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Introduction

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scien-
tific conference for the study, development and evaluation of spoken language translation technology.
Launched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003),
IWSLT is the main venue for scientific exchange on all topics related to speech-to-text translation, speech-
to-speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual commu-
nication including all multimodal, emotional, paralinguistic, and stylistic aspects and their applications
in the field. The conference organizes evaluations around challenge areas, and presents scientific papers
and system descriptions. IWSLT is organized by the Special Interest Group on Spoken Language Tran-
slation (SIGSLT), which is supported by ACL, ISCA and ELRA.

This year, IWSLT featured nine shared tasks in spoken language translation: (i) simultaneous and (ii)
offline translation, (iii) automatic subtitling and (iv) dubbing, (v) speech-to-speech translation, (vi) mul-
tilingual, (vii) dialect and (viii) low-resource speech translation, and (ix) formality control. Each shared
task was coordinated by one or more chairs. The resulting evaluation campaigns attracted a total of 31
teams, from academia, research centers, and industry. System submissions resulted in system papers
that will be presented at the conference. Following our call for papers, this year 51 submissions were
received. In a blind review process, 8 research papers were selected out of 15 for oral presentation (57%)
in addition to 37 system papers.

The program committee is excited about the quality of the accepted papers and expects lively discussion
and exchange at the conference. The conference chairs and organizers would like to express their grati-
tude to everyone who contributed and supported IWSLT. In particular, we wish to thank our Diamond
sponsors Apple and Translated, our Gold sponsor aiXplain, and our Silver sponsor AppTek. We thank
the shared tasks chairs, organizers, and participants, the program committee members, as well as all the
authors that went the extra mile to submit system and research papers to IWSLT, and make this year’s
conference a big success. We also wish to express our sincere gratitude to ACL for hosting our confe-
rence and for arranging the logistics and infrastructure that allow us to hold IWSLT 2023 as a hybrid
conference.

Welcome to IWSLT 2023, welcome to Toronto!

Marine Carpuat, Program Chair
Marcello Federico and Alex Waibel, Conference Chairs
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This paper reports on the shared tasks orga-
nized by the 20th IWSLT Conference. The
shared tasks address 9 scientific challenges
in spoken language translation: simultane-
ous and offline translation, automatic subti-
tling and dubbing, speech-to-speech transla-
tion, multilingual, dialect and low-resource
speech translation, and formality control. The
shared tasks attracted a total of 38 submis-
sions by 31 teams. The growing interest to-
wards spoken language translation is also wit-
nessed by the constantly increasing number
of shared task organizers and contributors to
the overview paper, almost evenly distributed
across industry and academia.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier an-
nual scientific conference for all aspects of spoken
language translation (SLT). IWSLT is organized
by the Special Interest Group on Spoken Lan-
guage Translation (SIG-SLT), which is supported
by ACL, ISCA and ELRA. Like in all previous
editions (Akiba et al., 2004; Eck and Hori, 2005;
Paul, 2006; Fordyce, 2007; Paul, 2008, 2009; Paul

1

et al.,, 2013, 2014, 2015, 2016, 2017; Niehues
et al., 2018, 2019; Ansari et al., 2020; Anasta-
sopoulos et al., 2021, 2022b),this year’s confer-
ence was preceded by an evaluation campaign
featuring shared tasks addressing scientific chal-
lenges in SLT.

This paper reports on the 2023 IWSLT Eval-
uation Campaign, which offered the following 9
shared tasks:

* Offline SLT, with focus on speech-to-text
translation of recorded conferences and inter-
views from English to German, Japanese and
Chinese.

* Simultaneous SLT, focusing on speech-to-
text translation of streamed audio of confer-
ences and interviews from English to German,
Japanese and Chinese.

* Automatic Subtitling, with focus on speech-
to-subtitle translation of audio-visual docu-
ments from English to German and Spanish.

