate of 10e-6.

4 Neural Machine Translation

4.1 Model architecture

Transformer is the state-of-the-art model in recent
machine translation evaluations. There are two
parts of research to improve this kind: the first part
uses wide networks (eg: Transformer-Big), and the
other part uses deeper language representations (eg:
Deep Transformer (Wang et al., 2017, 2019a)). Un-
der the constrained conditions, we combine these
two improvements, adopt the Deep Transformer-
Big model structure, and train a one-to-many mul-
tilingual NMT model (Johnson et al., 2017; Zhang
et al., 2020a) from scratch using bilingual data
of three language pairs (En2De, En2Zh, En2Ja)
provided by the organizers. The main structure
of Deep Transformer-Big is that it features pre-
layer-normalization and 25-layer encoder, 6-layer
decoder, 16-head self-attention, 1024-dimensional
embedding and 4096-dimensional FFN embedding.

We trained the constrained model using all the
provided data, and trained the unconstrained model
with the WMT data. But after domain adaptation,
the performance of the two is similar. Therefore, in
this task, we only use the constrained MT model.

4.2 Multi-stage Pre-training

In order to get a better model effect, we optimize
the model in several stages. First, we use the data of
all three language pairs to train a one-to-many mul-
tilingual model, and add tags (<ja>, <zh>, <de>) at
the beginning of the source sentence respectively.

Second, use LaBSE (Feng et al., 2020) to filter the
bilingual data, and use the filtered data for incre-
mental training. In Table 2, there are the number
of filtered data for each languages. Then, for the
three languages, the backward models are trained
separately, and the monolingual datas are used for
backward translation (BT). Finally, we combine
backward translation and forward translation (FT)
for iterative joint training (Zhang et al., 2018). Af-
ter the above several stages, a base model with
better performance is obtained, which can be used
for further optimization.

4.3 R-Drop
Dropout-like method (Srivastava et al., 2014; Gao
et al., 2022) is a powerful and widely used
technique for regularizing deep neural networks.
Though it can help improve training effectiveness,
the randomness introduced by dropouts may lead
to inconsistencies between training and inference.
R-Drop (Wu et al., 2021) forces the output distribu-
tions of different sub models generated by dropout
be consistent with each other. Therefore, we use R-
Drop training strategy to augment the base model
for each track and reduce inconsistencies between
training and inference.

4.4 Domain Adaptation
Since the quality of the translation model is easily
affected by the domain, we try to select domain-
related data to incrementally train the model. We
adopted the domain adaptation strategy by (Wang
et al., 2019b). The strategy uses a small amount
of in-domain data to tune the base model, and then
leverages the differences between the tuned model
and the base to score bilingual data. The score is
calculated based on formula 1.

score =
logP (y|x; θin)− logP (y|x; θbase)

|y| (1)

Where θbase denotes the base model; θin denotes
the model after fine-tuning on a small amount of
in-domain data, and |y| denotes the length of the
sentence. Higher score means higher quality.
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System En2De En2Ja En2Zh
Constrained 37.28 20.26 28.91
Constrained with LLM 37.96 20.29 28.91
Unconstrained 38.71 20.34 28.93

Table 3: The BLEU of speech translation on tst-COM.

System tst-COM tst2018 tst2019 tst2020 avg
Conformer 5.3 9.3 6.7 8.9 7.6
U2 6.1 9.8 6.6 8.7 7.8
w2v2-mBART 4.9 9.3 6.9 8.9 7.5
Whisper 4.5 11.0 5.4 6.6 6.8
Whisper fine-tuning 4.3 8.5 6.3 7.9 6.8

Table 4: The experimental results of ASR. We present WER performance of tst-COM, tst2018, tst2019 and tst2020.

System En2De En2Ja En2Zh
One2Many 36.22 15.43 29.05
+ LaBSE bitext 37.58 15.48 29.48
+ Domain adaptation 41.55 17.08 29.27
+ Iter FTBT 43.03 17.86 29.82
+ Dev fine-tuning 43.66 20.88 30.48

Table 5: The BLEU of MT using tst-COM golden tran-
scription.

System En2De En2Ja En2Zh
One2Many 31.54 14.08 26.69
+ LaBSE bitext 32.65 13.88 27.14
+ Domain adaptation 35.96 15.4 27.15
+ Iter FTBT 36.38 15.81 27.98
+ Dev fine-tuning 37.83 18.6 28.86
+ Robustness 38.71 20.34 28.93

Table 6: The BLEU of MT using tst-COM transcription
by the Whisper fine-tuning model.

In this task, we use TED and MUST-C data as
in-domain data. We score all the training bilingual
data through Equation 1, and filter out 80% - 90%
of the data according to the score distribution. We
use the remaining 0.4M in-domain data to continue
training on the previous model.

4.5 Robustness to ASR Noise

We use two methods to improve the robustness of
the system to ASR output noise.

Synthetic Noise Generation. We refer to the
method proposed in Guo et al. (2022) to synthesize
part of the noise data to enhance the robustness of
the model.

ASR Transcript Data. Because some triplet

data are provided in this task, including audio,
source and target. We use the trained ASR to tran-
scribe the audio file to get source′, and finally get
the MT training data like (source′, target). The
source′ transcribed by ASR may have some errors,
but when used in MT, it will increase the robustness
of the MT encoder.

When using the data generated above, we refer
to the tagged BT method (Caswell et al., 2019), and
add a special token at the beginning of the source
sentence.

5 Experiments and Results

We use the open-source fairseq (Ott et al., 2019)
for training, word error rate (WER) to evaluate the
ASR models and report case-sensitive SacreBLEU
(Post, 2018) scores for machine translation. We
evaluated our system on the test sets of MuST-C
tst-COMMON (tst-COM).

Table 3 is our results on three languages for
three tracks (Constrained, Constrained with LLM,
Unconstrained). After a series of optimizations,
although the ASR results of the three systems
are somewhat different, the BLEU of all sys-
tems are very close. Since there is no testset for
iwslt2022, we only compared with last year’s teams
on tst-COM. Compared with last year’s best re-
sults (Zhang et al., 2022), we have improved by 2.1
BLEU in the MuST-C En2De test set; in En2Zh
and En2Ja, we have achieved close to last year’s
best results.

We analyze the main reasons for the similar re-
sults of the three systems: 1. The three systems use
the same MT, and our MT system has the ability
to correct wrong input after the robustness is en-
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hanced. 2. Using the same data to finetuning the
three ASR systems, the WER are relatively close.

5.1 Automatic Speech Recognition
We compare the results of different model archi-
tectures, the overall experimental results about
ASR is described in Table 4. We evaluated
our system on the test sets of tst-COM, IWSLT
tst2018/tst2019/tst2020 respectively. For long au-
dio in the test set, we use SHAS for segmenta-
tion. We calculate the WER after the reference and
hypothesis are lowercased and the punctuation is
removed.

In Table 4, all ASR systems achieve good per-
formance, and the results are relatively close. Con-
former and U2 are trained using constrained data.
w2v2-mBART is obtained through fine-tuning us-
ing pre-trained models, which are constrained.
Whisper is the result of transcribing long audio
without segmentation using the native whisper
medium model. Whisper fine-tuning is obtained
after fine-tuning on MuST-C dataset, with using the
Whisper medium model. The WER of Conformer
and U2 is relatively close. In submitting the results
of constrained track, we use Conformer as the fi-
nal ASR system. The experimental results show
that pre-trained models exhibit their advantages,
w2v2-mBART can achieve better results than just
training with constrained data. Whisper itself has
a very good performance in the general domain,
and after fine-tuning, it has even better results in
the specific domain. However, it is very difficult
to perform finetuning on whisper and improve the
performance of all domains. WER performance on
tst2019 and tst2020 has deteriorated.

5.2 Neural Machine Translation
We evaluate the performance of the MT model in
detail on the MUST-C test set. Table 5 shows the
performance results of each optimization strategy
using golden as the source; Table 6 uses the tran-
scription generated by Whisper fine-tuning model
as the source. The results show that there is a gap
in BLEU between golden and transcription of ASR,
which is mainly due to errors (punctuation, capital-
ization, vocabulary, etc.) in transcription of ASR.
On the En2De test set, this gap is particularly wide.

One2Many is a multilingual model trained us-
ing the R-drop strategy, and has achieved relatively
good performance on the test set. LaBSE can bring
a little improvement to the model, and domain adap-
tation can bring a huge improvement to the model,

which proves the effectiveness of our strategy. It-
erative joint training with FT and BT (Iter FTBT)
is also an effective mean to improve quality. After
dev fine-tuning, the results are already very compet-
itive. With improving the robustness of the system
to ASR output, our BLEU in En2De, En2Zh, and
En2Ja are 38.71, 20.34, and 28.93, respectively.

6 Conclusion

This paper presents our offline speech translation
systems in the IWSLT 2023 evaluation. We ex-
plored different strategies in the pipeline of build-
ing the cascade system. In the data preprocess-
ing, we adopt efficient cleansing approaches to
build the training set collected from different data
sources. We tried various ASR training strategies
and achieved good performance. For the MT sys-
tem, we have used various methods such as multi-
lingual machine translation, R-drop, domain adap-
tation, and enhanced robustness. Finally, compared
with last year’s best results, we have improved by
2.1 BLEU in the MuST-C English-German test set.
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Abstract

This paper describes the submissions of the
research group USTC-NELSLIP to the 2023
IWSLT Offline Speech Translation competi-
tion, which involves translating spoken English
into written Chinese. We utilize both cascaded
models and end-to-end models for this task. To
improve the performance of the cascaded mod-
els, we introduce Whisper to reduce errors in
the intermediate source language text, achiev-
ing a significant improvement in ASR recog-
nition performance. For end-to-end models,
we propose Stacked Acoustic-and-Textual En-
coding extension (SATE-ex), which feeds the
output of the acoustic decoder into the textual
decoder for information fusion and to prevent
error propagation. Additionally, we improve
the performance of the end-to-end system in
translating speech by combining the SATE-ex
model with the encoder-decoder model through
ensembling.

1 Introduction

This paper describes the submission for the IWSLT
2023 Offline Speech Translation task (Agarwal
et al., 2023) by National Engineering Laboratory
for Speech and Language Information Processing
(NELSLIP) at the University of Science and Tech-
nology of China.

Speech translation (ST) solutions include cas-
caded and end-to-end approaches. The cascaded
approach combines Automatic Speech Recogni-
tion (ASR) and Machine Translation (MT) systems.
The ASR system recognizes the source speech as in-
termediate text in the source language, and the MT
system translates the intermediate text into text in
the target language. While the end-to-end approach
directly translates the source speech into text in tar-
get language, without using source language text
as an intermediate representation. Compared with
cascaded approaches, the end-to-end paradigm can
overcome higher architectural complexity and er-
ror propagation (Duong et al., 2016). The Stacked

Acoustic-and-Textual Encoding (SATE) (Xu et al.,
2021) method combines the acoustic and textual
encoders using an adapter module to approach the
performance levels of cascaded solutions. Further-
more, ST can be improved using large-scale and
cross-modal pretraining methods (Radford et al.,
2022; Zhang et al., 2022b) such as Whisper (Rad-
ford et al., 2022), which leverages large-scale weak
supervision, and SpeechUT (Zhang et al., 2022b),
which optimizes the alignment of speech and text
modalities by hidden units.

In this study, we employ a cascaded approach
wherein the ASR system is built using the pre-
trained Whisper (Radford et al., 2022) to ensure
the recognition performance of speech to source
language text. Furthermore, the MT systems in the
cascaded setup are created using diverse techniques
like back translation (Sennrich et al., 2016a), self-
training (Kim and Rush, 2016; Liu et al., 2019),
domain adaptation and model ensemble.

In end-to-end condition, we implement two
types of architectures, including encoder-decoder
(Le et al., 2021) and Stacked Acoustic-and-Textual
Encoding extension (SATE-ex). For the encoder-
decoder, we use the corresponding components
of ASR models to initialize the encoder, and the
corresponding components of MT models to ini-
tialize the decoder. For SATE-ex, we utilize the
textual decoder to receive the output features of the
acoustic decoder to assist in generating the target
language text, achieving information complemen-
tarity of different ASR decoding hidden states, and
preventing intermediate error propagation. Addi-
tionally, we employ adaptation training, along with
the adaptation module and multi-teacher knowl-
edge distillation of Stacked Acoustic-and-Textual
Encoding (SATE) (Xu et al., 2021) to bridge the
gap between pre-training and fine-tuning. Our ap-
proach included the utilization of augmentation
strategies commonly used in cascaded systems, like
speech synthesis (Casanova et al., 2022) and gen-
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Corpus Duration (h) Sample Scale

Librispeech 960 1
Europarl 161 1

MuST-C (v1) 399 3
MuST-C (v2) 449 3
TED-LIUM3 452 3

CoVoST2 1985 1
VoxPopuli 1270 1

Table 1: The used speech recognition datasets.

Data Duration (h)

Raw data 8276
+ concat 16000

+ oversampling 32000
+ TTS 56000

Table 2: Augmented training data for ASR.

erating as much semi-supervised data as possible
to enhance the model’s performance. Furthermore,
we try to achieve further performance optimization
with ensemble of cascaded and end-to-end models.

2 Data Preprocessing

2.1 Speech Recognition
The speech recognition datasets utilized in our
experiments are listed in Table 1, including Lib-
rispeech, MuST-C (v1, v2), TED Lium3, Europarl,
VoxPopuli, and CoVoST. We first extracted 40-
dimensional log-mel filter bank features computed
with a 25ms window size and a 10ms window shift.
And then, a baseline ASR model, which is used to
filter training samples with WER > 40%, is trained.
Moreover, to generate sufficient speech recognition
corpora, we applied speed perturbation and over-
sampling techniques on the TED/MuST-C corpus
(Liu et al., 2021). As a result, we generated nearly
8k hours of speech data.

To improve our training data, we applied two
more data augmentation techniques. Firstly, we
combined adjacent voices to produce longer train-
ing utterances. Secondly, we trained a model us-
ing Glow-TTS (Casanova et al., 2021) on MuST-C
datasets and generated 24,000 hours of audio fea-
tures by using sentences from EN→DE text trans-
lation corpora. The resulting training data for ASR
is summarized in Table 2.

Parallel Monolingual

EN-ZH 50M 50M

Table 3: Training data for text MT.

2.2 Text Translation
We participate in translating English to Chinese.
Both the bilingual data as well as the monolin-
gual data are used for training. To ensure optimal
training data quality, we apply several filters in-
cluding language identification. We remove sen-
tences longer than 250 tokens and those with a
source/target length ratio exceeding 3. Addition-
ally, we train a baseline machine translation model
to filter out sentences with poor translation quality.

To tokenize the text, we utilize LTP4.01 (Wanxi-
ang et al., 2020) for Chinese and Moses for English.
The subwords are generated via Byte Pair Encoding
(BPE) (Sennrich et al., 2016b) with 30,000 merge
operations for each language direction. Table 3
summarizes the detailed statistics on the parallel
and monolingual data used for training our systems.

EN→ZH For EN→ZH task, we utilize nearly
50 million sentence pairs collected from CCMT
Corpus, News Commentary, ParaCrawl, Wiki Ti-
tles, UN Parallel Corpus, WikiMatrix, Wikititles,
MuST-C, and CoVoST2, to train our MT models.
In addition, we randomly extract 50 million mono-
lingual Chinese sentences from News crawl and
Common Crawl for back-translation purposes to
augment our training data.

2.3 Speech Translation
Table 4 outlines the speech translation datasets used
in our experiments. MuST-C and CoVoST2 are
available for speech translation.

To augment our data, we implemented two ad-
ditional methods. Firstly, we utilized a text trans-
lation model to generate the corresponding target
language text from the transcriptions of the speech
recognition datasets. The generated text was then
added to our speech translation dataset along with
its corresponding speech, referred to as KD Cor-
pus in Table 4. This process is similar to sentence
knowledge distillation. Secondly, we applied the
trained Glow-TTS model to produce audio features
from randomly selected sentence pairs in EN→ZH
text translation corpora. The resulting filter bank
features and their corresponding target language

1https://github.com/HIT-SCIR/ltp
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Corpus Duration (h) Sample Scale

EN-ZH

MuST-C 593 2
CovoST2 1092 2

KD 16000 2
TTS 27000 1

Table 4: Speech Translation Corpora.

text are utilized to enhance our speech translation
dataset, referred to as TTS Corpus in Table 4.

3 Cascaded Speech Translation

3.1 Automatic Speech Recognition
We implement ASR model in cascaded condi-
tion via Supervised Hybrid Audio Segmentation
(SHAS) and Whisper.
Supervised Hybrid Audio Segmentation. Super-
vised Hybrid Audio Segmentation (SHAS) (Tsia-
mas et al., 2022) is used to split long audio into
short segments with quality comparable to manual
segmentation. Hence, we use SHAS as a Voice Ac-
tivity Detection (VAD) in the ASR system, as well
as a speech segmentation tool in the Speech Trans-
lation system. This way, the output of the ASR
system can be directly fed into the text translation
component.
Whisper. We incorporated the pre-trained Whisper
(Radford et al., 2022) as the ASR model of the cas-
caded system to reduce errors in the intermediate
source language text.

Whisper scales weakly supervised speech-to-text
tasks to 680,000 hours of labeled audio data and
expands the pre-training scope from English-only
speech recognition to multilingual and multitask.
In comparison with the previous unsupervised pre-
training approach (Baevski et al., 2020), Whisper
not only improves the quality of the audio encoder,
but also trains a pre-trained decoder with high
equivalency, enhancing usefulness and robustness.
Results demonstrate that the pre-trained Whisper
model can be well transferred to different or even
zero-shot datasets without any dataset-specific fine-
tuning.

We used the large version of the pre-trained whis-
per model, which contains 32 layers and a total of
1550M parameters.

3.2 Neural Machine Translation
We adopted the same strategy as last year’s (Zhang
et al., 2022a) and built machine translation models

based on the Transformer (Vaswani et al., 2017)
implemented in the Fairseq (Ott et al., 2019) toolkit.
Each single model was executed on 16 NVIDIA
V100 GPUs. Our experiments utilized several
crucial technologies including Back Translation,
Sentence-level Knowledge Distillation, Domain
Adaptation, Robust MT Training, and Ensembling.
Back Translation. The utilization of Back-
Translation (Sennrich et al., 2016a) is a proficient
technique for enhancing translation accuracy. This
method generates synthetic sentence pairs by trans-
lating target-side monolingual data. It has gained
significant popularity in both academic research
and commercial applications. We train NMT mod-
els with bilingual data, and translate Chinese sen-
tences to English.
Knowledge Distillation. Sentence-level Knowl-
edge Distillation (Kim and Rush, 2016), also
known as Self-training, is an effective method for
enhancing performance. We expand our training
dataset by leveraging a trained NMT model to trans-
late English sentences into Chinese. This approach
has proven to be highly beneficial in improving
model accuracy.
Domain Adapatation. Due to the critical impor-
tance of high-quality, domain-specific translation
(Saunders, 2022), we fine-tune the NMT model by
using a mix of in-domain data (such as MuST-C,
TED-LIUM3, etc.) and out-of-domain data. Ad-
ditionally, the labelled English sentences from the
speech recognition training data is also utilized as
augmented in-domain self-training data by translat-
ing them.

We adopt a Denoise-based approach (Wang et al.,
2018) to assess and select data for domain-specific
MT and use it to denoise NMT training. The tech-
nique of denoising addresses data quality issues
and reduces the adverse effects of noise on MT
training, particularly NMT training.
Robust MT Training. To enhance the robustness
of the MT model to ASR errors in cascaded ST,
the ASR output adaptive training approach (Zhang
et al., 2022a) is introduced. The English transcripts
of all speech translation datasets are inputted into a
trained ASR model to generate text in source side,
which is then paired with the transcription text in
target side. We improve the robustness of the MT
model through three methods: 1) fine-tuning the
MT model with synthetic data; 2) incorporating KL
loss during fine-tuning to prevent over-fitting; and
3) distilling the model using clean source text and

196



ASR output.
Ensemble. For each target language, we trained 4
variants based on the large Transformer configura-
tion, and the final model is an ensemble of these 4
models.

• E15D6-v1: 15 layers for the encoder and 6
layers for the docoder. The embedding size is
1024. FFN size is 8192 and attention head is
16. All available corpora including bilingual,
BT and FT are used.

• E15D6-v2: 15 layers for the encoder, 10%
training data are randomly dropped.

• E18D6: 18 layers for the encoder and 10-30%
training data with low machine translation
scores are dropped.

• Macaron: A version with macaron architec-
ture (Lu et al., 2019) based on data of E18D6.
36 layers for the encoder and FFN size is
2048.

3.3 End-to-End Speech Translation
In the end-to-end condition, we ensemble the
encoder-decoder and the Stacked Acoustic-and-
Textual Encoding extension (SATE-ex) models de-
scribed in Section 3.4.
Encoder-Decoder. The encoder-decoder-based
end-to-end ST model processes the speech in the
source language by its encoder and generates text
in the target language by its decoder. The encoder
and decoder are initialized using the corresponding
parts of the cascade ASR and MT models. As re-
gards model architecture, we investigate 4 variants
in end-to-end ST.

• VGG-C: The encoder of VGG-C is initial-
ized by the ASR VGG-Conformer architec-
ture, which consists of 2 layers of VGG and
12 layers of Conformer. And the ASR VGG-
Conformer is trained using the data in Section
2.1. The decoder of VGG-C is 6 layers of
Transformer with embedding size of 1024, at-
tention head of 16 and FFN size of 8192.

• VGG-C-init: The encoder is VGG-Conformer,
initialized by ASR VGG-Conformer architec-
ture. The decoder is 6 layers of Transformer,
initialized by NMT E15D6-v2 variant.

• VGG-T: The encoder of VGG-T is initialized
by the ASR VGG-Transformer architecture,

Acoustic
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Acoustic
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Softmax

Linear

Textual
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Cross-Attention

Cross-Attention
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Figure 1: The architecture of Stacked Acoustic-and-
Textual Encoding extension (SATE-ex).

which consists of 2 layers of VGG and 16
layers of Transformer. The decoder of VGG-
T is 6 layers of Transformer with embedding
size of 1024, attention head of 16 and FFN
size of 8192.

• VGG-T-init: The VGG-Transformer encoder
is initialized by the ASR VGG-Transformer
architecture. The decoder is 6 layers of Trans-
former, initialized by NMT E15D6-v2 variant.

3.4 Stacked Acoustic-and-Textual Encoding
Extension

To further improve the performance of end-to-end
ST, we propose Stacked Acoustic-and-Textual En-
coding extension (SATE-ex) based on SATE (Xu
et al., 2021).
SATE. The MT encoder captures the long-distance
dependency structure, while ASR encoder focuses
on local dependencies in the input sequence. Thus,
the encoder-decoder model initialized with the
ASR encoder and the MT decoder may have in-
consistent on intermediate representations.

SATE stacks two encoders, an acoustic encoder
and a textual encoder. The acoustic encoder pro-
cesses the acoustic input, while the textual encoder
generates global attention representations for trans-
lation. Moreover, an adapter is designed after the
acoustic encoder, which maps the acoustic repre-
sentation to the latent space of the textual encoder
while retaining acoustic information. By doing so,
SATE can maintain consistency in representation
across different pre-trained components. Besides,
the multi-teacher knowledge distillation has been
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developed to preserve pre-training knowledge dur-
ing fine-tuning (Hinton et al., 2015).
SATE-ex. Figure 1 shows the SATE-ex architec-
ture, comprising the acoustic encoder, acoustic de-
coder, textual encoder, and textual decoder compo-
nents. Theses components are initialized with their
corresponding components in cascade ASR and
MT models. Notably, the textual decoder in SATE-
ex has a Cross-Attention module (highlighted in
yellow) that processes the acoustic decoder’s out-
put. By doing so, this approach fuses the last layer
decoding hidden states of the ASR decoder into the
textual decoder, alongside Connectionist Tempo-
ral Classification (CTC) decoding hidden states of
ASR that are injected through adaptor and textual
encoder. Similar to (Zhang et al., 2020), this idea
facilitates to fuse and complement different decod-
ing strategies, which can improve inner recognition
accuracy, reduce the propagation of intermediate
representation errors, and thereby enhance transla-
tion performance.

The loss function of SATE-ex, similar to SATE
(Xu et al., 2021), computes CTC loss LCTC , ASR
loss LASR, and translation loss LTrans. Addi-
tionally, the losses LKD−CTC and LKD−Trans of
multi-teacher knowledge distillation are used to
preserve pre-trained knowledge during fine-tuning.
Adaptation Training. To further eliminate the in-
termediate representation mismatch in pre-trained
ASR and MT, before end-to-end training, we adopt
adaptation training to fine-tune the MT part of
SATE-ex (including the textual encoder and tex-
tual decoder). Specifically, we first generate greedy
CTC decoding without removing duplicates and
blanks through the acoustic encoder. Then, we pair
these CTC decoding with text in target language to
fine-tune the textual encoder and textual decoder.
Please note that the textual decoder here does not
contain the Cross-Attention module (highlighted in
yellow) in Figure 1.

4 Experiments

Our experimental results are presented in Table 5
and Table 6. All experiments are performed using
the Fairseq (Ott et al., 2019) toolkit. We report
case-sensitive SacreBLEU scores (Post, 2018) for
speech translation. The performance of the sys-
tems is evaluated on MuST-C-v2 tst-COMMON
(tst-COM) and Development set (Dev). Addition-
ally, we set two values for the parameters of SHAS
(min,max, threshold), namely (1, 18, 0.5) and

System tst2018 tst2019 tst2020 tst2022 tst-COM

ASR* 95.59 97.55 95.71 96.67 98.04
Whisper 95.75 98.34 97.17 97.86 97.01

Table 5: The recognition accuracy of the ASR fusion
model and pre-trained Whisper. ASR* indicates the
ASR fusion model.

(5, 54, 0.1). We also provide the results of MT as
reference (System #1-5).

4.1 Automatic Speech Recognition
We evaluate the recognition performance of ASR
fusion model and pre-trained Whisper. The ASR fu-
sion model comprises three model structures, each
trained with and without Text-to-Speech (TTS)
data, resulting in a total of six ASR models. These
models are fused to obtain the final ASR* model.
The three ASR structures are presented below.

• VGG-Conformer: 2 layers of VGG and 12
layers of Conformer in encoder, 6 layers of
Transformer in decoder.

• VGG-Transformer: 2 layers of VGG and 16
layers of Transformer in encoder, 6 layers of
Transformer in decoder.

• GateCNN-Transformer: 6 layers of GateCNN
and 12 layers of Conformer in encoder, 6 lay-
ers of Transformer in decoder.

The recognition results of the ASR fusion model
and pre-trained Whisper are presented in Table 5.
The results indicate that Whisper has a superior
recognition performance compared to the ASR fu-
sion model, with an average improvement of 0.51%.
However, the ASR fusion model outperforms Whis-
per slightly on the tst-COM dataset, which could be
due to the ASR fusion model upsampling, making
its data distribution closer to tst-COM.

4.2 Cascaded Systems
We construct two cascaded systems, one consisting
of six-model fusion ASR and six-model fusion MT
(System #6), and the other consisting of Whisper
and six-model fusion MT (System #7).

For ASR in System #6, we employ the ASR
fusion model described in Section 4.1. For MT in
System #6, we train the four MT models described
in Section 3.2. E18D6 and Macaron are both saved
with two different checkpoints, resulting in six MT
models that are fused to obtain MT*.
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# System
Official
Segment

SHAS
(1, 18, 0.5)

SHAS
(5, 54, 0.1)

Dev tst-COM Dev tst-COM Dev tst-COM

MT
1 E15D6-v1 27.23 30.19 - - - -
2 E15D6-v2 27.14 29.95 - - - -
3 E18D6 27.53 30.48 - - - -
4 Macaron 27.48 30.71 - - - -
5 ensemble (1-4) 27.81 31.03 - - - -

Cascaded
6 ASR*+MT* 26.40 29.83 26.05 29.69 26.45 29.62
7 Whisper+MT* 26.72 29.42 27.00 29.55 26.82 29.03

End-to-End
8 SATE-ex-T (w/ TTS) 24.78 28.17 24.43 27.43 23.30 26.49
9 SATE-ex-T (w/o TTS) 25.27 28.00 25.19 27.81 24.37 27.39

10 SATE-ex-M (w/ TTS) 24.52 28.18 23.61 26.62 22.08 24.67
11 SATE-ex-M (w/o TTS) 24.18 27.26 23.96 27.51 20.91 25.66
12 VGG-C-init 24.62 28.74 24.61 28.50 24.12 28.06
13 VGG-T-init 24.59 28.28 24.51 27.84 23.89 27.59
14 VGG-C 24.75 28.68 24.70 28.35 24.29 27.65
15 VGG-T 24.72 28.42 24.60 27.93 24.09 27.77
16 ensemble (8-11) 25.85 29.00 25.50 28.45 24.22 27.54
17 ensemble (12-15) 25.53 28.86 25.54 28.68 25.36 28.68
18 ensemble (8-15) 26.42 29.29 26.22 29.11 25.92 28.92

Ensemble of cascaded and e2e
19 ensemble (6, 18) 26.85 29.46 26.65 29.19 26.28 29.41
20 ensemble (7, 18) 27.09 29.53 26.82 29.35 26.62 29.45

Table 6: The BLEU scores of machine translation (MT), cascaded, end-to-end, and ensemble systems. * indicates
fusion models. The parameter of SHAS is (min,max, threshold).

System #7 uses the large version of Whisper3

as ASR, while the MT* is consistent with System
#6. As shown, on Dev set, using Whisper to reduce
errors in the source language text has improved
the performance of ST. However, on tst-COM, the
cascade model with ASR* performs better, pre-
sumably due to the closer match between the data
distribution of ASR* and that of tst-COM.

4.3 End-to-End Systems
In the end-to-end setting, we adopt the encoder-
decoder and SATE-ex architectures. Systems #12-
15 are built based on the encoder-decoder, with spe-
cific parameters referred to Section 3.3. Systems
#8-11 adopt the SATE-ex architecture. SATE-ex-T
uses the VGG-Conformer ASR model in Section
4.2 to initialize the acoustic encoder and decoder,

3https://github.com/openai/whisper

and the E18D6 MT model in Section 3.2 to initial-
ize the textual encoder and decoder. SATE-ex-M
uses the Macaron MT model in Section 3.2 to ini-
tialize the textual encoder and decoder.

It can be seen that the results of ensemble SATE-
ex (System #16) outperform those of ensemble
encoder-decoder (System #17). However, the per-
formance of a single SATE-ex model is slightly
worse than that of a single encoder-decoder model,
which we attribute to the lack of fine-tuning for the
single SATE-ex model. In future work, we will
discuss SATE-ex in detail.

4.4 Ensemble Systems
We ensemble the two cascade models (Systems #6
and #7) and the end-to-end model (System #18)
separately. The results are shown in Systems #19
and #20 in Table 6. It can be seen that the ensemble
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systems achieves excellent performance.

4.5 System Description
Our system is primarily based on the full dataset
allowed by IWSLT 2022, supplemented with Whis-
per large and SHAS for audio segmentation, which
is trained on MUSTC. We have trained six ASR
models and six MT models based on the IWSLT
2022 training data for model fusion. Additionally,
we have trained four end-to-end ST models and
four SATE-ex end-to-end ST models for end-to-
end model fusion.

For the end-to-end system, we use a fusion of
the above-mentioned eight end-to-end models. For
the cascaded systems, we build two cascades: one
with ASR based on Whisper and the other with
ASR based on six-model fusion. The MT side used
six-model fusion for both cascades. The submit-
ted systems are based on these two cascades, each
combined with the eight-model fusion end-to-end
system.

The system structure and SHAS parameter
(min,max, threshold) settings of the five submit-
ted systems are shown below.

• Primary Cascade: System #7 with SHAS pa-
rameters set to (5, 54, 0.1).

• Contrastive1: System #20 with SHAS param-
eters set to (1, 18, 0.5).

• Contrastive2: System #19 with SHAS param-
eters set to (1, 18, 0.5).

• Contrastive3: System #6 with SHAS parame-
ters set to (5, 54, 0.1).

• Primary e2e: System #18 with SHAS parame-
ters set to (1, 18, 0.5).

5 Conclusion

This paper summarizes the results on the IWSLT
2023 Offline Speech Translation task. We employ
various model architectures and data augmentation
techniques to build speech translation systems in
cascaded and end-to-end settings. The experimen-
tal results demonstrate the effectiveness of strate-
gies such as pre-trained Whisper models, adapta-
tion training, and the Stacked Acoustic-and-Textual
Encoding extension (SATE-ex). In future work, we
will further investigate SATE-ex and explore multi-
modal representation learning in speech translation.
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Abstract

This paper describes I2R’s submission to the of-
fline speech translation track for IWSLT 2023.
We focus on an end-to-end approach for trans-
lation from English audio to German text, one
of the three available language directions in
this year’s edition. The I2R system leverages
on pretrained models that have been exposed
to large-scale audio and text data for our base
model. We introduce several stages of addi-
tional pretraining followed by fine-tuning to
adapt the system for the downstream speech
translation task. The strategy is supplemented
by other techniques such as data augmentation,
domain tagging, knowledge distillation, and
model ensemble, among others. We evaluate
the system on several publicly available test
sets for comparison.

1 Introduction

Historically, speech translation (ST) has involved
combining automatic speech recognition (ASR)
and machine translation (MT) systems in a cas-
cade. The ASR system would transcribe speech
signals into text in the source language, and the
MT system would then translate this text into the
target language. However, recent developments
in deep learning have made it possible to use an
end-to-end speech translation model (Bérard et al.,
2016; Weiss et al., 2017), which directly trans-
lates speech in the source language into text in
the target language, without relying on intermedi-
ate symbolic representations. This approach offers
the advantages of lower latency and avoids error
propagation. While cascaded models initially out-
performed end-to-end models, recent results from
IWSLT campaigns (Le et al., 2020; Bentivogli et al.,
2021; Anastasopoulos et al., 2022) have shown that
the performance of end-to-end models is now ap-
proaching that of cascaded solutions.

Large pretrained models (Lewis et al., 2020;
Conneau et al., 2021; Raffel et al., 2020) have be-

come a prevalent basis for speech and language pro-
cessing work (Ma et al., 2021; Chen et al., 2022a).
Through the utilization of pretrained models and
subsequent finetuning using a small amount of la-
beled data, many tasks have exhibited significant
improvements in performance (Baevski et al., 2020;
Hsu et al., 2021; Guillaume et al., 2022; Navarro
et al., 2022), some even reaching state-of-the-art
results.

In this work, we describe our end-to-end system
for the Offline Speech Translation Task at IWSLT
2023 (Agarwal et al., 2023) in the English-German
(En-De) language direction. The current year’s task
not only includes the traditional TED talk evalu-
ation set translated from English to German, but
also introduces two additional test sets consisting
of ACL presentations, press conferences and in-
terviews (EMPAC), which are more complex and
challenging. Furthermore, this year’s constrained
data track allows less data than previous years. Our
team enhances the end-to-end ST system within the
context of the pretrain-finetune paradigm. We in-
troduce several pretraining stages before finetuning
for the downstream ST task. Furthermore, we im-
plemented dynamic audio augmentation methods to
account for differences in audio recording quality.
We boost the system’s robustness by ensembling
multiple individual models and use domain tagging
to direct the model towards specific output styles.
Here, we evaluate our system against various stan-
dard public test sets for both speech translation and
text machine translation.

2 Methodology

In this section, we introduce the model architecture
of our system, and describe some of the methods
we incorporated into the design and training pro-
cess.
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Figure 1: Our end-to-end ST model architecture

2.1 Model

As shown in Fig 1, our end-to-end ST model uses
two separate encoders for speech and text, followed
by a shared encoder and decoder. As the shared
encoder is pretrained on text inputs while the fi-
nal system has to work with speech inputs, we try
to bring speech and text into a shared representa-
tion space by devising a training task using mixed
speech and text inputs, described in Section 2.2.

Due to limited computational resources, we
make use of the allowed pretrained models in
the constrained track. The speech encoder is ini-
tialized from the WavLM (Chen et al., 2022a)
large checkpoint which was pretrained on Libri-
Light, GigaSpeech and VoxPopuli data in a self-
supervised fashion. WavLM was selected as it in-
cludes more data relevant to this year’s test set,
and showed better performance in our preliminary
experiments compared to similar models like Hu-
BERT. DeltaLM base (Ma et al., 2021) was used
to initialize the text encoder, shared encoder and
decoder sections. Prior to the final ST training, the
DeltaLM model was first finetuned on text-to-text
MT (described in Section 3.2). The text encoder in-
cludes the text and positional embedding layers of
DeltaLM and is frozen in the final finetuning stage.
The shared encoder encompasses the transformer
layers of the DeltaLM encoder.

Given that ST data is commonly provided as a
triplet of source speech, source text transcription
and target text translations, we leverage both text
and speech sources in our proposed architecture.
Aside from the audio waveforms processed through
the speech encoder, we take as input upsampled to-
kenized source text by repeating subword tokens ac-
cording to a pre-calculated ratio given by an align-
ment system. For data with paired speech and text
inputs, we mix representations from the two input
encoders through random swapping. Otherwise,
unimodal data is processed by their respective en-
coders and the mixing step is skipped, such as the
case during speech-only ST inference. We also
recognise that the flexible nature of the architecture
allows the use of ASR and MT data as unimodal
inputs to further expand the training data and train
a multilingual model. However, due to time and
computational constraints, this was not explored in
this submission and is left as future work.

2.2 Representation Mixing

Recent work in unified representation learning of
speech and text (Liu et al., 2020; Zhang et al., 2022;
Chen et al., 2022b; Fang et al., 2022; Sainath et al.,
2023) try to leverage abundant text data to supple-
ment speech-based models. We similarly encour-
age our model to learn a joint multimodal repre-
sentation by bringing speech and text inputs into a
shared representation space.

To handle the large difference in sequence
lengths of audio and text, systems from the litera-
ture often upsample text using a trained duration
model or a resampling scheme. Here, we utilize of-
fline forced alignment and upsampling to align the
speech and text data. Specifically, a pretrained ASR
model is used to first force align text transcripts to
audio, returning an upsampling ratio between a
particular subword and its corresponding speech
segment. Each subword token is then repeated up
to this ratio before being fed to the text encoder
such that the final encoded subword is of the same
length as its speech counterpart. The alignment
and resampling procedure is described in detail in
Section 3.1.

As the shared encoder was pretrained only on
text, we hypothesize that the model may better
adapt to the downstream speech task by using a
mixed speech-text representation compared to train-
ing on pure speech inputs. When finetuning the ST
model on data with both source speech and text, we
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feed both the audio and upsampled text tokens into
the respective speech and text encoders, then mix
the resultant embeddings at the individual subword
token level using a fixed probability. In practice, a
swapping mask is created before upsampling, with
text embeddings being replaced with speech em-
beddings according to a swapping ratio α, where
0 < α < 1. The tokens and swap mask are up-
sampled together and passed into the model so that
sequences of identical upsampled tokens can be
replaced with speech embeddings during the repre-
sentation mixing step.

2.3 Knowledge Distillation

To fully utilize the larger amounts of text-only MT
data allowed in the challenge, we train a separate
MT model using DeltaLM large. This larger model
is then frozen and used as a teacher during fine-
tuning of the ST model via negative log-likelihood
minimization between the hypotheses generated by
both the models, similar to the knowledge distilla-
tion method proposed in Tang et al. (2021).

Our overall loss function therefore consists of
cross entropy loss between the ground truth and
hypothesis produced by the ST system (Lst) and
negative log-likelihood loss between the teacher
and student model hypotheses (Lkd), weighted by
γ and β respectively: L = γLst + βLkd

3 Experimental Setup

3.1 Data Preparation

Training data was compiled in accordance to con-
strained conditions. They can be divided into text
and audio-based categories which were used to
train the initial MT model and final ST model re-
spectively.

Text data Parallel En-De lines were gathered
from both MT and ST datasets, seen in Table 1.
These were split into in-domain and out-of-domain
based on whether the text was derived from TED-
like sources. The in-domain sources include a
combination of MuST-C v1, v2 and v3 (Cattoni
et al., 2021), ST TED (Niehues et al., 2018), and
TED 2020 (Reimers and Gurevych, 2020), whereas
the out-of-domain sources mostly comprised of
OpenSubtitles (Lison and Tiedemann, 2016) and
Europarl (Koehn, 2005), but also include CoVoST
v2 (Wang et al., 2021b), ELRC-CORDIS News,
Europarl-ST (Iranzo-Sánchez et al., 2020), News-
Commentary (Tiedemann, 2012) and Tatoeba. A

common pre-processing pipeline was applied to
the text data, namely removing any tags and con-
trol codes, normalizing bullet points, simplifying
punctuation by removing repeats (with the excep-
tion of ‘...’) and normalizing whitespace characters.
Sentence pairs where source and target differed by
more than three times in length were then removed
given that they were likely to be misaligned. Fi-
nally, the remaining sentences were deduplicated.
The out-of-domain data was further filtered us-
ing Language-agnostic BERT Sentence Embedding
(LaBSE) (Feng et al., 2022). Specifically, we re-
moved sentence pairs with sentence representations
lower than 0.5 cosine similarity. We opted not to
use any backtranslation data for training since the
provided monolingual dataset was found to largely
overlap with OpenSubtitles. The final dataset con-
tained 850,003 in-domain and 13,083,335 out-of-
domain sentence pairs.

Dataset Lines
in-domain
MuST-C v1/v2/v3 391K
ST TED corpus 170K
TED2020 v1 288K
out-of-domain
CoVoST v2 300K
ELRC-CORDIS News v1 111K
Europarl v10 1.7M
Europarl-ST v1.1 69K
NewsCommentary v16 380K
OpenSubtitles v2018 apptek 10.1M
Tatoeba v1 288K
Total 13.9M

Table 1: Breakdown of text training data. For ST
datasets only transcription and translation pairs were
used.

Audio data Audio data sources include both
ASR and ST corpora, listed in Table 2. ASR
data consist of Commonvoice (Ardila et al., 2020),
Librispeech (Panayotov et al., 2015), TED LIUM
(Rousseau et al., 2012), and Vox Populi (Wang
et al., 2021a), whereas the ST data include CoV-
oST (Wang et al., 2021b), Europarl-ST (Iranzo-
Sánchez et al., 2020), MuSTC v3 (Cattoni et al.,
2021) and ST TED (Niehues et al., 2018). Speech
was first converted to mono channel and resampled
to 16kHz if required before being saved in FLAC
format. Only utterances between 800 to 480,000
samples (i.e. 0.05-30s) were kept and utilized for
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Dataset Utterances Hours
ASR data
Commonvoice v11.0 949K 2320
Librispeech v12 281K 960
TED LIUM v3 268K 453
Vox Populi 177K 543
ST data
CoVoST v2 289K 364
Europarl-ST v1.1 68K 89
MuST-C v3 265K 273
ST TED corpus 169K 252
Total 2.47M 5254

Table 2: Breakdown of available audio training data

training. The provided segmentation was used for
all speech training data.

To increase the amount of available ST data, we
generated additional translations from ASR tran-
scription data using our trained MT model. These
synthetic speech-text pairs were used as part of the
ST dataset during the finetuning phase.

Forced alignment and upsampling To prepare
text inputs for mixing with speech inputs, we pre-
processed the text by upsampling and aligning it
to its corresponding speech features using a pre-
trained HuBERT ASR model. First, we normalized
the transcripts from ASR and ST datasets by delet-
ing non-verbal fillers and converting numbers into
their corresponding words. Characters not found
among the HuBERT labels were then removed
after tokenizing the text. Next, we obtained an
alignment between the subword tokens and parallel
speech using a pretrained HuBERT large model
(Hsu et al., 2021) and, following those alignments,
duplicated the input tokens to match the lengths of
the speech representation produced by the speech
encoder. The frequency of the upsampled text to-
kens is 50 Hz (equivalent to 16 kHz input audio
downsampled 320 times by the WavLM feature
extractor).

Audio segmentation As segmentation informa-
tion was not provided in this year’s evaluation data,
we used the pretrained Supervised Hybrid Audio
Segmentation (SHAS) model (Tsiamas et al., 2022)
to perform voice activity detection and segmenta-
tion on the input audio from the IWSLT test sets.
SHAS has been evaluated on MuST-C and mTEDx
and shows results approaching manual segmenta-
tion.

3.2 Training configuration

On-the-fly audio augmentation To make our
model more robust against the bigger variances in
recording quality of the evaluation data introduced
this year, we implemented an on-the-fly augmenta-
tion pipeline for input audio via the Audiomenta-
tions library. In addition to initial utterence cepstral
mean and variance normalization (CMVN), we ap-
ply gain, seven-band parametric equalization, gaus-
sian noise, time stretch, pitch shift and a lowpass
filter, where each augmentation independently has
a 20% chance of being utilized. During inference
only CMVN is used.

Machine translation We finetuned several con-
figurations of DeltaLM base and large for En-De
machine translation. DeltaLM base has 12 encoder
and six decoder layers, with an embedding dimen-
sion of 768 and 12 attention heads per transformer
layer. In contrast, DeltaLM large contains 24 en-
coder and 12 decoder layers, an embedding dimen-
sion of 1024 and 16 attention heads per layer.

We used a two phase approach to finetuning. In
the first phase, we directly initialized the MT model
with DeltaLM pretrained weights and trained on
all available MT data. We then continued fine-
tuning only on in-domain data after checkpoint
averaging the best five checkpoints from the first
phase in terms of BLEU on the validation set that
comprised of IWSLT test sets from 2015, 2018,
2019 and 2020, plus MuST-C v3 tst-COMMON
split. We also tried progressive finetuning (Li et al.,
2020) during the second phase for the DeltaLM
base configuration where the depth of the encoder
was increased to 16 with four extra randomly ini-
tialized layers.

All models were implemented with the Fairseq
library. Models were trained with Adam opti-
mization, an inverse square root learning rate (LR)
schedule and a peak LR of 1e-4 for the first phase
and 1e-5 for the second phase. Label smoothing of
0.1 was also used. Training was carried out on four
NVIDIA V100 GPUs. We employ subword tok-
enization for all text inputs using a Sentencepiece
model inherited from the original DeltaLM, with a
vocabulary size of 250,000.

Speech translation finetuning As described in
section 2.1, the end-to-end speech translation
model consists of separate speech encoder and text
embedding input layers, followed by a shared en-
coder and decoder. The speech encoder is initial-
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ized with a pretrained WavLM large model that
contains a seven layer convolutional feature extrac-
tor followed by 24 transformer layers. We initialize
the text embeddings, shared encoder and decoder
layers with the DeltaLM base model previously
finetuned for MT. The input text embeddings are
frozen throughout the ST finetuning. Meanwhile,
the teacher text model was instead initialized with
the finetuned DeltaLM large configuration.

Domain tagging has been shown in previous MT
(Britz et al., 2017) and ST (Li et al., 2022) work
to be effective for domain discrimination and to
condition the model towards certain output styles.
Given the distinct TED-style outputs of the evalu-
ation data, we introduce ‘<indomain>’ and ‘<out-
domain>’ tags as prefix tokens during decoding to
help the model better distinguish the data distribu-
tion and style of the in-domain data from the other
parts of the dataset.

Similar to the approach employed during MT
training, we initially trained the end-to-end ST
model on all available ST data, including those
synthesized from ASR data. Adam optimization
with inverse square root LR schedule and peak LR
of 1e-5 was used. A swapping ratio of 0.8 was used
during training but 1.0 (i.e. pure speech represen-
tation) was used for inference and testing. In the
second phase we continued finetuning two separate
models with different data splits, while swapping
ratio was kept at 1.0. To target the usual TED
evaluation data, we trained one with only MuST-C
and ST-TED data, while the other also included
CoVoST and Europarl to help deal with the more
diverse speech patterns found in the ACL and EM-
PAC parts of the evaluation data (given that no
direct development data was provided). We weight
the ST loss and knowledge distillation loss with
γ = 1 and β = 0.1 respectively. Training was
carried out on four NVIDIA V100 GPUs for both
phases.

4 Results and Analysis

We present our experimental results and analyses
in this section.

4.1 Effect of audio augmentations and
pretrained speech encoder

As a preliminary experiment, we tested whether
the input audio augmentations have a tangible im-
pact on downstream applications. We finetuned a
pretrained WavLM large model together with a six

layer transformer decoder for ASR using MuST-C
v2 data, with and without input augmentations (Ta-
ble 3). Furthermore, we trained a HuBERT large
model in the same setup to contrast between differ-
ent pretrained speech encoders.

Model WER
HuBERT large without augmentation 7.59
WavLM large without augmentation 5.86
WavLM large with augmentation 5.56

Table 3: ASR results on MuST-C v2 tst-COMMON.

As observed, the audio augmentations were
found to be beneficial, leading to a reduction of
WER by 0.3. We found WavLM large together
with augmentations to perform the best overall and
so was adopted for the rest of the experiments.

4.2 Machine translation results

The results of the MT systems for En-De are shown
in Table 4, separated into the full-domain training
phase and the in-domain training phase. Perfor-
mance was evaluated using cased BLEU with de-
fault SacreBLEU options (13a tokenization).

It was evident that the continuous finetuning
with in-domain data improves performance on sim-
ilar datasets such as past year IWSLT evaluation
data or MuST-C. While the DeltaLM large models
achieved the best results, the base variants were not
far behind and generally performed within 1 BLEU
score of the former. However, we found no added
benefit to the progressively finetuned models. It
may be the case that the extra representative power
of the expanded encoder layers were not beneficial
at the relatively small scale of the in-domain data,
which was less than 1 million sentence pairs. Some
training runs produced better scores by checkpoint
averaging the best five checkpoints. Nevertheless,
the improvement was not consistent throughout all
test sets.

An ensemble of model variants 6 and 9 further
improved the BLEU scores on the test sets. We
utilize the ensemble model to generate translations
from ASR transcriptions to supplement the avail-
able ST data. The best checkpoint for DeltaLM
base (model 5) and DeltaLM large (model 9) were
subsequently used to initialize the end-to-end ST
model and teacher text model respectively for the
final finetuning.
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Model BLEU
tst2020 tst2019 MuST-C v3 MuST-C v2

full-domain
1 base (best) 31.76 28.81 33.11 33.77
2 base (avg 5) 32.86 29.43 34.05 34.67
3 large (best) 31.82 29.01 33.20 34.21
4 large (avg 5) 32.52 29.54 33.65 34.68

in-domain
5 base (best) 33.64 30.67 35.29 35.99
6 base (avg 5) 33.73 30.64 35.26 36.11
7 base-progressive (best) 33.40 30.51 34.25 34.83
8 base-progressive (avg 5) 33.26 30.48 34.37 35.09
9 large (best) 34.44 31.47 35.60 36.26
10 large (avg 5) 34.32 31.42 35.89 36.48

Ensemble (6 + 9) 34.91 31.77 36.14 36.93

Table 4: MT results on various test sets.

Model BLEU
tst2020 tst2019 MuST-C v3 MuST-C v2 CoVoST v2

in-domain
1 base (best) 25.70 22.68 30.29 30.56 27.92
2 base (avg 5) 24.81 22.25 29.98 30.29 28.11

extended-domain
3 base (best) 22.80 21.17 29.33 29.50 28.63
4 base (avg 3) 23.21 21.20 29.61 29.95 29.30

Ensemble (1 + 2 + 4) 24.99 22.64 29.99 30.35 29.13

Table 5: ST results on various test sets.

4.3 Speech translation results

Results from our end-to-end ST systems for En-
glish speech to German text are provided in Table 5.
As mentioned in section 3.2, we trained two mod-
els during the second ST finetuning phase, which
are labelled here as ‘in-domain’, targeting more
TED-like inputs, and ‘extended-domain’ for other
input domains. As reference segmentation infor-
mation was not provided for IWSLT-tst2019 and
IWSLT-tst2020 test sets, we used SHAS to segment
the audio. The translation hypotheses were then
compared to the references provided by using the
SLT.KIT evaluation script listed on the challenge
website, that uses the mwerSegmenter resegmen-
tation tool and the BLEU calculation script from
the Moses toolkit. The provided segmentation and
SacreBLEU were utilized for the other test sets.

Comparing CoVoST against the rest of the
test sets reveals that the in-domain and extended-
domain models show better results in their respec-
tive domain specializations, as was intended. We

unexpectedly get poor results on IWSLT-tst2019
and IWSLT-tst2020 relative to last year’s best per-
forming entries, which may point to a weakness
in the current training procedure, a domain mis-
match since training was more aligned to MuST-C,
or compounded errors due to resegmentation. We
plan to investigate the reasons more precisely in
future papers. The ensemble model of variants 1,
2 and 4 shows balanced performance across both
domains, and we submit this as our primary sub-
mission, with variants 1 and 4 as our contrastive
systems.

5 Conclusion

In this paper we outline our proposed end-to-end
system that incorporates pretrained models trained
on large-scale audio and text data to enhance the
ST performance. The system underwent several
stages of additional pretraining followed by finetun-
ing for the downstream speech translation task. We
explored several techniques including audio aug-
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mentation, domain tagging, knowledge distillation
and model ensemble to improve the system’s per-
formance. We utilize both speech and text inputs,
and propose a mixing procedure to unify represen-
tations from both modalities to not only increase
the amount of available training data but also better
adapt the model to downstream speech tasks. We
plan to carry out more experiments to further ex-
plore the effect of modality mixing and improve
the performance of such models for speech-to-text
tasks.
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Abstract

This paper describes the NiuTrans end-to-end
speech translation system submitted for the
IWSLT 2023 English-to-Chinese offline task.
Our speech translation models are composed
of pre-trained ASR and MT models under the
stacked acoustic and textual encoding frame-
work. Several pre-trained models with diverse
architectures and input representations (e.g.,
log Mel-filterbank and waveform) were utilized.
We proposed an iterative data augmentation
method to iteratively improve the performance
of the MT models and generate the pseudo ST
data through MT systems. We then trained ST
models with different structures and data set-
tings to enhance ensemble performance. Exper-
imental results demonstrate that our NiuTrans
system achieved a BLEU score of 29.22 on
the MuST-C En-Zh tst-COMMON set, outper-
forming the previous year’s submission by 0.12
BLEU despite using less MT training data.

1 Introduction

End-to-end speech translation (E2E ST) directly
translate speech in the source language into text in
the target language without generating an interme-
diate representation, which has gained significant
attention in recent years due to several advantages
over cascade methods, including low latency and
the ability to avoid error propagation (Berard et al.,
2016; Weiss et al., 2017). In this paper, we describe
our NiuTrans E2E ST system that participated in
the IWSLT23 English-to-Chinese offline track, the
overview of our system is shown in Fig 1.

To improve the performance of our system, we
aim to maximize the diversity of our ensemble of
E2E ST models. Our E2E ST models are based on
the stacked acoustic and textual encoding (SATE)
method (Xu et al., 2021a), which is a framework
to make the best of pre-trained automatic speech
recognition (ASR) and machine translation (MT)

*Authors contributed equally.
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Figure 1: Overview of our system.

components. Using this framework, we explore
multiple architectures of pre-trained ASR and MT
models with varying numbers of parameters and
input representations such as FBank features or
waveform data.

Pseudo data is a crucial component of E2E ST,
often generated by ensemble MT systems (Gaido
et al., 2020). This year, we focused more on the per-
formance of MT models and developed an Iterative
Data Augmentation method to leverage text data
from all corpora, improving the MT models and
enabling the generation of multiple pseudo data.
We then used these multiple pseudo data to train
diverse E2E ST models for optimal performance.
Our best ST ensemble system includes models with
different input representations, architectures, and
training corpora, achieving a BLEU score of 29.22
on the MuST-C En-Zh tst-COMMON set.

The remainder of the paper is organized as fol-
lows: Section 2 describes the data processing, data
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augmentation and speech segmentation. Section 3
outlines the construction of the vocabulary and
structures of our ASR, MT and ST models. The
experimental settings and final results are presented
in Section 4. Finally, Section 5 concludes the sub-
mission.

2 Data

2.1 Data Processing

Our system was built under the “constrained” train-
ing condition. The training data can be divided
into three categories: ASR, MT, and ST corpora.
We used the NiuTrans toolkit (Xiao et al., 2012) to
segment English and Chinese text in all corpora.

ASR corpora. We followed the previous work
(Xu et al., 2021b) and standardized all audio sam-
ples to a single channel and a sample rate of 16,000
Hz. For the Common Voice corpus, we selected
only the cleaner parts according to the CoVoST
v2 En-Zh corpus. In the MuST-C v1 En-De cor-
pus, we removed repetitive items by comparing
the MuST-C v2 En-Zh transcriptions. We used the
Librispeech corpus to train the ASR model and
scored the Common Voice, TED LIUM, and ST
TED corpus. Data with a WER greater than 0.75
were removed, and frames with lengths less than
5 or greater than 3000 were filtered. In addition,
utterances with more than 400 characters were re-
moved.

MT corpora. Following the methodology of
(Zhang et al., 2020), we cleaned the parallel texts
of the OpenSubtitle corpus and used fast-align to
score all sentences. We averaged the scores by
the sentence length and filtered out sentences with
scores below -6.0. In the News Commentary v16
corpus, we used langid (Lui and Baldwin, 2012) to
filter out sentences with incorrect language identifi-
cation results. In the Tatoeba corpus, we converted
90% of the sentences from traditional Chinese to
simplified Chinese using OpenCC1.

ST corpora. For the MuST-C v2 En-Zh and CoV-
oST v2 En-zh corpus, we only filtered frames by
length, similar to the ASR corpora. For the pseudo
ST data, we removed sentences containing repeated
n-gram words (n is 2 to 4) more than four times.
Additionally, sentences with length ratios outside
the range of 0.25 to 4 and those with incorrect lan-
guage identification results were filtered out.

1https://github.com/BYVoid/OpenCC

Task Corpus Sentence Hour

ASR

LibriSpeech 0.28 960
Europarl-ST 0.03 77
TED LIUM 0.26 448
ST TED 0.16 235
VoxPopuil 0.17 478
MuST-C V1 En-De 0.07 138
MuST-C V2 En-Zh 0.36 572
CoVoST v2 En-Zh 0.28 416
Total 1.61 3324

MT

News Commentary 0.31 -
OpenSubtitle 8.62 -
MuST-C V2 En-Zh 0.36 -
CoVoST V2 En-Zh 0.28 -
Tatoeba 0.05 -
Total 9.62 -

ST
MuST-C En-Zh 0.36 572
CoVoST V2 En-Zh 0.28 416
Total 0.64 988

Table 1: Details about the size of all labeled corpora.
The unit of sentence is million (M).

Task Corpus Sentence Hour
MT ASR corpora+MT 1.38 -

ST
ASR corpora+MT 1.61 3323
Audio+ASR+MT 1.4e-2 3

Table 2: Details about the size of all pseudo corpora.

2.2 Data Augmentation

We only used SpecAugment (Bahar et al., 2019)
and not used speed perturb for ASR data augmenta-
tion, because speed perturb requires more training
resources but has the limited improvement. It is
also worth noting that we did not use back transla-
tion technology in either MT or E2E ST, as there
was no target-side monolingual data available.

The MT model or ensemble MT systems repre-
sent the upper limit for E2E ST. Translating the
transcript in the ASR corpus into the target lan-
guage using MT models is a simpler and more
effective way to augment the ST corpus than gener-
ating source speech features from the source texts
in the MT corpus using TTS models. Based on
this, we propose an Iterative Data Augmentation
(IDA) method, which aims to use text data from all
corpora to improve the performance of MT models
and generate high-quality ST corpus iteratively, as
illustrated in Algorithm 1.

We also discovered incomplete transcriptions in
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a few sentences from the TED LIUM, ST-TED, and
voxpupil corpus. Therefore, we generated pseudo
transcriptions using the ASR model and then trans-
lated them using the best MT ensemble systems.

Algorithm 1: IDA
Input: DASR = {(sasr, xasr)},DMT =

{(xmt, ymt)}
Output: D∗

STaug
= {(sasr, xasr, y′

asr)}
1 D∗

MT ← DMT ;
2 s∗ ← 0;
3 for i← 1 to MAXITER do
4 M1,M2, · · · ,Mn ← train(D∗

MT );
5 Ei ← ensemble(M1,M2, · · · ,Mn);
6 si ← score(Ei);
7 if i ̸= 1 and si <= s∗ then
8 break;
9 else

10 y
′
asr ← decode(Ei, xasr);

11 Di
MTaug

← {(xasr, y′
asr)};

12 Di
STaug

← {(sasr, xasr, y′
asr)};

13 D∗
MT ← DMT ∪Di

MTaug
;

14 s∗ ← si;

15 return D∗
STaug

;

2.3 Speech Segmentation
To avoid the significant performance drop due to
the mismatch between the training and inference
data, we adopted Supervised Hybrid Audio Seg-
mentation (SHAS) (Tsiamas et al., 2022) to split
long audios in the test sets. However, we did not
fine-tune our models on the resegmented data, ac-
cording the findings in Gaido et al. (2022).

3 Model Architecture

We explored the performances of different ASR,
MT, and ST architectures and found that using
larger models is more conducive to performance
improvement in all three tasks.

3.1 Vocabulary
We adopted a unified vocabulary for all tasks,
trained by the SentencePiece (Kudo and Richard-
son, 2018) model (SPM) from the MT corpora. To
incorporate more subwords from the TED domain,
we up-sampled the MuST-C corpus by 10x 2 in the

2Specifically, we created 10 copies of the MuST-C corpus
and combined them with additional MT data.

training corpora for the SPM. The vocabulary size
for English and Chinese is 10k and 44k, respec-
tively.

3.2 ASR Models

Inspired by Zhang et al. (2022a), we used three
ASR encoders with different architectures and in-
put representations to achieve better ensemble per-
formance.

• Transformer-HuBERT (TH): This encoder
consists of 7 layers of 512-channel-CNN with
strides [5,2,2,2,2,2,2] and 12 layers of Trans-
former (Vaswani et al., 2017). The hidden
size, ffn size, and number of heads are 768,
3072, and 8, respectively. This architecture
takes waveform data as input.

• Conformer-PDS-Medium (CPM): This en-
coder consists of 18 layers of Conformer
(Gulati et al., 2020) with progressive down-
sampling (PDS) methods (Xu et al., 2023).
The hidden size, ffn size, and number of heads
are 512, 2048, and 8, respectively. This archi-
tecture takes log Mel-filterbank features as
input.

• Conformer-PDS-Deep (CPD): This encoder
is the same as the Conformer-PDS-Medium,
but with the number of layers adjusted from
18 to 24.

Due to limited computational resources, we pre-
trained the Transformer-HuBERT only on the Lib-
rispeech corpus using the method outlined in Hsu
et al. (2021). The Conformer-PDS-Medium/Deep
architectures were trained on all ASR corpora, and
we employed an additional decoder with 6 layers
to utilize the Cross Entropy loss. We also adopted
CTC loss (Graves et al., 2006) and inter-CTC loss
(Lee and Watanabe, 2021) to accelerate the conver-
gence.

3.3 MT Models

While deep models have shown success in trans-
lation tasks, we observed that wider architectures
with more parameters generally yield superior per-
formance (Shan et al., 2022). As such, we selected
the DLCL Transformer (Wang et al., 2019) and the
ODE Transformer (Li et al., 2022) for the deep and
wide models, respectively.
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• DLCL: This model consists of 30 layers of
Transformer encoder and 6 layers of Trans-
former decoder with dynamic linear combina-
tion of layers and relative position encoding
(Shaw et al., 2018) methods. The hidden size,
ffn size, and number of heads are 512, 2048,
and 8, respectively.

• ODE: This model consists of 12 layers of
Transformer encoder and 6 layers of Trans-
former decoder with an ordinary differential
equation-inspired method, which has been
proven to be efficient in parameters. The hid-
den size, ffn size, and number of heads are
1024, 4096, and 16, respectively.

• ODE-Deep: This model is the same as ODE
but with the number of encoder layers ad-
justed from 12 to 18.

Since the transcript in the ASR corpora lacks punc-
tuation and is in lower-case, we lowered-cased and
removed punctuation from the source text of the
MT corpora for consistency before training the MT
models. While this operation may have a negative
impact on MT performance, we have demonstrated
its usefulness for data augmentation and the final
ST performance in Section 4.3.

3.4 ST Models

We utilized the SATE method to enhance the usage
of pre-trained ASR and MT models for the ST task.
Specifically, we decoupled the ST encoder into an
acoustic encoder and a textual encoder, with an
adapter in between. The pre-trained ASR encoder
was used to initialize the acoustic encoder, while
the pre-trained MT model was used to initialize
the textual encoder and decoder. To optimize per-
formance with limited memory, we successively
attempted multiple structures, ranging from small
to large, as presented in Table 3. The models with
TH-DLCL structure were trained using the tech-
niques outlined in Zhang et al. (2022b).

Structure ASR MT Params.
TH-DLCL TH DLCL 251M
CPM-DLCL CPM DLCL 289M
CPM-ODE CPM ODE 444M
CPD-ODE CPD ODE 472M

Table 3: The ST structures initialized with different
ASR and MT models under the SATE framework.

Model dev tst-M test-clean test-other
CPM 5.01 4.17 2.81 6.51
CPD 4.76 4.25 2.86 6.10

Table 4: WER scores on the dev, tst-COMMON (tst-M),
and test sets of Librispeech.

4 Experiments

4.1 Experimental settings
All experiments were implemented using the
Fairseq toolkit (Ott et al., 2019). We trained all
models using pre-norm and utilized dropout with
a ratio ranging from 0.1 to 0.3 and label smooth-
ing with 0.1 to prevent overfitting. Training was
stopped early when the indicators on the dev set
did not improve for 5 consecutive times. During
decoding, we averaged the best 5 or 10 models
in the dev set in all tasks. For single models, we
set the beam size and length penalty to 5 and 1.0,
respectively, while for ensemble systems we used
different values adapted from our test sets. The MT
and ST models were evaluated using SacreBLEU
(Post, 2018), while the ASR models were evalu-
ated using WER. All the models were trained on 8
NVIDIA 3090 or 8 TITAN RTX GPUs.

4.2 ASR
Table 4 presents the ASR results. We observed
that the deeper model performed better in con-
fronting noise test sets (dev set of MuST-C and
test-other), but it also overfitted in some test sets
(tst-COMMON and test-clean). We did not calcu-
late the WER of Transformer-HuBERT because it
was only pre-trained as a feature extractor and was
not fine-tuned for speech recognition tasks.

4.3 MT and IDA
Table 5 shows the MT and IDA results on the test
sets of MuST-C and CoVoST. We found that pre-
training on all the MT corpora and fine-tuning on
the in-domain corpora can improve performance.
Fine-tuning on both MuST-C and CoVoST together
is better than only on MuST-C corpus (ODE1 vs.
ODE2). It is worth noting that fine-tuning not only
improves the performance of in-domain test sets,
but also enhances the performance on out-domain
test sets, such as the test set of WMT21-news (not
included in this paper for simplicity).

We found that both DLCL and ODE models out-
performed our baseline, which was a Transformer-
Base model with fewer parameters. Additionally,
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Model
Pre-train Fine-tune

tst-M tst-C tst-M tst-C
Baseline♢† 28.20 50.98 28.96 50.18
- - - 26.25 46.27
Baseline† 26.99 49.12 28.04 49.49
DLCL1 27.68 50.66 28.62 54.12
ODE1† 28.28 51.67 28.56 51.09
ODE2 - - 29.03 55.28
ODE3 28.17 50.98 29.06 54.41
E1: ensemble (above four) 29.61 56.20

DLCL2 29.12 53.95 29.46 55.24
ODE4 29.27 54.31 29.56 55.47
ODE-Deep1 29.39 54.21 29.36 55.47
ODE-Deep2 29.44 54.28 29.47 55.71
E2: ensemble (above four) 30.02 57.18

Table 5: BLEU scores on the tst-COMMON (tst-M) and
the test set of CoVoST (tst-C). All data are in lower case.
Models marked with ♢ indicate that the punctuation of
the source text in corpora for pre-training, fine-tuning
and testing was kept. The † means that only the MuST-C
corpus was used in fine-tuning.

we demonstrated that although models trained on
the corpora with punctuation perform better on test
sets including punctuation (28.96 vs. 28.04), they
do not perform as well on test sets without punctu-
ation (26.25 vs. 28.04), which is more consistent
with the situation of the ASR transcript.

Since each round of iteration in IDA requires
retraining multiple MT models, we set the MAX-
ITER parameter in IDA to 2 to balance computing
resources and model performance. We observed
that models trained during the second iteration out-
performed those trained during the first iteration.
During the second iteration, we found that further
increasing the number of parameters resulted in
limited improvement (ODE4 vs. ODE-Deep1/2).
Additionally, iterative training resulted in a con-
siderable improvement in ensemble systems (from
29.61 to 30.02). Finally, we employed the ensem-
ble systems E1 and E2 to generate the pseudo data
D1

STaug
and D2

STaug
for ST, respectively.

4.4 ST and Ensemble

Table 6 displays the ST results on the test sets
of MuST-C and CoVoST. In contrast to MT, we
did not use in-domain fine-tuning, as we found in
the pre-experiments that it did not improve perfor-
mance and may even have caused some damage.

Experiments 1-9 demonstrated that increasing
the number of parameters, initializing with bet-

ID Model Data tst-M tst-C
1 Baseline M 23.09 -
2 TH-DLCL2 P 2 27.50 41.94
3 CPM-DLCL1 P 1 28.37 44.20
4 CPM-DLCL2 P 1 28.44 45.58
5 CPM-DLCL2 P 2 28.57 45.98
6 CPM-ODE4 P 1 28.72 46.76
7 CPM-ODE4 P 2 29.00 47.15
8 CPD-ODE4 P 1 28.79 47.18
9 CPD-ODE4 P 2 29.01 47.65
10 ensemble (7,9) 29.07 48.67
11 ensemble (2,7,9) 29.11 48.88
12 ensemble (2,7,8,9) 29.16 48.98
13 +adjusted beam/alpha 29.22 49.27

Table 6: BLEU scores on the tst-COMMON (tst-M) and
the test set of CoVoST (tst-C). M refers to the MuST-C
corpus, C refers to the CoVoST corpus, and P i refers to
M&C&Di

STaug
. The models with different parameters

are separated by the dotted line.

ter pre-trained models, and training with higher-
quality pseudo ST corpora were all effective ways
for enhancing the performance of the ST model.
These modifications resulted in a significant im-
provement over the baseline model, which has 32M
parameters and was trained solely on the MuST-C
dataset.

In the ensemble stage, we aimed to maximize the
diversity between models. To achieve this, we se-
lected models with different input representations,
architectures, and training corpora. Finally, by ex-
panding the beam size and adjusting the length
penalty (alpha), we achieved a BLEU score of
29.22 on tst-COMMON sets, which represents a
0.12 BLEU improvement over our optimal result
from the previous year, despite using less MT train-
ing data than last year (Agarwal et al., 2023).

5 Conclusion

This paper presented our submission to the
IWSLT23 English-to-Chinese offline speech trans-
lation task. Our system aimed to find the optimal
ensemble system under the "constrained" training
condition. To achieve this goal, we explored dif-
ferent input representations, model architectures,
and proposed an IDA method to utilize all available
texts to improve the MT systems and generate mul-
tiple pseudo ST data. Our final system achieved
a BLEU score of 29.22 on the MuST-C En-Zh tst-
COMMON set, and the results on the IWSLT 23
test sets are shown in Table 7.
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System TED ACL
Comet BLEU Comet BLEU

Ref 2 1 2 1 both
NiuTrans 0.8376 0.7740 50.0 34.3 57.9 0.7733 47.1

Table 7: Scores on the IWSLT23 test sets.
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Abstract

This paper describes the ON-TRAC consor-
tium speech translation systems developed for
IWSLT 2023 evaluation campaign. Overall, we
participated in three speech translation tracks
featured in the low-resource and dialect speech
translation shared tasks, namely; i) spoken
Tamasheq to written French, ii) spoken Pashto
to written French, and iii) spoken Tunisian to
written English. All our primary submissions
are based on the end-to-end speech-to-text neu-
ral architecture using a pre-trained SAMU-
XLSR model as a speech encoder and an mbart
model as a decoder. The SAMU-XLSR model
is built from the XLS-R 128 in order to gen-
erate language agnostic sentence-level embed-
dings. This building is driven by the LaBSE
model trained on a multilingual text dataset.
This architecture allows us to improve the input
speech representations and achieve significant
improvements compared to conventional end-
to-end speech translation systems.

1 Introduction

IWSLT is a unique opportunity that allows each
year the assessment of progress made in the area
of Spoken Language Translation (SLT). This as-
sessment is made possible throughout the organ-
isation of an evaluation campaign including var-
ious shared tasks that address specific scientific
challenges of the SLT domain. In addition to the
well-established shared tasks, IWSLT organisers
introduce new tasks to address the many challenges
settings related to SLT area like data scarcity, mul-
tilingualism, time and computation constraints, etc.

In this context, the IWSLT 2023 proposes two
interesting shared tasks: low-resource and dialect
speech translation (ST). The former aims to as-
sess the exploitability of current translation sys-
tems in data scarcity settings. The latter focuses
on the assessment of the systems’ capabilities in
noisy settings: different dialects are mixed in a
single dataset of spontaneous speech. For the

low-resource task, several language pairs were
proposed this year. In this paper, we focus on
Tamasheq-French, Tunisian Arabic-English and
Pashto-French.

This paper reports the ON-TRAC consortium
submissions for the aforementioned tasks. The
ON-TRAC Consortium is composed of researchers
from three academic laboratories, LIUM (Le Mans
University - France), LIA (Avignon University -
France), MIT (Cambridge - USA) together with
three industrial partners: Airbus France, ELYA-
DATA and Systran. Our systems for the dialect task
focus on both cascaded and end-to-end approaches
for ST. For the low-resource task, we focus on
the leveraging of models based on self-supervised
learning (SSL), and on the training of ST models
with joint automatic speech recognition (ASR), ma-
chine translation (MT) and ST losses.

This paper is organized as follows. Section 2
presents the related work. Section 3 is dedicated
to detail our primary systems encoder-decoder ap-
proach. The experiments with the Tunisian Arabic-
English dataset for low-resource and dialect ST
tasks are presented in Section 4. Results for the
Tamasheq-French and Pashto-French tracks are pre-
sented in Section 5 and 6 respectively. Section 7
concludes the paper and discusses future work.

2 Related work

Before the introduction of direct or end-to-end ST
models (Berard et al., 2016; Weiss et al., 2017), the
ST task was approached as a cascaded problem:
the speech is transcribed using an ASR model, and
the transcriptions are used to train a classic MT
model. The limitations of this approach include
the need for extensive transcriptions of the speech
signal, and the error propagation between ASR and
MT modules. In comparison to that, end-to-end ST
models offer a simpler encoder-decoder architec-
ture, removing the need for intermediate represen-
tations of the speech signal. Although at first, cas-
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caded models were superior in performance com-
pared to end-to-end models, results from recent
IWSLT campaigns illustrate how end-to-end mod-
els have been closing this gap (Ansari et al., 2020;
Bentivogli et al., 2021; Anastasopoulos et al., 2021,
2022). Moreover, the joint optimization of ASR,
MT and ST losses in end-to-end ST models was
shown to increase overall performance (Le et al.,
2020; Sperber et al., 2020).

Furthermore, SSL models for speech process-
ing are now a popular foundation blocks in speech
pipelines (Schneider et al., 2019; Hsu et al., 2021;
Baevski et al., 2019, 2020). These models are
large trainable networks with millions, or even bil-
lions (Babu et al., 2021b), of parameters that are
trained on unlabeled audio data only. The goal
of training these models is providing a powerful
and reusable abstraction block, which is able to
process raw audio in a given language or in multi-
lingual settings (Conneau et al., 2020; Babu et al.,
2021b), producing a richer audio representation for
the downstream tasks to train with, compared to
surface features such as MFCCs or filterbanks. Re-
cent work found considerable performance gains
and/or state-of-the-art performance by including
these blocks in their target tasks, and more im-
portantly, the final models can be trained with a
smaller amount of labeled data, increasing the ac-
cessibility of current approaches for speech process-
ing (Kawakami et al., 2020; Schneider et al., 2019;
Hsu et al., 2021; Baevski et al., 2019, 2020).1 Re-
cent work found considerable performance gains
and/or state-of-the-art performance by including
these blocks in downstream tasks. Most of them
focused on ASR (Kawakami et al., 2020; Schnei-
der et al., 2019; Hsu et al., 2021; Baevski et al.,
2019, 2020), but recent speech benchmarks (Evain
et al., 2021b,a; Yang et al., 2021) cover tasks such
as ST, spoken language understanding, emotion
recognition from speech and more.

3 Primary systems encoder-decoder
architecture

3.1 SAMU-XLS-R (SAMU−XLS−R)
SAMU−XLS−R is a multilingual multimodal se-
mantic speech representation learning framework
where the speech transformer encoder XLS−R
(Babu et al., 2021a) is fine-tuned using seman-
tic supervision from the pre-trained multilingual

1Recent benchmarks for SSL models can be found in Evain
et al. (2021b,a); Yang et al. (2021); Conneau et al. (2022).

semantic text encoder LaBSE (Feng et al., 2022).
The training and modeling details can be found
in the original paper (Khurana et al., 2022). In
this work, we use the same training framework
but train the model using transcribed speech col-
lected from approximately 100 spoken languages
from several datasets such as CommonVoice-v10
(Ardila et al., 2020a), Multilingual Speech (MLS)
(Pratap et al., 2020), Babel, IndicSuperb (Javed
et al., 2022), Shrutilipi (Bhogale et al., 2023), Vox-
populi (Wang et al., 2021), MGB-2 Arabic (Ali
et al., 2019) and Wenetspeech (Zhang et al., 2022).

3.2 Translation model

We use the standard encoder-decoder architecture
for our translation model. We initialize the encoder
using the pre-trained SAMU−XLS−R. Following
(Li et al., 2020), the decoder is initialized with
the decoder of a pre-trained text-to-text transla-
tion model, namely MBART2. The encoder-decoder
model is trained using corpora that consist of tu-
ples (a1:S ,y1:L), where y1:L is the text translation
sequence of the speech sequence a1:S .

To maintain the pre-trained SAMU−XLS−R val-
ues of the speech encoder, we leave its parameters
unchanged. However, we introduce task-specific
parameters in the form of adapters (Houlsby et al.,
2019), consisting of a bottleneck Feed-Forward
layer, which are added after the Multi-Headed Self-
Attention and fully-connected blocks in each trans-
former layer. While most parameters of the decoder
remain fixed from pre-training, we fine-tune the
Layer Normalization and Encoder-Decoder Cross-
Attention blocks based on (Li et al., 2020).

4 Tunisian Arabic-English track

In this section, we present our experiments for
translating Tunisian Arabic to English in the con-
text of the dialect and low-resource tasks from
IWSLT 2023. Section 4.1 describes the data used
in our experiments. Results on the ST task are
presented in Section 4.3.

4.1 Data

The training and development data conditions are
identical to IWSLT 2022 edition. It consisted of
two types of datasets: (1) 383h of manually tran-
scribed conversational speech and (2) 160h, subpart
of it, augmented with their English translations to
form a three-way parallel corpus (audio, transcript,

2Text-to-text translation model: MBART
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translation). This dataset is made available by LDC
under reference LDC2022E01. The goal of this
track is to train speech translation systems under
two training conditions: constrained, in which only
the provided dataset resources are allowed, and un-
constrained where participants may use any public
or private resources.

4.2 End-to-end ST

We used the end-to-end translation model presented
in section 3.2. The model was trained directly on
the Tunisian to English task (no pre-training of
the encoder-decoder model), using SAMU−XLS−R
trained on 100 languages. We used adapters
(Houlsby et al., 2019) inside the encoder to keep
the semantic information while fine-tuning.

4.3 Results

Table 1 presents our ST results for the Tunisian
to English Dialectal and Low-resource track. Our
primary system obtained a BLEU of 20.7 on our
validation set. As shown in the tables, the official
evaluation scores appear to be low compared to
the good result obtained on the validation set. We
suspect that our test submission was not conform
to the evaluation specifications. We speculate that
this difference between validation and test scores is
due to the fact we did not remove the punctuation
nor the disfluencies tokens from the case-sensitive
translation we submitted, while the evaluation is
made lowercase and no punctuation. We mistak-
enly expected this normalization step to be applied
by the organizers instead of the participant. We
were able to ask the organizers to evaluate our nor-
malized output after the evaluation period. The
results are reported in Table 1. Test2 refers to the
IWSLT 2022 evaluation campaign test, and test3
refers to the one of IWSLT 2023. This normaliza-
tion before the training of our translation model is
expected to further improve our results because we
believe that the post-deadline fix more accurately
reflects our system’s true performance.

System Description valid test2 test3

primary SAMU−XLS−R 100 20.7 9.6 8.8
post-deadline fix SAMU−XLS−R 100 20.7 18.2 16.3

Table 1: Results for Tunisian Arabic to English
translation systems in terms of %BLEU for low-
resource (LR)track.

5 Tamasheq-French Experiments

In this section we present our experiments for the
Tamasheq-French dataset in the context of the low-
resource ST track.

5.1 Data

This dataset, recently introduced in Boito et al.
(2022), contains 14 h of speech in the Tamasheq
language for the training split which corresponds
to 4,444 utterances translated to French. The de-
velopment set contains 581 utterances (a little bit
less than 2 h of speech), the 2022 test set contains
804 utterances (approximatively 2 h of speech).
The 2023 test set contains 374 utterances (approxi-
matively 1 h of speech). Additional audio data was
also made available through the Niger-Mali audio
collection: 224 h in Tamasheq and 417 h in geo-
graphically close languages (French from Niger,
Fulfulde, Hausa, and Zarma).3 For all this data, the
speech style is radio broadcasting, and the dataset
presents no transcription.

5.2 Models

For the Tamasheq to French task, we performed
several experiments. First of all, we did the same
experiment that was done for Pashto-French and
Tunisian-English tasks. We used the end-to-end
translation model presented in section 3.2, directly
trained on the Tamasheq→French task. Directly
means that we used SAMU−XLS−R-xx (xx corre-
sponds to the number of languages in the training
set, equals to 53, 60 and 100) to initialise the en-
coder and performed the training of the encoder-
decoder model using the Tamasheq→French train-
ing set.

We used the CoVoST-2 (Wang et al., 2020)
X→EN speech-translation dataset in which we
translated the EN text into French (using Mbart
Many-to-Many). Additionally, we exploited the Eu-
roparl benchmark, which comprises 72 translation
tasks (denoted as X→Y), with the source language
set (X ) consisting of nine languages: FR, DE, ES,
IT, PL, PT, RO, NL, and EN. The target language
set (Y) is equivalent to the source language set. For
the specific training data distribution of each of the
72 translation tasks, refer to (Iranzo-Sánchez et al.,
2019).

We trained a translation model using CoVost-2
X→FR,EN and Europarl X→FR, namely models

3https://demo-lia.univ-avignon.fr/
studios-tamani-kalangou/
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System Description valid test 2023

primary samu100l[cv2_xx→(en,fr)+europarl_xx→fr] + test22 21.39 16.00

contrastive1 samu100l[cv2_xx→(en,fr)+europarl_xx→fr] 21.41 16.52
contrastive2 samu60l[cv2_xx→(en,fr)+europarl_xx→fr] + test22 20.80 15.84
contrastive3 samu60l[cv2_xx→(en,fr)+europarl_xx→fr] 20.66 15.35
contrastive4 samu100l continue training + test22 21.39 16.30
contrastive5 samu100l continue training 20.78 15.60
baseline best system from IWSLT2022 8.34 5.70

Table 2: Results of the Tamasheq-French ST systems in terms of BLEU score.

samu60l[cv2_xx→(en,fr)+europarl_xx→fr] and
samu100l[cv2_xx→(en,fr)+europarl_xx→fr]). We
also translated the French translation of the
Tamasheq speech into Spanish, Portuguese and En-
glish (still using MBart Many to Many).

Using the pre-trained models, we trained a trans-
lation model from Tamasheq to French, Spanish,
English and Portugese. We added the 2022 test set
inside the training corpus for the Primary model.

Moreover, we used the last checkpoint of the
SAMU−XLS−R training (100 languages) and pushed
further the training using the LaBSE embeddings
of the translations of the Tamasheq into French,
Spanish, English and Portuguese. Then using the
specialized Tamasheq SAMU−XLS−R, we trained a
Tamasheq to French, Spanish, English, Portuguese
model.

5.3 Results

Table 2 presents our ST results for the Tamasheq to
French task. Our first contrastive model performed
better than the Primary model (16.52 for the con-
trastive model compare to 16.00 for the primary
model). This was unexpected because the 2022
test set was added inside the training corpus for
the Primary model and not in the contrastive one.
The constrative4 and contrastive5 performances (in
which we push the training of the SAMU−XLS−R-
100 model further) are very close to the primary
and contrastive1 (16.30 BLEU vs 16.52 BLEU).

We did not use the 224 hours of unlabelled
data. We could probably get better results by us-
ing pseudo-labelling using our best model and then
using the translation for the training of the transla-
tion model. Another direction could be the use of
another decoder like the recently proposed NLLB
model (Costa-jussà et al., 2022).

6 Pashto-French Experiments

In this section, we present our experiments for the
first edition of translating Pashto speech to French
in the context of the low-resource ST track for
IWSLT 2023.

6.1 Data

The Pashto-French dataset used in our experiments
was provided by ELDA. This dataset is available in
the ELRA catalog, TRAD Pashto Broadcast News
Speech Corpus (ELRA catalogue, 2016b) concern
audio files and TRAD Pashto-French Parallel cor-
pus of transcribed Broadcast News Speech - Train-
ing data (ELRA catalogue, 2016a) are their tran-
scriptions.

This dataset is a collection of about 108 hours of
Broadcast News with transcriptions in Pashto and
translations in French text. Dataset is build from
collected recordings from 5 sources: Ashna TV,
Azadi Radio, Deewa Radio, Mashaal Radio and
Shamshad TV. Training data contains 99h of speech
in Pashto, which corresponds to 29,447 utterances
translated into French.

We participated for Pashto to French task for
both types of submissions: constrained and uncon-
strained conditions. For constrained conditions,
systems are trained only on the dataset provided by
the organizers, while for unconstrained conditions,
systems can be trained with any resource, including
pre-trained models.

We investigate two types of ST architectures:
end-to-end architectures 6.2, and pipeline 6.3 mod-
els.

6.2 Pipeline models

For the cascaded approach, i.e. the task of using an
ASR model followed by a MT model, we focused
on Wav2Vec2.0 (Baevski et al., 2020) as a Speech-
to-Text system. The architecture used is Wav2Vec2-

222



XLSR-53 (Conneau et al., 2020), a large version of
Wav2Vec2 pre-trained on the multilingual dataset
Common-Voice (Ardila et al., 2020b). Once adding
a language modeling head on top of the model for
fine-tuning on the Pashto dataset, we observed a
score of less than 20% of WER and a good model-
ing of the reference language since the difference of
the scores for translating written Pashto to written
French when using either the reference or the gener-
ated Pashto text, was always less than 0.5 of BLEU.
For the MT system, we tested multiple approaches
using auto regressive Sequence-2-Sequence mod-
els.

We mainly focused on transformers encoder-
decoder systems from small basic transformers
(contrastive3 in Table 3) to large pre-trained mul-
tilingual text-to-text transformers such as T5 (Raf-
fel et al., 2020) and mT5 (multilingual T5). For
primary cascaded system, models are based on a
convolutional model (fconv) (Gehring et al., 2017)
upgraded (fconv-up). We reduced the depth and the
width of both the encoder and decoder to adapt the
size of our fconv model to our dataset. Our fconv-
up model achieves 14.52 of BLEU on valid set and
15.56 on the test set, while fconv would give 13 of
BLEU. Compared to the cascaded baseline system,
based on small basic transformers (contrastive3),
fconv-up cascaded system outperforms by 6 BLEU
points.

Experiments have been carried out in order to
extract the encoder of the fine-tuned W2V and use
the latent representation of the audio to train an
auto-regressive decoder and thus to skip the Speech-
to-Text part, but without any success.

6.3 End-to-end models

We used the end-to-end translation model presented
in section 3.2. The model was trained directly
on the Pashto to French task (no pre-training of
the encoder-decoder model), using SAMU−XLS−R
trained on 53 and 100 languages. We used adapters
(Houlsby et al., 2019) inside the encoder to keep
the semantic information while fine-tuning.

Two constrained contrastive end-to-end systems
were submitted for this task. Both share the same
encoder-decoder architecture using transformers
(Vaswani et al., 2017). The system encoder is the
encoder from a Whisper small (768) (Radford et al.,
2022) pre-trained model. The decoder has a dimen-
sion of 512 using 8 heads and 6 layers. It is not pre-
trained. A feed forward network projection layer

is used between the encoder and decoder to con-
nect both modules. The difference between both
systems lies in the use of a transformer language
model trained from scratch on the provided dataset.

Both of these systems were also trained on addi-
tional Pashto data and submitted as contrastive un-
constrained systems 2 and 3. The language model
was not trained on the additional data.

6.4 Results

Results for constrained and unconstrained condi-
tions are presented in Table 3 and Table 4 respec-
tively.

Constrained
System Description valid test

primary Pipeline, fconv-up 14.52 15.56
contrastive1 E2E, without LM 11.06 15.29
contrastive2 E2E, with LM 11.11 15.06
contrastive3 Pipeline 10.5 9.2

Table 3: Results for Constrained Pashto-to-French ST
systems in terms of %BLEU score.

As for constrained setting, we noted that a
pipeline of two E2E ASR and NMT system gives
better results compared to using one speech trans-
lation E2E system. Although the usage of a LM
improves the E2E ST further, we were not able
to exceed the pipeline of the two E2E systems
(ASR+NMT).

Unconstrained
System Description valid test

primary SAMU_XLSR 100l 24.82 24.87
contrastive1 SAMU_XLSR 53l 23.38 23.87
contrastive2 E2E, without LM 12.26 15.18
contrastive3 E2E, with LM 12.16 15.07

Table 4: Results for Unconstrained Pashto-to-French ST
systems in terms of %BLEU score.

When we switch to the unconstrained setting,
we see a significant improvement demonstrated by
a dramatic increases of the BLEU score with the
SAMU−XLS−R system. SAMU−XLS−R obtained a
BLEU of 24.87 on the test set when trained start-
ing from a pretrained encoder with 100 languages
(SAMU−XLS−R-100) and a full BLEU point less
(23.87) when we start from a 53 languages encoder
(SAMU−XLS−R-53).
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7 Conclusion

This paper presents results obtained on three tasks
from the IWSLT 2023 Dialectal and Low-resource
ST track, namely Tunisian to English, Tamasheq
to French and Pashto to French. Given an un-
constrained condition, our submission relies heav-
ily on the semantic speech representation learning
framework SAMU-XLS-R that greatly improves
results compared to the other submitted end-to-
end ST models by leveraging multilingual data
from other languages. These data can thus come
from high resource languages and help to allevi-
ate the low-resource setting difficulty. We indeed
observe slightly improved results when using a
SAMU-XLS-R model trained on more languages
(Tamasheq to French : 15.35 BLEU when using
60 languages, 16.52 BLEU when using 100 lan-
guages). We believe results could be further im-
proved by using the unlabelled data available for
the Tunisian to English and the Tamasheq to French
tasks, and by investigating other decoders in our
encoder-decoder framework.

Acknowledgements

This work was partially funded by the follow-
ing projects: French Research Agency (ANR)
ON-TRAC project under contract number ANR-
18-CE23-0021, European Commission SELMA
project under grant number 957017, Euro-
pean Union’s Horizon 2020 ESPERANTO re-
search and innovation programme under the
Marie Skłodowska-Curie grant agreement No
101007666 and the DGA RAPID COMMUTE
project. This work was partially performed us-
ing HPC resources from GENCI–IDRIS, grants
AD011012527. The Pashto-French data was to-
tally provided by ELRA. We acknowledge ELRA
catalogue (http://catalog.elra.info) TRAD Pashto-
French Parallel corpus of transcribed Broadcast
News Speech - Training data, ISLRN: 802-643-
297-429-4, ELRA ID: ELRA-W0093, TRAD
Pashto Broadcast News Speech Corpus, ISLRN:
918-508-885-913-7, ELRA ID: ELRA-S0381.

References
Ahmed Ali, Peter Bell, James Glass, Yacine Messaoui,

Hamdy Mubarak, Steve Renals, and Yifan Zhang.
2019. The mgb-2 challenge: Arabic multi-dialect
broadcast media recognition.

Antonios Anastasopoulos, Loïc Barrault, Luisa Ben-

tivogli, Marcely Zanon Boito, Ondřej Bojar, Roldano
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Abstract

This paper describes the systems submitted for
Marathi to Hindi low-resource speech transla-
tion task. Our primary submission is based on
an end-to-end direct speech translation system,
whereas the contrastive one is a cascaded sys-
tem. The backbone of both the systems is a
Hindi-Marathi bilingual ASR system trained
on 2790 hours of imperfect transcribed speech.
The end-to-end speech translation system was
directly initialized from the ASR, and then fine-
tuned for direct speech translation with an aux-
iliary CTC loss for translation. The MT model
for the cascaded system is initialized from a
cross-lingual language model, which was then
fine-tuned using 1.6 M parallel sentences. All
our systems were trained from scratch on pub-
licly available datasets. In the end, we use a lan-
guage model to re-score the n-best hypotheses.
Our primary submission achieved 30.5 and 39.6
BLEU whereas the contrastive system obtained
21.7 and 28.6 BLEU on official dev and test
sets respectively. The paper also presents the
analysis on several experiments that were con-
ducted and outlines the strategies for improving
speech translation in low-resource scenarios.

1 Introduction

A typical end-to-end (E2E) speech translation
model is trained with the help of data triplets
(x,y, z), i.e., the speech signal (x) in source lan-
guage, along with its transcription (y), and, text
translation (z) in target language. In usual low-
resource scenarios, the transcriptions in source lan-
guage are unavailable and moreover the speech
signal and the translation pairs (x, z) are also
limited, which is the case for the IWSLT 2023
Marathi to Hindi low-resource speech translation
task (Agarwal et al., 2023). In such cases, one can
rely on transfer learning, where models trained on
relatively large amounts of data (possibly on a re-
lated task such as automatic speech recognition)
are transferred (adapted) to the target task/scenario

(such as speech translation) using little amounts
of labelled data (Bansal et al., 2019). To be spe-
cific, we train automatic speech recognition (ASR)
systems on relatively large amount of transcribed
speech data (2790 hours), and transfer the model
for speech translation task by fine-tuning it on rela-
tively small amount (16 hours) of IWSLT Marathi-
Hindi training data.

This paper describes the systems submitted for
the aforementioned task. While building the sys-
tems, we mainly focused on end-to-end systems,
which resulted in our primary submission. We have
also put some efforts in building a cascade pipeline
that was submitted as a contrastive system. Both
the systems come under the unconstrained cate-
gory, i.e., we relied on external, publicly available
data to train models. These models, which we
refer to as back-bone models, mainly comprise au-
tomatic speech recognition (ASR), machine trans-
lation (MT) and language models (LM).

The Section 2 describes the various datasets used
for training the back-bone models, and Section 3
presents the details of each individual back-bone
models (ASR, MT, LM), followed by description
of transfer learning for actual speech translation
systems in Section 4. The Section 5 gives the re-
sults and analysis, quantifying the effect of various
factors on the target translation task. Finally, we
conclude in Section 6 and discuss directions for
future works.

2 Datasets for training

Here we describe the details and present the statis-
tics of various datasets used for training the back-
bone models. These datasets come under various
categories, i.e., paired speech data for training ASR,
parallel text data for training MT and monolingual
data for training LMs. All the data we consid-
ered for training covers only Hindi and Marathi
languages. Both these share the same Devanagari
script (unicode block) but there a few set of charac-
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ters that are mutually exclusive.

2.1 Paired speech data
The paired speech data for Marathi and Hindi are
collected from various publicly available datasets
as listed below:

• GramVaani (GV)1 comprises telephone qual-
ity speech in Hindi (hi). The dataset
was used for Interspeech 2022 special ses-
sion (Bhanushali et al., 2022; Patel and
Scharenborg, 2022). We considered only the
100 hour labelled split of the dataset.

• Indian Language Corpora (ILC) (Abraham
et al., 2020)2 is crowdsourced speech data
along with transcriptions in Marathi language.
The dataset is collected from 36 participants
with various socio-economic backgrounds and
dialects.

• Mozilla Common Voice v12 (MCV) (Ardila
et al., 2020) is a crowdsource collection of
paired speech data across various languages.
We took the validated versions of Hindi (hi)
and Marathi (mr) from this corpus.

• MUCS (Diwan et al., 2021)3 is multilingual
and code-switched corpus for training ASR
systems in 6 different Indian languages. The
dataset was introduced in Interspeech 2021
as part of a special session focusing on ASR
for Indian languages. We considered Hindi
and Marathi data from this corpus. Although
MUCS contains about 100 hours of tran-
scribed speech for both Marathi and Hindi,
the lexical content is not diverse, i.e., the same
utterances were spoken by various speakers.

• Multi-speaker speech corpora (MSSC) (He
et al., 2020)4 is a collection of clean speech
data with transcriptions intended for building
text-to-speech synthesis systems for various
Indian languages. We considered only the
Marathi split from this corpus.