* Multilingual SLT, with focus on speech-to-
text translation of recorded scientific talks from

Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023), pages 1-61
July 13-14, 2023 (©2023 Association for Computational Linguistics



Team Organization

ALEXA Al Amazon Alexa Al, USA (Vishnu et al., 2023)

APPTEK AppTek, Germany (Bahar et al., 2023)

BIGAI Beijing Institute of General Artificial Intelligence, China (Xie, 2023)

BIT Beijing Institute of Technology, China (Wang et al., 2023b)

BUT Brno University of Technology, Czechia (Kesiraju et al., 2023)

CMU Carnegie Mellon University, USA (Yan et al., 2023)

CUNI-KIT Charles University, Czechia, and KIT, Germany (Polék et al., 2023)

FBK Fondazione Bruno Kessler, Italy (Papi et al., 2023)

GMU George Mason University, USA (Mbuya and Anastasopoulos, 2023)
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Table 1: List of Participants

English into Arabic, Chinese, Dutch, French,
German, Japanese, Farsi, Portuguese, Russian,
and Turkish.

* Speech-to-speech translation, focusing on
natural-speech to synthetic-speech translation
of recorded utterances from English to Chinese.

* Automatic Dubbing, focusing on dubbing of
short video clips from German to English.

 Dialect SLT, focusing on speech translation of
recorded utterances from Tunisian Arabic to
English.

* Low-resource SLT, focusing on speech trans-
lation of recorded utterances from Irish to En-
glish, Marathi to Hindi, Maltese to English,
Pashto to French, Tamasheq to French, and
Quechua to Spanish.

e Formality Control for SLT, focusing on for-
mality/register control for spoken language
translation from English to Korean, Viet-
namese, EU Portuguese, and Russian.

The shared tasks attracted 38 submissions by 31
teams (see Table 1) representing both academic
and industrial organizations. The following sec-
tions report on each shared task in detail, in par-
ticular: the goal and automatic metrics adopted for
the task, the data used for training and testing data,
the received submissions and the summary of re-
sults. Detailed results for some of the shared tasks
are reported in a corresponding appendix.

2 Offline SLT

Offline speech translation is the task of translating
audio speech in one language into text in a differ-
ent target language, without any specific time or
structural constraints (as, for instance, in the si-
multaneous, subtitling, and dubbing tasks). Un-
der this general problem definition, the goal of



the offline ST track (one of the speech tasks with
the longest tradition at the IWSLT campaign) is to
constantly challenge a technology in rapid evolu-
tion by gradually introducing novelty aspects that
raise the difficulty bar.

2.1 Challenge

In continuity with last year, participants
were given three sub-tasks correspond-
ing to three language directions, namely
English—German/Japanese/Chinese. Partici-
pation was allowed both with cascade architec-
tures combining automatic speech recognition
(ASR) and machine translation (MT) systems
as core components, or by means of end-to-end
approaches that directly translate the input speech
without intermediate symbolic representations.
Also this year, one of the main objectives was
indeed to measure the performance difference
between the two paradigms, a gap that recent
research (Bentivogli et al., 2021) and IWSLT find-
ings (Ansari et al., 2020; Anastasopoulos et al.,
2021, 2022b) indicate as gradually decreasing.

The other main objective of this round was to
assess the ability of SLT technology to deal with
complex scenarios involving different types of in-
put characterized by phenomena like spontaneous
speech, noisy audio conditions and overlapping
speakers. In light of this, the main novelty of the
2022 offline SLT task lies in a richer variety of
speech data to be processed. To this aim, in addi-
tion to the classic TED talks test set, two novel test
sets were released:

* ACL presentations, in which a single
speaker is presenting on a stage. Although
similar to the TED talks scenario, additional
challenges posed by this test set include the
presence of non-native speakers, different ac-
cents, variable recording quality, terminol-
ogy, and controlled interactions with a second
speaker.

* Press conferences and interviews, in which
two persons interact on different topics.
Inherent challenges, therefore, include the
presence of spontaneous speech, non-native
speakers, different accents, and controlled in-
teraction with a second speaker.

All the test sets were used for evaluation in
the English-German sub-task, while only TED
Talks and ACL presentations were used to test the

submissions to the English-Japanese and English-
Chinese sub-tasks.

2.2 Data and Metrics

Training and development data. Participants
were offered the possibility to submit systems built
under three training data conditions:

1. Constrained: the allowed training data is
limited to a medium-sized framework in
order to keep the training time and re-
source requirements manageable. The com-
plete list' of allowed training resources
(speech, speech-to-text-parallel, text-parallel,
text-monolingual) does not include any pre-
trained language model.

2. Constrained with large language models
(constrained*“EM): in addition to all the con-
strained resources, a restricted selection! of
large language models is allowed to give par-
ticipants the possibility to leverage large lan-
guage models and medium-sized resources.

3. Unconstrained: any resource, pre-trained
language models included, can be used with
the exception of evaluation sets. This setup is
proposed to allow the participation of teams
equipped with high computational power and
effective in-house solutions built on addi-
tional resources.

The development data allowed under the con-
strained condition consist of the dev set from
IWSLT 2010, as well as the test sets used for
the 2010, 2013-2015 and 2018-2020 IWSLT cam-
paigns. Besides this TED-derived material, ad-
ditional development data were released to cover
the two new scenarios included in this round of
evaluation. For the ACL domain, 5 presentations
from the ACL 2022 conference with translations
and transcriptions were provided. Due to addi-
tional constraints, these references were gener-
ated by human post-editing of automatic transcrip-
tions and translation. For the press conferences
and interviews domain, 12 videos (total duration:
1h:3m) were selected from publicly available in-
terviews from the Multimedia Centre of the Euro-
pean Parliament (EPTV)?.

'See the IWSLT 2023 offline track web page: https:
//iwslt.org/2023/0ffline

2https ://multimedia.europarl.europa.
eu


https://iwslt.org/2023/offline
https://iwslt.org/2023/offline
https://multimedia.europarl.europa.eu
https://multimedia.europarl.europa.eu

Test data. Three new test sets were created for
the three language directions. The new test sets
include heterogeneous material drawn from each
scenario. For the traditional TED scenario, a new
set of 42 talks not included in the current public
release of MuST-C was selected to build the en-de
test set.’> Starting from this material, the talks for
which Japanese and Chinese translations are avail-
able were selected to build the en-zh and en-ja test
sets (respectively, 38 and 37 talks). Similar to the
2021 and 2022 editions, we consider two different
types of target-language references, namely:

* The original TED translations. Since these
references come in the form of subtitles, they
are subject to compression and omissions
to adhere to the TED subtitling guidelines.*
This makes them less literal compared to
standard, unconstrained translations;

* Unconstrained translations. These references
were created from scratch® by adhering to the
usual translation guidelines. They are hence
exact translations (i.e. literal and with proper
punctuation).

For the ACL presentation scenario, paper pre-
sentations from ACL 2022 were transcribed and
translated into the target languages. A detailed de-
scription of the data set can be found in Salesky
et al. (2023). There are 5 presentations in each of
the dev and test sets with a total duration 1h per
split. Talks were selected to include diverse paper
topics and speaker backgrounds. This test set is
shared with the Multilingual task (§5).

For the press conferences and interviews sce-
nario, the test set comprises 10 EPTV videos of
variable duration (6m on average), amounting to a
total of 1h:1m. The details of the new test sets are
reported in Table 2.

Metrics. Systems were evaluated with respect
to their capability to produce translations similar
to the target-language references. The similarity
was measured in terms of BLEU and COMET (Rei
et al., 2020a) metrics. The submitted runs were

3This set of 42 TED talks is also referred to as the
“Common” test set (not to be confused with MuST-C “tst-
COMMON?”) because it serves in both Offline and Simul-
taneous https://iwslt.org/2023/simultaneous
tasks.

*http://www.ted.com/participate/
translate/subtitling-tips

SWe would like to thank Meta for providing us with this
new set of references.