• Shrutilipi (SL)5 is collected from public
archives and contains about 6400 hours of

1https://sites.google.com/view/
gramvaaniasrchallenge/

2https://www.cse.iitb.ac.in/~pjyothi/
indiccorpora/

3https://navana-tech.github.io/
MUCS2021/data.html

4https://www.openslr.org/64/
5https://ai4bharat.org/shrutilipi

radio broadcast news in various Indian lan-
guages. The corresponding transcriptions
were obtained with the help of OCR and other
heuristics (Bhogale et al., 2022). This corpus
is the bigger chunk of the data we used for
training, but the transcriptions obtained are
not accurate. A manual inspection revealed
some erroneous alignments at the beginning
and end of the utterances. By setting a thresh-
old (≥ 85) on the provided alignment score,
we filtered Hindi (hi) and Marathi (mr) data
from this corpus. We believe the domain of
this data is closer to IWSLT 2023 speech trans-
lation data.

The statistics of each of the above datasets is pre-
sented in Table 1. This data was used to train
mono and bilingual ASR systems that are described
later in Section 3.1. All the speech data was up-
sampled to 16 kHz. Using Kaldi toolkit (Povey
et al., 2011) 80 dimensional filter banks and 3-
dimensional pitch features are extracted for every
25 ms of speech frame sliding with 10 ms.

2.2 Monolingual and parallel text data

We prepared monolingual data for both Hindi and
Marathi. We pooled data from transcribed speech
(Table 1), Samanantar (Ramesh et al., 2022), In-
dic2Indic, IIIT-H CVIT (Siripragada et al., 2020)
corpus, resulting in 9 M sentences (217 M tokens)
for Hindi and 4M sentences for Marathi6.

The parallel text was taken only from In-
dic2Indic split from Samanantar (Ramesh et al.,
2022), whose statistics are given in Table 2. We
retained punctuation in all the text.

2.3 Speech translation data

The official speech translation data for Marathi -
Hindi involves around 16 hours of training split, i.e.,
Marathi speech and its translations in Hindi. There
are no transcriptions for the Marathi speech. Ta-
ble 3 presents the statistics of the provided speech
translation data. We used speed perturbation (0.9,
1.0, 1.1) to augment the speech translation data.
The effect of such augmentation on the final trans-
lation performance is discussed later in Section 5.

6Due to a bug in data preparation, only Shrutilipi text data
400 K (8.2 M tokens) out of 4 M sentences were used to train
Marathi LM.
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Duration in hours (number of utterances)
Dataset Language Training Dev Test

GV hi 97.9 (37,152) 4.9 (1885) 2.8 (1032)

ILC mr 109.2 (92,471) - - - -

MCV
hi 5.3 (4481) 2.8 (2179) 4.1 (2962)
mr 12.0 (7321) 3.0 (1678) 3.2 (1827)

MUCS
hi 95.1 (99,925) 5.6 (3843) - -
mr 93.8 (79,432) 5.0 (4675) - -

MSSC mr 3.0 (1569) - - - -

SL
hi 1478.6 (764,237) - - - -
mr 894.8 (466,203) - - - -

Total
hi 1676.8 (898,369) 13.3 (7895) 6.9 (3994)
mr 1112.8 (638,159) 8.0 (6353) 3.2 (1827)

Table 1: Statistics of the data used for training ASR systems. The dev and test splits are only used for internal
evaluation of the ASR systems.

Number of utterance pairs
Training Dev Test

1634551 2000 2000

Table 2: Number of parallel utterance (sentence) pairs
between Marathi-Hindi that are used for training XLM
and MT models.

3 Back-bone models

Here, we describe the architecture and training de-
tails of various backbone models.

3.1 ASR

The ASR model is a transformer based seq2seq
model. The speech features are passed through
2 layers of convolution, followed by 12 lay-
ers of transformer encoder blocks and 6 layer
of transformer decoder blocks, with dmodel =
{256, 512}7, heads = 4, dff = 2048. The
dropout was set to 0.1. The model is trained with
a batch size of 128 for 100 epochs using Adam
optimizer (Kingma and Ba, 2015), and warm up
scheduler with a peak learning rate of 0.0005. The
training is done with joint CTC and attention objec-
tive (Karita et al., 2019), where the CTC is applied
at the end of encoder layer and the attention acts
at the output of autoregressive decoder (teacher-

7Smaller models use dmodel = 256, where as bigger mod-
els use dmodel = 512.

forcing).

Lasr = αLctc(x,y) + (1− α)Latt(x,y). (1)

In case of bilingual ASR, the CTC layer, input and
output layers of the decoder are specific to each
language, i.e., the (sub-)word embeddings are not
shared across languages. Such a design ensures that
only target language tokens are decoded, irrespec-
tive of the phonetic similarity with other languages
in the model. The ASR models were trained using
ESPnet toolkit (Watanabe et al., 2018). The perfor-
mance of various mono and bilingual ASR systems
is discussed later in Section 5.

3.2 XLM

The architecture of pre-training masked-language
model is based on cross-lingual language model
(XLM) (Lample and Conneau, 2019)8. More
specifically, we use translation language modelling
objective along with masked language modelling to
train the transformer based encoder. Here, we use
BPE-based sub-word vocabulary that is obtained
jointly for both languages. The model has 6 trans-
former blocks with 512 embedding dimension, 8
attention heads, dropout of 0.1 for both attention
and feed-forward layers. The model is trained for
a maximum of 1000 epochs using Adam optimizer
with a learning rate of 0.0001.

8https://github.com/facebookresearch/
XLM
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Duration in hours (# utterances)
Training Dev Test

15.9 (7990) 3.7 (2103) 4.4 (2164)

Table 3: Statistics of Marathi-Hindi IWSLT2023 speech
translation data.

3.3 MT

The MT model is a transformer based seq2seq
model initialized from XLM. Both the encoder and
decoder parameters are initialized from XLM en-
coder, except for the cross-attention parameters
in the decoder that are randomly initialized. The
model is then fine-tuned on the same 1.6 M parallel
sentences with a batch size of 64 and a maximum
of 1000 epochs. The model achieved 23.0 and 22.6
BLEU scores on the internal valid and test sets
(Table 2) respectively.

3.4 LM for re-scoring

For Hindi, we used an LSTM of three layers of
4096 units each, with no dropout. The model was
trained on 217 M sub-word tokens obtained by to-
kenizing the monolingual Hindi corpus into a 10k
Unigram vocabulary (Kudo, 2018). The model
achieved validation perplexity of 46. Thereafter,
we have fine-tuned it on text data from Shrutilipi
(SL) data for 500 steps.

For Marathi, we used an LSTM of 2 layers per
2048 units, again with no dropout. This model also
utilized a 10k Unigram vocabulary and was trained
on 8.2 M tokens. This model achieved validation
perplexity of 120.

4 Speech translation systems

Here, we briefly describe both the end-to-end and
cascade systems.

4.1 End-to-end

The E2E models are initialized from pre-trained
ASR models. We use both the encoder and decoder
from the ASR, as it provides a better initializa-
tion since the representations from the encoder are
readily compatible with the decoder (Bansal et al.,
2019). The model is then trained for direct speech
translation, with the auxiliary CTC objective also
for translation (Zhang et al., 2022; Yan et al., 2023;
Kesiraju et al., 2023).

Lst = λLctc(x, z) + (1− λ)Latt(x, z) (2)

x

Encoder

CTC

Lctc(x, z)

Decoder

Latt(x, z)

Figure 1: End-to-end framework for speech translation.
x is the input speech (features), z is the target text trans-
lation.

The effect of various initializations and their influ-
ence on downstream speech translation is discussed
later in Section 5.

The E2E speech translation was also trained us-
ing ESPnet toolkit. Our changes to the original
toolkit, along with the training recipes, are avail-
able online9.

A beam search based joint decoding (Karita
et al., 2019) that relies on the weighted average
of log-likelihoods from both the CTC and trans-
former decoder modules is used, that produces the
most likely hypotheses according to

ẑ = argmax
z

β log pctc(z | x)+

(1− β) log patt(z | x) (3)

We found λ = {0.1, 0.3}, β = {0.1, 0.3} suitable
for joint training and decoding respectively.

4.2 Cascade systems
For the cascade speech translation systems, we first
decode n-best hypotheses from ASR model and
obtain 1-best from Marathi LM rescorer. These are
then passed directly to the MT system, which gives
us n-best translation hypotheses in target language
Hindi. These are then re-scored by Hindi LM to
give us 1-best translation hypotheses.

9https://github.com/BUTSpeechFIT/
espnet/tree/main/egs2/iwslt23_low_
resource/st1
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Model name Training data Model type Sub-word vocab Dev WER Test WER
(hrs) per language mr hi mr hi

H1 198† Mono (hi) 1000 - 30.7 - 35.9
H2 1676 Mono (hi) 8000 - 24.7 - 28.4
M1 218† Mono (mr) 1000 14.3 - 42.4 -
M2 1112 Mono (mr) 8000 19.0 - 36.0 -
B1 416† Bilingual (mr, hi) 1000 11.1 31.5 31.9 35.1
B2 2789 Bilingual (mr, hi) 8000 16.0 24.2 23.7 26.9

Table 4: Word-error-rates (WER) of various mono and bilingual ASR systems, trained on various amounts of data.
† implies that the training data contains everything from Table 1 except Shrutilipi (SL).

A further fine-tuning of the MT system using
1-best hypotheses from Marathi to Hindi IWSLT
training set did not improve the results. Due to time
constraints, we did not try various strategies (Ben-
tivogli et al., 2021) or hyperparameter tuning for
the cascade systems.

4.3 Re-scoring n-best hypotheses

We have utilized the language models to re-score
up to 100-best hypotheses in both languages. Us-
ing BrnoLM10, we have introduced the language
model scores. Here, we have tuned the two hyper-
parameters: The weight of the LM score (additive
to 1.0 weight of the acoustic system) and an inser-
tion bonus, added for each token of the hypothesis,
in the LM tokenization. For the E2E system, we
have achieved optimal results with LM weight 1.2
and insertion bonus 5.5. For the Marathi ASR in
the cascade system, optimal setting was 0.3 and
3.5. For the translation system in the cascade, we
did not achieve any improvement by re-scoring the
output with the Hindi LM.

5 Results and analysis

Here, we present the performance of various back-
bone models, along with analysis showing the ef-
fectiveness of various factors such as initializations,
data augmentation, auxiliary objectives and joint
decoding.

5.1 Performance of ASR systems

From the Table 4 we can see that the bilingual mod-
els perform (B1, B2) better than the monolingual
parts (H1, M1, H2, M2). Here, H1, M1 and B1
are smaller models with dmodel = 256, whereas

10https://github.com/BUTSpeechFIT/
BrnoLM

H2, M2 and B2 are bigger ones with dmodel = 512.
All the ASR models were trained with joint CTC
and attention loss, where the CTC weight of 0.3
was found to be optimal. The same weight was
used during joint decoding. Since we retained the
original punctuation in the text, the WER is slightly
affected.

5.2 Performance of ST

Here we present the results of speech translation
systems based on end-to-end architecture. As
shown in Table 5, all the ST models were initial-
ized either from mono or bilingual ASR systems
and fine-tuned using the speech translation data
(with or without data augmentation). While most
of these systems can be considered direct end-to-
end; using an external LM for re-scoring the n-best
makes an exception. Using a Marathi monolingual
ASR model would be sub optimal because the in-
ternal language model represented in the decoder
of the ASR would not be suitable for generating
linguistically acceptable text sequences in Hindi.

Fig. 2 shows the effect of CTC weight during
joint training and decoding. We can see that 0.3 is
the optimal weight both for training and decoding.
Since, we have a separate vocabulary for both the
languages, the posterior probabilities from CTC
during joint decoding will only correspond to the
tokens from the target language Hindi. This is
important, since both the languages come from
same family with high phonetic similarity, and use
same Devanagari script, the non auto regressive
CTC decoder does not accidentally provide higher
scores for tokens from source language Marathi.
The latter scenario can happen when using a joint-
sub word vocabulary for both the languages.

Sacrebleu library (Post, 2018) was used to com-

231

https://github.com/BUTSpeechFIT/BrnoLM
https://github.com/BUTSpeechFIT/BrnoLM


0.0 0.1 0.3 0.5 0.7 0.9
(β) CTC weight during joint decoding

27.0

27.5

28.0

28.5

B
L

E
U

on
de

v
se

t

CTC weight during joint training

λ = 0.1

λ = 0.3

Figure 2: Effect of hyperparameters in joint training and
decoding for direct speech translation. The model is
initialized from B2 and trained on augmented training
data.

pute BLEU11 and CHRF212 scores in the dev sets.

From the Table 5, we can see that independent
improvements come from using bilingual ASR
trained on more data, data augmentation (speed
perturbation) and LM re-scoring. In case of cas-
cade system, the LM re-scoring did not improve the
results. We believe this is because the Marathi LM
was trained on much fewer amounts of data (400K
sentences). We plan to rerun these experiments in
the near future.

Finally, our primary submission was based on
B2 + ST fine-tuning with data augmentation +
LM re-scoring which obtained 39.6 BLEU and
63.3 CHRF2 scores on official test set. Our con-
trastive system was based on B2 + MT + LM
re-scoring which obtained 28.6 BLEU and 54.4
CHRF2 scores.

A manual inspection of the translation outputs
revealed that several mismatches occurred where
there are ambiguous numerals, i.e., some numbers
were written using digits while the others were
spelled out verbatim. There are also cases where
both notations were mixed. We believe, further
text normalization of both reference and hypothe-
sis could give us a better picture of the evaluation
scores.

11nrefs:1 | case:mixed | eff:no |
tok:13a | smooth:exp | version:2.3.1

12nrefs:1 | case:mixed | eff:yes | nc:6
| nw:0 | space:no | version:2.3.1

ST Model Speed Dev set
initialization perturb BLEU CHRF2

H1 ✗ 16.3 45.0
H2 ✓ 24.9 51.0
B1 ✗ 17.4 46.2
B1 ✓ 20.1 48.2
B2 ✓ 28.7 54.4
B2 + LM rescore ✓ 30.6 55.9

Cascade - 21.7 48.2

Table 5: Speech translation results on Marathi - Hindi
dev set. All the ST models are fine-tuned on training
data from Table 3.

6 Conclusions

In this paper, we presented the systems submitted
to the IWSLT 2023 Marathi Hindi low resource
track. Our main efforts were along the end-to-end
direct speech translation system, initialized from a
bilingual ASR. The model was jointly trained with
CTC and attention objective directly for translation.
The joint decoding provided additional benefits.
These strategies combined with speed perturbation
for data augmentation and re-scoring the n-best
hypotheses using external LM provided further sig-
nificant improvements. We also submitted a cas-
cade system which uses the same bilingual ASR
as the backbone, followed by an MT system. Both
systems performed competitively, while the one
based on end-to-end provided superior results in
terms of BLEU. It is yet to be investigated, if the
large pre-trained MT systems would close the gap
between cascade and end-to-end systems.
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Abstract

This paper describes CMU’s submission to
the IWSLT 2023 simultaneous speech transla-
tion shared task for translating English speech
to both German text and speech in a stream-
ing fashion. We first build offline speech-to-
text (ST) models using the joint CTC/attention
framework. These models also use WavLM
front-end features and mBART decoder initial-
ization. We adapt our offline ST models for
simultaneous speech-to-text translation (SST)
by 1) incrementally encoding chunks of input
speech, re-computing encoder states for each
new chunk and 2) incrementally decoding out-
put text, pruning beam search hypotheses to 1-
best after processing each chunk. We then build
text-to-speech (TTS) models using the VITS
framework and achieve simultaneous speech-
to-speech translation (SS2ST) by cascading our
SST and TTS models.

1 Introduction

In this paper, we present CMU’s English to Ger-
man simultaneous speech translation systems. Our
IWSLT 2023 (Agarwal et al., 2023) shared task
submission consists of both simultaneous speech-
to-text (SST) and simultaneous speech-to-speech
(SS2ST) systems. Our general strategy is to first
build large-scale offline speech translation (ST)
models which leverage unpaired speech data, ASR
data, and ST data. We then adapt these offline
models for simultaneous inference. Finally, we
use a text-to-speech model to achieve SS2ST in a
cascaded manner.

In particular, our system consists of:

1. Offline ST using joint CTC/attention with self-
supervised speech/text representations (§3.1)

2. Offline-to-online adaptation via chunk-based en-
coding and incremental beam search (§3.2)

3. Simultaneous S2ST by feeding incremental text
outputs to a text-to-speech model (§3.3)

2 Task Description

The IWSLT 2023 simultaneous speech translation
track1 is a shared task for streaming speech-to-
text and speech-to-speech translation of TED talks.
This track mandates that systems do not perform
re-translation, meaning that the streaming outputs
cannot be edited after the system receives more
input audio. Systems are required to meet a par-
ticular latency regime: SST systems must have <2
seconds average lagging (AL) and SS2ST systems
must have <2.5 seconds start offset (SO) (Ma et al.,
2020).

Of the allowed training data, we selected a sub-
set of in-domain data to train our ASR and ST
models: for ASR we use TEDLIUM v1 and v2
(Zhou et al., 2020) and for ST we used MuST-
C v2 (Di Gangi et al., 2019). We also use a set
of cross-domain data to train our MT and TTS
models due to the lack of in-domain data: for
MT we use Europarl, NewsCommentary, Open-
Subtitles, TED2020, Tatoeba, and ELRC-CORDIS
News (Tiedemann et al., 2020). For TTS we use
CommonVoice (Ardila et al., 2020). The following
section describes how each of the ASR, ST, MT,
and TTS components fit together in our ultimate
systems.

3 System Description

3.1 Offline Speech Translation (ST)
As shown in Figure 1, our offline ST models
are based on the joint CTC/attention framework
(Watanabe et al., 2017; Yan et al., 2023a). Com-
pared to a purely attention-based approach, joint
CTC/attention has been shown to reduce the soft-
alignment burden, provide a positive ensembling
effect, and improve the robustness of end-detection
during inference (Yan et al., 2023a).

To leverage unpaired speech data, we use first
use WavLM representations (Chen et al., 2022) as

1https://iwslt.org/2023/simultaneous
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Figure 1: Offline ST model architecture based on the
joint CTC/attention framework with a WavLM front-
end and mBART decoder.

front-end features to train ASR models. In these
models, a pre-encoder module (Chang et al., 2021)
applies feature dimension down-sampling and a
learned weighted combination of WavLM layers be-
fore feeding to a Conformer encoder (Gulati et al.,
2020). The pre-encoder and encoder modules from
ASR are then used to initialize our ST models.

To leverage unpaired text data, we use the
mBART decoder (Tang et al., 2020) as an initial-
ization for our ST models. Following (Li et al.,
2020), we freeze all feed-forward layers during
fine-tuning and use a post-encoder down-sampling
layer to reduce the computational load.

We fine-tune our ST models using the follow-
ing interpolated loss function: L = λ1LASR_CE +
λ2LASR_CTC + λ3LST_CE + λ4LST_CTC. Here, the
cross-entropy (CE) losses are used to train atten-
tional decoders. Note that in Figure 1, we omit
the ASR attentional decoder and CTC components
as these function as training regularizations and
do not factor into the inference proceedure. We
perform fine-tuning on in-domain data consisting
primarily of MuST-C (Di Gangi et al., 2019).

To leverage additional in-domain data, we apply
MT pseudolabeling to TEDLIUM ASR data (Zhou
et al., 2020). We also use the same MT model
to apple sequence-level knowledge distillation to
the MuST-C data. The MT model is a pre-trained
DeltaLM-large (Ma et al., 2021) fine-tuned on the
corpora listed in Section 2. The pseudo-labels and
distilled sequences were then translated from En-
glish to German using a beam size of 10.

3.2 Simultaneous Speech Translation (SST)

We adapt our offline ST model for streaming infer-
ence by using a chunk-based processing of input

Figure 2: Incremental encoding strategy which pro-
cesses chunks of input speech by re-computing repre-
sentations corresponding to earlier chunks.

Algorithm 1 Beam search step with rewinding of
unreliable hypotheses on non-final chunks and in-
cremental pruning upon end-detection.
1: procedure BEAMSTEP(hyps,prevHyps, isFinal)
2: newHyps = {}; endDetected = False
3: for y1:l−1 ∈ prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l−1), k = p)
5: for c ∈ attnCnds do
6: y1:l = y1:l−1 ⊕ c
7: αCTC = CTCScore(y1:l, X1:T )
8: αAttn = AttnScore(y1:l, X1:T )
9: β = LengthPen(y1:l)

10: PBeam(y1:l|X) = αCTC + αAttn + β
11: newHyps[y1:l] = PBeam(·)
12: if (!isFinal) and (c is <eos> or repeat) then
13: endDetected = True
14: newHyps = prevHyps ▷ rewind
15: else if l is maxL then
16: endDetected = True
17: end if
18: end for
19: end for
20: if endDetected then ▷ incremental pruning
21: newHyps = top-k(PBeam(·), k = 1)
22: else ▷ standard pruning
23: newHyps = top-k(PBeam(·), k = b)
24: end if
25: return newHyps, endDetected
26: end procedure

speech. As shown in Figure 2, our scheme uses a
fixed duration (e.g. 2 seconds) to compute front-
end and encoder representations on chunks of in-
put speech. With each new chunk, we re-compute
front-end and encoder representations using the
incrementally longer input speech.

To produce incremental translation outputs, we
apply several modifications to the offline joint
CTC/attention beam search. As shown in Algo-
rithm 1, we run beam search for each chunk of
input. Unless we know that the current chunk is the
final chunk, we perform end-detection using the
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MODEL QUALITY LATENCY

OFFLINE SPEECH TRANSLATION (ST) BLEU ↑ -

Multi-Decoder CTC/Attn (Yan et al., 2023b) 30.1 - -
WavLM-mBART CTC/Attn (Ours) 32.5 - -

SIMUL SPEECH TRANSLATION (SST) BLEU ↑ AL ↓ LAAL ↓
Time-Sync Blockwise CTC/Attn (Yan et al., 2023b) 26.6 1.93 1.98
WavLM-mBART CTC/Attn (Ours) 30.4 1.92 1.99

SIMUL SPEECH-TO-SPEECH TRANSLATION (SS2T) ASR-BLEU ↑ SO ↓ EO ↓
WavLM-mBART CTC/Attn + VITS (Ours) 26.7 2.33 5.67

Table 1: Results of our English to German ST/SST/SS2ST models on MuST-C-v2 tst-COMMON.

heuristics introduced by (Tsunoo et al., 2021). If
any of the hypotheses in our beam propose a next
candidate which is the special end-of-sequence to-
ken or a token which already appeared in the hy-
pothesis, then this strategy determines that the out-
puts have likely covered all of the available input.
At this point, the current hypotheses should be con-
sidered unreliable and thus the algorithm rewinds
hypotheses to the previous step.

After the end has been detected within the cur-
rent chunk, we prune the beam to the 1-best hypoth-
esis and select this as our incremental output – this
pruning step is necessary to avoid re-translation.
When the next input chunk is received, beam search
continues from this 1-best hypothesis.

3.3 Simultaneous Speech-to-Speech
Translation (S2ST)

Simultaneous S2ST model is created by feeding in-
cremental text outputs to a German text-to-speech
model. We use end-to-end TTS model VITS (Kim
et al., 2021) and train a single speaker German TTS
model using CommonVoice dataset(Ardila et al.,
2020). VITS consists of text-encoder, flow based
stochastic duration predictor from text, variational
auto-encoder for learning latent feature from au-
dio and generator-discriminator based decoder for
generating speech from latent feature. We use char-
acter as input to the TTS model.

We select a suitable speaker from CommonVoice
German dataset and train single speaker TTS. As
CommonVoice may contain many noisy utterances
which can hurt performance of TTS, we use data-
selection for high-quality subset. The data selec-
tion process involves identifying the speaker who
has the highest number of utterances with high
speech quality. To determine the speech quality, we

use speech enhancement metric DNSMOS (Reddy
et al., 2021) which provides an estimation of the
speech quality. We evaluate the speech quality for
the top five speakers with the largest number of
utterances. To establish the high-quality subset,
we set a threshold of 4.0 for selecting sentences
that meet the desired quality level. Based on this
criterion, we choose the second speaker, who has
approximately 12 hours of high-quality data.

Finally, we combine our trained German TTS
model with SST module during inference. We feed
incremental translation text outputs to TTS and
synthesize translated speech.

4 Experimental Setup

Our models were developed using the ESPnet-ST-
v2 toolkit (Yan et al., 2023b). Our ST/SST model
uses WavLM-large as a front-end (Chen et al.,
2022). A linear pre-encoder down-samples from
1024 to 80 feature dim. Our encoder is a 12 layer
Conformer with 1024 attention dim, 8 attention
heads, and 2048 linear dim (Gulati et al., 2020).
A convolutional post-encoder then down-samples
along the length dimension by a factor of 2. Our de-
coder follows the mBART architecture and we ini-
tialize using the mBART-large-50-many-to-many
model (Tang et al., 2020). Our ST CTC branch uses
the same 250k vocabulary as the mBART decoder
to enable joint decoding. Our TTS model consists
of 6 transformer encoder layers for text-encoder, 4
normalizing flow layers for duration predictor, 16
residual dilated convolutional blocks as posterior
encoder and multi-period HiFiGan (Kong et al.,
2020) style decoder. We train VITS model for
400 epochs with AdamW (Loshchilov and Hutter,
2019) optimizer.

During inference, we use a chunk size of 2 sec-
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onds for SST and 2.5 seconds for SS2ST. For both
SST and SS2ST we use beam size 5, CTC weight
0.2, and no length penalty/bonus. To account for
incremental outputs which end in a prefix of a word
rather than a whole word, we delay outputs for scor-
ing by 1 token. There are two exceptions to this
token delay: if the last token is a valid German
word or a punctuation, then we do not delay.

We evaluate translation quality using BLEU
score (Papineni et al., 2002) for ST/SST and ASR-
BLEU score for SS2ST. ST/SST references are
case-sensitive and punctuated while SS2ST refer-
ences are case-insensitive and un-punctuated. The
ASR model used for ASR-BLEU is Whisper-small
(Radford et al., 2022). We evaluate translation la-
tency for SST using average lagging (AL) (Ma
et al., 2020) and length-adaptive average lagging
(LAAL) (Papi et al., 2022). We evaluate translation
latency for SS2ST using start (SO) and end-offset
(EO) (Ma et al., 2020).

5 Results

Table 1 shows the quality and latency of our SST
and SS2ST models as measured on En-De tst-
COMMON. We also show the ST performance of
our model for reference. As a baseline, we compare
to the IWSLT-scale ST and SST systems developed
in Yan et al. (2023b) – our systems show improved
quality, primarily due to the use of WavLM and
mBART self-supervised representations.

From ST to SST, we observe a 6% quality degra-
dation. Note that the average duration of tst-
COMMON utterances is around 5 seconds, mean-
ing the corresponding latency gain is 60%. From
SST to SS2ST, we observe a 12% quality degrada-
tion. Note that both the TTS model and the Whis-
per ASR model powering the ASR-BLEU metric
contribute to this gap.

6 Conclusion

We describe our English to German simultane-
ous speech-to-text and speech-to-speech transla-
tion systems for the IWSLT 2023 shared task. We
start by building large-scale offline speech-to-text
systems which leverage self-supervised speech and
text representations. We then adapt these offline
models for online inference, enabling simultaneous
speech-to-text translation. Finally, we feed stream-
ing text outputs to a down-stream TTS model, en-
abling simultaneous speech-to-speech translation.
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Abstract

This paper describes the speech translation
system submitted as part of the IWSLT 2023
shared task on low resource speech transla-
tion. The low resource task aids in building
models for language pairs where the training
corpus is limited. In this paper, we focus on
two language pairs, namely, Tamasheq-French
(Tmh→Fra) and Marathi-Hindi (Mr→Hi) and
implement a speech translation system that is
unconstrained. We evaluate three strategies
in our system: (a) Data augmentation where
we perform different operations on audio as
well as text samples, (b) an ensemble model
that integrates a set of models trained using a
combination of augmentation strategies, and (c)
post-processing techniques where we explore
the use of large language models (LLMs) to
improve the quality of sentences that are gen-
erated. Experiments show how data augmenta-
tion can relatively improve the BLEU score by
5.2% over the baseline system for Tmh→Fra
while an ensemble model further improves per-
formance by 17% for Tmh→Fra and 23% for
Mr→Hi task.

1 Introduction

Speech translation (ST) systems have multiple ap-
plications. They can be utilized in a wide range
of scenarios such as closed captioning in different
languages while watching videos or even as a real-
time assistant that translates speeches to live audi-
ences. One persistent challenge for speech trans-
lation systems continues to be performing transla-
tions for low resource language pairs.1 The IWSLT
2023 (Agarwal et al., 2023) shared task for low
resource speech translation targets 8 language pairs
that include Tunisian Arabic (Aeg) to English (En),
Irish (Ga) to English (En), Marathi (Mr) to Hindi
(Hi), Maltese (Mlt) to English (En), Pashto (Pus)
to French (Fr), Tamasheq (Tmh) to French (Fr),

∗ These authors contributed equally to this work.
1https://iwslt.org/2023/low-resource

and Quechua (Que) to Spanish (Es). This paper
outlines a low resource speech translation system
(from the Amazon Alexa AI team) for 2 language
pairs, namely, Tamasheq-French (Tmh→Fra) and
Marathi-Hindi (Mr→Hi).

Depending on the type of output that is gener-
ated the end-to-end speech translation task has two
formats: (a) Speech-to-text (S2T), and (b) Speech-
to-Speech (S2S). There are two types of ST sys-
tems. The first is a cascaded system where speech
recognition and language translation are decou-
pled.2 The second is an end-to-end (E2E) model
that combines both audio processing and language
translation. We design and evaluate an E2E model
in this paper.

In the past, various approaches have been pro-
posed to build E2E low resource speech translation
models. Bansal et al. (2018) designs an initial sys-
tem that is an encoder-decoder architecture that
integrates a convolutional neural network (CNN)
and recurrent neural network (RNN). Stoian et al.
(2020) try to improve ST models for low resource
languages by pretraininig the model on automated
speech recognition (ASR) task. Cheng et al. (2021)
propose a new learning framework called AlloST
that trains a transformer architecture with language-
independent phonemes. Mi et al. (2022) improves
translation performance by expanding the training
corpus through generation of synthetic translation
examples, where the target sequences are replaced
with diverse paraphrases. In IWSLT 2022 (Anasta-
sopoulos et al., 2022), Boito et al. (2022b) utilized
a wav2vec encoder and trained an E2E ST model
where source audios are directly translated to the
target language.3

In this paper, we extend the previous work with
the following contributions:

• We train and assess a speech translation model
2For the S2S version, speech generation is separate too.
3They contributed towards the low resource speech trans-

lation task for Tmh→Fra.
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for Tmh→Fra with audio stretching (Yang
et al., 2021).

• The baseline model for Tmh→Fra is trained
with a back-translation corpus generated us-
ing the NLLB-200 machine translation model
(Team et al., 2022).

• For Tmh→Fra, we build a separate training
corpus of paraphrases and show that model
performance improves when trained on this
dataset (Bhavsar et al., 2022).

• We show how a weighted cross entropy
loss further improves the performance of the
Tmh→Fra translation model. The model
trained with this loss, additional data gener-
ated using paraphrases and audio stretching is
shown to perform 5.2% better than the base-
line.

• An ensemble of models trained on the above
strategies shows the best performance, with
BLEU score that is 17.2% higher than the
average BLEU score of the individual models
within the ensemble.

• In case of Mr→ Hi, our best independent
ensemble model shows a 23% improvement
over the average BLEU score of the individual
models within the ensemble.

Apart from these contributions, we also explore
post-processing techniques with large language
models (LLMs), focusing on re-ranking generated
translations (Kannan et al., 2018), correcting the
grammar of translations and masking tokens so
that the LLM can complete the translate sentence.
These methods though, did not yield any noticeable
improvement.

The paper is organized as follows: Section 2
describes our speech translation system, 3.1 has
details about the datasets for various language pairs,
3.2 contains analysis of our experimental results
and we finally conclude in 4.

2 Speech Translation System

2.1 Baseline Model
Our base model for Tmh→Fra ST task is an end-
to-end speech translation system which employs
an encoder-decoder architecture (Vaswani et al.,
2017). We initialize the audio feature extractor and
the 6-layer transformer encoder from a pretrained
wav2vec 2.0 base model (Baevski et al., 2020).
We reuse the wav2vec 2.0 model pretrained on
243 hours of Tamasheq audio data released by ON-
TRAC Consortium Systems (Boito et al., 2022b).

During initialization, the last 6 layers of the pre-
trained wav2vec 2.0 model are discarded. We use a
shallow decoder which consists 2 transformer lay-
ers with 4 attention heads. Between encoder and
decoder, we use one feed-forward layer to match
the dimension of encoder output and decoder input.

During training, the model directly performs
speech to text translation task without generating
intermediate source language text. The training
loss is the cross entropy loss between ground truth
and hypothesis with label smoothing of 0.1. Each
experiment is trained for 200 epochs and check-
points are selected based on best validation BLEU.

For Marathi-Hindi speech-to-text (ST) model,
we chose a Wav2Vec 2.0 base model finetuned
on 960 h of English speech (Baevski et al., 2020)
as the encoder baseline. We also used the same
encoder model finetuned on 94 hours of Marathi
audio data (Chadha et al., 2022) in our experiments.
For these models, the last 6 layers of the pretrained
models were discarded, while the decoder archi-
tecture and other hyperparameters were kept same
as the Tmh→Fra models 4. For audio encoder,
we also experimented with Wav2vec 2.0 XLS-R
0.3B model (Babu et al., 2021) and another XLS-R
0.3B model specifically finetuned on Marathi audio
(Bhattacharjee, 2022). Because the XLS-R base
model was trained on audio from a range of Indian
languages including Marathi and Hindi, we chose
to incorporate XLS-R in our experimentation. For
the XLS-R based models, we utilized the first 12
out of 24 encoder layers to initialize the encoder
followed by a linear projection layer to transform
the output features of 1024 dimensions to the de-
sired decoder dimensionality of 256. We trained
all Marathi-Hindi ST models for 300 epochs and
we chose the best checkpoint based on validation
BLEU score.

2.2 Data Augmentation

2.2.1 Audio Stretching

We apply audio stretching directly on wav form
data using torchaudio library (Yang et al., 2021).5

For each audio sample, we alter the speed of the
audio with a rate uniformly sampled from [0.8, 1.2]
with a probability of 0.8 while maintaining the
audio sample rate.

4Detailed hyperparameters used can be found in A.1.
5https://github.com/pytorch/audio
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2.2.2 Back-Translation
We use the NLLB-200 machine translation model
to generate variations of target text in French (Team
et al., 2022). The original French data is first trans-
lated into English, and then translated back into
French. For French to English translation, only
1 best prediction is used. For English to French
translation, we take the top 5 results with a beam
size of 5.

We also try to generate synthetic transcription of
the Tamasheq audio by translating French text into
Tamasheq. However, we notice that the translation
quality is unstable and decide to not use it for the
experiment.

2.2.3 Paraphrasing
We use a French paraphrase model (Bhavsar, 2022),
which is a fine tuned version of mBART model (Liu
et al., 2020), to generate variations of target text in
French. We take the top 5 paraphrases using beam
search with a beam size of 5.

2.2.4 Weighted Loss
As the quality of synthetically generated sentences
varies, we apply a sentence level weight to the
corresponding sample’s cross entropy loss during
training.

l =
N∑

i

wi ∗ CE(yi, ŷi) (1)

where N is the size of the corpus, yi, ŷi, wi are
ground truth, prediction, and loss weight for sam-
ple i respectively . For back-translation data, the
weights are directly taken from the prediction score
of NLLB-200. For paraphrasing data, we calculate
the perplexity of each generated paraphrase and
then take the exponential of the perplexity as the
weight. For original training data (clean and full),
weight are set to 1.

2.3 Ensemble Model

Ensemble decoding (Liu et al., 2018; Zhang and
Ao, 2022) is a method of combining probability
values generated by multiple models while decod-
ing the next token. We provide equal-weight to N
different ensemble models as shown in 2.

logP (yt|x, y1...t−1) =
1

N

N∑

i

logPθi(yt|x, y1...t−1)

(2)

Where, yt denotes the decoded token at time t, x
denotes the input and θi denotes the ith model in
the ensemble.

We apply the following ensemble decoding
strategies:

• Independent ensemble: we ensemble check-
points having the highest BLEU scores on the
validation set, on N training runs. The N dif-
ferent models have the same architecture, but
initialized with different seed values.

• Data-augmented ensemble: we ensemble
checkpoints having the highest BLEU scores
on the validation set, on N training runs. The
N different models have the same architec-
ture, but trained on different data augmenta-
tion strategies.

We additionally attempt a checkpoint ensemble,
where N different checkpoints having the highest
validation BLEU within the same training run are
ensembled. Since we notice marginal improve-
ments with checkpoint ensemble, we decide to not
explore checkpoint ensemble in depth for our ex-
periments.

2.4 Post Processing with LLMs
We further explore a set of post processing strate-
gies by leveraging large language models (LLM)
to 1) rerank the top-k generated samples; 2) correct
grammar of the output; and 3) guess the missing
tokens of the sentence. The strategy is based on
the observation that translation outputs from the
validation set often carry incomplete sentences and
broken grammar. We found that LLMs are good
fit to address this problem as they have brought
promising improvements in sentence re-ranking,
and rewriting tasks (Liu et al., 2023). We summa-
rize our proposed strategies as follows:

2.4.1 Re-ranking
The reranking approach takes the top 5 results from
the best-performing candidate, and rerank these
outputs with language models. We first explore
performing shallow fusion (Kannan et al., 2018)
with language model (GPT2-Fr).6 Additionally, we
leverage a LLM (French finetuned-Alpaca 7B 7)
to guess the most probable sentence that is from a
radio broadcast news with the prompt:

quelle phrase est plus susceptible
d’apparaître dans un journal télévisé

6https://github.com/aquadzn/gpt2-french
7https://github.com/bofenghuang/vigogne
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2.4.2 Sentence Correction
The sentence correction approach rewrites the
whole output prediction by correcting the gram-
matical and spelling errors. We use two LLMs
for this tasks - aforementioned Alpaca model and
Bloom 7B with the following prompt: 8

Corrigez la faute de frappe et la
grammaire de la phrase sans changer
la structure

2.4.3 Token Masking
The token masking approach first masks the trans-
lation output with <blank> tokens for out-of-
vocabulary (OOV) tokens. For example the pre-
dicted output "...Les questions sont [pi];." is re-
placed with " <blank> Les questions sont <blank>."
where [pi] is a common token we observed in the
prediction output that does not carry meaning. We
then apply the following prompt to let the LLMs to
complete the sentence:

complétez la phrase en remplaçant
les jetons <blank>

3 Experiments

3.1 Datasets
3.1.1 Tamasheq-French Corpus
The dataset used for our training, validation, and
testing is obtained from Boito et al. (2022a), which
is shared as a part of IWSLT 2023 shared task. It
consists of a parallel corpus of radio recordings
in Tamasheq language predominantly from male
speakers. The dataset includes approximately 18
hours of speech divided in training, validation and
test sets along with its French translation. We re-
fer to this data as "clean". Additionally, there is
approximately 2 hours of possible noisy training
data from the same source, which we include in our
experiments along with the clean data. We refer to
this combined 20 hour dataset as "full" data. The
statistics of the dataset are in Table 2.

Data Split Hours # Utterances
train clean 13.6 4,444
train full 15.5 4,886

valid 1.7 581
test2022 2 804
test2023 1 374

Table 2: Data statistics for tmh→fra corpus. Hours shows
the number of hours of audio samples available while # Utter-
ances is the associated number of utterances.

8https://huggingface.co/bigscience/bloom-7b1

3.1.2 Marathi-Hindi Corpus
For Marathi-Hindi we use the data from Panlin-
gua (2023) containing approximately 25 hours of
speech. The audio recordings are sourced from the
news domain. The statistics of the dataset is shown
in Table 3.

Data Split Hours # Utterances
train 16 7,990
valid 3.7 2,103
test 4.5 2,164

Table 3: Data statistics for mr→hi corpus. Hours shows the
number of hours of audio samples available while # Utterances
is the associated number of utterances.

3.2 Experimental Results

In this section, we compare the effects of data aug-
mentation, ensembling and post-processing strate-
gies on the tmh→fra task on test 2022 dataset. We
additionally compare results on the mr→hi task on
the validation dataset.

3.2.1 Impact of Data Augmentation
Table 1 shows the effect of various data augmenta-
tion strategies used. We find that using full-audio
dataset performs better than using just the clean-
audio data. Also, adding audio stretching alone
does not improve model performance.

Adding synthetically generated back-translation
data shows mixed results. We hypothesize that this
is due to cascading errors while performing back-
translation. However, adding paraphrases data per-
forms slightly better than baseline. We find that
using a weighted loss while using synthetically
generated translation data is beneficial.

3.2.2 Performance of Ensemble Model
Table 6 shows the summary of the effect of dif-
ferent ensembling strategies. For complete results,
refer to table 12. We find that the performance of
the ensemble model increases with the increase in
number of models present in the ensemble. We
also find that the data-augmented ensemble works
better than independent ensemble. Additionally,
data-augmented ensembling using paraphrase data
performs better than data-augmented ensembling
using back-translation data.

3.2.3 Impact of Post-processing Methods
Table 4 summarizes the experimental results for
the post-editing strategies. We make the following
observations. First, sentence correction strategy
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# Data Data Augmentation Vocab size Loss Test2022 BLEU
cb clean baseline 1k baseline 8.85
fb full baseline 1k baseline 9.25
ft full back-translation 3k baseline 8.84

ftw full back-translation 3k weighted 9.45
fta full back-translation + audio stretching 3k baseline 9.01

ftaw full back-translation + audio stretching 3k weighted 9.71
fp full paraphrase 3k baseline 9.70

fpw full paraphrase 3k weighted 9.73
fpa full paraphrase + audio stretching 3k baseline 9.47

fpaw full paraphrase + audio stretching 3k weighted 9.53

Table 1: Impact of Data Augmentation on tmh→fra models. The table shows the BLEU scores for different strategies
in comparison to the baseline trained on clean and full dataset. Back-Translation + audio stretching and Paraphrase dataset
augmentation improve the BLEU score. Back-Translation alone can improve model performance when combined with a weighted
loss.

Approach Model Test2022 BLEU
Baseline Ensembled Wav2Vec2 11.26

Reranking Shallow-Fusion-based (GPT2-French) 11.24
Instruct-based (Stanford Alpaca 7B) 10.78

Token Masking Stanford Alpaca 7B 11.20
Bloom 6.7B 10.84

Sentence Correction Stanford Alpaca 7B 8.70
Bloom 6.7B 8.54

Translation + Reranking Stanford Alpaca 7B 3.45
Bloom 6.7B 3.58

Table 4: Impact of Post Processing on tmh→fra corpus. The post-processing steps outlined are applied to an Ensembled
Wav2Vec2 model. The post-processing with a LLM does not provide any additional benefit.

Instruct: quelle phrase est plus susceptible d’apparaître dans un journal télévisé
Reranking Input: top k hypothesis

Output: best hypothesis picked by LLM
Instruct: complétez la phrase en remplaçant les jetons <blank>?

Token Masking Input: Donc, on dirait que l’organisation de l’UENA, elle est <blank>
Output: Donc, on dirait que l’organisation de l’UENA, elle est un organisme de bienfaits
Instruct: Corrigez la faute de frappe et la grammaire de la phrase sans changer la structure

Sentence Correction Input: Les a été libérés et ceux qui sont rentrés.
Output: Ils ont été libéré et ceux rentrant.

Table 5: Prompt Designs. Example LLM Prompts for Post Processing tmh→fra corpus.

Ensemble Models
(Refer Table 1) Ensemble Type Test2022 BLEU

cb-ensemble Independent 10.32
fb-ensemble Independent 10.79

ft+ftw+fta+ftaw
Data Augmented
Back-translation 10.95

fp+fpw+fpa+fpaw
Data Augmented

Paraphrase 11.26

Number of models Avg Test BLEU
4 10.83
3 10.60
2 10.23

1 (No Ensemble) 9.24

Table 6: Impact of Ensembling tmh→fra ST models. En-
sembling models trained with different seeds increases the
BLEU score. Increasing the number of models in ensemble
also increases performance.

leads to significant performance degradation com-
pared to the ensemble baseline. We attribute this

observation to the fact that the pretrained LLMs
lacks context-specific data of the Tamasheq corpus.
For example, when asked to correct the output sen-
tence, LLMs tend to re-frame the phrases related
to more generic topics like sports or events.

Second, we find reranking and token masking
strategies both lead to slight degradation compared
to the baseline. This is due to the fact that both
approaches make less aggressive changes to the
original output. In general, we find LLMs do not
perform well when the predicted text deviates too
much from the ground truth.

Finally, we perform the same set of the strate-
gies but using translated English output from the
original French translation. We present the best
performing candidates (Translation+Reranking in
Table 4). We find that this strategy caused the worst
performance degradation due to error propagation
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# Model Vocab size Validation BLEU
mwb wav2vec2-base-960h 1k 11.41

mwbm1k wav2vec2-base-marathi 1k 13.19
mwbm3k wav2vec2-base-marathi 3k 11.85

mwx wav2vec2-xls-r-300m 1k 15.94
mwxm wav2vec2-xls-r-300m-marathi 1k 10.76

Table 7: Model performance on mr→hi task. Average BLEU scores are shown for the models which we trained with multiple
seeds. Move to XLS-R model as encoder improved BLEU by 40% over baseline. Complete results in Table 13

Ensemble Models
(Refer Table 7) Validation BLEU

mwbm1k-ensemble 16.17
mwbm3k-ensemble 13.80
mwx-ensemble 19.63

Table 8: Impact of Ensembling mr→hi models. Consistent
with experiments from tmh→fra, an independent ensemble
model built from different seeds improves BLEU score.

caused by fra→eng→fra translation.

3.2.4 Marathi-Hindi
We present the BLEU scores of various models we
have trained on the validation dataset. From Ta-
ble 7 we can see that our wav2vec2-base-marathi
model outperforms the baseline wav2vec2-base-
960h model by 16% in terms of BLEU score. We
also notice increasing vocabulary size of the tok-
enizer leads to worse performance. It could be at-
tributed to the fact that the size of the data is not ad-
equate for the model to properly train with the pro-
vided hyperparameters. The wav2vec2-xls-r-300m
model outperforms baseline wav2vec2-base-960h
model by 40%. We notice that the Marathi fine-
tuned version of the same model performs worse
than our baseline.

We perform independent ensemble decoding on
the models with the same architecture and hyper-
parameters but trained with different seeds. The
results are shown in Table 8. Refer Table 14 for
full results. We notice that ensemble decoding
improves the BLEU score of the best model by
23% compared to the average BLEU score of the
individual models used in the ensemble.

3.3 Test 2023 results

Results for the different models on Test 2023
dataset for Tmh→Fra are present in Table 9 and
Mr→Hi results are present in Table 10.

4 Conclusion

In this paper, we explore multiple types of strate-
gies to improve speech translation for two lan-
guage pairs: Tamasheq-French (Tmh→Fra) and

Ensemble Models
(Refer Table 1) Ensemble Type Test2023 BLEU

cb-ensemble Independent 9.28
fb-ensemble Independent 9.50

ft+ftw+fta+ftaw
Data Augmented
Back-translation 8.87

fp+fpw+fpa+fpaw
Data Augmented

Paraphrase 9.30

Table 9: Test 2023 results for tmh→fra ST models.

Models Test2023 BLEU
mwbm1k-ensemble 25.60
mwbm3k-ensemble 23.00
mwx-ensemble 28.60

Table 10: Test 2023 results for mr→hi ST models.

Marathi-Hindi (Mr→Hi). We show expanding the
training dataset with paraphrases of translated sen-
tences as well as an ensemble model (of trained
ST models with different seeds and data augmen-
tation methods), improves performance over the
baseline model for (Tmh→Fra). Similarly, an en-
semble model for Marathi-Hindi (Mr→Hi) has a
higher BLEU score in comparison to the baseline
architecture. We also explore the use of large lan-
guage models and find that post-processing using
them did not show any noticeable improvement.
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sopoulos, Ondřej Bojar, Claudia Borg, Marine
Carpuat, Roldano Cattoni, Mauro Cettolo, Mingda
Chen, William Chen, Khalid Choukri, Alexandra
Chronopoulou, Anna Currey, Thierry Declerck, Qian-
qian Dong, Yannick Estève, Kevin Duh, Marcello
Federico, Souhir Gahbiche, Barry Haddow, Benjamin
Hsu, Phu Mon Htut, Hirofumi Inaguma, Dávid Ja-
vorský, John Judge, Yasumasa Kano, Tom Ko, Rishu
Kumar, Pengwei Li, Xutail Ma, Prashant Mathur,
Evgeny Matusov, Paul McNamee, John P. McCrae,
Kenton Murray, Maria Nadejde, Satoshi Nakamura,
Matteo Negri, Ha Nguyen, Jan Niehues, Xing Niu,
Atul Ojha Kr., John E. Ortega, Proyag Pal, Juan Pino,
Lonneke van der Plas, Peter Polák, Elijah Rippeth,
Elizabeth Salesky, Jiatong Shi, Matthias Sperber, Se-
bastian Stüker, Katsuhito Sudoh, Yun Tang, Brian
Thompson, Kevin Tran, Marco Turchi, Alex Waibel,
Mingxuan Wang, Shinji Watanabe, and Rodolfo Ze-

246



vallos. 2023. Findings of the IWSLT 2023 Evaluation
Campaign. In Proceedings of the 20th International
Conference on Spoken Language Translation (IWSLT
2023). Association for Computational Linguistics.

Antonios Anastasopoulos, Loic Barrault, Luisa Ben-
tivogli, Marcely Zanon Boito, Ondrej Bojar, Roldano
Cattoni, Anna Currey, Georgiana Dinu, Kevin Duh,
Maha Elbayad, Clara Emmanuel, Yannick Esteve,
Marcello Federico, Christian Federmann, Souhir
Gahbiche, Hongyu Gong, Roman Grundkiewicz,
Barry Haddow, Benjamin Hsu, David Javorsky,
Vera Kloudova, Surafel Melaku Lakew, Xutai Ma,
Prashant Mathur, Paul McNamee, Kenton Murray,
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A Appendix

A.1 Hyperparameters and Computing
Resource

• encoder
– n layers: 6
– hidden dim: 1024 for mr-hi xls-r model, 768 for

tmh-fra model and other mr-hi model
– n head: 12
– activation: gelu

• decoder
– n layers: 2
– hidden dim: 256
– n head: 4
– activation: gelu

• training
– optimizer: AdamW (Loshchilov and Hutter,

2019)
– lr: 1e− 3
– encoder lr: 1e− 5
– label smoothing: 0.1
– batch size: 4

• computing resource: AWS g5.12xlarge instance (4x
NVIDIA A10G Tensor Core GPUs)

A.2 Full Results
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# Data Data Augmentation Vocab size Loss Seed Test2022 BLEU
cb1 clean baseline 1k baseline v1 8.98
cb2 clean baseline 1k baseline v2 8.91
cb3 clean baseline 1k baseline v3 8.82
cb4 clean baseline 1k baseline v4 8.69
fb1 full baseline 1k baseline v1 9.53
fb2 full baseline 1k baseline v2 9.10
fb3 full baseline 1k baseline v3 9.21
fb4 full baseline 1k baseline v4 9.17

Table 11: Results of different seed experiments on tmh→fra models.

Data Data Augmentation Models in Ensemble (Refer to Table 1) Test BLEU
clean baseline cb1+cb2+cb3+cb4 10.32
clean baseline cb1+cb2+cb3 10.22
clean baseline cb1+cb2+cb4 9.97
clean baseline cb1+cb3+cb4 10.17
clean baseline cb2+cb3+cb4 10.14
clean baseline cb1+cb2 9.79
clean baseline cb1+cb3 9.76
clean baseline cb1+cb4 9.86
clean baseline cb2+cb3 9.93
clean baseline cb2+cb4 10.17
clean baseline cb3+cb4 9.67
full baseline fb1+fb2+fb3+fb4 10.79
full baseline fb1+fb2+fb3 10.52
full baseline fb1+fb2+fb4 10.69
full baseline fb1+fb3+fb4 10.58
full baseline fb2+fb3+fb4 10.42
full baseline fb1+fb2 10.00
full baseline fb1+fb3 10.16
full baseline fb1+fb4 10.22
full baseline fb2+fb3 10.08
full baseline fb2+fb4 9.98
full baseline fb3+fb4 10.06
full back-translation ft+ftw+fta+ftaw 10.95
full back-translation ft+ftw+fta 10.49
full back-translation ft+ftw+ftaw 10.75
full back-translation ft+fta+ftaw 10.93
full back-translation ftw+fta+ftaw 11.26
full back-translation ft+ftw 10.08
full back-translation ft+fta 9.82
full back-translation ft+ftaw 10.49
full back-translation ftw+fta 10.4
full back-translation ftw+ftaw 10.72
full back-translation fta+ftaw 10.78
full paraphrase fp+fpw+fpa+fpaw 11.26
full paraphrase fp+fpw+fpa 10.78
full paraphrase fp+fpw+fpaw 10.91
full paraphrase fp+fpa+fpaw 10.77
full paraphrase fpw+fpa+fpaw 11.95
full paraphrase fp+fpw 10.40
full paraphrase fp+fpa 10.62
full paraphrase fp+fpaw 10.76
full paraphrase fpw+fpa 10.60
full paraphrase fpw+fpaw 10.61
full paraphrase fpa+fpaw 10.44

Table 12: Impact of Ensembling tmh→fra models (complete).
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# Model Vocab size Seed Validation BLEU
mwbm1k1 wav2vec2-base-marathi 1k v1 13.19
mwbm1k2 wav2vec2-base-marathi 1k v2 13.15
mwbm1k3 wav2vec2-base-marathi 1k v3 13.39
mwbm1k4 wav2vec2-base-marathi 1k v4 13.01
mwbm3k1 wav2vec2-base-marathi 3k v1 11.63
mwbm3k2 wav2vec2-base-marathi 3k v2 11.71
mwbm3k3 wav2vec2-base-marathi 3k v3 11.80
mwbm3k4 wav2vec2-base-marathi 3k v4 12.26

mwx1 wav2vec2-xls-r-300m 1k v1 16.31
mwx2 wav2vec2-xls-r-300m 1k v2 15.35
mwx3 wav2vec2-xls-r-300m 1k v4 16.09
mwx4 wav2vec2-xls-r-300m 1k v4 16.00

Table 13: Results of different seed experiments on mr→hi models.

Model Ensemble Models (Refer Table 13) Validation BLEU
wav2vec2-base-marathi mwbm1k1+mwbm1k2+mwbm1k3+mwbm1k4 16.17
wav2vec2-base-marathi mwbm1k1+mwbm1k2+mwbm1k3 16.15
wav2vec2-base-marathi mwbm1k1+mwbm1k2+mwbm1k4 15.85
wav2vec2-base-marathi mwbm1k1+mwbm1k3+mwbm1k4 15.89
wav2vec2-base-marathi mwbm1k2+mwbm1k3+mwbm1k4 15.70
wav2vec2-base-marathi mwbm1k1+mwbm1k2 15.23
wav2vec2-base-marathi mwbm1k1+mwbm1k3 15.38
wav2vec2-base-marathi mwbm1k1+mwbm1k4 14.96
wav2vec2-base-marathi mwbm1k2+mwbm1k3 15.22
wav2vec2-base-marathi mwbm1k2+mwbm1k4 14.95
wav2vec2-base-marathi mwbm1k3+mwbm1k4 15.03
wav2vec2-base-marathi mwbm3k1+mwbm3k2+mwbm3k3+mwbm3k4 13.80
wav2vec2-xls-r-300m mwx1+mwx2+mwx3+mwx4 19.63
wav2vec2-xls-r-300m mwx1+mwx2+mwx3 19.27
wav2vec2-xls-r-300m mwx1+mwx2+mwx4 19.00
wav2vec2-xls-r-300m mwx1+mwx3+mwx4 19.60
wav2vec2-xls-r-300m mwx2+mwx3+mwx4 19.20
wav2vec2-xls-r-300m mwx1+mwx2 17.89
wav2vec2-xls-r-300m mwx1+mwx3 18.66
wav2vec2-xls-r-300m mwx1+mwx4 18.35
wav2vec2-xls-r-300m mwx2+mwx3 18.20
wav2vec2-xls-r-300m mwx2+mwx4 17.79
wav2vec2-xls-r-300m mwx3+mwx4 18.59

Table 14: Impact of Ensembling mr→hi models (complete).
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Abstract
AppTek participated in the subtitling and for-
mality tracks of the IWSLT 2023 evaluation.
This paper describes the details of our subti-
tling pipeline - speech segmentation, speech
recognition, punctuation prediction and inverse
text normalization, text machine translation and
direct speech-to-text translation, intelligent line
segmentation - and how we make use of the
provided subtitling-specific data in training and
fine-tuning. The evaluation results show that
our final submissions are competitive, in par-
ticular outperforming the submissions by other
participants by 5% absolute as measured by
the SUBER subtitle quality metric. For the for-
mality track, we participated with our En-Ru
and En-Pt production models, which support
formality control via prefix tokens. Except for
informal Portuguese, we achieved near perfect
formality level accuracy while at the same time
offering high general translation quality.

1 Introduction

This paper presents AppTek’s submissions to the
subtitling and formality tracks of the IWSLT 2023
evaluation campaign. In the subtitling track, we
participate in constrained and unconstrained condi-
tions and in both language pairs English-to-German
(En-De) and English-to-Spanish (En-Es). In the
formality track, we participate in the zero-shot un-
constrained condition for English-to-Portuguese
(En-Pt) and English-to-Russian (En-Ru).

This paper is organized as follows: Section 2
briefly describes our data preparation. Section 3
presents AppTek’s pipeline for subtitle translation.
Its different components, namely audio segmen-
tation, speech translation (ST), automatic speech
recognition (ASR), machine translation (MT) mod-
els, and our subtitle segmentation algorithm are
described in Sections 3.1-3.5. Section 3.6 contains
experiments and an analysis of our subtitling sys-
tems. Section 4 presents AppTek’s approach to

∗equal contribution

formality-controlled machine translation. Finally,
Section 4.1 shows the results of our formality track
submission.

2 Data Preparation

2.1 Text Data

We use all of the allowed “speech-to-text paral-
lel” and “text-parallel” data, including Europarl,
Europarl-ST, News Commentary, CORDIS News,
Tatoeba, TED2020, IWSLT TED, MuST-C v3,
CoVoST v2, and OpenSubtitles1. We apply com-
mon parallel data filtering steps based on lan-
guage identification, sentence length ratios between
source and target sentences and additional heuris-
tics. After filtering, we obtain 13.5M sentence pairs
with 152M running words (counted on the English
side) for En-De and 16.5M sentence pairs with
183M words for En-Es.

Next, we clone this data and process the En
side of the clone with our text normalization tool
NEWTN. It implements elaborate regular expres-
sions to convert numbers, dates, monetary amounts,
and other entities with digits into their spoken form.
It is also used to remove punctuation and word case
information. After training on such source data, our
MT systems are able to directly translate from raw
ASR output that lacks punctuation and casing into
properly formatted written target language text.

For the parallel corpora which have document
labels, we also create a version in which we con-
catenate two subsequent sentences from the same
document using a separator symbol. Our past ex-
perience shows that adding such data is beneficial
even if we do not add the context of the previous
sentence at inference time.

Finally, for each language pair, we extract about
4M words of bilingual phrases (based on unsuper-
vised word alignment) as additional training “sen-

1The filtered version provided by the track organizers.
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tence” pairs to make sure that the MT system can
cope well with incomplete sentences or too fine-
grained automatic sentence segmentation.

2.2 Speech Data
We use all the allowed datasets marked as “speech”
and “speech-to-text parallel”, including Europarl-
ST, How2, MuST-C, TED-LIUM, LibriSpeech,
Mozilla Common Voice, VoxPopuli, CoVoST, and
IWSLT TED. After removing very short (< 0.1s)
and long (> 120s) segments, we obtain about
3590 hours of speech with transcripts. From each
dataset, we only take the train sets, where appli-
cable. The English text is processed to be lower-
cased, punctuation-free using NEWTN, and split
into 10k byte-pair-encoding (BPE) tokens (Sen-
nrich et al., 2016).

2.3 Direct Speech Translation Data
All data marked as “speech-to-text parallel”, i.e.
Europarl-ST, MuST-C, CoVoST, and IWSLT TED –
except MuST-Cinema – is utilized for direct speech
translation. It results in a total of approximately
1220 hours of speech with transcripts and corre-
sponding translations after only keeping segments
between 0.1 and 120 seconds. As for our data pro-
cessing, on the English text, we carried out the
same scheme as for speech data, while following
almost the same German data processing scheme
as described in Section 2.1. plus tokenization using
the Moses toolkit (Koehn et al., 2007). Then 10k
and 20k BPEs are used on the English and Ger-
man texts, respectively. The dev set for the direct
model is chosen to be the concatenation of IWSLT
dev2010, MuST-C, Europal-ST, and CoVoST dev
sets, resulting in a large dev set of 33 hours.

2.3.1 Synthetic Data
To leverage more training data for our direct model,
we translate the English transcripts of the allowed
“speech” data (Jia et al., 2019) using our constrained
machine translation model described in Section
3.4 with output length control “short” (Wilken and
Matusov, 2022). Combining the real ST data with
the synthetic data, we obtain about 4100 hours of
translated-speech parallel utterances.

3 Subtitle Translation

3.1 Audio Segmentation
We use the SHAS method (Tsiamas et al., 2022)
for audio segmentation. SHAS scores every audio
frame with a binary classifier (speech/no-speech),

followed by a probabilistic divide-and-conquer
(pDAC) algorithm that iteratively splits audio at the
positions with the lowest probability of the speech
class. For the unconstrained condition, we use the
English segmentation model published by the au-
thors of SHAS, which is an XLS-R 300M model
(Babu et al., 2022) fine-tuned for the frame clas-
sification task on the MuST-C train set. For the
constrained condition, we train our own frame clas-
sifier with Wav2Vec2 (Baevski et al., 2020), pre-
trained on LibriSpeech, followed by fine-tuning for
the frame classification task using MuST-C.

A hyper-parameter search was conducted to find
the number of layers (constrained model), as well
as the inference parameters (max. segment length
and pDAC threshold) that optimize the performance
of the downstream speech translation pipeline. We
found that the pDAC threshold, which is the min-
imum probability required to keep a frame, has
significant effects on the translation quality, and
that the optimal value can vary depending on the
task and acoustic conditions.

3.2 Direct Speech Translation

3.2.1 Attention Encoder-Decoder
We train an attention-based model (Bahdanau et al.,
2015) composed of a Conformer encoder (Gulati
et al., 2020) and a Transformer decoder (Vaswani
et al., 2017). The encoder consists of 12 layers
with a size of 512, a feed-forward size of 2048, and
8 heads, whereas the decoder has 6 layers with the
same hidden size and number of heads. For fast yet
stable convergence, we apply a layer-wise network
construction scheme (Zeyer et al., 2018, 2019).
Specifically, we start with 2 layers of halved hid-
den dimensions in both encoder and decoder (18M
parameters) and linearly scale the model depth and
width to full size (125M parameters) in the first 5
sub-epochs where each sub-epoch is one-twentieth
of the whole training data. Also, L2-norm regular-
ization and dropout are scaled up from 0 to 0.0001
and 0.1 respectively. Label smoothing is enabled
only afterwards. We apply Adam (Kingma and Ba,
2015) with an initial learning rate of 0.0005 and
dynamic learning scheduling based on dev set loss.

Audio log mel 80-dimensional features are ex-
tracted every 10ms. The first layer of Conformer
is composed of 2 convolution layers with strides
of 3 and 2 over time giving a reduction factor of
6. We use SpecAugment (Park et al., 2019; Bahar
et al., 2019b) and speed perturbation in a random
interval of [0.9, 1.1] as data augmentation. In order
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to train a single direct speech translation model that
also supports time alignment between source label
sequence and time frames, we add the source CTC
loss (Graves et al., 2006; Kim et al., 2017; Bahar
et al., 2019a) on top of the encoder in training.

We also add a second shallow 1-layer Trans-
former decoder (with 14M parameters) in order to
generate better source transcripts for time align-
ment. Given this network with a shared speech
encoder and two independent decoders, multi-task
learning is employed to train all model parameters
jointly. The final objective function is computed as
a sum of the 3 losses (source CTC, source enc-dec,
and target enc-dec).

3.2.2 Forced Alignment
CTC relies on Viterbi alignment to obtain the best
path going through the source token at position n
at time frame t. It is therefore possible to obtain
word timings from CTC which can be used for
subtitle generation. To do so, we first generate the
source transcripts using the source decoder of the
network and then use them to run forced-alignment
on the CTC output. The model’s alignments are on
BPE-level, we therefore combine the timings of all
subwords belonging to a word to obtain the final
word-level timestamps.

We experimented with this approach and were
able to generate accurate timestamps appropriate
for creating subtitles in the source language. How-
ever, as we decide against using the source template
approach for the constrained systems (see Section
3.5), only the timings of the first and last word in
a segment are used for the target subtitles of the
constrained submission. We plan to explore how
to make better use of the CTC timings from this
model in future experiments. In particular, we plan
to add silence modeling to obtain information about
pauses within speech segments, which can then be
reflected in the subtitle timings.

3.3 Automatic Speech Recognition

Constrained We train a Conformer-Transformer
model for the constrained task mainly following
Section 3.2.1 using 3590 hours of speech. Layer-
wise network construction, SpecAugment, and
CTC loss are applied. Since the model is not
trained for multiple tasks (no additional decoder
is added), it has better performance in terms of
WER compared to the source decoder part of the
ST model. The final checkpoint achieves a WER

of 9.6% on the concatenated dev set of 33h.

Unconstrained We train an attention-based
encoder-decoder model to run ASR decoding and
also a CTC model which is used to generate word
timings by force-aligning the audio with the de-
coded hypotheses. Here, the CTC model uses an
explicit word boundary <space> symbol between
words. It serves as silence modeling. Both
models are trained on the same training set of 15K
hours of speech mixing publicly available data with
a commercial license and in-house data.

The 185M-parameter attention-based model uses
a 31-layer Conformer encoder of hidden size 384;
8 heads with 64 dimensions per head; Macaron-
style (Lu et al., 2019) feed-forward layers with
size 2048; convolutional layers with 1024 chan-
nels and kernel size 31. The decoder is a single-
headed attention-based model (Tüske et al., 2020),
and consists of 4 stacked projected long short-
term memory (pLSTM) recurrent layers with layer
size 2048 (Hochreiter and Schmidhuber, 1997; Sak
et al., 2014). The first two LSTMs operate on
the embedding of the label sequence only. The
other two decoder LSTM layers also process the
acoustic information extracted by the encoder us-
ing a single-head, additive, location-aware cross-
attention. The decoder predicts 1K BPE units. De-
coding is done using an external neural LM con-
sisting of 4 stacked LSTM layers of size 3072 with
the same output vocabulary as the ASR models.
The 273M-parameter language model is trained on
2.4B running words segmented to BPE units. The
language model data are selected from a wide range
of various domains, e.g. books, movies, news, re-
views, Wikipedia, talks, etc. ASR transcription is
obtained after decoding with beam search limited to
16 hypotheses without any vocabulary constraints.
The CTC model uses the same encoder structure as
the attention-based model.

3.4 Machine Translation

3.4.1 Unconstrained Condition
For the unconstrained subtitling pipeline we use
AppTek’s production MT systems which have been
trained on large amounts of parallel data, mostly
from the OPUS collection (Tiedemann, 2012).
Both En-De and En-Es systems are Transformer
Big systems that support additional API parame-
ters which can in particular control the genre (e.g.
patents, news articles, dialogs) and length (auto-
matic, short, long, etc.). The control is imple-
mented via pseudo-tokens in the beginning of the
source or target sentence (Matusov et al., 2020).
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For the IWSLT experiments, we set the genre to
“dialogs” because it reflects best the spoken sponta-
neous style in the dev 2023 data. When not men-
tioned otherwise, we set the length to “short”. This
yields more condensed translations, similar to how
human subtitlers would translate to comply with a
given reading speed limit.

3.4.2 Constrained Condition
For the constrained condition we use the parallel
training data prepared as described in Section 2.1.
As the dev data for learning rate control, we use
the Europarl-ST and MuST-C dev sets.

Our MT model is a variant of the Transformer
Big model (Vaswani et al., 2017) with additional
encoder layers and using relative positional encod-
ing (Shaw et al., 2018). We use a batch size of
800 words, but the effective batch size is increased
by accumulating gradients over 8 batches. We add
the same length control feature as for the uncon-
strained system by classifying the training data into
5 bins of target-to-source length ratios and adding
the class label as a target-side prefix token.

We apply SentencePiece (Kudo and Richardson,
2018) segmentation with a vocabulary size of 10K
for En and 20K for De/Es and use a translation fac-
tor to predict the casing of the target words (Wilken
and Matusov, 2019). Our MT models have been
trained for 100 sub-epochs with 1M lines in each;
thus, all of the prepared data has been observed
in training 1-3 times. For each sub-epoch, we se-
lect sentence pairs proportionally to the following
distribution and then randomly mix them:

20% Europarl and Europarl-ST data
20% TED data (MuST-C, IWSLT, TED2020)
20% OpenSubtitles (other)
10% News (Commentary+CORDIS), Tatoeba, CoVoST

15% Concatenated neighboring sentence pairs2

5% OpenSubtitles (documentaries)
5% OpenSubtitles (sports)
5% Bilingual phrases

3.4.3 Length ROVER
For all final submissions, we optimize the length
control of MT by using a length ROVER (Wilken
and Matusov, 2022). For each segment we create 3
translations: without forcing the target-side length
token, forcing length bin 2 ("short"), and forcing
length bin 1 ("extra short"). From those transla-
tions we select the first – given the order above –

2See Section 2.1.

System MuST-C TED EPTV ITV Peloton
English-to-German

unconstrained 33.7 27.1 19.0 30.6 23.9
+ fine-tuning 35.0 27.7 20.3 31.0 24.4
constrained 32.3 34.2 18.4 27.2 20.3
+ fine-tuning 32.9 – 19.0 28.1 21.5

English-to-Spanish
baseline 37.2 46.1 34.1 24.5 23.6
+ fine-tuning 38.2 46.4 34.8 25.5 24.7

Table 1: BLEU scores in % for text-only MT fine-tuning
experiments on the MuST-C tst-COMMON set and on
the AppTek’s aligned subsets of the 2023 subtitling track
dev data.

that provides a translation with a target-to-source
character ratio of less than 1.1. This is motivated
by the fact that translations need to be fitted into
the source subtitle template (Section 3.5.1). We
note that the reading speed compliance of our sub-
mission could have been increased even further
by exploiting timing information to select the MT
length variants.

3.4.4 Fine-tuning Experiments
For our fine-tuning experiments, we first select “in-
domain” training data in terms of similarity to the
seed data – the dev 2023 set – from the real parallel
data, as well as the synthetic data described in Sec-
tion 2.3.1. The selection is done by clustering dis-
tributed sentence representations in the embedding
space, and then keeping sentence pairs from the
clusters which correspond to the seed data clusters.
This is done considering both source and target
seed data sentences, but independently, so that no
sentence-level alignment of seed data is necessary.
For details on this data selection method, please
refer to our 2020 submission to the offline speech
translation track (Bahar et al., 2020). With this
method, we create two versions of the in-domain
data: one using all 4 parts of the dev 2023 set as
seed data (in-domain A: En-De: 1.9M lines, 27M
En words; En-Es: 1.7M lines, 25M words), and
one, for En-De only, using just ITV and Peloton
dev 2023 parts as seed data (in-domain B: 1.5M
lines, 20M words).

We then use the dev 2023 set as a dev set in
fine-tuning of the MT model for learning rate con-
trol. Since the dev 2023 data is not aligned at
sentence-level, but is available as (in part) indepen-
dently created subtitle files, we had to sentence-
align it. To do so, we first extracted full sen-
tences from the English subtitles based on sentence-
final punctuation marks, translated these sentences
with the (constrained) baseline MT, and then re-
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segmented the target side into sentences that match
the source sentences using Levenshtein alignment
as implemented by the SUBER tool (Wilken et al.,
2022). The source-target segments obtained this
way are kept in the final dev set only if the BERT F-
score (Zhang et al., 2019) for a given pair is > 0.5
for TED, EPTV, and Peloton sets and > 0.55 for
the ITV set. With this method, the obtained dev
set contains 7645 sentence-like units with 27.7K
words for TED, 2.3K for EPTV, 20.7K for Peloton,
and 13.9K for ITV.

We perform fine-tuning for up to 20 sub-epochs
ranging in size from 100K to 400K sentence pairs
using a small learning rate between 10−06 and
10−05, and select the best configuration for each of
the four dev 2023 domains.

The fine-tuning results are shown in Table 1.
Despite the fact that no real in-domain data, not
even the dev 2023 set, is used as training data in
fine-tuning we are able to improve MT quality in
terms of BLEU scores (Papineni et al., 2002; Post,
2018), as well as BERT and other scores skipped
due to space constraints. The improvements are
more pronounced for the constrained system, but
the absolute scores are generally better with the
unconstrained setup3. However, since the TED talk
and Europarl domains are covered well in the data
allowed for the constrained condition, the differ-
ence between our unconstrained and constrained
system for the TED and EPTV domains is small. It
is worth noting that for ITV and Peloton domains
we could only improve MT quality by fine-tuning
on the in-domain B set that did not include any
TED-related data, and also not using any TED or
EPTV dev data for learning rate control.

3.5 Subtitle Creation
3.5.1 Source Template Approach
To create subtitle files from translation hypothe-
ses, the text has to be segmented into blocks with
start/end time information. One challenge is to
transfer timings extracted from the source speech
to the target subtitles. An approach to generate tim-
ings that is also used in human subtitling workflows
(Georgakopoulou, 2019), is to first create subtitles
in the source language – a so-called subtitle tem-
plate – and to keep the same subtitle blocks during

3The BLEU score of the constrained system on the En-De
TED part is higher because, as we found out shortly before
submission, some of the dev 2023 TED talks were part of the
allowed TED2020 training corpus. Hence, further fine-tuning
did not help for this system on this set. The unconstrained
system had not been trained on this corpus.

translation. This creates a nice viewing experience,
since subtitles appear on the screen only during
the actual speech. However, the source template
constraints might be sub-optimal in terms of target
language reading speed.

We use the source template approach for the un-
constrained submission. To create subtitles in the
original language of the videos (English), we start
with a timed word list provided by the ASR sys-
tem. We train a 3-layer bidirectional LSTM model
(hidden size 256, embedding dim 128) to jointly
add basic punctuation marks ( .,!? ) and casing
information to the word list. As training data, we
use 14M English sentences from the Gigaword and
OpenSubtitles corpora. The model operates on full
words and has two softmax output layers, one with
the four punctuation tokens and "no punctuation"
as target classes (to be added after the word), the
other one with lower-cased, capitalized, all-upper,
and mixed-cased classes as targets.

In addition, we train an inverse text normaliza-
tion model to convert spoken forms of numbers,
dates, currencies, etc. into the proper written form.
This model is a Transformer Big trained on data
where the source data is processed using our text
normalization tool NEWTN, see Section 2.1. Ap-
plying it to the transcriptions helps MT to produce
proper digits also on the target side. This has a
slight positive effect on automatic scores (0.8%
SUBER for Peloton, only up to 0.4% for the other
domains), but mainly helps subjectively perceived
quality and also reduces the number of characters.

The resulting timed, punctuated, and cased word
list is split into sentences using punctuation ( .!? )
and pauses between words longer than 3 seconds.
Those are fed into a subtitle segmentation algo-
rithm similar to the one described in (Matusov et al.,
2019). Its core component is an LSTM segmenta-
tion model that is trained on English OpenSubtitles
XML data, which includes subtitle block boundary
information4, to estimate the probability of a subti-
tle break after each word of a given input sentence.
Within a beam search framework, this model is
combined with hard subtitling constraints such as
the character limit per line to create valid subtitles.
Here, we adjust it for the creation of subtitles from
timed words by including minimum and maximum
subtitle duration as constraints, and not forcing any
predefined number of subtitles.

After segmentation, we use the start time of the

4https://opus.nlpl.eu/download.php?f=
OpenSubtitles/v2018/xml/en.zip
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first word and the end time of the last word in
each subtitle block as the subtitle start and end
time. The subtitle template defined this way is
then translated using the fine-tuned MT system
described in Section 3.4.4, employing the length
ROVER (Section 3.4.3) to avoid long translations
that do not fit the template. Sentences as defined
above are used as translation units, note that they
may span several subtitle blocks. To insert the
translations back into the template, we again apply
the subtitle segmentation algorithm, this time with
the exact settings as in (Matusov et al., 2019).

3.5.2 Template-Free Approach
By definition, the source template approach is not
desirable for direct speech translation without inter-
mediate source text representation. Also, the con-
strained condition does not include English Open-
Subtitles data with subtitle breaks. We hence fall
back to a simpler subtitle creation approach for
our constrained direct and cascade systems. We
use the segments provided by the audio segmenter
as translation units. For the cascade system, we
translate the transcription of each segment with the
fine-tuned constrained MT, also using the length
ROVER (Section 3.4.3). End-of-line and end-of-
block tokens are inserted into the translated text
of each segment using the subtitle segmentation
algorithm configured similarly to the case of tem-
plate creation in the previous section but without
duration-based constraints. Timestamps for the ad-
ditional subtitle block boundaries are then created
by linearly interpolating the audio segment tim-
ings according to character count ratios. Assuming
the translation of an audio segment with start time
Tstart and end time Tend is split into N blocks with
c1, ..., cN characters, respectively, the start time of

block n is set to Tstart + (Tend − Tstart) ·
∑n−1

n′=1
cn′∑N

n′=1 cn′
.

This method leads to reasonable timings in most
cases but can create temporary time shifts between
speech and subtitles inside long audio segments.

3.5.3 Subtitle Post-Processing
To all subtitles, we apply a final post-processing
that splits rare cases of subtitles with more than 2
lines (same segmentation method as for template-
free approach) and shifts subtitle end times to later
in time if needed to comply with the maximum
reading speed of 21 characters per second. The
latter is only possible if there is a large enough
gap after a given subtitle and will therefore not
guarantee low enough reading speed in all cases.

system TED EPTV Peloton ITV
SHAS 0.31 21.1 14.9 12.1 15.6
SHAS 0.50 22.4 14.9 11.6 13.9
SHAS 0.71 20.8 14.6 10.8 10.7
ASR Segm. 19.8 14.8 11.3 13.5

Table 2: Impact of different segmentation schemes on
the translation quality (BLEU in %).

3.6 Results

We first decide which audio segmentation to use
based on dev set results using our final ASR and
MT unconstrained systems. We set different pDAC
thresholds for the unconstrained SHAS (0.31, 0.50,
and 0.71) and compare them with an in-house seg-
menter optimized for ASR. The results in Table 2
show that a low threshold of 0.31 leads to better
translations overall. There is however variation de-
pending on the domain: it is 1.3 BLEU points worse
than SHAS 0.50 on TED, but as good or up to 1.7
BLEU points better in all other domains. Results
for ITV are highly sensitive to the threshold. We
attribute this to the fact that in TV series speech
is often mixed with music and other sounds and a
lower threshold is required not to miss speech seg-
ments. Given these results, we use SHAS 0.31 as
our segmenter for unconstrained experiments. For
the constrained experiments, we use SHAS 0.31
everywhere except on TED with SHAS 0.50.

Table 3 compares the performance of the final
constrained cascade (separate ASR + MT) and di-
rect En-De subtitling systems as well as the un-
constrained cascade system. All metrics are com-
puted using the SUBER tool5 (Wilken et al., 2022)
directly on subtitle files. To calculate the BLEU

and CHRF (Popović, 2015) metrics, it performs
an alignment of hypothesis to reference sentences
similar to (Matusov et al., 2005). On all metrics,
the constrained cascade system outperforms our
direct model. We observe imperfections in the di-
rect model’s output such as repetitions. This can
be partially attributed to the fact that it has been
trained jointly for 3 tasks leading to sub-optimal
optimization for the final translation process. The
lack of length control of our direct ST model is
another reason for the gap between the two con-
strained systems. For the cascade systems, we find
length control via the length ROVER to be crucial,
giving consistent improvements of 4 to 5% points
in SUBER compared to no length control at all.
As seen in Table 3, the unconstrained system out-

5https://github.com/apptek/SubER

256

https://github.com/apptek/SubER


system constr. SUBER (↓) BLEU CHRF
TED

cascade yes 63.0 26.0 53.9
direct yes 75.9 17.1 47.6
cascade no 64.3 22.1 51.0

EPTV
cascade yes 78.7 13.5 45.2
direct yes 85.1 10.9 42.6
cascade no 75.8 14.8 44.1

Peloton
cascade yes 87.6 9.9 32.0
direct yes 86.1 6.8 26.9
cascade no 71.9 11.6 34.3

ITV
cascade yes 83.6 8.5 26.1
direct yes 90.9 5.7 21.0
cascade no 71.4 14.8 35.2

Table 3: En-De subtitle translation results in % (con-
strained and unconstrained setting) on the dev2023 sets.

Domain SUBER (↓) BLEU (↑) CHRF (↑)
TED 48.8 37.8 61.8
EPTV 70.2 20.4 50.6
Peloton 79.0 12.2 36.2
ITV 82.1 9.2 26.8

Table 4: Subtitle translation results in % on the dev2023
sets for En-Es via the constrained cascade system.

performs both constrained systems except on the
TED set. This is due to a data overlap, some TED
talks present in the dev set have also been part of
the constrained training data. To analyze the im-
pact of the source template approach we re-create
the subtitles of the unconstrained system using the
template-free approach. We find that this deterio-
rates the SUBER scores for TED, Peloton and ITV
by 0.7, 3.6 and 3.8% points, respectively, while
actually giving better results for EPTV by 0.7%. In
general, the results in Table 3 show a higher auto-
matic subtitling quality for the TED domain, which
represents the case of well recorded and prepared
speech, but also show the need to focus research
on harder conditions such as interviews and TV
series. Table 4 contains the scores we are able
to achieve for En-Es under constrained conditions.
Also here, acceptable subtitle quality can only be
reached for TED and EPTV content, but not for the
more challenging Peloton and ITV content.

4 Formality Control

AppTek’s production systems support formality or,
as we call it, style control for selected language

pairs (Matusov et al., 2020). This year, we decided
to test these systems in the unconstrained condition
of the IWSLT formality track for En-Pt and En-
to-Ru. Each of these two systems is trained in a
Transformer Big setup (Vaswani et al., 2017). The
formality level is encoded with a pseudo-token in
the beginning of each training source sentence with
one of 3 values: formal, informal, no style. The
system is trained on large public data from the
OPUS collection (Tiedemann, 2012) that has been
partitioned into the 3 style classes as follows.

First, we write a sequence of regular expressions
for the target language (in this case, European Pt
and Ru) which try to match sentences containing
formal or informal features. Thus, for Russian, we
try to match either the formal or informal second-
person pronoun that corresponds to English “you”,
including their possessive forms. For Portuguese,
we additionally match the forms of most common
verbs which agree with the corresponding pronoun.
The regex list for Russian is given in Table 56.

Each list of regular expressions uses standard
regex syntax and makes either case-sensitive or
insensitive matches. For each sentence pair from
the parallel data, the regex list is processed from
top to bottom. As soon as a match in the target
sentence is found, the FORMAL or INFORMAL label
is assigned to the sentence pair. The sentence pair
is labeled with NO_STYLE if there is no match.

If document information is available and at least
5% of the document sentence pairs are labeled as
formal/informal according to the regex rules (with
no sentences labeled with the opposite class), then
all of the sentence pairs in the document are as-
signed the corresponding label. Such data is useful
to model stylistic traits which are not limited to
the choice of second-person pronouns. Note that
document annotations are available for some of
the IWSLT data, including TED talks, OpenSubti-
tles (each subtitle file corresponds to a document),
individual sessions of European Parliament, etc.

We further smooth the three style classes to en-
sure that e.g., sentences containing second-person
pronouns can be translated well even when no style
is specified at inference time. To this end, 5 to 8%
of sentence pairs which had been assigned to one of
the 3 style classes as described above are randomly
re-assigned to one of the other two classes.

For En-Ru, the training data that had been parti-
tioned into style classes in this way included about

6We released the En-Pt and En-Ru lists of regular expres-
sions as part of our evaluation submission.
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INFORMAL IGNORECASE \b(ты|теб[яе]|тобой|тво[йеёяю]|твоей|твоего|твоему|твоим|тво[ёе]м)\b
FORMAL IGNORECASE \b(вы|вами?|ваш[ае]?|вашей|вашего|вашему?|вашу|вас|вашим)\b

Table 5: The regular expressions used to partition En-Ru training data into formal, informal, and (in case of no
match) “no style” classes.

language pair / BLEU COMET M-Acc
requested style [%] [%]

En-Pt formal 34.6 0.6089 99
informal 42.4 0.6776 64

En-Ru formal 35.4 0.6165 99
informal 33.3 0.6026 98

Table 6: Automatic evaluation results for AppTek’s
submission to the formality track of IWSLT 2023.

40M sentence pairs. At the time this model was
trained in early 2022, the larger CCMatrix cor-
pus (Schwenk et al., 2021) was not included. For
En-Pt, we did use a filtered version of CCMatrix
in training, so that the total number of parallel sen-
tence pairs was 140M. The filtering of CCMatrix
and other large crawled data included removing sen-
tence pairs with low cross-lingual sentence embed-
ding similarity as given by the LABSE scores (Feng
et al., 2022). All of our parallel training data is also
filtered based on sentence-level language identifi-
cation scores and other heuristics.

When training the Transformer Big model, we
balanced the contribution of formal, informal, and
“no style” data by adding them in equal proportions
(number of lines) to each sub-epoch.

4.1 Results

We did not perform any experiments, but just
set the API parameter style=formal or
style=informal and translated the evaluation
data with the AppTek’s production systems, trained
as described above. The results in terms of auto-
matic error metrics, as reported by the track orga-
nizers, are summarized in Table 6.

Among the 5 participants of the unconstrained
condition, we obtain the best results for En-Ru in
terms of BLEU and COMET (Rei et al., 2020), while
producing the correct formality level for more than
98% of the sentences. The second-best competitor
system obtains formality accuracy of 100%, but
scores 1.7% absolute lower in BLEU for the formal
and 0.9% BLEU absolute for the informal class.

For En-Pt, our system scores second in terms of
automatic MT quality metrics and correctly pro-
duced the formal style for 99% of the sentences in
the evaluation data. However, when the informal
style was requested, our system could generate it in
only 64% of the cases. We attribute this low score

to the imperfect regular expressions we defined for
informal Portuguese pronouns and corresponding
verb forms, since some of them are ambiguous.
However, we find it difficult to explain that e.g. the
BLEU score of AppTek’s “informal” MT output
with respect to the informal reference is almost 8%
absolute higher than for our “formal” output with
respect to the formal reference. This may indicate
that the human reference translation also has not
always followed the requested style, the informal
one in particular.

5 Conclusion

We described AppTek’s submissions to the subti-
tling and formality tracks of the IWSLT 2023.

For the subtitling track, we obtained good re-
sults, outperforming the other two evaluation partic-
ipants either with our constrained or unconstrained
cascaded approach on all 4 domains. Part of this
success is due to our subtitle creation process, in
which we employ AppTek’s intelligent line seg-
mentation models. However, the results varied by
domain, with the domain of movie subtitles posing
the most challenges for ASR, and the domain of
fitness-related videos (Peloton) being hardest for
MT. Yet our biggest overall challenge, especially
for the direct (end-to-end) submission was speech
segmentation and creating sentence-like units, on
real ITV movies in particular, in which there is mu-
sic, background noise, and multiple speakers. In
the future, we plan to improve this component of
our speech translation technology. We also plan to
include length control in our direct models which
showed to be an important factor for those applica-
tions with time constraints.

Our formality track participation was a one-shot
attempt at a zero-shot task that showed the compet-
itiveness of the formality control that we have im-
plemented in AppTek’s production systems. How-
ever, our approach currently requires the creation
of manual regular expression rules for partition-
ing the parallel training data into formality classes,
and the participation in the IWSLT evaluation re-
vealed some weaknesses of this approach for one
of the involved target languages. In the future, we
plan to further improve our approach, reducing or
eliminating the need for writing rules.
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Abstract

This article describes the QUESPA team speech
translation (ST) submissions for the Quechua
to Spanish (QUE–SPA) track featured in the
Evaluation Campaign of IWSLT 2023: low-
resource and dialect speech translation. Two
main submission types were supported in the
campaign: constrained and unconstrained. We
submitted six total systems of which our best
(primary) constrained system consisted of an
ST model based on the Fairseq S2T framework
where the audio representations were created
using log mel-scale filter banks as features and
the translations were performed using a trans-
former. The best (primary) unconstrained sys-
tem used a pipeline approach which combined
automatic speech recognition (ASR) with ma-
chine translation (MT). The ASR transcriptions
for the best unconstrained system were com-
puted using a pre-trained XLS-R–based model
along with a fine-tuned language model. Tran-
scriptions were translated using a MT system
based on a fine-tuned, pre-trained language
model (PLM). The four other submissions are
presented in this article (2 constrained and 2
unconstrained) for comparison because they
consist of various architectures. Our results
show that direct ST (ASR and MT combined
together) can be more effective than a PLM in a
low-resource (constrained) setting for Quechua
to Spanish. On the other hand, we show that
fine-tuning of any type on both the ASR and
MT system is worthwhile, resulting in nearly
16 BLEU for the unconstrained task.

1 Introduction

Low-resource machine translation (LRMT) can be
considered a difficult task due to the low amount
of parallel data on hand. (Haddow et al., 2022)
By adding the task of automatic speech recogni-
tion (ASR), complexity can be even more difficult.
Findings from the previous year’s IWSLT 2022
(Antonios et al., 2022) have shown that for low-
resource language pairs like Tamasheq–French, it

is difficult to achieve more than 5 BLEU (Papineni
et al., 2002) score points for the combined task of
speech translation (ST), even in a unconstrained
setting.

This year, the IWSLT 2023 (Agarwal et al.,
2023) evaluation campaign for low-resource and
dialect speech translation has included Tamasheq–
French along with several other language pairs.
One of the newly introduced language pairs is
Quechua–Spanish deemed QUE–SPA by the orga-
nizers. Quechua is an indigenous language spoken
in the Andes mountainous region in South America.
It is spoken by millions of native speakers mostly
from Peru, Ecuador and Bolivia. In those regions,
the high-resource language is Spanish. Quechua
displays many unique morphological properties of
which high inflection and poly-synthetic are the
two most commonly known. It is worthwhile to
note that previous work (Ortega and Pillaipakkam-
natt, 2018; Ortega et al., 2020) has been somewhat
successful in identifying the inflectional properties
of Quechua such as agglutination where another
high-resource language, namely Finnish, can aid
for translation purposes achieving nearly 20 BLEU
on religious-based (text-only) tasks.

Since this is the first year that QUE–SPA has
been included in the IWSLT 2023 campaign, we
feel that it is important to set a proper baseline. The
aim of our submission was to increase the viabil-
ity of the use of a Quechua–Spanish ST system
and we thus attempted several approaches that in-
cluded the use of pipelines (cascade) approaches
along with joint ASR + MT. We report on the six
system submissions as a final takeaway for this ar-
ticle; however, we also compare other approaches
that performed worse (1 BLEU or less). Our team
is called QUESPA and consists of a consortium
that spans across three universities: Northeastern
University (USA), Universitat de Pompeu Fabra
(Spain), and Carnegie Mellon University (USA).
Our objective is to help to solve the LRMT prob-
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lem for Quechua with the intention of at some point
releasing an ST system to the Quechua community
where we have strategic partners located in areas
of Peru where Quechua is mostly spoken. The
authors of this article have participated in several
other events and written literature that includes
native Quechua annotations for natural language
processing (NLP) systems including MT and more.

This article reports the QUESPA consortium
submissions for the IWSLT 2023 dialect and low-
resource tasks. We focus only on the low-resource
task despite the mention of two dialects Quechua I
and II. Our focus is on creating the optimum mod-
els we can for the constrained task and leveraging
pre-trained models for the unconstrained task fur-
ther described in Section 3.

The rest of this article is organized as follows.
Section 2 presents the related work. The experi-
ments for QUE–SPA low-resource track are pre-
sented in Section 3. Section 4 provides results from
the six submitted systems and concludes this work.

2 Related work

In this section, we first cover work directly related
to the ASR and MT tasks of QUE–SPA done in
the past. Then, we introduce related work on ST
models in general to provide an idea of what work
is current in the field.

Quechua to Spanish MT approaches have be-
come more abundant in the past few years. When
it comes to ASR–>MT, or ST approaches, there are
few attempts officially recorded. In this section, we
list previous work in chronological order to better
explain the MT approaches attempted. First, Rios
(2015) provided an advanced linguistic Quechua
toolkit that used finite state transducers (FSTs) to
translate from Spanish to Quechua. Her work laid
the foundation for future work and helped to pro-
mote the digitization of the Quechua language. Af-
ter that, Ortega and Pillaipakkamnatt (2018) and
Cardenas et al. (2018) introduced several new find-
ings that included the ASR corpus used in the
IWSLT 2023 task for both unconstrained and con-
strained purposes. Not long after, Ortega et al.
(2020) introduced the first known attempt of a neu-
ral MT system that included several annotators
along with the state-of-the-art techniques in sub-
segmentation such as byte-pair encoding (BPE)
(Sennrich et al., 2015). Their work was then ex-
tended by others (Chen and Fazio, 2021) more re-
cently to achieve 23 BLEU on religious-based text,

the highest performing QUE–SPA for its time.
None of the approaches before Chen and Fazio

(2021) work included the use of pre-trained lan-
guage models (PLMs) for low-resource languages.
However, the introduction of zero-shot models
occurred at the low-resource machine translation
workshop in 2020 (Ojha et al., 2020) and not
long after in 2021 at the Americas NLP work-
shop (Mager et al., 2021). The Americas NLP
2021 workshop included the use of QUE–SPA, al-
beit for MT only achieving scores of 5.39 BLEU
through the use of a multi-lingual model trained on
10 other indigenous languages. Their work did not
include zero-shot task approaches as introduced by
Ebrahimi et al. (2022) where fine-tuning was per-
formed on a pre-trained XLM-R (Conneau et al.,
2020) model that achieved impressive results (40–
55 BLEU). More recent work (Weller-Di Marco
and Fraser; Costa-jussà et al., 2022) did not surpass
those results for MT of QUE–SPA.

To our knowledge only one competition/shared
task has attempted to process QUE–SPA for speech
translation purposes – Americas NLP 20221. How-
ever, the findings for the task have not beeen pub-
lished as of the writing of this article. Their compe-
tition used corpora similar to IWSLT 2023 but lacks
MT data as a separate (constrained) resource. They
also do not introduce the concept of constrained or
unconstrained tasks as was done at IWSLT 2023.

Apart from those tasks that directly use the QUE–
SPA language pair, several mainstream techniques
are currently being used as alternatives to super-
vised (from scratch) training. For example, one
of the most common approaches for both ST and
MT approaches tend to use a transformer in some
capacity along with a PLM. One such model that
uses a multi-lingual low-resource corpus called Flo-
res (Guzmán et al., 2019) is Facebook’s NLLB (no
language left behind) approach (NLLB Team et al.,
2022). Their approach uses self-supervised learn-
ing (SSL) from previous innovation (Pino et al.,
2020) for multi-lingual approaches that combines
ASR with MT in a ST task alone and is made
available through Fairseq (Wang et al., 2020). In
our work, our primary systems use Fairseq and
Facebook’s PLMs with sentence embeddings based
on previous work (Artetxe and Schwenk, 2019)
and the M2M (multi-to-multi) model (Fan et al.,
2021) consisting of 1.2 Billion parameters. This

1https://github.com/AmericasNLP/
americasnlp2022

262

https://github.com/AmericasNLP/americasnlp2022
https://github.com/AmericasNLP/americasnlp2022


enables zero-shot cross-lingual transfer for many
low-resource languages, including Quechua.

We provide reference to previous work that in-
cludes either a direct or end-to-end ST models (Be-
rard et al., 2016; Weiss et al., 2017). More tradi-
tional approaches typically use a cascade approach
which first transcribes using an ASR model and
then translates using a MT model. While recent
work (Bentivogli et al., 2021; Anastasopoulos et al.,
2021; Antonios et al., 2022) has shown that the
direct ST approaches are worthy, traditional ap-
proaches work well for low-resource situations too.
In our system submissions, all of our systems with
exception of the primary constrained used the cas-
cade approach.

3 Quechua-Spanish

In this section we present our experiments for the
QUE–SPA dataset provided in the low-resource ST
track at IWSLT 2023. This is the first time that
this dataset has been officially introduced in its cur-
rent state which contains 1 hour and 40 minutes
of constrained speech audio along with its corre-
sponding translations and nearly 60 hours of ASR
data (with transcriptions) from the Siminichik (Car-
denas et al., 2018) corpus. AmericasNLP 2022’s
task used a smaller part of the dataset but the data
was not presented or compiled with the same of-
fering and, as of this writing, have not published
their results. This dataset aggregates the QUE–SPA
MT corpus from previous neural MT work (Ortega
et al., 2020). The audio and corresponding tran-
scriptions along with their translations are mostly
made of of radio broadcasting, similar to the work
from Boito et al. (2022) which contains 17 hours
of speech in the Tamasheq language.

We present the six submissions for both the con-
strained and unconstrained as follows:

1. a primary constrained system that uses a direct
ST approach;

2. a contrastive 1 constrained system consisting
of a wav2letter (Pratap et al., 2019) ASR sys-
tem and a neural MT system created from
scratch;

3. a contrastive 2 constrained system consist-
ing of a conformer-based (Gulati et al., 2020)
ASR system and a neural MT system created
from scratch;

4. a primary unconstrained system consisting of
a multi-lingual PLM ASR model, a Quechua
recurrent neural-network language model, and
a fine-tuned neural MT system based on a
PLM;

5. a contrastive 1 unconstrained system consist-
ing of a multi-lingual PLM ASR model and a
fine-tuned neural MT system based on a PLM;

6. a contrastive 2 unconstrained system consist-
ing of a wav2letter ASR system and a fine-
tuned neural MT system based on a PLM.

We present the experimental settings and results
for all systems starting off with constrained sys-
tems in Section 3.1 and continuing with the uncon-
strained systems in Section 3.2. We then describe
the other less successful approaches in Section 3.3.
Finally, we offer results and discussion in Section
4.

3.1 Constrained Setting
The IWSLT 2023 constrained setting for QUE–SPA
consists of two main datasets. First, the speech
translation dataset consists of 1 hour and 40 min-
utes divided into 573 training files, 125 validation
files, and 125 test files where each file is a .wav
file with a corresponding transcription and human-
validated translation from Simanchik (Cardenas
et al., 2018). Secondly, there is a MT data set com-
bined by previous work (Ortega et al., 2020) which
consists of 100 daily magazine article sentences
and 51140 sentences which are of religious context
in nature.

3.1.1 Primary System
The Primary System consists of a direct ST ap-
proach. Since the constrained setting does not al-
low for external data, we used only the data pro-
vided. We use the Fairseq (Ott et al., 2019) toolkit
to perform direct ST using the 573 training files, a
total of 1.6 hours of audio. The system extracts log
mel-filter bank (MFB) features and is based on the
S2T approach by (Wang et al., 2020). We gener-
ate a 1k unigram vocabulary for the Spanish text
using SentencePiece (Kudo and Richardson, 2018),
with no pre-tokenization. Our model consists of
a convolutional feature extractor and transformer
encoder-decoder (Vaswani et al., 2017) with 6 en-
coder layers and 3 decoder layers. Error is mea-
sured using cross entropy and optimization is done
using Adam. Our model was run for 500 epochs
with a learning rate of .0002.
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3.1.2 Contrastive 1 System

The Contrastive 1 System is a cascade system
where first ASR is performed to produce transcrip-
tions that are translated using a separate MT system.
For the ASR system, we used the wav2letter++
(Pratap et al., 2019) model. The wav2letter++
model consists of a RNN with 30M parameters
(2 spatial convolution layers, 5 bidirectional LSTM
layers, and 2 linear layers) and a CNN with 100M
parameters (18 temporal convolution layers and 1
linear layer). We use the convolutional gated lin-
ear unit (GLU) (Dauphin et al., 2017) architecture
proposed in the recipe wav2letter (WSJ) (Collobert
et al., 2016). Our experiments using wav2letter++
took 134 epochs to train, using Stochastic Gra-
dient Descent (SGD) with Nesterov momentum
and a minibatch of 8 utterances. The initial learn-
ing rate was set to 0.006 for faster convergence,
and it was annealed with a constant factor of 3.6
after each epoch, with momentum set to 0. The
model was optimized using the Auto Segmentation
Criterion (ASG) (Collobert et al., 2016). During
development, the ASR system WER was 72.15
on the validation set. The MT system was cre-
ated from scratch using the OpenNMT framework
(Klein et al., 2020) with the MT data provided for
the constrained task along with the ASR training
data. More specifically, the MT system’s encoder
and decoder are based on a transformer (Vaswani
et al., 2017) (encode/decode) architecture of 6 lay-
ers. Hidden layer and vectors sizes were 512.
Dropout was set to 0.1. Optimization was done
using the Adam optimizer. Tokenization was done
using SentencePiece (Kudo and Richardson, 2018).
Both source and target vocabularies were 50k. Ini-
tial BLEU score on the validation set was 21.13.

3.1.3 Contrastive 2 System

Similar to the Contrastive 1 System, the Contrastive
2 system is a cascade approach. The ASR sys-
tem, however, is distinct. It is derived using MFB
features similar to previous work Berrebbi et al.
(2022). It uses a conformer instead of the trans-
former encoder like Gulati et al. (2020). Training
was performed using a hybrid CTC/attention loss
(Watanabe et al., 2017). The model was optimized
using Adam (Kingma and Ba, 2015) and a Noam
learning rate scheduler (Vaswani et al., 2017) with
4000 warmup steps. The MT system is identical
to the OpenNMT MT system mentioned for the
Contrastive 1 submisison covered in Section 3.1.2.

3.2 Unconstrained Setting
For the unconstrained setting in IWSLT 2023, an
additional 60 hours of speech data with their corre-
sponding transcriptions was made available by the
organizers. This allowed for greater mono-lingual
fine-tuning of the ASR data. Additionally, for both
the ASR and MT components of all three of our
submitted unconstrained systems, PLMs were used
along with fine-tuning. The three submissions were
cascade systems.

3.2.1 Primary System
The Primary System for the unconstrained setting
consists of two systems, the ASR and the MT
system. Both systems are fine-tuned. First, the
ASR system is multi-lingual model pre-trained on
the 102-language FLEURS (Conneau et al., 2023)
dataset. The model consists of a conformer (Gulati
et al., 2020) encoder and transformer decoder and is
trained using hybrid CTC/attention loss (Watanabe
et al., 2017) and hierarchical language identifica-
tion conditioning (Chen et al., 2023). The model
inputs are encoded representations extracted from
a pre-trained XLS-R 128 model (Babu et al., 2021)
with its weights frozen, augmented with SpecAug
(Park et al., 2019) and speech perturbation (Ko
et al., 2015). In order to jointly decode, we also
trained an RNN language model. The RNN con-
sists of 2 layers with a hidden size of 650, trained
using SGD with a flat learning rate of 0.1. The
word-error rate on the validation set was 15. For
the MT system, we use the Fairseq (Ott et al., 2019)
tool kit for translation. The Flores 101 model was
used (Guzmán et al., 2019) as the PLM and is based
on a transformer (Vaswani et al., 2017) architecture
used at WMT 20212 by Facebook. Fine-tuning was
performed using the training ASR+MT data from
the constrained task as was used for training in the
Constrained Contrastive 1 task in Section 3.1.2.

3.2.2 Contrastive 1 System
The Constrastive 1 system is nearly identical to
the Primary System for the unconstrained setting.
The MT system is identical to that of the Primary
System submission for the unconstrained setting.
For the ASR system, a FLEURS approach is used
identical to the unconstrained Primary System in
Section 3.2.1. The only difference is that this Un-
constrained Contrastive 1 system does not use a
language model.

2https://www.statmt.org/wmt21/large-scale-
multilingual-translation-task.html
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3.2.3 Contrastive 2 System

The Contrastive 2 System is also a cascade
(ASR+MT) system. The MT system is identical
to that of the Primary System submission for the
unconstrained setting. The ASR system architec-
ture is identical to the Constrained Contrastive 1
System in Section 3.1.2, but with other hyperparam-
eters. In this experiment took 243 epochs to train,
using Stochastic Gradient Descent (SGD) with Nes-
terov momentum and a minibatch of 16 utterances.
The initial learning rate was set to 0.002 for faster
convergence, and it was annealed with a constant
factor of 1.2 after each epoch, with momentum
set to 0. In this system, we add the additional 60
hours of monolingual transcribed speech data from
the unconstrained setting mentioned in the IWSLT
2023 low-resource task in addition to the 1.6 hours
provided for the constrained setting.

3.3 Other Approaches

As noted in Section 2, there have been other suc-
cessful approaches worth visiting. While we could
not exhaustively attempt to use all of those ap-
proaches, we did focus on several that are worth
noting.

For ASR approaches, we focused on experiment-
ing with different model architectures. This in-
cluded using different encoders (transformer, con-
former) and decoders (auto-regressive Transformer,
CTC-only). Regardless, all of the ASR systems
achieved at best 100 WER in the constrained set-
ting, limiting the effectiveness of any cascaded
approach. In the unconstrained setting, we also
looked at different ways to incorporate pre-training.
For example, we tried directly fine-tuning a pre-
trained XLS-R model (Babu et al., 2021; Baevski
et al., 2020) instead of using extracted layer-wise
features from a frozen model. These approaches
were somewhat more successful by achieving up to
20.4 WER on the validation set; however, the top
three systems reported performed better with ASR.

For MT approaches, several attempts were made
to experiment with other systems. For example, the
OpenNMT (Klein et al., 2020) toolkit now offers
PLMs that include the Flores 101 (Guzmán et al.,
2019) dataset. However, since Quechua was not
included in the language list, the performance was
extremely low on the validation set (0.06 BLEU).
The Hugging Face version of the Flores 200 dataset
was also tested and resulted in 23.5 on its own data.
However, when testing on the validation set, the

score was of 6.27 BLEU. The Flores 200 model
is made available as the NLLB task on Fairseq,
however, we experienced several conflicts with the
machine infrastructure causing complexity with the
Stopes tokenization that prevented us from moving
forward.

For direct ST approaches, we also were unsuc-
cessful using w2v feature encoding without ma-
jor modification. Overall, the cascade approaches
seemed to work better for this task and, thus, we
made a decision to use those instead. The results
for the constrained task, nonetheless, show that
the direct s2t approach worked well using MFB
features.

4 Results and Discussion

Team QUESPA BLEU and CHRF Scores

Constrained

System Description BLEU CHRF
primary mfb+s2t 1.25 25.35
contrastive 1 w2vl+onmt 0.13 10.53
contrastive 2 conformer+onmt 0.11 10.63

Unconstrained

System Description BLEU CHRF
primary fleurs+lm+floresmt 15.36 47.89
contrastive 1 fleurs+floresmt 15.27 47.74
contrastive 2 w2vl+floresmt 10.75 42.89

Table 1: Team QUESPA results for the Quechua to
Spanish low-resource task at IWSLT 2023.

Results are presented in Table 1. For the con-
strained task, we were unable to create a system
that would be viable for deployment. Notwithstand-
ing, we believe that the primary submission which
used MFB features along with the default Fairseq
S2T recipe could be used to further research in the
field. Other systems, based on w2vletter (Pratap
et al., 2019) and a conformer (Gulati et al., 2020)
resulted in a near zero BLEU score and are proba-
bly only valid as proof of the non-functional status
of the two systems when performing ASR on the
QUE–SPA language pair. It is clear that with 1.6
hours of data for training, few constrained systems
will perform better than 5 BLEU, as seen in previ-
ous IWSLT tasks.

For the unconstrained setting, our findings have
shown that for both the ASR and MT models, the
use of a PLM with fine-tuning is necessary. We
were unable to create a system from scratch that
would perform as well as those presented in previ-

265



Figure 1: The best-performing unconstrained speech translation pipeline.

ous tasks. The combination of a language model
and the FLEURS PLM for ASR along with the
FLORES 101 PLM for MT constitutes our best
performing system overall as shown in Figure 1.
The language model slightly helped for the Primary
system by a gain of nearly 0.10 points in BLEU.
The other unconstrained system based on w2vletter
(Pratap et al., 2019) performed much better than
the constrained version making it worthwhile to
explore for future iterations since it doesn’t require
other languages.

5 Conclusion

Concluding, we have experimented with several
options for both the constrained and unconstrained
settings. This constitutes the first time that ex-
periments have been put together along with the
other team submissions for the Quechua to Spanish
task. We believe that the performance achieved
here can serve as baselines for more sophisticated
approaches. Additionally, it came to our attention
that data splits provided by the organizers can be
adjusted to better fit the data. There are multiple
speakers in several of the audio files, we did not
take advantage of this and hope to address it in the
future. Also for the future, we believe that more
work could be done using direct ST systems with
fine-tuning. We did not follow that path in this
work but feel it would be advantageous.
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Abstract
This paper describes the GMU Systems for the
IWSLT 2023 Dialect and Low-resource Speech
Translation Tasks. We submitted systems for
five low-resource tasks and the dialectal task.
In this work, we explored self-supervised pre-
trained speech models and finetuned them on
speech translation downstream tasks. We use
the Wav2vec 2.0, XLSR-53, and Hubert as self-
supervised models. Unlike Hubert, Wav2vec
2.0 and XLSR-53 achieve the best results when
we remove the top three layers. Our results
show that Wav2vec 2.0 and Hubert perform
similarly with their relative best configuration.
In addition, we found that Wav2vec 2.0 pre-
trained on audio data of the same language
as the source language of a speech translation
model achieves better results. For the low-
resource setting, the best results are achieved
using either the Wav2vec 2.0 or Hubert models,
while XLSR-53 achieves the best results for
the dialectal transfer task. We find that XLSR-
53 does not perform well for low-resource
tasks. Using Wav2vec 2.0, we report close to 2
BLEU point improvements on the test set for
the Tamasheq-French compared to the baseline
system at the IWSLT 2022.

1 Introduction

Recently, speech-to-text translation (S2T) has re-
ceived a lot of focus in the community where neu-
ral, end-to-end approaches outperform traditional
statistical approaches (Weiss et al., 2017). Recent
neural approaches to S2T have shown superior per-
formance on this task (Fang et al., 2022; Tang et al.,
2022). Despite the success of neural approaches
to S2T, data scarcity is one of the significant chal-
lenges, given that neural networks require hundreds
to thousands of hours of labeled data to train a
good speech translation model (Sperber and Paulik,
2020). This makes developing such S2T models
challenging, especially for low-resource languages.

The IWSLT 2023 Low-resource and dialectal
shared tasks (Agarwal et al., 2023) give the possi-

bilities for researchers to find innovative ways to
develop speech translation systems for languages
with limited data. Unlike previous years, this year
noticed an addition of more low-resource languages
language pairs (up to 6) in addition to a dialect lan-
guage pair.

This paper describes the GMU submissions to
the low-resource and dialectal tasks. Our systems
use self-supervised pre-trained speech models to
improve speech translation models’ performance
in general, particularly for low-resource languages.
Self-supervised pre-training is possible because
unlabeled data (i.e., audio or text) can be obtained
easier compared to labeled data. Previous research
has addressed using self-supervised speech models
for speech translation (Wu et al., 2020; Nguyen
et al., 2020; Popuri et al., 2022). However, these
prior work did not consider exploring the impact
of different layers of these self-supervised models
to maximize the performance of S2T models.

In this paper, we consider three self-supervised
speech models: Wav2vec 2.0 (Baevski et al., 2020),
XLSR (Conneau et al., 2020) and Hubert (Hsu et al.,
2021). Following the discussion by Pasad et al.
(2022), we experimented to study the impact of
removing the top n layers of these models for the
speech translation task. By removing the last three
layers of the Wav2vec 2.0 model, we achieve more
than 2 BLEU improvement (8.03) on the blind test
set for the Tamasheq-French pair compared to the
best system submitted to the IWSLT 2022 low-
resource shared task (Anastasopoulos et al., 2022;
Zanon Boito et al., 2022). Similarly, using a pre-
trained XLSR-53, we achieved a BLEU score of
16.3 on the Tunisian Arabic-to-English language
pair without using the transcripts.

2 Task Descriptions

We are concerned with developing speech transla-
tion models in low-resource and dialectal tracks.
Each track poses distinct challenges. The low-

269



Language Pairs Language Code Train Set Hours Shared Task

Irish to English (Agarwal et al., 2023) ga-eng 11 Low-resource
Marathi to Hindi (Agarwal et al., 2023) mr-hi 15.3 Low-resource
Pashto to French (ELRA) pus-fra 61 Low-resource
Tamasheq to French (Boito et al., 2022) tmh-fra 17 Low-resource
Quechua to Spanish que-spa 1.6 Low-resource
Tunisian Arabic to English aeb-eng 160 Dialectal

Table 1: Language pair details used in our experiments.

resource setting has limited training data, while
the dialectal one lacks standard orthography and
formal grammar. Both shared tasks allowed the
submission of models trained under constrained
and unconstrained conditions. In the constrained
condition, models are only trained on data provided
by the organizers. In contrast, models in the uncon-
strained condition can be trained on any available
resources, including pre-trained models.

2.1 Data
Six low-resource languages were made available,
and one dialectal. However, due to data quality is-
sues (see Section 5) we do not report results on the
Maltese to English task. Table 1 shows the data de-
tails for each language pair. The organizers shared
additional data for specific languages, including
data for automatic speech recognition (ASR) and
machine translation (MT). However, our approach
used the data described in table 1. The exception is
for Tamasheq-French, where we used the provided
234 hours of unlabeled Tamasheq audio to pre-train
a self-supervised speech model.

For the unconstrained condition, we used data
from MUST-C1 (Di Gangi et al., 2019) to train
an ASR model for which we used its encoder to
initialize the speech translation training. We used
publicly available pre-trained self-supersized mod-
els (Wav2vec 2.0 (Baevski et al., 2020), XLSR-
53 (Conneau et al., 2020), and Hubert (Hsu et al.,
2021)). The Wav2vec 2.0 and Hubert check-
points we used were trained on the Librispeech
960hr English-only data (Panayotov et al., 2015),
while XLSR-53 was trained on 53 different lan-
guages (Conneau et al., 2020). No source lan-
guage of all language pairs appears in any self-
supervised models except Tamasheq-French, where
we pre-trained the Wav2vec 2.0 model we used for
Tamasheq-French was pre-trained on Tamasheq

1English to French only

audio-only data. Though Tunisian Arabic is not
part of the XLSR-53, the XLSR-53 contains Ara-
bic data that may be related to Tunisian Arabic.

3 Proposed Methods

Our methods consist of three different architectures.
The first is an end-to-end based transformer-based
architecture (E2E) trained on only provided data.
The second architecture, which we name E2E-ASR,
is the same as the first, except that we initialize the
encoder with an ASR encoder. The third archi-
tecture uses self-supervised speech models as an
encoder and a transformer-based decoder. We used
three different self-supervised models, Wav2vec
2.0, XLSR-53, and Hubert, and refer to these ar-
chitectures as W2V-E2E, XLSR-E2E, and Hubert-
E2E respectively.

We used the Fairseq ST (Wang et al., 2020)
framework for all our experiments and modified
this framework to accommodate our new custom
model architectures.

3.1 End-to-end and End-to-end with ASR
For End-to-end (E2E) architecture, we used a
transformer-based encoder-decoder architecture
(Vaswani et al., 2017) (st_tranformer_s)
as implemented in the Fairseq S2T framework
(Wang et al., 2020). The E2E architecture con-
sists of a 6-block transformer encoder and a 6-
block transformer decoder and is optimized using
the cross-entropy loss with label smoothing. We
used this model architecture to train the model
for the primary constrained category (primary-
constrained).

The End-to-end with ASR (E2E-ASR) architec-
ture, similar to (Stoian et al., 2019) and (Bansal
et al., 2019), uses the same architecture as the
E2E. The difference is that we use a pre-trained
ASR model to initialize its encoder. We used a
transformer-based architecture identical to the one
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for E2E to train the ASR on the English data of
the English-French Must-C dataset (Di Gangi et al.,
2019). We chose this architecture for the ASR
model to facilitate the transfer of the ASR encoder
weights to initialize the E2E-ASR encoder. The
decoder of the E2E-ASR was randomly initialized
and did not use the ASR decoder because it was
trained on a different language with a different vo-
cabulary. We used this model architecture to train
the model for the second contrastive unconstrained
category (contrastive2-unconstrained).

3.2 Self-Supervised Approaches
The self-supervised approach uses self-supervised
speech models as acoustic encoders with a
transformer-based decoder. The use of these self-
supervised models is motivated by the scarcity of
data in the low-resource setting. However, we
found these models useful even for the dialectal
task. The self-supervised architecture is illustrated
in figure 1.

We used three different self-supervised models,
Wav2vec 2.0, XLSR-53, and Hubert, which cor-
respond to the respective architectures W2V-E2E,
XLSR-E2E, and Hubert-E2E. These models con-
sist of a feature encoder and a context network.
The feature encoder has seven temporal convolu-
tion blocks, and the context network consists of
several transformer blocks. The Wav2vec 2.0 and
Hubert models used in our experiments have 12
transformer blocks, whereas the XLSR-53 has 24.2

We use these self-supervised models as encoders
following the traditional encoder-decoder model
architecture. The decoder consists of a transformer
network with six layers preceded by a linear layer.

3.2.1 Using Wav2vec 2.0 and XLSR-53
Instead of using all the layers of the context net-
work for the Wav2vec 2.0 and XLSR-53 models,
we explored the impact of removing the top n most
layers. The exploration of removing the top layers
was inspired by Pasad et al. (2022), who analyzed
self-supervised speech models and measures the
acoustic, phonetic, and word-level properties en-
coded in individual layers of the context network.
For Wav2vec 2.0 and XLSR, the analyses show
that the initial and the final layers are more simi-
lar to the inputs than the intermediate layers. In-
stead of re-initializing the top n layers and then

2We refer the reader to the following papers (Baevski et al.,
2020), (Conneau et al., 2020) and (Hsu et al., 2021) for more
details on these models.

fine-tuning these models on a downstream task as
done in Pasad et al. (2022), we explored the idea
of removing these layers and then fine-tuning the
modified model on a downstream task. Through a
series of experiments, we found that removing the
last three layers for the Wav2vec 2.0 and XLSR-53
models yields the highest BLEU score.

We found the Wav2vec 2.0 helpful for the low-
resource languages, while the XLSR-53 was more
beneficial for the dialectal language. Therefore,
we used the Wav2vec 2.0 for the primary uncon-
strained category (primary unconstrained) for the
low-resource task. The XLSR-53 was used as the
primary unconstrained category (primary uncon-
strained) for the dialectal transfer task.

The Wav2vec 2.0 we used for all the low-
resource languages (except Tamasheq-French) was
trained on the English raw audio of the Librispeech
960hr data (Panayotov et al., 2015). However, due
to the availability of Tamasheq raw audio, we also
trained a Wav2vec 2.0 model on Tamasheq raw au-
dio that used this model on the Tamasheq to French
language pair. The XLSR-53 model we used was
trained on 53 raw audio data from 53 different lan-
guages.

3.2.2 Using Hubert
Unlike Wav2vec 2.0 and XSLR-53, we did not re-
move any layers for the Hubert model. We rather
fine-tuned the out-of-the-box pre-trained Hubert
model on the English raw audio data of Librispeech
960hr. As discussed by (Pasad et al., 2022), Hubert
does not follow the autoencoder pattern, given that
the higher layers appear to encode more phonetic
and word information. The choice of not removing
top layers for the Hubert model was also corrobo-
rated through our empirical experiments, where we
achieved the highest BLEU score for the Hubert
model when we did not remove any top layers.

We used the Hubert model for the first con-
trastive constrained category (contrastive1 uncon-
strained) for the low-resource and dialectal tasks.

3.3 Data
The input to architectures E2E and E2E-ASR con-
sist of 80-channel log-mel filterbank features com-
puted on a 25 ms window with a 10 ms shift. We
used raw audio as input for all the architectures
using self-supervised models. For the translation
text, we use the byte pair encoding (BPE) (Sen-
nrich et al., 2016) algorithm with the sentencepiece
toolkit from the Fairseq ST framework (Wang et al.,
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Figure 1: Self-supervised model architecture. This is an end-to-end architecture that uses self-supervised speech
models as the encoder. The encoder is one of the Wav2vec 2.0, XLSR, or Hubert models. We removed the top 3
layers of the Wav2vec 2.0 and XLSR models.

Language Pairs Vocab. Size

Irish-English 1000
Marathi-Hindi 1000
Pashto-French 3000
Tamasheq-French 1000
Quechua Spanish 400
Tunisian Arabic-English 8000

Table 2: BPE vocabulary for each language.

2020) to create vocabularies for all the target lan-
guages. We chose the vocabulary size based on
the amount of text data we had for each language.
Table 2 shows the BPE vocabulary size we used
for each language pair. Though we used the train-
ing data size as a heuristic for choosing these BPE
vocabulary sizes, we empirically tested a few con-
figurations. We kept the sizes that gave the best
BLEU score.

4 Results and Analyses

Table 3 shows results for all the systems we sub-
mitted. Our primary system reports the best results
for the unconstrained setting where we used the
W2V-E2E and XLSR-E2E architectures for the low-
resource and dialectal tasks, respectively.

We explored the impact of removing the top

Figure 2: BLEU score on the test set for Tamasheq-
French (tmh-fra) and Quechua-Spanish 3(que-spa) after
removing top n number of layers of the Wav2vec 2.0.
These results are run using the W2V-E2E architecture.
For both Tamasheq-French and Quechua-Spanish, the
best BLEU is achieved after removing the top 3 layers.

n layers for the Wav2vec 2.0 model used in the
W2V-E2E architecture. As illustrated in figure 2,
the highest BLEU was achieved by removing the
top three layers of the Wav2vec 2.0 model. We,
therefore, used the same heuristic for the XLSR-53
model, given that it has the same architecture as
the Wav2vec 2.0 model.

3The results for Quechua to Spanish are different from
those in Table 3 because they were run after the evaluation
period.
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Language System Task Architecture dev/valid test1 test2 test3

ga-eng

primary constr.

LR

E2E - - 15.1 -
primary unconstr. W2V-E2E - - 66.5 -
contrastive1 unconstr. Hubert-E2E - - 77.4 -
contrastive2 unconstr. E2E-ASR - - 15.1 -

mr-hi

primary constr.

LR

E2E 0.77 - 3.3 -
primary unconstr. W2V-E2E 4.76 - 7.7 -
contrastive1 unconstr. Hubert-E2E 5.78 - 8.6 -
contrastive2 unconstr. E2E-ASR 4.07 - 5.9 -

pus-fra

primary constr.

LR

E2E 2.66 - 5.92 -
primary unconstr. W2V-E2E 11.99 - 16.87 -
contrastive1 unconstr. Hubert-E2E 11.27 - 15.24 -
contrastive2 unconstr. E2E-ASR 9.72 - 13.32 -

tmh-fra

primary constr.

LR

E2E 1.24 1.0 0.48 -
primary unconstr. W2V-E2E 12.07 7.63 8.03 -
contrastive1 unconstr. Hubert-E2E 4.79 2.77 1.3 -
contrastive2 unconstr. E2E-ASR 5.24 3.77 2.1 -

que-spa

primary constr.

LR

E2E 1.46 - 1.46 -
primary unconstr. W2V-E2E 1.2 - 1.78 -
contrastive1 unconstr. Hubert-E2E 1.84 - 1.86 -
contrastive2 unconstr. E2E-ASR 1.63 - 1.63 -

aeb-eng

primary constr.

DT

E2E 11.49 8.94 5.0 4.5
primary unconstr. XLSR-E2E 19.35 16.31 16.6 14.6
contrastive1 unconstr. Hubert-E2E 17.69 14.52 15.0 13.4
contrastive2 unconstr. W2V-E2E 16.7 14.4 14.1 12.9

Table 3: BLEU score for all the submitted systems. LR and DT indicate low-resource and dialectal transfer,
respectively. dev/valid refers to the validation or development sets we used during training. test1 refers to the test set
we used during training (some language pairs did not have this set). test2 refers to the blind test set. Some language
pairs (i.e., aeb-eng) had an additional blind test set called test3. The "-" character indicates that we do not have
BLEU results for that category. We did not report the dev/valid results for the Irish to English (ga-eng) task due to
the data quality issue discussed in section 5.

4.1 Low-Resource Task
For the low-resource shared task, the highest BLEU
is obtained on average by the architecture that uses
the Wav2vec 2.0 model (W2V-E2E). However, the
Hubert (Hubert-E2E) architecture yields competi-
tive BLEU compared to the W2V-E2E architecture.
In fact, for Marathi-Hindi and Quechua-Spanish
language pairs, the highest BLEU is achieved by
using the Hubert model. Based on our experiments,
we think both the Hubert and the Wav2vec 2.0
models may have similar performance though each
model may require different configurations. In the
future, we hope to have a detailed analysis of the
conditions under which one model performs better
than the other. Table 3 shows the BLEU results for
the low-resource task.

The W2V-E2E architecture achieves a relatively
high BLEU score compared to Hubert-E2E for
Tamasheq-French. This behavior is explained by
the fact that the Wav2vec 2.0 models used for
Tamasheq-French were pre-trained on 234 hours of
Tamasheq audio, while the Hubert was pre-trained
on 960 hours of English data from the Librispeech
dataset. Therefore, pre-training a self-supervised
model on audio data from the same source lan-
guage helps improve the model’s performance on a
downstream task.

Interestingly, pre-training on audio data from
a different language than the source language for
the speech translation task still yields improvement
compared to starting with random weights. While
Bansal et al. (2019) reported this behavior for ASR
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pre-training, we still see the same pattern for self-
supervised pre-training.

Particularly for Tamasheq-French, which had a
baseline BLEU score of 5.7 for the best IWSLT
2022 system (Anastasopoulos et al., 2022), we nev-
ertheless improved upon the baseline by more than
2 BLEU on the blind test set.

4.2 Dialectal Task
Unlike the low-resource task, the highest BLEU
for the dialectal task was achieved by using the
XLSR-53 model (XLSR-E2E). Therefore, we used
this architecture for our primary unconstrained set-
ting. Table 3 shows the results for Tunisian Arabic-
English.

For this task, Wav2vec 2.0 and Hubert had com-
parable BLEU scores. However, surprisingly, they
did not perform as well as XLSR-53. This find-
ing was counterintuitive given that the XLSR-53
model did not perform as well as the Wav2vec 2.0
or Hubert on all the low-resource languages. The
XLSR-53 model was also reported to have poor
performance by Zanon Boito et al. (2022) on a low-
resource language. Based on our experiments, we
think that the poor performance of the XLSR-53
model for the low-resource task was related to its
size. We speculate that the XLSR-53 model size
may fail to adapt while fine-tuning it on little data.
However, fine-tuning it on a lot of data, like the
case of Tunisian-Arabic-English, may yield overall
improvement.

It is also possible that the best performance of the
XLSR-53 model on the Tunisian Arabic-English
data is because it was trained on more languages. It
will be interesting to investigate the impact of the
model size and multilinguality for self-supervised
pre-trained speech models to improve the perfor-
mance of speech translation downstream tasks. In
addition, we think there may be room to study
further the speech representation of the XLSR-
53 model across layers so that they can be better
adapted in low-resource settings.

5 Data Quality Issues

The low-resource shared tasks of the IWSLT 2023
consists of six tasks, each task corresponding to
one language pair. As we worked on these shared
tasks, we noticed issues with the data of two tasks:
Maltese to English and Irish to English.

The Maltese to English data had a number of
issues that made it hard to work with. For instance,

the metadata of about 1001 out of 1698 samples
mentioned zero or less than zero duration for audio
samples (start_time >= end_time) while
the aligned utterances had several words in most
cases. Therefore, we were not able to align most
audio data with their utterances.

The Irish to English data had an issue with the
development set. Initially, the samples in the devel-
opment were also present in the training set. How-
ever, the organizer later fixed this issue by updating
the development set data. However, no matter how
we trained our models, we never achieved more
than 1 BLEU score on the updated development
set. After troubleshooting our model on the train-
ing data, we were confident that we should have
gotten a BLEU score that was well above 1. We
proceeded with submitting our system for this task.
However, we are very suspicious of the high BLEU
score reported on the blind test, as shown in Ta-
ble 3, as it suggests that there’s an overlap between
training and test sets.

6 Conclusion

In this paper, we presented the GMU Systems for
the IWSLT 2023 Dialect and Low-resource Speech
Translation Tasks. Our approach mainly focused on
using self-supervised pre-trained speech models to
improve the performance of speech translation on
downstream tasks. The self-supervised pre-trained
speech models used in this paper are the Wav2vec
2.0, XLSR-53, and Hubert. We showed that the
Wav2vec 2.0 and the Hubert model have compa-
rable results in low resource and dialectal transfer
tasks. However, the Wav2vec 2.0 performs well
when we remove the top three layers, while the
Hubert model has no such requirements.

Our experiments showed that the XLSR-53
model performs poorly in the low-resource setting
compared to the Wav2vec 2.0 and Hubert models.
However, in the dialectal task, the XLSR-53 model
outperforms the Wav2vec 2.0 and Hubert models.

In the future, we plan to conduct an in-depth anal-
ysis to understand the advantages and limitations
of these self-supervised pre-trained speech mod-
els while fine-tuning them on downstream speech
translation tasks.
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Abstract

This paper describes our work on the
IWSLT2023 Speech-to-Speech task. Our pro-
posed cascaded system consists of an ensemble
of Conformer and S2T-Transformer-based ASR
models, a Transformer-based MT model, and
a Diffusion-based TTS model. Our primary
focus in this competition was to investigate
the modeling ability of the Diffusion model
for TTS tasks in high-resource scenarios and
the role of TTS in the overall S2S task. To this
end, we proposed DTS, an end-to-end diffusion-
based TTS model that takes raw text as input
and generates waveform by iteratively denois-
ing on pure Gaussian noise. Compared to previ-
ous TTS models, the speech generated by DTS
is more natural and performs better in code-
switching scenarios. As the training process is
end-to-end, it is relatively straightforward. Our
experiments demonstrate that DTS outperforms
other TTS models on the GigaS2S benchmark,
and also brings positive gain for the entire S2S
system.

1 Introduction

Compared to previous iterations of the IWSLT-S2S
task (Anastasopoulos et al., 2022; Guo et al., 2022),
this year’s task (Agarwal et al., 2023) is distinct,
particularly in terms of data. The official training
dataset provided is GigaS2S (Chen et al., 2021;
Ye et al., 2022), which is substantially larger than
previous S2S datasets, with a data size of 10,000
hours. Although the target text and speech are
generated by MT and TTS systems, their quality is
relatively high, making them suitable for initiating
research on end-to-end S2S or TTS models in high-
resource scenarios.

Our strategy is similar to that of last year (Guo
et al., 2022), where we used a cascaded S2S system,
but our research focus has shifted. In last year’s
work, we primarily studied the role of ASR and MT
in the S2S system and attempted to optimize the
context consistency of translation results. In this

year’s competition, we shifted our research focus
to the TTS component. Therefore, we directly used
the ASR and MT systems in our offline ST track
(Wang et al., 2022a,b). Additionally, we no longer
considered the issue of context consistency during
inference.

Given the unprecedented success of the Diffu-
sion Model (Ho et al., 2020; Rombach et al., 2022)
in image generation over the past few years, we
sought to explore its potential in speech synthe-
sis. Thus, we proposed an end-to-end Diffusion
TTS (DTS) model. Unlike previous TTS mod-
els, such as FastSpeech2 (Ren et al., 2021), which
use phonemes as input and use a duration predic-
tor to determine the duration and generate mel-
spectrograms, DTS uses raw text as input, predicts
the total audio length, and generates the waveform
by iteratively denoising the output.

The structure of this paper is as follows: We first
introduce the dataset used in this task, followed by
a brief introduction to the ASR and MT models
used. Then, we provide a detailed description of
our proposed DTS model. Finally, we showcase
the performance of each model on the GigaS2S
dataset.

2 Method

2.1 Dataset
To train the ASR model, we combined five datasets
and added corresponding domain tags to enable the
model to generate speech in the desired style (Wang
et al., 2022b). For the MT model, we aggregated all
available en-de, en-zh, and en-ja translation data
allowed for constrained offline tasks and added
language tags to train a multilingual model. Finally,
for the TTS model, we utilized the Chinese text and
speech pairs from GigaS2S (Ye et al., 2022).

2.2 ASR
We trained our ASR models using a combination
of five datasets: MuST-C V2, LibriSpeech, TED-
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Dataset Number of Utterance Duration(hrs)

LibriSpeech 281,241 960.85
MuST-C 340,421 590.67
IWSLT 170,229 254.41
CoVoST 1362,422 1802.52
TEDLIUM3 268,214 453.42

Table 1: Data statistics of our ASR corpora

LIUM 3, CoVoST, and IWSLT. Table 1 provides
statistics for these datasets. Our model uses an
80-dimensional filterbank feature, with input sam-
ples restricted to a frame size between 50 to 3000
and a token limit of 150 to ensure that the Trans-
former model’s encoder and decoder can process
sequences of limited size.

To identify outliers, we calculated the speech
speed of each sample based on the transcript length
and frame size. We excluded samples with speeds
outside the range of µ(τ)± 4× σ(τ), where τ =
# frames
# tokens .

We utilized an ensemble of two models to
improve ASR performance: Conformer (Gulati
et al., 2020) and S2TTransformer (Synnaeve et al.,
2019). The encoder of Conformer incorporates
a macaron structure at each layer based on the
S2TTransformer’s encoder to enhance speech en-
coding capability. Our ensemble method involves
averaging the probabilities output by both decoders
at each decoding step during beam-search. To con-
trol the model’s generation style, we added prefix
tags corresponding to the COVOST dataset for in-
ference, making the model’s inference style closer
to GigaS2S transcripts.

2.3 MT

For MT, we utilized the multilingual Transformer
model that we developed for the offline track, train-
ing it on en-zh, en-de, and en-ja datasets. To ensure
high-quality pairs, we first cleaned and removed du-
plicates from the data, then filtered it using LaBSE
(Feng et al., 2022) to select domain-specific data.
During training, we employed R-Drop (Liang et al.,
2021) for additional regularization. Our Trans-
former (Vaswani et al., 2017) model consisted of
a 25-layer encoder and a 6-layer decoder with a
dimension of 1024 and an FFN dimension of 4096.

2.4 TTS
2.4.1 Modeling
The Denoising Diffusion Model (DDM) (Ho et al.,
2020) models a continuous process of iteratively
denoising Gaussian noise to restore the original
sample. The model consists of two processes: the
forward process of adding noise and the reverse
process of denoising. These continuous processes
are assumed to have Markovian properties and can
be decomposed into T conditional distributions
through a Markov chain, with x0 representing the
original data (raw waveform in the TTS task) and
xT representing pure noise.

In the forward process of DDM, q(x1:T |x0, c) is
decomposed into a Markov process of T steps and
conditioned on the input text c:

q(x1:T |x0, c) =
T∏

t=1

q(xt|xt−1) (1)

q(xt|xt−1, c) = N (xt;
√
1− βtxt−1, βtI). (2)

The sampling of xt given xt−1 can be expressed
as:

xt =
√
1− βtxt−1 +

√
βtϵ, (3)

where ϵ ∈ N (0, I), and βt ∈ [0, 1] is a noise
scheduler related to t. Therefore, each step of
the forward process is adding a certain amount of
Gaussian noise to the previously corrupted speech
xt−1. Finally, x0 ultimately evolves into white
noise that follows a Gaussian distribution. An im-
portant characteristic of the forward process is that
xt ∼ q(xt|x0, c) for any t has a closed form:

q(xt|x0, c) = N (xt;
√
ᾱtx0, (1− ᾱt)I} (4)

αt = 1 − βt, and ᾱt =
∏t

s=1 αs, so we can effi-
ciently obtain xt for any t from x0 during training.

In the reverse process, the denoising process is
similar to the forward process, and is also described
as a T -step Markov process:

pθ(x0:T , c) = p(xT )
T∏

t=1

pθ(xt−1|xt) (5)

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c), σ
2
t I), (6)

where the µθ can be learned by neural networks
and σ2t = 1− αt.

The training objective of the Diffusion Model is
to maximize the log-likelihood of p(x0|c), which
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is intractable, so optimization on the variational
bound is used instead. (Ho et al., 2020) further sim-
plify it to an unweighted version of L2 regression
loss with respect to ϵ̂ and added noise ϵ. In our
work, we predict the x0 with the model instead of
the noise:

L(θ) = Et,x0,ϵ

[
||x̂θ(xt, t, c)− x0||

]
(7)

Here, t is uniformly sampled from the interval
[0, T ].

During inference, the model iteratively samples
xt−1 from xt:

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t, c) + σtz
)

(8)

ϵθ =
1√

1− ᾱt

(
xt −

√
ᾱtx̂θ(xt, t, c)

)
(9)

where σt =
√
1− αt and z ∼ N (0, I). In our ex-

periments, to allow for flexible determination of
the maximum step T , we choose to use a contin-
uous t ranging from 0 to 1. During training, t is
uniformly sampled, and we use the cosine noise
scheduler (Nichol and Dhariwal, 2021).

In addition to modeling the denoising process,
DTS also needs to predict the length of the tar-
get audio in advance, as DTS is essentially a non-
autoregressive (NAR) model. However, unlike pre-
vious TTS models that predict the duration of each
phoneme, we directly model the total number of
frames in the target audio, which is more conve-
nient. Specifically, we use the text representation
after average pooling, denoted as hc, as the input
to the classifier ϕ to predict the length distribution.
Then, we calculate the cross-entropy loss with the
frame number Nx0 of x0.

Llength = CE(ϕ(hc; θ), Nx0) (10)

2.4.2 Model Architecture
The DTS model is essentially a parameterized de-
noising function x̂(xt, t, c) which takes xt, t as in-
put, conditions on c, and predicts the x0 for the
sampling of xt−1. The model makes some modifi-
cations on top of the Transformer model to make
it more suitable for speech synthesis. As shown in
Figure 1, the main modifications are as follows:

• On top of the Encoder, we add a two-layer
FFN network to predict the length of the target
audio.

Transformer
Encoder

Length Predictor

2 x 1DConvolution

2 x 1DConvTranspose

k x TransformerDecoderLayer

Positional Embedding

Timestep-Embedding

LayerwiseTimeEncoding

Figure 1: The architecture of DTS model, which takes
C = [c1, ..., cM ] as the encoder input to predict the
frame length N . For the decoder, it takes xt and t as
input, conditions on C to predict x0 for the sampling of
xt−1 according to Eq 8 and 9.

• In the input part of the Decoder, we use two
1D convolutions with a proper setting of ker-
nel size, stride, and padding, so the sequence
length before and after convolution remains
unchanged.

• As the Diffusion model depends on the time
step t, we additionally introduce a Timestep
Embedding, and use the same implementation
as (Ho et al., 2020).

• To make the time step encoding more compre-
hensive, we add Layerwise time encoding at
each layer and added to the encoded hidden
states from the last layer.

• In the output part of the decoder, we add 2
1D deconvolutions to restore the hidden state
back to the waveform. We use deconvolu-
tion because we found that using only linear
projection leads to a lack of dependency be-
tween the generated waveform and the pre-
vious waveform, resulting in noticeable jitter,
which can be significantly eliminated by using
deconvolution.
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Model WER-all-punct WER-all WER-code-switch WER-zh

FastSpeech 2 13.18 10.75 15.70 8.37
DTS-Mel 13.32 10.28 15.66 7.69
DTS-Wave 12.68 9.82 15.33 7.17

Table 2: This table shows the performance of our TTS models on the GigaS2S dev set, using ground truth transcripts
as input. We compare our models against FastSpeech 2 (Ren et al., 2021), which serves as the baseline. Additionally,
we present a DTS model trained to predict mel-spectrograms (DTS-Mel) for comparison with DTS for waveform
(DTS-Wave). The table reports the word error rate (WER) for the entire set with punctuation (WER-all-punct), WER
for all samples without punctuation (WER-all), WER for code-switch samples without punctuation (WER-code-
switch), and WER for Chinese-only samples without punctuation (WER-zh). The results indicate that DTS-Wave
outperforms the other models, achieving the lowest WER values in all categories.

Model WER WER-no-punct
S2TTransformer 22.67 18.15
Conformer 22.42 17.80
Ensemble 21.57 16.92

Table 3: The performance of our two independent ASR
models and the ensemble of them with or without punc-
tuation.

Model Input BLEU ChrF

ASR output 29.0 25.4
Ground Truth 30.7 27.3

Table 4: The performance of our MT models with
ground truth input and asr outputs as the input.

3 Experiment

3.1 Experimental Setup

For the ASR and MT parts of our S2S system, we
directly used the same setting as in the Offline track.
For the TTS part, we trained the model on the Gi-
gaS2S dataset for 360k steps, with a maximum
learning rate of 1e-4, warmup of 20000 steps, and
a batch size of 32 samples per GPU. The maximum
and minimum audio lengths were restricted to 25
seconds and 0.5 seconds, respectively. The model
has 12 layers in the encoder and 16 layers in the
decoder, with a hidden dimension of 512 and an
FFN dimension of 2048. DTS can directly generate
waveforms, but since audio waveforms are usually
long, we pre-segment them into equally sized non-
overlapping frames. In this way, the model learns
to generate the waveform frame by frame, and we
only need to flatten these frames to get the final
output. In our experiments, we used a frame length
of 1200 and a sampling rate of 24000. When infer-
ence, we set the sampling step to 100. In addition to

Model BLEU ChrF

FastSpeech2 21.8 22.7
DTS-Mel 22.3 23.1
DTS-Wave 22.7 23.4

Table 5: The overall cascade performance evaluated by
BLEU and ChrF.

the raw waveform, DTS can also learn to generate
mel-spectrogram, simply by changing wave frames
to spectrogram frames. This is also evaluated in
our experiment.

3.2 Experimental Results

In the experiments, we tested the performance of
each module in our S2S system separately. In addi-
tion to testing with the cascaded results as input, we
also conducted independent tests with ground truth
input. For the three modules, we mainly used the
dev set of GigaS2S for evaluation. In terms of eval-
uation metrics, for ASR and MT, we used WER,
BLEU and ChrF, respectively. For TTS, we used a
Whisper-medium (Radford et al., 2022) model to
transcribe the TTS-generated audio back into the
text for automatic evaluation and calculated WER.

ASR Results We evaluated the results of two
ASR models trained on the same corpus separately,
as well as the ensemble version. As shown in Table
3, the ensemble results were slightly better.

MT Results In the evaluation of MT, we consid-
ered two scenarios: using ground truth transcripts
as input and using the output of the previous ASR
module as input. The experimental results showed
that the robustness of MT was relatively good, even
if there were errors in the ASR output, the differ-
ence in BLEU score was not significant as shown
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in Table 4.

TTS Results In the TTS experiments, because
the development set of GigaS2S contains code-
switching samples, we evaluated not only the
WER of the entire set but also separately evalu-
ated the cases without the code-switching. As for
the models, we chose FastSpeech 2 as the base-
line. In addition, we trained an additional DTS
based on mel-spectrogram for comparison with
the waveform-based DTS. Both FS2 and DTS-mel
used the Griffin-lim vocoder. As shown in Table
2, DTS-Wave outperformed the other two models,
especially on Chinese monolingual data.

Full Pipeline Results In addition to testing each
module separately, we also tested the final metrics
of the entire pipeline. We compared the difference
between the speech generated by the three TTS
models with the MT results as input by computing
the BLEU and ChrF with the ground truth transla-
tion. Table 5 shows that there is a difference that
existed, but it is not significant. Therefore, we can
conclude that the quality of the speech generated
by TTS does affect the final performance of S2S
system in terms of automatic evaluation, but the
impact is still limited.

4 Conclusion

In this paper, we present the system we developed
for the IWSLT2023 speech-to-speech competition.
The system includes relatively simple and effective
ASR and MT modules, as well as a TTS module
proposed by us based on the Diffusion Model. In
the experiments, we demonstrate that the denoising
diffusion process can effectively learn end-to-end
TTS task, simplifying both training and inference.
However, its generation speed is relatively slow.
In our future work, we will continue to optimize
its quality and generation efficiency, and further
explore the application of diffusion in end-to-end
S2S tasks.
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Abstract

This paper presents JHU’s submissions to the
IWSLT 2023 dialectal and low-resource track
of Tunisian Arabic to English speech transla-
tion. The Tunisian dialect lacks formal orthog-
raphy and abundant training data, making it
challenging to develop effective speech trans-
lation (ST) systems. To address these chal-
lenges, we explore the integration of large pre-
trained machine translation (MT) models, such
as mBART and NLLB-200 in both end-to-end
(E2E) and cascaded speech translation (ST) sys-
tems. We also improve the performance of au-
tomatic speech recognition (ASR) through the
use of pseudo-labeling data augmentation and
channel matching on telephone data. Finally,
we combine our E2E and cascaded ST systems
with Minimum Bayes-Risk decoding. Our com-
bined system achieves a BLEU score of 21.6
and 19.1 on test2 and test3, respectively.

1 Introduction

The performance of machine translation systems is
closely tied to the amount of available training data.
Regional dialects, which are less prevalent and pri-
marily spoken languages, pose a challenge for these
systems due to the scarcity of digital data, the ab-
sence of standard orthography, and prevalence of
non-standard grammar. The IWSLT 2023 dialect
and low-resource track focuses these challenges.

In this paper we present the JHU Tunisian Arabic
to English speech translation systems submitted to
the IWSLT 2023 dialectal and low-resource track
(Agarwal et al., 2023). Arabic and its dialects form
a dialect continuum anchored by Modern Standard
Arabic (MSA) (Badawi et al., 2013). While MSA
is the language of formal and written communi-
cation, most native Arabic speakers colloquially
use local dialects, which often lack a standardized
written form. In many North African Arabic di-
alects, including Tunisian, there is a significant
code-switching with and borrowing from several

contact languages: Berber and Romance languages
like French, Spanish and Italian.

Recent successes in machine translation (MT)
of text for low-resource languages or non-standard
dialects have entailed the use of large pretrained
models such as mBART (Liu et al., 2020a) and
NLLB (NLLB Team et al., 2022). These models
have demonstrated state-of-the-art performance via
transfer learning from higher-resource languages,
particularly through related languages. However,
there is a lack of understanding regarding how to ef-
fectively integrate these models with speech recog-
nition systems to develop speech translation sys-
tems. To fill this gap we investigate dialect transfer
by integrating large pretrained models with speech
recognition models in end-to-end (E2E) and cas-
caded speech translation (ST) systems. The key
components of our system are:

• Dialectal transfer from large pre-trained mod-
els to improve translation in both E2E and
Cascaded ST settings (§3.1,§3.2).

• Improved ASR of dialectal speech by reduc-
ing orthographic variation in training tran-
scripts, and by channel matching (§3.1.1).

• System combination with Minimum Bayes-
Risk decoding based on the COMET similar-
ity metric (§3.3).

Our system outperforms the best previous ap-
proaches (Yang et al., 2022; Yan et al., 2022) for
both ASR (WER) and ST (BLEU). We also found
that integrating pre-trained MT models into end-to-
end ST systems did not improve performance.

2 Dialect Speech Translation Task

The dialect speech translation task permitted sub-
missions using models trained under two data con-
ditions, (A) constrained and (B) unconstrained. For
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Condition ASR MT

(A) Basic 166 hours of manually transcribed Tunisian
telephone speech

212K lines of manual English translation
of the Tunisian transcripts

(B) Unconstrained

1200 hours of Modern Standard Arabic
broadcast speech (MGB-2) (Ali et al., 2016).
250 hours of Levantine Arabic telephone
conversations (LDC2006S291, LDC2006T072)

Any other English, Arabic dialects,
or multilingual models
beyond English and Arabic

Table 1: Data used for constrained and unconstrained conditions.

brevity, we will refer to these conditions as (A) and
(B) respectively.

2.1 Data description
The data we used for the conditions (A) and (B)
are listed in Table 1, and sizes of the training,
development-testing and test partitions are listed in
Table 2. The development and test sets for Tunisian
data are provided by the organizers of IWLST 2023.
The data is 3-way parallel: Tunisian Arabic tran-
scripts and English translations are available for
each Tunisian Arabic audio utterance. We use the
development set for model comparison and hyper-
parameter tuning, and the test1 set for evaluating
our ST systems. Finally, the task organizers pro-
vided blind evaluation (test2, test3) sets for final
comparison of submissions.

ASR (hours) MT (lines)
train (condition A) 160 ∼202k
train (condition B) 1200+160+250 -
dev 3.0 3833
test1 3.3 4204
test2 3.6 4288
test3 3.5 4284

Table 2: Details for train, dev and test1 sets for con-
strained condition (A) and unconstrained condition (B).

3 Methods

In this section we describe our cascaded (§3.1),
and end-to-end (E2E) (§3.2) speech translation sys-
tems as well as our strategy for combining both
approaches (§3.3).

3.1 Cascaded ASR-MT
3.1.1 Automatic Speech Recognition
To train ASR models for E2E and cascaded sys-
tems, we use the ESPnet (Watanabe et al., 2018)
toolkit. Our ASR architecture uses a Branchformer
encoder (Peng et al., 2022), a Transformer de-
coder (Vaswani et al., 2017) and follows the hy-

1https://catalog.ldc.upenn.edu/LDC2006S29
2https://catalog.ldc.upenn.edu/LDC2006T07

brid CTC/attention (Watanabe et al., 2017) ap-
proach. Each Branchformer encoder block consists
of two branches that work in parallel. One branch
uses self-attention to capture long-range dependen-
cies while the other branch uses a multi-layer per-
ceptron with convolutional gating (Sakuma et al.,
2021) to capture local dependencies. To mitigate
orthographic variations (or inconsistencies) in the
ASR transcripts, we augment the training data
during the fine-tuning stage by reusing the audio
training samples paired with their ASR transcripts,
which tend to be orthographically more consistent.
We refer to this approach as pseudo-labeling.

Condition (A). We train the ASR model de-
scribed previously using the constrained Tunisian
Arabic audio and transcripts.

Condition (B). The ASR Branchformer in this
condition is pretrained on our MGB-2 standard Ara-
bic data (Ali et al., 2016) and then fine-tuned on the
provided Tunisian Arabic data. The MGB-2 MSA
data differ from the Tunisian data in channel, and
dialect. Since the Tunisian data are telephone con-
versations sampled at 8kHz, we downsample the
MGB-2 speech from 16kHz to 8kHz, which we pre-
viously found was more effective than upsampling
the telephone conversations to 16kHz (Yang et al.,
2022). We also added additional telephone speech
from the Levantine Arabic dialect (Maamouri et al.,
2006). Note that Levantine Arabic is very different
from Tunisian, and the hope here is to benefit from
matched genre and channel conditions, not dialect.

We did not explicitly attempt to reduce the di-
alect mismatch. However, we mitigated some of
the spurious orthographic variations in transcripts
of dialectal speech by using pseudo-labels for train-
ing instead of of the manual transcripts, as noted
above, in the final fine-tuning step.

3.1.2 Machine Translation
Condition (A). We train an MT model on
Tunisian Arabic transcripts paired with their En-
glish translations. The MT architecture is similar to
§3.1.1 model architecture, and uses a Branchformer
encoder and Transformer decoder.
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Condition (B). We experiment with two main
pre-trained models: mBART and NLLB-200. In
the first setting, we use the mBART25 model,
which was shown to be slightly better for MSA ver-
sus the newer mBART50 model (Liu et al., 2020a;
Tang et al., 2020). mBART25 also contains French,
Turkish, Italian, and Spanish, all of which con-
tribute loanwords to Tunisian (Zribi et al., 2014).
Although these loanwords are transcribed in the
Arabic script in our data, there is prior evidence
that multilingual language models can benefit from
cross-lingual transfer even between different scripts
of the same language (Pires et al., 2019).

For NLLB-200, we use the distilled 1.3 billion
parameter version of the model, due to space con-
straints. This model is a dense Transformer dis-
tilled from the original NLLB-200 model, which is
a 54 billion parameter Mixture-of-Experts model
that can translate into and out-of 200 different
languages. We note that this model supports
Tunisian Arabic, the aforementioned contact lan-
guages, MSA, as well as other closely related
Maghrebi dialects (Moroccan, Egyptian, Maltese).
The breadth of language coverage seen during the
training of NLLB-200 makes this model an attrac-
tive choice for a dialect speech translation task.

We fine-tune these models on the provided ∼
200K lines of Tunisian Arabic-English data. The
source side is normalized as described in Section
4. We preprocess all data with the provided pre-
trained sentencepiece vocabularies released with
the models with no pre-tokenization. Results on
MT systems are included in Table 8.

3.2 End-to-End Speech Translation
For the constrained condition we adopt the hierar-
chical multi-decoder architecture proposed by (Yan
et al., 2022).

Condition (A). The system consists of a multi-
task learning approach, which combines ASR and
MT sub-nets into one differentiable E2E system
where the hidden representation of the speech de-
coder is fed as input to the MT encoder. Addition-
ally, the authors proposed using a hierarchical MT
encoder with an auxiliary connectionist temporal
classification (CTC) loss on top of the speech en-
coder. The MT decoder performs cross-attention
over both the speech encoder and MT encoder rep-
resentations. The ASR module is initialized with
a Branchformer trained on the Tunisian data. In
this part, we explore the effect of text normaliza-

tion on the E2E-ST system and pre-trained MT
initialization.

Condition (B). For the unconstrained condition,
we propose a novel E2E-ST system that incorpo-
rates the combination of a pretrained ASR mod-
ule and a pretrained MT module. Specifically, we
combine the Branchformer ASR module described
in Section 3.1, with mBART (Liu et al., 2020b),
which was fine-tuned on Tunisian data. We modify
the ESPnet ST recipe to incorporate the mBART
model trained by the fairseq (Ott et al., 2019) frame-
work. The architecture of the model is shown in
Figure 1. In contrast to the modified Hierarchical
Multi-Decoder architecture for Condition (A), to
fully exploit the effect of MT pretraining, we re-
moved the speech attention from the MT decoder
that attends to the hierarchical encoder’s hidden
representations.

Specifically, the ASR encoder module in the pro-
posed architecture takes in a sequence of audio
features x1, x2, · · · , xT and generates a sequence
of hidden representations with lengthN , optimized
with respect to the ASR CTC objective. The ASR
decoder takes in the ASR encoder’s hidden rep-
resentations and autoregressively produces a se-
quence of logits with length L trained by the label-
smoothing loss. The hierarchical speech encoder
module is trained directly by the ST CTC loss for
generating auxiliary frame-level labels in the tar-
get language to aid the ST decoding process. The
primary innovation of the proposed system lies
in the fully-connected layer that maps the ASR
decoder’s output hidden representations to some
representations that resemble mBART’s encoder’s
embedding layer’s outputs, making the full sys-
tem differentiable. The ST encoder subsequently
encodes the input representations and feeds them
into its decoder. The ST decoder, slightly differ-
ent from the vanilla mBART decoder, optionally
runs hybrid/joint CTC decoding at inference time,
with the ST-CTC auxiliary labels and the autore-
gressively generated ST outputs with target length
M , i.e. yST1 , yST2 , · · · , ySTM .

3.3 System Combination
We perform a system combination across 5 of our
systems: best constrained end-to-end system, best
unconstrained end-to-end system, best cascaded
system, and 2 additional cascaded systems (Fer-
nandes et al., 2022). The two additional systems
use the ASR produced by our end-to-end systems,
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Figure 1: E2E model architecture with mBART MT module. The fully-connected (FC) layer applies a linear
transformation to the ASR decoder’s final hidden representation, which is then used to replace mBART’s encoder’s
embedding layer’s output.

and the same NLLB-200 MT component as in our
best cascaded system. In Table 6, the 5 combined
systems are referred to as A3, B1, B3, B4, and B5,
in order.

3.3.1 Minimum Bayes Risk
We applied Minimum Bayes Risk decoding (Ku-
mar and Byrne, 2004) to combine the hypotheses
produced by five systems. For a given speech ut-
terance xi, and for a given system sjθj (j ∈ S and
θj the set of parameters used by the jth trained
system), we can define the translation hypothesis
as yji = f jθj (xi) and pji be the probability that the

hypothesis yji would be outputted. We use this
probability as a self-confidence score. Let L be
similarity metric used to compare two hypothesis,
outputting a scalar that rises if the two hypothesis
are more similar. Then, for a given speech utter-
ance xi, and for a given set of systems S , we define
the best output as the one minimizing the distance
with others while having the highest confidence:

ymbr
i = max

yji

∑

j∈F
pji
∑

k∈F
L(yji , yki ) (1)

3.3.2 Variations of MBR
Baseline MBR For our first combination, we
compute the outputs according to the MBR using
the BLEU score of sacrebleu (Post, 2018a) as the
L similarity metric and the posterior probabilities
pji used are the log-likelihood ratios given by the
end-to-end systems and the MT systems.

Unscored MBR For our second combination, we
use the same technique but with a constant pji = 1

for every system, as a simplified version of the
Generalized MBR (Duh et al., 2011).

COMET-MBR For our third combination, we
utilized the comet-mbr framework, which employs
the COMET score between the source and hypothe-
sis as the similarity metric (L), using same equation
(1), without the use of posterior probabilities (Fer-
nandes et al., 2022). We used wmt20-comet-da
for MBR scoring (Rei et al., 2020). Despite
Tunisian Arabic not being a COMET-supported
language, we observed an improvement compared
to our single best system, suggesting that this ap-
proach may extend to dialects of languages covered
by COMET.

4 Experiments

In this section, we describe our experiments on the
ASR, MT, and ST tasks. In order to reduce the
orthographic variation in the Tunisian speech tran-
scription we performed additional text normaliza-
tion similar to (Yang et al., 2022) which showed sig-
nificant improvements on ASR, MT and ST tasks.
The normalization is performed on both Tunisian
and MSA transcripts and includes removing dia-
critics and single character words, and Alif/Ya/Ta-
Marbuta normalization (see (Yang et al., 2022) for
more details).

4.1 ASR
First we augment the raw audio segments by ap-
plying speed perturbation with three speed factors
of 0.9, 1.0 and 1.1 (Ko et al., 2015). Then we
transform the augmented audio to a sequence of
83-dimensional feature frames for the E2E model;
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80-dimensional log-mel filterbank coefficients with
3 pitch features (Ghahremani et al., 2014). We nor-
malize the features by the mean and the standard
deviation calculated on the entire training set. In ad-
dition, we augment the features with specaugment
approach (Park et al., 2019), with mask parameters
(mT,mF, T, F ) = (5, 2, 27, 0.05) and bi-cubic
time-warping. The E2E Branchformer-based ASR
model was trained using Adam optimizer for 50
epochs with dropout-rate 0.001, warmup-steps of
25000 for condition (A) and 40000 for condition
(B). The BPE vocabulary size is 500 for condition
(A) and 2000 for condition (B). Table 3 summa-
rizes the best set of parameters that were found for
the Branchformer architecture. We note here that
the Branchformer has 28.28 M parameters, which
is approximately one-fourth the number of parame-
ters in the Conformer (Yang et al., 2022), which is
116.15 M.

Att heads CNN Enc layers Dec layers dk FF
4 31 12 6 256 2048

Table 3: Values of condition (A) and (B) hyperparame-
ters CNN: refers to CNN module kernel, Att: attention,
Enc: encoder, Dec: decoder, and FF: fully connected
layer

MGB2-tune: the pretrained model on MGB-2
is fine-tuned on Tunisian data from condition (A)
by updating all model parameters with 1/10 of
the learning rate that was used during the training
similar to (Hussein et al., 2021). In addition, we
examine the effect of adding ASR outputs to the
ground truth source during finetuning (pseudo la-
beling ) and adding additional telephone data (Tel).
The ASR results are summarized in Table 4 and
compared to the state-of-the-art conformer results
from (Yang et al., 2022). The MD refers to the
hierarchical multi-decoder ST architecture adopted
from (Yan et al., 2022), and MD-ASR refers to the
ASR sub-module of the ST. It can be observed that
the Branchformer provides slightly better results
compared to the previous best conformer with simi-
lar size on both conditions (A) and (B). In addition,
it can be also seen that pseudo labeling provides
2% relative improvement. We found that there is a
high inconsistency between different transcribers
since there is no standard orthography in Tunisian
dialect. By incorporating the ASR predictions in
this way, we aim to provide the model with more
examples of the Tunisian dialect and help it better
generalize to variations in the spoken language. To

dev test1 test2 test3

ASR-ID Model WER (↓)
A1 Conformer (Yang et al., 2022) 40.8 44.8 43.8 -
A2 Branchformer 40.1 44.5 - -

B1 MGB2-tune (Yang et al., 2022) 38.8 43.8 42.8 -
B2 MGB2-tune Branchformer 38.3 43.1 - -
B3 + Pseudo 37.5 42.6 - -
B4 + Tel 36.5 41.7 40.6 41.6
B5 E2E-MD-ASR 40.6 45.1 43.7 44.9
B6 E2E-mBART-ASR 37.7 43.2 41.5 42.6

Table 4: WER (%) of ASR models on dev, test1, test2
and test3 sets. A* and B* IDs are the ASR models devel-
oped under condition (A) and condition (B) respectively.
B5 refers to the ASR submodule of the MD-ASR sys-
tem under the constrained condition and B6 refers to
the ASR sub-module of the E2E-mBART system both
described in Section 3.2.

BW (REF / HYP) Arabic English Translation
69: Ayh / Ay éK
 @ / ø
 @ yes

61: Ay / Ayh ø
 @ / éK
 @ yes

18: Akhw / khw ñê» / ñê» @ it’s

17: khw / Akhw ñê» @ / ñê» it’s

8: gdwA / gdwh @ðY 	« / èðY 	« tomorrow

7: gdwh / gdwA èðY 	« / @ðY 	« tomorrow

Table 5: Top 6 substitutions with inconsistencies for
ASR system transliterated using Buckwalter (BW). The
number of times each error occurs is followed by the
word in the reference and the corresponding hypothesis.

confirm this hypothesis we take a closer look at
the most frequent top four substitutions shown in
Table 5. The words are transliterated using Buck-
walter transliteration (BW)3 to make it readable for
non-Arabic speakers. It can be seen that the ASR
substitutions are present in both hypothesis and as
correct reference which indicates that the assump-
tion of reference inconsistency holds true. Finally,
channel matching using more telephone data pro-
vides an additional 2.5% relative improvement.

4.2 MT
We train the MT models as described in Section
3.1.2. For condition (A) the MT system parameters
are shown in Table 7. In this condition, our MT
system is finetuned on the training Tunisian data
where the source data is mixed with ASR outputs,
in order to be more robust to noisy source data. We
use 5000 Byte-pair encoding (BPE) units shared
between Tunisian Arabic and English. We train

3https://en.wikipedia.org/wiki/Buckwalter_
transliteration
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Pretrained dev test1 test2 test3

ST-ID Type ASR MT BLEU (↑) BLEU (↑) BLEU (↑) BLEU (↑)
A1 Cascade A2 A3 18.9 15.6 - -
A2 E2E-MD (Yan et al., 2022) A2 - 20.6 17.1 - -
A3 E2E-MD+norm A2 - 20.7 17.5 19.1 17.6

B1 E2E-mBART B4 B2 20.7 17.5 17.5 17.1
B2 Cascade-mBART B4 B2 20.9 17.9 - -
B3 Cascade-Base-NLLB200 B4 B3 22.2 19.2 21.2 18.7
B4 Cascade-B5-ASR-NLLB200 B5 B3 21.1 18.3 19.9 18.2
B5 Cascade-B6-ASR-NLLB200 B6 B3 22.2 18.8 20.7 18.3

B6 MBR with scores - - 21.7 18.8 18.7 17.1
B7 MBR no scores - - 22.7 19.6 20.6 18.8
B8 comet-mbr - - 22.7 19.6 21.6 19.1

Table 6: Results of cascaded, E2E, and combined systems measured by BLEU score on the dev, test1, test2 and
test3. E2E-MD is the hierarchical multi-decoder described in (§3.2). Norm indicates the use of text normalization
(§4) which is used with all systems except A2. The pretrained indicates the use of pretrained ASR and MT systems
from Tables(8,4). A* and B* IDs are the models developed under condition (A) and condition (B) respectively

layers embed-dim FF-embed att-heads
Encoder 6 256 1024 4
Decoder 6 256 2048 4

Table 7: Values of constrained MT system parameters
Enc: encoder, Dec: decoder, and FF: feed-forward

dev test1

MT-ID Model Type Model Size BLEU (↑) BLEU (↑)
A1 Transformer (Yang et al., 2022) 24.5 21.5
A2 Transformer Espnet 13.63 M 23.5 19.9
A3 Branchformer Espnet 16.81 M 25.0 21.4

B1 Transformer (Yang et al., 2022) 29.0 25.0
B2 mBART 610M 29.2 24.6
B3 NLLB-200 1.3B 30.5 26.4

Table 8: BLEU scores of various MT models using the
gold reference transcripts. A* and B* IDs are the MT
models developed under condition (A) and condition
(B) respectively.

with the Adam optimizer; the maximum learning
rate is 3e-03, attained after 20000 warm-up steps,
and then decayed according to an inverse square
root scheduler; we use dropout probability of 0.3;
the model is trained for 200 epochs. For condition
(B), for both NLLB-200 and mBART25, we fine-
tune our model for up to 80000 updates and use
loss to select our best model checkpoint. We use
sacrebleu to compute the case-insensitive BLEU
scores for all evaluation sets (Papineni et al., 2002;
Post, 2018b) as shown in Table 8. The comparative
analysis of our Espnet MT transformer with the
best MT models reported in previous works based
on Fairseq transformer (Yang et al., 2022) reveals
a noticeable performance lag of up to -1.6 in ab-
solute BLEU. However, incorporating the Branch-

former module yields similar performance to the
best Fairseq model. Finally finetuning NLLB-200
MT achieves the best results in the unconstrained
category with 30.5 and 26.4 BLEU scores.

4.3 ST
Table 6 presents the results of our submitted cas-
caded and E2E ST systems. The pretrained column
refers to the pretrained ASR and MT systems from
Tables (4, 8). B1 denotes the end-to-end ST with
B4 ASR and B2 mBART under the unconstrained
condition, as described in Section 3.2. The E2E-
MD is a hierarchical multi-decoder architecture
described in Section 3.2, where the MT compo-
nent is trained from scratch. The cascaded ST
systems, Cascade-Base-NLLB200, Cascade-B5-
ASR-NLLB200 and Cascade-B6-ASR-NLLB200,
utilize the best MT model (NLLB200 B3) and
ASR submodules including branchformer (B4),
branchformer finetuned in E2E-MD setup (B5) and
branchformer finetuned in with mBART setup (B6)
respectively from Table 4.

It can be seen that the E2E-multidecoder archi-
tecture outperforms the cascaded system in the con-
strained condition, with a significant improvement
of up to +1.7 in absolute BLEU. Text normalization
provides additional boost of +0.4 in absolute BLEU.
On the other hand for the unconstrained system, we
observe that the cascaded system B2 outperforms
the E2E B1 by up to 0.4 in absolute BLEU that
utilizes identical submodules. The reason for this
performance difference may be attributed to the
inability of the input linear layer that was added
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to the MT encoder in the E2E setup (B1) to adjust
the length of the ASR output to match the length
of the mBART encoder’s tokenization. This length
discrepancy may lead to a loss of crucial infor-
mation during the integration of the two modules,
ultimately resulting in a degradation of overall per-
formance. Further analysis is required to confirm
this hypothesis and to identify potential solutions
to address this issue. The highest performance
of single ST system is obtained using Cascade-
NLLB200-1.3B with BLEU of 21.2 and 18.7 on
test2 and test3 respectively. Finally, we combine
A3, B1, B3, B4 and B5 with comet-mbr which
achieves the highest BLEU scores of 21.6 and 19.1
on test2 and test3 respectively.

5 Conclusion

In this paper, we have presented our submission
for the IWSLT 2023 dialect speech translation
task. We compared end-to-end to cascaded sys-
tems under constrained and unconstrained condi-
tions. We found that an E2E-ST system outper-
formed the cascaded system under the constrained
condition, while the cascaded models significantly
outperformed the E2E-ST systems under the un-
constrained condition. We provided a new E2E-
ST baseline combining large pretrained MT with
ASR under the unconstrained condition. Finally,
we demonstrated that pseudo-labeling and channel
matching provided significant improvements for
the ASR and hence improved cascaded ST systems.
In future work we plan to explore more effective
ways of integrating the large pretrained MT models
into E2E ST systems.
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Abstract

Multilingual neural translation models exploit
cross-lingual transfer to perform zero-shot
translation between unseen language pairs. Past
efforts to improve cross-lingual transfer have
focused on aligning contextual sentence-level
representations. This paper introduces three
novel contributions to allow exploiting near-
est neighbours at the token level during train-
ing, including: (i) an efficient, gradient-friendly
way to share representations between neighbor-
ing tokens; (ii) an attentional semantic layer
which extracts latent features from shared em-
beddings; and (iii) an agreement loss to har-
monize predictions across different sentence
representations. Experiments on two multilin-
gual datasets demonstrate consistent gains in
zero shot translation over strong baselines.

1 Introduction

Many-to-many multilingual neural translation mod-
els (Firat et al., 2016; Johnson et al., 2017; Khan-
delwal et al., 2020; Fan et al., 2022) share a single
representation space across multiple language pairs,
which enables them to perform zero-shot transla-
tions between unseen pairs (Ha et al., 2017; Chen
et al., 2022; Wu et al., 2022). Prior work on zero-
shot translation has focused on aligning contextual,
sentence-level representations from multiple lan-
guages (Ji et al., 2020; Pan et al., 2021a), to make
these more ‘universal’ or language-agnostic (Gu
et al., 2018; Gu and Feng, 2022). Non-contextual,
token-level representations offer another space in
which this kind of alignment could be pursued, but
this space has not been thoroughly explored in prior
work. Even lexicon-based methods (Conneau et al.,
2020; Reid and Artetxe, 2022), which exploit token-
level anchors from multilingual dictionaries (Duan
et al., 2020), still use these to align representations
at the sentence level.

In this work, we explore a novel technique for
sharing information across languages at the token

he  is  great  at  playing  football
amazing jugando fußball

awesome treten soccer
great

amazing

awesome

avg k-NN word
embedding

Figure 1: NN-informed embeddings average representa-
tions from nearby subwords in the embedding space.

level, which exploits nearest neighbours (NNs) to
aggregate information from subwords across multi-
ple languages. When analysing embedding spaces,
many authors speak in terms of “neighborhoods”
or “subspaces” which group together tokens from
a particular semantic field or other natural class.
These neighborhoods form implicitly as a model
learns similarities between embedded words or sub-
words. We propose to make this neighborhood
structure explicit by forcing a model to consider
a token’s neighbors when learning its embedding.
Specifically, we dynamically perturb a translation
model’s token embeddings at training time by av-
eraging them with their nearest neighbors; thus a
token like soccer may end up mixed together with
related tokens such as football, fußball, or futbol
from potentially distinct languages (Figure 1). This
encourages the model to organize its subword em-
beddings in such a way that nearby tokens convey
similar information to one another. We hypothe-
size that this process will produce a more structured
embedding space which will in turn enable more
fluent outputs. This process only uses the model’s
embedding layer, and does not require any offline
dictionaries or additional data.

Our experiments and ablations show that this
simple technique significantly increases the effec-
tiveness of translation models on the IWSLT17
and TED59 massively multilingual datasets. Con-
cretely, our contributions include: (i) an efficient,
gradient-friendly, soft representation-mixing tech-
nique which exploits token-level neighbors without
changing the Transformer architecture; (ii) an atten-
tional semantic layer which extracts features from
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:

de - hausen, ingen (Schaffhausen, Uhldingen)

uk - ево (Мукачево)

en - shire, ingham, cester (Yorkshire, Birmingham, Alcester)


+

add residual connection

weighted avg of top-k lookup embeds

+

Attentional Semantic
Representation

semantic 1

semantic n

attn

:
semantic 2
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Figure 2: A NN-informed embedding for an arbitrary subword shire is produced by averaging across nearby
subwords from various languages, and combining with a semantic representation extracted from this average.

mixed representations to give neighbour-informed
latent word embeddings, and which is a drop-in
replacement for a conventional embedding layer;
and (iii) an agreement loss which harmonizes pre-
dictions with and without neighbor-informed em-
beddings.

2 Translation with Nearest Neighbour
Augmented Embeddings

We describe our model for nearest-neighbour in-
formed token level embeddings (Figure 2) of sub-
words from multiple source languages.

Nearest Neighbor Retrieval Let Lemb be a word
embedding layer that performs a lookup EMBp¨q us-
ing weights Wemb P R|V|ˆD, where V is a joint
subword vocabulary over all languages and D is
a fixed embedding dimension. Given the embed-
ding q “ EMBpwq P R1ˆD of a subword w, we
wish to find q’s nearest neighbour n (or neighbors
n1, ..., nk) using maximum inner product search
(MIPS) over the weight matrixWemb:

n “ argmin
xĂWemb

||q ´ x||22
“ argmin

xĂWemb

p||x||22 ´ 2qTxq (1)

Approximate solutions to (1) can be efficiently com-
puted on-the-fly using anisotropic vector quantiza-
tion (Guo et al., 2020).1

Given the approximate nearest neighbors
(ANNs) n1, ..., nk of subword w, we compute a
weighted average over these tokens’ embeddings

1Exact and approximate solutions yield similar results, but
approximation gives significant gains in training speed.

with a weighting term λ:

EMBµpwq “ λ
1

k

kÿ

i“1

pEMBpniqq ` p1 ´ λqEMBpwq
(2)

EMBµp¨q is computed directly fromWemb, which
ensures that our technique remains gradient-
friendly2 and does not need a separate warm-up
step. Previous NN-based proposals for translation
(Khandelwal et al., 2020) and language modeling
(Khandelwal et al., 2019) have only explored NNs
of contextualized representations, strictly for gen-
eration, and using neighbors from an offline frozen
datastore of pretrained candidates. Their method
proved effective for MT domain adaptation, rather
than zero-shot translation which is the focus of
this work. The ability to propagate gradients to a
subword’s neighbors during training is novel and
unique compared to previous NN-based techniques.

Attentional Semantic Representation To
extract contextually-salient information from
EMBµpwq, which combines information from
many subwords in potentially disparate languages,
we use a shared semantic embedding inspired by
Gu et al. 2018; Wang et al. 2018 that shows a
similar effect as topical modelling.

We introduce Wsem P RNˆD, where each of
the N rows is taken to be a language-agnostic se-
mantic representation. Wsem is shared across all
languages. We use attention (Luong et al., 2015) to
compute a latent embedding EMBlatentpwq using

2In Section 3.3 we introduce a caching heuristic which is
not gradient-friendly; however, this is simply an implemen-
tation detail to speed up training, and the gradient-friendly
presentation in this section achieves equivalent performance.
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De - It De - Nl De - Ro It - Nl It - Ro Nl - Ro zero sup.
Ð Ñ Ð Ñ Ð Ñ Ð Ñ Ð Ñ Ð Ñ

Base M2M 15.64 15.28 18.46 18.14 14.42 14.98 18.16 18.79 17.91 20.14 15.81 16.41 17.01 30.62
SRA (2019) 16.44 16.45 18.44 19.15 15.07 15.83 19.30 19.10 18.52 21.52 16.83 17.66 17.85 30.41
SF (2019) 16.34 15.77 18.37 18.16 14.74 15.25 18.6 19.18 18.54 21.64 16.09 16.94 17.46 30.50
LV (2021) 16.82 15.81 18.74 18.64 15.12 16.32 18.92 19.29 18.70 22.13 16.21 18.22 17.91 30.51
CL (2021b) 17.31 16.21 19.70 19.57 15.32 16.25 18.90 20.09 19.07 22.44 17.14 17.99 18.33 30.29
DP (2021) 16.62 15.64 19.64 18.78 15.07 15.96 19.01 20.15 18.67 21.56 16.46 18.18 17.97 30.49

Ours 17.41 16.89 19.71 19.21 15.60 16.22 19.30 20.10 19.60 21.88 17.25 18.40 18.47 30.62

Table 1: BLEU on IWSLT17 test set (mean of 3 runs). Zero and sup. are average zero-shot and supervised results.

the averaged embedding EMBµpwq as query:

EMBlatentpwq “ SoftmaxpEMBµpwq.WT
semqWsem (3)

A residual connection from EMBµpwq gives the
final NN-informed word embedding:

EMBknnpwq “ EMBlatentpwq ` EMBµpwq (4)

EMBknnpwq is a drop-in replacement for a conven-
tional word embedding EMBpwq.

Modelling Prediction Consistency Given a
source sentence represented using conventional
word embeddings and using NN-informed em-
beddings, following Kambhatla et al. (2022b) we
model the loss with respect to target sentence yi as:

Li “ α1 Li
NLLp pΘp yi|xiq qlooooooooooooomooooooooooooon

source x-entropy

` α2 Li
NLLp pΘp yi| kNNpxiqq qlooooooooooooooooomooooooooooooooooon
k-NN embeds. source x-entropy

` β Li
distp pΘp yi|xiq, pΘp yi|kNNpxiqq qloooooooooooooooooooooooomoooooooooooooooooooooooon

agreement loss

(5)

where kNNpxiq denotes the set of k-nearest neigh-
bors to token xi. This loss combines three
terms: the first two are conventional negative
log-likelihoods, while the third is an agreement
loss measuring pairwise symmetric KL diver-
gence between the output distributions for xi and
kNNpxiq. This agreement-loss term performs co-
regularization by allowing explicit interactions
between source sentences with and without NN-
informed embeddings.

3 Experiments

3.1 Datasets

We conduct experiments on 2 multilingual datasets,
each with BPE (Sennrich et al., 2016) vocabulary
size of 32k subwords:

IWSLT17 (Cettolo et al., 2012) is an English-
centric dataset3 totalling 1.8M parallel sentences.
It has 8 supervised directions to and from Ger-
man, Italian, Dutch and Romanian, each with about
220,000 parallel sentences, and 12 zero-shot direc-
tions. We use the official validation and test sets.

Ted59 (Qi et al., 2018) is a massively multilin-
gual English-centric dataset4 with 116 translation
directions totalling 10.8M parallel sentences. The
imbalanced data—from 0.25M to just 2000 parallel
samples for some language pairs—makes it ideal
to study the effects of our method. Following (Aha-
roni et al., 2019; Raganato et al., 2021) we evaluate
on 16 supervised pairs and 4 zero-shot (Arabic Ø
French, Ukranian Ø Russian).

3.2 Baselines and Related Work

We compare against methods for encoder manifold
alignment. These include strong baselines such
as sentence representation alignment (SRA; Ari-
vazhagan et al. 2019), softmax forcing (SF; Pham
et al. 2019), the contrastive multilingual model (CL;
Pan et al. 2021b), multilingual Transformer with
disentagled positional embedding (DP; Liu et al.
2021), and latent variable based denoising (LV;
Wang et al. 2021), along with the vanilla many-
to-many zero-shot model (M2M). On TED59, we
compare against CL and 3 explicit multilingual
alignment techniques proposed by Raganato et al.
(2021): word-alignment, language tag alignment,
and the union of the two. We also implement and
compare against Raganato et al.’s (2021) sparse
1.5entmax cross-attention variant.

3.3 Model and Implementation Details

All models use the configuration in Vaswani et al.
2017 using the fairseq toolkit (Ott et al., 2019).
See reproducibility details in Appendix A.

3https://wit3.fbk.eu/2017-01
4github.com/neulab/word-embeddings-for-nmt

293

https://wit3.fbk.eu/2017-01
github.com/neulab/word-embeddings-for-nmt


Θ EnÑX XÑEn Zero-Shot Acc0

Aharoni et al. – 106 langs 473M 20.11 29.97 9.17 -
Aharoni et al. – 59 langs 93M 19.54 28.03 - -

Transformer M2M reimp. 93M 18.98 27.22 7.12 74.10
Constrastive (2021b) 93M 19.09 27.29 8.16 73.90

Ours 77M 19.01 27.11 10.03 95.81

Raganato et al. (2021)
ZS + 1.5entmax (ibid.) 93M 18.90 27.21 10.02 87.81
ë Word Align (ibid.) 93M 18.99 27.58 8.38 73.12
ë LangID Align (ibid.) 93M 18.98 27.48 6.35 65.01
ë Word + LangID Align 93M 19.06 27.37 11.94 97.25

Ours + 1.5entmax 77M 18.94 27.42 12.11 98.90

Table 2: Average BLEU scores on the TED59 dataset. Our model produces zero-shot translations in the correct
output language with high accuracy (Acc0).

We use ScANN (Guo et al., 2020) for efficient
ANN search 5 with k “ 3. To increase train-
ing speeds, we cache each subword’s ANNs for
400 iterations before recomputing them. We only
(peridocally) cache subword IDs: the embedding
EMBµp¨q is always computed directly fromWemb.
We set λ “ 0.5, α1, α2 “ 1, and β “ 5. The atten-
tional latent semantic representation layer has 512
dim (same as the embedding layer) and a sizeN of
1000 for IWSLT17 (smaller dataset) and 5000 for
TED59 (larger dataset). We did not tune this hyper-
parameter and chose the values based on the size of
the datasets. For evaluation, we report sacreBLEU
(Post, 2018).

3.4 Results

Main Results. Tables 1 and 2 show our main
results. On IWSLT17, our latent k-NN embed-
ding model outperforms several strong baselines,
including sentence-representation alignment and
contrastive learning, by an average of 0.62 and
0.11 BLEU respectively across the 12 zero-shot
pairs. Compared to the baseline many-to-many
model, our method yields a 1.5 BLEU gain on av-
erage. Our method is able to improve zero-shot
performance without deteriorating supervised per-
formance.

On the TED59 dataset, we follow Raganato
et al. (2021) in comparing against two multilin-
gual model variants: the standard Transformer, and
the Transformer with sparse entmax instead of stan-
dard softmax cross-attention. Our approach gains
„3 BLEU points against the baseline, and 2 BLEU

5We use asymmetric hashing with 2-dimensional blocks
and a quantization threshold of 0.2, and re-order the top 100
ANN candidates.

against the stronger contrastive model. Further, our
model consistently outperforms strong, explicitly
alignment-based methods.

Target-language Accuracy. To supplement the
evaluation, we provide the accuracy score for tar-
get language identification6 in zero-shot scenarios,
called Acc0. While the classical many-to-many
NMT models (Johnson et al., 2017; Aharoni et al.,
2019) enable zero-shot translations, several studies
have shown that these models fail to reliably gener-
alize to unseen language pairs, ending up with an
off-target translation issue (Zhang et al., 2020). The
model ignores the language label and the wrong
target language is produced as a result. We ob-
serve significant improvements in target language
accuracy, up to nearly 99% (absolute).

4 Analysis

Ablation Study. Table 3 reports ablations on the
IWSLT17 test set. We find that kNN embeddings
alone yield improvements over the baseline many-
to-many model. By contrast, absent the other parts
of our model, the attentional semantic layer dete-
riorates model performance. Only in combination
with the agreement loss do we observe a benefit
from this component.

Embedding Analysis. Figure 3 visualizes sub-
word representations from models trained on
IWSLT17. Each subword is colored according to
the language in which it is most frequent. The over-
all layout of the two spaces is similar, although the

6We utilize FastText (Joulin et al., 2017) as a language
identification tool to compare the translation language with
the reference target language and keep count of the number of
matches.
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ID Component dev.2010 test.2010

1 many-to-many (zero-shot) 15.95 18.46

2 1 + attn. semantic repr. 15.43 17.83
3 1 + kNN embeds 17.11 19.69
4 2 + kNN embeds 16.60 19.08

5 3 + agreement loss 17.99 20.91
6 4 + agreement loss 18.31 21.01

Table 3: Effect of different components of our model on
the IWSLT17 datasets. We report sacreBLEU scores on
the two official validation sets with beam size 1.

baseline model (left) exhibits a clear ring-shaped
gap dividing the embeddings into two groups. With
ANN embeddings (right), this gap is eliminated and
the layout of the embeddings appears more homo-
geneous. Quantitatively, the average distance from
a subword to its neighbors exhibits a smaller vari-
ance in the ANN model than in the baseline, which
further supports the reading that ANN training cre-
ates a more homogeneous representation space in
which subwords are more uniformly distributed.

Figure 3: t-SNE visualization of subword embeddings
from IWSLT17 models trained without (left) and with
(right) ANN embeddings. Points are colored according
to the language where the corresponding subword is
most frequent. ANN embeddings decrease the separa-
tion between some monolingual subspaces, and remove
others entirely.

Table 4 shows nearest neighbors for a random
sample of subwords (additional examples in Table 5
in Appendix B). With ANN training, a subword’s
nearest neighbors are generally its synonyms (e.g.
_wonderful, _large _tremendous, and _big
as neighbors to _great) or derived forms (e.g.
_încep, _începem, _început, _începe be-
side _înceap). In the baseline, it is more likely
to find neighbors with no apparent relation, such as
_erzählen ‘tell’ and _stemmen ‘hoist’ or ‘accom-
plish’ beside _America. This suggests that ANN
embeddings help a model to better organize its sub-
word embedding space into coherent, semantically-
related subspaces.

We quantify this trend by labeling each subword
according to the language in which it is most fre-
quently attested. In the baseline model, we find
that on average only 2.7 of a subword’s 6 nearest
neighbors come from the same language as that sub-
word. This average rises to 3.6 in the ANN model,
demonstrating that ANN training significantly in-
creases the number of same-language neighbors on
average.

In the ANN model, a few rare subwords (?, ž, ć)
are disproportionately common among the nearest
neighbors of many other subwords. We speculate
that these tokens may act as pivots for informa-
tion to flow between their many neighbours. Their
high centrality means that these tokens provide
avenues for information to flow between a large
number of subwords, even those which never occur
in sentences together. Because these tokens are
rare, there is also very little penalty for the model
to “corrupt” their representations with information
from neighboring subwords.

5 Other Related Work

A vast body of work addresses zero-shot transla-
tion. Most methods focus on producing language-
agnostic encoder outputs (Pham et al., 2019). Wei
et al. (2021) introduce multilingual contrastive
learning, while Yang et al. (2021) adopt auxiliary
target language prediction. To enable the input to-
kens to be positioned without constraints, Liu et al.
(2021) eliminate the residual connections within
a middle layer of the encoder. Yang et al. (2022);
Gu and Feng (2022) employ optimal transport to
improve contextual cross-alignments, in contrast
to our method which performs soft, non-contextual
alignment between subwords in the continuously-
updating embedding space. Other methods ex-
tend the training data using monolingual data (Al-
Shedivat and Parikh, 2019) to pretrain the decoder
(Gu et al., 2019), and random-online backtransla-
tion (Zhang et al., 2020). Lin et al. (2021); Reid and
Artetxe (2022) use dictionary based alignments to
produce pseudo-cross-lingual sentences. Other ap-
proaches that enhance token level representations
include multiple subword segmentations (Wu et al.,
2020; Kambhatla et al., 2022a), enciphered source
text (Kambhatla et al., 2022b) and stroke sequence
modelling (Wang et al., 2022). While all these tech-
niques rely on multilingual training paradigm for
machine translation, they either rely on external
data and use explicit augmentations. We do not
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Subword Nearest Neighbors (Baseline) Nearest Neighbors (Ours)

_great _gesproken _schaffen ppy ită _prosper _senior _wonderful _large _tremendous _big _great ?
_înceapă _popolare _condotto _mişcă _bekijken _crească _creeze _gepubliceerd _încep _începem _început _începe muovono
_America tate _erzählen _stemmen dine _facultate _chestiune _USA _Asia _Africa _American _America ć
_play _lavori eranno _tenuto _bekijken - möglichkeiten play _playing _Play _played _play ?
_football _pesci bon _surf _betrachten _Hintergrund möglichkeiten _weather _baseball ball _montagna _biodiversità _football
ing ificazione izăm amento tung erende ende ling ting ung ž ingen ing
_fish _petrec schen _Sachen _feed _chestii möglichkeiten fisch _pesce _pesca _Fisch _fish ?

Table 4: Approximate nearest neighbors for a sample of subwords, computed with (right) and without (left) ANN
training.

use any external data or explicit alignments and
our model can be trained end-to-end like a regular
multilingual model.

6 Conclusion

We described a novel approach to harness near-
est neighbors at the token level and learn nearest-
neighbour informed word embeddings for every
word in a source language for many-to-many multi-
lingual translation. Our experiments show that this
simple yet effective approach results in consistently
better zero-shot translations across multiple multi-
lingual datasets. Additionally, our model produces
translations in the right target language with high
accuracy. Our analysis shows that our model learns
to organize subwords into semantically-related
neighborhoods, and reduces the separation between
monolingual subspaces in the embedding space.

Limitations

While our method is effective in zero-shot set-
tings, we find that it has limited implications in
supervised settings. This is because improving
zero-shot translation presents a tug-of-war between
language-agnostic and language-specific represen-
tations, each of which has a distinct effect on the
model. Another major downside is reduced training
speed relative to the baseline many-to-many model.
We note that this is an artifact of the agreement
loss (KLDiv.) which entails two forward-passes for
each update. Finally, in the present work, we com-
pute k-NNs for every source word in a sentence.
Although this has yielded strong results, we would
like to explore a more explainable setting where
k-NNs can be applied to specific source words. We
leave such explorations to future work.
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A Reproducibility Details

A.1 Data

IWSLT17 (Cettolo et al., 2012) is an English-
centric dataset7 totalling 1.8M parallel sentences.
It has 8 supervised directions to and from Ger-
man, Italian, Dutch and Romanian, each with about
220,000 parallel sentences, and 12 zero-shot direc-
tions. We use the official validation and test sets.

Ted59 (Qi et al., 2018) is a massively multilin-
gual English-centric dataset8 with 116 translation
directions totalling 10.8M parallel sentences. The
imbalanced data—from 0.25M to just 2000 parallel
samples for some language pairs—makes it ideal
to study the effects of our method. Following (Aha-
roni et al., 2019; Raganato et al., 2021) we evaluate
on 16 supervised pairs (Azerbaijani, Belarusian,
Galician, Slovak, Arabic, German, Hebrew, and
Italian to and from English) and 4 zero-shot (Ara-
bic Ø French, Ukranian Ø Russian). Note that of
these languages, Azerbaijani, Belarusian, Galician,
and Slovak are low resource with only 5.9k, 4.5k,
10k and 61.5k paralle samples to/from English.

All settings and baselines use sentencepiece9

for subword tokenization using byte-pair encodings
(BPEs; Sennrich et al. 2016) with 32000 merge
operations.

A.2 Model and Hyperparameters

All models follow the basic configuration of
Vaswani et al. (2017), using the fairseq toolkit
(Ott et al., 2019) in PyTorch. This includes 6 lay-
ers of encoder and eecoder each with 512 dim and
2048 feed-forward dimension. The 512 dim word
embedding layer has a vocabulary size of 32000.
All word-embeddings in the model (encoder, de-
coder input/output) are shared, although the latent
embedding layer alone is specific to encoder only.
This implies that any updates to the actual embed-
ding layer because of k-NN tokens also impacts
the decoder.

The attentional latent semantic representation
layer has 512 dim (same as the embedding layer)
and a size N of 1000 for IWSLT17 (smaller
dataset) and 5000 for TED59 (larger dataset). We
did not tune this hyperparameter and chose the val-
ues based on the size of the datasets. This implies
that this layer adds 0.5M trainable parameters to

7https://wit3.fbk.eu/2017-01
8github.com/neulab/word-embeddings-for-nmt
9https://github.com/google/sentencepiece

the IWSLT17 model and 2.5M parameters to the
TED59 model. However, note that the total train-
able parameters are still much lower than that of
the baselines – this because our models have shared
embedding layers.

We use the Adam optimizer with inverse square
root learning scheduling and 6k warm steps, lr “
0.0007 and dropout of 0.3 (IWSLT17), or 10k
warmup steps, lr “ 0.005 and dropout of 0.2
(TED59). The batch size is 4096 tokens for each
of four A100 GPUs.

We use ScANN (Guo et al., 2020) for efficient
ANN search10 with k “ 3. To increase train-
ing speeds, we cache each subword’s ANNs for
400 iterations before recomputing them. We only
(peridocally) cache subword IDs: the embedding
EMBµp¨q is always computed directly fromWemb.
The value of λ is set to 0.5 (Equation 1). We follow
Kambhatla et al. (2022b) to set the values of α1, α2

to 1, and β to 5 (Equation 5).

Evaluation. For evaluation, all translations are
generated with beam size 5. We report case-
sensitive BLEU scores (Papineni et al., 2002) us-
ing sacreBLEU11 (Post, 2018). We report detok-
enized BLEU for IWSLT17 and tokenized BLEU
for TED59 for fair comparison with prior work
(Aharoni et al., 2019; Raganato et al., 2021).

B Nearest Neighbor Examples

See Table 5.

10https://github.com/google-research/
google-research/tree/master/scann . We use asymmet-
ric hashing with 2-dimensional blocks and a quantization
threshold of 0.2, and re-order the top 100 ANN candidates.

11case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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Abstract

We describe the Johns Hopkins ACL 60-60
Speech Translation systems submitted to the
IWSLT 2023 Multilingual track, where we
were tasked to translate ACL presentations
from English into 10 languages. We developed
cascaded speech translation systems for both
the constrained and unconstrained subtracks.
Our systems make use of pre-trained models as
well as domain-specific corpora for this highly
technical evaluation-only task. We find that the
specific technical domain which ACL presenta-
tions fall into presents a unique challenge for
both ASR and MT, and we present an error anal-
ysis and an ACL-specific corpus we produced
to enable further work in this area.

1 Introduction

In this work, we describe the 2023 JHU 60-60 Mul-
tilingual speech translation track submissions and
their development (Agarwal et al., 2023; Salesky
et al., 2023). This multilingual task involved the
translation of ACL conference oral presentations,
given in English, into 10 different target languages.
High quality translation systems that can assist in
translating highly technical and scientific informa-
tion helps in the dissemination of knowledge to
more people, which in turn can help make our field
more inclusive and accessible.

We briefly describe the task in Section 2. In Sec-
tion 3 we describe the collection and preparation
of in-domain ACL data to improve ASR and MT
performance by addressing the domain-specificity
of the task. We then describe our systems in Sec-
tion 4, including their motivation and design in
context of this shared task. Technical details of our
experiments are in 5. We present our results and a
discussion of our contributions in Section 6.

* Authors contributed equally

2 The Speech Translation of Talks Task

In 2022, the ACL began the 60-60 initiative, a di-
versity and inclusion initiative to translate the ACL
Anthology into 60 languages for its 60th anniver-
sary. The initiative provided evaluation data for the
IWSLT 2023 multilingual track on speech transla-
tion of talks from English into 10 major languages.

It was further split into constrained and uncon-
strained subtracks. The constrained subtrack al-
lowed the use of only certain datasets and pre-
trained models, whereas the unconstrained subtrack
had no such restrictions. We submitted systems to
both subtracks and describe them in Section 4.