Talks / Videos | Duration
English-German
TED 42 3h:47m:53s
ACL 5 59m:22s
EPTV 10 lh:1m
English-Chinese
TED 37 3h:2m:22s
ACL 5 59m:22s
English-Japanese
TED 38 3h:19m:34s
ACL 5 59m:22s

Table 2: Statistics of the official test sets for the IWSLT
2023 offline speech translation task.

ranked based on the BLEU calculated on the con-
catenation of the three test sets by using automatic
resegmentation® of the hypotheses based on the
reference translations. For the BLEU computed
on the concatenation of the three test sets, the new
unconstrained ones have been used for the TED
data. As observed on IWSLT 2022 manual eval-
uation of simultaneous speech-to-text translation
(Machacek et al., 2023), COMET is correlating
with human judgments best and BLEU correlation
is also satisfactory. Moreover, to meet the requests
of last year’s participants, a human evaluation was
performed on the best-performing submission of
each participant.

2.3 Submissions

This year, 10 teams participated in the offline task,
submitting a total of 37 runs. Table 3 provides a
breakdown of the participation in each sub-task
showing, for each training data condition, the
number of participants, the number of submitted
runs and, for each training data condition (con-
strained, constrained*““M  unconstrained), the
number of submitted runs obtained with cascade
and direct systems.

* BIGAI (Xie, 2023) participated both with
cascade and direct models for en-de, en-ja,
and en-zh translations, which were trained
under the constrained*““M  condition.
The cascade is the concatenation of an
ASR model and an MT system. The ASR
consists of the first 12 Transformer layers

®Performed with ~mwerSegmenter - https:

//www—1i6.informatik.rwth-aachen.de/web/
Software/mwerSegmenter.tar.gz
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English-German

Participants | Runs Constrained Constrained"“"" | Unconstrained

Cascade | 1 Cascade | 1 Cascade | 2

6 16 2 Direct | 1 12 Direct | 11 2 Direct | -
English-Chinese

Participants | Runs Constrained Constrained*““™ | Unconstrained

Cascade | 3 Cascade | 1 Cascade | 7

7 16 > Direct | 2 3 Direct 2 8 Direct | 1
English-Japanese

Participants | Runs Constrained | Constrained*“"" | Unconstrained

1 1 1

3 5 ) Ca.scade ) Ca.scade | Ca§cade
Direct | 1 Direct 1 Direct | -
Table 3: Breakdown of the participation in each sub-task (English—-German, English—Chinese,

English—Japanese) of the IWSLT offline ST track. For each language direction, we report the number of par-
ticipants, the number of submitted runs and, for each training data condition (constrained, constrained*“XM | un-
constrained), the number of submitted runs obtained with cascade and direct systems.

from wav2vec2-large-960h-1v60-self and
an adapter model to compress the feature
vectors. Transcripts are obtained through
a CTC greedy decoding step. The MT is
based on mbart-large-50-one-to-many-mmt.
The direct model consists of two separate
encoders for speech and text, followed by
a shared decoder. The speech and text
encoders are respectively based on the
cascade ASR and MT encoders. An adapter
model is introduced to connect the two
encoders. The direct model combines the
cross entropy loss for MT and the CTC loss
for ASR, together with a hyperparameter to
balance the weights between the two losses.
The training procedure involves dedicated
fine-tuning steps, data filtering and audio
re-segmentation into shorter segments.

I2R (Huzaifah et al.,, 2023) participated
with a direct approach for en-de trans-
lation, which was trained under the
constrained*““M condition. The model
consists of two separate encoders for speech
and text, followed by a shared encoder and
a decoder. The speech encoder is initialised
with WavLM large, while DeltalLM base is
used to initialise the text encoder, the shared
encoder and the decoder. To leverage both
text and speech sources, the shared encoder
is induced to learn a joint multimodal repre-
sentation obtained through forced alignment
of speech and text data. The resulting mixed

speech-text representation is passed to the
shared encoder initially pre-trained on text
data only. A DeltaLM-based MT model
incrementally trained on in-domain and
out-of-domain data is used as a teacher
during fine-tuning of the ST system. The
ST model is built on a mix of ASR, ST and
synthetic data. Additional techniques applied
include on-the-fly audio augmentation to
increase robustness to variable audio quality,
domain tagging to condition the ST output
to the different output styles of the test data,
and ST model ensembling.