2.1 Evaluation Data
The ACL 60-60 development data provided to par-
ticipants is composed of the audio of 5 talks, their
transcripts, and multi-parallel translations into 10
languages. Each talk is about 12 minutes in length
– a total of about an hour of English speech for the
entire set. Additionally, participants are provided
with the text abstract of each talk taken from the
corresponding paper.

The nature of these data presents a few major
challenges for speech translation. The ACL is a
global community of researchers from many dif-
ferent countries who speak in a variety of accents,
which can pose a challenge to even modern day
speech recognition systems. Additionally, the con-
tent of these talks is highly technical and contains
terms and acronyms that are specific to the field.
Sentence-level translations of the talks are provided
along with unsegmented audio of the full ∼12
minute talk. An audio segmentation produced with
the SHAS baseline segmentation method (Tsiamas
et al., 2022) is also provided.

3 In-domain Data

Utilizing additional in-domain data has been shown
to be helpful in improving the performance and
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robustness of translation systems. In light of this,
we scraped talks and papers from the proceedings
and workshops of ACL 2021.

3.1 Data Collection
About 65% of the papers accepted in ACL 2021
have video presentations recorded and uploaded
on the ACL website. We scraped 1847 papers and
1193 talks from the proceedings and workshops.
The format of the papers and talks are pdf and
mp4 respectively. We extract the text from the
papers using pypdf.1 The talks are split into 30-
second chunks, converted into FLAC format, and
resampled to 16KHz. This amounts to about 155
hours of speech and about 200K lines of text. We
plan to release the data under a CC BY 4.0 license2

(same as the license for the ACL talks).

3.2 Data Filtering
To make the corpora (including ACL papers before
2022) useful, we first denoised the data and made
it similar to ASR text outputs. A comprehensive
list of the filters we applied to the data includes:

• Removing any information past the Refer-
ences section.

• Removing links ("https..").

• Reforming broken words since the text was in
a two column format.

• Removing any information before the Ab-
stract section.

• Removing any non alpha-numeric or punctua-
tion characters.

• Removing any lines that start with or that have
too many numbers (to account for tables with
data).

• Removing any lines with less that 10 charac-
ters (number obtained from averaging mini-
mum character length of each sentence in dev
data).

• Removing any lines larger than 297 characters
(number obtained through a similar process as
above).

• Reformatting the data such that it has one sen-
tence per line.

1https://github.com/py-pdf/pypdf
2https://github.com/IWSLT-23/60_60_data/tree/

main/acl_data

These constraints were applied in order to mimic
the text-normalization of the dev data so that these
scraped ACL data could be incorporated into our
model’s source language side.

4 Systems

In this section, we separately describe our uncon-
strained and constrained submissions. Since we
built cascaded models, we describe the automatic
speech recognition (ASR) and machine translation
(MT) components of each system.

4.1 Unconstrained Subtrack
4.1.1 Automatic Speech Recognition
An important characteristic of ACL presentations
is the wide array of accents represented, which re-
flects the diverse background of NLP researchers.
Accent-robust speech recognition continues to
present a challenge to the community (Tadimeti
et al., 2022; Riviere et al., 2021; Radford et al.,
2022).

One model that demonstrated a degree of robust-
ness to accented speech, is Whisper (Radford et al.,
2022), an ASR model trained on 680,000 hours of
web-crawled data. Its performance on the accented
splits of the VoxPopuli (Wang et al., 2021), while
significantly worse than non-accented English, was
comparable (without an external language model)
to methods designed for accent robustness (with a
strong language model) (Riviere et al., 2021). This
robustness to accented speech, as well as its overall
strong performance on English ASR makes it well-
suited for the accent-diverse ACL presentations.

The domain specificity and technical terms of
ACL presentations may still prove difficult for a
strong ASR model like Whisper. We therefore
condition the decoder towards key technical vocab-
ulary and named entities by prompting Whisper
with the corresponding abstracts when decoding
each presentation.

Additionally, we test the effect of using the
pre-segmented audio files (with oracle segmenta-
tion provided by the IWSLT 60-60 challenge or-
ganizers) versus using longer speech segments for
Whisper decoding. We find that decoding the full
talk at once results in a lower WER than decod-
ing segment-by-segment. For Whisper-large, the
best performing model, this difference is 0.6 WER.
Longer form inputs more closely match the train-
ing segments of Whisper, which were in 30 second
segments (Radford et al., 2022).
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4.1.2 Audio Segmentation
Since we found that decoding using unsegmented
audio outperformed decoding using the predefined
segments, we segment our ASR text output in order
to perform sentence-level machine translation. We
choose to perform sentence-level machine trans-
lation rather than incorporating more document
context because our final systems make use of
many large pre-trained multilingual models that
are trained at a sentence level rather than a docu-
ment level.

Because we require sentence-level segments
from our ASR outputs, we use the state-of-the-
art ersatz neural sentence segmenter. ersatz has
been shown to be more robust to technical terms in-
cluding acronyms and irregular punctuation, which
is particularly helpful in the ACL domain (Wicks
and Post, 2021).

4.1.3 Machine Translation
We test several pre-trained MT systems on our data.
Specifically, we test NLLB-200 (NLLB Team et al.,
2022), mBART50 (Tang et al., 2020), and M2M100
(Fan et al., 2021). All 10 of our target languages
are supported by these models.

The original NLLB-200 model is a 54 billion pa-
rameter Mixture-of-Experts model that translates
to and from 200 languages. It is trained on a
large amount of mined parallel, back-translated,
and monolingual data. We use the 3.3B parame-
ter version of NLLB-200, which is a dense Trans-
former model that is trained via online distillation
of the original model, but still supports all of the
original 200 languages.

mBART50 is the second iteration of the multi-
lingual BART model, which is a dense transformer
architecture trained on multilingual text using a
denoising task. The authors of mBART50 also re-
lease a checkpoint of mBART50 that is fine-tuned
on the one-to-many translation task, which we will
refer to as mBART50-1toN. In this case, English
is the source, and all 50 covered languages are the
targets.

Finally, M2M100 is another transformer-based
model that is trained directly on the MT task. It
translates to and from 100 languages, and is a previ-
ous iteration of the initiative that produced NLLB-
200. However, we still test both models because
sometimes adding additional language pairs to a
model can lead to the reduced performance of some
language pairs (Aharoni et al., 2019; Arivazhagan

et al., 2019). We use the 1.2B parameter version of
M2M100 in our experiments.

4.1.4 Domain-Specific Data
Using the 2021 ACL data described in Section 3,
we attempted to perform sequence knowledge dis-
tillation (SeqKD) (Kim and Rush, 2016). Because
we only had additional source-side monolingual
data, SeqKD could give us pseudo-target labels in
order to retrain our best model on these outputs.

Although NLLB-200-3.3B is our best model for
many of our language pairs, we fine-tune NLLB-
200-1.3B instead due to computational constraints.
While benchmarking these models, however, there
is only a marginal improvement in using the larger
model over the smaller (average +0.6 chrF). For en-
ja, however, we continue to use mBART50-1toN.

Despite the large amount of in-domain source
language data we made available, we did not see
much benefit from it ourselves, specifically for data
augmentation via SeqKD. We speculate that the
data may be too noisy in spite of filtering, and that
its best use may be as source context during infer-
ence, rather than for training data augmentation.

4.2 Constrained Subtrack
4.2.1 Automatic Speech Recognition
We leveraged the pre-trained wav2vec 2.0 model
(Baevski et al., 2020) for the constrained ST task.
Wav2vec 2.0 was trained in a self-supervised fash-
ion and requires fine-tuning on an annotated cor-
pus in order to be used for the ASR task, with the
domain-similarity between the choice of the fine-
tuning corpus and the evaluation data being crucial
for ASR performance. The most commonly used
wav2vec 2.0 model is fine-tuned with a CTC objec-
tive on Librispeech, a corpus made of audiobooks
that is considered to have a considerable domain
mismatch compared to the ACL 60-60 data. Since
the development split of the ACL 60-60 data alone
is insufficient for wav2vec 2.0 fine-tuning, we in-
stead performed a two-stage fine tuning with TED-
LIUM 3 (Hernandez et al., 2018) being used in the
first stage and the ACL 60-60 development data
used in the second.

Our approach to tackling the content domain mis-
match between the training data and ACL presen-
tations is to perform ASR decoding with the help
of an content-domain matching language model.
What it means in practice is that we rescore the per-
frame output trellis with a content-domain match-
ing language model, which in turn was created by
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interpolating a general language model (trained
from all the available English corpora in the con-
strained challenge) and a domain-specific language
model (trained with transcripts from the ACL 60-
60 development data). In order to bias our model
towards named entities mentioned in each specific
presentation, we train a separate language model
for each presentation by re-interpolating the above-
mentioned language model with one trained with
the corresponding paper abstract.

4.2.2 Machine Translation
In the constrained setting, we use mBART50-1toN
and M2M100 as our base models. We addition-
ally test fine-tuning these models on MuST-C data,
which we hypothesized to be closely related to the
ACL talk data, domain-wise (Di Gangi et al., 2019).
This data is comprised of professionally translated
English TED talks, which matches the presentation
domain as well as some of the technical nature of
the ACL talks, although to a lesser degree.

We fine-tune both mBART and M2M100 using
the MuST-C transcripts and translations available
in all 10 language pairs. We use data from both v1.2
(v1.0 is contained in v1.2) and v2.0 depending on
language pair availability. A summary of this data
is provided in Table 1. For mBART, we additionally
test multilingual fine-tuning where we fine-tune on
all the language pairs simultaneously, rather than
fine-tuning on a single language pair bitext (Tang
et al., 2020).

lang. pair MuST-C release # lines

en-ar v1.2 212085
en-de v1.0 229703
en-fa v1.2 181772
en-fr v1.0 275085
en-ja v2.0 328639
en-nl v1.0 248328
en-pt v1.0 206155
en-ru v1.0 265477
en-tr v1.2 236338
en-zh v1.2 184801

Table 1: Dataset statistics and source of MuST-C bitext
across the 10 task language pairs.

5 Experimental Setup

In this section, we provide technical details of our
experiments and our evaluation practices.

5.1 ASR Experiments
5.1.1 Prompting Whisper
In the unconstrained setting, we evaluate Whisper
on both the segmented and unsegmented audio files.
We simulate LM biasing by using the “prompt”
interface provided by Whisper.

5.1.2 Decoding with an Interpolated
Language Model

In the constrained setting, we build a domain-
adapted language model as follows: first we com-
bine transcripts from a number of ASR corpora that
are available in the constrained challenge, namely
Librispeech, VoxPopuli, Common Voice (Ardila
et al., 2020), and TED-LIUM 3, to train a flexi-
ble 6-gram general bpe-level language model for
English. We proceed to interpolate the general
English language model with one trained on the
development split transcripts from the ACL 60-60
challenge, allowing the model to gain exposure
to technical terms within the NLP field. Finally,
during decoding, we further interpolate the previ-
ously obtained language model with a low-order
language model trained from the paper abstract cor-
responding to the current presentation, biasing our
model towards technical terms and named entities
that are likely to appear in the presentation.

We used KenLM (Heafield, 2011) to train and
integrate our language models. The interpolation
weights for each step were estimated using a leave-
one-out strategy on the development split, minimis-
ing the perplexity on the held-out transcript and
averaging the interpolation weights.

5.1.3 Decoding with a Language Model
Trained on Additional ACL Anthology
data

We use the text scraped from the proceedings and
workshops of ACL 2021 to train a 6-gram domain-
matching language model for decoding. Without
interpolation or additional data, this gives a WER
of 18.9 and a technical term recall of 0.47 using
Wav2Vec2-TED-LIUM 3 as the acoustic model.
We observe that using data from a similar domain
improves performance even though the data are
relatively noisy.

5.1.4 Evaluation
We compare ASR performance, as measured by
Word Error Rate (WER), across the different sys-
tems that we built. Specifically, we compute WER
on depunctuated lowercase transcripts. Since we
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Acoustic Model Language Model WER Tech. Term Recall
Whisper-medium.en - 8.1 0.861
Whisper-medium.en abstract prompting 8.7 0.865
Whisper-large - 6.8 0.854
Whisper-large abstract prompting 6.9 0.852
Whisper-large abstract and conclusion prompting 6.7 0.863
Whisper-large abstract, conclusion and intro prompting 6.6 0.851
Whisper-large abstract, conclusion, intro & author name prompting 6.4 0.854
Wav2Vec2-960h librispeech librispeech-4gram 25.1 0.306
Wav2Vec2-960h librispeech interpolated LM 24.3 0.370
Wav2Vec2-960h librispeech inter. LM + dev transcripts 24.1 0.382
Wav2Vec2-960h librispeech inter. LM + dev + abstract 23.7 0.392
Wav2Vec2-960h librispeech inter. LM + dev + abstract + ACL anthology 20.7 0.462
HUBERT-960h librispeech librispeech-4gram 22.0 0.390
HUBERT-960h librispeech interpolated LM 21.7 0.386
HUBERT-960h librispeech inter. LM + dev transcripts 20.4 0.421
HUBERT-960h librispeech inter. LM + dev + abstract 20.4 0.498
HUBERT-960h librispeech inter. LM + dev + abstract + ACL anthology 18.5 0.473
Wav2Vec2-TED-LIUM 3 librispeech-4gram 20.9 0.383
Wav2Vec2-TED-LIUM 3 interpolated LM 19.5 0.422
Wav2Vec2-TED-LIUM 3 inter. LM + dev transcripts 18.9 0.436
Wav2Vec2-TED-LIUM 3 inter. LM + dev + abstract 14.2 0.626
Wav2Vec2-TED-LIUM 3 inter. LM + dev + abstract + ACL anthology 16.7 0.505
Wav2Vec2-TED-LIUM 3 ACL anthology only 18.9 0.470

Table 2: ASR results. WER is measured against depunctuated, all lower-case reference text.

either perform ASR on unsegmented talks (uncon-
strainted), or on the SHAS-segmented audio (con-
strained), we use mwerSegmenter to align our out-
puts to the gold transcripts (Matusov et al., 2005).

Because we are interested in the effect of using
domain-specific text to improve ASR on techni-
cal terms, we compute the recall of NLP-specific
technical words in our output. We obtain these
technical terms by asking domain experts to flag
all technical terms in the development set reference
transcript.

5.2 MT Experiments
5.2.1 MuST-C fine-tuning
For bilingual fine-tuning on mBART50 and
M2M100, we train for 40K updates, and use loss
to select the best checkpoint. For multilingual fine-
tuning on mBART50-1toN, we train for 100K up-
dates, and use temperature sampling of the mixed
datset using T = 1.5. We use loss to select the
best checkpoint. For all experiments, we use an
effective batch size of 2048 tokens.

5.2.2 Evaluation
For all experiments, we report BLEU and chrF
scores as reported by sacrebleu (Post, 2018). For
Japanese and Chinese, we use the appropriate tok-

enizers provided by sacrebleu (ja-mecab and zh,
respectively).

For evaluating translations of ASR outputs, ei-
ther segmented using ersatz or pre-segmented us-
ing the provided SHAS-segmented wav files, we
use the mwerSegmenter to resegment the transla-
tions based on the references. For all languages ex-
cept Japanese and Chinese, we use detokenized text
as input to resegmentation. However, for Japanese
and Chinese, we first use whitespace tokenization
as input to mwerSegmenter, and then detokenize
for scoring, which is retokenized according to the
sacrebleu package.

6 Results

6.1 ASR Results
For the Whisper-based systems, we focus on the ef-
fects of prompting; for the constrained systems, we
contrast different families of pre-trained ASR mod-
els fine-tuned on different ASR corpora; finally, we
assess the efficacy of incorporating an in-domain
language model during decoding. The full list of
results is shown in Table 2.

Contrary to what we expected, prompting Whis-
per with the corresponding paper abstracts not only
had little impact on the ASR WER, but also failed
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mBART50-1toN M2M100 NLLB-200

language pair BLEU chrF BLEU chrF BLEU chrF

en-ar 22.6 52.9 16.2 46.3 37.6 65.4
en-de 37.4 66.0 39.7 66.8 42.9 69.6
en-fa 17.2 49.6 20.4 49.5 27.4 57.3
en-fr 46.4 70.4 54.5 74.6 55.9 76.2
en-ja 37.5 45.9 35.2 43.8 25.7 36.3
en-nl 41.0 69.0 50.9 75.3 51.5 76.1
en-pt 44.3 69.7 57.6 77.4 61.6 79.0
en-ru 22.2 52.0 24.3 54.3 27.4 57.2
en-tr 15.5 50.7 22.3 56.5 28.6 62.8
en-zh 43.8 38.8 45.7 40.7 42.2 38.5

Table 3: Unconstrained MT results on the development set using oracle transcripts as input. Both chrF and BLEU
scores are computed using the mWER Segmenter and sacrebleu. BLEU scores for ja and zh are computed using
the ja-mecab and zh tokenizers in sacrebleu, respectively. We bold our best chrF scores as it is the main metric of
the task.

mBART50-1toN +MuST-C (indiv) +MuST-C (multi) M2M-100 +MuST-C (indiv)

lang pair BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF

en-ar 22.6 52.9 24.7 55.9 19.6 51.0 16.2 46.3 24.0 55.7
en-de 37.4 66.0 35.6 63.7 36.8 64.5 39.7 66.8 34.7 62.8
en-fa 17.2 49.6 28.9 56.0 26.3 52.4 20.4 49.5 17.9 54.4
en-fr 46.4 70.4 48.0 70.9 46.7 70.1 54.5 74.6 49.0 71.1
en-ja 37.5 45.9 24.0 35.7 24.9 37.0 35.2 43.8 21.0 32.3
en-nl 41.0 69.0 43.3 70.1 38.5 67.1 50.9 75.3 42.1 69.0
en-pt 44.3 69.7 48.2 71.4 42.8 68.5 57.6 77.4 50.0 72.3
en-ru 22.2 52.0 21.0 50.4 19.5 47.9 24.3 54.3 22.1 50.7
en-tr 15.5 50.7 18.9 53.3 15.6 50.8 22.3 56.5 21.4 56.0
en-zh 43.8 38.8 45.3 40.6 31.5 39.2 45.7 40.7 42.8 37.5

Table 4: Constrained MT results on the development set using oracle transcripts as input. Both chrF and BLEU
scores are computed using the mWER Segmenter and sacrebleu. BLEU scores for ja and zh are computed using
the ja-mecab and zh tokenizers in sacrebleu, respectively. We bold our best chrF scores as it is the main metric of
the task.

to improve the recall of technical terms of the ASR
system. Further increasing the length and relevance
of the prompts provided to whisper, such as adding
the conclusion and part of the introduction section
of each paper corresponding to the ACL presenta-
tion in question, had marginal impact on both of the
above-mentioned metrics. A more detailed look at
the mechanism and behaviour of Whisper prompt-
ing could help to understand this observation.

On the constrained side, the incorporation of the
interpolated LM during ASR decoding had a sig-
nificant impact on the performance of our ASR
systems, regardless of the upstream acoustic model.
As expected, increasing the quality of the out-of-

domain language model (from Librispeech-4gram
to Interpolated LM) resulted in WER improve-
ments while not necessarily helping technical term
recall; by contrast, while LMs that better fit the
domain may not necessarily help WER, they bring
substantial gains in technical term recall.

The language model that best fits our domain,
namely the model that interpolates the LMs trained
from every ASR corpus in addition to the develop-
ment transcripts, from the current paper abstract,
and from the crawled ACL anthology, provided
substantial improvement on both WER and tech-
nical term recall for the weaker acoustic models
(Wav2Vec2 fine-tuned on Librispeech) but not on
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Constrained Unconstrained

language MT system BLEU chrF MT system BLEU chrF

en-ar mBART50-1toN+MuST-C 15.3 45.6 NLLB-200-3.3B 33.7 62.5
en-de M2M100 24.3 55.2 NLLB-200-3.3B 39.6 67.8
en-fa mBART50-1toN+MuST-C 14.8 42.0 NLLB-200-3.3B 24.5 54.3
en-fr M2M100 33.3 61.9 NLLB-200-3.3B 49.3 72.5
en-ja mBART50-1toN 21.9 29.9 mBART50-1toN 34.8 43.1
en-nl M2M100 30.6 62.5 NLLB-200-3.3B 45.7 72.4
en-pt M2M100 34.9 63.4 NLLB-200-3.3B 54.7 75.6
en-ru M2M100 15.0 45.1 NLLB-200-3.3B 24.8 54.4
en-tr M2M100 11.9 43.5 NLLB-200-3.3B 24.7 58.8
en-zh M2M100 32.2 26.6 M2M100 37.7 33.5

Table 5: Final speech translation results for both our constrained and unconstrained systems on the development set.
Both chrF and BLEU scores are computed using the mWER Segmenter and sacrebleu. BLEU scores for ja and zh
are computed using the ja-mecab and zh tokenizers in sacrebleu, respectively. We used output from our strongest
ASR system, Whisper-large with abstract prompting, as the input to our translation system.

the stronger acoustic models.

6.2 MT results
We detail the results of testing pre-trained MT mod-
els as described in Section 4 on the oracle tran-
scripts in Table 3. This table reflects experiments
we performed for the unconstrained setting. We
find that for almost all language pairs, NLLB-200-
3.3B has the best performance, except for en-ja
and en-zh, which perform best with mBART and
M2M100, respectively.

We summarize our fine-tuning results in Table
4. This table reflects experiments we performed
for the constrained setting. We find that in gen-
eral, the additional data can provide a boost over
mBART50-1toN, but not for M2M100. Addition-
ally, we find that despite positive results in Tang
et al. (2020), multilingual fine-tuning does not out-
perform bilingual fine-tuning in this setting. For a
majority of pairs, M2M100 without fine-tuning is
the best system, but for en-ar and en-fa, mBART50-
1toN with fine-tuning is the best system, and simi-
lar to the unconstrained system, mBART50-1toN
without fine-tuning is the best system for en-ja.

6.3 ST Results
Final results for both our constrained and uncon-
strained systems are summarized in Table 5. We
translate the transcripts from our best ASR systems
using the best language-pair specific MT systems.
In the unconstrained case, the average reduction in
chrF from using ASR outputs versus oracle tran-

scripts is -5.7 chrF. In the constrained case, this
value is -12.8 chrF. The small reduction in the un-
constrained system indicates that our cascaded ap-
proach of two strong components is a viable option
for ST in this setting. However, our constrained
system could likely benefit from techniques that
help reduce the error propagation from ASR, like
mixing ASR outputs with gold source sentences
during MT training, or joint training of ASR and
MT components.

7 Conclusion

We present a constrained and unconstrained system
for the IWSLT 2023 Multilingual speech transla-
tion task. We address some of the major challenges
of this dataset with our design choices: ASR ro-
bust to speaker accents, adaptation to match the
domain specificity, and ASR prompting to incorpo-
rate context in this academic talk-level translation
task. We additionally release a supplemental ACL
audio and text corpus to encourage further work in
high quality speech translation of ACL content.
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Abstract
This paper describes the NPU-MSXF system
for the IWSLT 2023 speech-to-speech trans-
lation (S2ST) task which aims to translate
from English speech of multi-source to Chi-
nese speech. The system is built in a cascaded
manner consisting of automatic speech recog-
nition (ASR), machine translation (MT), and
text-to-speech (TTS). We make tremendous ef-
forts to handle the challenging multi-source
input. Specifically, to improve the robustness
to multi-source speech input, we adopt various
data augmentation strategies and a ROVER-
based score fusion on multiple ASR model
outputs. To better handle the noisy ASR tran-
scripts, we introduce a three-stage fine-tuning
strategy to improve translation accuracy. Fi-
nally, we build a TTS model with high nat-
uralness and sound quality, which leverages a
two-stage framework, using network bottleneck
features as a robust intermediate representation
for speaker timbre and linguistic content disen-
tanglement. Based on the two-stage framework,
pre-trained speaker embedding is leveraged as
a condition to transfer the speaker timbre in the
source English speech to the translated Chinese
speech. Experimental results show that our
system has high translation accuracy, speech
naturalness, sound quality, and speaker simi-
larity. Moreover, it shows good robustness to
multi-source data.

1 Introduction
In this paper, we describe NPU-MSXF team’s cas-
caded speech-to-speech translation (S2ST) system
submitted to the speech-to-speech (S2S) track1 of
the IWSLT 2023 evaluation campaign. The S2S
track aims to build an offline system that realizes
speech-to-speech translation from English to Chi-
nese. Particularly, the track allows the use of large-
scale data, including the data provided in this track
as well as all training data from the offline track2 on

∗Lei Xie is the corresponding author.
1https://iwslt.org/2023/s2s
2https://iwslt.org/2023/offline

speech-to-text translation task. Challengingly, the
test set contains multi-source speech data, covering
a variety of acoustic conditions and speaking styles,
designed to examine the robustness of the S2ST
system. Moreover, speaker identities conveyed in
the diverse multi-source speech test data are unseen
during training, which is called zero-shot S2ST and
better meets the demands of real-world applica-
tions.

Current mainstream S2ST models usually in-
clude cascaded and end-to-end systems. Cascaded
S2ST systems, widely used in the speech-to-speech
translation task (Nakamura et al., 2006), usually
contain three modules, i.e. automatic speech recog-
nition (ASR), machine translation (MT), and text-
to-speech (TTS). Meanwhile, end-to-end (E2E)
S2ST systems (Jia et al., 2019; Lee et al., 2022)
have recently come to the stage by integrating the
above modules into a unified model for directly syn-
thesizing target language speech translated from
the source language. E2E S2ST systems can ef-
fectively simplify the overall pipeline and allevi-
ate possible error propagation. Cascaded S2ST
systems may also alleviate the error propagation
problem by leveraging the ASR outputs for MT
model fine-tuning. Meanwhile, thanks to the indi-
vidual training process of sub-modules, cascaded
systems can make better use of large-scale text and
speech data, which can significantly promote the
performance of each module.

In this paper, we build a cascaded S2ST sys-
tem aiming at English-to-Chinese speech trans-
lation with preserving the speaker timbre of the
source English speech. The proposed system
consists of Conformer-based (Gulati et al., 2020)
ASR models, a pretrain-finetune schema-based MT
model (Radford et al., 2018), and a VITS-based
TTS model (Kim et al., 2021). For ASR, model fu-
sion and data augmentation strategies are adopted
to improve the recognition accuracy and gener-
alization ability of ASR with multi-source input.
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For MT, we use a three-stage fine-tuning process
to adapt the translation model to better facilitate
the output of ASR. Meanwhile, back translation
and multi-fold verification strategies are adopted.
Our TTS module is composed of a text-to-BN
stage and a BN-to-speech stage, where speaker-
independent neural bottleneck (BN) features are
utilized as an intermediate representation bridging
the two stages. Specifically, the BN-to-speech mod-
ule, conditioned on speaker embedding extracted
from the source speech, is to synthesize target lan-
guage speech with preserving the speaker timbre.
Combined with a pre-trained speaker encoder to
provide speaker embeddings, the TTS model can
be generalized to unseen speakers, who are not in-
volved in the training process. Experimental results
demonstrate the proposed S2ST system achieves
good speech intelligibility, naturalness, sound qual-
ity, and speaker similarity.

2 Automatic Speech Recognition
Our ASR module employs multiple models for
score fusion in the inference. Moreover, data aug-
mentation is adopted during training to handle
noisy multi-source speech.
2.1 Model Structure
Our system employs both Conformer (Gulati et al.,
2020) and E-Branchformer models (Kim et al.,
2023) in our ASR module to address the diver-
sity of the test set. Conformer sequentially com-
bines convolution, self-attention, and feed-forward
layers. The self-attention module serves to cap-
ture global contextual information from the input
speech, while the convolution layer focuses on ex-
tracting local correlations. This model has demon-
strated remarkable performance in ASR tasks with
the ability to capture local and global informa-
tion from input speech signals. E-Branchformer
uses dedicated branches of convolution and self-
attention based on the Conformer and applies ef-
ficient merging methods, in addition to stacking
point-wise modules. E-Branchformer achieves
state-of-the-art results in ASR.
2.2 Data Augmentation
Considering the diversity of the testing data, we
leverage a variety of data augmentation strategies
to expand the training data of our ASR system,
including the following aspects.

• Speed Perturbation: We notice that the test-
ing set contains spontaneous speech such as
conversations with various speaking speeds.
So speed perturbation is adopted to improve

the generalization ability of the proposed
model. Speed perturbation is the process of
changing the speed of an audio signal while
preserving other information (including pitch)
in the audio. We perturb the audio speech with
a speed factor of 0.9, 1.0, and 1.1 to all the
training data. Here speed factor refers to the
ratio compared to the original speed of speech.

• Pitch Shifting: Pitch shifting can effectively
vary the speaker identities to increase data
diversity. Specifically, we use SoX3 audio
manipulation tool to perturb the pitch in the
range [-40, 40].

• Noise Augmentation: There are many cases
with heavy background noise in the test set, in-
cluding interfering speakers and music. How-
ever, the data set provided by the organizer is
much cleaner than the test set, which makes
it necessary to augment the training data by
adding noises to improve the recognition per-
formance. Since there is no noise set available,
we create a noise set from the data provided.
A statistical VAD (Sohn et al., 1999) is used
to cut the non-vocal and vocal segments from
the data and the non-vocal segments with en-
ergy beyond a threshold comprise our noise
set. We add the noise segments to the speech
utterances with a signal-to-noise ratio ranging
from 0 to 15 dB.

• Audio Codec: Considering the test data come
from multiple sources, we further adopt au-
dio codec augmentation to the training data.
Specifically, we use the FFmpeg4 tool to con-
vert the original audio to Opus format at [48,
96, 256] Kbps.

• Spectrum Augmentation: To prevent the
ASR model from over-fitting, we apply the
SpecAugment method (Park et al., 2019) to
the input features during every mini-batch
training. SpecAugment includes time warp-
ing, frequency channel masking, and time step
masking, and we utilize all of these techniques
during training.

2.3 Model Fusion
Since a single ASR model may overfit to a spe-
cific optimization direction during training, it can-
not guarantee good recognition accuracy for the

3https://sox.sourceforge.net/
4https://ffmpeg.org/
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speech of various data distributions. To let the
ASR model generalize better to the multi-source
input, we adopt a model fusion strategy. Specifi-
cally, we train the Conformer and E-branchformer
models introduced in Section 2.1 using the com-
bination of the original and the augmented data.
Each testing utterance is then transcribed by these
different models, resulting in multiple outputs. Fi-
nally, ROVER (Fiscus, 1997) is adopted to align
and vote with equal weights on the multiple outputs,
resulting in the final ASR output.
2.4 ASR Output Post-processing
Given that the spontaneous speech in the test set
contains frequent filler words such as "Uh" and
"you know", it is necessary to address their impact
on subsequent MT accuracy and TTS systems that
rely on the ASR output. To mitigate this issue,
we use a simple rule-based post-processing step
to detect and eliminate these expressions from the
ASR output. By doing so, we improve the accuracy
of the downstream modules.

3 Machine Translation
For the MT module, we first use a pre-trained lan-
guage model as a basis for initialization and then
employ various methods to further enhance transla-
tion accuracy.
3.1 Pre-trained Language Model
As pre-trained language models are considered
part of the training data in the offline track and
can be used in the S2ST track, we use the pre-
trained mBART50 model for initializing our MT
module. mBART50 (Liu et al., 2020) is a multi-
lingual BART (Lewis et al., 2020) model with 12
layers of encoder and decoder, which we believe
will provide a solid basis for improving translation
accuracy.
3.2 Three-stage Fine-tuning based on

Curriculum Learning
We perform fine-tuning on the pre-trained model to
match the English-to-Chinese (En2Zh) translation
task. There are substantial differences between
the ASR outputs and the texts of MT data. First,
ASR prediction results inevitably contain errors.
Second, ASR outputs are normalized text without
punctuation. Therefore, directly fine-tuning the
pre-trained model with the MT data will cause a
mismatch problem with the ASR output during
inference. On the other hand, fine-tuning the model
with the ASR outputs will cause difficulty in model
coverage because of the difference between the
ASR outputs and the MT data. Therefore, based

on Curriculum Learning (Bengio et al., 2009), we
adopt a three-stage fine-tuning strategy to mitigate
such a mismatch.

• Fine-tuning using the MT data: First, we
use all the MT data to fine-tune the pre-trained
model to improve the accuracy of the model
in the En2Zh translation task.

• Fine-tuning using the MT data in ASR tran-
scription format: Second, we convert the
English text in the MT data into the ASR
transcription format. Then, we fine-tune the
MT model using the converted data, which is
closer to the actual text than the ASR recog-
nition output. This approach can enhance the
stability of the fine-tuning process, minimize
the impact of ASR recognition issues on the
translation model, and improve the model’s
ability to learn punctuation, thereby enhanc-
ing its robustness.

• Fine-tuning using the ASR outputs: Third,
we leverage GigaSpeech (Chen et al., 2021)
to address the mismatch problem between the
ASR outputs and the MT data. Specifically,
we use the ASR module to transcribe the Gi-
gaSpeech training set and replace the corre-
sponding transcriptions in GigaST (Ye et al.,
2022) with the ASR transcriptions for transla-
tion model fine-tuning. This enables the MT
model to adapt to ASR errors.

3.3 Back Translation
Following (Akhbardeh et al., 2021), we adopt the
back translation method to enhance the data and
improve the robustness and generalization of the
model. First, we train a Zh2En MT model to trans-
late Chinese to English, using the same method
employed for the En2Zh MT module. Next, we
generate the corresponding English translations for
the Chinese text of the translation data. Finally, we
combine the back translation parallel corpus pairs
with the real parallel pairs and train the MT model.

3.4 Cross-validation
We use 5-fold cross-validation (Ojala and Garriga,
2010) to improve the robustness of translation and
reduce over-fitting. Firstly, we randomly divide the
data into five equal parts and train five models on
different datasets by using one of them as the vali-
dation set each time and combining the remaining
four as the training set. After that, we integrate the
predicted probability distributions from these five
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Figure 1: Architecture of our text-to-speech module.

models to obtain the final predicted probability dis-
tribution for the next word during token generation
for predicting the translation results.

4 Text-to-speech
4.1 Overview
Figure 1 (a) shows the pipeline of the text-to-speech
module in the proposed S2ST system. The TTS
module is built on a BN-based two-stage architec-
ture, which consists of a text-to-BN and a BN-to-
speech procedure. The text-to-BN stage tends to
generate BN features from the Chinese text trans-
lated by the MT module. The BN-to-speech stage
produces 16KHz Chinese speech from the BN fea-
ture, conditioning on the speaker embedding of
source speech. Given the translated Chinese speech
which preserves the speaker timbre in the source
English speech, an audio super-resolution model is
further leveraged to convert the synthesized speech
from 16KHz to 24KHz for higher speech fidelity.

Building on the two-stage framework
AdaVITS (Song et al., 2022a), we employ
bottleneck (BN) features as the intermediate
representations in the two-stage TTS module. BN
features, extracted from a multi-condition trained
noise-robust ASR system, mainly represent the
speaker-independent linguistic content. So BN can
effectively disentangle the speaker timbre and the
linguistic content information. In the text-to-BN
stage, high-quality TTS data is adopted in the
training phase to model the speaker-independent
BN features with prosody information. In the
BN-to-speech stage, both high-quality TTS data
and low-quality ASR data should be involved
during training to sufficiently model the speech of
various speaker identities. Extracted from speech,

BN features contain the duration and prosody
information, which eliminates the need for text
transcripts and prosody modeling. Instead, the
BN-to-speech stage focuses on time-invariant
information modeling, such as speaker timbre.

As the goal of this work is to conduct zero-shot
English-to-Chinese speech translation, we concen-
trate on the method to transfer the unseen speaker
timbre of the source English speech to the synthe-
sized Chinese speech through voice cloning (Chen
et al., 2019). To capture new speaker timbre dur-
ing inference, the TTS module requires to model
abundant various speakers during training, which
relies on large-scale high-quality TTS data. Un-
fortunately, we are limited in the high-quality TTS
data we can use in this task and must rely on ad-
ditional data such as ASR to model the speaker
timbre. However, this data is not suitable for TTS
model training because the labels are inconsistent
with TTS, and the prosody of the speakers is not as
good as high-quality TTS data.

Furthermore, we incorporate ASR data into the
BN-to-speech training procedure by re-sampling
all the training speech to 16kHz, which can not
reach high-quality audio. Therefore, we utilize
audio super-resolution techniques to upsample the
synthesized 16KHz audio and convert it into higher
sampling rate audio.

4.2 Text-to-BN
Our text-to-BN stage network in TTS is based on
DelightfulTTS (Liu et al., 2021), which employs a
Conformer-based encoder, decoder, and a variance
adapter for modeling duration and prosody. The
model extends phoneme-level linguistic features to
frame-level to guarantee the clarity and naturalness
of speech in our system.
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4.3 BN-to-speech
We build the BN-to-speech model based on
VITS (Kim et al., 2021), which is a mainstream
end-to-end TTS model. VITS generates speech
waveforms directly from the input textual informa-
tion, rather than a conventional pipeline of using
the combination of an acoustic model and a neural
vocoder.

The network of the BN-to-speech stage consists
of a BN encoder, posterior encoder, decoder, flow,
and speaker encoder. The monotonic alignment
search (MAS) from the original VITS is removed
since BN features contain the duration information.
For achieving zero-shot voice cloning, an ECAPA-
TDNN (Desplanques et al., 2020) speaker encoder
is pre-trained to provide the speaker embedding
as the condition of the synthesized speech. To
avoid periodic signal prediction errors in the orig-
inal HiFiGAN-based (Kong et al., 2020) decoder
in VITS, which induces sound quality degradation,
we follow VISinger2 (Zhang et al., 2022) to adopt a
decoder with the sine excitation signals. Since The
VISinger2 decoder requires pitch information as
input, we utilize a pitch predictor with a multi-layer
Conv1D that predicts the speaker-dependent pitch
from BN and speaker embedding. With the desired
speaker embedding and corresponding BN features,
the BN-to-speech module produces Chinese speech
in the target timbre.
4.4 Audio Super-resolution
Following (Liu et al., 2021), we use an upsam-
pling network based vocoder to achieve audio
super-resolution (16kHz→24kHz). During train-
ing, the 16KHz mel-spectrogram is used as the
condition to predict the 24KHz audio in the au-
dio super-resolution model. Specifically, we adopt
the AISHELL-3 (Shi et al., 2021) dataset, com-
posing the paired 16KHz and 24KHz speech data
for model training. During inference, the high-
quality 24kHz speech is produced for the mel-
spectrogram of the 16KHz speech generated by the
BN-to-speech model. Here DSPGAN (Song et al.,
2022b) is adopted as our audio super-resolution
model, which is a universal vocoder that ensures
robustness and good sound quality without periodic
signal errors.

5 Data Preparation
5.1 Datasets
Following the constraint of data usage, the training
dataset for the S2ST system is illustrated in Table 1.

5https://github.com/SpeechTranslation/
GigaS2S

5.1.1 ASR Data
For the English ASR module in our proposed sys-
tem, we use GigaSpeech, LibriSpeech, TED-LIUM
v2&v3 as training data. For the ASR system used to
extract BN features in TTS, we use text-to-speech
data in AISHELL-3 and Chinese speech in GigaS2S,
along with the corresponding Chinese text in Gi-
gaST, as the training set. Since the test set’s MT
output text is a mix of Chinese and English, includ-
ing names of people and places, the TTS module
needs to support both languages. Therefore, we
also add the aforementioned English data to the
training set.
5.1.2 MT Data
We use the text-parallel data including News Com-
mentary and OpenSubtitles2018 as MT training set.
Moreover, we also add the Chinese texts in GigaST
and the English texts in GigaSpeech corresponding
to the Chinese texts in GigaST to the training set.
5.1.3 TTS Data
We use AISHELL-3 as training data in Text-to-BN
and audio super-resolution. For the pre-trained
speaker encoder, we adopt LibriSpeech, which con-
tains 1166 speakers, as the training data.For the BN-
to-speech model, in addition to using AISHELL-3
which has 218 speakers, we also use LibriSpeech
to meet the data amount and speaker number re-
quirements of zero-shot TTS.

5.2 Data Pre-processing
5.2.1 ASR Data
To prepare the ASR data, we pre-process all tran-
scripts to remove audio-related tags. Next, we map
the text to the corresponding byte-pair encoding
(BPE) unit and count the number of BPE units in
the ASR dictionary, which totals 5,000 units. For
audio processing, we use a frame shift of 10ms and
a frame length of 25ms and normalize all audio to
16KHz.
5.2.2 MT Data
For the MT data, we use the same tokenizer as
mBART50 to perform sub-word segmentation for
English and Chinese texts and to organize them
into a format for neural network training. By doing
so, we can maximize the benefits of initializing
our translation model with mBART50 pre-trained
model parameters. The mBART tokenizer men-
tioned above is a Unigram tokenizer. A Unigram
model is a type of language model that consid-
ers each token to be independent of the tokens be-
fore it. What’s more, the tokenizer has a total of
250,054 word segmentations, supports word seg-
mentation processing for English, Chinese, and
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Table 1: Datasets used in our proposed system.

Datasets Utterances Hours

English Labeled Speech Data

GigaSpeech (Chen et al., 2021) 8,315K 10,000
LibriSpeech (Panayotov et al., 2015) 281K 961
TED-LIUM v2 (Rousseau et al., 2012)&v3 (Hernandez et al., 2018) 361K 661
CommonVoice (Ardila et al., 2020) 1,225K 1,668

Text-parallel Data

News Commentary (Chen et al., 2021) 322K -
OpenSubtitles2018 (Lison et al., 2018) 10M -

ST Data

GigaST (Ye et al., 2022) 7,651K 9,781

S2S Data

GigaS2S5 7,626K -

Chinese TTS Data

AISHELL-3 (Shi et al., 2021) 88K 85

other languages, and uses special tokens like <s>,
</s>, and <unk>.
5.2.3 TTS Data
For AISHELL-3, we downsample it to 16KHz and
24KHz respectively as the TTS modeling target
and the audio super-resolution modeling target. All
other data is down-sampled to 16KHz. All data
in TTS adopts 12.5ms frame shift and 50ms frame
length.

Speech Enhancement. Given the presence of
substantial background noise in the test set, the dis-
criminative power of speaker embeddings is signif-
icantly reduced, thereby impeding the performance
of the TTS module. Furthermore, the ASR data in-
corporated during the training of the BN-to-speech
model is also subject to background noise. There-
fore, we employ a single-channel wiener filtering
method (Lim and Oppenheim, 1979) to remove
such noise from these data. Please note that we
do not perform speech enhancement on the test set
in the ASR module, because there is a mismatch
between the denoised audio and which is used in
ASR training, and denoising will reduce the speech
recognition accuracy.

5.2.4 Evaluation Data
For all evaluations, we use the English-Chinese
(En-Zh) development data divided by the organizer
from GigaSpeech, GigaST and GigaS2S, including
5,715 parallel En-Zh audio segments, and their cor-

responding En-Zh texts. It is worth noting that the
development data for evaluations has been removed
from the training dataset.

6 Experiments

6.1 Experimental Setup
All the models in our system are trained on 8 A100
GPUs and optimized with Adam (Kingma and Ba,
2015).

ASR Module. All ASR models are implemented
in ESPnet6. Both Conformer and E-Branchformer
models employ an encoder with 17 layers and a
feature dimension of 512, with 8 heads in the self-
attention mechanism and an intermediate hidden
dimension of 2048 for the FFN. In addition, we
employ a 6-layer Transformer decoder with the
same feature hidden dimension as the encoder. The
E-Branchformer model uses a cgMLP with an in-
termediate hidden dimension of 3072. The total
number of parameters for the Conformer and E-
Branchformer model in Section 2.1 is 147.8M and
148.9M respectively. We train the models with
batch size 32 sentences per GPU for 40 epochs,
and set the learning rate to 0.0015, the warm-up
step to 25K.

For data augmentation, we conduct speed per-
turbation, pitch shifting, and audio codec on the
original recordings. Spectrum augmentation and

6https://github.com/espnet/espnet
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noise augmentation are used for on-the-fly model
training.

MT Module. All MT models are implemented
in HuggingFace7. Using MT data, we fine-tune the
mBART-50 large model, which has 611M param-
eters, with a batch size of 32 sentences per GPU
for 20 epochs. The learning rate is set to 3e-5 and
warmed up for the first 10% of updates and linearly
decayed for the following updates. For fine-tuning
using the MT data in ASR transcription format and
the ASR outputs, we also fine-tune the model with
batch size 32 sentences per GPU for 5 epochs and
set the learning rate to 3e-5, which is warmed up
for the first 5% of updates and linearly decayed for
the following updates.

TTS Module. We complete our system based
on VITS official code8. The text-to-BN follows
the configuration of DelightfulTTS and has about
64M parameters. To extract the duration required
for text-to-BN, we train a Kaldi9 model using
AISHELL-3. The ASR system used for extract-
ing BN is the Chinese-English ASR model men-
tioned in Section 5.1.1. For BN-to-speech, we use
a 6-layer FFT as the BN encoder and follow the
other configuration in VIsinger2 with about 45M
parameters in total. The pitch predictor has 4 lay-
ers of Conv1D with 256 channels. Pitch is ex-
tracted by Visinger2 decoder and DSPGAN from
Harvest (Morise, 2017) with Stonemask. To pre-
dict pitch in DSPGAN, we use the method de-
scribed in Section 4.3. Up-sampling factors in
DSPGAN is set as [5, 5, 4, 3] and other config-
uration of DSPGAN-mm is preserved for audio
super-resolution. The DSPGAN model has about
9M parameters in total. We train all the above mod-
els with a batch size of 64 sentences per GPU for
1M steps and set the learning rate to 2e-4. For the
pre-trained speaker encoder, we follow the model
configuration and training setup of ECAPA-TDNN
(C=1024) with 14.7M parameters.

6.2 Evaluation Models
Baseline. To evaluate the effectiveness of the pro-
posed cascaded S2ST system, we adopt the orig-
inal cascaded S2ST system as a baseline, includ-
ing an E-Branchformer ASR model, a mBART50
MT model fine-tuned using the MT data, and an
end-to-end TTS model based on VITS trained with

7https://github.com/huggingface/
transformers

8https://github.com/jaywalnut310/vits
9https://github.com/kaldi-asr/kaldi

AISHELL-3.
Proposed system & Ablation Study. We fur-

ther conduct ablation studies to evaluate each com-
ponent in the proposed system. Specifically, the
ablation studies are designed to verify the effec-
tiveness of model fusion and data augmentation
in ASR, three-stage fine-tuning, back translation,
cross-verification in MT, two-stage training with
BN, pre-trained speaker embedding, and audio
super-resolution in TTS.

6.3 Results & Analysis
We conduct experiments on the effectiveness of
each sub-module and the performance of our pro-
posed cascaded S2ST system.

6.3.1 ASR Module
We calculate the word error rate (WER) of each
ASR module to evaluate the English speech recog-
nition accuracy. As shown in Table 2, the WER
of the proposed system has a significant drop com-
pared with the baseline, which indicates that the
proposed system greatly improves the recognition
accuracy. Moreover, the results of the ablation
study demonstrate the effectiveness of both model
fusion and data augmentation in improving speech
recognition accuracy.

Table 2: The WER results of each ASR module.

Model WER (%)

Baseline 13.53
Proposed system 10.25
w/o model fusion 11.95
w/o data augmentation 12.40

6.3.2 MT Module
We evaluate our MT module in terms of the BLEU
score, which measures the n-gram overlap between
the predicted output and the reference sentence.

Table 3: The BLEU results of each MT module.

Model BLEU

Baseline 28.1
Proposed system 33.4
w/o three-stage fine-tuning 28.7
w/o back translation 30.8
w/o cross-validation 31.0

As shown in Table 4, the proposed system with
three-stage fine-tuning achieves a significantly bet-
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Table 4: Experimental results of TTS in terms of MOS and WER. BN means using two-stage training with BN and
pre-trained spkr. embed. means using pre-trained speaker embedding.

Model Clarity in CER (%) Naturalness (MOS) Sound Quality (MOS) Speaker Similarity (MOS)

Baseline 7.14 3.38±0.05 3.81±0.04 2.12±0.06
Proposed system 6.12 3.70±0.06 3.86±0.06 3.72±0.06
w/o BN 7.12 3.40±0.04 3.81±0.05 3.10±0.07
w/o Pre-trained spkr. embd. - - 4.05±0.05 2.22±0.06
w/o Audio super-resolution - - 3.64±0.04 -

Recording 4.53 4.01±0.04 3.89±0.03 4.35±0.05

ter BLEU score than the baseline, demonstrating
the effectiveness of curriculum learning in our sce-
nario. Furthermore, by incorporating back trans-
lation and cross-validation, the translation perfor-
mance can be further improved.

6.3.3 TTS Module

We calculate the character error rate (CER) to eval-
uate the clarity of speech for each TTS module.
The ASR system used for calculating CER is the
Chinese-English ASR model mentioned in Sec-
tion 5.1.1. Additionally, we conduct mean opinion
score (MOS) tests with ten listeners rating each
sample on a scale of 1 (worst) to 5 (best) to evaluate
naturalness, sound quality, and speaker similarity.

In the ablation study without pre-trained speaker
embedding, speaker ID is to control the speaker
timbre of the synthesized speech. To eliminate the
influence of ASR and MT results on TTS evalua-
tion, we use the Chinese text in the evaluation data
and its corresponding English source speech as the
reference of speaker timbre as the test set for TTS
evaluation.

As shown in Table 3, our proposed system has
achieved significant improvement in naturalness,
sound quality, speaker similarity, and clarity of
speech compared with the baseline. Interestingly,
the system without pre-trained speaker embedding
has better sound quality than both the proposed sys-
tem and recording. We conjecture the reason is that
the pre-trained speaker embedding greatly influ-
ences the sound quality in the zero-shot TTS setup.
Therefore, the quality of the synthesized 24KHz
audio is superior to the 16KHz recording, which
can be demonstrated by the 3.64 MOS score of
the system without audio super-resolution. Mean-
while, the speaker similarity MOS score is very low
due to the lack of generalization ability to unseen
speakers. Without using the BN-based two-stage
model, the system decreases performance on all
indicators, which shows the effectiveness of BN as

an intermediate representation in our experimental
scenario.

6.3.4 System Evaluation
Finally, we calculate the ASR-BLEU score for the
baseline and the proposed system to evaluate the
speech-to-speech translation performance. Specif-
ically, we use the ASR system to transcribe the
Chinese speech generated by TTS, and then com-
pute the BLEU scores of the ASR-decoded text
with respect to the reference English translations.
The ASR system for transcribing Chinese speech
is the same as that in Section 6.2.3.

Table 5: The ASR-BLEU results of each system.

Model ASR-BLEU

Baseline 27.5
Proposed system 32.2

As shown in Table 5, our proposed system
achieves a higher ASR-BLEU score than the base-
line, which indicates that our proposed system has
good speech-to-speech translation accuracy.

7 Conclusion

This paper describes the NPU-MSXF speech-to-
speech translation system, which we develop for
the IWSLT 2023 speech-to-speech translation task.
Our system is built as a cascaded system that in-
cludes ASR, MT, and TTS modules. To ensure
good performance with multi-source data, we im-
proved each module using various techniques such
as model fusion and data augmentation in the
ASR, three-stage fine-tuning, back translation, and
cross-validation in the MT, and two-stage training,
pre-trained speaker embedding, and audio super-
resolution in the TTS. Through extensive experi-
ments, we demonstrate that our system achieves
high translation accuracy, naturalness, sound qual-
ity, and speaker similarity with multi-source input.
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Abstract

This paper describes the UCSC’s submission
to the shared task on formality control for spo-
ken language translation at IWSLT 2023. For
this task, we explored the use of “additive style
intervention” using a pre-trained multilingual
translation model, namely mBART. Compared
to prior approaches where a single style-vector
was added to all tokens in the encoder output,
we explored an alternative approach in which
we learn a unique style-vector for each input
token. We believe this approach, which we call
“style embedding intervention,” is better suited
for formality control as it can potentially learn
which specific input tokens to modify during
decoding. While the proposed approach ob-
tained similar performance to “additive style
intervention” for the supervised English-to-
Vietnamese task, it performed significantly bet-
ter for English-to-Korean, in which it achieved
an average matched accuracy of 90.6 compared
to 85.2 for the baseline. When we constrained
the model further to only perform style inter-
vention on the <bos> (beginning of sentence)
token, the average matched accuracy improved
further to 92.0, indicating that the model could
learn to control the formality of the translation
output based solely on the embedding of the
<bos> token.

1 Introduction

In the past decade, neural machine translation
has made remarkable strides, achieving transla-
tion quality that is increasingly comparable to
human-level performance across various languages.
However, despite these advancements, the field
of controllable machine translation remains rela-
tively under-explored. One crucial aspect of transla-
tion variation is formality, which manifests through
grammatical registers, adapting the language to suit
specific target audiences. Unfortunately, current
neural machine translation (NMT) systems lack
the capability to comprehend and adhere to gram-
matical registers, specifically concerning formality.

Consequently, this limitation can result in inaccu-
racies in selecting the appropriate level of formal-
ity, potentially leading to translations that may be
deemed inappropriate in specific contexts. Recog-
nizing the significance of formality control, we aim
to build a formality-controlled machine translation
system to foster smooth and reliable conversations
and enhance communication across languages and
cultures, facilitating more nuanced and effective
linguistic exchanges.

Formality-controlled Neural Machine Transla-
tion is the IWSLT 2023 task (Nădejde et al., 2022)
under the Formality track. The goal of the task
is to achieve formality controlled machine transla-
tion for the English-Vietnamese (En-Vi), English-
Korean (En-Ko) in a supervised setting and English-
Portuguese (En-Pt) and English-Russian (En-Ru)
in a zero-shot setting as detailed in (Agarwal et al.,
2023). We provide an example of formal and infor-
mal translations of an English sentence into Viet-
namese in Figure 1. The formal and informal to-
kens are in bold.

2 Related Works

Machine translation (MT) research has primarily
focused on preserving the meaning between lan-
guages. However, it is widely recognized that
maintaining the intended level of formality in
communication is a crucial aspect of the prob-
lem (Hovy, 1987) (Hovy, 1987). This field of
research was named formality-sensitive machine
translation (FSMT) (Niu et al., 2017), where the
target formality level is considered in addition to
the source segment in determining the translated
text. Further, several studies have attempted to
regulate formality in MT through side constraints
to control politeness, or formality (Sennrich et al.,
2016); (Feely et al., 2019); (Schioppa et al., 2021a).
Other studies have tried to address this with custom
models trained on data with consistent formality
(Viswanathan et al., 2020). Most prior research
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Figure 1: Contrastive Data Sample

has been tailored to individual languages and has
labeled large amounts of data using word lists or
morphological analyzers.

3 Approach

3.1 Overview

The task of formality-controlled generation can be
viewed as a seq2seq machine translation task. More
formally, given an input sequence x, we design a
model that does the following:

ŷ = argmax
y∈Y

p(y|x, ls, lt, f ; θ) (1)

Where,
x is the input sequence,
ls is the source language,
lt is the target language,
f is the formality,
ŷ is the formality controlled translation

We propose a single model that produces an out-
put, given input x, and formality setting f. Despite
being part of the unconstrained task, our proposed
approach does not mine or develop any formal-
ity annotated data for training and just uses a pre-
trained checkpoint of mBART.

3.2 Design

We looked at previous works incorporating con-
trasting styles Rippeth et al., 2022, and Schioppa
et al., 2021b as motivation for our approach. For
controlling styles, the aforementioned works use an
additive intervention approach. This approach en-
tails adding a single style intervention vector V to
the pre-trained encoder output Z. The same vector
V is added to all the tokens of the encoder outputs,
thereby changing the encoder outputs uniformly.

We modify the above approach to allow for more
flexibility while learning. Instead of a single inter-
vention vector V, we propose a unique vector Vi

for every token i in the input space. In short, we re-
purpose an Embedding layer as a style intervening
layer between the encoder and the decoder. This
design resulted from our original question: will
allowing more flexibility in the encoder enable it
to identify which tokens require stylization, thus
making it more interpretable. The hypothesis that
originated from this question was: by giving each
token its own intervention vector Vi, the model will
learn each intervention vector Vi differently based
on whether the token at that time step has a contrast-
ing translation that is dependent on the formality
setting. In short, we let the model learn different
Vi’s for each token. If true, this will provide some
interpretability on which tokens the model recog-
nizes as having a formality marker and translates
them differently in formal and informal settings.
This approach is visualized in Figure 2. Since our
approach uses an embedding layer for style inter-
vention, we call our approach ’style embedding
intervention.’

We learn the style embedding layer only in the
formal setting and use a zero vector in the informal
setting. In other words, the style embedding inter-
vention is performed only in the formal setting, and
encoder outputs are not perturbed in the informal
setting. We do not have separate Embedding lay-
ers to learn each formality style, simply because,
it would be difficult to switch between layers dur-
ing batched training. Looking at (Schioppa et al.,
2021b), the combination of a style vector and a
zero vector for contrasting styles was sufficient to
learn the style.

4 Experimental Apparatus

4.1 Dataset

The IWSLT formality shared task provided a for-
mality annotated dataset (Nadejde et al., 2022).
This dataset comprises source segments paired with
two contrastive reference translations, one for each
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Figure 2: Approach

formality level (informal and formal) for two lan-
guage pairs: EN-KO, VI in the supervised setting
and two language pairs: EN-PT, RU in the zero-
shot setting. The data statistics can be seen in Table
1. We use a random split of 0.2 to construct the
validation dataset during model development.

4.2 Training Setup

For all our modeling experiments, we use mbart-
large-50-one-to-many-mmt, a fine-tuned check-
point of mBART-large-50 (Liu et al., 2020). This
model, introduced by (Tang et al., 2020), is a fine-
tuned mBART model which can translate English
to 49 languages, including the languages we are
interested in: KO, VI, PT, and RU.

For our baseline, we perform zero-shot inference
on the mBART model for the four language pairs.
The results are shown in tables 3 - 6.

Based on the findings of (Nakkiran et al., 2019)
and (Galke and Scherp, 2022) we fixed our loss
function to be ‘cross entropy with logits‘ and op-
timizer to AdamW (Loshchilov and Hutter, 2017).
We use the default learning rate of 10-3, standard
weight decay of 10-2 and set β1, β2 and ϵ to 0.9,
0.998 and 10-8 respectively.

To effectively train the transformer-based
mBART model, we used a learning rate scheduler
- a linear schedule with a warm-up, as introduced
by (Vaswani et al., 2017). This creates a schedule
with a learning rate that decreases linearly from
the initial learning rate to 0 after a warm-up period.
The warm-up period is set to 10% of the total train-
ing steps, during which the learning rate increases
linearly from 0 to the initial learning rate set in the
optimizer. All the other hyper-parameters are left
at their defaults.

We trained our models using one NVIDIA A100
GPU with 80GB memory. To fit our model in this
GPU we used a batch size of 16 and a max sequence

length of 128. We trained for 15 epochs with an
early stopping callback set at 3.

We have implemented all the models in PyTorch
(Paszke et al., 2019) leveraging Huggingface (Wolf
et al., 2019) transformers and evaluate libraries.

4.3 Evaluation
To assess the performance of the models, we use
four metrics to evaluate the two main underlying
tasks - translation quality and formality control.

For evaluating the translation quality, we use the
following two metrics:

• Bilingual Understudy Evaluation (BLEU)
score: BLEU score (Papineni et al., 2002)
calculates the similarity between a machine
translation output and a reference translation
using n-gram precision. We use SacreBLEU
2.0 (Post, 2018) implementation for reporting
our scores.

• Cross-lingual Optimized Metric for Eval-
uation of Translation (COMET) score:
COMET score (Rei et al., 2020) calculates
the similarity between a machine translation
output and a reference translation using to-
ken or sentence embeddings. We use COMET
wmt22-comet-da (Rei et al., 2022) model for
reporting our scores.

For evaluating the formality control, we use the
following two metrics:

• Matched-Accuracy (M-Acc): A reference-
based corpus-level automatic metric that lever-
ages phrase-level formality markers from
the references to classify a system-generated
translation as either formal or informal. This
metric was provided by the IWSLT Formality
shared task organizers.

• Reference-free Matched-Accuracy (RF-M-
Acc): A reference-free variant of M-Acc that
uses a multilingual formality classifier, based
on xlm-roberta-base, fine-tuned on human-
written formal and informal text, to label a
system-generated hypothesis as formal or in-
formal. This metric was provided by the
IWSLT Formality shared task organizers.

In addition to this, we evaluate our generic trans-
lation quality on FLORES-200 (Goyal et al., 2022)
for all language pairs under supervised and zero-
shot settings. We use the devtest set of FLORES-
200 and compute the BLEU and COMET scores.
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Language pair Training Data points Testing Data points
EN-KO 400 600
EN-VI 400 600
EN-PT 0 600
EN-RU 0 600

Table 1: Data description

Formal Informal
BLEU Matched Acc BLEU Matched Acc

Rippeth et al., 2022 38.3 98.4 38.3 82.7
Style embedding intervention 38 99.2 37.4 98

Table 2: Grounding our model for EN-ES data

5 Grounding results and observations

Along with the validation splits, we ground our
approach by comparing our results with the 2022
formality track submission Rippeth et al., 2022.
We compare our results on one language pair i.e.
English-Spanish. The comparison is shown in Ta-
ble 2.

As seen in Table 2, the BLEU scores between
our approach - “style embedding intervention” -
and the approach in Rippeth et al., 2022 - "additive
style intervention" - are similar but our approach
makes significant gains in Matched Accuracy, espe-
cially in the informal setting indicating improved
formality control.

5.1 Style embedding layer analysis

In this section, we analyze the style embedding
layer and compare the analysis with the original
hypothesis - giving each token its own interven-
tion vector Vi, the model will learn each vector
differently based on whether the token at that time
step has a contrasting translation that is dependent
on the formality setting. Due to the unique nature
of our training setup - learning zero vector in the
informal setting - for our hypothesis testing, we
compare the encoder vectors with and without the
style embedding intervention. For this purpose, we
use the dot product similarity. At each time step,
we compute the dot product similarity between the
encoder output before style intervention and the
output after style intervention. This is equivalent
to comparing the encoder outputs in the formal and

the informal setting. The similarity scores are vi-
sualized in Figure 3. For a closer look, Table 8
displays the similarity scores.

Figure 3: Similarity scores for hypothesis analysis.

As seen from the token representation similarity
scores, the model does not seem to learn new in-
formation in tokens that have a contrasting setting-
dependent translation - the tokens’ similarity scores
are very near 1. Instead, it uses the </s>’s repre-
sentation to store the style ’signal’, by creating a
style vector that makes the </s>’s representation
∼11% different between formality settings.

Another interesting observation is the extremely
slight dissimilarity produced at the beginning of
the sentence or ’en_xx’ token. Did the model learn
the same style information in ∼1% of information
space in the ’en_xx’ token compared to the ∼11%
of information space in the ’</s>’ token? To an-
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Models EN-VI EN-KO
BLEU COMET %M-Acc %C-F BLEU COMET %M-Acc %C-F

Baseline 1 26.7 0.3629 96 0.95 4.9 0.2110 78 0.99
Baseline 2 26.1 0.829 3 0.006 3.9 0.8445 66.7 0.979
Model 1 44.8 0.8467 99 0.989 22.2 0.8246 74.1 0.9815
Model 2 44.2 0.8702 98.6 0.9782 22.5 0.831 82.9 0.9765
Model 3 44.6 0.874 99 0.9849 23.3 0.836 85.7 0.9832
Model 4 44.3 0.8462 99.2 0.9849 23.2 0.8287 75.3 0.9815
Baseline 1: UMD-baseline
Baseline 2: Zero-Shot mBart
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 3: Results on the official test split in the formal supervised setting for language pairs EN-VI and EN-KO.

Models EN-PT EN-RU
BLEU COMET %M-Acc %C-F BLEU COMET %M-Acc %C-F

Baseline 1 27.3 0.4477 96.3 0.9766 22.0 0.3492 96.20 0.92
Baseline 2 33 0.8445 54.9 0.8447 24.9 0.7604 99.4 0.9116
Model 1 27.2 0.7686 84.6 0.918 23.8 0.737 97.6 0.865
Model 2 26.6 0.7895 81.5 0.8748 18.5 0.6837 99.2 0.76
Model 3 26.6 0.7889 89.9 0.9082 18.4 0.6664 98.8 0.79
Model 4 28.2 0.7726 80.5 0.9348 24.3 0.7373 97.9 0.858
Baseline 1: UMD-baseline
Baseline 2: Zero-Shot mBart
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 4: Results on the official test split in the formal unsupervised setting for language pairs EN-PT and EN-RU.

swer this question, we added another modification
to our approach - we masked out the intervention
vectors for all tokens except the ’en_xx’ token.

For naming purposes, we call this approach ’bos
style intervention’ respectively.

6 Official Results

Along with the approach from Rippeth et al., 2022
taken as a baseline and an adapted version of it,
we submit the results of our approach and of the
’bos style intervention’ approach. We analyse the
performance of our models under the supervised
setting and the zero-shot setting. We also generate
results on the FLORES-200 test split.

6.1 Supervised Setting
We trained our models multi-lingually on EN-VI
and EN-KO for the supervised setting. In the for-

mal setting, we obtain a BLEU score of 44.6 for
EN-VI and 23.3 for EN-KO on the official test split.
In the informal setting, we obtain a BLEU score of
43.5 for EN-VI and 22.8 for EN-KO. Tables 3 and
5 have detailed results of all our models. Our pri-
mary model - ’bos style intervention’ - outperforms
the UMD baseline significantly for both languages
with around 20 BLEU increase and more than dou-
ble the COMET score. This answers our hypothesis
that the model can learn the formality style in the
small ∼1% information space at the beginning of
the sentence in ’en_xx’ token. Moreover, we ob-
tain higher scores on the metrics M-Acc% & C-F%
that compute the degree of formality/informality
induced.

Qualitative analysis of the translations, espe-
cially for KO, revealed that code-switching was
a major issue. For example, some translations have
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Models EN-VI EN-KO
BLEU COMET %M-Acc %C-F BLEU COMET %M-Acc %C-F

Baseline 1 25.3 0.3452 96 0.9816 4.9 0.1697 97.6 0.995
Baseline 2 31.9 0.8352 97 0.9933 3.2 0.8311 33.3 0.020
Model 1 43.3 0.8238 98.7 0.9949 22.1 0.8115 96.3 0.889
Model 2 43.6 0.8514 98.9 0.9949 23.0 0.8256 98.3 0.9514
Model 3 43.5 0.8504 98.9 1 22.8 0.8257 98.3 0.9581
Model 4 42.5 0.8232 98.3 0.9765 22.6 0.8162 96.4 0.9028
Baseline 1: UMD-baseline
Baseline 2: Zero-Shot mBart
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 5: Results on the official test split in the informal supervised setting for language pairs EN-VI and EN-KO.

Models EN-PT EN-RU
BLEU COMET %M-Acc %C-F BLEU COMET %M-Acc %C-F

Baseline 1 30.9 0.4161 93.2 0.9082 21.6 0.3475 84.1 0.8417
Baseline 2 33.2 0.8229 45.1 0.1552 18.8 0.7489 0.6 0.0883
Model 1 28.2 0.7606 55.6 0.378 18.8 0.7109 47.7 0.556
Model 2 28.7 0.7821 58.8 0.5092 18.6 0.6544 45.1 0.6
Model 3 28.4 0.7853 58 0.419 14.9 0.6365 51.6 0.6683
Model 4 28.8 0.7673 57 0.3305 20 0.7102 46.9 0.55
Baseline 1: UMD-baseline
Baseline 2: Zero-Shot mBart
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 6: Results on the official test split in the informal unsupervised setting for language pairs EN-PT and EN-RU.

Models EN-VI EN-KO EN-PT EN-RU
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Model 1 29.8 0.8169 5.5 0.773 30.6 0.8082 21.4 0.794
Model 2 27.8 0.8205 4.6 0.758 30.8 0.8258 19.3 0.7686
Model 3 27.9 0.8225 4.5 0.7586 30.4 0.8264 19.1 0.7543
Model 4 30.3 0.8186 5.6 0.7752 30.9 0.814 21.5 0.7935
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 7: Results on Flores-200 test split for language pairs EN-VI & EN-KO in supervised setting and for language
pairs EN-PT & EN-RU in unsupervised setting.

entire phrases or latter parts of sentences in English
as shown in Figure 4.

6.2 Zero-shot Setting

We evaluate the above multi-lingually trained
model on RU and PT in a zero-shot setting. In the
formal setting, we obtain a BLEU score of 26.6 for
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Token Similarity Score
en_xx 0.99037
Have 0.99928
you 0.99914
ever 0.99935
seen 0.99916
Big 0.99916
hero 0.99919
6 0.99920
? 0.99910
</s> 0.89028

Table 8: Similarity scores for hypothesis analysis.

Figure 4: Similarity scores for hypothesis analysis.

EN-PT and 18.4 for EN-RU on the official test split.
In the informal setting, we obtain a BLEU score of
28.4 for EN-PT and 14.9 for EN-RU. Tables 4 and 6
have detailed results of all our models. We observe
that our model does not transfer the style knowl-
edge very well. In both cases, the model is often
biased toward formal translations. Moreover, our
models have a slightly degraded performance in the
translation quality than UMD baseline model. This
cements our earlier observation that style knowl-
edge transfer is incomplete. Qualitative analysis
of the translations revealed that the zero-shot lan-
guage translations also suffer from code-switching.

6.3 Testing on FLORES-200 dataset

In addition to evaluating formality, we assess the
translation quality of our models by evaluating on
the FLORES-200 test split. The results can be seen
in Table 7.

7 Conclusion

In this paper, we presented and explored "style
embedding intervention," a new approach for low-
resource formality control in spoken language
translation. By assigning unique style vectors to
each input token, the proposed approach shows
promising results in understanding and controlling
the nuances of formal and informal style transla-
tion. It outperforms previous "additive style in-
tervention" methods, specifically for the English-

to-Korean translation task, resulting in an average
matched accuracy improvement from 85.2 to 90.6.
Further, on analysis of our "style embedding inter-
vention" model, we find that most of the style infor-
mation is learnt in the <bos> token. Constraining
style addition to the <bos> token - "bos style inter-
vention" - further improved our averaged matched
accuracy from 90.6 to 92.

We also observed that in a zero-shot setting, the
formality control doesn’t seem to transfer well, and
the model leans towards biases learnt during pre-
training rather than the transferred style interven-
tions. This is more pronounced for En-Ru trans-
lations where the model is more biased towards
the formal style, with a matched accuracy of 98.8,
than the informal style, with a matched accuracy
of 51.6.

Future works focused on alleviating the style
biases of pre-trained models might be necessary
to ensure style transfer works equally well in a
zero-shot setting.

We hope our work on translation models with
interpretable formality control can serve as a base
for other future works on interpretable models, es-
pecially in low-resource settings.

Code used for our implementation can be ac-
cessed at https://github.com/Priyesh1202/
IWSTL-2023-Formality.
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Abstract

This paper describes NAIST’s submission
to the IWSLT 2023 Simultaneous Speech
Translation task: English-to-{German,
Japanese, Chinese} speech-to-text translation
and English-to-Japanese speech-to-speech
translation. Our speech-to-text system uses
an end-to-end multilingual speech translation
model based on large-scale pre-trained speech
and text models. We add Inter-connections
into the model to incorporate the outputs
from intermediate layers of the pre-trained
speech model and augment prefix-to-prefix
text data using Bilingual Prefix Alignment to
enhance the simultaneity of the offline speech
translation model. Our speech-to-speech
system employs an incremental text-to-speech
module that consists of a Japanese pronuncia-
tion estimation model, an acoustic model, and
a neural vocoder.

1 Introduction

This paper presents NAIST’s simultaneous speech
translation (SimulST) systems for the IWSLT
2023 English-to-{German, Japanese, Chinese}
speech-to-text track and the English-to-Japanese
speech-to-speech track (Agarwal et al., 2023).

Many previous studies on end-to-end SimulST
have focused on training methodologies and ar-
chitectures specialized for the simultaneous sce-
nario. However, such a specialized system setup
for SimulST is not trivial and increases the dif-
ficulty of the system development and the com-
putational complexity. One recent approach to
SimulST systems is to use an offline speech trans-
lation (ST) model for prefix-to-prefix translation
required in SimulST. In last year’s IWSLT Eval-
uation Campaign (Anastasopoulos et al., 2022),
Polák et al. (2022) demonstrated superior results
using such multilingual offline ST models. In our
last year’s systems (Fukuda et al., 2022), we used
an offline model fine-tuned for SimulST with data

augmentation based on Bilingual Prefix Align-
ment (Kano et al., 2022).

In this year, we use an end-to-end multilin-
gual offline ST model based on large-scale pre-
trained speech and text models for the speech-
to-text track, following Polák et al. (2022). We
used Hidden-Unit BERT (HuBERT) (Hsu et al.,
2021) as the speech encoder fine-tuned using En-
glish automatic speech recognition (ASR) data
and mBART50 (Tang et al., 2020) as the text
decoder fine-tuned using a multilingual machine
translation data. We prepare the multilingual ST
model in the following steps:

1. Initialize the model with the parameters of
HuBERT and mBART50 models and add
Inter-connections between the intermediate
layer of the speech encoder and the text de-
coder.

2. Train the model using multilingual ST cor-
pora.

3. Fine-tune the model using bilingual prefix
pairs in English-to-{German, Japanese, Chi-
nese} extracted using Bilingual Prefix Align-
ment.

We use a SimulST policy called local agreement
(Liu et al., 2020) that finds the longest common
prefixes among successive decoding steps. For the
English-to-Japanese speech-to-speech track, we
developed a cascade of the SimulST above and
an incremental text-to-speech module using a pro-
nunciation estimation model, an acoustic model,
and a neural vocoder.

2 System Architecture

Figure 1 illustrates an overview of our system ar-
chitecture. The following subsections explain our
methodologies: Inter-connection in 2.1 and Bilin-
gual Prefix Alignment in 2.2, the local agreement
in 2.3, and the incremental text-to-speech in 2.4.
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Multilingual ST
(HuBERT + mBART50)

SimulS2T model with
(2.1) Inter-connection and
(2.2) Prefix Alignment

▁私  は  ペン  を  買っ

(2.3) Local agreement

Pronunciation
Estimation

ワ  タ  シ  ハ  ペ  ン

Acoustic model
+ Vocoder

Wait-k
Read Write Read Write Read Write

Look-ahead

(2.4) Incremental Text-to-Speech

Figure 1: Block diagram of SimulS2S.

2.1 Inter-connection

Intermediate layers of a speech SSL (Self-
Supervised Learning) model contain useful in-
formation for downstream tasks (Pasad et al.,
2021). However, the simple addition of connec-
tions from the intermediate layers of the speech
encoder to the text decoder does not always
work well. We use a weighted integration of
the encoder’s intermediate layers, called Inter-
connection (Nishikawa and Nakamura, 2023),
where the output tensors from the intermediate
layers are aggregated with the weights. The
weights are additional learnable parameters opti-
mized through the training. We also apply layer
normalization after the weighted aggregation to
stabilize the training.

2.2 Prefix Alignment

In simultaneous translation, the model translates
a prefix of the entire input to the corresponding
output prefix. The prefix translation using a full-
sentence model often suffers from so-called over-
translation (or hallucination) due to the lack of
training examples in the prefix-to-prefix scenarios.
To mitigate this problem, we leverage the training
corpus using Bilingual Prefix Alignment (Kano
et al., 2022) for data augmentation for prefix-to-
prefix pairs to fine-tune the SimulST model.

2.3 Local Agreement

Liu et al. (2020) proposed Local agreement to find
a stable prefix translation hypothesis in the prefix-
to-prefix translation based on chunk-wise inputs
with the fixed length. It verifies the stability of
the hypothesis at step t using the hypothesis at
step t + 1 by taking the agreeing prefix (i.e., the
longest common prefix) of them. This is based
on an idea that the agreeing prefix translation out-

puts with growing input prefixes should be reli-
able. Polák et al. (2022) generalized this idea us-
ing agreement among the prefixes at n consecutive
steps (LA-n) and demonstrated that n = 2 works
well on SimulST. According to their finding, we
use LA-2 as a SimulST policy and adjust the in-
put chunk length (in milliseconds) to control the
quality-latency trade-offs.

2.4 Incremental Text-to-Speech

Our English-to-Japanese speech-to-speech simul-
taneous translation system uses the aforemen-
tioned SimulST system with incremental Japanese
text-to-speech (TTS). The incremental TTS con-
sists of three modules: a pronunciation estimation,
an acoustic model, and a neural vocoder. The pro-
nunciation estimation predicts the pronunciations
of SimulST outputs, the acoustic model predicts
acoustic features from the pronunciations, and the
neural vocoder synthesizes speech from the acous-
tic features.

We use the wait-k approach (Ma et al., 2019) for
the incremental pronunciation estimation, taking a
subword sequence as the input and predicting pro-
nunciation symbols in Japanese katakana phono-
grams and a couple of special characters represent-
ing accents as the output. To control the output
length, we extend the wait-k policy by allowing
the decoder to output an arbitrary length of sym-
bols; The decoder stops its write steps when the
largest weight of its cross attention goes over the
last two tokens in the input prefix. This also works
as a lookahead mechanism for pronunciation es-
timation. We use Tacotron2 (Shen et al., 2018)
for the acoustic modeling and Parallel WaveGAN
(Yamamoto et al., 2020) as the neural vocoder in
the prefix-to-prefix manner (Ma et al., 2020a).
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Table 1: Training data measured in hours.

Dataset En-De En-Ja En-Zh
MuST-C v1 408h
MuST-C v2 436h 526h 545h
Europarl-ST 83h
CoVoST-2 413h 413h 413h
TED-LIUM 415h
Total 1,755h 939h 958h

3 System Setup

3.1 Data

We used MuST-C v2.0 (Di Gangi et al., 2019) and
CoVoST-2 (Wang et al., 2020) for all language
pairs: English-to-German (En-De), English-to-
Japanese (En-Ja), and English-to-Chinese (En-
Zh). We also used MuST-C v1.0, Europarl-ST
(Iranzo-Sánchez et al., 2020), and TED-LIUM
(Rousseau et al., 2012) for English-to-German.
We included the development and test portions of
CoVoST-2 and Europarl-ST in our training data.
The overall statistics for these corpora are shown
in Table 1. For evaluation, we used the tst-
COMMON portion of MuST-C v2.0. All the text
data in the corpora were tokenized using a multi-
lingual SentencePiece tokenizer with a vocabulary
of 250,000 subwords, distributed with mBART50
pre-trained model.

3.2 Data Filtering

We conducted a data filtering on the prefix trans-
lation pairs obtained through the Bilingual Pre-
fix Alignment, following our IWSLT 2022 sys-
tem (Fukuda et al., 2022). We compared three
cut-off ratios of the number of samples in the in-
put speech to the number of tokens in the output:
4,800, 4,000, and 3,200. Table 2 shows the per-
centage of data that was removed following the
application of filters. We also applied the same
filtering to the development data.

3.3 Simultaneous Speech-to-Text System

We deveoped an end-to-end speech-to-text model
initialized with two pre-trained models for its
speech encoder and text decoder. The speech en-
coder was initialized with HuBERT-Large, which
consists of a feature extractor trained on 60 K
hours of unlabeled speech data Libri-Light (Kahn
et al., 2020) and Transformer encoder layers. The
feature extractor has seven convolutional layers

Table 2: Comparison of the removed ratios result-
ing from data filtering with maximum ratios of 4,800,
4,000, and 3,200.

Removed Ratio (%)
Filter (max ratio) En-De En-Ja En-Zh
No filtering 0.0 0.0 0.0
4,800 37.8 59.4 59.7
4,000 53.9 72.5 74.1
3,200 78.0 87.9 89.4

with a kernel size of (10, 3, 3, 3, 3, 2, 2), a
stride of (5, 2, 2, 2, 2, 2, 2), and 512 channels.
The number of the Transformer encoder layers is
24. The text decoder was initialized with the de-
coder of mBART50 (Tang et al., 2020). The de-
coder consists of twelve Transformer layers, and
an embedding layer and linear projection weights
are shared, with a size of 250,000. The size of
each Transformer and feed-forward layer is 1,024
and 4,096, respectively, the number of attention
heads is 16, the activation function is ReLU, and
the layer normalization is applied before the at-
tention operations. The encoder and decoder are
also connected via Inter-connection (2.1) and a
length adapter (Tsiamas et al., 2022). The length
adapter is a 3-layer convolutional network with
1,024 channels, the stride of 2, and the activation
function of a Gated Linear Unit (GLU).

Speech input is given as waveforms with a 16-
kHz sampling rate, normalized to zero mean and
unit variance. During training, each source au-
dio was augmented (Kharitonov et al., 2020) be-
fore normalization, with a probability of 0.8. We
trained multilingual models on all the data listed in
Table 1 with a maximum source length of 400,000
frames and a target length of 1,024 tokens. We
applied gradient accumulation and data-parallel
computations to achieve a batch size of approx-
imately 32 million tokens. We used Adam with
β1 = 0.99, β2 = 0.98, and a base learning rate of
2.5× 10−4. The learning rate was controlled by a
tri-stage scheduler with phases of 0.15, 0.15, and
0.70 for warm-up, hold, and decay, respectively,
while the initial and final learning rate had a scale
of 0.01 compared to base. We used sentence av-
eraging and gradient clipping of 20. We applied a
dropout probability of 0.1 and used time masking
for 10-length spans with a probability of 0.2, and
channel masking for 20-length spans with a proba-
bility of 0.1 in the encoder feature extractor’s out-
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put. The loss was the cross-entropy loss with a
label smoothing with 20% probability mass.

The offline SimulST model was fine-tuned, and
then checkpoint averaging was performed. In the
checkpoint averaging, the model checkpoints were
saved every 1,000 training steps, and the averaged
parameter values among the five-best models in
the loss on the development data were taken for
the final model. Subsequently, one epoch of fine-
tuning was performed on the training data-only
prefix alignment pairs in MuST-C v2. We reduced
the learning rate to 2.5 × 10−5 during the fine-
tuning using translation pairs obtained using Bilin-
gual Prefix Alignment.

As a SimulST policy, the local agreement with
n = 2 (LA-2) was used. The chunk size was var-
ied from 200 ms to 1000 ms to adjust the quality-
latency trade-off. A beam search of beam size five
was used to generate hypotheses for input chunks.

3.4 Simulaneous Speech-to-Speech System

Here, we describe the detailed setup of the in-
cremental TTS. Pronunciation symbols were ob-
tained from the text using Open Jtalk1. We used
the Balanced Corpus of Contemporary Written
Japanese (BCCWJ; Maekawa, 2008) for training
the pronunciation estimation model. The training,
development, and test data were approximately 1.4
M, 10 K, and 10 K sentences, respectively. We
also used the training portion of MuST-C as ad-
ditional training data. We used an LSTM-based
attentional encoder-decoder model for the pronun-
ciation estimation model. Its encoder and decoder
were implemented with two-layer uni-directional
LSTM, and the cross-attention was based on the
dot product. The optimizer was Adam with the
learning rate of 1e-3 and hyperparameters of β1 =
0.9 and β2 = 0.999. The batch size was 256 in the
number of sentences.

JSUT corpus (Sonobe et al., 2017) was used for
training Tacotron2 and Parallel WaveGAN. The
numbers of sentences in the training, develop-
ment, and test data were 7,196, 250, and 250,
respectively. Speech is downsampled from 48
kHz to 16 kHz, and 80 dimensional Mel spec-
trum was used as the acoustic features. The size
of the Fourier transform, frameshift length, win-
dow length, and window function are 2,048, 10
ms, 50 ms, and Hann window, respectively. We
replaced bi-directional LSTM with uni-directional

1https://open-jtalk.sourceforge.net

LSTM in Tacotron2 and attention mechanism to
the forward attention with the transit agent (Zhang
et al., 2018) for incremental processing. Guided
Attention Loss (Tachibana et al., 2018) was used
as an additional Loss function. The input size of
Tactoron2 is 89, and the optimizer was Adam with
the learning rate of 1e-3 and the hyperparameters
of β1 = 0.9 and β2 = 0.999 and ϵ = 1e − 6.
The batch size was 32 in the number of sentences.
Experimental conditions for Parallel WaveGan are
the same as in the original paper, except for the pa-
rameters related to acoustic features and speech.

The pronunciation estimation used the wait-3
policy. The incremental TTS has a couple of look-
ahead parameters, indicating the length to control
the quality-latency trade-off. We tune these pa-
rameters to keep the quality of synthesized speech
within the latency threshold requirement (2.5 sec-
onds).

3.5 Evaluation
We evaluated our systems using SimulEval (Ma
et al., 2020b) toolkit2. For the SimulST systems,
translation quality was evaluated by BLEU using
sacreBLEU3. Translation latency was evaluated
using the following metrics:

• Average Lagging (Ma et al., 2019)

• Length Adaptive Average Lagging (Papi
et al., 2022)

• Average Token Delay (Kano et al., 2023)

• Average Proportion (Cho and Esipova, 2016)

• Differentiable Average Lagging (Cherry and
Foster, 2019)

For the SimulS2S system, translation qual-
ity was evaluated by BLEU after transcribing
the output speech with Whisper (Radford et al.,
2022) (WHISPER_ASR_BLEU). Translation la-
tency was evaluated with ATD and the time offset
of the start and end of the translation.

AL is a latency metric commonly used for text-
to-text and speech-to-text simultaneous transla-
tion. However, AL focuses on when the transla-
tion starts but does not consider enough when the
translation for each input chunk finishes. Since
the speech segments are generated sequentially in

2https://github.com/facebookresearch/
SimulEval

3https://github.com/mjpost/sacrebleu
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Figure 2: BLEU and AL results of the offline model
and the models fine-tuned with prefix alignment　 on
En-De. 　 The parentheses indicate the max ratio of
prefix pair filtering. Circled dots indicate our sumit-
ted SimulS2t system.

a speech-to-speech translation scenario, the trans-
lation output will be delayed if its preceding trans-
lation outputs are delayed and occupy the speech
output channel. Thus, AL is not appropriate to
evaluate the latency of speech-to-speech simulta-
neous translation, so we use ATD which includes
the delays caused by the outputs in the latency cal-
culation. ATD calculates the delay by having the
average time difference between the source token
and its corresponding target token. In the setting
of SimulEval, assuming one word requires 300 ms
to speak,　 the input and output speech are seg-
mented into the size of 300 ms regarding the seg-
ments as the tokens when calculating ATD.

4 Experimental Results

4.1 Submitted Speech-to-Text System

For each language direction, we selected one sub-
mission with the settings satisfying the task re-
quirement, AL ≤ 2 sec. Table 3 shows the scores
of the submitted Speech-to-Text systems. The re-
sults of all chunk settings for the models used in
the submitted systems are shown in Appendix A.
The following sections discuss the effectiveness of
each of the techniques we used.

4.2 Prefix Alignment

Figures 2 to 4 show quality-latency trade-offs on
En-De, En-Ja, and En-Zh tst-COMMON, respec-
tively. For En-De and En-Ja, the quality and la-
tency were roughly proportional in the range of
AL ≤ 2000, while the quality improvement satu-
rated at around AL = 1, 500 for En-Zh. The fine-
tuned model with Bilingual Prefix Alignment out-
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Figure 3: BLEU and AL results of the offline model
and the models fine-tuned with prefix alignment　 on
En-Ja.
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Figure 4: BLEU and AL results of the offline model
and the models fine-tuned with prefix alignment　 on
En-Zh.

performed the baseline offline model for all lan-
guage pairs. In En-Ja, the best results were ob-
tained when prefix pair filtering was applied with
the maximum ratio of 4,000, similar to Fukuda
et al. (2022). It suggests the importance of the
filtering to reduce unbalanced data pairs consist-
ing of long source speech and short target text in
language pairs with the large word order differnce.
On the other hand, the prefix pair filtering did not
work well for the other language directions.

4.3 Inter-connection

We analyzed the effectiveness of Inter-connection
through an ablation study on the connection meth-
ods and the checkpoint averaging. The results are
shown in Table 4.

The results show that checkpoint averaging
improved BLEU for the En-Ja and En-Zh and
that Inter-connection worked for En-De and En-
Ja. This could be attributed to differences in the
speech features required for speech translation.
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Language pair chunk size BLEU LAAL AL AP DAL ATD
En-De 950 ms 29.975 2172.927 1964.329 0.846 2856.738 1893.749
En-Ja 840 ms 15.316 2290.716 1973.586 0.892 2889.950 547.752
En-Zh 700 ms 22.105 1906.995 1471.287 0.821 2436.948 667.780

Table 3: Results of the submitted speech-to-text systems on the MuST-C v2 tst-COMMON.

Model En-De En-Ja En-Zh Ave.
Simple Connection 30.49 15.28 24.50 23.42
Simple Connection + Ckpt Ave. 30.47 15.71 25.01 23.73
Inter-connection 30.49 15.53 24.23 23.42
Inter-connection + Ckpt Ave. 30.89 15.89 24.75 23.84

Table 4: BLEU scores for models without and with checkpoint averaging for simple and Inter-connection were
evaluated with MuST-C v2 tst-COMMON.

In the multilingual model, the weights required
for each language pair are different because the
weights of the weighted sum in Inter-connection
are shared. In the case of En-Zh, there was larger
difference in the weights than in En-De and En-Ja,
and sharing weights leads to decrease the perfor-
mance.

4.4 Computation-aware Latency
We also evaluated models with computation-
aware Average Lagging (AL_CA). AL_CA is a
variant of AL that adds the actual elapsed time
elapsedi to the delay di of i-th target token yi:

di =
j∑

k=1

(Tk + elapsedi) (1)

where Tk is the duration of the k-th input speech
segment and j is the position of the input segment
already read when generating yi. The elapsed time
elapsedi is measured as the time from the start of
the translation to the output of target token yi.

The evaluation was conducted using an
NVIDIA GeForce RTX 2080 Ti. Figure 5 shows
the result. Unlike the non-computation-aware
latency metrics, the fixed-size segmentation
worked better than the local agreement in the
quality-latency trade-off. The local agreement
often discards the latter part of the prefix trans-
lation due to the disagreement with the next
prefix translation, while such a trackback does
not happen in the fixed segmentation scenario.
Therefore, the local agreement needs to predict
more tokens every time and increases the decod-
ing time. This result suggests another trade-off
between quality improvement with a sophisticated

ASR_BLEU StartOffset EndOffset ATD
9.873 2495.01 4134.752 3278.809

Table 5: Results of the submitted SimulS2S system on
the MuST-C v2 tst-COMMON.

segmentation strategy and latency reduction with
a fixed strategy.

4.5 Submitted SimulS2S System

Table 5 shows the scores of the SimulS2S sys-
tem. Compared to the BLEU results with the
SimulS2T systems with similar chunk size set-
tings, the SimulS2S system resulted in much
worse ASR_BLEU in nearly five points due to
the quality of the synthesized speech and possi-
ble ASR errors. Figure 6 shows the quality-latency
trade-offs of SimulS2S, with ASR_BLEU stagnat-
ing around 10.5 points. In addition, the output
of the submitted SimulS2S system had a charac-
ter error rate of 28.3% relative to the output of the
SimulS2T system with the same chunk size. These
results indicate that there is a significant room for
improvement both in the TTS and ASR.

5 Conclusions

In this paper, we described our SimulST systems
for the IWSLT 2023 Simultaneous Speech Trans-
lation task. Experimental results demonstrated
the effectivenesses of Inter-connection and Bilin-
gual Prefix Alignment. The speech-to-speech sys-
tem is still challenging but showed promising per-
formance by a simple cascade of speech-to-text
SimulST and incremental TTS.
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(a) BLEU and AL in En-De.
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(b) BLEU and AL in En-Ja.
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(c) BLEU and AL in En-Zh.
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(d) BLEU and AL_CA in En-De.
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(e) BLEU and AL_CA in En-Ja.
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(f) BLEU and AL_CA in En-Zh.

Figure 5: Comparison of the local agreement with n = 2 and fixed-size segmentation policies.

2800 2900 3000 3100 3200 3300 3400 3500
ATD

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

W
H

IS
PE

R
_A

SR
_B

LE
U

400

600

650700

800 840

Figure 6: WHISPER_ASR_BLEU and ATD results of
the SimulS2S 　 systems on En-Ja. 　 The numbers
above the marks indicates chunk size. Circled dots in-
dicate our sumitted system.
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A Appendix

Tables 6, 7, and 8 show the results for all chunk
size settings for the En-De, En-Ja, and En-Zh
models used in the submitted system, respectively.
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chunk size BLEU LAAL AL AP DAL ATD
300 24.217 947.509 495.162 0.732 1465.822 814.368
400 26.657 1189.696 829.689 0.753 1738.568 1180.684
500 27.986 1416.459 1071.682 0.774 1992.596 1375.404
600 28.739 1618.746 1318.715 0.791 2232.175 1367.612
700 29.298 1797.061 1515.356 0.811 2432.087 1608.334
800 29.809 1956.321 1714.173 0.826 2617.073 1720.705
820 29.78 2011.518 1772.404 0.827 2672.554 1765.76
840 29.792 2022.322 1790.452 0.832 2680.218 1741.386
860 29.746 2054.923 1825.194 0.834 2726.204 1740.656
900 29.805 2115.625 1895.961 0.841 2783.033 1711.2
950 29.975 2172.927 1964.329 0.846 2856.738 1893.749

1000 30.234 2255.583 2057.579 0.852 2938.408 1884.775

Table 6: Results of the Offline+PA (None) model on the MuST-C v2 tst-COMMON En-De.

chunk size BLEU LAAL AL AP DAL ATD
300 11.714 1096.676 288.185 0.807 1643.59 181.268
400 13.284 1377.647 697.522 0.827 1949.44 260.12
500 14.04 1642.289 1171.154 0.845 2246.513 343.565
600 14.458 1858.317 1433.278 0.866 2463.025 386.054
700 14.828 2064.974 1695.339 0.877 2672.509 471.012
800 15.235 2224.392 1803.111 0.895 2831.076 519.566
820 15.232 2256.386 1862.014 0.892 2865.29 537.516
840 15.316 2290.716 1973.586 0.892 2889.95 547.752
860 15.214 2341.734 2023.29 0.896 2946.322 557.76
900 15.281 2389.836 2121.337 0.898 3010.863 563.603

1000 15.439 2528.8 2247.036 0.907 3126.384 630.97

Table 7: Results of the Offline+PA (4000) model on the MuST-C v2 tst-COMMON En-Ja.

chunk size BLEU LAAL AL AP DAL ATD
300 19.794 1011.202 109.706 0.755 1411.409 206.106
400 20.874 1283.497 540.576 0.774 1718.894 370.356
500 21.291 1522.251 881.957 0.796 1984.268 474.854
600 21.628 1714.688 1173.412 0.811 2216.213 499.254
700 22.105 1906.995 1471.287 0.821 2436.948 667.78
750 21.844 1994.88 1587.405 0.83 2526.013 672.637
800 22.041 2071.358 1689.633 0.831 2621.874 738.394
840 22.101 2126.632 1826.245 0.829 2689.418 761.502
860 22.125 2167.874 1829.369 0.836 2728.565 760.173
900 22.057 2211.844 1927.426 0.838 2779.555 749.444

1000 22.196 2383.854 2137.905 0.851 2946.303 882.875

Table 8: Results of the Offline+PA (None) model on the MuST-C v2 tst-COMMON En-Zh.
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Abstract

The decoder in simultaneous neural machine
translation receives limited information from
the source while having to balance the oppos-
ing requirements of latency versus translation
quality. In this paper, we use an auxiliary target-
side language model to augment the training of
the decoder model. Under this notion of target
adaptive training, generating rare or difficult
tokens is rewarded which improves the transla-
tion quality while reducing latency. The predic-
tions made by a language model in the decoder
are combined with the traditional cross entropy
loss which frees up the focus on the source side
context. Our experimental results over multiple
language pairs show that compared to previous
state of the art methods in simultaneous trans-
lation, we can use an augmented target side
context to improve BLEU scores significantly.
We show improvements over the state of the
art in the low latency range with lower average
lagging values (faster output). 1

1 Introduction

Simultaneous Machine Translation (SiMT; Gris-
som II et al. (2014); Cho and Esipova (2016)) is a
special case of neural machine translation (NMT;
Vaswani et al. (2017)) that aims to produce real
time-translations in the target language from a
streaming input in the source language. The cor-
nerstone of this task, as well as a key challenge,
is the trade-off between the translation quality and
the latency in producing the translations. This bal-
ance is ensured by a fixed (Ma et al., 2019; El-
bayad et al., 2020) or adaptive (Arivazhagan et al.,
2019; Ma et al., 2020; Zhang and Feng, 2022b)
read/write policy that determines whether to wait
for the next source token (a READ action) or to
generate a translation (a WRITE action). Adaptive
policies dynamically predict the action based on

1github.com/sfu-natlang/target_rescale_siMT
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Figure 1: Prior work on simultaneous MT weighs ev-
ery target token equally. Top: Normalized negative
log-likelihood (nll) scores of each generated in-context
target token as scored by the baseline SiMT along with
the number of reads preceding a target token, and a
target language model (LM). As the translations are im-
perfect, the LM shows disagreement by following an
opposite nll trend compared to the translation model.
Bottom: Our method rescales the importance of each
target token using the target context during training.

the current source and target contexts (Zheng et al.,
2020). Although adaptive policies achieve a better
latency/BLEU trade-off, they often fail to account
for the varying importance of different tokens when
deciding a READ/WRITE action.

In Figure 1 (top), there is a negative correlation
between the normalized negative log likelihoods
of output tokens as measured by MMA (a SiMT
model with an adaptive policy; Ma et al. 2020)
versus a left-to-right language model (LM). This
reflects a translation which the SiMT model is con-
fident about, but which the LM regards as poor
English (possibly due to the semantic mismatch

341

github.com/sfu-natlang/target_rescale_siMT


evident in “warm in winter”). Since a simultane-
ous policy can only access partial source context,
its outputs are likely to reflect imperfect guesses
such as these, particularly when translating in real-
time between language pairs with different word or-
derings (Subject-Object-Verb) and very long com-
pounds. As a result, training objectives which treat
all translated tokens with equal importance are sub-
optimal.

In the context of translation, content words are
generally considered more informative than func-
tion words (Chen et al., 2020). This is because
content words carry the main semantic and lexical
meaning of a sentence, while function words pro-
vide grammatical context and help to convey the
syntactic structure of a sentence. Similarly, high-
frequency words that are easier for the translation
model to generate may sometimes carry less in-
formation than the desirable low-frequency (rare)
words that the model struggles to generate (Chen
et al., 2017). To this end, Zhang et al. (2022b) pro-
posed to leverage conditional mutual information
(MI) to estimate the weight-coefficients between
the source and target to reweigh the importance
of each target token. However, such an approach
hasn’t been explored to address simultaneous or
streaming MT to the best of our knowledge, and
the lack of a complete source context makes the
adaptation of this method to SiMT non-trivial. To
improve simultaneous MT, Alinejad et al. (2018)
proposed a prediction mechanism on the source
side to get future information and aid the lack of
information on target-side for translation. Instead
of directly predicting a source token, Zhang and
Feng (2022a) predict its aligned future-position for
a given target token to guide its policy. On the
other hand, Zhang and Feng (2022b) and Zhang
et al. (2022a) explored policies that assign varying
importance to source/target tokens based on their
level of information, with more informative tokens
having a greater influence on the model.

In this paper, we propose a technique to alleviate
this problem in SiMT using an information theo-
retic approach and an adaptive training paradigm.
Inspired by the recent work in using pointwise mu-
tual information for guiding the decoder in full-
sentence (non-simultaneous) translation (Lee et al.,
2022), we differentiate the importance of various
target tokens by their dependence on the source
sentence. As shown in Figure 1 (bottom), to guide
our simultaneous translation model, we incorporate

a language model that provides an additional sig-
nal indicating the importance of each target token
or sentence. This target-context aware estimation
leverages the relative probabilities of the translation
model and language model to guide the generation
process by explicitly re-weighting the training loss
of each target token in the translation. Experiments
show the strength of our simple method, outper-
forming several strong baselines in terms of both
latency and BLEU scores. We perform exhaustive
analysis to show that our model performs particu-
larly well on translating low frequency words and
longer sentences.

2 Background

Target adaptive training (Lin et al., 2017) in
NMT addresses the token imbalance problem (Gu
et al., 2020). While a translation model is conven-
tionally trained with conditional maximum likeli-
hood estimation or cross-entropy:

LCE(x,y) = −
N∑

j=1

log p (yj | y<j ,x) (1)

adaptive training rescales this objective by assign-
ing static or dynamic weights to further guide the
translation model:

Ladapt(x,y) = −
N∑

j=1

wj log p (yj | y<j ,x) (2)

Frequency based approaches (Gu et al., 2020; Xu
et al., 2021) to assign these weights are promis-
ing but maintaining a frequency count can be
an expensive overhead and would not be directly
transferable to a simultaneous setting. More re-
cently, Zhang et al. (2022b) proposed to leverage
pointwise mutual information (MI) to estimate the
weight-coefficients between the source x and target
y as :

MI(x,y) = log

(
p(x,y)

p(x).p(y)

)
(3)

which can reflect the importance of target tokens
for translation models.

Monotonic Infinite-Lookback Attention Ari-
vazhagan et al. (2019) models a Bernoulli variable
to make the READ or WRITE decision at every
time step, while processing the input sequence in-
crementally. Ma et al. (2020) present monotonic
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multihead attention to extend this policy to the mul-
tihead attention of transformers. For each encoder
state in MMA, every head in the cross-attention of
each decoder layer produces a probability pi,j that
dictates if it should write target token yj while hav-
ing read till the source token xi, or wait for more
inputs. This is computed using the softmax energy:

energyi,j =

(
mjW

K
(
si−1W

Q
)T

√
dk

)

i,j

pi,j = Sigmoid
(
energyi,j

)
(4)

where m signifies the encoder states, W the input
projection matrix for query Q and key K, and dk is
the dimension of the attention head. The probabil-
ity pi,j is then used to parameterize the Bernoulli
random variable:

bi,j ∼ Bernoulli (pi,j) (5)

If bi,j = 1 then the model performs a WRITE
action on yj based on previous source tokens, oth-
erwise it performs a READ.

Our method is based on MMA and we use it as
our main simultaneous policy. To mitigate the nega-
tive impact of outlier heads2 on the read/write path,
we have made slight modifications to MMA to en-
sure more stable performance. Instead of allowing
the heads in each decoder layer to independently
determine the READ/WRITE action, we now share
the READ/WRITE action between the decoder lay-
ers. This adjustment helps to avoid outlier heads
that could potentially disrupt the system perfor-
mance and stability (Indurthi et al., 2022).

3 Approach

3.1 Target-context Aware Information
Quotient

Inspired by Lee et al. (2022), we leverage the point-
wise mutual information (MI) between each target
token and its source context under the condition of
previous target context. For a target token yj and
the streaming source context x ≤ i, factoring in
the partially constructed target prefix y < j gives
the target information quotient (TIQ) is calculated

2In MMA, every head in the transformer multihead atten-
tion independently decides its read/write action and has access
to all previous encoder states. The write action only takes
place when the slowest head has arrived to a write decision.

as:

TIQ (yj) = log

(
p (yj ,x≤i | y<j)

p (yj | y<j) · p (x≤i | y<j)

)

= log

(
p (yj | x≤i,y<j) · p (x≤i | y<j)

p (yj | y<j) · p (x≤i | y<j)

)

= log

(
p (yj | x≤i,y<j)

p (yj | y<j)

)

= log

(
pSiMT (yj)

pLM (yj)

)

(6)

where pSiMT(.) is the simultaneous translation
model probability and pLM(.) is the auxiliary target-
side language model of the same size as the transla-
tion decoder. By decomposing the conditional joint
distribution, this can be formalized as the log quo-
tient of the streaming translation model probability
and target language model probability. This cap-
tures the information of a target token conditioned
on the target context and uses it to rescale the loss,
thereby making the model pay more attention to
more “informative" words.

To incorporate weights into the adaptive training
objective (equation 2), two separate weights are
used:

Token-level weight is used to determine weights
of loss from each target token yj and streaming
source context, conditioned on the obtained partial
translation at the current timestep. We use a token
TIQ measure and normalise it to reduce variance:

TIQtok =
(
TIQ(yj)− µtok

)
/σtok (7)

where µtok, and σtok are the mean and standard
deviation of TIQ(yj) respectively, for every sen-
tence.

Sentence-level weight on the other hand, is
token-level TIQ is aggregated and averaged over
the target sentence length |y|:

TIQsen =


 1

|y|

|y|∑

j=1

TIQ(yj)− µsen


 /σsen (8)

where µsen, and σsen are the mean and standard
deviation of TIQ(yj) respectively, over a batch.

The final rescaling factor to assign weights in
equation 2 is calculated as:

wj = (λtokTIQtok + 1) · (λsenTIQsen + 1) (9)

The rescaling allows the model to learn the source
side information for a particular target token yj ,
while also factoring in the target context so far.
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Figure 2: Results on IWSLT15 Vi→ En (a), and IWSLT14 En⇔De (b,c)

Given that information (from source) is con-
strained in the nature of this task, this additional
signal of the target context acts as reinforcement
for translation. The likelihood score from the LM
should serve to strengthen the predictive capabil-
ity of the decoder. Frequent words would have a
higher LM score and therefore a smaller weight
wj . On the other hand, rare words would be scored
lower by the LM, and thus have a higher rescaling
weight wj , allowing the model to focus on them
more.

3.2 Final Training Objective with Adaptive
Weights and Latency Constraints

In MMA models, following Ma et al. (2020), we
use the weighted average of differentiable lagging
metric C (Arivazhagan et al., 2019) over all the
attentions heads as the weighted average latency
Lavg constraint3.

The MMA model uses both these loss terms in its
final loss, with the hyperparameters λavg and λvar
respectively. Combining the latency average loss
and the target-context aware information quotient,
the final training objective for our model is:

LMMA+TC = Ladapt(TIQ) + λavgLavg (10)

where Ladapt is adaptive cross-entropy loss from
equation 2 with TIQ (equation 9) as its rescaling-
weight, and λavg is a hyperparameter to control the
latency constraint.

3Early experiments with other policies such as GMA and
Wait-info showed the approach to be ineffective. The explicit
latency loss in MMA is crucial for the working of target adap-
tive training for simultaneous MT.

4 Experiments

4.1 Data
IWSLT’15 English↔ Vietnamese (133K pairs)
with TED tst2012 (1553 pairs) as validation set and
TED tst2013 (1268 pairs) as test set. The vocabu-
lary sizes of English and Vietnamese are 17K and
7.7K respectively.

IWSLT’14 English ↔ German (160K pairs)
with validation set and test set of 7283 and 6750
pairs respectively. The vocabulary size of German
is 13.5K and 9.98K for English.

4.2 Baselines and Model Settings
The following are the main baselines we compare
our method against:

Offline Transformer (Vaswani et al., 2017)
model for full-sentence translation.

Wait-k policy (Ma et al., 2019) which is a fixed-
policy that reads k source tokens initially, and then
alternates between reading and writing.

Efficient Wait-k (Elbayad et al., 2020) uses
multiple k’s to train a Wait-k model and relieves
the constraint of test k being equal to train k.

Monotonic Multihead Attention (MMA; Ma
et al. (2020)) extends infinite lookback attention
(Arivazhagan et al., 2019) to all the Transformer
heads.

Wait-Info (Zhang et al., 2022a) quantifies
source and target token info to decide R/W action.

We also juxtapose our method against several
other baselines on the En→ Vi direction:
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Figure 3: Performance of several methods on the
En→Vi dataset in the low latency (AL<5) window.

Gaussian Multihead Attention (GMA; Zhang
and Feng (2022a)) that predicts the aligned
source position for a target token and rescales at-
tention with a gaussian distribution centred at this
position.

ITST (Zhang and Feng, 2022b) finds the op-
timal information transport between source and
target.

Adaptive Wait-k(Zheng et al., 2020) dynami-
cally chooses an optimal k in the wait-k policy at
every step.

MoE Wait-k (Zhang and Feng, 2021b) uses
attention heads as experts trained with different k
with the wait-k policy.

MMA+TC (ours) is the proposed MMA model
with target context aware adaptive training objec-
tive. We use an auxiliary target-side LM decoder
of the same configuration as the MT decoder. Note
that the LM is only used during training and dis-
carded at test time. We do not use extra data.

The implementation of our method is based on
fairseq (Ott et al., 2019). Following MMA, we
use transformer (Vaswani et al., 2017) with 6 en-
coder and decoder layers and 4 monotonic attention
heads for the IWSLT datasets En↔Vi, De↔En. All
baselines are trained with same configurations and
are trained with 16k tokens. Our auxiliary language
model follows the decoder settings in the model.

4.3 Evaluation
We evaluate using BLEU (Papineni et al., 2002) for
translation quality and Average Lagging (AL) (Ma
et al., 2019) for latency. AL denotes the lagging be-
hind the ideal policy (Wait-0). Other metrics used
are Average Proportion (AP) (Cho and Esipova,
2016) and Differentiable Average Lagging (DAL)
(Arivazhagan et al., 2019). Given a read/write pol-
icy gi, AL is :

AL =
1

τ

τ∑

i=1

gi −
i− 1

|y|/|x| (11)

where τ = argmaxi (gi = |x|), |x| and |y| are
source sentence and target sentence lengths respec-
tively.

5 Results

Figure 2 shows the comparison of BLEU vs. La-
tency (in terms of Average Lagging) of our method
against previous methods on the IWSLT’15 Vi→
En and IWSLT’14 En↔ De directions. For Vi→
En, we observe a significant improvement in the
BLEU scores at the same latencies, compared to
the baselines. We also reach the offline translation
quality in low AL on this dataset. In the En →
De, De → En directions too, there is a boost in
the translation quality, more noticeably for lower
latencies. The plots show that our method boosts
translation quality in the earlier latencies and the
effect of reweighing is more pronounced in these
regions, where the source context is more limited.
In higher latency regions, when the source infor-
mation window increases, the other baselines start
to reach our BLEU score in the English-German
directions.

In Figure 3, we compare against several state-
of-the-art methods on the En→ Vi. Our method
gets better translation quality compared all others,
in the low-latency zone, matching the offline score
at 3.86 AL. We show the BLEU vs. AL plot in a
low latency range to compare performance in the
more challenging area of this task, the low latency
points.

6 Analysis

6.1 Token-level vs. Sentence-Level Weight
Ablation Study The two hyperparameters in our
method are Sentence-Level Weight and Token-
Level Weight, which determine the sentence and
token-level effect of rescaling with LM. In Fig. 5
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Token Order
(Descending)

Avg.
Freq. Ref (%) MMA

(%)
MMA+
TC (%)

[0, 10%) 1385 85.56 87.63 87.21
[10, 30%) 56 6.89 6.48 6.34
[30, 50%) 20 2.19 1.75 1.95
[50, 70%) 11 1.30 0.70 0.86
[70, 100%] 6 0.95 0.26 0.31

Table 1: Avg. frequency on the training set and the
proportion of tokens of different frequencies in the test
set and the translations generated by the baseline and
our model.

2 3 4 [5,10) [10,100)
Word Frequency

0.4

0.5

0.6

F-
m

ea
su

re MMA
MMA+TC (Ours)

Figure 4: F-measure between model outputs and refer-
ence tokens for the low-frequency words, bucketed by
frequency of the reference token.

we report the BLEU scores with different hyperpa-
rameter settings on Vi-En. (AL across the table are
similar as experiments are done with the same λ).
We set the values of these hyperparameters to 0.2
in all our experiments.

0.1 0.2 0.3
Sentence-Level Scale

0.
1

0.
2

0.
3

To
ke

n-
le

ve
l S

ca
le 25.36 26.03 25.83

25.83 26.38 26.26

25.74 25.68 25.83

Figure 5: MMA+TC with different combinations for
tok-level scale (λtok) and sent-level scale (λsen) values.

6.2 Effect on Low-frequency Words

With reweighing loss using the Language Model
likelihood, we aim to reduce the effect of frequency
imbalance in the corpus on training. We compare
our translations against MMA on rare and frequent
words. In addition to an overall BLEU improve-
ment, we also see an improvement in the F-measure
of rare words. As shown in Figure 4, our method
does better on extremely rare words (freq ≤ 10).
Table 1 shows that while the baseline overfits to
the most frequent words, our method captures rare
words, from the bottom two frequency bins (50-
70% and 70-100%), better. The results show that
our method makes the model train better on rare
words and remedy the effect of token imbalance.

POS Ref MMA (%) +TC (%) MSE (↓)
ADJ 1497 82.1 83.5 0.18 | 0.16
ADV 1323 83.5 87.6 0.20 | 0.12
INTJ 74 98.6 94.6 0.01 | 0.04
NOUN 4187 90.5 93.4 0.09 | 0.06
PROPN 1315 99.4 99.4 - | -
VERB 3226 94.0 95.7 0.06 | 0.04

Table 2: Our method generates more content words
than the baseline MMA. Columns 2 and 3 show the
percentage of the reference content words recovered in
MMA and MMA+TC (in blue) respectively. The last
column shows normalized mean squared error (MSE)
of the recovered content words wrt reference. Lower
MSE values are better.

Content word occurrences. Zhang et al. (2022a)
show that focusing on the right content words in
the target is crucial to getting the necessary target
information in a subcutaneous translation setting.
Following Moradi et al. (2019) we inspect the con-
tent words generated by our model using spacy to
get POS tags over the translations. As evident from
Table 2, our model recovers more content words in
the translations wrt the reference.

6.3 Effect on Translation Length

Following the rationale of Lakew et al. (2019) in
NMT and Zhang and Feng (2022d) in simultaneous
translation, we inspect the translation quality of our
model on varying target sentence lengths in Figure
8 and observe that our method shows a big im-
provement in BLEU on the longer sentences. Our
method prevents the model from over-producing
words (as seen in the top figure in Figure 8). We
hypothesize that this is because the model does
not generate as many words (and overuse them)
from the most frequent word bin (see Table 1, top
10% bin) as MMA. Our target sentence lengths are
consistently less than MMA’s and are closer to the
ground truth sentence lengths (as shown in the bin
0, Fig. 8 (top)).

6.4 Effect on Translation Paths

Attention Heatmaps and READ/WRITE Se-
quences. Figure 6 compares attention heatmaps
from MMA and MMA+TC (our method) on the
Vi → En direction. As evident, our method per-
forms READ actions in smaller intervals between
predicting consecutive WRITE actions.

Consider the READ/WRITE actions generated
by MMA and MMA+TC for the given source sen-
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Figure 6: Attention heatmap comparison on the Vi→ En direction. The Read-Write policy is drawn with red and
green arrows respectively. The pink column at the start denotes the source tokens read to produce the target token
on the left (darker implies more source words read, and white denotes 0 reads between consecutive target tokens)
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Figure 7: Sufficiency as a function of target length. All
models produce translation with an AL of 4.

tence are:

Src: Chúng tôi còn vt mu đây . Nó còn khá m .

MMA: RRR W RRR WWW RRR WW RRR W RR WWWWW

Ours: RRR W RRR WW RR W R WW RRR W R W R WWWW

In this example, MMA reads more than required
for a write in certain places. It shows that at a
similar lag, our model gets a higher probability of
a WRITE action, compared to MMA, after having
read the same number of source words.

Sufficiency of the READ actions. Zhang and
Feng (2022c) introduce a metric of sufficiency
ASuf in Read/Write paths with the notion that too

many but not all necessary READs would result in
high latency while few but not sufficient READ ac-
tions would exclude needed information and could
cause poor translation quality. When the ground
truth aligned source position of the jth target word
is denoted by aj , and the number of source words
read when writing target jth word is denoted by rj :

ASuf =
1

|y|

|y|∑

j=1

1aj≤rj (12)

We compare our method against MMA and Wait-
Info on AL=4 with the sufficiency metric. Using
equation(12) across sentences of varying lengths,
we evaluate the read-write paths of each model,
against reference alignments from Eflomal (Östling
and Tiedemann, 2016)4. In Figure 7, we can see a
clearly increasing and higher score on sufficiency
as compared to the baselines - Wait-Info and MMA.
This signifies that our target-context augmented
training helps the model read sufficient source to-
kens required for producing a translation, while
maintaining the same latency as others, showing
that the model learns and correctly gauges the in-
formation it requires to translate a target token, and

4We use the Eflomal library to get alignment priors
from IWSLT’15 Vi-En train set, and use them to gen-
erate alignments for the test set. https://github.com/
robertostling/eflomal
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Figure 8: Top: Length difference compared to ref. Bot-
tom: Sentence BLEU bucketed by target length (shown
in bars), and the ratio of aligned READ actions for each
bucket (IoU scores, Eqn. 13) shown with lines.

makes READ actions accordingly.

Ratio of Aligned READ actions. We compare
MMA and our Read-Write policy against the ref-
erence source-target alignments by computing the
overlap between the hard alignments and the trans-
lation path for all output translations :

IoUa,r =
∑

i=1

(
intersection(ai, ri)

union(ai, ri)

)
(13)

where ai is the reference alignment matrix for the
ith sentence, made by setting all aligned source po-
sitions to 1 and ri is the upper triangular matrix set
to 1 using reads from the policy.5 The IoU scores
for our policy and for MMA are shown in Figure
8 (bottom) with varying sentence lengths. Our pol-
icy shows a stronger adherence to the source-target
monotonic alignment path.

7 Related Work

Simultaneous Translation. Fixed Policy meth-
ods (Ma et al., 2019; Elbayad et al., 2020) follow
the fixed rule of waiting for the first k source tokens
before generating a target token, and alternate there-
after. Adaptive Wait-k (Zheng et al., 2020) dynam-
ically chooses the best k at every step. Han et al.
(2020) applied meta learning in wait-k. Zhang and
Feng (2021b) use each attention head as an expert
of wait-k policy whereas Zhang and Feng (2021a)

5We choose this metric to show the extent to which the
policy follows the source-target alignments. In an ideal setting,
IoU = 1.

introduce a character level wait-k policy. But fixed
policy methods aren’t feasible for complex inputs
and cannot adapt to them. Full-sentence MT has
also been leveraged to augment the policy with
future information (Zhang et al., 2020; Alinejad
et al., 2021). But using such oracle or gold (Zheng
et al., 2019; Arthur et al., 2021) READ/WRITE
actions does not optimize policy with translation
quality. Alinejad et al. (2018) proposes providing
future-information on the source side using predic-
tion. Grissom II et al. (2014) predict unseen verbs
and uses reinforcement learning to learn when to
trust these predictions and when to wait for more
input. In contrast, we leverage target side context
to strengthen the simultaneous translations.

Zhang and Feng (2022c) train two models on
either language directions and make their policies
converge. Wilken et al. (2020) propose external
ground-truth alignments to train the policy. Papi
et al. (2023) use cross attention scores to guide pol-
icy. Infinite-lookback (Arivazhagan et al., 2019)
and chunkwise (Chiu* and Raffel*, 2018) atten-
tion propose to use a soft monotonic attention over
previous encoder states. We use a variant of the
policy proposed by Ma et al. (2020) that adapts
monotonic attention to the multihead architecture
of the Transformer. GMA (Zhang and Feng, 2022a)
predicts the aligned source position of the current
target token and rescales attention based on it. But
these methods treat all words equally during train-
ing whereas our method improves upon MMA via
adaptive training.

Some recent work explores capturing and quan-
tifying information from the source tokens and use
it to model READ/WRITE actions (Zhang et al.,
2022a; Zhang and Feng, 2022b). But these works
do not use the target context in their information.
Unlike their quantization method, we present a sim-
ple scoring by using an auxiliary target-side LM.

Adaptive Training for MT. Target adaptive ob-
jectives have been explored by (Lin et al., 2017)
which uses probability of a class to scale, but actu-
ally only scale down high frequency classes; (Jiang
et al., 2019) which directly uses normalized fre-
quency count but have high variance. (Gu et al.,
2020) use a chi-square and an exponential distri-
bution function with frequency. However these
use only static word frequency. BMI (Xu et al.,
2021) attempt to capture mutual information be-
tween each source and target token. CBMI (Zhang
et al., 2022b) incorporate target context as well, in
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mutual information. However, these adaptive meth-
ods are not directly transferable to the streaming
nature of our task.

8 Conclusion

We have presented a simple technique for rescaling
target-token importance in simultaneous transla-
tion using an information theoretic approach and
an adaptive training paradigm. We differentiate the
importance of various target tokens by their depen-
dence on the source sentence. To guide our simul-
taneous translation model, we incorporate a target-
side language model that provides an additional sig-
nal indicating the importance of each target token
or sentence under the condition of the previous tar-
get context. Our model shows strong performance
on several datasets and outperforms several state-of-
the-art techniques in the low latency range (AL<5).
Further analysis shows that our technique is bet-
ter able to translate long sentences and those with
rare words. We also showed that the translation
path (read/write action sequence) has a stronger
correlation to the source-target alignment.

Limitations and Future Work

Since our auxiliary target-side LM decoder is
spawned with the same configuration as the MT
decoder, this significantly adds to the model size at
training time. This makes it difficult to scale/slower
to train with translation models of large size. While
this problem can be easily mitigated by using a
GPU of larger memory, we would like to explore
more efficient ways of incorporating the target con-
text which we leave for future work. Secondly,
even though our method gives a significant boost
to translation quality in the early latencies, it relies
on the MMA (Ma et al., 2020) policy that has some
limitations in terms of latency because of a subopti-
mal decision making using multiple heads (Indurthi
et al., 2022). While our policy shows improvement,
it could be further optimized, for instance, in fol-
lowing reference alignments more closely which
would have a positive effect on latency. Finally,
using additional monolingual data is also a viable
direction for future work to strengthen the language
model used in the approach.
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A Hyperparameters

Hyperparameter
IWSLT’15 En↔ Vi
IWSLT’14 De↔ En

encoder layers 6
encoder attention heads 4
encoder embed dim 512
encoder ffn embed dim 1024
decoder layers 6
decoder attention heads 4
decoder embed dim 512
decoder ffn embed dim 1024
dropout 0.3
optimizer adam
adam-β (0.9,0.98)
clip-norm 0
lr 5e-4
lr scheduler inverse sqrt
warmup-updates 4000
warmup-init-lr 1e-7
weight decay 0.0001
label-smoothing 0.1
max tokens 16000

Table 3: Hyperparameters used in our experiments

All models were trained on 2 x Titan RTX with
24 GB memory each. An entire training run fin-
ishes within 2.5 hours with fp32 completing about
40 epochs.

B Detailed Results
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IWSLT15 En-Vi Transformer-Small

Full-sentence MT AP
1.00

AL
22.08

DAL
22.08

BLEU
28.91

MMA

λ
0.4
0.3
0.2
0.1
0.04
0.02

AP
0.58
0.59
0.63
0.67
0.70
0.76

AL
2.68
2.98
3.57
4.63
5.44
7.09

DAL
3.46
3.81
4.44
5.65
6.57
8.29

BLEU
27.73
27.90
28.47
28.42
28.33
28.28

Wait-K

k
1
3
5
7
9

AP
0.63
0.71
0.78
0.83
0.88

AL
3.03
4.80
6.46
8.21
9.92

DAL
3.54
5.42
7.06
8.79
10.51

BLEU
25.21
27.65
28.34
28.60
28.69

Efficient Wait-K

k
1
3
5
7
9

AP
0.63
0.71
0.78
1.96
0.87

AL
3.06
4.66
6.38
8.13
9.80

DAL
3.61
5.20
6.94
8.69
10.34

BLEU
26.23
28.21
28.56
28.62
28.52

Wait-Info

K
1
2
3
4
5
6
7
8

AP
0.67
0.69
0.71
0.74
0.77
0.80
0.82
0.84

AL
3.76
4.10
4.60
5.28
6.01
6.80
7.61
8.39

DAL
4.33
4.71
5.28
5.97
6.71
7.51
8.33
9.11

BLEU
28.37
28.45
28.54
28.59
28.70
28.78
28.80
28.82

MMA+TC

λ
0.55
0.5
0.3
0.2
0.1
0.01

AP
0.66
0.67
0.68
0.71
0.74
0.89

AL
3.1
3.60
3.86
4.58
5.34
9.89

DAL
5.12
5.78
6.12
7.22
8.18
14.37

BLEU
28.6
28.81
28.9
28.74
28.65
28.67

Table 4: Experiments on IWSLT15 English→ Vietnamese
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IWSLT15 Vi - En Transformer-Small

Full-sentence MT
(Offline)

AP
1.00

AL
27.56

DAL
27.56

BLEU
26.11

MMA

λ
0.4
0.3
0.2
0.1
0.05
0.01

AP
0.63
0.64
0.67
0.75
0.77
0.88

AL
3.60
3.95
4.54
7.14
7.61
13.63

DAL
6.96
7.59
9.09
11.60
15.70
23.95

BLEU
25.36
24.75
25.33
25.84
25.31
26.11

Wait-K

k
1
3
5
7
9
11
13

AP
0.42
0.53
0.61
0.67
0.76
0.80
0.84

AL
-2.89
-0.18
1.49
3.28
6.75
7.91
10.37

DAL
1.62
3.24
5.08
7.05
8.96
10.71
12.36

BLEU
7.57
14.66
17.44
19.02
22.39
23.28
24.80

Wait-Info

K
4
5
6
7
8
9
10

AP
0.62
0.67
0.72
0.76
0.79
0.82
0.84

AL
2.58
4.08
5.61
7.01
8.26
9.37
10.56

DAL
5.06
6.27
7.72
9.19
10.66
11.98
13.30

BLEU
22.45
23.75
25.19
25.45
25.86
25.93
26.13

MMA+TC

λ
0.4
0.3
0.2
0.1
0.05
0.04
0.01

AP
0.63
0.65
0.67
0.71
0.76
0.77
0.89

AL
3.51
4.01
4.62
5.67
7.23
7.55
13.31

DAL
5.902
6.558
7.527
9.212
10.579
11.76
18.627

BLEU
26.38
26.04
26.32
26.63
26.52
26.85
26.67

Table 5: Experiments on IWSLT15 Vietnamese→ English
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IWSLT15 De-En Transformer-Small
Full-sentence MT
(Offline)

AP
1.00

AL
22.97

DAL
22.97

BLEU
33.64

MMA

λ
0.4
0.3
0.2
0.1

AP
0.67
0.69
0.72
0.77

AL
3.91
4.27
4.97
6.08

DAL
6.36
6.84
7.82
9.47

BLEU
30.8
31.12
31.34
31.95

Wait-Info

K
1
2
3
4
5
6
7
8

AP
0.57
0.59
0.64
0.69
0.739
0.77
0.80
0.82

AL
1.32
1.97
3.08
4.27
5.30
6.26
7.17
8.06

DAL
2.53
3.17
4.35
5.61
6.84
8.03
9.09
9.94

BLEU
26.26
27.39
29.01
30.36
30.92
31.45
31.82
32.05

Wait-K

k
3
5
7
9

AL
1.8
4
6
8

BLEU
26
28.6
29.7
31.5

Efficient Wait-K

k
3
5
7
9

AL
2
4
6
8

BLEU
26.4
27
30
31.7

MMA+TC

λ
0.5
0.4
0.3
0.2
0.1

AP
0.66
0.68
0.70
0.73
0.77

AL
3.68
4.06
4.49
5.06
6.10

DAL
5.92
6.51
7.12
7.93
9.54

BLEU
30.97
31.33
31.69
32.2
32.22

Table 6: Experiments on IWSLT14 German→ English
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IWSLT15 En-De Transformer-Small
Full-sentence MT
(Offline)

AP
1.00

AL
22.21

DAL
22.21

BLEU
27.46

MMA

λ
0.5
0.4
0.3
0.2
0.1
0.05

AP
0.69
0.71
0.72
0.74
0.79
0.84

AL
4.32
4.70
4.97
5.44
6.86
8.25

DAL
6.42
6.95
7.28
7.96
9.72
11.42

BLEU
26.03
26.20
26.30
26.19
26.77
26.91

Wait-Info

K
1
2
3
4
5
6
7
8

AP
0.61
0.63
0.68
0.73
0.77
0.80
0.83
0.86

AL
2.62
3.15
4.24
5.36
6.38
7.23
8.23
9.25

DAL
3.09
3.89
5.30
6.77
8.09
9.18
10.35
11.46

BLEU
21.75
22.42
24.48
25.60
26.18
26.35
26.61
26.74

Wait-K

k
3
5
7
9

AL
3.41
5.00
6.83
8.72

BLEU
22.00
25.21
26.32
26.61

Efficient Wait-K

k
3
5
7
9

AL
3.51
5.27
7.03
8.81

BLEU
23.01
24.80
25.93
26.11

MMA+TC

λ
0.6
0.5
0.4
0.3
0.2
0.1
0.06

AP
0.68
0.69
0.69
0.71
0.74
0.79
0.82

AL
4.04
4.19
4.38
4.87
5.51
6.74
7.75

DAL
6.07
6.25
6.52
7.14
8.09
9.80
10.94

BLEU
26.03
26.19
26.43
26.56
26.71
26.76
27.01

Table 7: Experiments on IWSLT14 English→ German
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Abstract

This paper describes the Kyoto speech-to-
speech translation system for IWSLT 2023.
Our system is a combination of speech-to-text
translation and text-to-speech synthesis. For
the speech-to-text translation model, we used
the dual-decoder Transformer model. For the
text-to-speech synthesis model, we took a cas-
cade approach of an acoustic model and a
vocoder.

1 Introduction

This paper describes the Kyoto speech-to-speech
translation system for IWSLT 2023 (Agarwal et al.,
2023). Our system is a combination of speech-to-
text translation and text-to-speech synthesis. For
speech-to-text translation model, we used dual-
decoder Transformer model following Le et al.
(2020). For text-to-speech synthesis model, we
took cascade approach of an acoustic model and a
vocoder. We used FastSpeech 2 (Ren et al., 2021)
as the acoustic model and HiFi-GAN (Kong et al.,
2020) as the vocoder.

2 System Description

The speech-to-speech translation system is a com-
bination of speech-to-text translation and text-to-
speech synthesis.

2.1 Speech-to-Text Translation
We adopt the end-to-end speech-to-text translation
architecture. The speech-to-text translation model
is based on dual-decoder Transfomer (Le et al.,
2020).

As shown in Figure 1, the model is a
Transformer-based model, comprising two de-
coders - one for speech-to-text translation (ST) and
the other for automatic speech recognition (ASR).
The task of ASR and ST can be defined as follows:

• For ASR, the input sequence s = [s1, ..., sTs ]
is a sequence of speech features. The out-

put sequence x = [x1, ..., xTx ] is the corre-
sponding transcription, where Tx indicates the
length of the transcription.

• For ST, the input sequence s = [s1, ..., sTs ] is
the same with ASR and the output sequence
y = [y1, ..., yTy ] is the corresponding transla-
tion in target language, where Ty indicates the
length of the translation.

The model performs the multi-task learning of
ASR and ST and the output distributions can be
written as

Dasr-st = p(x,y|s)

=

max(Tx,Ty)∏

t=0

p(xt, yt|x<t,y<t, s) (1)

The training objective is a weighted sum of cross-
entropy losses for both tasks:

Lasr-st = αLasr + (1− α)Lst (2)

Different decoders can exchange information
with each other with the interactive attention mech-
anism, which refers to replacing attention sub-
layers in the standard Transformer decoder with
interactive attention sub-layers (Liu et al., 2020). In
our models, the replaced sub-layers are the encoder-
decoder attention sub-layers.

As illustrated in the lower part of Figure 1, an
interactive attention sub-layer consists of one main
attention sub-layer and a cross-attention sub-layers.
The main attention sub-layer is the same as the
replaced attention sub-layer. The cross-attention
sub-layers receive query Q from the same decoder
A and receive key K and value V from another
decoder B. We adopt the parallel variation of dual-
decoder Transformers where K and V are hidden
states from the same layer in decoder B.

The final output is obtained by merging the out-
put of the primary attention sub-layer Hmain with
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the output of the cross attention sub-layer Hcross.
We adopt linear interpolation as the merging func-
tion. Therefore the output representations of the
interactive attention sub-layers are

Hdual = Hmain + λHcross (3)

where λ is a learnable parameter.

Feed 
Forward

Attention

Merge
× N

AttentionFeed 
Forward

Attention
N × Masked


Attention

Attention

Feed 
Forward

Attention

Merge

Masked

Attention

我不 ...

I don’t understand 我不明白

I don’t …

Speech Features

Translations

Attention

Encoder

Transcripts

ASR Decoder ST Decoder

Figure 1: General architecture of dual-decoder Trans-
former (upper) and interactive attention mechanism
(lower). Interactive attention sub-layers are marked
with dotted boxes. They merge the outputs of the main
attention sub-layers (red boxes) and cross-attention sub-
layers (yellow boxes).

2.2 Text-to-Speech Synthesis

We adopted the approach to cascade an acoustic
model and a vocoder. We used FastSpeech 2 (Ren
et al., 2021) as the acoustic model and HiFi-GAN
(Kong et al., 2020) as the vocoder. FastSpeech 2
adopts Transformer-based architecture for the en-
coder and the Mel-spectrogram decoder, and the
variance adapter between them predicts the dura-
tion, pitch, and energy of the audio. HiFi-GAN em-
ploys generative adversarial networks to generate
waveforms from Mel-spectrograms. It is composed
of one generator and two discriminators, a multi-
period discriminator, and a multi-scale discrimi-
nator. We used the PaddleSpeech toolkit (Zhang
et al., 2022a) and the pretrained models provided
by Zhang et al. (2022a) to generate waveforms.

Dataset Sentence Embedding
Model Used for Filtering

Total Length
(Hours)

MuST-C None 600.2
GigaST None 9873.2
GigaST LASER 919.1
GigaST Sentence Transformers 601.1

Table 1: The size of the datasets and the filtered versions
used for training the ST system.

3 Experiments

3.1 Speech-to-Text Translation

3.1.1 Datasets

To train our ST system, we utilized two distinct
datasets: MuST-C (Di Gangi et al., 2019) v2 with
Chinese translations, and GigaST (Ye et al., 2022)
which is the original dataset that was used to con-
struct the GigaS2S dataset provided by the organiz-
ers.

Both datasets offer unique advantages. While
GigaST is in the same domain as the development
and test data, MuST-C is not. In addition, GigaST
is considerably larger than MuST-C. However, it is
worth noting that the translations in GigaST were
generated by a machine translation system and may
not be of the same quality as those in MuST-C,
which were translated by human. As a result, deter-
mining which dataset is more likely to yield better
results requires further experimentation.

To shorten the training time and improve per-
formance, we filtered the extremely large GigaST
dataset to select utterances with better translation
quality. As the translations in GigaST are machine-
generated and there are no reference translations
available, we evaluated the translation quality using
the cosine similarity of sentence embeddings from
the source and target sentences. We tested two
different models for generating the embeddings:
LASER1 and “paraphrase-xlm-r-multilingual-v1”
from Sentence Transformers2 (simply referred to
as “Sentence Transformers” subsequently). The re-
sulting similarity distributions are shown in Figure
2. We selected the top 10% of the data based on
similarity scores (data that is on the right-hand side
of the red line). Table 1 shows the sizes of MuST-C
and GigaST before and after filtering.

1https://github.com/facebookresearch/LASER
2https://github.com/UKPLab/

sentence-transformers/tree/master/examples/
training/paraphrases
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Figure 2: Histograms of cosine similarity between
source and target sentence embedding based on LASER
and Sentence Transformers. The red line marks the 90th
percentile.

3.1.2 Training and Decoding
English sentences were normalized and tokenized
using the Moses tokenizer (Koehn et al., 2007),
and punctuations were stripped. Chinese sentences
were tokenized using jieba.3 English and Chinese
tokens were further split into subwords using the
BPE method (Sennrich et al., 2016) with a joint
vocabulary of 16, 000 subwords.

We used Kaldi (Ravanelli et al., 2019) to extract
83-dimensional features normalized by the mean
and standard deviation computed on the training
set. We removed utterances with more than 6, 000
frames or more than 400 characters and used speed
perturbation (Inaguma et al., 2020) with factors of
0.9, 1.0, and 1.1 for data augmentation.

Our implementation was based on the ESPnet-
ST toolkit (Inaguma et al., 2020). We used the
same architecture for all the ST models with a 12-
layer encoder and 8-layer decoders. The coefficient
α in the loss function (Equation 2) was set to 0.3 in
all the experiments. We used the Adam optimizer
(Kingma and Ba, 2015) and Noam learning rate
schedule (Vaswani et al., 2017) with 25, 000 warm-
up steps and a maximum learning rate of 2.5e− 3.
We used a batch size of 48 per GPU and trained
models on a single machine with 4 Tesla V100
GPUs. The models were trained for 25 epochs. We
kept checkpoints after each epoch and averaged the
five best models on the development set based on
prediction accuracy. For decoding, the beam size
was set to 5 for ST and 1 for ASR.

3.1.3 Results
We conducted experiments to investigate the im-
pact of using different datasets for training the sys-
tem. The results are presented in Table 2. Ad-
ditionally, we evaluated the performance of the
system when using different sentence embedding
models for data filtering. Our findings reveal that
LASER produces better results compared to Sen-
tence Transformers. Notably, after filtering the data
using LASER, the total number of hours of audio
is higher compared to that obtained using Sentence
Transformers. Given this observation, it might be
more appropriate to perform filtering based on the
length of the audio rather than the number of utter-
ances.

Our experiments also revealed that training the
model with GigaST alone yielded better results
compared to using only the MuST-C dataset. Fur-

3https://github.com/fxsjy/jieba
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Training Data BLEU

MuST-C 9.71
GigaST (LASER) 13.96
GigaST (Sentence Transformers) 11.57
MuST-C → GigaST (LASER) 13.52
GigaST (LASER) → MuST-C 13.30

Table 2: Experimental results on training with different
datasets. “→” indicates training with the dataset on the
left and use the best checkpoint to initiate the training
with the dataset on the right.

thermore, we evaluated an approach in which we
trained the model with one dataset and use the best
checkpoint to initiate the training with the other
dataset. However, we observed that this approach
did not yield any improvement compared to train-
ing the model with GigaST alone.

Based on these findings, we adopted the transla-
tion generated by the ST system trained solely on
GigaST filtered based on LASER for our submis-
sion.

3.2 Text-to-Speech Synthesis

We used pretrained models provided by Zhang
et al. (2022a) trained on the AISHELL-3 dataset
(Shi et al., 2021). The PaddleSpeech toolkit pro-
vides several models trained with the AISHELL-3
dataset, including FastSpeech 2 and HiFi-GAN.
We used the best-performing model combination in
terms of MOS reported in (Zhang et al., 2022a).
For other configurations, such as grapheme-to-
phoneme conversion, we followed Zhang et al.
(2022a).

The generated audio files have one channel, a
sample width of 16 bit, and a frame rate of 24, 000.
Because the predictions of speech-to-text transla-
tion sometimes contained English words that were
preprocessed to empty strings by the grapheme-to-
phoneme conversion, some (less than 1 % of the
test set) audio files could not be generated.

4 Conclusion

In this paper, we described our system, which is a
combination of speech-to-text translation and text-
to-speech synthesis. For speech-to-text translation,
we trained the Dual-decoder Transformer model
with the GigaST dataset filtered based on the simi-
larity of multilingual sentence embeddings. For the
text-to-speech synthesis model, we took a cascade
approach of an acoustic model and a vocoder and
used a combination of FastSpeech 2 and HiFi-GAN.

In the future, we will try to perform multi-level pre-
training based on transforming SpeechUT (Zhang
et al., 2022b) with phonemes as unit. We will also
try to use Encodec-based speech synthesis method
similar to VALL-EX (Zhang et al., 2023) to in-
crease the accurate representation of emotions and
vocal patterns.
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Abstract

Simultaneous speech translation (SimulST)
translates partial speech inputs incrementally.
Although the monotonic correspondence be-
tween input and output is preferable for smaller
latency, it is not the case for distant language
pairs such as English and Japanese. A prospec-
tive approach to this problem is to mimic si-
multaneous interpretation (SI) using SI data to
train a SimulST model. However, the size of
such SI data is limited, so the SI data should
be used together with ordinary bilingual data
whose translations are given in offline. In this
paper, we propose an effective way to train a
SimulST model using mixed data of SI and
offline. The proposed method trains a single
model using the mixed data with style tags that
tell the model to generate SI- or offline-style
outputs. Experiment results show improve-
ments of BLEURT in different latency ranges,
and our analyses revealed the proposed model
generates SI-style outputs more than the base-
line.

1 Introduction

Simultaneous speech translation (SimulST) is a
technique to translate speech incrementally without
waiting for the end of a sentence. Since SimulST
should work in small latency against the input
speech, monotonic translation following the word
order of the source language is preferable. How-
ever, making translation monotonic is not trivial
especially for distant language pairs with different
word orders, such as English and Japanese. Most
recent SimulST studies still use parallel corpora
only with offline translations and potentially have
the limitation to work in a monotonic way.

A prospective approach to this problem is to
use SI data to train a SimulST model for mimick-
ing simultaneous interpretation (SI). There are sev-
eral SI data resources developed so far for English-
Japanese (Toyama et al., 2004; Shimizu et al., 2013;
Doi et al., 2021). Despite these efforts, SI data are

still very small compared to bilingual data based
on offline translations. Using such scarce SI data to
fine-tune an offline translation model causes over-
fitting on the small SI data. Training a model using
mixed data of offline and SI data is another option
to mitigate the problem of data scarcity, but the
simple data mixture causes confusion between the
output styles of offline translation and SI.

In this paper, we propose a method to train a
SimulST model using mixed data of SI and offline
translation with style tags to tell the model to gener-
ate SI- or offline-style output selectively. It has the
advantage of sharing two different styles in a single
model and generating SI-style outputs by putting
the SI-style tag in the decoding, which are lever-
aged by offline translation data. Experiment results
using MuST-C and small SI data showed improve-
ments of BLEURT by the proposed method over
the baselines in different latency ranges. Further
analyses revealed that the proposed model gener-
ates more appropriate SI-style outputs than base-
lines.

2 Related Work

There have been many studies on simultaneous
translation for text and speech in decades (Fügen
et al., 2007; Oda et al., 2014; Dalvi et al., 2018).
Most recent approaches are based on deep neural
networks and have evolved with the technologies
of neural machine translation (NMT) (Gu et al.,
2017) and neural speech recognition (ASR) (Rao
et al., 2017). An important advantage of the neural
SimulST methods (Ma et al., 2020b; Ren et al.,
2020) is their end-to-end modeling of the whole
process, which improves the efficiency compared to
a cascade approach. Such an end-to-end SimulST
model is trained using speech translation corpora
such as MuST-C (Di Gangi et al., 2019), but these
corpora are usually based on offline translation due
to the lack of large-scale SI data.

For the English-Japanese language pair, there

363



6

しかしこの経済(6)危機や私の(8)国での(7)出来事について(1)私は(4)男性に(5)非があると(3)言うつもりは(2)ありません

(4)男性の、(5)せいだけでは(2)ありません、私どもの(8)国の、金融(6)崩壊の、(5)責任は、

And (1)I’m (2)not here to (3)say that (4)men are to (5)blame for the (6)crisis and what (7)happened in my (8)country.

SI Target

Source

Offline Target

Figure 1: Example of English-to-Japanese offline translation and SI.

have been some attempts for the development of
SI corpora (Toyama et al., 2004; Shimizu et al.,
2013; Doi et al., 2021). However, the amount of
such SI corpora is still very limited compared to
offline translations. We tackle this problem by us-
ing a larger-scale offline translation corpus. This
condition can be seen as domain adaptation from
resource-rich offline translation to resource-poor
simultaneous translation. In a typical domain adap-
tation scenario, an out-of-domain model is fine-
tuned using in-domain data (Luong and Manning,
2015; Sennrich et al., 2016), but it tends to over-
fit to the small in-domain data (Chu et al., 2017).
As another adaptation approach, tag-based NMT
works to control the politeness of translations (Sen-
nrich et al., 2016) and to enable zero-shot mul-
tilingual NMT (Johnson et al., 2017). This tag-
based approach has been extended to multi-domain
fine-tuning (Kobus et al., 2017) and mixed fine-
tuning (Chu et al., 2017). These studies fine-tune
NMT models using mixed data of in-domain and
out-of-domain corpora. Tagged Back-Translation
(Caswell et al., 2019) is an application of the tag-
based approach to well-known back-translation-
based data augmentation. It distinguishes source
language sentences from parallel corpora and those
obtained from back-translation to handle possible
back-translation noise in the training of an NMT
model. Our work is motivated by these tag-based
methods and tackles the scarcity of SI data.

3 Differences between Offline Translation
and Simultaneous Interpretation

There is a large style difference between SI and
offline translation. Figure 1 shows an example of
offline translation and SI transcript in Japanese for

a given English source sentence. The solid lines in
the figure represent word correspondences. In this
figure, we can find:

• Most English content words are translated into
Japanese in the offline translation, while some
are missing in the SI transcript.

• The SI tries to translate the former half of the
input earlier than the latter half with some un-
naturalness, while the offline translation keeps
naturalness in Japanese with long-distance re-
ordering from the input English.

These points suggest important differences between
offline translation and SI; SI focuses on the simul-
taneity of the interpretation to deliver the contents
as early as possible and to maintain the interpreter’s
working memory. The word order difference be-
tween English and Japanese poses a serious diffi-
culty in SI, as mentioned in the literature (Mizuno,
2017). Thus, it is important to use SI data to train
a SimulST model to improve its simultaneity.

4 Proposed Method

Although training a SimulST model using SI data
is necessary, we suffer from data scarcity in prac-
tice. We propose a method to use a relatively large
offline translation corpus to mitigate for the SI data
scarcity for training a SimulMT model. Following
the tag-based NMT studies, we put a style tag at
the beginning of the target string in training and
predict a specified tag forcibly at the first step in
inference. In this work, we use two tags: <si> for
SI and <off> for offline translation.

Suppose we have an SI transcript: 私は、買っ
た。ペンを、 for an English input: I bought a

364



Offline SI
#segm. #En words #segm. #En words

train 328,639 5,714,360 65,008 1,120,245
dev 1,369 23,059 165 2,804
test 2,841 46,144 511 8,104

Table 1: Data sizes of offline data and SI data in the
number of aligned segments.

pen. as a training example. We put the SI-style tag
at the beginning of the SI transcript as follows:

<si>私は、買った。ペンを、

This string is tokenized into subwords1:

_< si > 私 は 、 買 っ た 。 ペ
ン を 、

Here, we assume we have a pre-trained sequence-
to-sequence model such as mBART (Liu et al.,
2020b; Tang et al., 2021) as a basis of the SimulST
model, as described later in the next section. The
aforementioned style tags may not be included in
the subword vocabulary of the pre-trained model
and are tokenized further like “_< si >”, but it
works in practice.

5 Experimental Setup

5.1 Dataset
We used MuST-C (Di Gangi et al., 2019) v2
English-Japanese data as our offline speech trans-
lation corpus. We also prepared development and
test sets from our in-house Japanese SI recordings
on TED Talks that are not included in the train-
ing sets above. As for the SI data for training, we
used NAIT-SIC-Aligned (Zhao et al., 2023). This
SI data is constructed by applying heuristic sen-
tence alignment to extract parallel sentence pairs
using the latest version of NAIST-SIC2 (Doi et al.,
2021). From NAIST-SIC-Aligned, we selected IN-
TRA, AUTO-DEV and AUTO-TEST as train, dev
and test data, respectively. For all the SI sets, we
aligned the English text segments with the corre-
sponding audio tracks in MuST-C using an English
forced-aligner Gentle3. Here, we excluded seg-
ments not aligned with the source speech from the
aligned dataset. Table 1 shows the size of the of-
fline and SI data.

1“_” is the meta-character representing white spaces in
an original string by SentencePiece (Kudo and Richardson,
2018), and “ ” represents a white space in a tokenized string.

2https://dsc-nlp.naist.jp/data/
NAIST-SIC/2022

3https://github.com/lowerquality/
gentle

5.2 Simultaneous Speech Translation

We used our SimulST implementation based on
fairseq (Ott et al., 2019). It followed the sys-
tem architecture of the best-scored system in the
IWSLT 2022 evaluation campaign (Polák et al.,
2022), which used an offline ST model in the online
simultaneous decoding based on Local Agreement
(LA) (Liu et al., 2020a)4.

5.2.1 Offline ST Model
We built the initial offline ST model by connect-
ing two pre-trained models. Firstly, we used Hu-
BERT Large as the encoder, which consists of a
feature extractor trained on 60k hours of unlabeled
speech data Libri-Light (Kahn et al., 2020) and
a transformer encoder layer. The feature extrac-
tor is a 7-layer convolutional layer with a kernel
size of (10,3,3,3,3,2,2), a stride of (5,2,2,2,2,2,2),
and 512 channels, while the transformer encoder
layer consists of 24 layers. Next, we used the de-
coder portion of mBART50, an encoder-decoder
model pre-trained with 50 language pairs, as the
decoder. The decoder consists of 12 layers of trans-
former decoders, and the embedding layer and
linear projection weights are shared, with a size
of 250,000. The dimension of each layer of the
transformer encoder and decoder is 1024, the di-
mension of the feed forward network is 4096, the
number of multi-heads is 16, the activation func-
tion is the ReLU function, and the normalization
method is pre-layer normalization (Baevski and
Auli, 2019). These two models are connected by an
Inter-connection (Nishikawa and Nakamura, 2023)
that weights each transformer layer of the encoder
and integrates the output tensors of each layer in a
weighted sum, and a length adapter (Tsiamas et al.,
2022). The length adapter is a 3-layer convolu-
tional network with 1024 channels, the stride of 2,
and the activation function of GELU.

The inputs are waveforms with a 16-kHz sam-
pling rate that are normalized to zero mean and
unit variance. During training, each source audio
is augmented (Kharitonov et al., 2020) with a prob-
ability of 0.8. We train the model on MuST-C
(Di Gangi et al., 2019), CoVoST-2 (Wang et al.,
2020), Europarl-ST (Iranzo-Sánchez et al., 2020),
and TED-LIUM (Rousseau et al., 2012). We
use gradient accumulation and data parallelism to
achieve a batch size of approximately 32 million

4We also tried wait-k (Ma et al., 2019), but LA worked
better than wait-k in our pilot test.

365

https://dsc-nlp.naist.jp/data/NAIST-SIC/2022
https://dsc-nlp.naist.jp/data/NAIST-SIC/2022
https://github.com/lowerquality/gentle
https://github.com/lowerquality/gentle


tokens. We use Adam with β1 = 0.99, β2 = 0.98,
and a base learning rate of 2.5× 10−4. The learn-
ing rate is controlled by a tri-stage scheduler with
phases of 0.15, 0.15, and 0.70 for warm-up, hold,
and decay, respectively, while the initial and final
learning rate has a scale of 0.01 compared to base.
We use sentence averaging and gradient clipping
of 20. We apply a dropout of 0.1 before every non-
frozen layer and use time masking for 10-length
spans with a probability of 0.2, and channel mask-
ing for 20-length spans with a probability of 0.1 in
the encoder feature extractor’s output. The loss is
the cross-entropy loss with label smoothing of 0.2.
We call this trained model base model.

The base model was fine-tuned using the of-
fline training and development sets (Table 1). Dur-
ing fine-tuning, we set the learning rate of 2.5 ×
10−5, saved models in every 1,000 updates, and
adopted checkpoint averaging over five-best check-
points according to the loss on the development
set. We call this fine-tuned model base+O model.
About those base and base+O models, we use
the NAIST IWSLT 2023 Simultaneous speech-to-
speech model for the Simultaneous Speech Transla-
tion task (Fukuda et al., 2023). We further fine-tune
the base+O model using the SI data in the same
manner to derive base+O+S model. Here, follow-
ing (Tsiamas et al., 2022), to avoid overfitting the
small SI data, the parameters of the following com-
ponents were kept fixed: the feature extractor and
feedforward layers of the encoder and the embed-
ding, self-attention, and feedforward layers of the
decoder.

5.2.2 Fine-tuning using Prefix Alignment

For further fine-tuning toward SimulST, we ex-
tracted prefix-to-prefix translation pairs from the
available training sets using Prefix Alignment
(PA) (Kano et al., 2022). PA uses an offline transla-
tion model to find prefix-to-prefix translation pairs
that can be obtained as intermediate translation
results using a given offline translation model. Fi-
nally, we fine-tuned the base+O model using the
prefix pairs.

5.2.3 Compared Methods

We compared the following conditions on the final
fine-tuning data:

Offline FT Fine-tuned using the prefix pairs from
the offline data (baseline in offline).

(BLEURT) SI Offline
Offline FT 0.386 0.518
SI FT 0.359 0.347
Mixed FT 0.393 0.483
Mixed FT + Style 0.445 0.522
Mixed FT + Style + Up 0.443 0.516

Table 2: BLEURT in full-sentence offline ST on SI and
offline test sets.

(BLEU) SI Offline
Offline FT 7.8 16.0
SI FT 10.9 6.3
Mixed FT 9.4 13.3
Mixed FT + Style 10.3 15.4
Mixed FT + Style + Up 12.2 14.2

Table 3: BLEU in full-sentence offline ST on SI and
offline test sets.

SI FT Fine-tuned using the prefix pairs from the
SI data (baseline in SI).

Mixed FT Fine-tuned using prefix pairs from both
of the offline and SI data (baseline in mixed).

Mixed FT + Style Fine-tuned using prefix pairs
from both of the offline and SI data with the
style tags (proposed method).

Mixed FT + Style + Up The SI portions were up-
sampled in Mixed FT + Style to balance the
data size between the offline and SI data (pro-
posed method).

Here, the prefix pairs from the offline data were ob-
tained using base+O model, and those from the SI
data were obtained using the base+O+S model.
The hyperparameter settings for the fine-tuning
were the same as that for the base+O model.

5.3 Evaluation Metrics

We evaluated the SimulST systems using SimulE-
val5 (Ma et al., 2020a). The unit length of speech
segments was set to {200, 400, 600, 800, 1,000}
milliseconds6. For the SimulST systems, transla-
tion quality was evaluated in BLEURT (Sellam
et al., 2020) and BLEU (Papineni et al., 2002)7.

5https://github.com/facebookresearch/
SimulEval

6We also evaluated SI FT on the SI test set with 120 and
160 ms speech segments to investigate its performance in low
latency ranges.

7BLEU was calculated using SacreBLEU (Post, 2018).
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Figure 2: SimulST latency (ATD) – quality results on SI test set.
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Figure 3: SimulST latency (ATD) – quality results on offline test set.

The latency in SimulST was evaluated in Aver-
age Token Delay (ATD) (Kano et al., 2023) im-
plemented in SimulEval. Even though Average
Lagging (AL) (Ma et al., 2019) is the most popular
latency metric, it sometimes resulted in negative
values, as suggested by Kano et al. (2023). Thus,
we present the results using ATD and include the
AL results in Appendix A.

6 Results

6.1 Offline Translation Results
Tables 2 and 3 show the offline translation re-
sults in BLEURT and BLEU for the SI and offline
test sets. These results show that our proposed
Mixed FT + Style and Mixed FT + Style + Up sur-
passed baselines in BLEURT for SI test. On the
offline test set (MuST-C tst-COMMON), the per-
formance of the proposed models was almost the
same as Offline FT. This suggests that our proposed
method leads to outputs semantically close to SI
references than the baseline. Contrary, the SI FT
baseline surpassed the Mixed FT + Style in BLEU.

The result shows that the upsampling worked for
BLEU improvement for the SI test set in the offline
translation condition.

6.2 Simultaneous Translation Results

Figure 2 shows SimulST results in BLEURT and
BLEU for the SI test set. In Figure 2a, the pro-
posed method with the style tags showed clearly
better BLEURT results than the baselines. The up-
sampling did not bring clear differences, the same
as findings on the offline translation results shown
in Table 2. In contrast, Figure 2b shows SI FT
worked the best in almost all latency ranges, while
the proposed method outperformed the other two
baselines (Offline and Mixed).

Figure 3 shows SimulST results for the offline
test set. They reflect the difference in reference
translations between the SI and offline test sets.
The Offline FT baseline worked well in BLEURT
and outperformed the proposed method in BLEU.
The other baselines resulted in worse BLEURT and
BLEU scores than the proposed method.
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Figure 4: SimulST latency (ATD) – quality (BERTScore) results on SI test set.

These results suggest the proposed method con-
veys the information given in source language
speech better than the baselines.

7 Discussions

The results shown in Figures 2, 3 demonstrated the
advantage of the proposed method in BLEURT, but
not in BLEU. In this section, we discuss the results
in detail to reveal which model works the best from
the viewpoint of SimulST.

7.1 BERTScore Details

Figure 4 shows the detailed results in F1, recall,
and precision by BERTScore (Zhang et al., 2020)
for the SI test set. The proposed method worked
the best in BERTScore recall, and the recall curves
look similar to BLEURT curves shown in Figure 2a.
On the other hand, the SI FT baseline worked the
best in BERTScore precision, and the precision
curves look very similar to the BLEU curves shown
in Figure 2b. We conducted further analyses below
to investigate the mixed results in different quality
metrics.

7.2 Length Differences

First, we focus on the length differences between
translation outputs and references. Figure 5 shows
the length ratios of translation results and their ref-
erences. The proposed method resulted in longer
outputs than the baselines, and the SI FT baseline
preferred shorter output than the others and ref-
erences. From the viewpoint of the precision of
the translation results, outputs longer than their
references are unfavorable. Figure 6 shows the his-
togram of length differences between SI FT and
Mixed FT + Style. They showed different distribu-
tions; this suggests that SI FT suffered from under-
translation, and the proposed method suffered from
over-translation.
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Figure 5: Length ratio results on SI test set.
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Figure 6: The length differences between hypotheses
and references in SI FT and Mixed FT + Style (speech
segment size is 600ms) on SI test set.

Table 4 shows the translation examples by SI FT
and Mixed FT + Style. Here, SI FT generates very
short outputs compared with Mixed FT + Style;
BLEU is not always good due to the brevity penalty,
but SI FT would have an advantage in BERTScore
precision.

7.3 Non-speech Sound Events and Repetitions
Next, we investigated the over-translation sug-
gested in the analyses above.

We observed serious repetitions by the proposed
method, such as (拍手) (拍手) ..., which means
(Applause). This kind of non-speech sound events
(applause and laughter) are found many times in
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Source TEMPT was one of the foremost graffiti artists in the 80s.
There’s no hospital that can say “No.”
Anybody who’s paralyzed now has access to actually draw or communicate using only their eyes.

SI FT テンプトは、グラフィティアーティストの (TEMPT was, graffiti artists’)
(Baseline) 病院は、(a hospital)

麻痺した人達は、 (paralyzed people)
Mixed FT + Style テンプトは、グラフィティアーティストの一人です。(TEMPT is one of graffiti artists.)
(Proposed) 病院では「いいえ」は言えません。(In a hospital, we cannot say “No.”)

麻痺した人なら誰でも、絵を描いたり、会話をすることができます。
(Anybody who is paralyzed can draw a picture and have a talk.)

SI reference 八十年代の素晴らしいグラフィックアーティストでした。
((He) was a great graphic artist in the 80s.)

病院も、ノーとは言えない。(There’s no hospital that can say “No.”)
麻痺してる人達は、これを全員使うことが出来るようになっています。

(Everybody who is paralyzed can use this.)
Offline reference 80年代を代表するグラフィティ・アーティストでした

病院もダメと言えません
全身麻痺の人誰もが目だけで絵を描いたりコミュニケーションできます

Table 4: Example sentences in SI FT and Mixed FT + Style (speech segment size: 600ms) on SI test set.

TED Talks, but they are not translated by inter-
preters and excluded from the SI data. According
to this assumption, we tried to eliminate typical
repetitions as follows and to conduct the evaluation
after that.

• Removing tokens if they are surrounded by
"()" and "<>". (if the tokens include parts of
"(拍手)" like "拍手)" or "(", they were also
excluded.)

• Stopping the generating output when at least
one kind of 3-gram appeared at least 3 times
in the steps until reaching the end of the sen-
tence.

We applied this repetition removal on the re-
sults by Mixed FT + Style and SI + Style; they
are labeled as Mixed FT + Style + Rmrep and
SI FT + Rmrep, respectively. Figure 7 shows
BLEU and length ratio results before and after
the repetition removal. BLEU increased consis-
tently on the proposed method while almost no
changes were observed on the SI FT baseline ex-
cept for one sample at ATD=200. This suggests the
existence of many repetitions in the translation re-
sults by the proposed method. We also investigated
BLEURT and BERTScore, as shown in Figure 8.
The repetition removal made almost no changes in
BLEURT, probably due to the semantic-oriented
evaluation strategy of BLEURT. BERTScore Pre-
cision and F1 of the proposed method increased
in the middle latency ranges, while they decreased
almost consistently for the SI FT baseline. These
findings suggest an over-translation problem with

the proposed method, but it made little impact on
semantic-oriented automatic evaluation results.

8 Conclusion

In this paper, we proposed an effective method
to train a SimulST model using mixed data of SI-
and offline-style translations with style tags to tell
the model to generate outputs in either style, mo-
tivated by the tag-based approach to domain adap-
tation. Experiment results on English-to-Japanese
SimulST demonstrated the advantage of the pro-
posed method in BLEURT and BERTScore re-
call despite the inferior performance in BLEU and
BERTScore precision due to over-translations and
repetitions. Future work includes an extension to
other language pairs and further verification via
human evaluation.

9 Limitation

The scores reported in the SI test were lower than
those in the offline test. Reporting results on other
SI data would support seeing the effectiveness of
our method. To our knowledge, this is the first work
to use SI data as speech translation data. There
are no other language pairs SI data than English-
Japanese pairs those source speech and target text
aligned.
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Figure 7: Results with repetition removal (Rmrep) in
BLEU and length ratio against ATD on SI test set.
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A Evaluation Results in AL.

Figure 9 shows the main results in BLEURT and
BLEU in SI test in AL. Figure 10 shows the main
results in BLEURT and BLEU in offline test in
AL. Those results trends are almost the same as the
trends in main results in Figure 2, 3.
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Figure 9: SimulST latency (AL) – quality results on SI test set.
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Abstract

In this paper, we present our submission to the
IWSLT 2023 (Agarwal et al., 2023) Simulta-
neous Speech-to-Text Translation competition.
Our participation involves three language direc-
tions: English-German, English-Chinese, and
English-Japanese. Our proposed solution is
a cascaded incremental decoding system that
comprises an ASR model and an MT model.
The ASR model is based on the U2++ architec-
ture and can handle both streaming and offline
speech scenarios with ease. Meanwhile, the
MT model adopts the Deep-Transformer archi-
tecture. To improve performance, we explore
methods to generate a confident partial target
text output that guides the next MT incremen-
tal decoding process. In our experiments, we
demonstrate that our simultaneous strategies
achieve low latency while maintaining a loss of
no more than 2 BLEU points when compared
to offline systems.

1 Introduction

This paper describes the HW-TSC‘s submission
to the Simultaneous Speech-to-Text Translation
(SimulS2T) task at IWSLT 2023 (Agarwal et al.,
2023).

From a systems architecture perspective, current
research on simultaneous speech-to-text translation
(SimulS2T) can be categorized into two forms: cas-
cade and end-to-end. Cascade systems typically
consist of a streaming Automatic Speech Recogni-
tion (ASR) module and a streaming text-to-text ma-
chine translation (MT) module, with the possibil-
ity of incorporating additional correction modules.
While integrating these modules can be complex,
training each module with sufficient data resources
can prove to be worthwhile. Alternatively, an end-
to-end approach is also an option for SimulS2T,
where translations can be directly generated from
a unified model with speech inputs. However, it
is important to note that bilingual speech transla-

tion datasets, which are necessary for end-to-end
models, are still scarce resources.

The current efforts in simultaneous speech-to-
text translation (SimulS2T) concentrate on devel-
oping dedicated models that are tailored to this
specific task. However, this approach has certain
drawbacks, such as the requirement of an additional
model, which typically involves a more challenging
training and inference process, as well as height-
ened computational demands and the possibility of
decreased performance when utilized in an offline
environment.

Our approach for this study involves utilizing a
sturdy offline ASR model and a robust offline MT
model as the foundation for our system. By modify-
ing the onlinization approach of (Polák et al., 2022)
and introducing an enhanced technique that can be
seamlessly integrated into the cascade system, we
are able to demonstrate that our simultaneous sys-
tem can perform at the similar level as the offline
models under strict latency restrictions without any
adjustments to the original models. Furthermore,
our system even surpasses previous higher latency
IWSLT systems.

Our contribution is as follows:

• We have revised the approach of onlinization
adopted by (Polák et al., 2022) and put for-
ward an enhanced technique that can be easily
integrated into the cascade system.

• Our findings show that the pre-training plus
fine-tuning paradigm yields significant im-
provements in both ASR and MT.

• Our research highlights that enhancing the
offline MT model has a direct positive impact
on the online cascade system as well.

2 Related Work

Simultaneous speech-to-text translation can be
achieved through either a cascaded system or an
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Figure 1: An overview of hw-tsc’s s2t framework.

end-to-end model, both of which can be (hybrid) in
nature. While cascaded systems currently offer the
highest quality in offline speech translation, end-
to-end speech translation provides a better trade-
off between quality and latency (Guo et al., 2022;
Wang et al., 2022a,b).

End-to-end speech translation systems incorpo-
rate various techniques to enable simultaneous
translation. For example, (Ma et al., 2019) im-
plements a wait-k model and utilizes meta-learning
to address data scarcity, while (Zhang et al., 2022b)
employs a wait-info model that incorporates infor-
mation entropy from both the original text and the
translation into the model. Additionally, (Liu et al.,
2020) utilizes a unidirectional encoder with mono-
tonic cross-attention to constrain dependence on
future context.

In addition, some research has focused on de-
tecting stable hypotheses. For instance, (Liu et al.,
2020) proposed the Hold-n strategy, which identi-
fies the best hypothesis in the beam and removes
the last n tokens from it. Similarly, (Liu et al., 2020)
introduced the LA-n strategy, which identifies the
matching prefixes of two consecutive chunks. Ad-
ditionally, like the LA-n strategy, (Nguyen et al.,
2021) developed the SP-n strategy, which identifies
the longest common prefix among all items in the
beam of a chunk. Our work directly addresses this
issue.

3 Methods

Figure 1 illustrates our framework.

3.1 ASR

In our cascade system, we have incorporated the
U2 (Wu et al., 2021) as the ASR module. This
framework has the flexibility to be implemented on

standard Transformer or Conformer architectures
and can perform both streaming and non-streaming
ASR. One of the major advantages of U2 over other
offline autoregressive ASR models is its ability to
support streaming through dynamic chunk training
and decoding with a CTC decoder on top of the
encoder. Additionally, U2 includes a standard au-
toregressive attention decoder and can be jointly
trained with the CTC decoder to improve training
stability. The dynamic chunk training method in-
volves applying a causal mask with varying chunk
sizes at the self-attention layer within the encoder.
This allows the hidden representation to condition
on some look-ahead contexts within the chunk,
similar to the self-attention of an autoregressive
decoder.

U2 offers four different decoding strategies:
"ctc_greedy_search", "ctc_beam_search", "atten-
tion_decoding", and "attention_rescoring". The
CTC decoder, with argmax decoding, guarantees
that the tokens decoded in previous chunks are un-
altered, leading to a smooth streaming experience.
The attention decoder generates output token by
token and also has the ability to re-score CTC gen-
erated texts using prefix beam search in the event
of multiple candidate proposals.

After building on our findings from last year,
we have discovered that U2 offers stability and
robustness in predicting audio without real utter-
ances. This improvement is due to the model’s
training strategy, specifically the use of dynamic
chunk training. In our current work, we have fur-
ther improved the performance of the model by
breaking the chunk-based attention approach and
employing the "attention_rescoring" decoding strat-
egy.
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3.2 MT

Our cascade system includes the Transformer
(Vaswani et al., 2017) as the MT module, which has
become a prevalent method for machine translation
(Guo et al., 2021) in recent years. The Transformer
has achieved impressive results, even with a primi-
tive architecture that requires minimal modification.
To improve the offline MT model performance,
we utilize multiple training strategies (Wei et al.,
2021).

Multilingual Translation (Johnson et al., 2017)
has proposed a simple solution for translating mul-
tiple languages using a single neural machine trans-
lation model with no need to alter the model archi-
tecture. The proposed technique involves inserting
an artificial token at the start of the input sentence
to specify the target language. Furthermore, all
languages use the same vocabulary, eliminating the
need to add additional parameters. In this study, En-
De/ZH/JA data was combined and jointly trained,
demonstrating that a multilingual model can signif-
icantly enhance translation performance.

Data diversification Data diversification
(Nguyen et al., 2020) is an effective strategy to
improve the performance of NMT. This technique
involves utilizing predictions from multiple
forward and backward models and then combining
the results with raw data to train the final NMT
model. Unlike other methods such as knowledge
distillation and dual learning, data diversification
does not require additional monolingual data and
can be used with any type of NMT model. Addi-
tionally, this strategy is more efficient and exhibits
a strong correlation with model integration.

Forward translation Forward translation (Wu
et al., 2019) refers to using monolingual data in the
source language to generate synthetic data through
beam search decoding. This synthetic data is then
added to the training data in order to increase its
size. While forward translation alone may not yield
optimal results, when combined with a back trans-
lation strategy, it can enhance performance more
effectively than back translation alone. In this work,
we use only the forward model to create synthetic
data and add the data to the original parallel cor-
pora.

Domain Fine-tuning Previous studies have
shown that fine-tuning a model with in-domain
data can significantly enhance its performance. We

hypothesize that there are domain-like distinctions
between ASR-generated results and actual text. To
further improve the performance, we use the gen-
eration from a well-trained ASR model to replace
source-side text in the training corpus data. This
fine-tuning approach enables us to achieve further
improvements in the MT model.

3.3 Onlinization

Incremental Decoding Translation tasks may re-
quire reordering or additional information that is
not apparent until the end of the source utterance,
depending on the language pair. In offline settings,
processing the entire utterance at once produces
the highest-quality results. However, this approach
also leads to significant latency in online mode.
One possible solution to reduce latency is to divide
the source utterance into smaller parts and translate
each one separately.

To perform incremental inference, we divide the
input utterance into chunks of a fixed size and de-
code each chunk as it arrives. Once a chunk has
been selected, its predictions are then committed
to and no longer modified to avoid visual distrac-
tions from constantly changing hypotheses. The
decoding of the next chunk is dependent on the pre-
dictions that have been committed to. In practice,
decoding for new chunks can proceed from a previ-
ously buffered decoder state or begin after forced
decoding with the tokens that have been committed
to. In either case, the source-target attention can
span all available chunks, as opposed to only the
current chunk.

Stable Hypothesis Detection Our approach is
based on prior research in (Polák et al., 2022), and
we have implemented stable hypothesis detection
to minimize the potential for errors resulting from
incomplete input. Their methods, such as LA-n
(Liu et al., 2020) and SP-n (Nguyen et al., 2021),
are designed for use in end-to-end systems that
search for a shared prefix among the hypotheses
generated from different chunk inputs. In contrast,
our approach operates within a cascaded system
that processes the same chunk input.

We can denote the MT and ASR generating func-
tions as G and F respectively. Let FC

i,n represent
the i output generated by the ASR function for a
c-chunk input with a beam size of n. Then the
final common prefix for the c-chunk input can be
expressed as prefixc, which is determined as fol-
lows:
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Model Language Pair Lantency BLEU AL AP DAL
Low 26.82 0.96 0.77 2.07

IWSLT22 Best System EN-DE Medium 31.47 1.93 0.86 2.96
High 32.87 3.66 0.96 4.45

Our System EN-DE - 33.54 1.88 0.83 2.84

Low 16.92 2.46 0.9 3.22
IWSLT22 Best System EN-JA Medium 16.94 3.77 0.97 4.29

High 16.91 4.13 0.98 4.53
Our System EN-JA - 17.89 1.98 0.83 2.89

Low 25.87 1.99 0.87 3.35
IWSLT22 Best System EN-ZH Medium 26.21 2.97 0.94 4.16

High 26.46 3.97 0.98 4.62
Our System EN-ZH - 27.23 1.98 0.83 2.89

Table 1: Final systems results

prefixc = LCP (G(F c
1,n), ..., G(F

c
n,n)) (1)

where LCP (·) is longest common prefix of the
arguments.

4 Experiments Setup

4.1 ASR

Model We extract 80-dimensional Mel-Filter
bank features from audio files to create the ASR
training corpus. For tokenization of ASR texts,
we utilize Sentencepiece with a learned vocab-
ulary of up to 20,000 sub-tokens. The ASR
model is configured as follows: nencoder layers =
12, ndecoder layers = 8, nheads = 8, dhidden = 512,
dFFN = 2048. We implement all models using
wenet (Zhang et al., 2022a).

Dataset To train the ASR module, we utilized
four datasets: LibriSpeech V12, MuST-C V2
(Gangi et al., 2019), TEDLIUM V3, and CoVoST
V2. LibriSpeech consists of audio book record-
ings with case-insensitive text lacking punctuation.
MuST-C, a multilingual dataset recorded from TED
talks, was used solely for the English data in the
ASR task. TEDLIUM is a large-scale speech recog-
nition dataset containing TED talk audio recordings
along with text transcriptions. CoVoST is also a
multilingual speech translation dataset based on
Common Voice, with open-domain content. Un-
like LibriSpeech, both MuST-C and CoVoST have
case-sensitive text and punctuation.

Training During the training of the ASR model,
we set the batch size to a maximum of 40,000
frames per card. We use inverse square root for
lr scheduling, with warm-up steps set to 10,000
and peak lr set at 5e−4. Adam is utilized as the op-
timizer. The model is trained on 4 V100 GPUs for
50 epochs, and the parameters for the last 4 epochs
are averaged. To improve accuracy, all audio inputs
are augmented with spectral augmentation and nor-
malized with utterance cepstral mean and variance
normalization.

4.2 MT
Model For our experiments using the MT model,
we utilize the Transformer deep model architecture.
The configuration of the MT model is as follows:
nencoder layers = 25, ndecoder layers = 6, nheads =
16, dhidden = 1024, dFFN = 4096, pre_ln = True.

Dataset To train the MT model, we collected all
available parallel corpora from the official websites
and selected data that was similar to the MuST-C
domain. We first trained a multilingual MT base-
line model on all data from three language direc-
tions. Then, we incrementally trained the baseline
model based on data from each language direction.

Training We utilize the open-source Fairseq (Ott
et al., 2019) for training, with the following main
parameters: each model is trained using 8 GPUs,
with a batch size of 2048, a parameter update fre-
quency of 32, and a learning rate of 5e− 4. Addi-
tionally, a label smoothing value of 0.1 was used,
with 4000 warmup steps and a dropout of 0.1. The
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Adam optimizer is also employed, with β1 = 0.9
and β2 = 0.98. During the inference phase, a beam
size of 8 is used. The length penalties are set to
1.0.

5 Results

From Table 1, we can see that the our systems work
well on various language pairs. And our systems
even beat the best IWSLT 22 systems under higher
latency.

Language Pair Model BLEU
En-DE Offline 35.23
- Simul 33.54
En-JA Offline 19.45
- Simul 17.89
En-ZH Offline 27.93
- Simul 27.23

Table 2: Comparison to offline system

Previous research has shown that the quality of
simultaneous translation can now match or even
surpass that of offline systems. However, in our
current study, we first established a new baseline
for the offline system. Furthermore, we found that
there is still a difference of 1-2 BLEU between
simultaneous translation and offline translation, see
Table 2.

5.1 Ablation Study on different ASR decoding
strategies

Language Pair Decoding strategies BLEU
En-DE ctc_beam_search 32.88
En-JA ctc_beam_search 16.56
En-ZH ctc_beam_search 26.47
En-DE attention_rescoring 33.54
En-JA attention_rescoring 17.89
En-ZH attention_rescoring 27.23

Table 3: Ablation Study on different ASR decoding
strategies

The decoding strategy of "attention_rescoring"
involves using a decoder to re-rank the results based
on the decoding output of "ctc_beam_search". As a
result, "attention_rescoring" can obtain better ASR
results. Table 3 demonstrates that a better ASR
decoding strategy can lead to overall better quality
results for the system.

5.2 Ablation Study on MT training strategies

Training strategies BLEU
Baseline 33.54
- Domain Fine-tuning 27.87
- Forward Translation 25.49
- Multiligual Translation 23.76

Table 4: Ablation Study on MT training strategies for
EN-DE direction

In the field of machine translation, Domain Fine-
tuning, Forward Translation, and Multiligual Trans-
lation are frequently employed methods to enhance
translation quality. It is evident from Table 4 that
these training strategies can effectively improve the
overall quality of the system.

6 Conclusion

In this paper, we report on our work in the IWSLT
2023 simultaneous speech-to-text translation evalu-
ation. We propose an onlinization strategy that can
be applied to cascaded systems and demonstrate
its effectiveness in three language directions. Our
approach is simple and efficient, with ASR and MT
modules that can be optimized independently. Our
cascade simultaneous system achieves results that
are comparable to offline systems. In the future, we
plan to further explore the direction of end-to-end
systems.
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Abstract

In this paper, we present our submission to the
IWSLT 2023 (Agarwal et al., 2023) Simultane-
ous Speech-to-Speech Translation competition.
Our participation involves three language direc-
tions: English-German, English-Chinese, and
English-Japanese. Our solution is a cascaded
incremental decoding system, consisting of an
ASR model, an MT model, and a TTS model.
By adopting the strategies used in the Speech-
to-Text track, we have managed to generate a
more confident target text for each audio seg-
ment input, which can guide the next MT in-
cremental decoding process. Additionally, we
have integrated the TTS model to seamlessly
reproduce audio files from the translation hy-
pothesis. To enhance the effectiveness of our
experiment, we have utilized a range of meth-
ods to reduce error conditions in the TTS input
text and improve the smoothness of the TTS
output audio.

1 Introduction

This paper describes the HW-TSC‘s submission
to the Simultaneous Speech-to-Speech Translation
(SimulS2S) task at IWSLT 2023 (Agarwal et al.,
2023).

Simultaneous speech-to-speech translation
(SimulS2S) is currently being researched using
Cascade systems. These systems typically involve
a streaming Automatic Speech Recognition
(ASR) module, a streaming Text-to-Text ma-
chine translation (MT) module, and an offline
Text-to-Speech(TTS) module, with the option
of incorporating additional correction modules.
Although integrating these modules can be
complex, training each module with sufficient data
resources can prove to be worthwhile.

Our study adopts a comprehensive approach that
utilizes several key components to build a strong
system. We incorporate a formidable offline ASR
model, a robust offline MT model, and a pre-trained

TTS model as the foundation for our system. More-
over, we introduce a refined onlinization technique
based on the approach developed by (Polák et al.,
2022), which seamlessly integrates into the cascade
system.

Offline TTS models often produce a blank sound
at the end of a sentence. As a result, when generat-
ing audio results in the simultaneous interpreting
mode, it can lead to blank tones between clips, caus-
ing the final audio to lack smoothness. To address
this issue, we have developed several strategies
aimed at mitigating this problem in our work.

2 Related Methods

2.1 ASR

In our cascade system, we have incorporated the
U2 (Wu et al., 2021) as the ASR module. This
framework has the flexibility to be implemented on
standard Transformer or Conformer architectures
and can perform both streaming and non-streaming
ASR. One of the major advantages of U2 over other
offline autoregressive ASR models is its ability to
support streaming through dynamic chunk training
and decoding with a CTC decoder on top of the
encoder. Additionally, U2 includes a standard au-
toregressive attention decoder and can be jointly
trained with the CTC decoder to improve training
stability. The dynamic chunk training method in-
volves applying a causal mask with varying chunk
sizes at the self-attention layer within the encoder.
This allows the hidden representation to condition
on some look-ahead contexts within the chunk,
similar to the self-attention of an autoregressive
decoder.

U2 offers multiple decoding strategies. In this
work, we use "attention_rescoring" decoding strat-
egy, which is to use the attention decoder re-score
CTC generated texts using prefix beam search in
the event of multiple candidate proposals.
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Figure 1: An overview of hw-tsc’s s2s framework.

2.2 MT

Our cascade system includes the Transformer
(Vaswani et al., 2017) as the MT module, which
has become a prevalent method for machine trans-
lation (Wei et al., 2021; Guo et al., 2021) in recent
years. The Transformer has achieved impressive
results, even with a primitive architecture that re-
quires minimal modification.

In this work, we use multiple training strate-
gies to improve the offline MT model performance.
First, we train a multilingual model for three di-
rections En-De/ZH/JA. Multilingual Translation
(Johnson et al., 2017) has proposed a simple solu-
tion to enhance translation performance for trans-
lating multiple languages using a single neural ma-
chine translation model with no need to alter the
model architecture. Second, we use Forward trans-
lation (Wu et al., 2019) to generate synthetic data
through beam search decoding. The we add the
data to the original parallel corpora and re-train the
MT model. Finally, we use the generation from a
well-trained ASR model to replace source-side text
in the training corpus data and fine-tune the MT
model to reduce the domain gap.

2.3 TTS

In a cascaded speech-to-speech translation system,
the TTS module plays a critical role in rendering
high-quality speech output from translated text. To
this end, we utilize the state-of-the-art VITS (Kim
et al., 2021) model, which is pretrained on mas-
sive amounts of data and incorporates advanced
techniques such as variational inference augmented
with normalizing flows and adversarial training.
This model has been shown to produce speech out-
put that is more natural and fluent compared to
traditional TTS models.

The inference process involves providing the
VITS model with the generated text, after which

the model generates the raw audio waveform. This
process is highly efficient and requires no addi-
tional input from the user. By leveraging the VITS
model, we are able to streamline the TTS module
and deliver high-quality speech output in a fraction
of the time traditionally required by other systems.
This results in a more seamless and intuitive user
experience, enabling our system to be used by a
wider range of individuals and applications.

3 Framework

Figure 1 illustrates our framework.

3.1 Onlinization

The primary method for onlinizing an offline model
and transforming it into a simul model is Incremen-
tal Decoding. Depending on the language pair,
translation tasks may require reordering or addi-
tional information that is not apparent until the end
of the source utterance. In offline settings, process-
ing the entire utterance at once usually produces
the highest-quality results, but this approach can
result in significant latency in online mode. One
possible solution to reduce latency is to divide the
source utterance into smaller parts and translate
each part separately. This approach helps to reduce
the time required for processing while still main-
taining translation quality. By using incremental
decoding in conjunction with smaller processing
units, we can significantly improve the speed and
efficiency of the translation process, making it ideal
for online settings where speed is of the essence.

To perform incremental inference, we divide the
input utterance into chunks of a fixed size and de-
code each chunk as it arrives. Once a chunk has
been selected, its predictions are then committed
to and no longer modified to avoid visual distrac-
tions from constantly changing hypotheses. The
decoding of the next chunk is dependent on the pre-
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dictions that have been committed to. In practice,
decoding for new chunks can proceed from a previ-
ously buffered decoder state or begin after forced
decoding with the tokens that have been committed
to. In either case, the source-target attention can
span all available chunks, as opposed to only the
current chunk.

3.2 Stable Hypothesis Detection

Our approach is based on prior research in (Polák
et al., 2022), and we have implemented stable hy-
pothesis detection to minimize the potential for
errors resulting from incomplete input. In previ-
ous research, some methods focused on detecting
stable hypotheses using strategies such as the Hold-
n strategy proposed by (Liu et al., 2020), which
identifies the best hypothesis in the beam and re-
moves the last n tokens from it. Similarly, (Liu
et al., 2020) introduced the LA-n strategy, which
identifies the matching prefixes of two consecutive
chunks. In addition, (Nguyen et al., 2021) devel-
oped the SP-n strategy, which identifies the longest
common prefix among all items in the beam of a
chunk.

However, these methods were designed for end-
to-end systems that search for a shared prefix
among the hypotheses generated from different
chunk inputs. Our approach, on the other hand,
operates within a cascaded system that processes
the same chunk input. As such, we have adapted
these strategies to better fit our context, resulting
in a more effective approach for stable hypothesis
detection. By using our approach, we are able to
achieve higher accuracy and stability in our system,
thereby improving its overall performance.

We can denote the MT and ASR generating func-
tions as G and F respectively. Let FC

i,n represent
the i output generated by the ASR function for a
c-chunk input with a beam size of n. Then the
final common prefix for the c-chunk input can be
expressed as prefixc, which is determined as fol-
lows:

prefixc = LCP (G(F c
1,n), ..., G(F

c
n,n)) (1)

where LCP (·) is longest common prefix of the
arguments.

3.3 Deblanking

Our team conducted a manual evaluation of the
audio output generated by TTS and identified two

issues. The first scenario involved the TTS model
producing unusual waveforms for previously un-
seen tokens. The second scenario involved TTS
generating blank sounds to indicate pauses within
the audio fragments. To address these issues, we
implemented two strategies which we have collec-
tively named Deblanking.

Unknown Filtering In the Chinese and Japanese
language directions, we initially remove tokens that
are not included in the vocabulary, such as infre-
quent punctuation marks and words. For Chinese
in particular, we must convert Arabic numerals into
textual numerals.

Context-Aware Pause Detection When analyz-
ing the waveform generated by TTS, we evaluate
whether or not the original text indicates a pause. If
the text does not indicate a pause, we eliminate the
final prolonged silence that produces the waveform.
Additionally, to ensure speech coherence, we’ve
reserved at least 160 frames of blank audio.

4 Experiments

4.1 Dataset

To train the ASR module, we utilized four datasets:
LibriSpeech V12, MuST-C V2 (Gangi et al., 2019),
TEDLIUM V3, and CoVoST V2. LibriSpeech con-
sists of audio book recordings with case-insensitive
text lacking punctuation. MuST-C, a multilingual
dataset recorded from TED talks, was used solely
for the English data in the ASR task. TEDLIUM is
a large-scale speech recognition dataset containing
TED talk audio recordings along with text tran-
scriptions. CoVoST is also a multilingual speech
translation dataset based on Common Voice, with
open-domain content. Unlike LibriSpeech, both
MuST-C and CoVoST have case-sensitive text and
punctuation.

To train the MT model, we collected all available
parallel corpora from the official websites and se-
lected data that was similar to the MuST-C domain.
We first trained a multilingual MT baseline model
on all data from three language directions. Then,
we incrementally trained the baseline model based
on data from each language direction.

4.2 Model

ASR We extract 80-dimensional Mel-Filter bank
features from audio files to create the ASR training
corpus. For tokenization of ASR texts, we utilize
Sentencepiece with a learned vocabulary of up to
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Model Language Pair BLEU/Whisper_ASR_BLEU StartOffset EndOffset ATD
EN-DE 33.54

Our S2T System EN-JA 17.89
EN-ZH 27.23

Our System EN-DE 10.45 1.04 2.73 1.97
Our System EN-JA 14.53 1.59 2.96 2.76
Our System EN-ZH 20.19 1.77 2.98 2.93

Table 1: Final systems results

20,000 sub-tokens. The ASR model is configured
as follows: nencoder layers = 12, ndecoder layers =
8, nheads = 8, dhidden = 512, dFFN = 2048. We
implement all models using wenet (Zhang et al.,
2022).

During the training of the ASR model, we set
the batch size to a maximum of 40,000 frames per
card. We use inverse square root for lr scheduling,
with warm-up steps set to 10,000 and peak lr set
at 5e− 4. Adam is utilized as the optimizer. The
model is trained on 4 V100 GPUs for 50 epochs,
and the parameters for the last 4 epochs are aver-
aged. To improve accuracy, all audio inputs are
augmented with spectral augmentation and normal-
ized with utterance cepstral mean and variance nor-
malization.

MT For our experiments using the MT model,
we utilize the Transformer deep model architecture.
The configuration of the MT model is as follows:
nencoder layers = 25, ndecoder layers = 6, nheads =
16, dhidden = 1024, dFFN = 4096, pre_ln = True.

We utilize the open-source Fairseq (Ott et al.,
2019) for training, with the following main param-
eters: each model is trained using 8 GPUs, with a
batch size of 2048, a parameter update frequency
of 32, and a learning rate of 5e− 4. Additionally, a
label smoothing value of 0.1 was used, with 4000
warmup steps and a dropout of 0.1. The Adam
optimizer is also employed, with β1 = 0.9 and β2
= 0.98. During the inference phase, a beam size of
8 is used. The length penalties are set to 1.0.

TTS For EN-DE direction, we utilize the open-
source Espnet (Watanabe et al., 2018) for infer-
ence. For EN-JA/ZH, we use the pretrained models
in huggingface. The pretrained models are VITS
(Kim et al., 2021) architecture, which adopts varia-
tional inference augmented with normalizing flows
and an adversarial training process.

4.3 Results
A detailed analysis of the results presented in Ta-
ble 1 indicates that the TTS transcription results
in Japanese have the smallest gap compared to the
results obtained from the S2T system, with a dif-
ference of approximately 3 BLEU. However, in
the German direction, the TTS system generates
the worst results among all the evaluated systems.
Further research is needed to understand the un-
derlying reasons for this discrepancy and identify
potential strategies to improve TTS performance in
this language pair.

4.4 Ablation Study on Deblanking strategies

Language Pair Training strategies BLEU
EN-DE Baseline 10.45

- Context-aware wait 10.32
- Unknown Filtering 10.27

EN-JA Baseline 14.53
- Context-aware wait 13.37
- Unknown Filtering 13.08

EN-ZH Baseline 20.19
- Context-aware wait 18.64
- Unknown Filtering 16.73

Table 2: Ablation Study on Deblanking strategies

The results presented in Table 2 provide strong
evidence that our proposed strategies are effective
in reducing the gap between offline and streaming
TTS.

5 Conclusion

This paper details our involvement in the IWSLT
2023 simultaneous speech-to-speech translation
evaluation. Our team presents an onlinization strat-
egy that can be utilized by cascaded systems, which
we have proven to be effective in three different
language directions. Additionally, we introduce
two strategies that address the disparity between
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offline and streaming TTS. Our approach is both
simple and efficient. Moving forward, we aim to
delve further into end-to-end systems.

References
Milind Agarwal, Sweta Agrawal, Antonios Anasta-
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Abstract

In this paper, we describe our submission to the
Simultaneous Track at IWSLT 2023. This year,
we continue with the successful setup from the
last year, however, we adopt the latest meth-
ods that further improve the translation quality.
Additionally, we propose a novel online policy
for attentional encoder-decoder models. The
policy prevents the model to generate transla-
tion beyond the current speech input by using
an auxiliary CTC output layer. We show that
the proposed simultaneous policy can be ap-
plied to both streaming blockwise models and
offline encoder-decoder models. We observe
significant improvements in quality (up to 1.1
BLEU) and the computational footprint (up to
45 % relative RTF).

1 Introduction

Simultaneous speech translation (SST) is the task
of translating speech into text in a different lan-
guage before the utterance is finished. The goal
of SST is to produce a high-quality translation in
real-time while maintaining low latency. However,
these two objectives are conflicting. If we decrease
the latency, the translation quality also drops. Last
year’s IWSLT evaluation campaign (Anastasopou-
los et al., 2022) showed that current methods for
simultaneous speech translation can approach the
translation quality of human interpreters (Polák
et al., 2022). The disadvantage is a higher com-
putation footprint that might make a widespread
application prohibitive.

This paper describes the CUNI-KIT submission
to the Simultaneous translation track at IWSLT
2023 (Agarwal et al., 2023). Following our last
year’s submission (Polák et al., 2022), we continue
in our effort to onlinize the robust offline speech
translation models. However, the main goal of this
submission is to improve the computational foot-
print. To this end, we propose a novel online policy
based on CTC. As we experimentally document,

the online CTC policy can be used to onlinize the
offline models achieving a 45 % improvement in
real time factor (RTF) as well as to improve the
quality of the streaming blockwise models (Tsunoo
et al., 2021). Aside from improving the online
policy, we also adopt the novel improved stream-
ing beam search (Polák et al., 2023) that further
improves the translation quality.

Our contributions are as follows:

• We adopt the latest online decoding algorithm
that improves the translation quality of robust
offline models in the simultaneous regime,

• We propose a novel online policy that signifi-
cantly

– lowers the computational complexity of
the online decoding with robust offline
models while maintaining the same or
only slightly worse translation quality,

– improves the translation quality of the
streaming blockwise models while main-
taining the same latency,

• We demonstrate that our systems can run on
hardware accessible to a wide audience.

2 Methods

In our submission, we use two different model
architectures — a traditional offline ST architec-
ture and a blockwise simultaneous ST architecture
(Tsunoo et al., 2021). In this section, we describe
the methods applied to achieve simultaneous ST
using these architectures.

2.1 Incremental Blockwise Beam Search with
Controllable Quality-Latency Tradeoff

To use the traditional offline ST model in a simulta-
neous regime, Liu et al. (2020) proposed chunking,
i.e., splitting the audio source utterance into small
constant-length chunks that are then incrementally
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fed into the model. As translation quality tends to
diminish toward the end of the unfinished source,
an online policy is employed to control the latency-
quality tradeoff in the generated output. Popular
online policies include wait-k (Ma et al., 2019),
shared prefix (Nguyen et al., 2020), hold-n and
local agreement (Liu et al., 2020). In Polák et al.
(2022), we showed that the tradeoff could be con-
trolled by varying the chunk length.

To generate the translation, a standard beam
search is typically applied (Sutskever et al., 2014).
While this decoding algorithm enables the model
to generate a complete translation for the current
input, it also suffers from overgeneration (i.e., hallu-
cinating tokens beyond sounds present in the input
segment) and low-quality translations towards the
end of the source context (Dong et al., 2020; Polák
et al., 2022).

To tackle this issue, we adopt an improved in-
cremental blockwise beam search (Polák et al.,
2023). We outline the algorithm in Algorithm 1
and highlight the main differences from the origi-
nal approach used in Polák et al. (2022) with red.

Algorithm 1: Incremental blockwise
streaming beam search algorithm for incre-
mental ST

Input :A list of blocks, an ST model
Output :A set of hypotheses and scores

1 Seen← ∅;
2 for each block do
3 Encode block using the ST model;
4 Stopped← ∅;
5 minScore← −∞;
6 while #active beams > 0 and not max. length do
7 Extend beams and compute scores;
8 for each active beam b do
9 if b ends with <eos> or (score ≤ minScore

and b /∈ Seen) then
10 minScore← max(minScore, score);
11 Stopped← Stopped ∪ b;
12 Remove b from the beam search;
13 end
14 end
15 end
16 Seen← Seen ∪ Stopped;
17 Sort Stopped by length-normalized score;
18 Set the best hypothesis from Stopped as active beam;
19 Apply the incremental policy;
20 Remove the last two tokens from the active beam;
21 end

In Algorithm 1, the overgeneration problem
is addressed by stopping unreliable beams (see
Line 9). The unreliable beam is defined as a beam
ending with <eos> token or having a score lower
or equal to any other unreliable beam detected so
far. This means, that we stop any beam that has a
score lower than any beam ending with <eos> to-
ken. Since there might be a hypothesis that would
always score lower than some hypothesis ending

with the <eos> token, the algorithm allows gen-
erating a hypothesis with a score lower than the
unreliable score if it was seen during the decoding
of previous blocks.