HW-TSC (Li et al., 2023) participated with
cascade systems for all language directions
and in all three training data conditions. The
ASR model used for the constrained train-
ing condition is the Conformer. For the
constrained*“*M condition, the encoder of
wav2vec2 and the decoder of mBARTS50 are
combined to fine-tune on all data an ASR
model trained on MuST-C. Whisper (Rad-
ford et al., 2022), fine-tuned on MuST-C, is
instead used for the unconstrained training
condition. All models are built using au-
dio inputs augmented with SpecAugment and
CTC. The MT component is a Transformer-
based model trained in a one-to-many mul-
tilingual fashion. It exploits data filter-
ing and data augmentation techniques, com-
bined with dropout regularization and do-
main adaptation methods, as well as solutions



to increase robustness to ASR noise (through
synthetic noise generation and data augmen-
tation).

¢ MINETRANS (Du et al., 2023) participated
with en-zh cascade systems trained under
constrained and unconstrained conditions.
The submitted runs are obtained with a
pipeline of ASR, punctuation recognition,
and MT components. The ASR is an RNN-
Transducer. For the unconstrained condi-
tion, GigaSpeech is added to the training
data allowed in the constrained setting. In
both conditions, pre-processing and filter-
ing techniques are applied to improve data
quality, while SpecAugment is used for data
augmentation. Before being passed to the
MT component, the unpunctuated ASR out-
put is processed by means of a BERT-based
punctuation recognition model. For the MT
component, two strategies are implemented.
The first one relies on different Transformer-
based models for supervised training. A
base Transformer and an M2M_100 model
are used for the constrained condition. A
translation model trained on additional in-
house corpora is used for the unconstrained
condition. The second strategy adopted for
the MT component relies on a large language
model (Chat-GPT) for prompt-guided trans-
lation.

* NIUTRANS (Han et al., 2023) participated
with a direct en-zh system trained under
the constrained condition. It consists of
two separate encoders for speech and text
with an adapter in between, followed by a
decoder. The speech encoder is pre-trained
with an ASR encoder, while the textual
encoder and the decoder with pre-trained
MT components. Different architectures
with variable size were tested both for ASR
(enhanced with CTC loss and inter-CTC loss
to speed up convergence) and MT (used to
generate pseudo-references so as to increase
the size of the SLT data). The final system
is an ensemble aiming at maximizing the
diversity between models.

» NEURODUB’ participated with a cascade

"Unofficial participant, as no system paper is available.

en-de system trained under the unconstrained
condition. It consists of a 4-staged process
including the ASR, the punctuation module
performing both sentence extraction and
punctuation placement, the speaker- and
gender distinction component, and the
translation model. Every stage is trained on
the crawled data from the web.

NEMO (Hrinchuk et al., 2023) participated
with direct systems for all language di-
rections in the constrained training data
condition. Pre-trained models and synthetic
training data are exploited in different ways
to cope with the scarcity of direct ST data. A
Conformer-based ASR model trained on all
allowed speech-to-text data is used to initial-
ize the SLT encoder. A Transformer-based
NMT model trained on all allowed parallel
data and fine-tuned on TED talks is used to
generate synthetic translation alternatives for
all available speech-to-text and text-to-text
data. A TTS model based on Fast Pitch
(Lancucki, 2021) and trained on the English
transcripts of all TED-derived data is used
to generate the synthetic speech version of
English texts in the available text corpora.
The submitted SLT systems are based on
a Conformer-based encoder followed by a
Transformer decoder trained on this mix
of (gold and synthetic) speech-to-text and
text-to-text data.

X1AoMI (Huang et al., 2023) participated
with a direct en-zh system trained under the
constrained***™ condition. It consists of
a speech encoder, a text encoder, and a text
decoder, with all parameters initialized using
the pre-trained HuBERT and mBART mod-
els. The speech encoder is composed of a
feature extractor based on convolutional neu-
ral networks and a Transformer encoder. In
addition to the cross-entropy loss, ASR, MT,
and a contrastive loss, which tries to learn an
encoder that produces similar representations
for similar instances independently from the
modalities, are added. Self-training is also
used to leverage unlabelled data. In addition
to the allowed datasets, a large set of pseudo
references are generated translating the



transcripts of the ASR corpora. During train-
ing, a second fine-tuning is performed on
MuST-C as in-domain data. The final system
is an ensemble of the two best-performing
models.