Finally, the algorithm removes two instead of
one token in the current beam (see Line 20). Re-
moving the last two tokens mitigates the issue of
low-quality translation toward the end of the con-
text.1

2.2 Rethinking Online Policies for
Attention-based ST Models

While the improved incremental blockwise beam
search improves the performance, it still requires a
strong online policy such as hold-n or local agree-
ment (Liu et al., 2020). A common property of
these online policies is that they require multiple
re-generations of the output translation. For ex-
ample, the local agreement policy must generate
each token at least twice to show it to the user, as
each token must be independently generated by
two consecutive contexts to be considered stable.
Depending on the model architecture, the genera-
tion might be the most expensive operation. Ad-
ditionally, the sequence-to-sequence models tend
to suffer from exposure bias (i.e., the model is not
exposed to its own errors during the training) (Ran-
zato et al., 2015; Wiseman and Rush, 2016). The
exposure bias then causes a lower translation qual-
ity, and sometimes leads to hallucinations (i.e., gen-
eration of coherent output not present in the source)
(Lee et al., 2018; Müller et al., 2019; Dong et al.,
2020). Finally, attentional encoder-decoder models
are suspected to suffer from label bias (Hannun,
2020).

A good candidate to address these problems is
CTC (Graves et al., 2006). For each input frame,
CTC predicts either a blank token (i.e., no output)
or one output token independently from its previous
predictions, which better matches the streaming
translation and reduces the risk of hallucinations.
Because the CTC’s predictions for each frame are
conditionally independent, CTC does not suffer
from the label bias problem (Hannun, 2020). Al-
though, the direct use of CTC in either machine
or speech translation is possible, yet, its quality
lags behind autoregressive attentional modeling
(Libovický and Helcl, 2018; Chuang et al., 2021).

1Initial experiments showed that removing more than two
tokens leads to higher latency without any quality improve-
ment.
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Another way, how to utilize the CTC is joint de-
coding (Watanabe et al., 2017; Deng et al., 2022).
In the joint decoding setup, the model has two
decoders: the non-autoregressive CTC (usually a
single linear layer after the encoder) and the atten-
tional autoregressive decoder. The joint decoding
is typically guided by the attentional decoder, while
the CTC output is used for re-scoring. Since the
CTC predicts hard alignment, the rescoring is not
straightforward. To this end, Watanabe et al. (2017)
proposed to use the CTC prefix probability (Graves,
2008) defined as a cumulative probability of all la-
bel sequences that have the current hypothesis h as
their prefix:

pctc(h, ...) =
∑

ν∈V+

pctc(h⊕ ν|X), (1)

where V is output vocabulary (including the
<eos> symbol), ⊕ is string concatenation, and
X is the input speech. To calculate this probability
effectively, Watanabe et al. (2017) introduce vari-
ables γ(b)t (h) and γ(n)t (h) that represent forward
probabilities of h at time t, where the superscript
denotes whether the CTC paths end with a blank
or non-blank CTC symbol. If the hypothesis h is a
complete hypothesis (i.e., ends with the <eos> to-
ken), then the CTC probability of h = g ⊕ <eos>
is:

pctc(h|X) = γ
(b)
T (g) + γ

(n)
T (g), (2)

where T is the final time stamp.
If h = g ⊕ c is not final, i.e., c ̸= <eos>, then

the probability is:

pctc(h|X) =
T∑

t=1

Φt(g) · p(zt = c|X), (3)

where

Φt(g) = γ
(b)
t−1(g) +

{
0 last(g) = c

γ
(n)
t−1(g) otherwise.

2.3 CTC Online Policy

Based on the the definition of pctc(h|X) in Equa-
tions (2) and (3), we can define the odds of g being
at the end of context T :

Oddsend(g) =
pctc(g ⊕ <eos>|X)∑

c∈V/{<eos>} pctc(g ⊕ c|X)
. (4)

The disadvantage of this definition is that
pctc(. . . |X) must be computed for every vocab-
ulary entry separately and one evaluation costs
O(T ), i.e., O(|V| · T ) in total. Contemporary ST
systems use vocabularies in orders of thousands
items making this definition prohibitively expen-
sive. Since the CTC is used together with the
label-synchronous decoder, we can approximate
the denominator with a single vocabulary entry catt
predicted by the attentional decoder patt:

Oddsend(g) ≈
pctc(g ⊕ <eos>|X)

pctc(g ⊕ catt|X)
, (5)

where catt = argmaxc∈V/{<eos>} patt(g ⊕ c|X).
Now the evaluation of Oddsend(g) is O(T ). If we
consider that the baseline model already uses CTC
rescoring, then evaluating Oddsend(g) amounts to
a constant number of extra operations to evaluate
pctc(g ⊕ <eos>|X).

Finally, to control the latency of the online decod-
ing, we compare the logarithm of Oddsend(g) with
a tunable constant Cend. If logOddsend(g) > Cend,
we stop the beam search and discard the last token
from g. We found values of Cend between -2 and 2
to work well across all models and language pairs.

3 Experiments and Results

3.1 Models

Our offline multilingual ST models are based on
attentional encoder-decoder architecture. Specifi-
cally, the encoder is based on WavLM (Chen et al.,
2022), and the decoder is based on multilingual
BART (Lewis et al., 2019) or mBART for short.
The model is implemented in the NMTGMinor li-
brary.2 For details on the offline model see KIT
submission to IWSLT 2023 Multilingual track (Liu
et al., 2023).

The small simultaneous speech translation mod-
els for English-to-German and English-to-Chinese
language pairs follow the blockwise streaming
Transformer architecture (Tsunoo et al., 2021) im-
plemented in ESPnet-ST-v2 (Yan et al., 2023).
Specifically, the encoder is a blockwise Conformer
(Gulati et al., 2020) with a block size of 40 and
look-ahead of 16, with 18 layers, and a hidden
dimension of 256. The decoder is a 6-layer Trans-
former decoder (Vaswani et al., 2017). To improve
the training speed, we initialize the encoder with

2https://github.com/quanpn90/NMTGMinor
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weights pretrained on the ASR task. Further, we
employ ST CTC (Deng et al., 2022; Yan et al.,
2022) after the encoder with weight 0.3 during the
training. During the decoding, we use 0.3 for En-
glish to German, and 0.4 for English to Chinese.
We preprocess the audio with 80-dimensional fil-
ter banks. As output vocabulary, we use unigram
models (Kudo, 2018) of size 4000 for English to
German, and 8000 for English to Chinese.

3.2 Evaluation
In all our experiments with the offline models, we
use beam search of size 8 except for the CTC pol-
icy experiments where we use greedy search. For
experiments with the blockwise models, we use
the beam search of 6. For experiments with the
improved blockwise beam search, we follow Polák
et al. (2023) and remove the repetition detection in
the underlying offline models, while we keep the
repetition detection on for all experiments with the
blockwise models.

For evaluation, we use Simuleval (Ma et al.,
2020) toolkit and tst-COMMON test set of MuST-
C (Cattoni et al., 2021). To estimate transla-
tion quality, we report detokenized case-sensitive
BLEU (Post, 2018), and for latency, we report av-
erage lagging (Ma et al., 2019). To realistically
assess the inference speed, we run all our experi-
ments on a computer with Intel i7-10700 CPU and
NVIDIA GeForce GTX 1080 with 8 GB graphic
memory.

3.3 Incremental Blockwise Beam Search with
Controllable Quality-Latency Tradeoff

In Table 1, we compare the performance of the
onlinized version of the baseline blockwise beam
search (BWBS) with the improved blockwise beam
search (IBWBS; Polák et al., 2023). As we can see
in the table, the improved beam search achieves
higher or equal BLEU scores than the baseline
beam search across all language pairs. We can
observe the highest improvement in English-to-
German (1.1 BLEU), while we see an advantage
of 0.1 BLEU for English-to-Japanese. and no im-
provement in English-to-Chinese.

In Table 1, we also report the real-time factor
(RTF), and the computation-aware average lagging
(ALCA). Interestingly, we observe a higher com-
putational footprint of the IBWBS compared to
the baseline beam search by 13, 28, and 17 %
on En→{De, Ja, Zh}, resp., when measured with
RTF. This might be due to the fact that we recom-

Lang Decoding AL↓ ALCA↓ RTF↓ BLEU↑

En-De BWBS 1922 3121 0.46 30.6
IBWBS 1977 3277 0.52 31.7

En-Ja BWBS 1992 3076 0.50 15.5
IBWBS 1935 3264 0.64 15.6

En-Zh BWBS 1948 2855 0.41 26.5
IBWBS 1945 3031 0.48 26.5

Table 1: Incremental SST with the original BWBS and
IBWBS. Better scores in bold.

pute the decoder states after each source increment.
Since the IBWBS sometimes waits for more source
chunks to output more tokens, the unnecessary de-
coder state recomputations might increase the com-
putational complexity.

3.4 CTC Online Policy

In Figure 1, we compare the improved blockwise
beam search (IBWBS) with the proposed CTC pol-
icy using the blockwise streaming models. The
tradeoff curves for English-to-German (see Fig-
ure 1a) and English-to-Chinese (see Figure 1b)
show that the proposed CTC policy improves the
quality (up to 1.1 BLEU for En→De, and 0.8
BLEU for En→Zh), while it is able to achieve the
same latencies.

3.5 CTC Online Policy for Large Offline
Models

We were also interested in whether the CTC policy
can be applied to large offline models. Unfortu-
nately, due to limited resources, we were not able
to train a large offline model with the CTC output.
Hence, we decided to utilize the CTC outputs of the
online blockwise models and used them to guide
the large offline model. Since the models have very
different vocabularies,3 we decided to execute the
CTC policy after a whole word is generated by the
offline model (rather than after every sub-word to-
ken). For the very same reason, we do not use CTC
for rescoring.

We report the results in Table 2. Unlike in the
blockwise models (see Section 3.4), the CTC policy
does not improve the quality in En→De, and has a
slightly worse quality (by 0.7 BLEU) in En→Zh.
This is most probably due to the delayed CTC-
attention synchronization that is not present for the
blockwise models (as both decoders there share the

3The blockwise models have a vocabulary size of 4000
for En→De and 8000 for En→Zh, and the offline model has
250k.
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Figure 1: Comparison of the improved blockwise beam search (IBWBS) and the proposed CTC policy using
blockwise streaming models.

same vocabulary and the models compute the CTC
policy after each token rather than word). However,
we still observe a significant reduction in computa-
tional latency, namely by 45 and 34 % relative RTF
for En→De and En→Zh, respectively.

Lang Decoding AL↓ ALCA↓ RTF↓ BLEU↑

En-De
BWBS 1922 3121 0.46 30.6
IBWBS 1977 3277 0.52 31.7

CTC 1946 2518 0.21 30.6

En-Zh
BWBS 1948 2855 0.41 26.5
IBWBS 1945 3031 0.48 26.5

CTC 1981 2515 0.28 25.8

Table 2: Comparison of onlinization of the large offline
model using chunking with the local agreement policy
(LA-2) and with the proposed CTC policy.

4 Submission

In this section, we summarize our submission to
the Simultaneous track at IWSLT 2023. In total,
we submit 10 systems for all three language pairs.

4.1 Onlinized Offline Models
Following our last year’s submission, we onlinize
two large offline models (our models for IWSLT
2022 Offline ST track and IWSLT 2023 Multilin-
gual track). This year, however, we utilize the
improved blockwise beam search to yield higher
BLEU scores. We submit systems for all language
pairs based on the last year’s model, and our new
model. We summarize the submitted models and
their performance in Table 3. As we can observe
in Table 3, the 2023 model appears to perform
worse. However, we learned during the writing of
this paper that there was some overlap between the
training and test data for the 2022 model4, making

4(Zhang and Ao, 2022) found an overlap between ST-TED
training corpus and tst-COMMON set of MuST-C dataset.

the BLEU scores for the 2022 model unreliable.

Lang Model AL↓ ALCA↓ BLEU↑

En-De 2022 1991 3138 31.8
2023 1955 3072 31.4

En-Ja 2022 1906 3000 15.5
2023 1982 3489 15.3

En-Zh 2022 1984 3289 26.8
2023 1987 3508 26.6

Table 3: Submitted onlinized large offline models.

We also submit the system based on the large
model onlinized using the CTC policy. The sys-
tems are summarized in Table 4. Unfortunately, we
were not aware of the training and test data overlap
during the evaluation period, so we decided to use
our 2022 model also this year.

Lang Model AL↓ ALCA↓ BLEU↑
En-De 2022 1959 2721 31.4
En-Zh 2022 1990 2466 26.3

Table 4: Submitted large offline models onlinized using
the proposed CTC policy.

4.2 Blockwise Online Models

Finally, we submit small blockwise models. Their
advantage is that they are able to run on a CPU
faster than real time (more than 5× faster). We
report their performance in Table 5.

Lang AL↓ ALCA↓ RTF↓ BLEU↑
En-De 1986 2425 0.19 25.4
En-Zh 1999 2386 0.19 23.8

Table 5: Submitted small blockwise models using the
proposed CTC online policy.
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5 Conclusion and Future Work

In this paper, we present the CUNI-KIT submis-
sion to the Simultaneous track at IWSLT 2023. We
experimented with the latest decoding methods and
proposed a novel CTC online policy. We experi-
mentally showed that the proposed CTC online pol-
icy significantly improves the translation quality of
the blockwise streaming models. Additionally, the
proposed CTC policy significantly lowers the com-
putational footprint of the onlinized large offline
models. Unaware of a data overlap issue in 2022,
we eventually chose to use our last years’ models
in the official evaluation also this year.
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Abstract

This paper describes the submission of the UPC
Machine Translation group to the IWSLT 2023
Offline Speech Translation task. Our Speech
Translation systems utilize foundation models
for speech (wav2vec 2.0) and text (mBART50).
We incorporate a Siamese pretraining step of
the speech and text encoders with CTC and
Optimal Transport, to adapt the speech rep-
resentations to the space of the text model,
thus maximizing transfer learning from MT.
After this pretraining, we fine-tune our sys-
tem end-to-end on ST, with Cross Entropy
and Knowledge Distillation. Apart from the
available ST corpora, we create synthetic data
with SegAugment to better adapt our models
to the custom segmentations of the IWSLT test
sets. Our best single model obtains 31.2 BLEU
points on MuST-C tst-COMMON, 29.8 points
on IWLST.tst2020 and 33.4 points on the newly
released IWSLT.ACLdev2023.

1 Introduction

In the past decade, the field of Speech Translation
(ST) has seen significant advancements, mainly
due to end-to-end models that directly translate
speech, offering a more efficient method compared
to traditional cascade systems (Sperber and Paulik,
2020). Despite data availability challenges, recent
progress has diminished the performance disparity
between these approaches (Bentivogli et al., 2021;
Potapczyk and Przybysz, 2020; Inaguma et al.,
2021; Ansari et al., 2020). Critical to the advance-
ments in end-to-end models is the exploitation of
ASR and MT data through pretraining strategies
(Berard et al., 2018; Pino et al., 2019; Di Gangi
et al., 2019; Gangi et al., 2019; Wang et al., 2020a;
Zhang et al., 2020; Bansal et al., 2019).

Recently, Le et al. (2023) proposed a method to
effectively utilize both ASR and MT pretraining
to enhance ST. This approach involves pretraining
an encoder-decoder MT system with available text
data, followed by pretraining a speech encoder to

generate representations similar to the MT system’s
encoder (Siamese pretraining) using Connectionist
Temporal Classification (CTC) supervision (Graves
et al., 2006) and Optimal Transport (Peyré and
Cuturi, 2019). The resulting speech encoder and
text decoder can be fine-tuned with ST data.

Another way of incorporating ASR and MT is to
leverage large pretrained speech and text models as
a foundation for end-to-end ST systems (Li et al.,
2021; Gállego et al., 2021; Han et al., 2021; Zhang
and Ao, 2022; Pham et al., 2022; Tsiamas et al.,
2022b). However, these systems encounter repre-
sentation discrepancy issues, which can hinder the
full exploitation of pretrained foundation models.
Gállego et al. (2021); Zhao et al. (2022) aimed to
address this by adding coupling modules after the
pretrained encoder, while other focus on solving
the length discrepancies (Zhang et al., 2020; Xu
et al., 2021a; Gaido et al., 2021). Han et al. (2021)
tackled the issue by projecting speech and text fea-
tures to a common semantic space using attention
mechanisms and semantic memories.

In our work, we tackle the issue of misaligned
speech and text encoder representations by adopt-
ing the approach proposed by Le et al. (2023).
Our system uses a speech foundation model fine-
tuned on English ASR, wav2vec 2.0 (Baevski et al.,
2020), and an MT foundation model fine-tuned
on multilingual MT (En-Xx), mBART50 (Tang
et al., 2020), as described in Section 2.1. Build-
ing on prior research (Xu et al., 2021a; Han et al.,
2021), we employ two encoders: an acoustic en-
coder from wav2vec 2.0 and a semantic encoder
from mBART50. Coupling modules link these en-
coders to address length discrepancy. We extend
Le et al. (2023) by applying CTC and OT losses to
the outputs of the acoustic and semantic encoders,
respectively, add a second auxiliary OT loss for
the inputs of the semantic encoder, and keep the
text encoder frozen to keep the MT space intact.
This method aligns the speech encoder’s represen-
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Figure 1: Extended Siamese pretraining

Figure 2: Speech Translation fine-tuning

tations with the MT foundation model, effectively
improving the final ST system’s performance by
mitigating representation mismatch.

In summary, we participate in the IWSLT 2023
Offline Speech Translation task, focusing on trans-
lating spoken English to written German, by em-
ploying an end-to-end system. We leverage ASR
and MT foundation models with the Siamese pre-
training approach, to effectively bring their en-
coder’s representations closer. We furthermore
decouple acoustic and semantic modeling in our
speech encoder, adjust for the length miss-match
between speech and text with several coupling
modules, and apply knowledge distillation (Hin-
ton et al., 2015) from MT (Liu et al., 2019; Gaido
et al., 2020), using mBART50.

2 Methodology

Our system, an encoder-decoder transformer, lever-
ages ASR and MT foundation models (§2.1). We
initially train the speech encoder with an Extended
Siamese pretraining (§2.2), and then fine-tune it
with the MT decoder for end-to-end ST (§2.3).

2.1 System architecture

As depicted in Figures 1 and 2, the encoder of our
system is composed of several interconnected mod-
ules, while the decoder is adopted directly from
the MT foundation model. The speech encoder is
designed to generate representations closely resem-
bling those of the MT foundation model, ensuring
better compatibility between them. The following
paragraphs provide a detailed overview of its key
components and their functions.

Acoustic Modeling The speech waveform x ∈
Rn is first processed by a feature extractor, which
consists of several strided convolutional layers,
downsampling the input to a length of n′. Fol-
lowing, a Transformer encoder with dimensionality
d is responsible for the acoustic modeling. Both
these modules are initialized from an ASR founda-
tion model.

CTC Compression The obtained acoustic rep-
resentation h ∈ Rn′×d is passed through a linear
layer (initialized from the ASR model) and a soft-
max to generate the ASR vocabulary predictions
p(ctc) ∈ Rn′×|V|, where V is the size of the vocab-
ulary. We apply CTC compression (Gaido et al.,
2021) to the acoustic representation, averaging the
representations corresponding to repeating predic-
tions on p(ctc) and removing those associated with
the blank token. This process results in a new com-
pressed representation h(compr) ∈ Rn′′×d, where
n′′ denotes the compressed length of the sequence.
This compression helps to reduce the length dis-
crepancy between speech and text representations,
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which, in turn, facilitates the alignment process
during Siamese pretraining (§2.2).

Coupling Modules Next, we apply an adapter
(Houlsby et al., 2019), consisting of a linear projec-
tion to 8d, a non-linear activation, a linear projec-
tion back to d. This module serves to (1) process
the collapsed representations resulting from the
compression and (2) provide sufficient parameters
between the CTC and first OT loss to decouple
their influence (§2.2). After the adapter we apply
a strided 1D Convolution that subsamples the se-
quence by a factor of 2, which can help transform
it closer to a sub-word level representation, rather
than a character-level one, and subsequently aid in
the Optimal Transport training with the sub-word
level representation from the text encoder (§2.2).

Semantic Modeling At this point, we modify the
representation to better match the input expected
by the MT encoder. This is achieved by prepend-
ing and appending special tokens that correspond
to the BOS and EOS tokens used in MT. We also
re-introduce positional information to the represen-
tation with learned positional embeddings. Both
the special tokens tbos, teos ∈ Rd and the positional
embeddings Epos ∈ R(M+2)×d (with M represent-
ing the maximum sequence length) are learnable pa-
rameters initialized from the MT foundation model.
The motivation is to bring the representation closer
to the text embedding from the MT model, facil-
itating OT loss convergence (§2.2). Finally, the
representation is processed by several more trans-
former encoder layers, which are initialized from
the MT model and are responsible for semantic
modeling.

2.2 Siamese pretraining
Our approach builds upon the Siamese pretrain-
ing proposed by Le et al. (2023), which exploits
both ASR and MT pretraining to improve ST per-
formance. This approach involves pretraining the
encoder of an ST system jointly with Connection-
ist Temporal Classification (CTC) and Optimal
Transport (OT), bringing its representations close
to those of an MT encoder. This pretraining strat-
egy has demonstrated superior results compared to
traditional ASR pretraining with encoder-decoder
and Cross-Entropy (Le et al., 2023). In this work,
we build upon the method of Le et al. (2023) in
several ways. First, we decouple the CTC and OT
losses to correspond to the acoustic and semantic
representations. Second, we add an extra auxiliary

OT loss to better adapt the input to the semantic en-
coder. Next, we also employ CTC-based compres-
sion and coupling modules to better align the length
of speech features with corresponding sub-word
text representations. Finally, we opt to freeze the
text encoder to not modify the MT decoder’s repre-
sentation space. The extended Siamese pretraining
scheme is illustrated in Figure 1. For brevity, we
refer to it simply as "Siamese" throughout the rest
of the paper.

The Siamese pretraining is supervised by a com-
bination of loss functions, each serving a distinct
purpose. The CTC loss ensures the performance
of the acoustic modeling by applying to the predic-
tions of the CTC module. Meanwhile, the two OT
losses target the input and output of the semantic
encoder, and aim to align them with the text en-
coder representations. We calculate the OT loss
as the Wasserstein distance (Frogner et al., 2015)
between the text and speech representations, using
an upper bound approximation, which is efficiently
evaluated by the Sinkhorn algorithm (Knopp and
Sinkhorn, 1967). Since the Wasserstein distance is
position invariant, we follow (Le et al., 2023), and
apply positional encodings, to make it applicable
to sequences. The combined loss function for the
Siamese pretraining stage is given by:

Lsiamese = αLCTC + β LOT1 + γ LOT2 (1)

Where α, β, and γ are hyperparameters that con-
trol the relative importance of each loss component
in the combined pretraining loss.

2.3 Speech Translation fine-tuning
Upon obtaining the encoder from §2.2, we utilize
it to initialize our ST system’s encoder, while us-
ing the MT foundation model to initialize the de-
coder (Fig. 2). In addition to the Cross Entropy
loss, we optionally provide guidance for the ST
training through Knowledge Distillation (KD) (Tan
et al., 2019), using the MT foundation model as a
teacher. Specifically, we only use the top-k predic-
tions rather than the entire distribution, and soften
them using a temperature T (Gaido et al., 2020).

Since CTC supervision is not employed at this
stage, we freeze the Feature Extractor, Acoustic
Encoder, and CTC module from our encoder. Dur-
ing training, we optimize the parameters of the ST
system’s encoder and decoder with respect to the
combined loss function, which is the sum of the
Cross Entropy loss and the optional KD loss:
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LST = λLCE + (1− λ)LKL (2)

Where LCE is the Cross Entropy loss, LKL is
the Kullback–Leibler divergence between the MT
and ST output distributions, and 0 ≤ λ ≤ 1 is a hy-
perparameter that controls the relative importance
of each loss component in the combined ST loss.

3 Data

3.1 Datasets

To train our ST models we used data from three
speech translation datasets, MuST-C v3 (Cattoni
et al., 2021), Europarl-ST (Iranzo-Sánchez et al.,
2020) and CoVoST-2 (Wang et al., 2020b). MuST-
C is based on TED talks, Europarl-ST on the Eu-
ropean Parliament proceedings, and CoVoST is
derived from the Common Voice dataset (Ardila
et al., 2020). Their statistics are available in the first
part of Table 1. We use as development data the
IWSLT test sets of 2019 and 2020 (Niehues et al.,
2019; Ansari et al., 2020), which are based on TED
talks, and the ACL development set of 2023, which
contains 5 presentations from ACL 2022. All devel-
opment data are unsegmented, meaning that they
are long and continuous speeches. We apply SHAS
segmentation (§5) before translating them. For the
Siamese pretraining, we used the English ASR data
from MuST-C v3 and Europarl-ST, as well as Com-
monVoice v11 (Ardila et al., 2020) (Table 1).

3.2 Data Augmentation

We employ data augmentation, to create more ST
data for training our models (Table 1). We use
the MT foundation model, to translate the tran-
script of English CommonVoice v11 (Ardila et al.,
2020). Since CommonVoice data contains various
accents, we expect the synthetic data will be help-
ful for translating the ACL talks domain, which
has predominantly non-native English accents. We
additionally utilize SegAugment (Tsiamas et al.,
2022a), which creates alternative versions of the
training data by segmenting them differently with
SHAS (Tsiamas et al., 2022c). We apply SegAug-
ment to MuST-C v3, with three different length
parameterizations: medium (m) (3 to 10 seconds),
long (l) (10 to 20 seconds), and extra-long (xl) (20
to 30 seconds). We expect that SegAugment will
be beneficial for translating the SHAS-segmented
test sets, due to the similar segmentations of the

training data it provides, as shown in Tsiamas et al.
(2022a).

Original Siamese ST

ST datasets
MuST-C v3 427 417 421
↪→ SegAugment 1, 364† − 1, 007†

Europarl-ST 77 64 75
CoVoST 2 362 − 344

ASR datasets
CommonVoice v11 1, 503 1, 361 1, 082†

Total − 1, 842 2, 929

Table 1: Filtered training data (in hours) for Siamese
and ST training stages. Synthetic data is denoted with †.

3.3 Data Filtering

Siamese pretraining We remove speaker names,
as well as events like "Laughter" and "Applause",
we convert numbers to their spelled-out forms,1

convert all text to lowercase, and finally remove all
characters that are not included in the vocabulary
of the ASR foundation model. Furthermore, we
apply a step of ASR-based filtering, to filter out
noisy examples stemming from wrong audio-text
alignments, where we remove examples with high
word-error-rate (WER). We adjust the threshold for
each dataset dynamically, ensuring that the result-
ing data has a WER of 0.11. Thus, the thresholds
are 0.5 for MuST-C, 0.28 for Europarl-ST, and 0.4
for CommonVoice, which indicates that Europarl-
ST has a significant number of misalignments, a
conclusion supported by manual inspection. Re-
moving them allowed for faster convergence during
Siamese pretraining.

ST fine-tuning We apply text normalization to
the original ST data, remove speaker names and
event-related tags from the MuST-C dataset, dis-
card examples with extreme source-to-target text
length ratios (Gaido et al., 2022), and finally
remove audio-transcription misaligned examples
with ASR-based filtering, using a fixed WER
threshold of 0.5. For the synthetic Common-
Voice data, we remove the ones already present
in CoVoST. We also filter the synthetic examples
of SegAugment, as the SHAS segmentation fre-
quently resembles the original segmentation, thus
resulting in highly similar examples. We retain
only the ones that are sufficiently dissimilar from

1https://github.com/savoirfairelinux/
num2words
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the original ones, based on text similarity measures,
using TF-IDF features from the translations. More
concretely, for each talk id, we compute the simi-
larity matrix of its original translations and the new
candidates from SegAugment, find the most similar
original example for each new candidate, and add
it to the filtered data only if its similarity score is
below 0.8. We apply this approach also between
the different SegAugment versions (m, l, xl).

4 Experiments

Here we describe the experiments we carried out in
this work. The implementation details are available
in §A.1.

IWSLT ’22 System For the IWSLT 2022 of-
fline task, our submission employed a HuBERT
encoder (Hsu et al., 2021a) and an mBART50 (En-
Xx) decoder, which were efficiently fine-tuned to
ST with the LNA strategy (Li et al., 2021) and par-
allel adapters (He et al., 2022), using datasets such
as MuST-C v2, Europarl-ST and CoVoST. The ar-
chitecture included three 1D convolutional layers
between the encoder and decoder, resulting in a
subsampling of the encoder representation by a fac-
tor of 8. The final ensemble also comprised models
utilizing Knowledge Distillation and a wav2vec 2.0
encoder (Tsiamas et al., 2022b).

Baseline Our baseline has four main differences
compared our last year’s best system. We did an ini-
tial exploratory analysis of various encoders (§A.3),
including different versions of wav2vec 2.0, and
HuBERT. Upon observing no significant differ-
ences, we opted to utilize wav2vec 2.0 fine-tuned
with pseudo-labels (Xu et al., 2021b), a more preva-
lent choice within the research community. Despite
the strong performance demonstrated by efficient
fine-tuning with LNA and parallel adapters, we
chose to switch to standard ST fine-tuning in order
to optimize performance. Moreover, we employ a
semantic encoder initialized from the MT model.
Lastly, we also pre-train the foundation models,
wav2vec 2.0 with CTC on the ASR data of MuST-
C, and mBART50 on the parallel text of MuST-C.
It is important to note that only MuST-C data was
utilized for the baseline.

Siamese Pre-training Instead of pre-training the
speech encoder with CTC only, we follow the
Siamese pre-training method (§2.2), with the en-
coder architecture described in §2.1, to align the

encoder representations with the MT model’s repre-
sentation space. The system, instead of using three
layers of 1D convolutions, now incorporates also
CTC-based compression, a large adapter, and fi-
nally a single layer of 1D convolutions. Following
the Siamese pre-training on MuST-C’s ASR data,
we jointly fine-tune the model and the MT decoder
on the MuST-C ST data. Similar to the baseline,
the MT model is also fine-tuned on the parallel text
of MuST-C beforehand.

More Data We extend the previously described
process by incorporating additional data. Initially,
we fine-tune mBART50 using all the MT data (Ta-
ble 6). Subsequently, we perform the Siamese pre-
training and ST fine-tuning employing all the avail-
able speech data (Table 1). By incorporating a
larger dataset, we aim to enhance the system’s gen-
eralization capabilities and overall performance.

Data Augmentation We employ two data aug-
mentation techniques to increase the performance
of our system during ST fine-tuning (§3.2), while
no modifications are made to the Siamese pre-
training. First, we investigate the use of SegAug-
ment (Tsiamas et al., 2022a), which we apply to
MuST-C v3. Secondly, we generate synthetic data
from Common Voice (Ardila et al., 2020), by lever-
aging the fine-tuned mBART50 (§A.2).

KD We use knowledge distillation with the fine-
tuned mBART50 as the teacher (§A.2). The loss
for training the ST model is the average of the
standard cross entropy and the Kullback-Leibler
(KL) divergence between the MT and ST output
probability distributions. We utilize all available
ST data in this experiment, including both real and
synthetic data.

5 Audio Segmentation

To segment the audio of the IWSLT test sets, we
use SHAS (Tsiamas et al., 2022c). The tst2023
test set, unlike previous years, contains another
two domains apart from TED talks, which are ACL
presentations and Press conferences. We tune the
parameters of SHAS separately for each domain,
but since no development set is available for the
press conferences, we decided to treat it as the ACL
domain. For fine-tuning the segmentation parame-
ters, we used the ST model that was trained with
synthetic data from CommonVoice and SegAug-
ment and initialized from Siamese pre-training (Ta-
ble 2, 2d). We evaluate the performance of the
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Figure 3: BLEU scores on IWSLT.tst2020 for different
combinations of min and max segment length

parameters of SHAS.

ST model on many different combinations of the
min and max segment length parameters, between
0.2-30 seconds on IWSLT.tst2019 and 0.2-18 on
ACLdev2023. In Figure 3, we observe that the min-
imum segment length of 10 seconds is consistently
reaching the best BLEU of 29.7 points. We decided
to choose the combination of 10-26 seconds, since
the max of 26, seemed to be slightly better com-
pared to other neighboring values. As depicted in
Figure 4, smaller segments are better for the ACL
domain, with the best BLEU score obtained for
min of 0.2 and max of 12. We hypothesize that the
differences in the optimal segmentation between
the IWSLT and ACL sets is because the ACL data
are essentially out-of-domain for our ST models.
In turn, the ST models are not confident in their
predictions to handle long segments, and thus it is
better to translate short segments instead.

6 Results

In Table 2 we provide the BLEU scores on MuST-C
tst-COMMON and the IWLST test sets of tst2019
and tst2020 (TED domain), and acl2023 (ACL do-
main). We are using the original segmentation for
MuST-C and apply SHAS with the optimal param-
eters (§5) of 10-26 secs for the TED domain, and
0.2-12 secs for the ACL one. We also provide the
results from our submission to IWSLT ’22.

In the first part of Table 2, we observe that this
year’s baseline (1a) improves results from last year

Figure 4: BLEU scores on IWSLT.ACLdev2023 for
different combinations of min and max segment length

parameters of SHAS.

best single model in both MuST-C and IWSLT
test sets, although it only uses data from MuST-
C. The reasons behind these improvements are the
proper fine-tuning of learning rate and regulariza-
tion parameters, as well as the choice of the speech
encoder (§A.3). For the next exepriment (1b), by
using the Siamese pretraining (§2.2), instead of
just using CTC for the pretraining, we obtain sub-
stantial improvements in MuST-C v2, tst2020, and
acl2023, indicating the efficacy of our pretraining
method when applied on top of foundation models.

Adding more data in all parts of the training (2a),
including the MT fine-tuning, Siamese pre-training
and ST fine-tuning, did not bring any meaningful
improvements to MuST-C and IWSLT.tst2019/20,
but it dramatically improved the results on the
acl2023 development set. We hypothesize that the
CommonVoice and CoVoST data play an important
role due to the large representation of foreign ac-
cents, similar to those in acl2023. Following, with
the inclusion of SegAugment in the ST fine-tuning
(2b) we observe an increase in all test sets, with
larger ones in the IWSLT test sets, since SegAug-
ment data have the same segmentation. Then, also
using synthetic data from CommonVoice (2c) has
minor improvements in MuST-C and a slight de-
crease in IWSLT. Despite that, we included syn-
thetic data in subsequent experiments, since they
were running in parallel. Applying Knowledge Dis-
tillation with the fine-tuned mBART50 as a teacher
(2d), brings moderate gains of 0.1-0.4 BLEU in the
IWSLT sets, and finally an increase in the learning
rate (2e) from 5e-5 to 7.5e-5 provide a model that
scored the best in tst2020 and acl2023.
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Dataset MuST-C IWSLT

split v2 v3 tst2019 tst2020 acl2023

UPC ’22 (Tsiamas et al., 2022b)

0
a Best Single 29.4 - 24.9 26.8 -
b Best Ensemble 30.8 - 25.4 27.8 -

Only MuST-C

1
a Baseline 29.8 29.9 25.7 27.3 25.1
b 1a + Siamese Pretraining 30.8 30.1 25.9 28.5 26.4

Extended Data Conditions

2

a 1b + More Data 30.8 30.7 26.0 28.0 31.6
b 2a + SegAugment 31.3 30.9 26.6 29.4 32.4
c 2b + synthCV 31.4 31.0 26.5 29.4 32.3
d 2c + Knowledge Distillation 30.9 30.7 26.8 29.5 32.7
e 2c + higher LR 31.2 30.8 26.4 29.8 33.4

Ensembles

3
a Ensemble (2d, 2e) 31.4 31.1 26.9 29.7 32.8
b Ensemble (2c, 2d, 2e) 31.4 31.1 27.0 29.9 32.7
c Ensemble (2b, 2c, 2d, 2e) 31.5 31.2 27.0 29.8 33.1

Table 2: BLEU scores for En-De MuST-C and IWSLT sets. In bold are the best scores by single models, and in
underlined bold are the best scores overall.

Ensembling multiple models provided small in-
creases in all sets. We believe that there is very little
variation in our best models (2b-2e), since they are
initialized from the same Siamese pre-training (2b),
thus resulting in ineffective ensembles. In general,
and in terms of single models, we improve our re-
sults from last year by 1.6 BLEU in tst2019 and 2.1
BLEU in tst2020, while the difference is larger in
terms of single models.

7 Conclusions

We described the submission of the UPC Machine
Translation group for the IWSLT 2023 Offline ST
task. Our system leverages ASR and MT foun-
dation models and a Siamese pretraining step to
maximize the transfer learning from MT. We show
that Siamese pretraining can bring significant im-
provements to our ST models, while fine-tuning
with KD can also be helpful. We furthermore show
that synthetic data are crucial at improving perfor-
mance in the IWSLT test sets. In future work, we
plan to investigate the zero-shot capabilities of opti-
mal transport in the context of foundation models.

8 Submission Results

In Tables 3, 4 and 5, we present the official submis-
sion results for IWSLT 2023 with our best system,
which is the Ensemble 3c of Table 2. Systems

are evaluated on the three test sets (TED, ACL,
Sub) with three metrics; BLEU (Papineni et al.,
2002), chrF (Popović, 2017), and COMET (Rei
et al., 2020). The TED test set also has two avail-
able references.

Metric BLEU chrF COMET
Reference 1 2 both 1 2 1 2

System 3c 25.5 29.8 36.6 0.56 0.58 0.7985 0.8098

Table 3: Official Results for the TED test set 2023.

Metric BLEU chrF COMET

System 3c 32.1 0.6 0.7473

Table 4: Official Results for the ACL test set 2023.

Metric BLEU chrF COMET

System 3c 15.6 0.47 0.3746

Table 5: Official Results for the Sub test set 2023.
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A Appendix

A.1 Implementation Details
This section presents the implementation details of
our proposed model architecture.

As an ASR model, we are using wav2vec 2.02

which is composed of a 7-layer convolutional fea-
ture extractor and 24-layer Transformer encoder.
It is pretrained with 60k hours of non-transcribed
speech from Libri-Light (Kahn et al., 2020), and
fine-tuned for ASR with 960 hours of labeled data
from Librispeech (Panayotov et al., 2015). The
wav2vec 2.0 version we use was also fine-tuned
with pseudo-labels (Xu et al., 2021b).

As an MT model, we are using mBART50 (Tang
et al., 2020), which is already fine-tuned on En-
Xx multilingual machine translation3. We further
pretrain it for two reasons. Firstly, we are only in-
terested in the En-De direction, and thus we would
like a more specialized model on that direction.
Secondly, due to the 2nd step of encoder matching,
we would like the text encoder to have a very good
representation of our data. For MT fine-tuning, we
use the original parameters of mBART50 (Tang
et al., 2020), and the datasets listed in Table 6.

The acoustic encoder has 24 Transformer lay-
ers, while the semantic encoder and the decoder

2https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec2_vox_960h_new.pt

3https://dl.fbaipublicfiles.com/
fairseq/models/mbart50/mbart50.ft.1n.
tar.gz

have 12 layers each. All layers have an embedding
dimensionality of 1024, a feed-forward dimension-
ality of 4098, GELU activations (Hendrycks and
Gimpel, 2020), 16 attention heads, and pre-layer
normalization (Xiong et al., 2020). The vocabulary
for the CTC has a size of 32 characters, while the
one for the ST model has a size of 250,000.

The model takes waveforms with a 16kHz sam-
pling rate as input, which are normalized to zero
mean and unit variance. The models are trained
using the data presented in Table 1, with maximum
source length of 400,000 and target length of 1024
tokens. Gradient accumulation and data parallelism
are employed to achieve an effective batch size of
approximately 32 million tokens.

For the Siamese pre-training we use Adam
(Kingma and Ba, 2014) with a base learning rate
of 2 · 10−4, a warm-up of 1,000 steps and an in-
verse square root scheduler. We follow a reduced
regularization approach, as compared to the origi-
nal configuration of wav2vec 2.0 and mBART50,
which we found to work the best in our preliminary
experiments. Thus, we use 0.1 activation dropout
in the acoustic encoder, as well as time masking
with probability of 0.2 and channel masking with
probability of 0.1. For the context encoder, we use
0.1 dropout and 0.1 attention dropout. All other
dropouts are inactive. All the weights in the loss
function were set to 1.0 (Eq. 1). We train until the
LOT2 term of the loss does not improve for 5,000
steps, and then average the 10 best checkpoints
according to the same loss term.

For ST fine-tuning, we use Adam with a base
learning rate of 5 · 10−5, fixed for the 20% of the
training before decaying to 5 · 10−7 for the rest.
In the semantic encoder, we apply a dropout of
0.1 and an attention dropout of 0.1, while for the
decoder we use a dropout of 0.3 and an attention
dropout of 0.1. Neither dropout nor masking is
applied in the frozen acoustic encoder. The loss is
the cross-entropy with label smoothing of 0.2.

For the experiments incorporating Knowledge
Distillation (KD) during ST fine-tuning, the loss
is calculated as a weighted sum of the standard
cross-entropy (no label smoothing) and the KL di-
vergence between the teacher and student distribu-
tions, controlled by a hyperparameter λ, set to 0.5.
The teacher distribution for each step is obtained
offline using the fine-tuned mBART50, where we
keep the top-8 indices, and both the teacher and
student distributions are additionally modified with
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temperature T = 1.3 (Gaido et al., 2020).
After ST fine-tuning, we pick the 10 best check-

points according to the BLEU (Papineni et al.,
2002) computed with sacreBLEU (Post, 2018) on
the development set of MuST-C and average them.
For generation, we use a beam search of 5. All
models are implemented in FAIRSEQ (Ott et al.,
2019), and experiments were run on a cluster of 8
NVIDIA GeForce RTX 3090. Our code is available
at a public repository4.

A.2 MT fine-tuning
For the MT fine-tuning, we use the parallel text
of the ST datasets, as well as Europarl v10 En-De
(Koehn, 2005) (Table 6). We perform text nor-
malization and remove pairs with extremely short
text segments (fewer than 4 characters) or extreme
source-to-target length ratio (less than 0.5 or larger
than 2).

Original Filtered

ST datasets
MuST-C v3 270 235
Europarl-ST 33 26
CoVoST 2 231 203

MT datasets
Europarl v10 1, 829 1, 566

Total 2, 363 2, 030

Table 6: Filtered training data (thousands of sentences)
for MT fine-tuning stage.

MuST-C Europarl-ST CoVoST2v2 v3

Off-the-shelf
mBART50 31.4 30.9 35.0 33.6

Fine-tuned
MuST-C v2 35.3 34.4 34.6 35.3
All (§3.1) 34.9 34.2 40.3 39.9

Table 7: BLEU scores on MT test sets.

A.3 Preliminary experiments
Before starting the primary experiments for the
IWSLT evaluation campaign, we conducted an ar-
ray of preliminary tests, building on top of previous
years’ submissions (Gállego et al., 2021; Tsiamas
et al., 2022b). These explorations were intended to
examine the impact of system configuration varia-
tions on the performance metrics on the MuST-C

4https://github.com/mt-upc/iwslt-2023

v2 dev set, such as BLEU (Papineni et al., 2002),
chrF2 (Popović, 2017), and COMET (Rei et al.,
2020). To ensure the robustness of our findings,
we estimated statistical significance using the boot-
strap resampling method (Koehn, 2004).

In our initial experiment, we examined the im-
pact of various fine-tuning strategies used in our
last years’ participations, specifically LNA (Li et al.,
2021) and LNA-Adapters (Tsiamas et al., 2022b),
in comparison to full fine-tuning. The goal was
to verify whether these approaches inadvertently
hurt the system’s performance. As demonstrated in
Table 8, these strategies indeed had a detrimental
effect, leading to reductions of 1.9 BLEU points
when applied to both the encoder and the decoder.
Consequently, we opted to adopt a conventional full
fine-tuning strategy for subsequent experiments.

Following this, we conducted a comparative anal-
ysis of various speech encoders, including different
variations of wav2vec 2.0 (Baevski et al., 2020;
Xu et al., 2021b; Hsu et al., 2021b; Conneau et al.,
2021), HuBERT (Hsu et al., 2021a), and SpeechLM
(Zhang et al., 2022) (Table 9). Our baseline was
the wav2vec 2.0 fine-tuned with pseudo-labels (Xu
et al., 2021b), and intriguingly, most encoders ex-
hibited a comparable level of performance. A
marginal decrease was observed with the wav2vec
2.0 pretrained on a large pool of datasets (LV-60 +
CV + SWBD + FSH) (Hsu et al., 2021b), and the
multilingual version of wav2vec 2.0, XLSR (Con-
neau et al., 2021). The SpeechLM results were
noticeably below expectations, leading us to sus-
pect a bug in our implementation.

Upon noting that the hyperparameters were op-
timized for a specific speech encoder, we hy-
pothesized that a reduction in the learning rate
might boost HuBERT’s performance. However,
as demonstrated in Table 11, the performance was
adversely affected, prompting us to retain the origi-
nal wav2vec 2.0 as the primary speech encoder due
to the lack of substantial improvements offered by
other alternatives.

Our focus then shifted towards examining the
influence of varying regularization and data aug-
mentation strategies on system performance (Table
10). We explored a range, from our traditionally
used setup (base), to the one employed in the orig-
inal foundation model fine-tuning, and a reduced
version. Implementing the original regularization
within the speech encoder, as opposed to the base
variant, significantly boosted performance, leading
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Encoder Decoder BLEU chrF2 COMET

- - 29.0 54.7 0.8001

LNA - 28.0 ∗ 54.1 ∗ 0.7949 ∗

- LNA 27.9 ∗ 54.0 ∗ 0.7882 ∗

LNA LNA 27.1 ∗ 53.2 ∗ 0.7800 ∗

LNA-Adapt - 28.2 ∗ 54.3 ∗ 0.7960 ∗

- LNA-Adapt 27.6 ∗ 53.6 ∗ 0.7889 ∗

LNA-Adapt LNA-Adapt 27.1 ∗ 53.5 ∗ 0.7847 ∗

Table 8: Performance comparison of fine-tuning
strategies w.r.t. to full fine-tuning, evaluated on the

MuST-C v2 dev set (en-de). LNA and LNA-Adapters
represent the strategies proposed by (Li et al., 2021)
and (Tsiamas et al., 2022b) respectively. ∗ indicates

significance w.r.t. baseline (full fine-tuning).

us to select this configuration. We also explored the
effectiveness of WavAugment (Kharitonov et al.,
2021), ultimately finding that, despite its training
speed slowdown, it did not enhance the results.
Consequently, we opted to stop using it.

Lastly, we evaluated the potential benefits of
employing the new MuST-C v3 training data on
system performance (Table 12). Unexpectedly, no
significant improvements were observed upon tran-
sitioning from MuST-C v2 to v3. Despite this, we
decided to utilize v3, since it’s specifically prepared
for the IWSLT evaluation campaign.

These preliminary investigations have not only
provided a more profound understanding of the role
of each system’s component and setting, but also
have yielded us with a better starting point for the
subsequent experiments of our work.
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Learning Rate BLEU chrF2 COMET

5 · 10−4 30.3 56.1 0.8099

2 · 10−4 30.3 56.0 0.8069
1 · 10−4 30.2 55.9 0.8085
5 · 10−5 29.5 ∗ 55.3 ∗ 0.8047

Table 11: Learning rate search for HuBERT encoder,
with MuST-C v2 dev set (en-de). ∗ indicates

significance w.r.t. baseline (1st row).

Training Data BLEU chrF2 COMET

MuST-C v2 30.7 56.4 0.8127

MuST-C v3 30.5 56.6 0.8118

Table 12: Performance of the systems trained with
different versions of MuST-C, evaluated with MuST-C
v2 dev set (en-de). No significant improvements found.

System ASR FT BLEU chrF2 COMET

Wav2Vec 2.0 Large (LV-60) + Self Training ✓ 30.2 56.1 0.8087

Wav2Vec 2.0 Large (LV-60) ✓ 30.1 55.9 0.8098
Wav2Vec 2.0 Large (LV-60) ✗ 30.3 55.9 −
Wav2Vec 2.0 Large (LV-60 + CV + SWBD + FSH) ✓ 29.7 ∗ 55.7 ∗ 0.8083
Wav2Vec 2.0 Large (LV-60 + CV + SWBD + FSH) ✗ 30.0 55.9 −
Wav2Vec 2.0 Large conformer - rope (LV-60) † ✓ 29.8 55.4 ∗ −
XLSR-53 ✗ 28.9 ∗ 55.0 ∗ −
HuBERT Large ✓ 30.3 56.1 0.8099
HuBERT Large ✗ 30.3 56.2 0.8110

SpeechLM-P Large ‡ ✗ 23.6 ∗ 50.2 ∗ −

Table 9: Speech encoders exploration with MuST-C v2 dev set (en-de). ∗ indicates significance w.r.t. baseline (1st
row). † uses LNA-Adapters (Tsiamas et al., 2022b). ‡ indicates a possible bug in our implementation.

Encoder Reg. Decoder Reg. WavAugm. BLEU chrF2 COMET

base base ✓ 30.2 56.1 0.8087

base original ✓ 30.5 56.4 ∗ 0.8149 ∗

base original ✗ 30.7 56.4 ∗ 0.8127 ∗

base reduced ✓ 30.1 55.9 0.8078

original base ✓ 29.8 55.8 0.8100
reduced base ✓ 30.1 55.9 0.8108

original original ✓ 30.4 56.2 0.8138 ∗

reduced reduced ✓ 30.1 56.0 0.8122 ∗

Table 10: Variations of the regularization and data augmentation strategies, with MuST-C v2 dev set (en-de). ∗
indicates significance w.r.t. baseline (1st row).
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Abstract

This system description paper introduces the
systems submitted by Xiaomi AI Lab to the
three tracks of the IWSLT 2023 Evaluation
Campaign, namely the offline speech transla-
tion (Offline-ST) track, the offline speech-to-
speech translation (Offline-S2ST) track, and
the simultaneous speech translation (Simul-ST)
track. All our submissions for these three tracks
only involve the English-Chinese language di-
rection. Our English-Chinese speech transla-
tion systems are constructed using large-scale
pre-trained models as the foundation. Specifi-
cally, we fine-tune these models’ correspond-
ing components for various downstream speech
translation tasks. Moreover, we implement sev-
eral popular techniques, such as data filtering,
data augmentation, speech segmentation, and
model ensemble, to improve the system’s over-
all performance. Extensive experiments show
that our systems achieve a significant improve-
ment over the strong baseline systems in terms
of the automatic evaluation metric.

1 Introduction

We submit an end-to-end offline speech transla-
tion system, a cascaded offline speech-to-speech
translation system, and an end-to-end simultane-
ous interpretation system to the Offline-ST track,
Offline-S2ST track, and Simul-ST track, respec-
tively. This paper provides a detailed description
of the three systems we submit.

There are two commonly used solutions for
speech translation models: the end-to-end approach
and the cascaded approach. The cascaded system
uses a pipeline where an automatic speech recogni-
tion (ASR) system is followed by a machine transla-
tion (MT) system. The ASR system first transcribes
the speech utterances in the source language into

∗Equal contribution.
†Crossponding Author.
‡ The work was done during the author’s internship at

Xiaomi.

text in the same language, and then the MT model
translates the ASR output into text in the target
language. In contrast, the end-to-end ST system
directly translates speech utterances in the source
language into text in the target language.

The scarcity of training data makes end-to-end
systems still slightly inferior in translation qual-
ity to cascaded systems, which suffer from er-
ror propagation and information loss (Sperber and
Paulik, 2020). Cascaded systems continue to domi-
nate the systems submitted at IWSLT in previous
years (Anastasopoulos et al., 2022, 2021; Ansari
et al., 2020). However, with the rapid develop-
ment of pre-training technology, a large number of
large-scale pre-training models suitable for various
modalities, such as speech (Baevski et al., 2020;
Hsu et al., 2021; Tang et al., 2022) and text (Liu
et al., 2020), have emerged. Therefore, end-to-end
ST systems have gradually attracted attention from
both the academic and industrial communities in
recent years. In our submission, we have opted for
an end-to-end approach to establish the ST system.

We briefly introduce the submitted systems:
Offline Speech Translation System. Our submit-
ted end-to-end offline speech-to-text translation
system is based on two pre-trained models: Hu-
BERT (Hsu et al., 2021) and mBART (Liu et al.,
2020). It has been proven that these two mod-
els have strong capabilities on ST and MT tasks,
respectively. Our offline ST model consists of a
speech encoder, a text encoder, and a text decoder,
with all parameters initialized using the pre-trained
HuBERT and mBART models.
Offline Speech-to-Speech Translation System.
Speech-to-speech translation has great application
value in various scenarios, such as international
online lectures and multinational meetings. Lee
et al. (2022) trained a sequence-to-sequence speech-
to-unit translation (S2UT) model to directly predict
the discrete representations of the target speech.
Drawing on the method of Lee et al. (2022), we
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implement a cascaded speech-to-speech translation
system. Specifically, an end-to-end speech-to-text
translation model is trained, followed by a text-to-
speech (TTS) synthesis model.

To implement a cascaded speech-to-speech trans-
lation system, we first train an end-to-end speech-
to-text translation model, followed by a text-to-
speech (TTS) synthesis model that we train.
Simultaneous Speech Translation System. Apart
from the above two offline systems, we also sub-
mit an end-to-end system for the English-Chinese
language direction in the Simul-ST track. Simul-
taneous speech translation involves the challenge
of striking a balance between translation quality
and latency, as the system starts to translate the
input audio even before the entire speech input
is received. The Information-Transport-based Si-
multaneous Translation (ITST) (Zhang and Feng,
2022) architecture is adopted to build our end-to-
end Simul-ST system, and we initialize its cor-
responding components using the HuBERT and
mBART pre-trained models. When the AL value is
less than 2000, our submitted end-to-end simultane-
ous ST system achieves a significant improvement
of +3.2 BLEU scores over last year’s best end-to-
end simultaneous ST system. We also explore a
streaming simultaneous interpretation approach by
training an offline model and applying a wait-k
decoding strategy, which even yields better perfor-
mance.

The rest of this paper is organized as follows:
Section 2 describes the data preparation, including
data filtering, data augmentation, speech segmen-
tation, etc. Section 3 elaborates on the models and
strategies used in our systems. We present our ex-
periment settings, results, and analyses in Section 4.
Finally, Section 5 provides the conclusion.

2 Data Preparation

2.1 Statistics

Our English-Chinese (abbreviated as En⇒Zh) ST
systems are developed under constrained condi-
tions using two allowed ST corpora: MuST-C v2.01

and CoVoST2. The only text translation dataset
available is OpenSubtitles20183. To construct the
English ASR corpus, we gather data from vari-

1https://ict.fbk.eu/must-c/
2https://github.com/facebookresearch/covost
3https://opus.nlpl.eu/OpenSubtitles2018.php

Corpora Duration #Spl.

ST
MuST-C v2.0 596h 359K

CoVoST 1119h 870K
GigaST 10000h 7.6M

MT OpenSubtitles - 11.2M

ASR

LibriSpeech 960h 273K
Common Voice 2320h 1.62M
TED LIUM (v3) 452h 268K

Vox Populi 543h 181K
ST-TED* 273h 171K

Europal-ST* ~80h 30K
MuST-C* ~100h 78K

TTS AISHELL-3 85h 88K
GigaS2S 10000h 7.6M

Unlabeled
Audio Vox Populi 24100h -

Table 1: The statistical results of all available train-
ing corpora in the En⇒Zh translation direction for the
offline speech translation track, the offline speech-to-
speech translation track, and the simultaneous speech
translation track. The tilde symbol (~) indicates a rough
estimation. #Spl. indicates the number of samples.

ous sources, such as LibriSpeech4, CommonVoice5,
TED LIUM6, and Vox Populi7. In addition to this,
we also utilize the audio-transcription pairs from
English-German (En⇒De) ST data, including ST-
TED, Europarl-ST, and MuST-C (indicated with a
star in Table 1). Furthermore, AISHELL-38 and
GigaS2S9 datasets are used to train the TTS model.
We filter out those samples in the MuST-C En⇒De
training set whose source sentences are included in
the MuST-C En⇒Zh training set. Table 1 presents
the statistical results of the training samples for
different tasks.

2.2 Offline-ST and Simul-ST Corpus

For both the En⇒Zh offline speech translation and
En⇒Zh simultaneous speech translation tracks, we
use the same training corpus, the same data filtering
and data augmentation methods.

2.2.1 Data Filtering
All text data involved in MT, ST, and TTS tasks
are tokenized using SentencePiece10. For the MT
data, we adopt heuristic rules to filter out noisy data

4http://www.openslr.org/12/
5https://commonvoice.mozilla.org/en/datasets
6https://lium.univ-lemans.fr/en/ted-lium3/
7https://github.com/facebookresearch/voxpopuli
8https://www.aishelltech.com/aishell_3
9https://github.com/SpeechTranslation/GigaS2S

10https://github.com/google/sentencepiece
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in the training set similar to the rules used in (Guo
et al., 2022), following these steps:

• A series of hand-crafted rules are adopted to
filter out noisy sentences from the training set.
In particular, we discard sentences that con-
tain less than 50% linguistic words. For Chi-
nese sentences, Chinese characters are consid-
ered linguistic words; for English sentences,
words containing only alphabet characters are
considered linguistic words;

• We utilize fast_align11 open source tool to
exclude sentence pairs with a score lower than
−8. We also apply the language identifica-
tion (LangID) tool12 to filter out sentence pairs
that are neither in Chinese nor English;

• Duplicate sentence pairs are discarded, and
any pairs with a length ratio greater than 3.0
or sentences with a length exceeding 200 are
also filtered out.

To filter out noise data in the ST training set, we
apply the following steps:

• Pairs that have an audio duration exceeding 60
seconds or a text length exceeding 200 tokens
are excluded;

• We calculate the ratio of the number of speech
frames to tokens in each sample, and remove
samples whose ratio exceeds three times the
average ratio.

2.2.2 Data Augmentation
To effectively train an end-to-end speech transla-
tion model, it is impractical to rely solely on hand-
annotated training data, due to the scarcity of hand-
annotated data. To mitigate this issue, we utilize
a well-trained MT model to translate the transcrip-
tions from ASR data and synthesize a large amount
of pseudo-data, which has been widely used in the
previous years’ competitions (Ding and Tao, 2021;
Zhang and Ao, 2022; Zhang et al., 2022b; Li et al.,
2022; Zhu et al., 2022).

We initially gather all available English-Chinese
bilingual parallel sentence pairs from ST and MT
tasks, as listed in Table 1. We then filter the data
using the method mentioned in Section 2.2.1, gen-
erating 9M sentence pairs. These 9M sentence
pairs are used to fine-tune the pre-trained one-to-
many mBART50 model for 30 epochs. We further
fine-tune mBART50 for another 30 epochs using

11https://github.com/clab/fast_align
12https://github.com/saffsd/langid.py

Models BLEU
mBART50 (one-to-many) 25.81

+ domain fine-tuning on 9M corpus 28.41

+ domain fine-tuning on MuST-C 29.50

Table 2: The BLEU scores of MT models obtained by
fine-tuning one-to-many mBART50 model using vari-
ous bilingual datasets on the tst-COMMON test set.

MuST-C datasets to improve the domain adaptabil-
ity of the model. The results are shown in Table 2.

In the Librispeech and TED-LIUM datasets, En-
glish sentences do not have punctuation or case
information. We fine-tune the mBART50 model
to add punctuation and restore case information to
English sentences. Furthermore, samples already
included in the CoVoST corpus are removed from
the CommonVoice dataset. The transcriptions of
the ASR data are then translated using the best fine-
tuned mBART50 model and filtered using the same
rules as the ST data in Section 2.2.1, resulting in
a total of 1.6 million synthesized speech-to-text
translation pairs.

Finally, for constrained data, we combine the
hand-annotated ST corpus with the synthesized ST
corpus to produce the final training corpus for the
Offline-ST and Simul-ST models, yielding a total
of 2.9 million speech-to-text translation pairs. In
the case of unconstrained training on the offline
track, we augment our training corpus with the
GigaST corpus, resulting in 9 million speech-to-
text translation pairs.

2.3 Cascaded S2ST Corpus
In the En⇒Zh speech-to-speech translation track,
we leverage all available constrained data from the
offline speech translation track as well as the Gi-
gaST corpus13 to train our offline speech transla-
tion model. This model is then followed by a TTS
model that is trained on the AISHELL-3 and Gi-
gaS2S datasets.

2.4 Speech Segmentation
Since the speech in the evaluation set is not pre-
segmented, we apply SHAS (Tsiamas et al., 2022)
to segment the full speech into shorter segments.
However, we observe two issues. Firstly, some
segments have incomplete final words, which could
negatively impact the performance of the ST model.
To alleviate this problem, we add a few extra frames

13https://st-benchmark.github.io/resources/
GigaST.html
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Text Encoder Text Decoder

Transformer Encoder

CNN Feature Extractor

Initialized from 

HuBERT

Initialized from 

mBART

 Speech Encoder

Welcome to Xiaomi

欢迎来到小米

Figure 1: The architecture of our end-to-end offline speech translation model consists of three components: speech
encoder, text encoder, and text decoder. The speech encoder is composed of a CNN feature extractor and a 24-layer
Transformer encoder with a CNN positional encoder. Both the text encoder and the text decoder are 12-layer
standard Transformer structures. Note that the speech encoder is initialized with the pre-trained HuBERT model,
and both the text encoder and text decoder are initialized with the pre-trained mBART model.

at the end of each segment to ensure that the final
word is fully pronounced. Secondly, the speaking
rate varies among different speakers or types of
speeches, resulting in different amounts of words
being spoken within a given time period. Excessive
words in a speech segment may result in missing
translations. We choose different hyperparameters
for different speakers or different types of speeches.

3 Methods

We build our Offline-ST system in an end-to-end
manner (End-to-End Offline-ST) based on the Hu-
BERT and mBART pre-trained models. Our si-
multaneous speech translation system (End-to-End
Simul-ST) utilizes the same model architecture as
the Offline-ST system and adopts wait-k and ITST
strategies. The cascaded S2ST system involves
an end-to-end speech-to-text translation model fol-
lowed by a TTS model.

3.1 End-to-End Offline-ST System

The speech translation corpus typically consists of
triples (x, z, y) that contain speech, transcription,
and translation data, where x = (x1, · · · , x|x|) rep-
resents a sequence of acoustic features, while z
= (z1, · · · , z|z|) and y = (y1, · · · , y|y|) denote the
corresponding transcription in the source language
and translation in the target language, respectively.

Our end-to-end Offline-ST system is based on an
encoder-decoder architecture from the pre-trained

HuBERT and mBART models. Figure 1 illustrates
the architecture of our model, which consists of
a speech encoder, a text encoder, and a text de-
coder. More specifically, the speech encoder is
composed of a feature extractor based on con-
volutional neural networks (CNN), named CNN
feature extractor and a 24-layer Transformer en-
coder. The CNN feature extractor is used to ex-
tract speech features from waveform, with 7 layers
each containing 512 channels and kernel widths of
[10, 3, 3, 3, 3, 2, 2] and strides of [5, 2, 2, 2, 2, 2, 2].
The Transformer encoder is derived from the stan-
dard Transformer (Vaswani et al., 2017) encoder,
except for using CNN as the position encoder. The
text encoder is a 12-layer standard Transformer en-
coder, and the text decoder is a 12-layer standard
Transformer decoder. The training objective of our
speech translation model can be formulated as:

L (x,y;θe,θd) =

|y|∑

t=1

- log p
(
yt|y<t,x;θe,θd

)
(1)

where θe and θd represent the parameters of the
encoder and the decoder, respectively.

3.2 Cascaded S2ST System
In the cascaded S2ST system, we reuse the offline
speech translation model discussed in Section 3.1
as the ST model. For the TTS model, we first train a
base TTS model and vocoder using the AISHELL-
3 dataset with the Tacotron2 (Shen et al., 2018)
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open source framework. The final TTS model is
obtained by fine-tuning the base model on the Gi-
gaS2S dataset.

3.3 End-to-End Simul-ST System

In order to take full advantage of the powerful capa-
bilities of large pre-trained models, we develop an
end-to-end Simul-ST system based on the HuBERT
and mBART models. Furthermore, we employ two
strategies, namely wait-k and ITST.

3.3.1 Wait-k
Ma et al. (2020b) adapts methods originally pro-
posed for simultaneous machine translation to de-
velop an end-to-end Simul-ST system. To achieve
this, they employ the wait-k (Ma et al., 2019) strat-
egy and a fixed pre-decision module. Under this
approach, the system first reads k speech segments,
each of which contains a fixed number (q, a hyper-
parameter in the pre-decision module) of speech
frames. When k speech segments have been read,
the decoder generates one token in the target lan-
guage. Similarly, we also apply the wait-k strategy
in the decoding process of our end-to-end offline-
ST system, as it strikes a good balance between
translation quality and latency without requiring
any streaming strategy during training (Papi et al.,
2022; Polák et al., 2022). During inference, once a
speech segment is accepted, the decoder takes the
following action:

Action =

{
continue to read |x| − |y| < k
output yt |x| − |y| ≥ k

(2)

where yt denotes the t-th token of the target lan-
guage, while |x| and |y| refer to the number of
source speech segments and target tokens, respec-
tively.

3.3.2 ITST
The Information-Transport-based Simultaneous
Translation (ITST) architecture has achieved state-
of-the-art performance in end-to-end simultaneous
speech translation. To implement this strategy, we
initialize the corresponding parameters by using
the pre-trained HuBERT and mBART models, and
randomly initialize additional parameters for com-
puting the information transport matrix. We then
optimize the quality and latency objectives using
the ITST criterion, varying the δ value to control
the latency in streaming inference.

Our end-to-end speech translation system is built
based on the ITST architecture, equipped with a

wait-k streaming decoding strategy, and finally
evaluated using the SimulEval (Ma et al., 2020a)
toolkit. To ensure accurate translations, we en-
force a constraint that the model should not pro-
duce the final translation until it has fully processed
the speech in the source language.

3.4 Self-Training
Self-training is a simple semi-supervised learning
method that involves using unlabeled data to aug-
ment labeled data (Pino et al., 2020; Sun et al.,
2021; Wang et al., 2021; Popuri et al., 2022). To
leverage the large-scale unlabeled audio introduced
in Section 2.1, we employ self-training in our ap-
proach. In particular, we first train the end-to-end
speech translation model on both manually anno-
tated data and augmentation data, as described in
Section 2. Next, we use the model to generate
Chinese translation text, which we merge with the
original training data and unlabeled audio. We then
continue training the end-to-end speech translation
model on this merged dataset.

3.5 Contrastive Learning
The objective of contrastive learning (Chen et al.,
2020; Gao et al., 2021; Ye et al., 2022; Zhang et al.,
2023) is to learn an encoder that produces similar
representations for similar instances, while pro-
ducing dissimilar representations for dissimilar in-
stances, as measured by their cosine similarity. In
our approach, we assume that the same utterance,
regardless of whether it is in speech or text modal-
ity, will have similar hidden representations. There-
fore, we aim to minimize the cosine distance be-
tween the hidden representations of the two modal-
ities for the same utterance, while increasing the
cosine distance between the hidden representations
of different utterances. Specifically, we minimize
the cosine distance between the speech encoder
output and the corresponding word embedding for
the same utterance, while maximizing the distance
between the representations of different utterances.
The training objective is as follows:

LCTR =
N∑

t=1

- log p
exp(sim(u, v)/T )∑X exp(sim(u, v(xj))/T )

(3)

where u is the average state of the speech encoder
output along the sequence length, v is the average
word embedding, and T is the temperature hyper-
parameter. More specifically, LCTR quantifies the
negative logarithm of the probability that the simi-
larity between u and v is greater than the similarity
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between u and other candidate word embeddings
v(xj). The probabilities are normalized using a
softmax function over all candidate embeddings.
In addition to contrastive learning, we also con-
duct multitask learning using labeled ASR and MT
training data, which results in the final optimization
objective:

L = LST + LASR + LMT + LCTR (4)

where LST , LASR, LMT , and LCTR denote the
losses for speech-to-text translation, ASR, MT, and
contrastive learning, respectively.

4 Experiments

4.1 Experiment Settings

The fairseq toolkit14 is used to train our speech-
to-text models. During training, the models take
the original waveform sampled at 16kHz as the in-
put. The Adam optimizer (Kingma and Ba, 2015)
with a fixed learning rate of 5e-5 is used to train
the models. Each model is trained for 200k steps,
and we save the model every 2.5k steps using an
early stopping mechanism. In detail, if the BLEU
score on the development set does not improve for
10 consecutive checkpoints, the training will be ter-
minated. During the fine-tuning stage, we set the
maximum number of updates to 50k and the learn-
ing rate to 2e-5. Our TTS model is implemented
using the Tacotron2 toolkit15.

4.2 Evaluation

As the official automatic evaluation criterion, the
BLEU score (Papineni et al., 2002) is used to eval-
uate the translation quality of all our systems. For
the Simul-ST system, we employ the average lag
(AL) (Ma et al., 2019, 2020b) metric to measure
the translation latency, which is a standard metric
for simultaneous speech translation. The SimulE-
val open-source toolkit16 is utilized to calculate
both the BLEU and AL metrics for the Simul-ST
system. All BLEU scores are calculated with the
SacreBLEU17 (Post, 2018) toolkit at the character
level.

14https://github.com/pytorch/fairseq
15https://github.com/NVIDIA/tacotron2
16https://github.com/facebookresearch/SimulEval
17https://github.com/mjpost/sacrebleu

Models BLEU
0 wav2vec2.0 (small) 23.84

1 HuBERT + mBART50 (one-to-many) 27.74

2 + fine-tuning on MuST-C 27.90

3 + Self-Training 27.69

4 + Contrastive Learning 28.11

5 + fine-tuning on MuST-C 27.94

6 data2vec + mBART50 (one-to-many) 27.66

7 + fine-tuning on MuST-C 27.59

8 Ensemble (2, 5) 27.79

9 Ensemble (2, 7) 27.61

10 Ensemble (2, 5, 7) 27.94

Table 3: The BLEU scores of ST models on the tst-
COMMON test set.

4.3 Main Results

Offline En⇒Zh Speech Translation

We evaluate our offline-ST models on the tst-
COMMON test set by reporting the BLEU score
in accordance with the official evaluation criteria.
To establish a baseline for comparison, we use
the widely-used standard wav2vec2.0 model for
speech translation tasks. Table 3 shows the com-
parison results among all models. Our end-to-end
models exhibit a significant improvement of ap-
proximately 4 BLEU points over the wav2vec2.0
baseline, which demonstrates the effectiveness of
our methods. Additionally, we also conduct ex-
periments using data2vec (Baevski et al., 2022)
pre-trained model and obtain comparable results
on the tst-COMMON test set.

By analyzing our experimental results, we ob-
serve that domain fine-tuning does not significantly
improve the performance of the model. Neverthe-
less, we believe domain fine-tuning will be benefi-
cial for final human evaluation on the TED18 test
set. Our final submission is an ensemble of the
models listed in rows 2, 5, and 7 of Table 3.

It is worth mentioning that we encounter some
challenges when training our model. When the
HuBERT model is used to initialize our model,
instabilities are observed during training, with sud-
den gradient explosions leading to training collapse.
After careful analysis, we determine that the prob-
lem is that the gradients of the CNN layers are
relatively large during the entire training process.
We address this issue by scaling down the gradients
of the CNN layers.

18https://www.ted.com/
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Models BLEU
1 Offline-ST 30.10

2 Offline-ST + GigaST 31.56

3 Ensemble (1, 2) 31.81

Table 4: BLEU scores of our ST models on the develop-
ment set of the S2ST track in IWSLT 2023. Offline-ST
is trained on all manually annotated data and the aug-
mented data described in Section 2.2.2. In addition to
the data used by the offline-ST model, the Offline-ST +
GigaST model incorporates additional GigaST data.

Models ASR-BLEU
1 Offline-ST 28.88

2 Offline-ST + GigaST 30.10

3 Ensemble (1, 2) 30.18

Table 5: ASR-BLEU scores of our ST models on the
development set of the S2ST track in IWSLT 2023. The
models are identical to those presented in Table 4.

Offline En⇒Zh Speech-to-Speech Translation

We evaluate the performance of our end-to-end
speech-to-text translation system and cascaded
speech-to-speech system on the development set of
the S2ST track in IWSLT 2023, comprising 5, 000
utterances. The results of the speech-to-text transla-
tion models and speech-to-speech translation mod-
els are demonstrated in Table 4 and 5, respectively.
For the speech-to-text translation model, we adopt
the ensemble of models corresponding to rows 1
and 2 in Table 4. To build the speech-to-speech
translation system, we then leverage our trained
Chinese TTS model to synthesize Chinese speech
and generate the corresponding Chinese transcript
with the Conformer model 19 trained on the Wenet-
Speech dataset (Zhang et al., 2022a). Finally, the
generated Chinese transcript and reference are used
to calculate the ASR-BLEU score.

Simultaneous En⇒Zh Speech Translation

We use the SimulEval toolkit to evaluate the quality
and latency of our simultaneous speech translation
model on the tst-COMMON set. In order to achieve
a better balance between quality and latency, when
the prediction probability is lower than 20%, the
READ action is performed; when the delay exceeds

19https://wenet-1256283475.cos.ap-shanghai.
myqcloud.com/models/wenetspeech/wenetspeech_
u2pp_conformer_exp.tar.gz

Strategies Models BLEU AL
1 Wait-k HuBERT+mBART 25.99 1980

2 Wait-k + ST & CL 26.59 1966

3 ITST HuBERT+mBART 26.25 1906

Table 6: The evaluation results of Simul-ST models
on tst-COMMON. ST and CL denote self-training and
contrastive learning for the Offline-ST model.

6000ms, the model performs a WRITE action to
predict the next target token.

We evaluate the wait-k strategy using models 1
and 4 in Table 3, and train the ITST model with
the same configuration as model 1 in Table 3. The
results of the Simul-ST models are presented in
Table 6. Although ITST shows better performance
than wait-k in the same setting, the wait-k strategy
combined with self-training and contrastive learn-
ing can achieve better results. Therefore, we finally
submit the system corresponding to the second row
in Table 6.

5 Conclusion

In this paper, we present our submissions for the
IWSLT 2023 shared tasks. We participate in three
tracks, namely the offline speech translation track,
the offline speech-to-speech translation track, and
the simultaneous speech translation track. All of
our submissions use large-scale pre-trained mod-
els, and we further improve these models using
various effective techniques, such as data augmen-
tation, contrastive learning, and model ensembles.
Extensive experiments validate the effectiveness of
our proposed method and demonstrate that our sub-
mitted systems are comparable to state-of-the-art
baseline systems in terms of performance.
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Abstract

In this paper, we present the KU x Up-
stage team’s submission for the Special Task
on Formality Control on Spoken Language
Translation, which involves translating En-
glish into four languages with diverse gram-
matical formality markers. Our methodology
comprises two primary components: 1) a
language-specific data-driven approach, and
2) the generation of synthetic data through
the employment of large-scale language mod-
els and empirically-grounded prompt engineer-
ing. By adapting methodologies and models
to accommodate the unique linguistic prop-
erties of each language, we observe a no-
table enhancement in performance relative to
the baseline, substantiating the heightened effi-
cacy of data-driven approaches. Moreover, our
devised prompt engineering strategy yields su-
perior synthetic translation instances.

1 Introduction

Neural machine translation (NMT) models have
achieved remarkable progress in recent years, as
evidenced by their high BLEU scores (Britz et al.,
2017; Stahlberg, 2020). Nonetheless, these models
generally rely on generic parallel corpora and as-
sume a single target translation for a given source
sentence, often overlooking the significance of
style and pragmatic aspects in translation, such as
formality or politeness (Li et al., 2022). To address
this issue, formality-sensitive machine translation
(FSMT) has emerged as a research area, aiming
to control grammatical formality in translated text
across languages (Niu et al., 2017).

The Special Task on Formality Control on Spo-
ken Language Translation introduces a new bench-
mark with high-quality training datasets for di-
verse languages, encompassing both supervised
and zero-shot language pairs. Despite these new
datasets (Nădejde et al., 2022), controlling formal-
ity in MT remains a challenging problem due to the

Source: It did, many people liked his show

so yeah, do you like Chris Pratt?

Korean Formal:그랬어요,많은사람들이그의

쇼를좋아했죠.그래서당신크리스프랫좋아해요?

Korean Informal:그랬어,많은사람들이그의

쇼를좋아했지.그래서너크리스프랫좋아해?

Table 1: Contrastive translations in formal and informal
styles into Korean are presented. Grammatical formal-
ity markers, which are bolded, can be aligned through
colors.

absence of gold translations with alternate formal-
ity levels and the extensive variation in grammatical
formality markers across languages.

In the 2023 shared task, an English source seg-
ment is paired with two references that are mini-
mally contrastive in grammatical formality, repre-
senting both formal and informal levels as shown
in Table 1. Training and test samples are provided
in the domains of “telephony data” and “topical
chat” (Gopalakrishnan et al., 2019) for two super-
vised language pairs, English-Korean (EN-KO) and
English-Vietnamese (EN-VI), and two zero-shot
language pairs, English-Portuguese (EN-PT) and
English-Russian (EN-RU). Grammatical formality
markers differ across these languages. Personal pro-
nouns and verb agreement signal formality in many
Indo-European languages (e.g., PT, RU), while in
Korean, formality control is notably challenging
due to the widespread use of morphological mark-
ers to convey polite, respectful, and humble speech,
making it an intriguing test case for FSMT.

In this paper, we present our approach to FSMT,
focusing on the supervised setting for the English-
Korean (EN-KO) and English-Vietnamese (EN-
VI) language pairs and evaluating our methods
on the zero-shot English-Portuguese (EN-PT) and
English-Russian (EN-RU) pairs. Our method con-
sists of two main strategies: 1) a language-specific
data-driven approach, and 2) synthetic data gener-
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ation using large-scale language models and em-
pirical prompt engineering. We apply techniques
and models tailored to the linguistic features of
each language. For Korean, we utilize a morpheme-
centric subword tokenization method, while for
Vietnamese, we employ a pre-trained EnViT5
model with high-quality Vietnamese parallel cor-
pora. Additionally, we generate synthetic trans-
lation datasets for Portuguese and Russian using
prompt engineering and refine these datasets using
formality classifiers for fine-tuning our models. Fur-
thermore, we founded significant performance im-
provements in EN-KO and EN-VI and conducted
an ablation study to utilize high-quality synthetic
examples.

2 Proposed Method

2.1 Task Definition

In this submission, we focus on the supervised and
zero-shot settings on unconstrained formality con-
trol machine translation task. Formally, provided
with a source segment X = {x1, x2, . . . , xm} and
a formality level l ∈ {formal, informal}, the ob-
jective is to identify a model defined by parame-
ters Θ that produces the most probable translation
Y = {y1, y2, . . . , yn} in accordance with the for-
mality level:

Y = arg max
Yl

P (X, l;Θ)

In simpler terms, the goal is to find the optimal
model parameters Θ that produce the most likely
translation Y , given the source segment X and the
desired formality level l (either formal or informal).
This is achieved by maximizing the probability
P (X, l;Θ) of obtaining the translation Y at the
specified formality level.

2.2 Language Specialized Data-Centric
Approach

In this work, we employ a language special-
ized data-centric approach by integrating trans-
fer learning techniques from Zoph et al. (2016)
and language-specific subword methods, such as
Unigram (Kudo, 2018) or byte-pair encoding
(BPE) (Sennrich et al., 2015b). This combina-
tion effectively captures the unique morphologi-
cal and syntactic structures of the target language,
resulting in substantial improvements in transla-
tion performance, especially for low-resource lan-
guages (Zoph et al., 2016; Bojanowski et al., 2017;

Park et al., 2020, 2021). Finally, we fine-tuned the
pre-trained model (PLM) on the supervised train
set each language pair.

EN-KO We discuss our approach to improve the
English-Korean (EN-KO) translation performance
by pre-training a Transformer using a high-quality
dataset and leveraging morpheme-aware subword
tokenization to better capture the linguistic charac-
teristics of the Korean language such as agglutina-
tive nature and structure.

We adopted a data-centric approach by pre-
training a Transformer for EN-KO translation. To
do so, we used a high-quality dataset from the AI
Hub (Park et al., 2022)1 data platform, which is
operated by the Korean government. This compre-
hensive dataset includes various parallel corpora
encompassing diverse domains such as technical
and scientific fields, daily life and colloquial ex-
pressions, news articles, government and local gov-
ernment websites, publications, administrative reg-
ulations, Korean culture, and formal and informal
language. By using a dataset specifically tailored
for English-Korean translation, we aimed to cap-
ture finer nuances in both languages and enhance
the translation quality by incorporating domain-
specific knowledge and addressing the linguistic
variations in different contexts.

Furthermore, we addressed the linguistic char-
acteristics of the Korean language by applying a
morpheme-aware subword tokenization method,
which combines a segmentation strategy based on
linguistic features with subwords. This approach
has been shown to be effective in various Korean
NLP tasks (Park et al., 2020). We utilized MeCab-
ko 2, a widely-used morphological analyzer for the
Korean language, for morpheme analysis. After ob-
taining the morphemes, we applied the Unigram
subword tokenization method, which allowed our
model to capture linguistic patterns specific to the
Korean language, ultimately improving the overall
translation performance.

EN-VI For the EN-VI language pair, we em-
ployed the EnViT5 (Ngo et al., 2022), a Text-to-
Text Transfer Transformer (T5) model proposed
by Raffel et al. (2020). We aimed to improve the
fine-tuning translation performance of EN-VI in a
low-resource setting by applying this data-centric
approach to the multi-domain pre-trained EnViT5

1https://aihub.or.kr/
2https://bitbucket.org/eunjeon/

mecab-ko-dic

421

https://aihub.or.kr/
https://bitbucket.org/eunjeon/mecab-ko-dic
https://bitbucket.org/eunjeon/mecab-ko-dic


model, which has been specifically designed for
Vietnamese language tasks. Notably, EnViT5 mod-
els outperformed existing multilingual models such
as mBART and M2M-100 while maintaining a sig-
nificantly smaller parameter size, making them scal-
able and promising for both academic and industry
applications (Ngo et al., 2022).

EnViT5 was pre-trained with the CC100
Dataset (Wenzek et al., 2020) which comprises
monolingual data for over 100 languages. Subse-
quently, EnViT5 was fine-tuned on the MTet (Ngo
et al., 2022) and PhoMT (Doan et al., 2021)
datasets. MTet is a multi-domain EN-VI machine
translation dataset encompassing a diverse range
of domains, including educational videos, soft-
ware user interfaces, COVID-related news arti-
cles, religious texts, subtitles, Wikipedia, and TED
Talks (Reimers and Gurevych, 2020). Ultimately,
when combined with PhoMT and IWSLT’15 (Cet-
tolo et al., 2015), the final MTet dataset expands
the training set size to 6 million examples, covering
previously neglected areas such as law and biomed-
ical data, which contains monolingual data for over
100 languages.

2.3 Synthetic Data Generation via Prompt
Engineering

Leveraging synthetic examples in machine trans-
lation is crucial for improving translation quality,
especially in low-resource settings (Edunov et al.,
2018; Sennrich et al., 2015a). ChatGPT with GPT-4
engine (OpenAI, 2023), in particular, exhibits trans-
lation performance comparable to state-of-the-art
WMT system and demonstrate good quality of gen-
eration conditioned translation generation in both
few-shot and zero-shot settings (Hendy et al., 2023).
To generate synthetic data, we employ ChatGPT to
condition on formality and translate the IWSLT’22
Formality Track (Salesky et al., 2022) for all lan-
guage pairs with English as the source language.
Furthermore, we use a formality classifier (Rippeth
et al., 2022) to filter synthetic examples, ensuring
that both formal and informal examples are accu-
rately translated for each language.

Supervised Setting We follow the prompt tem-
plate depicted in Appendix A, which is based on
the approach proposed by Hendy et al. (2023). To
provide context for the model, we utilize n ran-
domly selected shots from the English training set
of other language pairs in the IWSLT 23 Formality
Track (Agarwal et al., 2023). The few-shot exam-

ples are sourced from the target language’s training
set and include both informal and formal levels.
ChatGPT is then tasked with translating the input
text into either an informal or formal target lan-
guage, depending on the specified prompt. For the
input text, we use English source sentences from
the IWSLT 22 Formality Track’s other language
pairs. After filtering the translated examples us-
ing a formality classifier, we fine-tuned the respec-
tive PLMs for EN-KO and EN-VI by incorporating
synthetic examples into the training sets for each
language pair. To verify the effectiveness of data
augmentation through prompt engineering, we con-
duct experiments comparing the results with and
without the augmented data.

Language Size
Train Test

EN-KO 400 600
EN-VI 400 600
EN-PT 0 600
EN-RU 0 600

Table 2: Data statistics in train and test sets of Formality
Dataset

Zero-shot Setting In the EN-PT and EN-RU
zero-shot settings, we generate synthetic exam-
ples for fine-tuning using the IWSLT’22 train set.
We translate the source into both formal and in-
formal target language levels, employing suitable
prompts and filtering with a formality classifier to
ensure conditioned formality. The template, shown
in Appendix A, is adapted from the OpenAI Play-
ground’s default sentence-level translation task3.
The model is instructed to translate English in-
put into either informal or formal target language,
guided by n random shots from the training set.
Generated examples are then filtered using a for-
mality classifier before fine-tuning the pre-trained
multilingual translation model.

This zero-shot approach enables effective con-
ditioned task performance with limited exposure
to specific language pairs and formality levels. By
generating synthetic translation data for fine-tuning,
we capitalize on the model’s generalization ability
across languages and formality levels, enhancing
translation performance in zero-shot settings. This
highlights the potential of synthetic data in extend-
ing pre-trained language models’ capabilities, even

3https://platform.openai.com/examples/
default-translate
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with novel language pair and formality combina-
tions.

3 Experiment Settings

3.1 Dataset Details

The IWSLT shared task provides Formality Dataset
which contains English source segments, each ac-
companied by two contrasting reference transla-
tions representing informal and formal formality
levels. This is available for two language pairs,
EN-{KO, VI}, in the supervised setting and two
additional language pairs, EN-{PT, RU}, in the
zero-shot setting. The statistics for the train and
test sets of the dataset are shown in Table 2

For training and testing purposes, we randomly
sampled 50 pairs of examples across each domain
from the train set of Formality Dataset, and set
them aside as validation sets (TASK DEV) for each
supervised language. The remaining samples were
utilized for training (TASK TRAIN).

Additionally, we utilized external datasets in
conjunction with the data provided in the shared
task. For EN-KO, we employed a parallel corpus
comprising Formal/Informal, Social Science, Tech-
nology Science, and News domains from AI Hub
for the pretraining of the PLM. For EN-VI, we
utilized EnViT5, which was fine-tuned using the
MTet (Ngo et al., 2022) and PhoMT (Doan et al.,
2021) datasets.

In our research, we leverage ChatGPT for the
augmentation of the EN-KO and EN-VI and the
generation of synthetic examples for fine-tuning
on EN-PT and EN-RU. This was done by using
the source data from all available English-other
language pairs (EN-XX) in the IWSLT’22 Formal-
ity Track (Anastasopoulos et al., 2022). To secure
the quality and uniqueness of our training set, we
implemented a preprocessing step that excludes du-
plicate sentences. Furthermore, to determine the op-
timal hyperparameters, we conducted a case study
utilizing TASK DEV (details can be found in Sec-
tion 4.3). The hyperparameters that led to the high-
est Matched-Accuracy (M-Acc) were selected for
use. For all language pairs, we utilized a temper-
ature of 0.9; specifically, we implemented 4-shot
learning for EN-KO and 2-shot learning for EN-
VI. For EN-PT and EN-RU, we proceeded with
a zero-shot setting. More detailed information re-
garding the datasets and the preprocessing steps
are presented in Table 3.

Language Size Source

EN-KO 6M AI Hub (Formal/Informal
+ Tech/Sci + Social/Sci + News)

EN-VI 6.2M MTet (Ngo et al., 2022)
+ PhoMT (Doan et al., 2021)

EN-{PT, RU} 1.6K EN source from IWSLT’22
(Anastasopoulos et al., 2022)

Table 3: Additional external datasets used for the for-
mality track in various language pairs.

3.2 Training Details

In the training details for the EN-KO language
pair, we applied a morpheme-aware tokenization
method to the translation dataset. To achieve this,
we followed the training methods proposed by Park
et al. (2020) and Gowda and May (2020), using
MeCab-ko and Unigram to construct a vocabu-
lary of 48K tokens. We then pre-trained the Trans-
former model (Vaswani et al., 2017). We used the
fairseq library with 12 encoder and 12 decoder
layers, each having 16 attention heads. Both en-
coder and decoder had an embedding dimension
of 1024 and a feed-forward network (FFN) dimen-
sion of 4096. During pre-training, we trained for
20 epochs with a learning rate of 5e-4 and 4000
warmup updates. For fine-tuning, we trained for
200 epochs using a learning rate of 4e-5 and 100
warmup updates. We fine-tuned using the TASK

TRAIN for all language pairs.
For EN-{VI, PT, RU} pairs, we fine-tuned us-

ing the huggingface library. For EN-VI, we
used the VietAI/envit5-translation as
the PLM. Fine-tuning was performed for 200
epochs with a learning rate of 4e-5, 200 warmup
steps, and a batch size of 64. For EN-{PT,RU}
pairs, we used facebook/mbart-large-50
and trained for 200 epochs with a learning rate of
3e-5, 100 warmup steps, and a batch size of 16. All
models were trained using four RTX A6000 GPUs.
Detailed hyperparameters and training information
can be found in the Appendix B.

3.3 Evaluation Details

In our experimental setting, we used the official test
set from Formality Dataset (IWSLT’23) to evaluate
our translation model’s performance. The evalua-
tion was conducted across two dimensions: overall
translation quality and formality control. To as-
sess the overall translation quality, we employed
BLEU (Papineni et al., 2002) and COMET (Rei
et al., 2020) (eamt22-cometinho-da) as au-
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EN-KO EN-VI
METHOD BLEU COMET %M-ACC %C-F BLEU COMET %M-ACC %C-F

Fo
rm

al

Official Baseline 4.91 0.211 78.3 98.6 26.71 0.363 96.0 99.7
ChatGPT 5.65 0.524 83.3 100.0 27.07 0.510 100.0 98.0
Ours 26.60 0.727 87.0 100.0 47.00 0.669 99.4 100.0
Ours + Augmentation 17.09 0.667 79.4 99.5 41.57 0.653 99.4 99.7

In
fo

rm
al

Official Baseline 4.85 0.170 97.6 99.5 25.28 0.345 96.0 98.2
ChatGPT 5.60 0.564 100.0 100.0 25.83 0.482 100.0 100.0
Ours 27.10 0.715 98.0 95.0 45.60 0.637 98.8 100.0
Ours + Augmentation 20.35 0.621 98.5 98.8 40.46 0.484 98.7 100.0

Table 4: Results on the test set of Formality Dataset for formal and informal supervised settings, obtained via our
language specialized data-centric approach.

EN-PT EN-RU

METHOD BLEU COMET %M-ACC %C-F BLEU COMET %M-ACC %C-F

Fo
rm

al Official Baseline 27.29 0.448 96.3 97.7 21.96 0.349 96.2 92.0

ChatGPT 31.25 0.655 92.0 96.0 31.25 0.655 92.0 96.0

Ours 31.00 0.525 100.0 100.0 25.80 0.445 100.0 100.0

In
fo

rm
al Official Baseline 30.93 0.416 93.2 90.8 21.63 0.348 84.1 85.2

ChatGPT 27.38 0.512 48.4 46.0 31.25 0.655 92.0 100.0

Ours 19.90 0.249 68.0 90.0 26.30 0.418 100.0 100.0

Table 5: Results on the test set of Formality Dataset for formal and informal zero-shot settings, achieved through
our approach of synthetic data generation via prompt engineering.

tomatic evaluation metrics. We use 13A tokenizer
to report SACREBLEU (Post, 2018) scores for all
languages.

For formality control, we utilized Matched-
Accuracy (M-Acc), a reference-based corpus-
level metric that leverages phrase-level formality
markers from the references to classify system-
generated hypotheses as formal or informal. The
corpus-level score is the percentage of system out-
puts that match the desired formality level.

Additionally, we used a reference-free variant
of M-Acc (C-F) 4, which relies on a multilingual
formality classifier to label system-generated hy-
potheses as formal or informal, with the corpus-
level score representing the percentage of system
outputs matching the desired formality level.

3.4 Prompt Design

We conducted experiments using ChatGPT with
GPT-4 engine with langchain5. For EN-KO and
EN-VI language pairs, we used a supervised set-

4https://github.com/amazon-science/
contrastive-controlled-mt/tree/main/
IWSLT2023

5https://python.langchain.com/

ting, while for EN-PT and EN-RU pairs, we em-
ployed a zero-shot setting. In the supervised set-
ting, we extracted arbitrary n-shot samples using
the TASK TRAIN. We designed prompts by leverag-
ing langchain’s prompt guide and prompt examples
from Hendy et al. (2023). Detailed examples and
explanations of the prompts can be found in Ap-
pendix A.

4 Result & Findings

4.1 Results for Supervised Setting

Table 4 presents our experimental results in the su-
pervised setting. As demonstrated by our results,
our model, trained with the high-quality human-
annotated Formality Dataset, exhibited outstand-
ing performance. In particular, with respect to the
C-F metric, our model shows almost perfect for-
mality control performance (100% accuracy) for
most of the tasks, except for the EN-KO informal
task. Additionally, our model shows superior per-
formance for the conventional NMT metrics (i.e.
BLEU, COMET), outperforming ChatGPT with a
21.50 BLEU score for the EN-KO informal task.
The EN-VI pair also exhibits high NMT metric
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Figure 1: BLEU and M-Acc scores for ChatGPT based on superviesed setting, evaluated on TASK DEV.

scores, M-Acc, and C-F scores compared to the
baseline. These results suggest that our language-
specific data-centric approach is effective.

Through our experiments, we observed a sig-
nificant degradation in the quality for supervised
settings EN-{KO, VI}. This phenomenon can be
attributed to the limitations of synthetic data pro-
duced by ChatGPT. While the data generated
through ChatGPT exhibits considerable quality,
it was not up to par with the sentences derived
from our data-centric approach. We found that the
integration of ChatGPT-augmented data inadver-
tently introduced noise into the system, leading to
a decrease in overall performance. Despite the ex-
ceptional capabilities of ChatGPT, it appears that
in this context, the quality of data augmented by
conventional NMT methods is still superior. This
observation further emphasizes the critical role of
data quality over quantity in supervised learning en-
vironments, and highlights the potential benefits of
more sophisticated prompting techniques that con-
sider formality control, such as stylistic or sentence
endings, for improving overall performance.

4.2 Results for Zero-shot Setting

The experimental results for the zero-shot setting
are shown in Table 5. As can be seen from the
experimental results, our model significantly out-

performs the official baseline on all tasks except the
EN-PT informal task. Notably, our model demon-
strates consistently higher performance in terms of
C-F metric compared to ChatGPT, achieving 100%
M-ACC and C-F in the majority of tasks.

Exceptionally for EN-PT informal task, the per-
formance of our model is markedly subpar, and
ChatGPT even fails to exceed the official base-
line. We find this result is highly noteworthy, as
it suggest that ChatGPT may generate semantically
accurate and plausible data, while the formality
can hardly be controlled, especially for the EN-PT
language pair. In our experiments, we utilized the
same prompt for both EN-PT and EN-RU language
pairs, differing only in language specification. The
disparity in results between these two language pair
suggests that specialized techniques for controlling
formality are required for each language pair. This
issue can be partially attributed to a data bias in
ChatGPT, indicating a potential training data bias
concerning formality.

4.3 Case Study

Impact of In-context Shots In this section, we
examine the changes in performance based on the
number of few-shot samples used for in-context
learning, particularly when employing prompt en-
gineering for translation. Previous research sug-
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Figure 2: BLEU and M-Acc scores for ChatGPT based on zero-shot setting, evaluated on test set of Formality
Dataset.

gests that increasing the number of shots beyond
10 does not significantly impact translation perfor-
mance when using large language models (Zhang
et al., 2023). However, we argue that applying the
same perspective to formality control tasks proves
challenging. This complexity arises as formality in-
troduces a unique element required for these tasks.
Additionally, previous research did not consider
unintended consequences arising from this factor.

In pursuit of this, we conducted experiments
where the number of shots was incrementally in-
creased from 1 to 32, in powers of 2, using TASK

DEV. The aim was to verify the differences in per-
formance resulting from these changes. This pro-
cess involved translating data via ChatGPT with
an increasing number of shots and then evaluating
the resulting translation data for its appropriateness.
The experimental results are depicted in Figure 1.
For this particular experiment, we selected one tem-
perature (from the options of 0.2, 0.5, 0.7, 0.9) that
demonstrated the highest performance and eval-
uated the changes in performance based on the
number of shots.

As observed in our experimental results, increas-
ing the number of shots for in-context learning led

to an improvement in the general translation perfor-
mance metric, BLEU. However, the scores of M-
Acc and C-F, we found that the best performance
was achieved with a smaller number of shots. This
suggests that the nature of formality as a feature
makes the “formality control” task distinct from
conventional NMT, and it may be challenging to di-
rectly apply perspectives from conventional NMT
to this task. We propose two hypotheses based on
these results: (i) there exists a trade-off between
translation performance and formality control as
the number of shots increases, and (ii) increasing
the number of shots while applying random sample
selection may have caused confusion in perform-
ing formality control. We leave the analysis and
validation of these hypotheses for future work.

Impact of Temperature Temperature is an im-
portant parameter to make ChatGPT generates var-
ied responses to human queries (Peng et al., 2023).
Basically, higher temperatures leads to the higher
linguistic variety, while the lower one generates
grammatically correct and deterministic text (Ip-
polito et al., 2019). Previous work suggested that
for machine translation, a diverse generation may
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impede its translation quality with a high degree of
certainty(i.e. high temperature) (Peng et al., 2023).
In this sense, we experiment with different tem-
perature setting and find the optimal temperature
for the formality control data augmentation. In our
experiments, we select the most appropriate one
among seven shot-candidates (1, 2, 4, 8, 16, 32) for
each language pair.

Experimental results reveal that varying temper-
ature can lead to significant performance fluctu-
ations. It is particularly noteworthy that the per-
formance disparity due to temperature changes is
exceptionally high for the informal tasks. For for-
mal tasks, the impact of temperature is relatively
minor, with the variation in BLEU score is at most
0.95 (EN-RU). However, for informal tasks, the
performance shift can reach up to 4.82 points (EN-
RU) as temperature changes. Additionally, we find
that in informal task, the performance variation de-
pending on the temperature shows distinct trend
for each language pair. This is evident from the
fact that a moderate temperature(0.7) yielded the
highest BLEU performance in the EN-PT informal
task, while a similarly moderate temperature(0.5)
resulted in the lowest performance. Our findings
suggest that handling ChatGPT in informal task
necessitates more elaborate control compared to
dealing with formal data.

5 Background

In this work, we focus on data-centric approaches
to improve Neural Machine Translation (NMT)
performance. Several studies have investigated dif-
ferent strategies to address the challenges of low-
resource languages and enhance translation quality.
Kudo (2018) proposed subword regularization to
improve NMT models using multiple subword can-
didates, effectively increasing data diversity and
robustness. Gu et al. (2018) introduced a univer-
sal NMT model for extremely low-resource lan-
guages, leveraging multilingual knowledge from
high-resource languages to assist in translation.
Zoph et al. (2016) explored transfer learning for
low-resource NMT, utilizing pre-trained models
on related high-resource languages to improve the
performance on the target low-resource language.
Additionally, Sennrich et al. (2015a) proposed a
method of improving NMT models by generating
synthetic parallel data through back-translation,
which has proven successful in various transla-
tion tasks. These studies highlight the diverse data-

centric approaches in NMT, aiming to improve
translation quality and overcome the limitations
of low-resource languages.

6 Conclusion

In this paper, we presented the KU x UpStage
team’s submission for four languages, employ-
ing two main strategies: 1) a language-specific
data-driven approach, and 2) synthetic data gen-
eration using large-scale language models and em-
pirical prompt engineering. While our data-driven
approach excelled, particularly in EN-KO and EN-
VI, the quality of synthetic data generation was
called into question. In light of this feedback, we
propose to enhance the quality of synthetic data
by integrating Quality Estimation (QE) techniques
as an additional filter in the generation process.
This step aims to further refine our synthetic ex-
amples, potentially improving the overall system
performance. We also plan to explore the use of
translation models with larger parameters and con-
duct a thorough analysis through more shot exam-
ples and linguistically-grounded data augmentation
techniques. Finally, we aim to extend our under-
standing of factors influencing FSMT performance,
such as the impact of formal register versus gram-
matical formality in training data and a detailed
examination of zero-shot transfer.
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A Prompt Template

A.1 Superviesd Setting

You are a helpful assistant that translates English to:
1. Informal [target language] or 2. Formal [target language]

####

[shot 1 source]

[shot 2 source]

[shot n source]

1. Informal [target language]: [shot 1 reference]

2. Formal [target language]: [shot 1 reference]

1. Informal [target language]: [shot 2 reference]

2. Formal [target language]: [shot 2 reference]

1. Informal [target language]: [shot n reference]

2. Formal [target language]: [shot n reference]

####

Translate this into only [1. Informal | 2. Formal] [target language]: [input]

Figure 3: Prompt template for supervised setting based on Hendy et al. (2023). We utilize n randomly selected
shots from the English training set of other language pairs in the IWSLT 23 Formality Track as input for our
model, with few-shot examples derived from the target language’s training set.

A.2 Zero-shot Setting

You are a helpful assistant that translates English to:
1. Informal [target language] or 2. Formal [target language]

[shot n source]

Translate this into only [1. Informal | 2. Formal] [target language]: [input]

Figure 4: Prompt template for zero-shot setting, following the recommended instruction and format for the default
sentence-level translation task in OpenAI playground6. This consistency enables us to maximize the benefits of the
instruction finetuning protocol. We use n random shots from the training set.
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B Experimental Setup

B.1 EN-KO
In the experimental setup for the EN-KO language pair, we employed a Transformer architecture with
shared decoder input-output embeddings. The model’s parameters included 1024-dimensional embeddings
for both encoder and decoder, 16 attention heads for each, and 12 layers for both encoder and decoder.
We used the Adam optimizer with beta values (0.9, 0.98) and a learning rate of 5e-4 scheduled by an
inverse square root scheduler with a 4000-step warm-up. To prevent overfitting, we applied a dropout rate
of 0.3 and weight decay of 0.0001. Our translation task utilized a label-smoothed cross-entropy criterion
with a label smoothing factor of 0.1. The training process was performed with a maximum token limit
of 4096 per batch and an update frequency of 4. Model performance was evaluated using BLEU scores
with a beam size of 1 and detokenization using the Moses tokenizer. The training process was executed
for a maximum of 20 epochs with a log interval of 200 and without epoch checkpoints, while sharing all
embeddings.

Parameters for pre-training:
fairseq-train \

--fp16 \
--fp16-init-scale 4096 \
--arch transformer --share-decoder-input-output-embed \
--encoder-embed-dim 1024 --decoder-embed-dim 1024 \
--encoder-attention-heads 16 --decoder-attention-heads 16 \
--encoder-ffn-embed-dim 4096 --decoder-ffn-embed-dim 4096 \
--encoder-normalize-before --decoder-normalize-before \
--encoder-layers 12 --decoder-layers 12 \
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
--dropout 0.3 --weight-decay 0.0001 \
--task translation \
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
--max-tokens 4096 \
--update-freq 4 \
--eval-bleu \
--eval-bleu-args '{"beam": 1, "max_len_a": 1.2, "max_len_b": 10}' \
--eval-bleu-detok moses \
--eval-bleu-remove-bpe \
--best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
--log-interval 200 \
--max-epoch 20 \
--skip-invalid-size-inputs-valid-test \
--no-epoch-checkpoints \
--share-all-embeddings

Parameters for fine-tuning:
fairseq-train \

--batch-size 32 \
--lr 4e-5 --warmup-updates 200 \
--max-epoch 200 \
--restore-file $MODELDIR/checkpoint_best.pt \
--reset-optimizer --reset-meters --reset-dataloader --reset-lr-scheduler

B.2 EN-VI
We fine-tuned our model using the Hugging Face library and the code available at their repository7. The
fine-tuning was performed with a learning rate of 4e-5, Adam optimizer with beta1 and beta2 values set to
0.9 and 0.98, respectively, and a weight decay of 0.0001. We also used mixed precision training (fp16) to
accelerate the process. The learning rate scheduler was set to inverse square root with a warm-up of 200
steps. The training was conducted for 200 epochs with a maximum gradient norm of 0.0, label smoothing
factor of 0.1, and a batch size of 64 for both training and evaluation. The model was saved and evaluated
at the end of each epoch, and the logging was performed after each training step.

7https://github.com/huggingface/transformers/tree/main/examples/pytorch/
translation
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Parameters for fine-tuning:
python train_mt_trainer.py \

--fp16 \
--model_name_or_path VietAI/envit5-translation \
--do_train \
--do_eval \
--do_predict \
--source_lang en \
--target_lang vi \
--source_prefix "translate English to Vietnamese: " \
--learning_rate 4e-5 \
--adam_beta1 0.9 \
--adam_beta2 0.98 \
--max_grad_norm 0.0 \
--num_train_epochs 200 \
--lr_scheduler_type inverse_sqrt \
--warmup_steps 200 \
--weight_decay 0.0001 \
--label_smoothing_factor 0.1 \
--save_strategy epoch \
--logging_steps 1 \
--evaluation_strategy epoch \
--per_device_train_batch_size=64 \
--per_device_eval_batch_size=64

B.3 EN-{PT, RU}
We utilized the same training code as for the EN-VI task and employed the
facebook/mbart-large-50 model.

Parameters for fine-tuning:
export langs=ar_AR,cs_CZ,de_DE,en_XX,es_XX,et_EE,fi_FI,fr_XX,gu_IN,hi_IN,
it_IT,ja_XX,kk_KZ,ko_KR,lt_LT,lv_LV,my_MM,ne_NP,nl_XX,ro_RO,ru_RU,si_LK,
tr_TR,vi_VN,zh_CN

python train_mt_trainer.py \
--fp16 \
--model_name_or_path facebook/mbart-large-50 \
--do_train \
--do_eval \
--do_predict \
--source_lang en_XX \
--target_lang pt_XX \
--learning_rate 3e-5 \
--adam_beta1 0.9 \
--adam_beta2 0.98 \
--max_grad_norm 0.0 \
--num_train_epochs 200 \
--lr_scheduler_type inverse_sqrt \
--warmup_steps 100 \
--weight_decay 0.0001 \
--label_smoothing_factor 0.1 \
--save_strategy epoch \
--logging_steps 1 \
--evaluation_strategy epoch \
--per_device_train_batch_size=16 \
--per_device_eval_batch_size=16
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Abstract

For the 2023 IWSLT (Agarwal et al., 2023)
Maltese Speech Translation Task, UM-DFKI
jointly presents a cascade solution which
achieves 0.6 BLEU. While this is the first time
that a Maltese speech translation task has been
released by IWSLT, this paper explores pre-
vious solutions for other speech translation
tasks, focusing primarily on low-resource sce-
narios. Moreover, we present our method of
fine-tuning XLS-R models for Maltese ASR us-
ing a collection of multi-lingual speech corpora
as well as the fine-tuning of the mBART model
for Maltese to English machine translation.

1 Introduction

Speech Translation (ST), or speech-to-text trans-
lation, involves converting speech in a source lan-
guage into written text in a target language. With
the rise of deep learning, steep progress has been
made in this field and many other areas that fall
under the Natural Language Processing (NLP) um-
brella (Khurana et al., 2023; Qiu et al., 2020). How-
ever, development for low-resource languages has
continued to present difficulties and obstacles due
to a variety of factors, including the lack of suffi-
cient training data, language experts and other re-
sources (Magueresse et al., 2020; Hedderich et al.,
2021).

The International Workshop on Spoken Lan-
guage Translation (IWSLT) shared task is an an-
nual competition that aims to foster research in the
field of speech translation. With its low-resource
track, it also contributes to advanced research for
speech translation in low-resource scenarios. In
this paper, we present our submission to the low re-
source track: a pipeline system for English-Maltese
speech-to-text translation.

We begin by discussing the state of the art in
speech translation and describe the two main ap-
proaches, cascade and end-to-end. Afterwards, we
briefly summarise the challenges posed by low-
resource languages and possible mitigation strate-
gies. We then describe our system, a pipeline ap-
proach containing an internal Automatic Speech
Recognition (ASR) component and the outward
facing Machine Translation (MT) component. The
ASR component can use one of five fine-tuned
XLS-R (Babu et al., 2021) models, whereas the
MT stage always uses an mBART-50 model.

2 Literature Review

The following literature review aims to provide an
overview of previous IWSLT ST submissions, with
a particular focus on low-resource scenarios. The
review is divided into two sections; where the first
explores the general approaches and challenges as-
sociated with low-resource ST, and the second sec-
tion discusses previous approaches to low-resource
ST as applied to IWSLT.

2.1 Previous IWSLT Approaches for
Low-Resource Languages

The IWSLT (Anastasopoulos et al., 2022) set the
task in 2022 to attempt to solve “the problem of de-
veloping speech transcription and translation tools
for under-resourced languages”. This problem
involved translating Tamasheq into English and
Tunisian Arabic into French. Three different teams
attempted to solve the problem of the Tamasheq-
English ST; Taltech publish an encoder-decoder
ST model that used a pre-trained XLS-R that they
fine-tuned on unlabelled Tamasheq as the encoder
and mBART-50 as the decoder, GMU used the
Fairseq s2t extension with its transformer archi-
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tecture in which they fine-tuned the pre-trained
XLS-R 300M encoder on French and Arabic and
then trained the whole model on the provided data
from the task; finally, ON-TRAC had a primary
submission which used a pre-trained Wav2Vec 2.0
base model trained on Tamasheq and a contrastive
model which was comprised of a partial Wav2Vec
2.0 model, a linear layer used for down projecting
the output of the Wav2Vec and a transformer de-
coder. All three submissions decided to focus on
using large pre-trained models when approaching
the task, which is the approach taken for our models
as well. The results from the submissions showed
that using powerful speech feature extractors such
as Wav2Vec 2.0 and massive multilingual decoders
such as mBART-50 does not stop low-resource ST
from being a major challenge. Of the three submis-
sions, training self-supervised models on the target
data and producing artificial supervision seemed
to be the most effective approach to solving the
problem (Zanon Boito et al., 2022).

Previous, well-performing systems submitted to
the IWLST offline and low-resource speech trans-
lation tracks made use of various methods to im-
prove the performance of their cascade system. For
the ASR component, many submissions used a
combination of transformer and conformer mod-
els (Zhang et al., 2022; Li et al., 2022; Nguyen
et al., 2021) or fine-tuned existing models (Zhang
and Ao, 2022; Zanon Boito et al., 2022; Denisov
et al., 2021). They managed to increase ASR perfor-
mance by voice activity detection for segmentation
(Zhang et al., 2022; Ding and Tao, 2021), train-
ing the ASR on synthetic data with added punc-
tuation, noise-filtering and domain-specific fine-
tuning (Zhang and Ao, 2022; Li et al., 2022) or
adding an intermediate model that cleans the ASR
output in terms of casing and punctuation (Nguyen
et al., 2021). The MT components were mostly
transformer-based (Zhang et al., 2022; Nguyen
et al., 2021; Bahar et al., 2021) or fine-tuned on pre-
existing models (Zhang and Ao, 2022). Additional
methods used to improve MT performance were
multi-task learning (Denisov et al., 2021), back-
translation (Ding and Tao, 2021; Zhang et al., 2022;
Zhang and Ao, 2022), domain adaption (Nguyen
et al., 2021; Zhang et al., 2022), knowledge distil-
lation (Zhang et al., 2022), making the MT compo-
nent robust by training it on noisy ASR output data
(Nguyen et al., 2021; Zhang et al., 2022; Zhang and
Ao, 2022), re-ranking and de-noising techniques

(Ding and Tao, 2021). Bahar et al. (2021) trained
their ASR and MT components jointly by passing
the ASR output to the MT component as a proba-
bility vector instead of a one-hot vector to attenuate
error propagation and avoid information loss of the
otherwise purely textual output.

2.2 Wav2Vec 2.0 XLS-R For Maltese ASR
One of the latest developments for the Wav2Vec
system is the introduction of multilingual pre-
training. Due to the robust architectural design
of Wav2Vec 2.0, models are able to learn cross-
lingual speech representations (XLSR) while pre-
training on massive amounts of data. This is put
in practice with the XLSR models, which are pre-
trained on up to 53 different languages from the
Mozilla Commonvoice (v. Nov. 2019), BABEL
(Gales et al., 2014) and Multilingual LibriSpeech
(Pratap et al., 2020) speech corpora, with the largest
model, pre-trained on a total of 56 thousand hours
of speech data (Conneau et al., 2021). To test out
the XLSR approach, several Wav2Vec BASE mod-
els are pre-trained either monolingually or multi-
lingually. Monolingual models follow the process
previously taken, i.e. they are pre-trained using the
same language on which they are fine-tuned. This
process is changed slightly for multilingual models,
which are pre-trained on ten languages; then at the
fine-tuning stage, a model is fine-tuned for each
language. The experiment also included the pre-
training of the Wav2Vec LARGE XLSR-53 model,
which was pre-trained on the entire dataset of unan-
notated data, and just like the multilingual models,
a separate model is then created for each language
it was evaluated on during fine-tuning. The perfor-
mance of different approaches, evaluated on four
languages; Assamese, Tagalog, Swahili, and Geor-
gian, is shown in Table 1. In these languages, the
multilingual models, XLSR even more so, outper-
form the monolingual model.

The work on the XLSR approach continues in
(Babu et al., 2021) with the release of the XLS-R
model, which saw an increase in both the size of
the unannotated data and the languages included.
BABEL, Multilingual LibriSpeech, and Common-
Voice (v. Dec. 2020) are joined by the VoxPopoli
(Wang et al., 2021) and VoxLingua107 (Valk and
Alumäe, 2021) corpora for a total of 436 thousand
unannotated hours.
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Table 1: XLSR Wav2Vec 2.0 performance on low-
resource settings when evaluated using WER. Assamese
(AS), Tagalog (TL), Swahili (SW), and Georgian (KA)
are the languages presented.

Language AS TL SW KA
Annotated Data (h) 55 76 30 46

XLSR-10 44.9 37.3 35.5 -
XLSR-53 44.1 33.2 36.5 31.1
XLS-R (0.3B) 42.9 33.2 24.3 28.0
XLS-R (1B) 40.4 30.6 21.2 25.1
XLS-R (2B) 39.0 29.3 21.0 24.3

2.3 mBART For Maltese to English
Translation

According to (Liu et al., 2020), using mBART-25 as
the pre-trained model has been shown to improve
translations over a randomly initialized baseline
in low/medium resource language. mBART-25 is
a transformer model trained on the BART (Lewis
et al., 2019) objective. It is trained on 25 differ-
ent languages. mBART-25 was later extended to
include 25 more languages and was called mBART-
50 (Tang et al., 2020). However, neither model
included Maltese - in fact, translation experiments
on Maltese are very limited. In our experiments,
in Section 3.2, we checked whether these perfor-
mance gains expand to the Maltese language, and
this claim appears to hold.

3 Methodology

For this task, we decided to use a cascade system
where the ASR and MT components were trained
separately but evaluated jointly. In this section, a
detailed description of both components is given.
First, the training data is described, followed by
the pre-processing steps applied to said data. Next,
the models are introduced, and lastly training, the
training procedure is outlined.

3.1 Automatic Speech Recognition
The ASR component in this submission contin-
ues the previous work done in (Williams, 2022),
and so the same annotated dataset consisting of 50
hours of Maltese speech is used for this task. We
opted not to use data released for this task for two
reasons. First was the additional annotation work
that was required, mainly segmentation, for which
we experienced issues attempting to do in a timely
manner. Secondly, this submission includes models
fine-tuned with non-Maltese data. Making use of

the dataset in (Williams, 2022) as a base has made
comparisons with previous experiments possible.

As described in Table 2, the Maltese speech cor-
pus is made up of several segments from two main
Maltese speech corpora, MASRI (Hernandez Mena
et al., 2020), CommonVoice (CV) (Ardila et al.,
2020) and an annotated set from publicly available
parliamentary sittings. Previous research in ASR
for Maltese has used English speech data with vary-
ing degrees of success (Mena et al., 2021). How-
ever, when applied in fine-tuning an XLS-R model,
the effect was detrimental. To further observe the
effect non-Maltese data would have on the trans-
lation task, we used three other subsets from the
CommonVoice speech corpus. Selecting 50 hours
of validated each from the Italian, French and Ara-
bic sets.

Individually these speech corpora each amount
to 50 hours, from which four models are trained.
One with just the Maltese data and the other three
trained on the extra language combined with the
Maltese set. A fifth model is also trained with all
the data included. Further combinations were not
tried due to time concerns.

Table 2: Each corpus is listed along with its total length,
sample count and average sample length.

Dataset Length
(h,m) Samples Average

Length (s)

HEADSET 6, 40 4979 4.81
MEP 1, 20 656 7.11
Tube 13, 20 8954 5.34
MERLIN 19, 4 9720 6.14
Parlament 2, 30 1672 5.35
CV Validated 4, 57 3790 12.68
CV Other 5, 4 3833 4.71
CV French 50 - -
CV Italian 50 - -
CV Arabic 50 - -
Validation 2, 32 1912 4.89
Test MASRI 1 668 5.39
Test CV 0, 54 670 4.74

The XLS-R model comes in three pre-trained
variants; the small model with 300 million parame-
ters, the medium model with a billion parameters
and the large model with two billion parameters.
Size on disk scales with size with the small model
being roughly 1GB in size and the large model
being roughly 8GB. All three of them have been
pre-trained on roughly 500 thousand hours of un-
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Table 3: ASR Models and the data used for fine-tuning.

Model Corpora used

MT Only All Maltese corpora

MT+All All corpora presented

MT+AR All Maltese corpora + Arabic sub-
set

MT+FR All Maltese corpora + French
subset

MT+IT All Maltese corpora + Italian sub-
set

labelled, multilingual speech. Previous research
(Williams, 2022), has shown that both the small
and large models fare well when fine-tuned for
the downstream Maltese ASR task. With this in
mind, the small 300M XLS-R variant model was
chosen for this task. The main reason was due to
its smaller size, a larger batch size could be used
which expedited the fine-tuning process, while the
performance loss was expected to be minimal.

This submission follows the same training pro-
cedure as outlined in (Williams, 2022). Where the
procedure was conducted utilising the Huggingface
Trainer object with the following hyper-parameters.
Each model is trained for 30 epochs, using the
AdamW criterion with a starting learning rate of
3e − 4. To stabilise the training process, the first
500 training steps were used as warm-up steps.
Gradient accumulation was also used to effectively
quadruple the batch size. The batch size was depen-
dent on the training set used, where due to some
differences in sample lengths, different batch sizes
had to be used. We fine-tune 5 XLS-R 300m mod-
els as presented in Table 3.

3.2 Machine Translation
The dataset used to train the machine translation
systems comes from publicly available sources.
The original data sources include datasets from
Arab-Acquis (Habash et al., 2017), the Euro-
pean Vaccination Portal1,the Publications Office
of the EU on the medical domain2, the European
Medicines Agency3, the COVID-19 ANTIBIOTIC

1https://bit.ly/3dLbGX9
2https://bit.ly/3R2G5OH
3https://bit.ly/3QWIjPM

dataset4, the COVID-19 EC-EUROPA dataset5,
the COVID-19 EU press corner V2 dataset6, the
COVID-19 EUROPARL v2 dataset7, the Digital
Corpus of the European Parliament (Hajlaoui et al.,
2014), the DGT-Acquis (Steinberger et al., 2014),
ELRC8, the Tatoeba corpus9, OPUS (Tiedemann,
2012), EUIPO - Trade mark Guidelines10, Malta
Government Gazette11, MaCoCu (Bañón et al.,
2022), as well as data extracted from the Laws
of Malta12.

The different datasets were compiled into a sin-
gle one. The total number of parallel sentences
amounts to 3,671,287. The development and test
set was kept the exact same as the OPUS dataset
(Tiedemann, 2012), which amount to 2000 sen-
tences each, and the rest of the data was placed
in the training set, which amounts to 3,667,287
parallel sentences.

Before training the system, the data has to be
further pre-processed. Firstly, a BPE tokenizer is
trained on the training set only. The MosesDe-
coder13 package is used to pre-process the dataset,
by normalising punctuation and training a true case
on the training set and applying it to the whole
dataset. In the case of Maltese data, a tokenizer
specifically designed for Maltese was used because
the regular English tokenizer does not tokenize ev-
erything correctly. For this, the tokenizer from
MLRS14 was used, which utilises regular expres-
sions to tokenize linguistic expressions that are
specific to Maltese, such as certain prefixes and
articles. The dataset is then encoded using the pre-
viously trained BPE encoder.

The machine translation model is built and
trained using Fairseq (Ott et al., 2019). Fairseq
is a library that allows for easy implementation
of a machine translation system through CLI com-
mands, meaning minimal code is needed to create
a fully working machine translation system.

For this system, a pre-trained mBART-50 model
(Tang et al., 2020) was used and fine-tuned on our

4https://bit.ly/3pBCg7u
5https://bit.ly/3AcjIzR
6https://bit.ly/3wmCyTD
7https://bit.ly/3wl3brZ
8https://www.lr-coordination.eu/node/

2
9https://bit.ly/3cejoIU

10https://bit.ly/3AB01Tr
11https://bit.ly/3QDXm1a
12https://legislation.mt/
13https://www.statmt.org/moses/
14https://mlrs.research.um.edu.mt/
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data. An mBART-25 (Liu et al., 2020) model, as
well as a randomly initialised baseline Transformer
model, were also experimented with, however af-
ter training a system using a subset of the dataset,
it was apparent that the mBART-50 model outper-
forms them both. Due to limited resource con-
straints, only one MT model was trained on the full
dataset.

The maximum number of steps was set out to
be 1,000,000, yet the validation was performed ev-
ery 10,000 steps with a patience value of 10. This
means that if the BLEU score on the validation set
does not improve after ten validation steps, then
the model stops training. After multiple experi-
ments using a smaller subset of the dataset, it was
seen that increasing max-tokens tended to result
in higher overall performance. However, due to
resource constraints, the maximum number of to-
kens per batch was set to 1024. The learning rate is
set to 1e−3, but the initial learning rate is smaller
at 1e−7 and increases using an inverse square root
learning rate scheduler to linearly increase the rate
after 10,000 steps. For inference, a beam size of
five is used to generate predictions.

The total number of updates using mBART-50
was 990,000, with an early stop since the validation
didn’t improve in the last 10 validation epochs.
This amounts to exactly three full epochs on the
whole training set.

3.3 Completed Pipeline
To create a speech-to-text translation system, a
Huggingface pipeline is set up to accept an audio
file that is passed to the ASR system. The test set
provided for this task is a single file of over one
hour. Due to its size, the file needs to be segmented
for inference and evaluation due to its size. The
XLS-R model automatically returns a timestamp
for each output word. These timestamps are used
to create segments that align with the segments file
provided with the test set.

This means that the ASR component returns a
list of text strings. Each segment is an item in the
list of strings. Each string is passed to the MT sys-
tem. Before passing through the MT component,
the resultant strings are pre-processed. The afore-
mentioned MosesDecoder package is used to trans-
form the strings using the same rules that have been
applied to the MT training data. This means that
the strings have their punctuation normalised, then
true cased and finally tokenized. The processed

strings are then passed to the mBART model to be
inferred and the BPE model to encode the inputs.
The beam size is set to five. The resulting tokens
are then detokenized and saved.

4 Evaluation and Results

Table 4 contains the official results for our submis-
sion for the Maltese→ English spoken language
translation track. While we observed better scores
during training and validation, our models strug-
gled with the official test set. In this section, we
note our few observations and qualitative analysis
of results to highlight the errors.

The test set proved to be difficult for both the
ASR and MT systems to get right due to the type of
language used as well as the speed of the speech in
general. Table 5 shows the reference transcription
of the beginning of the file, accompanied by the MT
Only and MT+All ASR transcription, and lastly,
the machine translation of the mt-50 model. The
monolingually fine-tuned MT Only model was our
primary submission from the five submitted ASR
models, with BLEU scores of 0.6.

The mt-50 output is relatively similar to the refer-
ence sentence, except for a few minor errors, includ-
ing the misspelling of the name “Mark”. However,
this should still be a good sentence to input into the
machine translation system. In stark contrast to the
MT+All system outputs.

The main issue here is that this system does not
output Maltese characters and completely omits
them, which presents an issue for the downstream
translation task since the meaning of the word is
lost in these cases.

Machine translation also had similar issues. The
training set contained data coming from legal texts,
so the data is very formal, making it very difficult
to evaluate since the input text is very informal and
unlike the legal text data seen.

Unfortunately, most of this is unrelated to what

Table 4: Official Results for our models for Maltese→
English SLT task

Submission Name BLEU Score

MT Only 0.6
MT+All 0.7
MT+AR 0.4
MT+FR 0.3
MT+IT 0.4
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Table 5: Reference transcription sample from the
IWSLT 2023 test set along with the MT Only and
MT+All automatic transcription and the machine trans-
lation of the MT Only output.

Reference

merh̄ba’ gh̄al- podcast ieh̄or din
id- darba ma bniedem kemxejn
polemikuż mhux gh̄ax jien gh̄andi
wisq xi ngh̄id però Mark Camil-
leri huwa il- mexxejj kemxejn
kontroversjali tal- kunsill naz-
zjonali tal- ktieb

MT Only

merba’ l- pot kast ieh̄or din
id- darba ma bniedem kemx-
ejn polemikuż mhux gh̄ax jien
gh̄andi wisq xi ngh̄id però mar
Camilleri huwa il- mexxejj kemx-
ejn kontroversjali tal- kunsill naz-
zjonali tal- ktieb

MT+All

meba l Pold cast ieor din id-
darba ma bniedem kemmxejn
polemiku mhux gax jien Gandi
wisq xi ngid per mar kamileri
huwai - mexxejk emxejh kontro-
versjali tal- kunsill nazzjonali tal-
ktieb

Translation
MT Only

four of the other potential this
time does not work very slightly
at all , but not at all , the same
time , it is the slightly cross- sec-
toral leader of the national when
the book is also of humane

was actually said. Looking into the translations
deeper, one can see the reasoning behind certain
translations. For example, the dataset does not con-
tain a lot of conversational data, so general greet-
ings like “merh̄ba” may not be present. This case is
represented by the translation of the token “merba”,
which was translated to “four”. Here the token
“merba” (welcome) was mistaken for “erba” (four).
Other mistakes include those that are phonetically
plausible but grammatically incorrect output, such
as the transcription for “podcast” which was tran-
scribed as “pot kast”. Certain expressions like “din
id-darba” were correctly translated to “this time”,
however rarer words such as “polemikuż” and “kon-
troversjali”, both of which have the same meaning
as “controversial”, seemed to not appear in the
translation.

Continuing the trend observed in (Williams,
2022), the use of additional languages when fine-
tuning an XLS-R model proved to be detrimental
towards the final output. As observed in Section
4, some models trained with additional data lost
the ability to transcribe Maltese-specific alphabetic
characters. So far, the character-to-sound pair was
always made with the source language in mind. For
example, the French ‘Ç’ is transformed into the ‘C’
character, which itself is only present in the Maltese
alphabet when English words are loaned and used
directly. It’s important to note that code-switching
to English is very common in Maltese speech. Fu-
ture work should explore these character-to-sound
pairs.

5 Conclusion and Future Work

This paper showcased the results of a speech-to-
text translation system in the direction of Maltese
to English. A cascade system is chosen, where
ASR and MT models are pipelined together.

The automatic speech recognition system chosen
is based on XLS-R and is fine-tuned on data from
different languages. The best-performing model
was the XLS-R 300M model fine-tuned on 50 hours
of Maltese speech. The machine translation system
chosen is based on mBART-50, and it was fine-
tuned on parallel Maltese - English data. Aside
from fine-tuning, no modifications were made to
the pre-trained models.

For future work, we have various potential av-
enues for improvement. For machine translation,
since mBART-50 was not pre-trained on Maltese
data, extending the vocabulary to include Maltese-
specific tokens would improve the representation
and potentially the downstream performance as
well. Moreover, our approach solely relied on
parallel data and did not investigate techniques
which leverage monolingual data, such as back-
translation. Monolingual corpora, such as Korpus
Malti v4 (Micallef et al., 2022), not only provide
significantly more data but also have more diversity
in terms of domains. Apart from this, it might be
beneficial to perform more quality checks on the
parallel dataset since some portions of the publicly
available datasets are automatically crawled and, in
some cases, contain noise.

Regarding ASR improvement, other systems,
such as Whisper and, most recently Meta’s Mas-
sively Multilingual Speech (MMS) project should
be tried and evaluated. The research made in multi-
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lingual fine-tuning needs to be more focused. One
idea we can explore is the transliteration of foreign
alphabetic characters into Maltese characters, e.g.
’h’ in English would be transliterated as ’h̄’. It is
also the case that no language model is used to
correct the ASR output mistakes; this is currently
our next milestone.
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Abstract

This paper provides an overview of NVIDIA
NeMo’s speech translation systems for the
IWSLT 2023 Offline Speech Translation Task.
This year, we focused on end-to-end system
which capitalizes on pre-trained models and
synthetic data to mitigate the problem of di-
rect speech translation data scarcity. When
trained on IWSLT 2022 constrained data, our
best En→De end-to-end model achieves the
average score of 31 BLEU on 7 test sets from
IWSLT 2010-2020 which improves over our
last year cascade (28.4) and end-to-end (25.7)
submissions. When trained on IWSLT 2023
constrained data, the average score drops to
29.5 BLEU.

1 Introduction

We participate in the IWSLT 2023 Offline
Speech Translation Task (Agarwal et al., 2023)
for English→German, English→Chinese, and
English→Japanese. This year, we focus on an end-
to-end model, which directly translates English
audio into text in other languages.

In contrast to automatic speech recognition
(ASR) and text-to-text neural machine translation
(NMT), the data for direct speech translation (ST)
is scarce and expensive. Thus, to train a high-
quality end-to-end ST model, we heavily rely on a
number of auxiliary models for which the amount
of available data is enough. Specifically, we train
the following models:

• ASR model with FastConformer-
RNNT (Rekesh et al., 2023) architecture
trained on all allowed data.

• NMT model with Transformer encoder-
decoder architecture trained on all allowed
bitext and in-domain fine-tuned on TED talks.

*Correspondence to: ohrinchuk@nvidia.com

• Text-to-speech (TTS) model with Fast-
Pitch (Łańcucki, 2021) architecture trained
on the English transcripts of TED talks.

• Supervised Hybrid Audio Segmentation
(SHAS) model (Tsiamas et al., 2022) trained
on TED talks.

Our constrained end-to-end ST model consists
of a FastConformer encoder and a Transformer
decoder. We initialize the encoder with the corre-
sponding component from ASR and train our ST
model on a mix of speech-to-text and text-to-text
data. We replace all ground truth translations (wher-
ever available) with synthetic ones generated with
the NMT model and voice the English portion of
parallel text corpora with TTS.

Our systems will be open-sourced as part of
NVIDIA NeMo1 framework (Kuchaiev et al.,
2019).

2 Data

In this section, we describe the datasets used for
training (Table 1). For evaluation, we used the de-
velopment sets of Must-C v2 (Cattoni et al., 2021),
as well as the test sets from past IWSLT competi-
tions. We noticed that development data had a large
overlap with training data, mostly because of the
usage of the same TED talks in different datasets.
Thus, we discarded all samples with overlapping
transcripts and talk ids.

TED talks In the list of allowed data, there are
several datasets comprised of TED talks, namely
Must-C v1-v3, ST-TED (Jan et al., 2018), and TED-
LIUM v3 (Hernandez et al., 2018) which have sig-
nificant data overlap. After combining them to-
gether and doing deduplication, we ended up with
the dataset of 370K unique samples (611 hours of
English audio) we used for in-domain fine-tuning
of various models. Further in the text, we refer to

1https://github.com/NVIDIA/NeMo
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Table 1: Statistics of different datasets used for training
our models in a constrained regime.

Model Segments Time
(millions) (hours)

ASR 2.7 4800

NMT En→De 11 −
NMT En→Zh 7.5 −
NMT En→Ja 21 −
TTS 0.37 611

this dataset and its subsets with available transla-
tions to De/Zh/Ja as TED talks. See Table 2 for
the detailed statistics of this dataset.

ASR For training our ASR model, we used Lib-
riSpeech (Panayotov et al., 2015), Mozilla Com-
mon Voice v11.0 (Ardila et al., 2019), TED-LIUM
v3 (Hernandez et al., 2018), VoxPopuli v2 (Wang
et al., 2021), all available speech-to-English data
from Must-C v1-v3 (Cattoni et al., 2021) En-
De/Zh/Ja datasets, ST-TED (Jan et al., 2018), and
Europarl-ST (Iranzo-Sánchez et al., 2020).

We converted all audio data to mono-channel
16kHz wav format. Of all the datasets allowed un-
der the constrained submission, LibriSpeech and
TED-LIUM v3 were the only datasets that provided
transcripts with neither punctuation nor capitaliza-
tion (P&C). For LibriSpeech, we managed to re-
store P&C from the dataset metadata available at
their website2. For TED-LIUM v3, we applied
P&C restoration model trained on the English por-
tion of allowed bitext. Finally, we discarded all
samples shorter than 0.2s and longer than 22s and
all samples with transcripts present in the evalua-
tion dataset. As a result, our training dataset con-
tained 2.7M audio segments with a total duration
of 4.8k hours.

MT For training our NMT models, we used
all available bitext allowed for IWSLT 2023 con-
strained submission. After training, we additionally
fine-tuned our models on bitexts from TED talks
for each language.

We applied langid and bicleaner filtering
following Subramanian et al. (2021) and discarded
all sentences longer than 128 tokens and sentences
with the length ratio between source and target
exceeding 3. We also applied Moses tokenization

2https://www.openslr.org/12

Table 2: Statistics of TED talks dataset.

Model Segments Time
(thousands) (hours)

En audio→ En text 370 611

En audio→ De text 280 459
En audio→ Zh text 350 580
En audio→ Ja text 321 528

for En/De, jieba tokenization for Zh, and ja-mecab
tokenization for Ja.

TTS For training our TTS model, we used TED
talks with English transcripts. The combination of
Must-C v1-v3 and ST-TED contained 3696 speak-
ers, however, some of them were not unique. Capi-
talizing on the huge overlap with TED-LIUM v3
and the speaker names from there, we managed to
attribute several talks to a single speaker reducing
the number of unique speakers to 3361. We also
removed capitalization from English transcripts in
TED talks.

ST For training our end-to-end ST models, we
used the combination of 1) ASR data with the
ground truth transcripts replaced by synthetic trans-
lations; 2) NMT data with TTS-generated English
audios on source side (Table 1).

3 System

In this section, we describe the essential compo-
nents of our end-to-end submission.

ASR We trained 17-layer large conformer-
transducer (Gulati et al., 2020) with FastCon-
former (Rekesh et al., 2023) encoder and RNN-
T loss and decoder (Graves, 2012). The pre-
diction network consisted of a single layer of
LSTM (Hochreiter and Schmidhuber, 1997), and
the joint network is an MLP. All the hidden sizes
in the decoder were set to 640. Unigram Senten-
cePiece (Kudo and Richardson, 2018) with 1024
tokens was used for tokenization.

The ASR models were trained for 45 epochs,
starting with a checkpoint pre-trained on Lib-
riSpeech. We used AdamW (Loshchilov and Hut-
ter, 2017) optimizer and Noam Annealing (Vaswani
et al., 2017) with 10K warmup steps and a maxi-
mum learning rate of 1.15. Weight decay of 0.001
on all parameters was used for regularization. The
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effective batch size was set to 1200, and we could
fit larger batch sizes via batch splitting for the RNN-
T loss. Time-Adaptive SpecAugment (Park et al.,
2020) with 2 freq masks (F = 27) and 10 time
masks (T = 5%) was used as the augmentation
scheme. We also used dropout of 0.1 for both the
attention scores and intermediate activations.

NMT We trained our NMT models (Transformer,
12 × 6 layers, dmodel = 1024, dinner = 4096,
nheads = 16) with Adam optimizer (Kingma
and Ba, 2014) and inverse square root anneal-
ing (Vaswani et al., 2017) with 7.5K warmup steps
and a maximum learning rate of 10−3. The mod-
els were trained for a maximum of 75K steps with
a dropout of 0.1 on intermediate activations and
label smoothing with α = 0.1. Our En→De mod-
els used joint BPE vocabulary of 16384 tokens
and En→Zh/Ja used separate vocabularies with the
same number of tokens per language.

After training, we did checkpoint averaging and
fine-tuned all our base NMT models on TED talks
for 3 epochs with an initial learning rate of 2×10−5,
inverse square root annealing, and a warmup of
10% steps. Finally, we ensembled 2 models trained
with different initializations for each language di-
rection.

TTS Our TTS model was multi-speaker Fast-
Pitch (Łańcucki, 2021) text-to-mel-spectrogram
generator. Training vocoder was not necessary
for our setup as the parameters of spectrograms
matched ones for ST models following the ap-
proach described in (Bataev et al., 2023). TTS-
generated spectrograms were fed directly into
the FastConformer encoder when training the ST
model. Our TTS model was trained for 200 epochs
on TED talks with restored speakers from TED-
LIUM v3 (Hernandez et al., 2018).

Segmentation We used Supervised Hybrid Au-
dio Segmentation (SHAS) approach following Tsia-
mas et al. (2022). As using speech representation
pre-trained wav2vec 2.0 (Baevski et al., 2020) goes
beyond the scope of constrained submission,
we replaced it with Conformer ASR encoder, pre-
trained on LibriSpeech.

ST Our end-to-end model consisted of FastCon-
former encoder followed by Transformer trained on
pairs of English audio and transcripts in other lan-
guages (17-layer FastConformer encoder, 6 × 6
Transformer, both with dmodel = 512, dinner =

Table 3: Word error rate (WER) of the English ASR
model evaluated on TED talks from Must-C v2 and past
test sets from IWSLT. All predictions and ground truths
transcripts were normalized for WER computation.

Model tst-COM IWSLT.tst
De Zh/Ja 2018 2019 2020

norm 5.9 5.8 9.8 5.6 8.0
punct 5.7 5.4 9.4 4.9 7.0
punct+capit 5.7 5.5 9.5 5.7 8.5

2048, nheads = 8). We used the vocabulary
of 16384 YouTokenToMe3 byte-pair-encodings,
trained jointly for En→De and separately for
En→Zh/Ja. All models were trained for 30k steps
with ASR-initialized encoder and randomly initial-
ized decoder.

To speed up training and improve GPU utiliza-
tion, we bucketed our ASR and NMT datasets on
sequence length so each batch contained a simi-
lar number of tokens. On each iteration, we pick
one batch from ASR and one batch which resulted
in approximately 3:2 ratio between segments from
ASR and NMT for En→De. TTS mel spectrograms
were generated on-the-fly for a randomly selected
speaker for each sample.

After pretraining on the ASR task, we fused
BatchNorm in FastConformer layers as proposed
in (Bataev et al., 2023) to avoid a mismatch be-
tween statistics for natural and generated mel spec-
trograms. The batch normalization layer was re-
placed with a trainable projection initialized from
the original parameters. We observed meaningful
improvements when using such an approach com-
pared to retaining the original batch normalization.

4 Experiments

4.1 Results

ASR Table 3 shows word error rate (WER) of our
ASR models on different evaluation datasets. We
trained 3 models which differed by the format of
transcripts: normalized (norm), with punctuation
only (punct), with punctuation and capitalization
(punct+capit).

All models exhibited similar results, with
punct being slightly better on all evaluation
datasets. However, in our further experiments of
training end-to-end ST with an ASR-initialized en-

3https://github.com/VKCOM/YouTokenToMe
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Table 4: En→De BLEU scores calculated on IWSLT test sets from different years by using automatic re-
segmentation of the hypothesis based on the reference translation by mwerSegmenter implemented in
SLTev (Ansari et al., 2021). Avg ∆ computes the improvement over the cascade baseline averaged over 7 test sets.

Model description 2010 2013 2014 2015 2018 2019 2020 Avg

Text-to-text NMT models

Transformer 12× 6 constrained 32.9 36.7 32.7 34.2 30.5 29.4 33.0 32.8
+ checkpoint averaging 33.1 37.4 32.8 35.1 30.3 29.8 33.5 33.1
+ TED talks fine-tuning 34.5 39.1 34.1 35.3 30.8 30.3 33.8 34.0
+ x2 ensembling 35.2 40.2 34.9 36.0 32.5 31.6 35.4 35.1

NeMo IWSLT’22 NMT model 35.7 41.2 36.2 38.1 34.7 31.7 35.0 36.1

End-to-end ST models

Conformer (17) + Transformer (6× 6) 29.8 33.8 30.2 27.1 26.2 26.8 29.1 29.0
+ better WebRTC VAD parameters 31.2 35.4 31.8 28.6 27.3 27.6 29.7 30.2
+ SHAS segmentation 32.1 36.1 32.6 29.0 28.4 27.9 30.9 31.0

NeMo IWSLT 2023 constrained 31.0 34.9 30.7 28.6 27.4 27.7 30.3 29.5

NeMo IWSLT 2022 (end-to-end) 24.5 30.0 25.2 25.3 24.9 24.1 26.2 25.7
NeMo IWSLT 2022 (cascade) 26.6 32.2 26.8 28.3 28.1 27.3 29.7 28.4
KIT IWSLT 2022 − − − 27.9 − 27.6 30.0 −
USTC-NELSLIP IWSLT 2022 − − − − 29.9 28.2 30.6 −
YiTrans IWSLT 2022 − − − − − 31.6 34.1 −

coder, we did not notice a significant difference in
the corresponding BLEU scores.

ST En→De Table 4 shows the performance of
our baseline En→De system and its ablations on
7 different IWSLT test sets over the years. All ab-
lation experiments used the last year’s constrained
setup that included more NMT data from WMT to
be comparable with the last year submissions. The
systems we submit were retrained on the allowed
data to comply with constrained restrictions.

We improve the average BLEU score by 5.3 over
our last year end-to-end submission. We believe
that such gain is attributed to several factors, most
importantly, switching to synthetic transcripts, in-
cluding TTS-generated data, and a better segmen-
tation model. On some of the evaluation datasets,
we approached the BLEU scores of top contestants
from last year.

Retraining our model in accordance with this
year constrained setup resulted in the aver-
age degradation of 1.5 BLEU. Most of this perfor-
mance drop was attributed to worse NMT models
trained on limited amount of data which did not
include large bitexts from WMT.

ST En→Zh/Ja To train English-Chinese and
English-Japanese ST systems, we followed a sim-
ilar recipe to the English-German system. Specif-
ically, we re-trained NMT components and used
them to generate synthetic translations of audio
segments. With other auxiliary models intact, we
replaced bitexts used for TTS augmentations and
trained En→Zh (Table 5) and En→Ja (Table 6) ST
end-to-end models in a constrained setup.

The only difference in our submission was that
the English-Chinese model used punct+capit
ASR, while the English-Japanese model used
norm ASR. This choice was based on a slightly
higher (less than 0.5) BLEU score on Must-C v2
dev dataset.

4.2 Discarded alternatives

When designing our submission, we explored a
number of alternatives that did not lead to a clear
improvement in preliminary experiments and, thus,
were not included in the final submission.

ASR We tried to replace BatchNorm with Layer-
Norm in the FastConformer backbone to mitigate
the statistics mismatch between natural and TTS-
generated mel-spectrograms. The resulting model
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Table 5: En→Zh BLEU scores calculated on Must-C
dev and tst-COMMON with official segmentation.

Model description dev tst-COM

Text-to-text NMT models

Transformer 12× 6 22.9 26.4
+ ckpt avg 23.0 26.4
+ TED talks fine-tuning 24.7 28.0
+ x2 ensembling 25.5 28.9

End-to-end ST models

NeMo IWSLT 2023 23.9 27.5

USTC-NELSLIP IWSLT’22 − 28.7
YiTrans IWSLT’22 − 29.3

required more epochs to converge and resulted in
slightly higher WER.

NMT We experimented with larger models of up
to 12 × 8 layers, larger vocabularies of up to 32k
tokens, and label smoothing of up to 0.2 but did not
notice any improvements to BLEU scores. We also
saw diminishing returns when using more than 2
models in the ensemble. Thus, we decided to stick
to the ensemble of two 12 × 6 models with 16k
vocab to speed up synthetic data generation.

TTS While debugging the code, we noticed that
TTS model generating mel-spectrograms used the
same single speaker and had dropout enabled. Sur-
prisingly, it did not lead to performance degrada-
tion. We hypothesize that this was caused by using
well converged pre-trained ASR encoder, which
was not altered significantly by the low-quality sig-
nal. We also experimented with improving gener-
ated spectrograms with GAN enhancer following
Bataev et al. (2023), which led to similar results at
the cost of significant computation overhead.

Segmentation We experimented with voice ac-
tivity detection implemented in WebRTC4 toolkit,
however, the BLEU scores on IWSLT test sets were
lower even after extensive hyperparameter search.

ST Given the effectiveness of ensembling in last
year’s competition, we evaluated the performance
of an ensemble of up to 3 models with different
ASR encoder initializations. Unlike NMT, we did
not observe any improvement in using the best
model from the ensemble.

4https://github.com/wiseman/py-webrtcvad

Table 6: En→Ja BLEU scores calculated on Must-C
dev and tst-COMMON with official segmentation.

Model description dev tst-COM

Text-to-text NMT models

Transformer 12× 6 12.8 15.5
+ ckpt avg 13.3 16.2
+ TED talks fine-tuning 14.7 18.5
+ x2 ensembling 15.0 19.2

End-to-end ST models

NeMo IWSLT 2023 14.5 18.3

USTC-NELSLIP IWSLT’22 − 18.2
YiTrans IWSLT’22 − 19.1

We experimented with using RNN-T instead
of the Transformer decoder. Despite its remark-
able performance in ASR, RNN-T converged much
slower and underperformed our Transformer de-
coder by more than 2 BLEU in our ST model.

5 Conclusion

We present NVIDIA NeMo group’s offline speech
translation systems for En→De, En→Zh, and
En→Ja IWSLT 2023 Tasks.

Our primary end-to-end models that translate
English speech directly into German, Chinese, and
Japanese texts, consist of FastConformer encoder
and Transformer decoder. To alleviate the prob-
lem of direct ST data scarcity, we capitalized on a
number of auxiliary ASR, TTS, and NMT models,
and their ability to generate hiqh-quality audio and
translations. The resulting models achieve com-
petitive performance without using any amount of
direct ST data.

Although we participated in constrained
scenario, our pipeline can be easily scaled to ar-
bitrarily large amounts of ASR and NMT data.
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Abstract
This paper describes the speech translation
systems SRI-B developed for the IWSLT
2023 Evaluation Campaign Dialectal and Low-
resource track: Marathi-Hindi Speech Trans-
lation. We propose systems for both the
constrained (systems are trained only on the
datasets provided by the organizers) and the un-
constrained conditions (systems can be trained
with any resource). For both the conditions, we
build end-to-end speech translation networks
comprising of a conformer encoder and a trans-
former decoder. Under both the conditions, we
leverage Marathi Automatic Speech Recogni-
tion (ASR) data to pre-train the encoder and
subsequently train the entire model on the
speech translation data. Our results demon-
strate that pre-training the encoder with ASR
data is a key step in significantly improving the
speech translation performance. We also show
that conformer encoders are inherently superior
to its transformer counterparts for speech trans-
lation tasks. Our primary submissions achieved
a BLEU% score of 31.2 on the constrained con-
dition and 32.4 on the unconstrained condition.
We secured the top position in the constrained
condition and second position in the uncon-
strained condition.

1 Introduction

Speech translation (ST) is the task of automatically
translating a speech signal in a given language into
text in another language. While rapid strides have
been made in speech translation in recent times,
this progress has been restricted to a small number
of high resource languages. This progress excludes
sizable sections of people who speak languages
that have very little speech data available. So, for
these speech systems to be beneficial and impactful
in the real world, they have to be developed and
shown to work on low-resource languages as well.

In order to mitigate these issues and encourage
research on low-resource languages, IWSLT pro-
pose a dialectal and low-resource speech translation

track (Agarwal et al., 2023) as a part of their 2023
shared tasks evaluation campaign. While this track
includes various low resource languages, we focus
our efforts on the Marathi-Hindi language pair. The
goal of this task is to translate Marathi speech to
it’s corresponding Hindi text. Marathi and Hindi
are both Indo-Aryan languages used in India. Even
though there were 83 million people across India
speaking Marathi as per the 2011 census of India,
it lacks sufficient speech data to support modern
speech translation systems.

This paper discusses our work and submissions
on the Marathi-Hindi low-resource speech trans-
lation task. Our experiments in this paper focus
only on end-to-end architectures. We begin our
experiments with a simple end-to-end Transformer
and build on this approach with the following key
contributions that significantly better our final per-
formance:

• Encoder pre-training with Marathi ASR data.

• Replacing the Transformer encoder blocks
with Conformer encoder blocks.

• Utilizing the dev split during speech transla-
tion training for the final submissions.

2 Related work

Traditionally, speech translation was performed us-
ing cascaded systems (Ney, 1999) (Casacuberta
et al., 2008) (Post et al., 2013) (Kumar et al., 2014)
of ASR and Machine Translation (MT) models. In
this approach, speech was first transcribed using an
ASR model and then the transcriptions were trans-
lated to text in the target language with the help
of a MT model. This approach however possessed
several key drawbacks like error propagation, in-
creased latency, and architectural complexity due
to multiple models.

The first attempt towards building an end-to-end
speech translation system was by (Bérard et al.,
2016), where they built a system that eliminated
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Type #Utterances Hours
train 7990 15.53
dev 2103 3.39
test 2164 4.26

Table 1: Details of speech translation (ST) data.

the need for source language transcriptions. Sim-
ilarly, (Weiss et al., 2017) proposed an attention
based encoder-decoder architecture for end-to-end
speech translation that exhibited improved perfor-
mance over cascaded systems. (Bentivogli et al.,
2021) perform a detailed comparison between the
paradigms of cascaded and end-to-end speech trans-
lation.

Developing speech translation systems for low-
resource scenarios are especially challenging given
the scarcity of training data. Speech translation
systems submitted in IWSLT 2019 (Niehues et al.,
2019) tended to prefer cascaded approaches for
low-resource tracks. The cascaded approach which
was favoured in (Le et al., 2021), used a hybrid
ASR system with wav2vec features followed by
a MT model for two low-resource language pairs.
Recently, as system trained with joint optimiza-
tion of ASR, MT and ST (Anastasopoulos et al.,
2022) exhibited good performance. Also, usage of
self-supervised learning based pre-trained models
such as XLR-S (Babu et al., 2021) and mBART
(Tang et al., 2020) have been shown to be effective,
especially for low-resource scenarios.

3 Data description

The challenge data consists of Marathi speech to
Hindi text translation data from the news domain
for the model training and development which we
shall henceforth refer to as ST (speech translation)
data. The details of this dataset has been mentioned
in Table 1. This dataset was directly shared with all
the participants involved. Development (dev) and
test (test) sets were also provided for assessing the
model performance. Hindi text labels for the test
set were kept blind for all the participants.

The organizers shared additional Marathi audio
data along with its transcripts which can be used for
the constrained condition, the details of which have
been mentioned in Table 2. Common Voice (Ardila
et al., 2019) is a publicly available multi-language
dataset prepared using crowd-sourcing. OpenSLR
(He et al., 2020) is a multi-speaker speech corpora
intended for text-to-speech (TTS) applications. In-

dian Language Corpora (Abraham et al., 2020) con-
sists of crowd-sourcing recordings of low-income
workers. From all three datasets, only the Marathi
language subsets were utilized for training pur-
poses.

For the unconstrained condition, in addition to
the aforementioned datasets, IIIT-H Voices (Prahal-
lad et al., 2012) (Prahallad et al., 2013) and IITM
Indic TTS (Baby et al., 2016) were also utilized,
both of which were designed for building TTS sys-
tems.

4 System Description

All the models we trained for this challenge are
end-to-end speech translation (ST) systems. For
the purposes of this challenge, we tried two archi-
tectures: Listen, attend and spell (LAS) (Chan et al.,
2016) style Transformer (Vaswani et al., 2017) and
the same model with its encoder replaced with Con-
former (Gulati et al., 2020) layers. Both the models
were implemented using the Fairseq S2T toolkit
(Ott et al., 2019).

The Conformer model consists of a 16-layer
Conformer encoder paired with a 6-layer Trans-
former decoder. The Transformer model comprises
of a 12-layer Transformer encoder and a 6-layer
Transformer decoder. In all the cases where pre-
training is involved, the encoder blocks are pre-
trained (Bahar et al., 2019) using Marathi ASR data
mentioned in Table 2. Then, the model is trained
on the Marathi-Hindi ST data with the encoder ini-
tialized from the previous ASR pre-training stage.
Relative positional encoding was used in the case
of the Conformer model.

For speech inputs, 80-channel log mel-filter
bank features (25ms window size and 10ms shift)
were extracted with utterance-level CMVN (Cep-
stral Mean and Variance Normalization) applied.
SpecAugment (Park et al., 2019) is applied on top
of this feature set. We experimented with character
vocabulary and a 1000 BPE (Byte Pair Encoding)
vocabulary and found that the former performs bet-
ter for our task.

Adam (Kingma and Ba, 2014) with a learning
rate of 2 × 10−3 was the optimizer of choice for
all the experiments. Inverse square-root scheduling
available in the toolkit was used with a warm-up of
1000 steps. Label-smoothed-cross-entropy with 0.1
as label smoothing was used as the criterion across
all the experiments. We set dropout (Srivastava
et al., 2014) to 0.15 during ASR pre-training and
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Dataset Condition Hours
Indian Language Corpora Constrained 109

Common Voice Constrained 3.7
OpenSLR Constrained 3

IIIT-H Voices Unconstrained 40
IITM Indic TTS Unconstrained 20

Table 2: Details of Marathi ASR datasets used for pre-training.

0.1 during ST training. We pre-train on the ASR
data for 6000 steps and then train on the ST data
for 2250 steps. After ST training, we average the
last 10 checkpoints to create the final model. We
used a beam size of 10 for decoding.

4.1 Constrained condition

For the constrained condition, we are only permit-
ted to use the data provided by the organizers. For
the constrained models, wherever pre-training is
involved, we only utilize the 3 constrained datasets
from Table 2. For this condition, we train the fol-
lowing models:

• The Transformer model trained with only the
train split from the ST data.

• The Conformer model trained with only the
train split from the ST data.

• The Transformer model encoder pre-trained
with constrained ASR data mentioned in Table
2 and then trained with only the train split
from the ST data.

• The Conformer model encoder pre-trained
with constrained ASR data mentioned in Ta-
ble 2 and then trained with only the train split
from the ST data. This served as our con-
strained contrastive model for the final sub-
mission.

• The Conformer model encoder pre-trained
with constrained ASR data mentioned in Ta-
ble 2 and then trained with both the train and
the dev splits from the ST data. This served
as our constrained primary model for the final
submission.

4.2 Unconstrained condition

For the unconstrained condition, wherever pre-
training is involved, we utlize all of the datasets
mentioned in Table 2, both constrained and uncon-
strained. Since the Conformer models outperform

the Transformer ones as can be gleaned from Table
3, we chose to use only Conformer models for the
unconstrained condition. We train the following
models for the unconstrained condition:

• The Conformer model encoder pre-trained
with constrained and unconstrained ASR data
mentioned in Table 2 and then trained with
only the train split from the ST data.This
served as our unconstrained contrastive model
for the final submission.

• The Conformer model encoder pre-trained
with constrained and unconstrained ASR data
mentioned in Table 2 and then trained with
both the train and the dev splits from the ST
data. This served as our unconstrained pri-
mary model for the final submission.

5 Results

The results for all the models we trained can be
seen in Table 3. The first striking result is that,
irrespective of the scenario, the Conformer en-
coder strongly outperforms the Transformer en-
coder. Replacing the Transformer encoder blocks
with it’s Conformer counterpart results in the dev
split BLEU score increasing by 3.2 points. Con-
formers are already state of the art when it comes
to speech recognition, so it would make inher-
ent sense that this advantage would carry over to
speech translation as well.

Encoder pre-training with Marathi ASR data also
results in a significant improvement in speech trans-
lation performance.This is a commonly used strat-
egy while training speech translation models and
allows us to increase the BLEU score on the dev
split by 8.5 and 11.8 points on the Transformer and
Conformer models respectively. Two additional
Marathi ASR datasets were added for pre-training
the encoder in the unconstrained condition. This
resulted in the BLEU score increasing by 4.1 points
on both the dev and test splits.
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Condition Model Pretraining Training Data Dev Test
ASR ST BLEU(%) BLEU(%) CHRF2(%)

Constrained Transformer ✗ – train 1.02 – –
Constrained Conformer ✗ – train 4.26 – –
Constrained Transformer ✓ constrained train 9.55 – –
Constrained Conformer ✓ constrained train 16.09 25.7 49.4
Constrained Conformer ✓ constrained train+dev – 31.2 54.8

Unconstrained Conformer ✓ all train 20.22 29.8 53.2
Unconstrained Conformer ✓ all train+dev – 32.4 55.5

Table 3: Results for all our trained models on dev & test splits. Here all indicates that both constrained and
unconstrained datasets were used for ASR pretraining.

Finally, since the dev and test splits come from
a similar distribution, including the dev split in
speech translation training boosted our BLEU
scores on the test split by 5.5 and 2.6 points in
the cases of constrained and unconstrained condi-
tions respectively. Utilizing the dev split for speech
translation training also narrowed down the gap in
performance between the unconstrained and con-
strained models on the test split.

6 Conclusion

In this paper we present our approaches to the
IWSLT 2023 Evaluation Campaign Dialectal and
Low-resource track: Marathi-Hindi Speech Trans-
lation which secured the first and second places
in the constrained and unconstrained conditions
respectively. We start off with a simple end-to-
end approach with Transformers and then apply a
gamut of ideas like replacing the encoder blocks
with Conformers, encoder pre-training, etc., to dras-
tically improve our dev BLEU score from 1.02 to
20.22. Through our results, we also quantitatively
demonstrate how much of an impact each of our
ideas bring forth and sincerely hope that some of
these ideas might be useful for researchers and
practitioners alike working on low-resource speech
translation problems.
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Abstract

This paper describes the system we submitted
to the IWSLT 2023 multilingual speech transla-
tion track, with the input is speech from one lan-
guage, and the output is text from 10 target lan-
guages. Our system consists of CNN and Trans-
former, convolutional neural networks down-
sample speech features and extract local infor-
mation, while transformer extract global fea-
tures and output the final results. In our system,
we use speech recognition tasks to pre-train
encoder parameters, and then use speech trans-
lation corpus to train the multilingual speech
translation model. We have also adopted other
methods to optimize the model, such as data
augmentation, model ensemble, etc. Our sys-
tem can obtain satisfactory results on test sets
of 10 languages in the MUST-C corpus.

1 Introduction

Speech translation refers to the technology of trans-
lating source language speech into target language
text (or speech). This task has a very broad applica-
tion space in real life, such as in international con-
ferences, lectures, and overseas tourism; Adding
speech translation to short videos or real-time sub-
titles in some foreign language videos can provide
users with a better experience. Early speech trans-
lation is the combination of speech recognition and
machine translation. Firstly, the speech recognition
model recognizes source language speech as source
language transcribed text, and then the machine
translation model translates the recognized source
language text into the target language text, which
is also called cascade method. The advantage of
cascade model is that it can use a large amount of
data in speech recognition and machine translation
to train the model, and it is relatively simple to
implement. However, the disadvantages of cascade
model are also obvious: errors in speech recogni-
tion results will be transferred to the next machine

∗*Corresponding author

translation task. So researchers have focused on
end-to-end speech translation. At present, bilingual
end-to-end speech translation has achieved very
good results, but using a single model to complete
multiple language translations has always been a
goal pursued by researchers, that is multilingual
speech translation. Compared to bilingual speech
translation, the advantages of multilingual speech
translation include: (1) completing multilingual
translation with fewer parameters; (2) low resource
languages can learn knowledge from high resource
languages. In this paper, we conducted one-to-
many multilingual speech translation, and submit-
ted our system to the IWSLT 2023(Agarwal et al.,
2023) multilingual speech translation track. Here
is an introduction to our submitted system:

We first use convolutional neural networks to
downsample the input features, then input them
into the Transformer model for further processing,
and finally output the translation results at the out-
put layer. The encoder for speech translation needs
to complete both acoustic feature extraction and se-
mantic feature extraction tasks. In order to reduce
the encoding pressure of the model, we use speech
recognition task to pre-train the parameters of the
encoder. Before inputting the data into the model,
we applied the SpecAugment(Park et al., 2019)
method for data augmentation, which increased
data diversity and resulted in better results for the
model. After training the multilingual speech trans-
lation model, we calculated the average value of the
model parameters obtained for the last 10 epochs
to generate the model we used during testing, the
model with the obtained average parameters can
have better results.

The target language includes Arabic, Chinese,
Dutch, French, German, Japanese, Farsi, Por-
tuguese, Russian, and Turkish. The training data
for these languages can be found in the com-
monly used corpus for speech translation – MUST-
C(Di Gangi et al., 2019). We downloaded the
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Table 1: Training Set Information

Tgt talks sentences time words src words tgt

ar 2412 212k 463h 4520k 4000k
de 2043 229k 400h 4196k 3869k
fa 1911 181k 347h 3548k 4559k
fr 2460 275k 484h 5067k 5163k
ja 3258 328k 540h 5712k 69k
nl 2219 248k 434h 4548k 4251k
pt 2001 206k 376h 3887k 3621k
ru 2448 265k 481h 5007k 4192k
tr 2307 236k 445h 4600k 3388k
zh 3583 358k 596h 6251k 97k

data for the relevant languages from MUST-C
v1.0, MUST-C v1.2, and MUST-C v2.0, merged
them, and preprocessed them to obtain our train-
ing dataset. We used the Fairseq(Ott et al., 2019)
toolkit to conduct our experiment, and after the
training was completed, we scored the translation
quality using the sacrebleu metric. Our model
achieved our expected results on 10 target lan-
guages.

2 Data Preparation

As shown in the Table 1, we collected training
data for relevant languages from the MUST-C cor-
pus and provided their information. It can be seen
from this that there are significant differences be-
tween different languages. There are differences
in the number of source language words and target
language words among different languages. For
example, the number of source language words
in the Arabic language corpus is greater than the
number of target language words, while the num-
ber of source language words in the Farsi language
corpus is less than the number of target language
words. This indicates that the difficulty of length
conversion required by the model when dealing
with different languages varies to some extent.

Due to our task of one-to-many multilingual
speech translation, the input received by the model
is all English speech data, which enables us to per-
form the same preprocessing operation on all data.
The original speech is in wav format, and most of
it is long audio. We need to segment and extract
features before inputting it into the model. So we
segment the speech data based on the start time and
duration of each segment given in MUST-C. The
preprocessing stage includes extracting MFCC fea-

tures, training the sentencepeice(Kudo and Richard-
son, 2018) model, generating a vocabulary, and
finally generating a training set. The processed
MFCC feature dimension is 80, and SpecAugment
is applied for data augmentation. The relevant
configurations used in the experiment regarding
SpecAugment are shown in Table 2:

Table 2: Parameter settings for SpecAugment

Parameters Values

freq_mask_F 27
freq_mask_N 2
time_mask_N 2
time_mask_T 100
time_mask_p 1.0
time_wrap_W 0

The SpecAugment method uses three different
data augmentation methods: Time warping, Fre-
quency masking, and Time masking. Time warping
selects an area from the time dimension for warp-
ing. Frequency masking selects an area from the
frequency dimension for masking, in our experi-
mental configuration, the length of the masked part
is 27, which is the parameter freq_mask_F, and
the parameter freq_mask_N refers to the number
of masked areas. Time masking selects an area
from the time dimension for masking, the param-
eter time_mask_T we set is 100, and the number
of masked areas is 2. SpecAugment increases the
diversity of training data, making the trained model
more robust.
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3 Method

3.1 Speech Recognition

We use speech recognition tasks to pre train en-
coder parameters. After experimental verification,
using speech recognition for pre training parame-
ters is much better than not using pre-training. Due
to the need to initialize the parameters of the speech
translation model using the encoder of the speech
recognition model, we use the same structure to
train the speech recognition model. Although ex-
tracting MFCC features from the original audio can
reduce the sequence length, the processed MFCC
features still have a long time dimension and re-
quire further downsampling. In speech translation
related works, a common practice is to use CNN
or Shrink modules(Liu et al., 2020) to compress
feature sequences. We use convolutional neural
networks to downsample the extracted MFCC fea-
ture sequence, the input MFCC features are first
extracted through a two-layer convolutional neural
network to extract shallow features and downsam-
pling, and then input into the Transformer model to
complete the speech recognition task. The model
structure is shown in the Figure 1. The reason
why Transformer has strong modeling information
ability is due to its self attention mechanism, the
multi-head attention calculation in transformer is
shown in the Figure 2. Perform different linear
calculations on the input to obtain Q, K, and V.
compute the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Each module in Transformer has its specific role,
and the following is an analysis of its main mod-
ules:

Multi-head attention module. Self attention
refers to calculating the attention of the current
token to other tokens in the sequence, and using
the calculated attention score as a weight to weight
and sum the feature sequence, thus modeling global
information. The final output of the multi-head self
attention module is obtained by concatenating the
results obtained from all the attention heads and
then performing a linear mapping.

Feed forward module. In the feed forward
module, the extracted global features are linearly
combined, which includes two linear mappings:
mapping feature sequences to high dimensions and
mapping features from high dimensions back to

their original dimensions, the calculation in the
feed forward module is as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

Positional Encoding. The transformer uses po-
sition encoding to indicate the relative position be-
tween tokens, and the calculation method is as fol-
lows:

PE(pos,2i) = sin(pos/100002i/dmodel) (3)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (4)

After extracting shallow features from speech
using convolutional neural networks, transformer
combines the extracted information. Convolutional
neural networks are good at extracting local fea-
tures, while transformer have a stronger ability to
model global features. This structure enables the
model to perform well in several speech processing
tasks.

Figure 1: Model structure

3.2 Multilingual Speech Translation
The multilingual speech translation model also
adopts the structure shown in the Figure 1, replac-
ing the speech recognition vocabulary with the mul-
tilingual speech translation vocabulary, and training

457



Figure 2: Multi-head Attention

the model using the speech translation training set.
Unlike speech recognition task, the vocabulary in
multilingual speech translation task contains lan-
guage labels, and the sub words in the dictionary
come from all target language texts. Before train-
ing the speech translation model, use the encoder
of the trained speech recognition model to initialize
the encoder parameters of the speech translation
model, and optimize all model parameters during
training.

We only use the encoder of the speech recog-
nition model to initialize the multilingual speech
translation model because the tasks completed by
the two encoders are similar, that is, the shallow
layer of the encoder needs to extract acoustic fea-
ture information. However, there are task differ-
ences between speech recognition and speech trans-
lation decoders. The speech translation decoder
needs to complete language conversion, and the
speech recognition decoder does not involve this
task, so the speech recognition decoder is not used
to initialize parameters. The speech recognition
model will no longer be used in subsequent opera-
tions.

The decoder adopts an auto-regressive approach
to output the translation sequence, and in this ex-
periment, language labels are used to indicate the
current translation direction. For example, <lang:
de> indicates that the target language of the current
translation task is German.

We conducted parameter fusion on the trained
model. After the model was trained to converge,
the last 10 checkpoint points were fused and the
test set was scored by the fused model. The specific
approach is to find variables with the same name
from all the models read, calculate the average
value, and save it in the new model.

4 Experiments

4.1 Implemention
The downsampling module contains two layers of
convolutional neural networks, with convolutional
kernel sizes of 5 and step sizes of 2. After the
feature sequence passes through the downsampling
layer, the sequence length becomes one quarter of
the original, The dimension of the output feature is
1024.

The encoder of the model contains 12 trans-
former blocks, with each layer having an output
feature dimension of 512. In order to fully model
speech features, 8 attention heads were used to
model information in speech from different per-
spectives. The feedforward neural network module
contains two linear maps to reorganize the features.
First, the feature dimension is mapped to 2048, and
then it is mapped back to 512.

The decoder of the model consists of 6 Trans-
former blocks, which also use 8 attention heads.

In addition, we use the dropout of the attention
matrix to prevent overfitting. The dropout rate of at-
tention is set to 0.1. In speech recognition tasks, we
set the vocabulary size to 8000; In the speech trans-
lation task, we set the vocabulary size to 10000.
Because the speech recognition task only involves
English text, while the speech translation task in-
volves translated text from 10 target languages, a
larger vocabulary needs to be used. At the time
of model output, the probability of speech recog-
nition task computing on 8000 sub words and the
probability of speech translation task computing on
10000 sub words.

Adam optimizer and cross entropy loss function
are used in model training. We use max tokens
to dynamically control the number of samples in-
cluded in a batch. In our experiment, the max
tokens used for both speech recognition and speech
translation tasks were 20000. The number of steps
for optimizing speech recognition tasks is 100k,
and the number of steps for optimizing speech
translation tasks is 350k, based on the difficulty
of these two tasks. Among them, perform warmup
in the first 10k steps. The learning rate is 1e-3, and
the label smoothing is 0.1. We trained our model
using two NVIDIA TITAN RTX.

4.2 Main Results
We trained a speech recognition model with good
performance, and the WER of the model on each
language is shown in the Table 3.

458



Table 3: The WER of the ASR model on data in each language.

ar de fa fr ja nl pt ru tr zh

WER 16.01 10.64 11.65 10.74 8.79 10.43 10.76 10.71 11.10 8.80

Table 4: BLEU scores on the MUST-C test set.

ar de fa fr ja nl pt ru tr zh

BLEU 12.35 23.30 12.15 32.59 12.93 27.46 28.57 14.66 11.33 22.07

After training the model on the MUST-C training
set, we used its tst-COMMON test set to verify the
model’s effectiveness. The experimental results are
shown in the Table 4.

From the Table 4, it can be seen that our sys-
tem can complete translations in these 10 target
languages, and the BLEU score exceeds 20 in all
5 languages of them. Although using the same
model for translation tasks, the difficulty of transla-
tion varies among different languages. As shown
in the table, the BLEU scores of ar, fa, ja, ru, and
tr are lower compared to other languages, but they
use a similar amount of data. On the one hand,
there are significant differences in grammar rules
between these target languages and the source lan-
guage, making it more difficult for the model to
complete language conversion; On the other hand,
the differences between target languages make it
difficult to share information between them consis-
tently.

In the current work of multilingual speech trans-
lation, many methods have modified the model
architecture and optimization methods, and our
system uses a simple convolutional neural network
combined with the Transformer structure to achieve
a relatively good effect. Compared to those com-
plex systems that modify models, our system has
the following advantages: On the one hand, our sys-
tem’s training method is relatively simple and re-
quires fewer model parameters. On the other hand,
this simple structure can also effectively complete
multilingual speech translation tasks. Our system
can be applied to devices with strict memory re-
quirements, and can achieve relatively satisfactory
results with a small number of parameters.

5 Conclusion

This paper introduces our system submitted on the
IWSLT 2023 multilingual speech translation track.

We used convolutional neural networks combined
with Transformer models to complete the task of
English speech to 10 target language texts. Our
system is characterized by its simplicity and effi-
ciency, effectively modeling local and global fea-
tures in speech, and completing modal and lan-
guage transformations within the model. Our sys-
tem has achieved satisfactory results on the test set
of 10 languages in MUST-C corpus.
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Abstract

This paper briefly describes Matesub, the subti-
tling tool Translated used to participate in the
Subtitling shared task at IWSLT 2023. Matesub
is a professional web-based tool that combines
state-of-the-art AI with a WYSIWYG editor.
The automatic generation of subtitles in Mate-
sub is based on a cascade architecture, com-
posed of ASR, text segmenter and MT neural
models, which allows covering any pair from
about 60 languages and their variants.

1 Matesub

Matesub1 is a web-based tool released by Trans-
lated2 that combines state-of-the-art AI with a
WYSIWYG (What You See Is What You Get) ed-
itor for supporting professionals in the creation
of subtitles for audio visual documents. Matesub
generates subtitling suggestions through a process-
ing pipeline which was used to participate in the
Subtitling shared task at IWSLT 2023. This paper
first describes the pipeline, and then presents and
discusses the scores of the submission.

1.1 The subtitling pipeline

In Matesub, subtitles are automatically generated
by a pipeline (Figure 1) which concatenates two
main modules, based on neural models: an au-
tomatic speech recognition (ASR) system and a
module providing the Captions & Subtitles Service.
They are described in the following.

Figure 1: Architecture of the subtitling pipeline.

1https://matesub.com/
2https://translated.com/

1.1.1 Automatic speech recognition
The ASR is in charge of the transcription of the
speech content of an audio signal. In Matesub,
this processing stage is provided either by an in-
house ASR model or by a 3rd party commercial
ASR service, according to the availability of the
internal solution and its relative quality. In both
cases, the word hypotheses are expected to be given
in conversation time mark (CTM) format. This text
file consists of records each having 5 fields, e.g.:

23.66 0.29 human 0.00998 False
23.96 0.40 beings. 0.01000 True
24.48 0.13 We 0.33000 False

whose meaning is given in Table 1.

field meaning
1 start time (sec)
2 duration (sec)
3 token (i.e. word)
4 confidence
5 end of sentence (boolean)

Table 1: Fields in the CTM format.

Note that the transcription is punctuated and
cased; moreover, the flag indicating the end of sen-
tence is typically set on for acoustic reasons, like
the presence of the pause between the tokens begin.
and We, but - less frequently - also for “linguistic”
evidence (learned by the ASR from training data).

1.1.2 Captioning and subtitling
The Captions and Subtitles Service is in charge
of building, starting from a given CTM file, the
SubRip Subtitle (SRT) files of the transcription
contained in the CTM file and its translation; the
two SRTs are finally merged in a single JSON file.
As shown in Figure 2, this module consists of two
main components, a text segmenter and a neural
machine translation (NMT) system, in addition to
a number of secondary sub-components.

The two main components are built using the
same sequence-to-sequence neural modeling tech-
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Figure 2: Captions and subtitles service.

nique. The segmenter, implemented as proposed
in (Karakanta et al., 2020; Papi et al., 2022), inserts
in an unsegmented input text - either in the source
or in the target language - markers of segment
boundaries. It is trained on pairs of unsegmented-
segmented text, where segment boundaries are
marked by means of two special symbols: <eob>
to mark the end of block (caption or subtitle), and
<eol> to mark the end of line. Figure 3 shows an
example of a sentence after inserting the markers
from the corresponding fragment of the SRT file.

164
00:08:57,020–>00:08:58,476
I wanted to challenge the idea

165
00:08:58,500–>00:09:02,060
that design is but a tool
to create function and beauty.

I wanted to challenge the idea <eob> that design is but a
tool <eol> to create function and beauty. <eob>

Figure 3: Subtitle file (top) and the full sentence an-
notated with the subtitle breaks (bottom). Figure taken
from (Karakanta et al., 2020).

The neural machine translation engine performs
the translation of the text from the source language
(English, in the IWSLT 2023 context) into the corre-
sponding text in the target language (here German
and Spanish). Other processing modules are in
charge of (i) generating captions/subtitles in SRT
format (starting from transcripts, word timestamps,
translations and segmentations), and (ii) merging
the SRTs of captions and subtitles into a single
JSON file. The main processing steps are:

1. Segmentation of the transcription on the basis
of acoustic cues (audio blocks)

2. Segmentation of audio blocks into caption
blocks (and lines) by means of the source lan-
guage segmenter

3. Automatic translation of each caption block
into the target language(s) (subtitle blocks)

4. Segmentation of subtitle blocks into lines by
means of the target language segmenter

5. Timing projection from the CTM to the cap-
tion/subtitle blocks

6. Packaging of SRT and JSON files.

Note that the translation of each block in step 3
is done without looking at the context, i.e. at the
surrounding blocks. On the one hand, this worsens
the quality of the translation a little, but, on the
other, it facilitates the satisfaction of the reading
speed requirement through the n-best mechanism,
sketched in the next section.

1.1.3 Machine translation
Neural machine translation is provided by Mod-
ernMT3 (Bertoldi et al., 2021) through a REST
API connection. ModernMT implements the Trans-
former (Vaswani et al., 2017) architecture; generic
big models (about 200M parameters each), trained
on both public and proprietary data, cover hundred
of languages4 in any direction, through a seam-
less integration of the pivot based approach, where
the pivot language is English. Matesub requests
ModernMT to provide the 16 best translations of

3https://www.modernmt.com/
4https://www.modernmt.com/api/#languages
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each block (step 3 mentioned in the previous sec-
tion); between them, the hypothesis with the high-
est probability and whose length permits to satisfy
the reading speed constraint (given the duration of
the block) is selected. If no such hypothesis exists,
the shortest is chosen.

1.2 The editor
Matesub provides a WYSIWYG editor, which al-
lows the user to review and correct the subtitles
automatically generated and synced in the chosen
target language by the back-end subtitling pipeline.
Figure 4 shows a screenshot of the Matesub editor.

The editor permits the user to easily fix both
translation and segmentation errors, thanks to the
rich catalogue of functions and user-friendliness.
Once the editing is over, subtitles can be embedded
in the video or exported in production-ready SRT
files or any other supported subtitles format.

2 Submission and Results

Translated participated in the Subtitling shared
task at IWSLT 2023 with the back-end subtitling
pipeline of Matesub. No adaptation of the general
purpose pipeline was carried out, therefore the qual-
ity of subtitles generated for the audio-visual docu-
ments proposed in the shared task is that typically
expected by the in-production system before the
post-editing stage. Since neural models of Mate-
sub (ASR, text segmenter and MT) were trained
on more resources than those allowed for the con-
strained condition, we labelled our submission as
unconstrained; it was also our unique submission,
and as such it is the primary run.

Table 2 shows scores of our test set subtitles as
computed by the organizers (Agarwal et al., 2023).
They are in line with those we obtained on the dev
sets.

Without knowing the results of the other sub-
missions, it is hard to judge the results obtained.
However, some considerations can be made:

• As expected, from the pure speech translation
perspective, the TED domain is the easiest
one by far

• Surprisingly, at least when German is the tar-
get language, the EPTV domain is as much
challenging as ITV and PELOTON, which we
expected to be the most difficult ones

• Assuming that BLEURT and ChrF are more
reliable than BLEU and TER (according
to (Kocmi et al., 2021), for example), it seems

that the quality of TED and of Spanish EPTV
subtitles is high, while subtitles of ITV, PELO-
TON and German EPTV documents would
need major post-editing

• Since SubER is based on TER and Sigma
on BLEU, their values match the scores of
those metrics rather than BLEURT, ChrF
and the subtitle compliance as measured by
CPS/CPL/LPB, possibly affecting the final
ranking of Matesub

• The compliance of subtitles is language inde-
pendent

• Despite the fact that Matesub does not imple-
ment any hard rule, relying only on machine
learning methods, CPL and CPL are (almost)
perfect

• The reading speed (CPS) is under the max
threshold of 21 characters per second in about
85% of subtitles; more in detail, the average
is about 18.5 and only in 5% of cases it ex-
ceeds 30 characters per second, values that we
consider satisfactory.
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Abstract

Generative Spoken Language Modeling re-
search focuses on optimizing speech Language
Models (LMs) using raw audio recordings with-
out accessing any textual supervision. Such
speech LMs usually operate over discrete units
obtained from quantizing internal representa-
tions of self-supervised models. Although such
units show impressive modeling results, their
robustness capabilities have not been exten-
sively investigated. This work focuses on im-
proving the invariance of discrete input rep-
resentations to non-spoken augmentations for
generative spoken language modeling. First,
we formally define how to measure the robust-
ness of such representations to various signal
variations that do not alter the spoken infor-
mation (e.g., time-stretch). Next, we empiri-
cally demonstrate how current state-of-the-art
representation models lack robustness to such
variations. To overcome this, we propose an
effective and efficient method to learn invari-
ant discrete speech representation for genera-
tive spoken language modeling. The proposed
approach is based on applying a set of signal
transformations to the speech signal and op-
timizing the model using an iterative pseudo-
labeling scheme. Our method significantly im-
proves over the evaluated baselines when con-
sidering encoding and modeling metrics. We
additionally evaluate our method on the speech-
to-speech translation task, considering Spanish-
English and French-English translations, and
show the proposed approach outperforms the
evaluated baselines.

1 Introduction

Self-supervised speech models were shown to learn
effective representations for various downstream
tasks (Hsu et al., 2021; Chen et al., 2022; Baevski
et al., 2020). These models were mainly evaluated
on discriminative tasks, such as automatic speech
recognition, speaker verification, intent classifica-
tion, etc. (Yang et al., 2021). Recently, Lakhotia

et al. (2021) demonstrated that such self-supervised
learning (SSL) representations can be used for Gen-
erative Spoken Language Modeling.

Generative Spoken Language Modeling (GSLM)
is the task of learning the acoustic and linguistic
characteristics of a language from raw audio. In
other words, a discrete representation of the au-
dio signal is being learned. A common practice
is to extract continuous representation using an
SSL model, then apply vector quantization, usu-
ally using the k-means algorithm (Lakhotia et al.,
2021; Kharitonov et al., 2021a; Borsos et al., 2022).
Then a speech-language model is trained on top
of the obtained representation. Finally, a neural
vocoder converts the output units to raw audio. As
the discrete speech representation often operates
over units extracted over relatively short windows
(e.g., 20ms), sequences can be long and contain
repetitions, e.g., 10 11 11 11 21 32 32 32 21.
Preliminary studies have found that removing se-
quential repetitions of units improves performance,
hence applying it universally (Lakhotia et al., 2021).
For example, a pseudo-text 10 11 11 11 21 32 32
32 21 becomes 10 11 21 32 21. This framework
was shown to be effective in modeling multiple
levels of the speech utterance, namely prosody, and
content (Lakhotia et al., 2021; Kharitonov et al.,
2021a; Borsos et al., 2022), speech codec (Polyak
et al., 2021), speech emotion conversion (Kreuk
et al., 2021), spoken dialogue (Nguyen et al., 2022),
and speech-to-speech translation (Lee et al., 2021;
Popuri et al., 2022; Lee et al., 2022).

An essential prerequisite for such an audio rep-
resentation to be used in real-world conditions is
robustness to various signal corruptions. Although
the aforementioned audio representation models
have shown effectiveness in many tasks, they were
mainly evaluated on academic benchmarks.

In this work, we evaluate current state-of-the-
art self-supervised speech representation models
on what are arguably the most basic signal vari-
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Figure 1: Generative Spoken Language Modeling is composed of three components: (i) Speech-to-unit, (ii) Unit
language model, and (iii) Unit-to-speech. Pre-trained ASR and language models are used for evaluation.

ations, namely time-stretch, pitch-shift, additive-
noise, and reverberation. Our premise is that while
these variations modify the signal, its’ underly-
ing content remains the same, especially under
the units repetition removal process. Therefore,
a robust representation should be affected by such
variations to a minimal extent.

As a first step, we propose a set of metrics for
evaluating the model’s robustness. Then, we point
to the lack of robustness of these models with re-
spect to the aforementioned variations. Next, we
design a simple and effective method for learning
augmentation-invariant discrete representation on
top of any speech SSL model. We demonstrate how
such a method greatly improves robustness. Then,
we empirically show that performance improves
on several tasks for various SSL models. Specifi-
cally, we evaluate the newly proposed speech en-
coders when considering zero-shot evaluation tasks
considering encoding and modeling, i.e., ABX,
sWUGGY, and sBLIMP (Nguyen et al., 2020), to-
gether with a high-level downstream task in the
form of speech-to-speech translation.

2 Background

The general Generative Spoken Language Model-
ing (GSLM) pipeline is comprised of three main
modules: (i) Speech-to-unit, (ii) Unit language
model, and (iii) Unit-to-speech, where each of
these modules is trained separately. Speech resyn-
thesis can be achieved while ignoring the language
model and directly feeding the quantized units into
the unit-to-speech module (Polyak et al., 2021)
(See Figure 1 for a visual description). In the fol-
lowing paragraphs, we give detailed background
for each of the three components mentioned above,
including the standard evaluation methods.

Speech-to-unit module encodes the raw speech
signal into a discrete representation. The com-

mon approach is first to encode the speech into
a continuous representation and then quantize the
representation to achieve a sequence of discrete
units (Lakhotia et al., 2021; Polyak et al., 2021;
Popuri et al., 2022; Lee et al., 2021; Kharitonov
et al., 2021a; Kreuk et al., 2021; Kharitonov et al.,
2022; Nguyen et al., 2022; Borsos et al., 2022;
Tjandra et al., 2019, 2020).

Formally, denote the domain of audio samples
by X ⊂ R. The representation for a raw signal is
therefore a sequence of samples x = (x1, . . . , xT ),
where xt ∈ X for all 1 ≤ t ≤ T .

Consider an encoder network, f , that gets as in-
put the speech utterance and outputs a sequence of
spectral representations sampled at a low frequency
as follows f(x) = (v1, . . . , vT ′). Note that we do
not assume anything about the structure of the en-
coder network f . Lakhotia et al. (2021), evaluated
several speech encoders, namely, Mel-spectrogram,
Contrastive Predictive Coding (Oord et al., 2018,
CPC), wav2vec2 (Baevski et al., 2020), and Hu-
BERT (Hsu et al., 2021).

Since the representations learned by such mod-
els are usually continuous, a k-means algorithm is
applied over the models’ outputs to generate dis-
crete units, denoted as z = (z1, . . . , zT ′). Each
element zi in z is a positive integer, zi ∈ {1, ..,K}
for 1 ≤ i ≤ T ′, where K is the number of discrete
units. We denote the quantization model with E.

Unit Language Model is trained on the extracted
discrete units, z. Such a language model learns
a probability distribution of the learned unit se-
quences, which enables direct modeling of speech
data without textual supervision.

The language model can be used to gener-
ate speech conditionally or unconditionally, repli-
cating what toddlers achieve before learning to
read. Moreover, such a modeling framework al-
lows for capturing and modeling prosodic fea-
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tures (Kharitonov et al., 2021a), as well as speaker
identity (Borsos et al., 2022), or even natural dia-
logues (Nguyen et al., 2022). This is in contrast to
using textual features, as they do not encode such
information.

Unit-to-speech module converts the speech dis-
crete units to a raw waveform. Lakhotia et al.
(2021) used a Tacotron2.0 (Shen et al., 2018)
based model followed by WaveGlow (Prenger et al.,
2019) vocoder. Later, Polyak et al. (2021) proposed
a unit-based vocoder based on the HiFi-GAN ar-
chitecture to convert units to speech directly. Such
a paradigm seems to provide high-quality gener-
ations with better efficiency as it uses only one
model rather than two. Kreuk et al. (2021) and Lee
et al. (2021) additionally improved the unit based
vocoder to include emotional tokens for speech
emotion conversion tasks, and duration modeling
for direct speech-to-speech translation.

Zero-shot Evaluation. Evaluating such a com-
plex pipeline comprised of several components is
a challenging task. Lakhotia et al. (2021) pro-
posed a set of zero-shot evaluation tasks aiming
for each of the modules. Overall the proposed
tasks can be divided into four main groups: (i)
acoustic encoding using ABX, bitrat, (ii) language
encoding using sWUGGY, sBLIMP (Nguyen et al.,
2020; Lakhotia et al., 2021), (iii) resynthesis using
Phoneme/Word Error Rate; (iv) speech generation
using VERT (Lakhotia et al., 2021), Meaningful-
ness Mean Opinion Score.

3 Robustness of Speech-to-Unit Models

The first step toward developing an effective spoken
language model is to develop a robust representa-
tion. The focus of a robust representation should
be on the spoken information rather than unrelated
signals, such as prosodic features in the form on
duration and F0, background noise, or reverbera-
tions. In the following section, we propose a metric
for quantifying the degree to which augmentations
change the resulting encoding.

3.1 Unit Edit Distance

A spoken language model is built on top of a dis-
crete representation of a continuous encoder. We
examine the robustness of the discrete space to
augmentations that do not change the spoken con-
tent. Therefore, we are interested in a sequential
distance metric between two discrete representa-

tions. It is essential to note that augmentations can
alter the spatial dimension of the signal. For ex-
ample, stretching a signal results in more frames,
yielding a longer representation sequence. Similar
phenomenon will happen when convolving with
different room impulse response to simulate re-
verberation. Hence, the metric should be able to
measure the distance between two sequences of dif-
ferent lengths. Ideally, it will consider the number
of deletions, insertions, and substitutions that occur
due to augmenting the input data. For this purpose,
we find the Levenshtein distance a good fit (Leven-
shtein, 1966). The Levenshtein distance measures
the minimum changes one should make to modify
one sequence to another. It has two essential prop-
erties: the first is that the score is non-negative, and
when the sequences are equal, the metric equals
zero. The second property is that the maximum
value it can get equals the longer sequence length
between the two sequences. We provide a detailed
explanation of the Levenshtein distance in the Ap-
pendix material.

We aggregate the distance values over the eval-
uation set while considering the sequence length.
This is desirable since we want to normalize scores
for sequences in different lengths, and the Leven-
shtein distance’s maximum value is the original
sequence’s length. Another essential property of a
spatial metric is repetitions. Consider time stretch
as an example, it changes the number of the in-
put frames, but one would expect the deduplicated
quantized signal to be the same as before the aug-
mentation. Hypothetically, one can maximize the
score by stretching the signal infinitely. To elimi-
nate such dependencies, we compute the score on
a deduplicated quantized representation. Formally,
our final metric is:
Definition 3.1 (Unit Edit Distance). Given a con-
tinuous encoder f : RT → RT ′

, a quantizer
E : RT ′ → {1, ..,K}T ′

, and an input augmen-
tation g : RT ′ → RT̂ ′

. The deduplicated unit edit
distance UEDD(E, f, g) on the evaluation set D is:
∑

x∈D

1

T ′
x

LEV ((E ◦ f)(x), (E ◦ f ◦ g)(x)) , (1)

where T ′
x is the number of frames of a sample x.

Ideally, a perfect spoken language quantizer ob-
tains a zero distance after deduplication. Next,
we study state-of-the-art spoken language repre-
sentations using our proposed metric in different
settings.
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Figure 2: UED scores for various augmentations and number of clusters. We note that the UED is relatively high
(the distance is normalized). We also note that the UED monotonically increases with the number of units used. We
multiply the scores by a hundred.

3.2 Evaluation

In the following, we study current state-of-the-
art representations for generative spoken language
modeling using the proposed metric. The current
popular quantization technique is a k-means model
trained on top of a pre-trained encoder (Lakho-
tia et al., 2021). In our evaluation setup, we use
a different number of clusters and encoder archi-
tectures. Our ablation study include quantizers
with 50, 100, 200, and 500 clusters. We further
investigate our metric on top of HuBERT (Hsu
et al., 2021), wav2vec2 (Baevski et al., 2020),
and WavLM (Chen et al., 2022). For readability,
throughout the paper, we report results for the Hu-
BERT model while leaving the rest of the results
in the Appendix material.

3.2.1 Augmentations
This work focus on four simple signal modifica-
tions which mimic real-world signal variations:

Time stretch. We use the Phase Vocoder
method (Karrer et al., 2006) to stretch or shrink
the time domain signal with a rate of τ without
changing the pitch. For example, τ = 1.2 speeds
up the signal by 20%. In this work, for each sample,
we sample uniformly a value in the range [0.8, 1.2].

Pitch shift. We change the original pitch of the
speech signal by a given number of semitones us-
ing the resampling method over the time-stretched
signal (Karrer et al., 2006). In this paper, we shift
the pitch by up to four semitones.

Reverberation. We follow a similar setting
of Chazan et al. (2021), in which we consider
an Acoustic Transfer Function (ATF) to be sim-
ulated using the pyroomacoustics (Scheibler et al.,
2018) audio room simulations package. We ran-
domly sample room dimensions, microphone loca-
tion, and source location, then convolve the ATF
with the speech signal.

Noise injection. We mix a given speech signal
with non-stationary additive noise, using a ran-
domly sampled Signal-to-Noise Ratio (SNR) in
the range of [5, 15]. Background noises are sam-
pled from the Deep Noise Suppression (DNS) chal-
lenge (Reddy et al., 2020) which includes a diverse
set of noise types from AudioSet (Gemmeke et al.,
2017), Freesound, 1 and Demand (Thiemann et al.,
2013).

3.2.2 Results
In Figure 2, we use our metric to study the ro-
bustness of k-means trained on top of HuBERT
with various augmentations and values of K. This
evaluation points to the lack of robustness of the
current state-of-the-art representation of simple,
non-spoken augmentations. For example, for time
stretch augmentation, the UED score is between
39 and 51. Considering that UED is computed
on deduplicated signals, those numbers are high.
Moreover, this number increases as a function of
K. The high numbers and the monotonicity of the
UED as a function ofK are consistent for all values
of K, augmentations, and models we experimented
with (HuBERT, wav2vec2, and WavLM). Next, we
propose a method that improves the robustness of
such representations.

4 Invariant Discrete Representation

Our findings in Section 3 suggest that current state-
of-the-art representations may be too sensitive to
augmentations that do not alter spoken information.
Preliminary invariance research focused primarily
on noise augmentation. This is convenient since the
signal length is not affected by such augmentations.
In practice, real-world augmentations may modify
the signal length. In order to work with various
types of augmentations, we must align the original
and augmented sequences. The following section

1https://freesound.org/

468

https://freesound.org/


Augmented signal

Quantizer

CTC

Continuous encoder 47 47 .. 12 5

Clean signal

K-meansContinuous encoder 31 2 .. 15 19

Figure 3: Illustration of our method: We forward a clean signal through an encoder followed by a pre-trained
quantizer (k-means). Next, we forward an augmented signal through the same encoder, followed by a new quantizer
(green). The CTC loss between the deduplicated output of the clean signal and the output of the augmented signal is
used to learn the parameters of the new quantizer. In the iterative approach, post the convergence of the learned
quantizer E0, we freeze it and learn a new quantizer E1 that distills information from E0.

presents a pseudo-labeling, alignment-based ap-
proach to learning an augmentation-invariant quan-
tizer.

4.1 Pseudo-labeling

The GSLM encoding framework comprises a raw
audio signal forwarded through an encoder, then
a quantizer. The quantizer is learned on top of
a trained encoder, e.g., k-means trained on each
embedding vector extracted from HuBERT.

As discussed above, we do not want to limit
the invariance process to a family of augmenta-
tions that do not change the signal’s length. To
align and use augmentations that may modify the
signal’s length, we use the Connectionist Tempo-
ral Classification (CTC) loss (Graves et al., 2006).
The CTC operation computes the probability of
an alignment based on the predicted and target se-
quences. Finally, the CTC loss considers the nega-
tive log-likelihood produced by the CTC operation.