UPC (Tsiamas et al., 2023) participated
with a direct en-de system trained under the
constrained*“*M condition. It consists of
a speech encoder, a textual encoder, and a
text decoder. The speech encoder includes
a semantic encoder to align speech and
text encoder representations. The coupling
modules include the CTC and Optimal
Transport (OT) losses to the outputs of the
acoustic and semantic encoders, and the
addition of a second auxiliary OT loss for
the inputs of the semantic encoder. The
speech encoder is based on wav2vec 2.0,
while the textual encoder uses mBARTS0.
Knowledge distillation is used to generate
additional data to fine-tune part of the SLT
model architecture (the feature extractor, the
acoustic encoder, and the CTC module are
frozen during fine-tuning).

USTC (Zhou et al., 2023) participated with
cascade and direct en-zh models trained un-
der the unconstrained condition. For the ASR
of the cascade, two approaches are imple-
mented. The first one exploits a fusion mod-
els trained on the allowed data expanded with
speed perturbation, oversampling, concate-
nation of adjacent voices and synthetic data
generation via TTS. The second approach is
based on Whisper large (Radford et al., 2022)
and SHAS for audio segmentation. The MT
component of the cascade system exploits an
ensemble of Transformer-based models en-
hanced with knowledge distillation, domain
adaptation and robust training strategies. For
direct SLT, two approaches are implemented.
The first one is an encoder-decoder initial-
ized with the ASR and MT models of the
cascade. The second approach is a Stacked
Acoustic-and-Textual Encoding extension of
SATE (Xu et al.,, 2021). The final sub-
missions also include ensembles obtained by
combining cascade and direct systems.

2.4 Results

Also this year, the submissions to the IWSLT Of-
fline translation task were evaluated both with au-
tomatic metrics and through human evaluation.
The results for each sub-task are shown in detail
in the Appendix.

2.4.1 Automatic Evaluation

The results for each of the language pairs are
shown in the tables in Appendix B.1. We present
results for English-German (Table 14), English-
Chinese (Table 16) and English-Japanese (Table
15). The evaluation was carried out in terms of
BLEU (the primary metric, in continuity with pre-
vious years), and COMET. We report individual
scores for the three (or two, as in the case of en-ja
and en-zh) different test sets as well as metrics cal-
culated on the concatenation of the different test
sets. For each sub-task, systems are ranked based
on the BLEU score computed on the concatenated
test sets.

End-to-End vs Cascaded This year the cas-
caded systems performed in general better than
the end-to-end systems. For English-to-German,
for nearly all metrics, the cascaded systems are al-
ways ranked best. For English-to-Japanese, the
results show a similar situation to English-to-
German, with the cascade systems outperforming
the end-to-end model. The supremacy of the cas-
cade models is confirmed by all the metrics, with
a clear gap in performance between the worst cas-
cade and the best end-to-end models. For English-
to-Chinese, the picture is not as clear. However,
the only participant who submitted a primary sys-
tem using the cascaded and one using the end-
to-end paradigm (USTC), the cascaded performed
better in all metrics.

Metrics For English-to-German, in general, the
results of the BLEU metric correlate quite well
with the scores of the COMET metric. Except for
relatively small changes, e.g. the order is different
for the different HW-TSC systems. One excep-
tion is the submissions by UPC and NeMo that are
ranked differently in the two metrics. Therefore, a
comparison to the human evaluation will be inter-
esting. In the English-to-Japanese task, the scores
of the HW-TSC systems are very close to each
other and some swaps are visible between BLEU
and COMET. However, the changes are only re-
lated to the HW-TSC systems and do not mod-



ify the overall evaluation of the systems. In the
English-to-Chinese task, there are two situations
where the metrics differ significantly. The rank-
ing for USTC end-to-end compared to the HW-
TSC systems is different with respect to COMET,
which rewards the HW-TSC submissions. A sim-
ilar situation is visible for NiuTrans and Xiaomi,
where BLEU favors the NiuTrans translations,
while COMET assigns higher scores, and ranking,
to the Xiaomi submissions.