We forward a clean signal through an encoder
f followed by a pre-trained quantizer E0. Par-
allelly, we forward an augmented signal through
the same encoder f and train a non-linear multi-
layer-perceptron E1. Using the CTC loss, which
accounts for the alignment between the outputs, we
learn the parameters of E1. Formally, the proba-
bility given by the CTC loss ℓ(E0, E1, x, g) for a
single data point x follows

−p ((E0 ◦ f)(x)|(E1 ◦ f ◦ g)(x)) , (2)

which can be decomposed to a sum over the set of
all alignments Ax

−
∑

A∈Ax

r∏

t=1

pt(at|(E1 ◦ f ◦ g)(x)). (3)

Finally, for a training set D, a set of augmenta-
tions G, a pre-trained quantizer E0, and a learned

quantizer E1, our loss function is as follows:

LD(E0, E1,G) ≜ Ex∼D,g∼U(G) [ℓ(E0, E1, x, g)] .

Note that the alignment between the predicted
and target sequences is many-to-one. Thus, one
or more output units can be aligned to a single tar-
get unit. Hence, to work with augmentations that
stretch the signal, we are required to deduplicate
the target sequence. Intuitively, this process dis-
tills quantization knowledge from the pre-trained
quantizer into the new quantizer while injecting E1

knowledge about the contextual similarity between
the original and augmented signals.

A significant advantage of our method is that it is
highly efficient. Our method requires training only
a relatively small amount of parameters. In con-
trast to previous methods that train HuBERT from
scratch, which takes up to seven days on 32 GPUs,
our method converges in a few hours on a single
GPU. In fact, our experiments show that learning
the parameters of the encoder performs worse than
freezing them. While the UED is boosted, but the
ABX are negatively affected. The freezing of the
upstream model thus serves as a regularizer.

4.2 Iterative Pseudo-labeling
In the previous section, we presented a pseudo-
labeling approach that relies on a converged quan-
tizer E0, e.g., k-means on top of HuBERT. This
raises the question of whether it is possible to en-
hance the invariance of the learned quantizer E1 by
iteratively replacing the pre-trained quantizer with
the converged quantizer and learning another MLP
on top of it. It turns out that such a process can
further improve the model’s invariance.

The iterative process begins with a pre-trained
quantizer E0, then, as in Section 4.1 we learn an
invariant quantizer E1. Upon E1 convergence, we
replace E0 with E1 and use it as the pre-trained
quantizer. Then, we learn a new MLP E2 on top of
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# units Method
Augmentation

Time Pitch shift Reverberation Noise

50
k-means 39.61±0.37 44.33±0.92 28.25±0.61 29.74 ±0.31
Ours 27.91±0.42 30.74±0.71 20.16±0.60 25.33±0.36
Ours (Iterative) 26.89±0.33 30.22±0.79 19.89±0.54 24.67±0.29

100
k-means 41.97±0.42 48.68±0.96 30.42±0.69 31.38±0.33
Ours 31.05±0.39 34.77±0.92 22.21±0.63 28.05±0.31
Ours (Iterative) 29.72±0.41 32.84±0.91 21.31±0.71 25.06±0.31

200
k-means 45.59±0.39 53.14±1.01 32.89±0.72 33.34 ±0.38
Ours 34.40±0.46 38.51±1.09 24.10±0.66 30.19±0.37
Ours (Iterative) 32.99±0.42 36.45±1.03 22.94±0.67 26.76 ±0.31

500
k-means 50.60±0.42 58.92±0.98 39.71±0.81 36.47±0.44
Ours 38.04±0.44 43.48±1.03 28.43±0.73 29.99±0.45
Ours (Iterative) 36.50±0.49 40.82±1.02 25.78±0.74 27.51±0.49

Table 1: Unit edit distance study: Using our metric, we assess the robustness of various quantization methods on
top of a HuBERT representation. This study uses four different augmentations: time stretching, pitch shifting,
reverberation, and noise injection. The non-iterative (Section 4.1) and iterative (Section 4.2) methods significantly
and consistently improve the robustness of k-means. Pseudo-labeling accounts for most of the improvement. By
applying our method iteratively, we can improve it further. For readability, we multiply the scores by a hundred.

the converged E1. We repeat this process K times.
This process needs more careful training. We note
that it is essential to replace the quantizers only
post-convergence.

5 Experiments

In the following, we assess the efficacy of our
method using state-of-the-art self-supervised rep-
resentations and popular discriminative and gener-
ative evaluation tasks. It is important to note that
a single metric cannot tell the whole story. For
example, similarly to perplexity, all representations
can be assigned to the same cluster, which achieves
a perfect unit edit distance but a poor representa-
tion. We first examine our proposed method using
the unit edit distance along with other discrimina-
tive and generative performance metrics. Then, we
show that our method improves downstream tasks.

In Section 5.1 we use our proposed metric from
Section 3 to analyze the robustness of our method.
In Section 5.2 we study the discriminative capabili-
ties of our method using the ABX test (Schatz et al.,
2013). Then, we evaluate our methods using gener-
ative zero-shot evaluation tasks such as sWUGGY
and sBLIMP (Nguyen et al., 2020; Lakhotia et al.,
2021). Finally, we demonstrate the effect of using
our invariant quantizer’s units in speech-to-speech
translation.

Experimental Setup. We study our method us-
ing the base versions of HuBERT, wav2vec2, and
WavLM. For readability, we report results for Hu-
BERT in the main paper. The results for wav2vec2

and WavLM are in Appendix C. To match the cur-
rent k-means training set, we use the Librispeech-
100h to learn our quantizer (Panayotov et al., 2015).
We analyze our metric using the ‘clean’ and ‘other’
development sets from Librispeech. A detailed
setup is provided in Appendix B.

5.1 Analysis

In Section 3, we presented an evaluation metric
that assesses the robustness of a quantized speech
representation to augmentations. The metric is
insensitive to changes in the length of the signal.
Using it, we investigated the current state-of-the-
art representations. In the following, we study our
invariant quantization method.

Table 1 presents the unit edit distance metric us-
ing our robustness method with and without the
iterative approach. Compared with the k-means
method, which is currently in use, our non-iterative
method consistently outperforms it by a large mar-
gin (relative improvement of at least 30%). We
also note that different augmentations affect the
representation differently. Our iterative method
provides a slight but consistent improvement over
the non-iterative method. It is noticeable that the
UED is increasing (i.e., worse performing) with the
number of units used.

5.2 Zero-shot Evaluation

We evaluate the proposed method using the stan-
dard GSLM setup, i.e., ABX, sWUGGY, sBLIMP.
The ABX task examines the discriminative pho-
netic abilities of the representation. Versteegh et al.
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# units Method
ABX (clean) ↓ ABX (other)↓

sWUGGY ↑ sBLIMP ↑
Within Across Within Across

50
k-means 7.52 8.90 9.84 13.5 66.12 54.91
Ours 6.76 7.72 9.03 11.78 67.59 55.76
Ours (Iterative) 6.63 7.55 9.53 12.14 67.42 57.04

100
k-means 6.37 7.72 8.4 12.29 67.70 56.16
Ours 5.50 6.21 7.24 10.11 67.79 57.01
Ours (Iterative) 5.39 6.22 7.46 10.20 68.20 56.99

200
k-means 5.99 7.14 8.23 11.51 66.51 54.64
Ours 5.29 6.01 7.22 9.78 70.51 56.19
Ours (Iterative) 5.19 6.00 7.18 9.70 70.68 56.26

500
k-means 5.98 6.98 7.89 11.43 66.92 55.97
Ours 5.16 6.03 7.06 9.76 70.13 55.19
Ours (Iterative) 4.96 5.73 6.93 9.63 69.33 56.93

Table 2: Zero-shot discriminative and generative evaluation tasks: We evaluate the ABX score on the ‘clean’ and
‘other’ development sets from Librispeech. Our method improves the scores scores in all setups.

(2015) show that the ABX result is a good proxy
to signal content (i.e., Phoneme Error Rate). The
input to the ABX is a pair of words with a phoneme
modification and a reference word containing the
same phoneme as one of the pair’s words. Next,
the ABX measures the distance of the test phoneme
representation to both the correct and incorrect rep-
resentations. Finally, the distance between the test
and the correct representation is expected to be
lower than the distance to the incorrect represen-
tation. The ABX task is conducted in two setups:
‘within’ and ‘across.’ ‘Within’ is evaluated on in-
put data from the same speaker, while ‘across’ is
evaluated on input data from different speakers.

Table 2 shows the ABX results for both Lib-
rispeech ‘clean’ and ‘other’. In our experiments,
we found that the ABX score consistently and sig-
nificantly improved on all the setups we tested. In
this case, the iterative approach improves more
than the non-iterative one, but the improvement
is inconsistent. For a small number of units and
the ‘other’ split, the ABX score is lower than the
iterative model’s score. Note that the ‘other’ split
is challenging as it is characterized by recordings
that contain background noise and various accents.

The spot-the-word task (sWUGGY) requires de-
tecting the real word from a pair of short utterances
such as ‘brick’ vs. ‘blick.’ The detection is done
by comparing the probabilities given by a language
model for each word. This allows comparing rep-
resentations by training language models on top of
them. Differently, the acceptability judgment test
(sBLIMP) requires detecting the syntactically cor-
rect sentence from a pair of sentences, one of which
is syntactically correct and the other is wrong. The
detection is based on the perplexity of the language

model. As presented in Table 2, our method en-
ables improvement in all the investigated setups
for both the spot-the-word and acceptability judg-
ment tests. This is especially noticeable for a larger
number of units. For instance, when considering
200 or 500 units, the absolute improvement of the
sWUGGY score is 4.17 and 3.21, respectively.

5.3 Speech-to-speech Translation

Lastly, we evaluate the proposed method consid-
ering the speech-to-speech translation task. To
better assess the effectiveness of the proposed
augmentation-invariant discrete representation we
follow the same setup as in Lee et al. (2022) while
changing the discrete speech representation only.

Lee et al. (2022) propose a textless speech-to-
speech translation method by forwarding a source
speech signal and predicting its target’s discrete
representation. The authors use a k-means model
trained on top of a multilingual HuBERT (mHu-
BERT) for speech representation. Additionally,
the authors show that solving an auxiliary task en-
hances performance. We investigate the impact of
using our augmentation-invariant quantizer as an
alternative to the k-means used by Lee et al. (2022).
Differently, we use HuBERT (instead of mHu-
BERT). Besides that, we follow the same setup
in terms of model, computation resources, and data.
To evaluate the quality of the translation the sen-
tence BLEU score (SacreBLEU) (Post, 2018) was
used.

Table 3 presents the results for the Spanish-
English and French-English setups on the Europarl-
ST development and test sets (Iranzo-Sánchez et al.,
2020). It also shows the original result from Lee
et al. (2022). The proposed method improves over
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# units Method S-E F-E

Dev
500 Invariant 17.3 16.4

1000 k-means 15.4 16.0

1000 Invariant 18.2 17.5

Test
500 Invariant 14.4 15.75

1000 k-means 13.1 15.4

1000 Invariant 15.9 17.1

Table 3: Speech-to-Speech Translation results: We re-
port BLEU scores for the proposed method (Invariant)
and compare it against the k-means used in Lee et al.
(2022). We report both development and test sets results
for Spanish(S)-English(E) and French(F)-English(E).

Lee et al. (2022) under all the evaluated setups.
Note, these results are especially interesting as the
proposed method was trained on significantly less
data (ours was trained on 1k hours while Lee et al.
(2022) was trained on 100k hours).

6 Related work
This work investigates the robustness of self-
supervised representations for language modeling.
This is related to the advancements in speech self-
supervised learning, their robustness, and modern
generative spoken language modeling. In the fol-
lowing, we review all three areas.

Self-supervised Learning. The field of deep
learning research has significantly benefited from
self-supervised learning. Commonly, it involves
encoding the input data and performing a task that
enforces the representation to learn contextual em-
beddings. Speech self-supervised learning can be
divided into two lines of research.

The first is discriminative, Oord et al. (2018)
introduced Contrastive Predictive Coding (CPC),
which trains a convolutional encoder and a pre-
dictor for future embeddings of the encoder us-
ing a contrastive loss. On top of it, Kharitonov
et al. (2021b) propose to use time domain aug-
mentations to improve the CPC model further.
Wav2vec2 (Schneider et al., 2019) suggest using
a contrastive loss that requires distinguishing be-
tween true and false future audio samples. Later,
wav2vec2 (Baevski et al., 2020) learn quantized
units using Gumbel softmax and predict masked
spans of the latent speech representation. Hu-
BERT (Hsu et al., 2021) employ a frame-based
masked prediction task. First, it quantizes input
frames and then predicts masked frames.

The second line of work is generative. An early

generative self-supervised work is Autoregresstive
Predictive Coding (Chung et al., 2019), which pre-
dicts the spectrum of a future frame. Later, Liu
et al. (2020) introduced Mockingjay, which learns
its representation by predicting non-causal context.
TERA (Liu et al., 2021) alters time, frequency, and
magnitude. Then it is required to reconstruct acous-
tic frames from altered versions.
Robustness. A desired property of a spoken lan-
guage representation is robustness to augmenta-
tions that do not change the spoken information.
The spoken information should not differ signifi-
cantly when male and female speakers say the same
content. There is an interesting trade-off between
training a robust representation and the quality of
the input data. It is possible, for example, to use the
same speaker for all data points in the training set.
The model would not be able to learn any speaker
bias, but this constraint prevents scaling.

Recently, the robustness of self-supervised
speech representations has gained attention from
the community. WavLM (Chen et al., 2022)
proposes adopting the well-known HuBERT
model (Hsu et al., 2021) and training it with an addi-
tional denoising process. The authors apply a nois-
ing process to the training data and then predict the
clean units from it. ContentVec (Qian et al., 2022)
is focused on the disentanglement of a speaker from
self-supervised speech representation. The authors
propose to use three disentanglement components.
First, the student network is disentangled through
two transformations. Then the representations are
forwarded through a speaker condition component.
Finally, voice-converted input data points are used
to generate teacher labels.

7 Conclusions
In this work, we first propose a metric for evaluat-
ing the robustness of self-supervised speech repre-
sentations applied for spoken language modeling
tasks. Equipped with the aforementioned metric,
we point out the lack of robustness in current state-
of-the-art speech encoders with respect to simple
signal variations that do not alter the spoken infor-
mation. We then propose a simple and effective
method to augmentation-invariant discrete repre-
sentation that boosts the robustness of the current
approaches and demonstrate it on three state-of-the-
art self-supervised speech representation models.
We empirically show the efficacy of the proposed
approach when considering encoding methods to-
gether with a textless speech-to-speech translation.
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Broader Impact

As for broader impacts, this work is the first (to
the best of our knowledge) which analyzes self-
supervised speech representation models, consid-
ering basic signal variations. We hope that with
the provided analysis and evaluation, researchers
working on spoken language modeling and self-
supervised speech representation learning will con-
sider reporting the proposed metric setup along
with evaluation of down stream tasks.

Limitations

The proposed method has several limitations that
should be taken into consideration when employing
it. First, the method relies on an existing model,
e.g., k-means, which creates a dependency between
the performance of the initial and the robust mod-
els. Second, the flow is not trained end-to-end,
which can also limit its performance as end-to-end
training allows improvement of the robustness of
the whole representation. Lastly, to fully assess
the effectiveness of the method, multiple metrics
need to be examined. This can be a limitation as
interpreting the results from multiple metrics may
not be straightforward. However, it gives a more
complete picture of the model’s performance.
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2018. Pyroomacoustics: A python package for audio
room simulation and array processing algorithms. In
ICASSP.

Steffen Schneider, Alexei Baevski, Ronan Collobert,
and Michael Auli. 2019. wav2vec: Unsupervised pre-
training for speech recognition. In INTERSPEECH.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan,
et al. 2018. Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions. In ICASSP.

Joachim Thiemann, Nobutaka Ito, and Emmanuel Vin-
cent. 2013. Demand: a collection of multi-channel
recordings of acoustic noise in diverse environments.
In Proc. Meetings Acoust.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.
2020. Transformer vq-vae for unsupervised unit dis-
covery and speech synthesis: Zerospeech 2020 chal-
lenge. In Interspeech.

Andros Tjandra, Berrak Sisman, Mingyang Zhang,
Sakriani Sakti, Haizhou Li, and Satoshi Nakamura.
2019. Vqvae unsupervised unit discovery and multi-
scale code2spec inverter for zerospeech challenge
2019. In Interspeech.

Maarten Versteegh, Roland Thiolliere, Thomas Schatz,
Xuan Nga Cao, Xavier Anguera, Aren Jansen, and
Emmanuel Dupoux. 2015. The zero resource speech
challenge 2015. In Sixteenth annual conference of
the international speech communication association.

Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang,
Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin,
Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-
Ting Lin, et al. 2021. Superb: Speech processing
universal performance benchmark. arXiv preprint
arXiv:2105.01051.

474



A Levenshtein Distance

Throughout the paper, we use a version of the Lev-
enshtein distance. In this section, we detail the
Levenshtein distance between two sequences. Let
x ∈ {1, ..,K}Tx and y ∈ {1, ..,K}Ty be two dis-
crete vectors, not necessary in the same size. Let
us also denote the operator tail(x) to return a copy
of the vector x without its first element. Then,
the Levenshtein distance is defined recursively by
Lev(x, y) =




|x|, if |y| = 0

|y|, if |x| = 0

1 +min





Lev(tail(x), y)
Lev(x, tail(y))
Lev(tail(x), tail(y))

, otherwise

where |x|, |y| are the lengths of the vectors x and y
respectively. Note, in our implementation, we use
deduplicated sequences.

B Extended Experimental Setup

Models. We study our method using the base ver-
sions of HuBERT, wav2vec2, and WavLM. Similar
to prior work, for HuBERT and WavLM, we use
the ninth and sixth layers for wav2vec2. For read-
ability, we report results for HuBERT in the main
paper. The results for wav2vec2 and WavLM are
presented in Appendix C. In our quantizer learning
process, we use a learning rate of 0.0001, a batch
size of 32, and Adam optimizer (Kingma and Ba,
2014). Our quantizer is composed of three fully
connected layers with LeakyReLU activation be-
tween them. The dimensions of those layers are
determined by the division floor of the difference
between the upstream dimension to the number
of units. We train our quantizer using a single
NVIDIA V100 GPU.

Datasets. To match the current k-means popular
training set, we use the Librispeech-100h to learn
our quantizer (Panayotov et al., 2015). We analyze
our metric using the ‘clean’ and ‘other’ develop-
ment sets from Librispeech. The augmentations
in all setups include time stretch, pitch shift, rever-
beration, and noise injection (exact parameters are
detailed in Section 3.2.1). For the sWUGGY and
sBLIMP evaluations, we use the ‘big’ transformer
language model from Lakhotia et al. (2021).

This appendix begins with a detailed explana-
tion on the Levenshtein distance (Section A). Then,

in Section C, we present additional results. We
report results on two additional state-of-the-art self-
supervised speech representations. We show that
our method is indeed effective for those representa-
tions as well as shown in the main paper.

C Additional Results

In the following, we provide additional results on
the state-of-arts representations “wav2vec2” and
“WavLM” (Baevski et al., 2020; Chen et al., 2022).

Tables 4 and 5 present the UED scores for both
the wav2vec2 and WavLM models. Using our
method, we observe robustness improvements for
both of the models. However, it is notable that the
WavLM model is more robust than the wav2vec2
model. It is reasonable since the WavLM trained
to be a more robust model using noisy training
samples.

Tables 6 and 7 present the discriminative and
generative metrics for both wav2vec2 and WavLM.
We observe a consistent improvement using our
robust quantizer as in the robustness metrics. How-
ever, for the WavLM, the improvements are some-
times marginal (except for k = 50 where k-means
outperforms our method). The WavLM model is
trained with a HuBERT architecture, with more
data and noisy samples. Interestingly, while pre-
senting better performance on various downstream
tasks than HuBERT, their ABX, sWUGGY, and
sBLIMP scores are lower.
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# units Method
Augmentation

Time Pitch shift Reverberation Noise

50
k-means 50.81±0.41 58.66±1.16 43.71±0.77 32.17±0.61

Ours 38.74±0.45 42.33±0.97 33.69±0.73 25.36±0.49

Ours (Iterative) 36.68±0.39 40.29±1.04 33.28±0.74 23.99±0.51

100
k-means 55.30±0.61 65.23±0.91 48.41±0.72 33.97±0.46

Ours 42.32±0.46 47.07±0.88 36.83±0.71 27.15±0.75

Ours (Iterative) 40.43±0.57 45.73±0.90 36.34±0.77 26.22±0.59

200
k-means 59.85±0.39 70.80±1.31 53.13±0.67 36.64±0.62

Ours 46.84±0.42 51.60±1.21 40.54±0.66 32.61±0.67

Ours (Iterative) 44.90±0.35 49.59±1.25 40.58±0.62 29.49 ±0.57

500
k-means 66.12±0.48 77.01±0.98 59.69±1.01 37.22±0.65

Ours 51.65±0.49 55.40±1.03 45.85±0.93 33.17±0.62

Ours (Iterative) 50.50±0.53 57.12±1.02 44.67±0.98 31.92±0.69

Table 4: Wav2vec2 unit edit distance

# units Method
Augmentation

Time Pitch shift Reverberation Noise

50
k-means 47.66±0.49 52.93±1.02 33.45±0.62 28.46±0.61

Ours 39.12±0.43 44.25±1.06 31.58±0.62 25.32±0.67

Ours (Iterative) 36.79±0.46 40.16±1.05 25.73±0.64 25.01±0.66

100
k-means 52.61±0.51 58.44±0.72 36.27±0.45 29.44±0.64

Ours 43.55±0.53 49.03±0.75 30.54±0.44 25.93±0.67

Ours (Iterative) 42.11±0.50 46.08±0.74 28.88±0.47 25.47±0.59

200
k-means 58.50±0.42 64.75±1.02 41.05±0.54 30.93±0.62

Ours 49.57±0.41 53.48±1.09 34.29±0.53 26.66±0.65

Ours (Iterative) 47.82±0.46 52.47±1.01 32.88±0.55 26.09 ±0.62

500
k-means 64.25±0.67 70.55±0.75 45.63±0.83 33.17±0.71

Ours 55.41±0.64 59.79±0.87 42.85±0.78 28.46±0.79

Ours (Iterative) 52.92±0.69 57.840±0.81 40.46±0.81 27.09±0.72

Table 5: WavLM unit edit distance
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# units Method
ABX (clean) ↓ ABX (other)↓

sWUGGY ↑ sBLIMP ↑
Within Across Within Across

50
k-means 12.03 15.31 13.61 19.07 49.76 53.92
Ours 11.18 13.82 13.34 18.39 - -
Ours (Iterative) 10.35 12.75 12.64 17.29 49.65 55.29

100
k-means 11.27 13.99 13.06 17.11 51.63 53.87
Ours 9.86 11.81 11.44 16.63 -
Ours (Iterative) 9.24 11.30 11.37 16.14 51.90 54.95

200
k-means 11.13 14.42 12.37 18.02 51.29 54.99
Ours 10.19 12.41 11.85 17.52 - -
Ours (Iterative) 9.00 11.11 11.49 16.53 51.99 55.67

500
k-means 12.06 15.61 13.77 19.94 52.21 54.32
Ours 10.76 13.83 13.52 19.60 - -
Ours (Iterative) 10.16 12.42 12.56 18.24 52.93 55.17

Table 6: Wav2vec2 discriminative and generative evaluation metrics.

# units Method
ABX (clean) ↓ ABX (other)↓

sWUGGY ↑ sBLIMP ↑
Within Across Within Across

50
k-means 7.60 9.06 9.22 12.99 63.91 55.29
Ours 7.41 8.68 9.51 11.78 - -
Ours (Iterative) 7.19 8.25 9.41 11.87 64.87 55.81

100
k-means 6.91 8.06 8.95 11.86 63.61 54.59
Ours 6.02 7.13 8.36 10.95 - -
Ours (Iterative) 6.39 7.02 8.17 11.21 63.99 54.97

200
k-means 6.74 8.12 8.76 12.09 65.97 55.59
Ours 6.40 7.45 8.61 11.49 - -
Ours (Iterative) 6.51 7.73 8.93 11.94 66.90 55.89

500
k-means 7.14 8.10 9.09 11.70 64.56 55.91
Ours 7.03 7.91 8.99 11.21 - -
Ours (Iterative) 7.08 7.87 9.03 11.54 65.81 56.09

Table 7: WavLM discriminative and generative evaluation metrics.
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Abstract

Non-autoregressive machine translation (NAT)
models have lower translation quality than au-
toregressive translation (AT) models because
NAT decoders do not depend on previous tar-
get tokens in the decoder input. We propose
a novel and general Dependency-Aware De-
coder (DePA) to enhance target dependency
modeling in the decoder of fully NAT models
from two perspectives: decoder self-attention
and decoder input. First, we propose an autore-
gressive forward-backward pre-training phase
before NAT training, which enables the NAT
decoder to gradually learn bidirectional target
dependencies for the final NAT training. Sec-
ond, we transform the decoder input from the
source language representation space to the tar-
get language representation space through a
novel attentive transformation process, which
enables the decoder to better capture target de-
pendencies. DePA can be applied to any fully
NAT models. Extensive experiments show that
DePA consistently improves highly competi-
tive and state-of-the-art fully NAT models on
widely used WMT and IWSLT benchmarks
by up to 1.88 BLEU gain, while maintaining
the inference latency comparable to other fully
NAT models.1

1 Introduction

Autoregressive translation (AT) systems achieve
state-of-the-art (SOTA) performance for neural ma-
chine translation (NMT) and Transformer (Vaswani
et al., 2017) encoder-decoder is the prevalent ar-
chitecture. In AT systems, each generation step
depends on previously generated tokens, resulting
in high inference latency when output is long. Non-
autoregressive translation (NAT) models (Gu et al.,
2018) significantly accelerate inference by gener-
ating all target tokens independently and simulta-
neously. However, this independence assumption
∗Corresponding Author
1We released our code at: https://github.com/
zhanjiaao/NAT_DePA.

leads to degradation in accuracy compared to AT
models, as NAT models cannot properly learn tar-
get dependencies. Dependency in prior works and
our work takes its standard definition in NLP, i.e.,
syntactic relations between words in a sentence.

The mainstream NAT models fall into two cate-
gories: iterative NAT models and fully NAT models.
Iterative NAT models (Gu et al., 2019; Ghazvinine-
jad et al., 2019; Lee et al., 2018) improve transla-
tion accuracy by iteratively refining translations at
the expense of slower decoding speed. In contrast,
fully NAT models (Gu et al., 2018; Bao et al., 2022)
have great latency advantage over AT models by
making parallel predictions with a single decod-
ing round, but they suffer from lower translation
accuracy. In this paper, we aim at improving the
translation accuracy of fully NAT models while
preserving their latency advantage.

Previous research (Gu and Kong, 2021) argues
that reducing dependencies is crucial for training a
fully NAT model effectively, as it allows the model
to more easily capture target dependencies. How-
ever, dependency reduction limits the performance
upper bound of fully NAT models, since models
may struggle to generate complex sentences. Pre-
vious studies show that multi-modality (Ran et al.,
2020) is the main problem that NAT models suffer
from (Huang et al., 2021; Bao et al., 2022), i.e., the
target tokens may be generated based on different
possible translations, often causing over-translation
(token repetitions), under-translation (source words
not translated), and wrong lexical choice for poly-
semous words. Table 1 Row3 shows all three multi-
modality error types from the highly competitive
fully NAT model GLAT (Qian et al., 2021) with
modeling only forward dependency (F-NAT) in our
experiments. We observe that lack of complete de-
pendency modeling could cause multi-modality
errors. For example, for the source text (in Ger-
man) “Woher komme ich?” in the last column of
Table 1, “Woher” means both “where” and “how”.
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Under-Translation Over-Translation Wrong Lexical Choice

Source Wir haben es weltweit in 300 Gemeinden gemacht. Einige leute wollten ihn einfach König nennen Woher komme ich ? Wer bin ich ?

Target Reference We ’ve done it in 300 communities around the world. Some people just wanted to call him King . Where am I from ? Who am I ?

F-NAT We did it the world in 300 communities. Some people just wanted to call him him king. How do I come from ? Who am I ?

FB-NAT We ’ve done it in 300 communities around the world. Some people just wanted to call him king. Where do I come from? Who am I ?

Table 1: Case studies of our proposed FBD approach on the highly competitive fully NAT model GLAT (Qian et al., 2021) for
alleviating three types of multi-modality errors on the IWSLT16 DE-EN validation set. Repetitive tokens are in red. Source words
that are not semantically translated are in bold and underlined. Wrong lexical choices (for polysemous words) and redundant
words are in blue. F-NAT denotes only modeling forward dependencies while FB-NAT denotes modeling both forward and
backward dependencies, the same as the models in Table 5. Case studies of our proposed IT approach are in Appendix.

The NAT model modeling only forward depen-
dency (F-NAT) incorrectly translates “woher” into
“how” and outputs “How do I come from?”; whereas
the model modeling both forward and backward
dependency (FB-NAT) translates it correctly into
“Where do I come from?”. Therefore, instead of
dependency reduction, we propose a novel and gen-
eral Dependency-Aware Decoder (DePA), which
enhances the learning capacity of fully NAT mod-
els and enables them to learn complete and complex
forward and backward target dependencies in order
to alleviate the multi-modality issue.

Firstly, we enhance the NAT decoder to learn
complete target dependencies by exploring decoder
self-attention. We believe that previous works (Guo
et al., 2020a) incorporating only forward depen-
dency modeled by AT models into NAT models are
inadequate to address multi-modality. Therefore,
we propose an effective forward-backward depen-
dency modeling approach, denoted by FBD, as
an auto-aggressive forward-backward pre-training
phase before NAT training, using curriculum learn-
ing. The FBD approach implements triangular
attention masks and takes different decoder inputs
and targets in a unified framework to train the
model to attend to previous or future tokens and
learn both forward or backward dependencies.

Secondly, we enhance target dependency model-
ing within the NAT decoder from the perspective
of the decoder input. Most prior NAT models (Gu
et al., 2018; Wang et al., 2019; Wei et al., 2019)
use a copy of the source text embedding as the
decoder input, which is independent from the tar-
get representation space and hence makes target
dependency modeling difficult. We transform the
initial decoder input from the source language rep-
resentation space to the target language representa-
tion space through a novel attentive transformation
process, denoted by IT. Previous works on trans-
forming the decoder input cannot guarantee that
the decoder input is in the exact target representa-

tion space, resulting in differences from the true
target-side distribution. Our proposed IT ensures
that the decoder input is in the exact target repre-
sentation space hence enables the model to better
capture target dependencies.

Our contributions can be summarized as follows:
(1) We propose a novel and general Dependency-
Aware Decoder (DePA) for fully NAT models. For
DePA, we propose a novel approach FBD for learn-
ing both forward and backward dependencies in
NAT decoder, through which the target dependen-
cies can be better modeled. To the best of our
knowledge, our work is the first to successfully
model both forward and backward target-side
dependencies explicitly for fully NAT models.
We also propose a novel decoder input transfor-
mation approach (IT). IT could ease target-side
dependency modeling and enhance the effective-
ness of FBD. DePA is model-agnostic and can
be applied to any fully NAT models. (2) Exten-
sive experiments on WMT and IWSLT benchmarks
demonstrate that our DePA consistently improves
the representative vanilla NAT model (Gu et al.,
2018), the highly competitive fully NAT model
GLAT (Qian et al., 2021) and the current SOTA
of fully NAT models, CTC w/ DSLP & Mixed
Training (denoted by CTC-DSLP-MT) (Huang
et al., 2021) (DSLP denotes Deep Supervision and
Layer-wise Prediction), by up to +0.85 BLEU on
the SOTA CTC-DSLP-MT, +1.88 BLEU on GLAT,
and +2.2 BLEU on vanilla NAT, while reserving
inference latency as other fully NAT models, about
15× speed-up over AT models. Experiments show
that DePA achieves greater BLEU gains with less
speed-up loss than DSLP when applied to various
fully NAT models.

2 Related Work

Forward and Backward Dependencies Prior
works explore bidirectional decoding to improve
modeling of both forward and backward depen-
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dencies in phrase-based statistical MT (Finch and
Sumita, 2009) and RNN-based MT (Zhang et al.,
2018). For NAT, Guo et al. (2020a) and Wei et al.
(2019) use forward auto-regressive models to guide
NAT training. Liu et al. (2020) introduces an in-
termediate semi-autoregressive translation task to
smooth the shift from AT training to NAT train-
ing. However, backward dependencies are rarely
investigated in NAT.

Decoder Input of Fully NAT Models The de-
coder input of AT models consists of previously
generated tokens. However, selecting appropriate
decoder input for fully NAT models could be chal-
lenging. Most prior NAT models (Gu et al., 2018;
Wang et al., 2019; Wei et al., 2019) use uniform
copy (Gu et al., 2018) or soft copy (Wei et al.,
2019) of the source text embedding as the decoder
input, which is independent of the target repre-
sentation space hence hinders target dependency
modeling. Methods such as GLAT (Qian et al.,
2021) and (Guo et al., 2020a,b) attempt to make
the NAT decoder input similar to the target rep-
resentation space by substituting certain positions
in the decoder input with the corresponding target
embedding. However, this creates a mismatch be-
tween training and inference. Guo et al. (2019) uses
phrase-table lookup and linear mapping to make
the decoder input closer to the target embedding,
but this method still causes difference between the
decoder input and the real target-side distribution.

Fully NAT Models To address multi-modality
for fully NAT models, various approaches are pro-
posed. Gu et al. (2018) uses knowledge distillation
(KD) (Kim and Rush, 2016) to reduce dataset com-
plexity. Libovickỳ and Helcl (2018) and Saharia
et al. (2020) use connectionist temporal classifica-
tion (CTC) (Graves et al., 2006) for latent align-
ment. Sun et al. (2019) utilizes CRFs to model
target positional contexts. Kaiser et al. (2018),
Ma et al. (2019) and Shu et al. (2020) incorpo-
rate latent variables to guide generation, similar
to VAEs (Kingma and Welling, 2013). Guo et al.
(2020c) initializes NAT decoders with pretrained
language models. Huang et al. (2021) proposes
CTC with Deep Supervision and Layer-wise Pre-
diction and Mixed Training (CTC-DSLP-MT), set-
ting new SOTA for fully NAT models on WMT
benchmarks. DA-Transformer (Huang et al., 2022)
represents hidden states in a directed acyclic graph
to capture dependencies between tokens and gener-

ate multiple possible translations. In contrast, our
DePA utilizes forward-backward pre-training and
a novel attentive transformation of decoder input
to enhance target dependency modeling. Under
same settings and with KD, DA-Transformer per-
forms only comparably to CTC-DSLP-MT; how-
ever, performance of DA-Transformer benefits no-
tably from Transformer-big for KD while CTC-
DSLP-MT uses Transformer-base for KD. DDRS
w/ NMLA (Shao and Feng, 2022) benefits greatly
from using diverse KD references while CTC-
DSLP-MT uses only a single KD reference. Hence,
CTC-DSLP-MT is still the current SOTA for
fully NAT models on WMT benchmarks.

Non-autoregressive Models Besides fully NAT
models, iterative NAT models are proposed such
as iterative refinement of target sentences (Lee
et al., 2018), masking and repredicting words with
low probabilities (Ghazvininejad et al., 2019), edit-
based methods to iteratively modify decoder out-
put (Stern et al., 2019; Gu et al., 2019), and parallel
refinement of every token (Kasai et al., 2020). It-
erative NAT models improve translation accuracy
at the cost of slower speed. Non-autoregressive
models are practically important due to high effi-
ciency. Other than MT, they are applied to various
tasks such as image captioning (Gao et al., 2019),
automatic speech recognition (Chen et al., 2019),
and text-to-speech synthesis (Oord et al., 2018).

3 Methodology

3.1 Problem Formulation

NMT can be formulated as a sequence-to-sequence
generation problem. Given a sequence X =
{x1, ..., xN} in the source language, a sequence
Y = {y1, ..., yT } in the target language is gener-
ated following the conditional probability P (Y |X).
NAT models are proposed to speed up generation
by decoding all the target tokens in parallel, using
conditional independent factorization as:

PNA(Y |X) = PL(T |x1:N ) ·
T∏

t=1

P (yt|x1:N ; θ) (1)

where the target sequence length T is modeled by
the conditional distribution PL, and dependence
on previous target tokens is removed. Compared
to AT models, NAT models speed up inference
significantly at the expense of translation quality,
because the conditional independence assumption
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Figure 1: The proposed forward-backward dependency mod-
eling (FBD) with triangular attention masks in a unified frame-
work. The red dashed lines indicate the attention masks. We
use different colors to highlight the difference of inputs and
targets in each phase.

in Eq.1 enables parallel processing but lacks ex-
plicit modeling of dependency between target to-
kens. To enhance target dependency modeling, we
propose two innovations as incorporating both for-
ward and backward dependency modeling into the
training process (Section 3.2) and transforming the
decoder input into the target representation space
(Section 3.3).

3.2 Target Dependency Modeling with
Curriculum Learning (FBD)

Prior work (Guo et al., 2020a) utilizes forward de-
pendency in AT models to initialize model parame-
ters for NAT. However, as discussed in Section 1,
for fully NAT models, only modeling forward de-
pendency is inadequate for addressing the multi-
modality problem (Finch and Sumita, 2009; Zhang
et al., 2018) (the Row for F-NAT in Table 1). Our
innovations include incorporating both forward and
backward dependency modeling into NAT models,
via triangular attention masks in a unified frame-
work through curriculum learning (Figure 1), and
investigating efficacy of different curricula. In Fig-
ure 1, the NAT decoder phase denotes standard
NAT training of any NAT decoder Dec. The For-
ward Dependency and Backward Dependency
phases serve pre-training for NAT training, learning
left-to-right and right-to-left dependencies to ini-
tialize NAT models with better dependencies. For-
ward Dependency and Backward Dependency train-
ing phases apply the same upper triangle attention
mask onDec. We use KD data from AT models for
each phase but the inputs and the targets are differ-
ent. The Forward Dependency training phase uses
y1 to predict y2 and so on. The Backward Depen-
dency training phase reverses the target sequence
and uses y2 to predict y1 and so on. The NAT Train-

ing phase uses features of each word to predict the
word itself. We make the following hypotheses:
(1) Considering the nature of languages, learning
forward dependency in Phase 1 is easier for the
model for language generation. (2) Modeling back-
ward dependency relies on learned forward depen-
dency knowledge, hence it should be in the second
phase. In fact, we observe the interesting find-
ing that the best curriculum remains forward-
backward-forward-NAT (FBF-NAT) for both
left-branching and right-branching languages,
proving our hypotheses. We speculate that NAT
training may benefit from another forward depen-
dency modeling in Phase 3 because the order of
left-to-right is more consistent with characteristics
of natural languages, hence adding the second for-
ward dependency modeling after FB (i.e., FBF)
smooths the transition to the final NAT training.
Detailed discussions are in Section 4.3.

3.3 Decoder Input Transformation (IT) for
Target Dependency Modeling

Given the initial decoder input z as a copy of source
text embedding, we propose to directly select rele-
vant representations from target embedding to form
a new decoder input z′ (Figure 2). z is used as
the query and the selection is implemented as a
learnable attention module. The learnable parame-
ters bridge the gap between training and inference
while the selection guarantees consistency between
the decoder input matrix and the target represen-
tation space (i.e., the output embedding matrix of
the decoder). This way, the decoder input is in the
exact target-side embedding space and more con-
ducive to modeling target dependencies for NAT
models than previous approaches using source text
embedding or transformed decoder input.

Decoder Input Transformation To transform z
into the target representation space, we apply atten-
tion mechanism between z and the output embed-
ding matrix Emb ∈ Rd×v, where d and v denote
sizes of hidden states and the target vocabulary.
Since NAT models usually have embedding matrix
Emb including both source and target vocabular-
ies, first, we conduct a filtering process to remove
source vocabulary (mostly not used by the decoder)
from the decoder output embedding matrix (the
linear layer before decoder softmax). We build a
dictionary that contains only target-side tokens in
the training set. We then use this dictionary to filter
Emb and obtain the new output embedding matrix
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Figure 2: The proposed Decoder Input Transformation (IT) from z to z′, where z ∈ RT×d denotes the initial decoder input
copied from the source text embedding xemb, T and d denote the length of the target text y and the size of hidden states,
respectively. Emb ∈ Rd×v denotes the output embedding matrix of the decoder (the target representation space), where v
denotes the size of the target vocabulary.

of the decoder Emb′ ∈ Rd×v′ , where v′ denotes
size of the filtered vocabulary. This filtering pro-
cess guarantees thatEmb′ is strictly from the target
representation space. The attention process starts
with a linear transformation:

zl =Wq · z (2)

Next, the dot-product attention is performed on zl

(as query) and Emb′ (as key and value):

Sim = softmax(zl · Emb′) (3)

Sim represents similarity between each zli and
each embedding in the target vocabulary. Finally,
we compute a weighted sum z′ of target embedding
based on their similarity values:

z′ = Sim · Emb′T (4)

Since z′ is a linear combination of Emb′ which is
strictly in the target representation space, z′ is also
strictly in the target representation space, hence
using z′ as the decoder input provides a more solid
basis for target dependency modeling.

Target-side Embedding Compression To re-
duce the computational cost of IT, we propose a
target-side embedding compression approach to
compress the large target embedding matrix. We
process Emb′ through a linear layer to obtain a
new target embedding Emb∗ ∈ Rd×v∗ :

Emb∗ = (Wc · Emb′T )T (5)

where Wc ∈ Rv∗×v′ is trainable and the size of
compressed vocabulary v∗ is set manually. The re-
sult Emb∗ is still in the target representation space.

Since we can manually set v∗ as a relatively small
number (e.g., 1000, 2000), the computational cost
of the attention mechanism can be greatly reduced.
We hypothesize that target-side embedding com-
pression may also alleviate over-fitting on small
datasets and confirm this hypothesis in Section 4.3.

4 Experiments

4.1 Experimental Setup

Datasets We compare our methods with prior
works on widely used MT benchmarks for evaluat-
ing NAT models: WMT14 EN↔DE (4.5M pairs),
WMT16 EN↔RO (610K pairs). Also, we use
IWSLT16 DE-EN (196K pairs), IWSLT14 DE-EN
(153K pairs), and SP EN-JA2 (50K pairs) for fur-
ther analysis. For WMT16 EN↔RO and IWSLT16
DE-EN, we adopt the processed data from (Lee
et al., 2018). For WMT14 EN↔DE, we apply
the same preprocessing and learn subwords as Gu
and Kong (2021). For IWSLT14 DE-EN, we fol-
low preprocessing in (Guo et al., 2019). For SP
EN-JA, we use sentencepiece3 to tokenize the text
into subword units following Chousa et al. (2019).
Following prior works, we share the source and tar-
get vocabulary and embeddings in each language
pair in Emb, except EN-JA. Also following prior
works (Gu et al., 2018; Qian et al., 2021), all NAT
models in our experiments are trained on data gen-
erated from pre-trained AT Transformer-base
with sequence-level knowledge distillation (KD)
for all datasets except EN-JA.

2https://github.com/odashi/small_parallel_enja
3https://github.com/google/sentencepiece
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Baselines and Training We implement the base-
line models based on their released codebases.
We implement the representative vanilla NAT (Gu
et al., 2018; Qian et al., 2021; Huang et al.,
2021)4, the highly competitive fully NAT model
GLAT (Qian et al., 2021)5, and current fully
NAT SOTA CTC w/ DSLP & Mixed Training
(CTC-DSLP-MT) (Huang et al., 2021)6 and ap-
ply our methods to them. Following Qian et al.
(2021), we use base-Transformer (dmodel=512,
nhead=8, nlayer=6) for WMT datasets and small-
Transformer (dmodel=256, nhead=4, nlayer=5) for
IWSLT and SP EN-JA datasets. We use the same
training setup for training the three models, Vanilla
NAT , GLAT, and CTC-DSLP-MT as in their orig-
inal papers cited above. We train models with
batches of 64K tokens for WMT datasets, and 8K
tokens for IWSLT and SP EN-JA datasets, using
NVIDIA V100 GPUs. For GLAT, we use Adam
optimizer (Kingma and Ba, 2015) with β = (0.9,
0.999) and set dropout rate to 0.1. For Vanilla
NAT and CTC-DSLP-MT, we use Adam optimizer
(Kingma and Ba, 2015) with β = (0.9, 0.98). For
WMT datasets, the learning rate warms up to 5e-4
in 4K steps and gradually decays according to in-
verse square root schedule (Vaswani et al., 2017).
As for IWSLT and SP EN-JA datasets, we adopt
linear annealing (from 3e-4 to 1e-5 ) as in Lee et al.
(2018). We choose the model with the best perfor-
mance on the validation set as the final model and
evaluate the final model on the test sets. For experi-
ments using our method FBD (Section 3.2), we use
the FBF-NAT configuration (as in Section 4.3)
and train the same number of steps at each phase
(including NAT training phase), with 300K steps
for each phase for WMT datasets and 100K steps
for each phase for IWSLT datasets and SP EN-JA.
IT by default is without Target-side Embedding
Compression (Section 3.3).

Evaluation To evaluate the translation accuracy,
we use SacreBLEU (Post, 2018) for all experi-
ments and ChrF (Popovic, 2015) (also using the
SacreBLEU tool) additionally for ablation study
on IWSLT benchmark. To evaluate the inference
latency, following Gu and Kong (2021), we mea-
sure the wall-clock time for translating the entire
WMT14 EN-DE test set with batch_size=1 on a
4https://github.com/facebookresearch/fairseq/
tree/main/examples/nonautoregressive_
translation

5https://github.com/FLC777/GLAT
6https://github.com/chenyangh/DSLP

single NVIDIA V100 GPU, then compute the aver-
age time per sentence. We report Speed-up based
on the inference latency of Transformer-base AT
(teacher) and fully NAT models.

4.2 Main Results

Table 2 shows the main results on the WMT bench-
marks. For EN↔RO, we report the mean of BLEU
from 3 runs with different random seeds for Row
12-13, all with quite small standard deviations
(≤ 0.16) 7. We apply our proposed DePA, which
includes IT and FBD, to vanilla NAT, GLAT, and
the current fully NAT SOTA CTC-DSLP-MT, on
WMT, IWSLT, and EN-JA benchmarks. We use
the same hyperparameters and random seeds to
fairly compare two models. It is crucial to point
out that accuracies of vanilla NAT, GLAT, and
CTC-DSLP-MT models have plateaued out af-
ter 300K training steps on WMT datasets hence
original papers of these three models set max
training steps to 300K. We verify this observation
in our own experiments as we also see no gains
on these models after 300K training steps on the
WMT datasets. Hence, although our DePA trains
300K × 4 = 1200K steps on WMT datasets due
to FBF pre-training as in Section 4.3, all compar-
isons between baselines w/ DePA and w/o DePA
are fair comparisons. Table 2 shows that DePA
consistently improves the translation accuracy for
both vanilla NAT and GLAT on each benchmark,
achieving mean=+1.37 and max=+1.88 BLEU
gain on GLAT and mean=+2.34 and max=+2.46
BLEU gain on vanilla NAT. DePA also improves
the SOTA CTC-DSLP-MT by mean=+0.42 and
max=+0.49 BLEU gain on the WMT test sets (Ta-
ble 2), +0.85 BLEU gain on the IWSLT16 DE-EN
validation set and +1.43 BLEU gain on the EN-JA
test set (Table 3). All gains from DePA on vanilla
NAT, GLAT, and CTC-DSLP-MT are statistically
significant (p < 0.05) based on a paired bootstrap
resampling test conducted using 1K resampling
trials and the SacreBLEU tool.

Table 2 also shows that on each benchmark,
the average improvement from DePA on three
models (vanilla NAT, GLAT, and CTC-DSLP-
MT) is within [0.90,1.56] (Row15), always larger
than the average improvement from w/DSLP on

7WMT14 EN↔DE is much larger than WMT16 EN↔RO.
Since standard deviations of BLEU from multiple runs with
different random seeds on WMT14 EN↔DE are very small,
≤ 0.08 (Huang et al., 2022), following prior works, we report
single-run BLEU on WMT14 EN↔DE to save energy.
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Row# Models Speed-up ↑ WMT’14 WMT’16
EN-DE DE-EN EN-RO RO-EN

1 Transformer-base (teacher) 1.0× 27.48 31.39 33.70 34.05
2 + KD 2.5× 27.34 30.95 33.52 34.01

3 Vanilla NAT 15.6× 20.36 24.81 28.47 29.43
4 w/ DSLP∗ 14.8× 22.72 25.83 30.48 31.46
5 w/ DePA (Ours) 15.4× 23.15 26.59 30.78 31.89
6 GLAT 15.3× 25.21 29.84 31.19 32.04
7 w/ DSLP∗ 14.9× 25.69 29.90 32.36 33.06
8 w/ DePA (Ours) 15.1× 26.43 30.42 33.07 33.82

10 CTC∗ 15.5× 25.72 29.89 32.89 33.79
11 w/ DSLP∗ 14.8× 26.85 31.16 33.85 34.24
12 w/ DSLP & Mixed Training 14.8× 27.02 31.61 33.99 34.42
13 w/ DSLP & Mixed Training & w/ DePA (Ours) 14.7× 27.51 31.96 34.48 34.77
14 Average improvement from DSLP - 1.32 0.78 1.38 1.17
15 Average improvement from DePA (Ours) - 1.50 0.90 1.56 1.53

Table 2: BLEU and Speed-up from our DePA and existing methods on WMT benchmark test sets. Speed-up is measured on
WMT14 EN-DE test set. BLEUs without rescoring are reported, with the best BLEU scores in bold for each group. ∗ denotes
the results are copied from previous work (Huang et al., 2021), other results are obtained by our implementation. Average
improvements of DSLP are re-calculated using our results, which are slightly different from Table 1 in (Huang et al., 2021).

them, [0.78,1.38] (Row14). DePA brings consis-
tent improvement over SOTA CTC-DSLP-MT on
all benchmarks (Table 2 Row13-over-Row12, Ta-
ble 3), hence we expect DePA to also improve DA-
Transformer (Huang et al., 2022) and DDRS w/
NMLA (Shao and Feng, 2022) and will verify this
w/ and w/o KD in future work. Applying DePA to
fully NAT models retains the inference speed-up
advantages of fully NAT models. Applying DePA
to vanilla NAT, GLAT, and SOTA CTC-DSLP-
MT obtain 15.4×, 15.1×, and 14.7× speed-up
over the autoregressive Transformer-base (teacher)
(Row1). Overall Table 2 shows that DePA achieves
greater BLEU gains with less speed-up loss than
DSLP on all baselines. These results demonstrate
superiority of DePA over DSLP on improving other
fully NAT models.

4.3 Analysis

Ablation Study We analyze the respective effi-
cacy of IT and FBD in DePA on the IWSLT16 DE-
EN validation and the WMT and SP EN-JA test sets.
Table 3 shows that FBD and IT improve GLAT by
+1.26 BLEU/+1.5 ChrF and +0.34 BLEU/+1.0
ChrF on IWSLT16 DE-EN validation set, respec-
tively. Considering that GLAT w/FBD has more
training steps than GLAT, we also train GLAT
(400K steps) which has the same training steps
as GLAT w/FBD for fair comparison. Similar to
findings on WMT datasets, we observe plateaus
of accuracy on IWSLT and EN-JA datasets from
more training steps than the original 100K. Just
training more steps hardly improves the baseline

(only +0.07 BLEU gain) on IWSLT16 DE-EN,
whereas GLAT w/FBD brings +1.19 BLEU/+1.2
ChrF gains over GLAT (400K steps).

Table 4 shows our IT outperforms Linear Map-
ping (Guo et al., 2019) by +2.31 BLEU gain on
IWSLT14 DE-EN test set. IT has the same num-
ber of extra parameters as Linear Mapping. Hence,
the large gain proves that improvements from IT
are not just from additional layers. The number
of extra parameters of IT, as from Wq in Eq.2,
is quite small: 512*512=262144 for Transformer-
base on WMT datasets and 256*256=65536 for
Transformer-small on IWSLT datasets. The large
BLEU gain +3.18 from applying IT to vanilla NAT
proves vanilla transformer decoder cannot achieve
similar transformation effectiveness as IT. Table 3
shows that for language pairs with different lev-
els of source-target vocabulary sharing, such as
WMT EN-DE and DE-EN, IWSLT DE-EN, EN-
RO, and EN-JA, our IT method can achieve con-
sistent improvements over GLAT and CTC-DSLP-
MT. Applying IT consistently improves GLAT and
CTC-DSLP-MT although these gains are smaller
than gain on vanilla NAT. This is because decoder
input of vanilla NAT only replicates source em-
bedding, whereas GLAT and CTC-DSLP-MT al-
ready transform decoder input by replacing se-
lected positions in decoder input with target em-
bedding, hence reducing improvements of IT. Still,
gains from w/IT+FBD over w/FBD confirms our
hypothesis that IT can enhance effectiveness of
FBD. On GLAT, IT+FBD yields +1.4 BLEU/+2.7
ChrF gains on IWSLT16 DE-EN and +1.43 BLEU
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Models
IWSLT16 WMT’14 WMT’16

DE-EN EN-DE DE-EN EN-RO RO-EN
BLEU ChrF BLEU BLEU

CTC-DSLP-MT 31.04 56.7 27.02 31.61 34.17 34.60
CTC-DSLP-MT w/ IT 31.29 57.1 27.21 31.78 34.32 34.71
CTC-DSLP-MT w/ FBD 31.73 57.5 27.44 31.90 34.60 34.92
CTC-DSLP-MT w/ IT+FBD 31.89 57.8 27.51 31.96 34.68 34.98

Models
IWSLT16 EN-JA

DE-EN
BLEU ChrF BLEU

GLAT 29.61 51.8 27.67
GLAT (400K step) 29.68 52.1 –
GLAT w/ IT 29.95 52.8 27.95
GLAT w/ FBD 30.87 53.3 28.87
GLAT w/ IT+FBD 31.01 54.5 29.10

Table 3: Effect of IT and FBD and IT+FBD (i.e., DePA) on the IWSLT16 DE-EN validation set, the WMT and SP EN-JA
test sets. We report mean of BLEU/ChrF from 3 runs with different random seeds. BLEU gains from DePA on SOTA
CTC-DSLP-MT on each set, [0.85, 0.49, 0.51], are larger than std (≤ 0.17).

Models BLEU

Vanilla NAT (Guo et al., 2019) 22.95
Vanilla NAT w/ Linear Mapping (Guo et al., 2019) 24.13
Vanilla NAT (our implementation) 23.26
Vanilla NAT w/ IT 26.44

Table 4: Compare IT and Linear Mapping (Guo et al., 2019)
on vanilla NT on the IWSLT14 DE-EN test set.

on EN-JA and on SOTA CTC-DSLP-MT, +0.85
BLEU/+1.1 ChrF gain on IWSLT16 DE-EN.

To further analyze IT, we compare cosine sim-
ilarity between the target embedding against the
original decoder input and the transformed de-
coder input, respectively. For each sample in the
IWSLT16 DE-EN validation set, we average all its
token embeddings as the decoder input represen-
tation and the same for the target representation
and then compute cosine similarity. We average
similarities of all samples as the final similarity.
We find that IT significantly improves similarity
between the decoder input and the target rep-
resentation, 0.04951 → 0.14521 for GLAT and
0.04837→ 0.14314 for vanilla NAT.

Impact of Different Dependency Curricula in
FBD Table 5 presents results from applying dif-
ferent forward-backward dependency modeling
curricula (Figure 1) on GLAT on the IWSLT16
DE-EN validation and the SP EN-JA test sets.
Compared with modeling backward dependency
in Phase 1 (B-NAT and BF-NAT), modeling for-
ward dependency in Phase 1 (F-NAT , FB-NAT, and
FBF-NAT) performs notably better. FB-NAT out-
performs BF-NAT by +3.04 BLEU on IWSLT16

DE-EN and +2.08 BLEU on EN-JA. It seems that
forward dependency modeling achieves good ini-
tialization for subsequent training phases, while
backward dependency modeling cannot. We ob-
serve the best curriculum as FBF-NAT, i.e., first
learn forward dependency, next learn backward
dependency, then another round of forward de-
pendency training before NAT training. Table 5
shows the same trend of curricula on SP EN-JA
as on IWSLT16 DE-EN, with FBF-NAT perform-
ing best, demonstrating that this trend of forward-
backward dependency modeling curricula is con-
sistent for both right-branching (English) and left-
branching (Japanese) target languages. All these
observations confirm our hypotheses in Section 3.2.
Our FBF-NAT consistently outperforms baseline
GLAT (denoted by NAT in Table 5) by +1.58 on
IWSLT16 DE-EN and +1.56 on SP EN-JA and
outperforms prior works modeling forward depen-
dency only (Guo et al., 2020a) on GLAT (denoted
by F-NAT in Table 5) by +1.15 on DE-EN and
+1.08 on EN-JA.

DePA on Raw Data We evaluate DePA on raw
data by training models on the original training set
without KD (Section 4.1). DePA improves GLAT
on the IWSLT16 DE-EN validation set by +1.57
BLEU (26.57→ 28.14), proving that DePA effec-
tively enhances the dependency modeling ability
of fully NAT models hence reduces dependence
of NAT training on AT models.

Effectiveness of Target-side Embedding Com-
pression We propose a linear compression mod-
ule to reduce the selection candidates of the target
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IWSLT16 DE-EN validation set SP EN-JA test set
Models BLEU Models BLEU Models BLEU Models BLEU
NAT 29.61 BF-NAT 27.83 NAT 27.67 BF-NAT 26.79
F-NAT 30.04 FB-NAT 30.87 F-NAT 28.15 FB-NAT 28.87
B-NAT 27.05 FBF-NAT 31.19 B-NAT 25.83 FBF-NAT 29.23

Table 5: BLEU from different dependency modeling curricula on GLAT. Best results for each set are in bold. NAT denotes
GLAT baseline. F and B denote forward dependency and backward dependency phase respectively (Figure 1). For example,
F-NAT denotes forward dependency training then NAT training.

(a) NAT (b) F-NAT

(c) B-NAT (d) FB-NAT

Figure 3: Visualization of the decoder self-attention distri-
bution in NAT models on IWSLT16 DE-EN validation set.
Definitions of model names are the same as in Table 5.

embedding for IT (Section 3.3). We use the di-
chotomy to determine the compression dimension
interval [1000, 2000] and evaluate GLAT w/ IT us-
ing different dimensions with step size 200 in this
interval for IT on the IWSLT16 DE-EN validation
set. As shown in Table 6, applying IT on GLAT
improves BLEU up to +0.78 (29.61→ 30.39) with
compressed dimension 1800. We also experiment
with target-side embedding compression on a larger
model on WMT16 EN-RO but find no gains. We
assume that for relatively small models and data,
this approach helps filter out some redundant target
information, hence refines the target representation
space and improves the translation accuracy.

4.4 Case Study and Visualization
Table 1 presents case studies of GLAT w/ FBD
(“FB-NAT”) and with only forward modeling (“F-
NAT”) on IWLST16 DE-EN validation set. Some
typical multi-modality errors in F-NAT predictions

Compressed w/o IT 1000 1200 1400 1600 1800 2000Dimension

BLEU 29.61 29.45 29.56 29.77 29.85 30.39 29.14

Table 6: BLEU from GLAT w/ IT on the IWSLT16
DE-EN validation set with Target-side Embedding Com-
pression described in Section 3.3.

are corrected by incorporating both forward and
backward dependency modeling through FBD.

For a more intuitive analysis of FBD, we present
a visualization of the decoder self-attention distri-
bution of different NAT models in Figure 3. All
models are based on GLAT and model names con-
form to those in Table 5. In the baseline GLAT (Fig-
ure 3a), the self-attention distribution of each po-
sition is scattered in adjacent positions, indicating
that the NAT model lacks dependency and has high
confusion during decoding, causing multi-modality
errors. In F-NAT and B-NAT models, significant
forward and backward dependencies can be ob-
served in Figure 3b and 3c, indicating that these
two models can better use information in previ-
ous or future positions. Encouragingly, forward
and backward dependencies are fused in the FB-
NAT model (Figure 3d), which can focus on future
information while modeling forward dependency,
capable of alleviating problems shown in Table 1.

5 Conclusion

We propose a novel and general Dependency-
Aware Decoder (DePA) to enhance target de-
pendency modeling for fully NAT models, with
forward-backward dependency modeling and de-
coder input transformation. Extensive experiments
show that DePA improves the translation accuracy
of highly competitive and SOTA fully NAT mod-
els while preserving their inference latency. In fu-
ture work, we will evaluate DePA on iterative NAT
models such as Imputer, CMLM, and Levenshtein
Transformer and incorporate ranking approaches
into DePA.

486



6 Limitations

Apart from all the advantages that our work
achieves, some limitations still exist. Firstly, in
this work, we investigate the efficacy of apply-
ing our proposed DePA approach on the represen-
tative vanilla NAT, the highly competitive fully
NAT model GLAT and current SOTA CTC-DSLP-
MT for fully NAT models, but we have yet to ap-
ply DePA to iterative NAT models, such as Im-
puter (Saharia et al., 2020), CMLM (Ghazvinine-
jad et al., 2019), and Levenshtein Transformer (Gu
et al., 2019). Hence, the effectiveness of DePA
on iterative NAT models still needs to be veri-
fied. Secondly, we have not yet incorporated re-
ranking approaches such as Noisy Parallel Decod-
ing (NPD) (Gu et al., 2018) into DePA. Thirdly, our
proposed method FBD requires multiple additional
training phases before NAT training, resulting in
longer training time and using more GPU resources.
Reducing the computational cost of FBD training
is one future work that will be beneficial for energy
saving. Last but not least, NAT models have limita-
tions on handling long text. They suffer from worse
translation quality when translating relatively long
text. We plan to investigate all these topics in future
work.
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Case study for the proposed IT NAT models
generally suffer from the multi-modality problem,
which shows as over-translation (repetition), under-
translation (missing information), and wrong lex-
ical choice (incorrect translations caused by poly-
semy) (Ran et al., 2020). As shown in Table 7,
Vanilla NAT and GLAT tend to generate repet-
itive tokens which are highlighted in red (over-
translation). Additionally, Vanilla NAT omits the
translation of “schließlich” which is in bold and
underlined (under-translation). By applying our
method IT, the decoder input is closer to the tar-
get representation space and the model has a better
perception for the target-side information, so that
the repetition and under-translation problems can
be effectively alleviated. As for incorrect transla-
tions caused by polysemy, as shown in Case #1
in Table 7, “Drucks” means both “printing” and
“pressure” in German. GLAT mistakenly translates
“Drucks” into “printing”, but our method can help
the model correctly translate it into “pressure”. Par-
ticularly, in Case #2, “Bauplan” means “blueprint”
in German. Although both baseline models Vanilla
NAT and GLAT generate the correct words, they
also generate the redundant word “plan” which is
also a subword of “Bauplan”. These examples
demonstrate that the baseline models may con-
fuse the source representation space with the tar-
get representation space during generation, but our
method IT effectively remedies this problem.
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Case #1 Case #2

Source obwohl sie erwischt wurden , wurden sie schließlich das ist ein Bauplan für Länder wie China und den Iran .freigelassen aufgrund immensen internationalen Drucks .

Target Reference even though they were caught , they were eventually this is a blueprint for countries like China and Iran .released after heavy international pressure .

Vanilla NAT although they were caught , they were released released this is a blueprint plan for countries like China and and Iran .because because of huge drug .

Vanilla NAT w/ IT although they were caught , they were finally released this is a blueprint for countries like China and Iran .because huge international pressure .

GLAT although they were caught , they finally were released this is a blueprint plan for countries like China and Iran .because of of international printing .

GLAT w/ IT although they were caught , they were finally this is a blueprint for countries like China and Iran .released after huge international pressure .

Table 7: Case studies of our method IT on the IWSLT16 DE-EN validation set by comparing the translations from
the two baseline models Vanilla NAT and GLAT and from them after applying IT (models in bold). Repetitive tokens
are in red. Source words that are not semantically translated are marked in bold and underlined (under-translation).
Wrong lexical choice (incorrect translations caused by polysemy) and redundant words are in blue.

490



Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023), pages 491–502
July 13-14, 2023 c©2023 Association for Computational Linguistics

On the Copying Problem of Unsupervised NMT:
A Training Schedule with a Language Discriminator Loss

Yihong Liu*⋄, Alexandra Chronopoulou*⋄, Hinrich Schütze*⋄, and Alexander Fraser*⋄

*Center for Information and Language Processing, LMU Munich
⋄Munich Center for Machine Learning (MCML)

{yihong, achron, fraser}@cis.lmu.de

Abstract
Although unsupervised neural machine transla-
tion (UNMT) has achieved success in many lan-
guage pairs, the copying problem, i.e., directly
copying some parts of the input sentence as the
translation, is common among distant language
pairs, especially when low-resource languages
are involved. We find this issue is closely re-
lated to an unexpected copying behavior during
online back-translation (BT). In this work, we
propose a simple but effective training sched-
ule that incorporates a language discriminator
loss. The loss imposes constraints on the inter-
mediate translation so that the translation is in
the desired language. By conducting extensive
experiments on different language pairs, includ-
ing similar and distant, high and low-resource
languages, we find that our method alleviates
the copying problem, thus improving the trans-
lation performance on low-resource languages.

1 Introduction

UNMT (Lample et al., 2018; Artetxe et al., 2018)
is a new and effective approach for tackling the
scarcity of parallel data. Typically, a cross-lingual
pretrained language model (PLM) (Peters et al.,
2018; Devlin et al., 2019) is trained on two lan-
guages and then used to initialize the model for
the UNMT task (Conneau and Lample, 2019; Song
et al., 2019; Yang et al., 2020; Liu et al., 2020).
However, when it comes to low-resource languages,
especially when translating between distant lan-
guage pairs, UNMT often yields very poor re-
sults (Neubig and Hu, 2018; Guzmán et al., 2019;
Marchisio et al., 2020). One of the major problems
that lead to low translation quality is the copying
problem or off-target problem (Kim et al., 2020;
Zhang et al., 2020). That is: the trained model does
not translate but copies some words or even the
whole sentence from the input as the translation.

We find the copying problem is closely related
to an unexpected behavior in BT (Sennrich et al.,
2016): the model does not translate into the correct

intermediate language but simply copies tokens
from the source language. To address this problem,
this work proposes a simple but effective method
that can be integrated into the standard UNMT
training. We leverage a language discriminator to
detect the language of the intermediate translation
generated in BT and backpropagate the gradients
to the main model. In this way, we can provide
implicit supervision to the model. We find that
by adding such a training objective, the copying
problem can be largely alleviated, especially for
low-resource languages. Noticeably, we do not in-
troduce any language-specific architectures into the
main model. To the best of our knowledge, this is
the first work that introduces a language discrimi-
nator loss to force the intermediate translations in
BT to be in the correct language. The contributions
of our work are as follows:
(1) We explore the reasons behind the copying prob-
lem in UNMT and propose a training schedule with
a language discriminator loss.
(2) We evaluate our method on many languages,
including high- and low-resource, and similar and
distant language pairs.
(3) We carry out an analysis, showing the proposed
method can reduce the copying ratio, especially on
small-size datasets and distant language pairs.
(4) We make our code publicly available. 1

2 Problem Statement & Approach

2.1 Copying Problem

The copying problem is also known as an off-target
translation issue in multilingual NMT especially
zero-shot scenario (Gu et al., 2019; Yang et al.,
2021; Chen et al., 2023). One important task in
zero-shot NMT is to let the model translate into the
correct language given so many target languages.
Our motivation in UNMT is similar, while each

1https://github.com/yihongL1U/xlm_
lang_dis
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Figure 1: A view of the UNMT architecture. The
weights of the final fully connected layer (block F) are
tied with the weight of the embedding layer ( block E).

UNMT model often specifically deals with two
languages, therefore only two translation directions
are considered. Although adding language tags
(Wu et al., 2021) is effective in addressing the
copying problem in multilingual NMT, it is not
a standard process in UNMT. This is because
a language embedding is often added to each
token embedding (Conneau and Lample, 2019;
Song et al., 2019; Liu et al., 2022). Language
embeddings have similar functions to language
tags: providing information about the language of
each token. Unfortunately, language embeddings
turn out to be not very effective in addressing the
copying problem, especially for low-resource or
distant language pairs (Kim et al., 2020). Thus, in
this work, we explore why the copying problem
occurs and how we can alleviate it in UNMT. We
analyze the problem from two perspectives:

Architecture perspective. In UNMT, the weight
of the final fully connected layer (for obtaining the
logits of each word in the vocabulary) is often tied
to the weight of a cross-lingual embedding layer,
as shown in Figure 1. That is, the representations
of tokens from two languages are shared in the
same space. Although this setting is arguably a
better starting point for most modern NMT models,
it unfortunately also allows the models to generate
a token in an unexpected language at any time step.
Furthermore, because of an autoregressive decoder,
errors can easily accumulate, as the tokens initially
generated by the model highly influence the

Figure 2: The losses (left ordinate) and copying ratios
(right ordinate) of Multi30K English-French pair over
epochs. The normal_dae_loss (resp. normal_bt_loss)
and normal_copying_ratio are DAE loss (resp. BT
loss) and copying ratio from the vanilla UNMT. The
ld_dae_loss (resp. ld_bt_loss) and ld_copying_ratio are
DAE loss (resp. BT loss) and the copying ratio from the
UNMT incorporated with the language discriminator.

generation of the subsequent tokens. In contrast
to this setting, using separate word look-up tables
or separate decoders for involved languages can
address the problem (Lample et al., 2018; Liu
et al., 2022). However, such a setting can be
harmful for learning cross-lingual knowledge and
largely increase the number of parameters. In this
view, it is desired to keep the structure simple (no
language-specific architecture) while preventing
the model from decoding in a copying way.

Objective perspective. Typically, a UNMT
model is trained by denoising autoencoding (DAE)
(Vincent et al., 2008) and online back-translation
(BT) (Sennrich et al., 2016) objectives. In DAE
objective, even though the model is trained to
denoise on two languages simultaneously, there
is no guarantee that the model can transfer the
cross-lingual information that might improve
translation between the two languages. In fact,
Song et al. (2019) empirically find that a pretrained
encoder-decoder model with DAE objective can
even perform worse than the model without it
because DAE encourages the model to perform the
copying. In comparison with DAE, BT is arguably
more important, as it tries to directly optimize the
translation. However, we find that BT can also
“fail” during training. That is, the model can take
the shortcut, i.e., copy the input sentence as the
intermediate translation and then copy it again for
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the reconstruction. By taking such a shortcut, the
loss of BT can quickly decrease while the copying
ratio (Liu et al., 2021), a metric to measure the
percentage of generated tokens that are copied
from the input, keeps increasing and reaches a
high-value plateau, as shown in Figure 2. This
indicates that: because of no constraints on the
intermediate translation, the model can always
choose the easiest shortcut for BT, which finally
corrupts the model’s translation capability.

2.2 A Language Discriminator Loss
To avoid such an unexpected copying behavior in
BT, our intuition suggests that forcing the interme-
diate generation to be in the correct language would
be helpful. Instead of forcing all tokens, we could
simply force the first token to be in the correct
language, because the first generated token will in-
fluence the generation of all the subsequent tokens.
Next, the problem is how to force the first gener-
ated token to be in the desired target language. An
equivalent question would be: how can we force the
output vector of the decoder at the first time step to
be closer to the embedding of a token in the target
language? The answer might be trivial. We could
use a trained language discriminator (LD), which
is a classifier, to classify the first-time-step output
vectors of the decoder and then backpropagate the
gradients to the main model (encoder and decoder).
In this way, the model knows which intermediate
language it should generate for the first-time-step
token, therefore preventing the copying behavior.

For training LD, we could use the first-time-step
outputs of the decoder in DAE steps. The LD is
trained to predict the language of the first-time-step
outputs by minimizing the cross entropy loss:

LLD = Ex∼Dl
[p(l|LD(Ol)] (1)

where LD is the language discriminator, Ol

are the first-time-step outputs generated by
Dec(Enc(x, l), l) and l denotes the language (ei-
ther src or tgt). Notably, LLD only backpropagates
to the language discriminator in the DAE step. In
this way, the discriminator is able to distinguish
representations from different languages.

In the BT process, the language discriminator is
fixed and LLD loss is only used to update the main
model so it learns to differentiate representations
from different languages. Taking src-tgt-src BT for
example, the loss is as follows:

LLD = Ex∼Dsrc [p(tgt|LD(Otgt)] (2)

whereOtgt are the first-time-step outputs generated
in the src-to-tgt step, i.e., Dec(Enc(x, src), tgt).
The language discriminator does not have to be
used for the next step in BT, i.e., tgt-to-src trans-
lation, because there are already ground-truth src-
language sentences as supervision. All we need
to do is to make sure the intermediate translation
is in the correct language. We use a weight λLD
to control the contribution of the LD loss to the
final loss that is used to update the parameters of
the main model. It is easy to note that the larger
the weight, the model will be more focusing on the
task of distinguishing representations from differ-
ent languages.

This training schedule is similar to the adversar-
ial loss (Goodfellow et al., 2014) used by Lample
et al. (2018), where they trained a discriminator
to make the outputs of the encoder language-
agnostic, aiming to improve the cross-linguality
of a shared encoder. Our aim, however, is different:
we want to enable the decoder to generate distin-
guishable outputs which correctly correspond to
the language that the model is expected to gener-
ate in the BT process. Algorithm 1 presents the
training schedule in detail.

Algorithm 1: Training Schedule
Input: pretrained encoder Enc and decoder Dec,

language discriminator LD, source and target
monolingual data Dsrc, Dtgt, maximum
finetuning steps T and coefficient λLD ;

Output: Finetuned encoder Enc and decoder Dec);
1 t← 0;
2 while not converged or t < T do
3 // for src language do DAE and BT:
4 Bsrc ← sample batch from Dsrc;
5 // DAE step (below)
6 B̃src,Osrc ← generate reconstructions and

first-time-step outputs from
Dec(Enc(noise(Bsrc), src), src);

7 detach Osrc from the compute graph ;
8 θEnc,θDec ← argminLDAE(Bsrc, B̃src);
9 θLD ← argminLLD(Osrc, src);

10 // BT step (below)
11 freeze θLD;
12 B̃tgt,Otgt ← generate tgt-language translations

and first-time-step outputs from
Dec(Enc(Bsrc, src), tgt) ;

13 B̃src ← generate src-language back-translations
from Dec(Enc(B̃tgt, tgt), src) ;

14 θEnc,θDec ← argminLBT (Bsrc, B̃src) +
λLD LLD(Otgt, tgt);

15 // for tgt language do the same as above
16 t← t+ 1;
17 end
18 return Enc and Dec;
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(a) λLD = 0 (b) λLD = 0.01 (c) λLD = 0.1

(d) λLD = 1 (e) λLD = 10 (f) λLD = 100

Figure 3: The visualizations of the first-time-step output vectors of the decoder in UNMT trained with different
weights for the proposed language discriminator loss. The dimension of the outputs is originally 1024. Principal
component analysis (PCA) is leveraged to project those outputs into a 2-dimensional subspace for convenience
of visualization. src2src (resp. tgt2tgt) denotes the output in the English-to-English (resp. German-to-German)
autoencoding task. src2tgt (resp. tgt2src) denotes the output in the English-to-German (resp. German-to-English)
translation task. The sentences used for the visualizations are the same or the corresponding parallel translations.

3 Experiments

3.1 Setups

Multi30K (Elliott et al., 2016, 2017)2. The of-
ficially provided train, validation and test sets in
English (En), German (De) and French (Fr) are
used. Similar to Lample et al. (2018), we only use
the caption of each image, and we split the train
and validation sets into monolingual corpora by
only using one-half of the data for a language.

WMT (Barrault et al., 2019). We select 50M sen-
tences for high-resource languages: English (En),
French (Fr), German (De), Russian (Ru) and Chi-
nese (Zh) (14M available) and all available mono-
lingual sentences for low-resource language: Gu-
jarati (Gu) (3M), Kazakh (Kk) (4M). We report the
results on newtest2014 for En-Fr pair, newtest2016
for En-De pair, newtest2018 for En-Ru pair and
newtest2019 for the remaining language pairs.

Pretrained Models We use cross-lingual pre-
trained language model (xlm-mlm-ende-1024 and
xlm-mlm-enfr-1024) from HuggingFace3 (Wolf
et al., 2020) to initialize a shared encoder (pa-
rameters are fixed) in Multi30K experiments. In

2https://github.com/multi30k/dataset
3https://github.com/huggingface

those experiments, we randomly initialize a shared
decoder because Multi30k is so small that a ran-
domly initialized decoder can work already very
well based on our preliminary experiments. For
WMT experiments, we pretrain our own cross-
lingual language models using the code base of
XLM4 and use the pretrained models to initialize
both the encoder and decoder for UNMT task.5

3.2 Analysis on Multi30K

To figure out how the LD loss could influence the
performance, we use six different weights for it: 0,
0.01, 0.1, 1, 10 and 100. When the weight equals 0,
the UNMT training will not consider the LD loss at
all and this setting would then be exactly the same
as the vanilla (i.e., DAE + BT) UNMT. The results
are shown in Table 2. In addition to BLEU scores
(Papineni et al., 2002), we also compute copying
ratios (Liu et al., 2021) for each listed direction.

The general trend shows that: when 0 ≤ λLD ≤
1, the BLEU scores increase and the copying ratios
decrease when increasing the weight, suggesting
the copying problem is alleviated by introducing
the LD loss. However, when λLD > 1, the BLEU

4https://github.com/facebookresearch/
XLM

5Details of hyperparameters and relevant information of
all the models are shown in Section A.2 in the Appendix.
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Model Source input Model output Reference output

λLD = 0

a man in an orange hat
starring at something.

a man in an orange hat
staring at something.

ein mann mit einem
orangefarbenen hut,
der etwas anstarrt.

λLD = 0.01
ein mann in an orange hat

starring at something.

λLD = 0, 1
ein mann in an orange hat
gerade etwas bei etwas.

λLD = 1
ein mann in einem orangefarbenen

hut spielt bei etwas.

λLD = 10
ein mann in einem orangefarbenen

hut spielt bei etwas.

λLD = 100
eine frau in einem orangefarbenen

hut spielt bei etwas.

λLD = 0

a boston terrier is running
on lush green grass

in front of a white fence.

a boston dog is running on leafy grass
in front of a white fence.

ein boston terrier läuft
über saftig-grünes gras
vor einem weißen zaun.

λLD = 0.01
ein boston terrier läuft auf einem gepflasterten

grünen grass in front of a white fence.

λLD = 0.1
ein boston terrier läuft auf einem grünen rasen

vor einem weißen zaun.

λLD = 1
ein boston terrier läuft auf einem grünen rasen

vor einem weißen zaun.

λLD = 10
ein boston terrier läuft auf einem grünen gras

vor einem weißen zaun.

λLD = 100
eine boston terrier läuft auf grünen gras

vor einem weißen zaun.

Table 1: Examples of translations from the model trained on Multi30K dataset (En-De pair) with different weights
λLD for language discriminator loss. We do not use beam search to generate these translations.

Models En ) De De ) En En ) Fr Fr ) En
0 0.22 (87%) 0.19 (84%) 0.14 (89%) 0.10 (83%)

0.01 15.78 (42%) 22.04 (24%) 24.73 (24%) 22.15 (25%)
0.1 25.91 (14%) 28.46 (15%) 39.72 (6%) 37.50 (7%)
1 27.96 (12%) 30.05 (12%) 42.74 (5%) 39.02 (6%)
10 24.35 (14%) 25.60 (13%) 41.26 (5%) 37.61 (6%)

100 20.66 (12%) 26.74 (10%) 30.65 (5%) 32.10 (7%)

Table 2: BLEU scores and copying ratios (inside paren-
theses) of models trained with different weights λLD

on Multi30K dataset. When the weight λLD = 0, the
model degenerates to the vanilla UNMT model.

scores decrease while copying ratios remain at the
same level with the increase of the weight. This
indicates that the model is over-emphasizing dis-
tinguishing the outputs when the weights are large.
Therefore, moderate weights, e.g., 1, might be op-
timal if we want to alleviate the copying problem
while achieving good translation performance.

When λLD = 0, poor BLEU scores are obtained
because of the copying problem. We see that all
copying ratios in Table 2 are very high: more than
80% for all directions. Example translations from
the translation model for En-De pair in Table 1
show that when λLD = 0, the MT system simply
copies the input sentences. It is very clear that
with the increase of the weight, it becomes less

likely for the model to copy the words from the
source input as the output translation. However,
when the weight is too large, e.g., λLD = 100,
there are obvious mistakes made by the translation
model. For example, “man” in English is wrongly
translated to “frau” (means woman) in German,
“a” is wrongly translated into “eine” since boston
terrier is a masculine instead of a feminine noun.
Moderate weights, e.g., λLD = 1, achieves the best
performance while obtaining fewer errors.

To figure out how the LD loss influences the
representations, i.e., the first-time-step output vec-
tors generated by the decoder, we visualize these
vectors in 2D by using principal component anal-
ysis (PCA), as shown in Figure 3. The visual-
ization verifies the relationship between the out-
put and the occurrence of the copying problem.
src2tgt and tgt2tgt first-time-step outputs should be
close to each other in the subspace as they are both
used to directly generate target-language sentences.
However, in Fig. 3 (a), when λLD = 0, src2tgt
and src2src are located together while tgt2src and
tgt2tgt are together. In contrast, when LD loss is
imposed, e.g., λLD = 1 (Fig. 3 (d)), the outputs
are distributed as we expect: src2tgt and tgt2tgt are
located together and tgt2src and src2src together.
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Models En ) De De ) En En ) Fr Fr ) En En ) Ru Ru ) En En ) Zh Zh ) En
XLM baseline 20.51 25.99 22.87 25.88 14.10 16.92 6.36 4.28
XLM (+ LD) 20.40 25.85 21.22 26.92 13.49 16.12 6.80 4.69

Table 3: BLEU scores of the XLM baseline and the same model enhanced with the LD loss on high-resource
language pairs. The scores of baseline are obtained by reproducing the published code (Conneau and Lample, 2019).

Models En-De En-Fr En-Ru En-Zh En-Kk En-Gu
baseline 18% 23% 11% 29% 57% 68%
(+ LD) 19% 25% 11% 24% 42% 52%
∆ +1% +2% -0% -5% -15% -14%

Table 4: The copying ratio for each language pair of
XLM baselines and LD model. The average of the ratios
of two directions for a language pair is reported. The
translations used to compute the ratios are the same as
translations for BLEU used in Table 3 and Table 5.

3.3 Main Results on WMT

As the proposed LD is helpful to alleviate the
copying problem in Multi30K experiments when
the weight λLD is moderate, we further conduct
experiments on WMT datasets, which are much
larger than Multi30K. We use λLD = 1 as default.

High-resource language pairs. We report
the results on Table 3 and average copying ratios
for each language pair in Table 4. Firstly, we
observe that there is a slight decrease in BLEU
scores for En-De and En-Ru pair. Different from
Table 2 where we see that the vanilla models
suffer from the copying problem, the vanilla
models in Table 3 perform fairly well on En-De
and En-Ru. The copying ratios of each pair are
also below 20%. We therefore speculate that
the size and complexity of the training data
can influence the effectiveness of the language
discriminator, as it can easily distinguish the
decoder outputs in Multi30K because the size is
small and each sentence has a similar and simple
structure. The copying problem does not severely
impact the BLEU scores of these language pairs
when training on WMT data, presumably because
of the much larger dataset sizes. When the two
languages are more distant, however, the copying
problem can occur even if considerable training
data is there: XLM baseline has a copying ratio
of 29% on En-Zh pair. XLM (+LD) can improve
results by 0.44 and 0.41 in En ) Zh and Zh ) En
directions, and decrease the copying ratio by 5%,
which indicates that the LD loss can improve the
translation where the copying problem is obvious.

Models En )Kk Kk )En En )Gu Gu )En
XLM baseline (512) 0.80 2.00 0.60 0.60
XLM baseline (1024) 1.80 1.59 2.12 0.54
XLM (+ LD) 2.03 1.70 3.55 0.64

Table 5: BLEU scores of the XLM baseline and the
same model enhanced with the LD loss on low-resource
language pairs. The scores of baseline (512) are copied
from (Kim et al., 2020). Same as the setting for high-
resource languages, we reproduced XLM with 1024-
dim embeddings to obtain the scores for baseline (1024).

Low-resource language pairs. En-Kk and En-Gu
represent two very distant pairs that include
low-resource languages. We report the BLEU
scores in Table 5 and average copying ratios in
Table 4. From the results, we first see that the
performance of all considered UNMT systems is
rather poor. This is because they are all distant
pairs and unsupervised training cannot learn
enough cross-lingual information. We find the
copying problem overwhelming, with 57% and
68% copying ratios on En-Kk and En-Gu pair
respectively. By using the proposed LD loss, we
see a consistent increase in BLEU scores and
an evident decrease in average copying ratios
(15% decrease on En-Kk and 14% on En-Gu pair
respectively). This shows the incorporation of
LD loss can significantly alleviate the copying
problem. On the other hand, we attribute the weak
translation quality to the already poor performance
of the vanilla UNMT models, which cannot be
largely improved simply by alleviating the copying
problem. Decreasing copying ratios does not
necessarily lead to a correct translation. Because
of the unsupervised nature of the task, it can still
be extremely hard for the model to learn enough
cross-lingual information that is useful to perform
good translation. Table 6 shows some examples,
we notice that XLM (+ LD) generates sentences
in the correct language, but the semantics of
the output sentences is not that related to the
original ones, indicating that lower copying ratios
do not necessarily induce better translation quality.
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Model Source input Model output Reference output
XLM baseline Негiзi , менiң қарсылығым жоқ . Негiзi , менiң қарсылығым жоқ .

Actually , I have no objection .
XLM (+LD) "Негiзi , I have no idea .
XLM baseline Бұл сома алты еуроға тең . The сома алты еуроға тең .

This amount equals to six euro .
XLM (+LD) The price of six еуроға тең .
XLM baseline Олардың көпшiлiгi ауыл шаруашылығы

саласында болып отыр .
Their көпшiлiгi family life has changed .

Most of them are in agricultural area .
XLM (+LD)

Their family members have been
in the area for the past two years .

Table 6: Examples of translations from Kazakh to English by XLM baseline (1024) and XLM (+LD) in Table 5.
The examples show XLM (+LD) suffers fewer the copying problem but it can generate incorrect tokens that do not
match the semantics of the input sentence.

Based on the high- and low-resource transla-
tion experiments, our insights are as follows: the
UNMT models can (easily) learn a lot of cross-
lingual information on similar and high-resource
languages and thus the copying problem is less
obvious. Under such a case, additionally using
LD loss can divert the focus of the training. How-
ever, on distant pairs involving low-resource lan-
guages, models would struggle to learn enough
cross-lingual information and therefore the copying
problem is obvious. In such a case, although involv-
ing LD loss cannot provide additional cross-lingual
knowledge, it can alleviate the copying problem
thus improving the performance to a certain extent.

4 Discussion

From the Multi30K and WMT experiments, we ver-
ify the ability of the LD loss to alleviate the copy-
ing problem by showing consistently lower copy-
ing ratios. However, the performance in terms of
BLEU scores on these two datasets shows slightly
different trends: we improve translation quality
on Multi30K a lot by reducing the copying ratios;
whereas we do not see a prominent improvement
on WMT even if copying ratios are largely reduced.
This discrepancy can be explained as follows. Two
main issues are preventing the model from achiev-
ing good performance: (1) lacking cross-lingual
alignment information that is useful for learning
translation (2) no clear guidance on which language
to translate into. The experiments on the small
dataset Multi30K indicate that issue (1) is not the
major obstacle when two similar languages are con-
sidered, e.g., En and Fr. In such a case, it is the
issue (2) that prevents the model from performing
the actual translation. This is why large improve-
ments are achieved by simply adding the LD loss
when training a model on Multi30k (note that the
language discriminator does not provide any ad-
ditional cross-lingual information but only acts as

an implicit supervision). In the case of distant lan-
guage pairs including low-resource languages, e.g.,
En-Gu and En-Kk in our WMT experiments, both
issues (1) and (2) prohibit the model from learning
to translate accurately. Although the copying prob-
lem is alleviated, as shown in Table 6, this does not
guarantee a correct or even good translation quality.
We therefore expect future research could explore
using a more powerful baseline model, e.g., includ-
ing static cross-lingual embeddings to improve the
cross-linguality (Chronopoulou et al., 2021), which
might further improve the performance for distant
language pairs including low-resource languages.

5 Conclusion

In this paper, we find that the copying problem in
UNMT is closely related to the lack of constraints
on the intermediate translation in the BT process.
To address this issue, we propose an LD loss to
give additional supervision to the first-time-step
output vectors generated by the decoder in the BT
process. We find that the method can alleviate the
copying problem by correcting the wrong behavior
in BT. In addition, through extensive experiments
on different language pairs (including low-resource
languages and distant pairs), we discover that the
method can consistently improve the performance
of distant language pairs.

6 Limitations and Risks

Our training schedule introduces a language dis-
criminator loss to impose constraints on the inter-
mediate translation in the back-translation period.
The experimental results suggest that our method
can alleviate the copying problem when the in-
volved languages are distant language pairs or lack
training data. However, for language pairs that are
not distant, and especially high-resource languages,
our model does not show improvement over the
baseline. Due to time and resource limitations, we
do not further explore whether the optimal weight
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for the language discriminator loss can have a con-
nection with the size of the dataset and the involved
language pairs. For example, for WMT En-De or
En-Fr pairs, the languages are not distant language
pairs and therefore we might obtain better results if
the weights are slightly smaller. We believe that fu-
ture research could explore this direction: to adapt
the weight to different language pairs and the size
of the training data. In addition, we do not conduct
hyperparameter search for other hyperparameters,
instead directly using suggested values.

In this work, we propose a novel training sched-
ule that tries to address the copying problem, which
is common among distant language pairs in UNMT.
We experiment with high-resource languages En-
glish, German, French, Russian and Chinese, and
low-resource languages including Gujarati and
Kazakh. The training data we use is monolingual
text extracted from online newspapers and released
for the WMT series of shared tasks. As far as we
know, all the monolingual corpora do not contain
any metadata and therefore it would be unlikely
that anyone can use the concerned data to attribute
to specific individuals.
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A Appendix

A.1 Scores of Other Metrics
In addition to BLEU scores, we also compute other
scores in other metrics, such as CHRF (Popović,
2015) in Table 9 and Table 7, COMET (Rei et al.,
2020) in Table 10 and Table 8, and confidence in-
terval of BLEU scores (Koehn, 2004) in Table 11,
Table 12 and Table 13. The translations used for
computing the scores are the same as the transla-
tions used to compute the BLEU scores in Table 3
and Table 5.

To quantify the copying problem, we use the
copying ratio proposed by Liu et al. (2021), which
is defined as follows:

Ratio =

∑I
i=1 count(copying tokens)
∑I

i=1 count(tokens)
(3)

where I denotes the number of the total sentences
in the test set, copying tokens are those tokens
in the translation which are directly copied from
the source language and the denominator is the to-
tal number of tokens in the generated translations.
This metric will directly reflect the degree of the
copying behavior of the translation model. The
higher the copying ratio, the model tends to per-
form more copying instead translation. We report
the average of the copying ratios of the two trans-
lation directions for each language pair in Table 4.
We could see that the copying problem of the XLM
baseline models is very obvious in low-resource
language pairs, i.e., En-Kk and En-Gu. When the
language discriminator loss is introduced, the copy-
ing ratios decrease by more than 10%. We also
notice that XLM (+LD) has a less obvious copy-
ing problem than the baseline in En-Zh pair, a dis-
tant language pair. For other language pairs, the
copying problem is not that severe and therefore
introducing the language discriminator loss does
not much change the ratios.

A.2 Model Details
In Section 3.2, we use the pretrained XLM mod-
els from HuggingFace6 (Wolf et al., 2020) (xlm-
mlm-enfr-1024, xlm-mlm-ende-1024) to initialize

6https://github.com/huggingface

a shared encoder and randomly initialize a shared
decoder. A single embedding layer (containing the
words/subwords of both the source and target lan-
guages) from the pretrained encoder is used. The
weight of the final fully connected layer is tied
with the embedding layer. The parameters of the
encoder are fixed except for this embedding layer
which is also used by the decoder. The embedding
size is 1024 and the hidden size of the decoder is
512. The decoder has 8 heads and 3 layers. We
follow the denoising autoencoding hyperparame-
ter settings used by Lample et al. (2018) and the
training schedule of Liu et al. (2022), i.e., firstly
fine-tuning the models with only DAE loss and LD
loss for the language discriminator for the first 2
epochs, then fine-tuning the models with all losses
(including the BT) for the rest of the epochs. We
set the batch size to 32 and use Adam optimizer
(Kingma and Ba, 2015) with an initial learning rate
of 0.0001. We stop the training when the model
does not improve the BLEU scores on the valida-
tion set for 5 epochs. We do not use beam search
to generate translations for Multi30K.

In Section 3.3, we pretrain all our own cross-
lingual language models of each language pair
based on XLM code base7 (Conneau and Lam-
ple, 2019). Then the encoder and decoder are both
initialized with the same cross-lingual pretrained
model. The recommended hyperparameters for the
model architecture are used, i.e., 1024 for the em-
bedding size, 4096 for the hidden size, 8 heads
and 6 layers for the transformer blocks. We follow
the recommended pretraining as well as UNMT
fine-tuning hyperparameters from XLM. We only
change the hyperparameter tokens_per_batch to
250 to adapt to small- or moderate memory GPUs.
We generate the translations by using beam search
of size 5. These translations are used to compute
the scores in all the WMT-related experiments.

For the language discriminator, we simply use
a feed-forward neural network (FFNN). The lan-
guage discriminator has two hidden layers and each
layer has the same dimension as the embedding,
i.e., 1024, for both Multi30K and WMT-related
experiments. The output dimension is two which
corresponds to the number of language domains
we want to classify into, as we have two languages
involved in the training for each model.

7https://github.com/facebookresearch/
XLM
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Models En)Kk Kk)En En)Gu Gu)En
XLM baseline 8.85 7.61 7.95 4.76
XLM (+ LD) 11.78 10.09 11.71 7.12

Table 7: CHRF scores (Popović, 2015) of the XLM
UNMT baseline as well as the XLM model with the
language discriminator on low-resource language pairs
(the translations used are the same as used in Table 5
for BLEU scores).

Models En)Kk Kk)En En)Gu Gu)En
XLM baseline -1.41 -1.10 -1.40 -1.90
XLM (+ LD) -1.14 -1.04 -0.91 -1.68

Table 8: COMET scores (Rei et al., 2020) of the XLM
UNMT baseline as well as the XLM model with the
language discriminator on low-resource language pairs
(the translations used are the same as used in Table 5
for BLEU scores). We use wmt20-comet-da model to
evaluate the translations.
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Models En)De De)En En)Fr Fr)En En)Ru Ru)En En)Zh Zh)En
XLM baseline 45.09 48.20 44.99 49.93 34.75 38.56 16.11 19.08
XLM (+ LD) 44.42 48.20 42.94 50.50 34.39 36.56 16.74 20.45

Table 9: CHRF scores (Popović, 2015) of the XLM UNMT baseline as well as the XLM model with the language
discriminator on high-resource language pairs (the translations used are the same as used in Table 3 for BLEU
scores).

Models En)De De)En En)Fr Fr)En En)Ru Ru)En En)Zh Zh)En
XLM baseline -0.19 -0.22 -0.04 0.19 -0.34 -0.22 -0.43 -0.78
XLM (+ LD) -0.22 -0.23 -0.04 0.21 -0.37 -0.33 -0.36 -0.81

Table 10: COMET scores (Rei et al., 2020) of the XLM UNMT baseline as well as the XLM model with the
language discriminator on high-resource language pairs (the translations used are the same as used in Table 3 for
BLEU scores). We use wmt20-comet-da model to evaluate the translations.

Models En)De De)En En)Fr Fr)En
XLM baseline 20.53±0.59 25.96±0.66 22.85±0.72 25.89±0.57
XLM (+ LD) 20.42±0.61 25.84±0.63 21.18±0.76 26.92±0.59

Table 11: 95% confidence interval for the BLEU scores of the XLM UNMT baseline as well as the XLM model
with the language discriminator on En-De and En-Fr pair (the translations used are the same as used in Table 3 for
BLEU scores). Differences between bold results are statistically significant under p = 0.05. For the statistical test,
we use paired bootstrap resampling (Koehn, 2004).

Models En)Ru Ru)En En)Zh Zh)En
XLM baseline 14.08±0.48 16.93±0.51 6.34±0.34 4.28±0.28
XLM (+ LD) 13.48±0.45 16.11±0.51 6.80±0.37 4.69±0.31

Table 12: 95% confidence interval for the BLEU scores of the XLM UNMT baseline as well as the XLM model
with the language discriminator on En-Ru and En-Zh pair (the translations used are the same as used in Table 3 for
BLEU scores). Differences between bold results are statistically significant under p = 0.05. For the statistical test,
we use paired bootstrap resampling (Koehn, 2004).

Models En)Kk Kk)En En)Gu Gu)En
XLM baseline 1.80±0.37 1.58±0.48 2.13±0.31 0.54±0.17
XLM (+ LD) 2.04±0.45 1.69±0.49 3.56±0.41 0.64±0.20

Table 13: 95% confidence interval for the BLEU scores of the XLM UNMT baseline as well as the XLM model
with the language discriminator on En-Kk and En-Gu pair (the translations used are the same as used in Table 3 for
BLEU scores). Differences between bold results are statistically significant under p = 0.05. For the statistical test,
we use paired bootstrap resampling (Koehn, 2004).
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