Data conditions For the different data condi-
tions, the gains by using additional large language
models or additional data are not clear. HW-
TSC submitted three primary systems for each
data condition and they all perform very similarly.
However, for en-zh the unconstrained system by
USTC was clearly the best and for en-de the best
system except HW-TSC was also an unconstrained
one. The additional benefit of the pre-trained mod-
els is even less clear. There is no clear picture that
the systems with or without this technology per-
form better.

Domains One new aspect this year is the evalu-
ation of the systems on three different test sets and
domains. First of all, the absolute performance on
the different domains is quite different. The sys-
tems perform clearly worse on the EPTV test sets.
For the relationship between ACL and TED, the
picture is not as clear. While the BLEU scores
on ACL are higher, the COMET scores are lower.
Only for English-to-Japanese, both metrics are
higher on the ACL test set. One explanation could
be that the references for the ACL talks are gen-
erated by post-editing an MT output. This could
indicate that the post-edited references inflate the
BLEU score, while the COMET score seems to be
more robust to this phenomenon. When compar-
ing the different systems, the tendency is for all
cases the same. However, some perform slightly
better in one condition. For example, the end-
to-end system from USTC performs very well on
TED compared to other systems but less well on
ACL.

2.4.2 Human Evaluation

At the time of writing, human evaluation is still in
progress. Its results will be reported at the confer-
ence and they will appear in the updated version
of this paper in Appendix A.

3 Simultaneous SLT

Simultaneous speech translation means the system
starts translating before the speaker finishes the
sentence. The task is essential to enable people
to communicate seamlessly across different back-
grounds, in low-latency scenarios such as transla-
tion in international conferences or travel.

This year, the task included two tracks: speech-
to-text and speech-to-speech, covering three lan-
guage directions: English to German, Chinese and
Japanese.

3.1 Challenge

There are two major updates compared with pre-
vious years:

e Removal of the text-to-text track. The task
focuses on the real-world live-translation set-
ting, where the speech is the input medium.

* Addition of a speech-to-speech track. Trans-
lation into synthetic speech has gained in-
creasing attention within the research com-
munity, given its potential application to real-
time conversations.

To simplify the shared task, a single latency
constraint is introduced for each track: 2 sec-
onds of Average Lagging for speech-to-text, and
2.5 seconds of starting offset for speech-to-speech.
The participants can submit no more than one
system per track / language direction, as long as
the latency of the system is under the constraint.
The latency of the system is qualified on the open
MuST-C tst-COMMON test set (Di Gangi et al.,
2019a).

The participants made submissions in a format
of docker images, which were later run by orga-
nizers on the blind-test set in a controllable en-
vironment. An example of implementation was
provided with the SimulEval toolkit (Ma et al.,
2020a).

3.2 Data

The training data condition of the simultaneous
task follows “constrained with large language
models” setting in the Offline translation task, as
described in Section 2.2

The test data has two parts:

Common TED talks. It’s the the same as in the
Offline task, as described in Section 2.2 .For En-
glish to German, Chinese and Japanese



Non-Native see Appendix A.1.1. For English to
German.

3.3 Evaluation

Two attributes are evaluated in the simultaneous
task: quality and latency.

For quality, we conducted both automatic and
human evaluation. BLEU score (Papineni et al.,
2002a) is used for automatic quality evaluation.
For speech output, the BLEU score is computed
on the transcripts from Whisper (Radford et al.,
2022) ASR model. The ranking of the submis-
sion is based on the BLEU score on the Com-
mon blind test set. Furthermore, we conducted
BLASER (Chen et al., 2022) evaluation on the
speech output. We also conducted human evalu-
ation on speech-to-text translation quality, includ-
ing general human evaluation for all three lan-
guage pairs, and task specific human evaluation on
German and Japanese outputs.

For latency, we only conducted automatic eval-
uation. We report the following metrics for each
speech-to-text systems.

* Average Lagging (AL; Ma et al., 2019,
2020b)

* Length Adaptive Average Lagging (LAAL;
Polék et al., 2022; Papi et al., 2022)

* Average Token Delay (ATD; Kano et al.,
2023)

* Average Proportion (AP; Cho and Esipova,
2016)

* Differentiable Average
Cherry and Foster, 2019)

Lagging (DAL;

We also measured the computation aware version
of the latency metrics, as described by Ma et al.
(2020b). However, due to the new synchronized
SimulEval agent pipeline design, the actual com-
putation aware latency can be smaller with care-
fully designed parallelism.

For speech-to-speech systems, we report start-
offset and end-offset. The latency metrics will not
be used for ranking.

3.4 Submissions

The simultaneous shared task received submis-
sions from six teams, whereas all the teams par-
ticipated in at least one language direction in
speech-to-text translation. Among the teams, five

teams entered the English-to-German track; four
teams entered the English-to-Chinese track; three
teams entered the English-to-Japanese track. Even
though this year is our first time introducing the si-
multaneous speech-to-speech track, four teams out
of six, submitted speech-to-speech systems.

* CMU(Yan et al., 2023) participated in both
the speech-to-text and speech-to-speech
tracks for English-German translation.
Their speech-to-text model combined
self-supervised speech representations, a
Conformer encoder, and an mBART decoder.
In addition to the cross-entropy attentional
loss, the translation model was also trained
with CTC objectives. They used machine
translation pseudo labeling for data aug-
mentation.  Simultaneous decoding was
achieved by chunking the speech signals
and employing incremental beam search.
For their speech-to-speech system, they
incorporated a VITS-based text-to-speech
model, which was trained separately.

* HW-TSC (Guo et al., 2023; Shang et al.,
2023) participated in both the speech-to-
text and speech-to-speech tracks for all
three language directions. Their model was
a cascaded system that combined an U2
ASR, a Transformer-based machine trans-
lation model, and a VITS-based text-to-
speech model for speech-to-speech transla-
tion. The MT model was multilingual and
offered translation in all three directions by
conditioning on language embeddings. For
data augmentation, they adopted data di-
versification and forward translation tech-
niques. Their simultaneous decoding policy
employed chunk-based incremental decod-
ing with stable hypotheses detection. They
also utilized additional TTS models for the
speech-to-speech track.

* NAIST(Fukuda et al., 2023) participated in
the speech-to-text translation direction for
all three language directions and English-to-
Japanese speech-to-speech translation. Their
system consisted of a HuBERT encoder and
an mBART decoder. They employed three
techniques to improve translation quality:
inter-connection to combine pre-trained rep-
resentations, prefix alignment fine-tuning for
simultaneous decoding, and local agreement



to find stable prefix hypotheses. They also
utilized an additional Tacotron2-based TTS
model for speech-to-speech translation with
the wait-k decoding policy.

* FBK(Papi et al., 2023) participated in the
English-to-German speech-to-text translation
track, using an end-to-end Conformer-based
speech-to-text model. Considering computa-
tional latency, their focus was on efficient us-
age of offline models. They employed three
simultaneous policies, including local agree-
ment, encoder-decoder attention, and EDATT
v2, to achieve this.

* CUNI-KIT(Poldk et al., 2023) partici-
pated in the English-to-German speech-to-
text translation track. Their system utilized
WavLM and mBART as the base framework.
The key highlights of their system were in the
decoding strategy and simultaneous policies.
They applied empirical hypotheses filtering
during decoding and adopted CTC to detect
the completion of block inference.

e X1AOMI(Huang et al., 2023) participated
in both the speech-to-text and speech-to-
speech tracks for English-Chinese transla-
tion. Their end-to-end system utilized Hu-
BERT and mBART with a wait-k decoding
strategy and an Information-Transport-based
architecture. They further enhanced their sys-
tem by applying data filtering on long sen-
tences and misaligned audio/text, data aug-
mentation with pseudo labeling, and punctu-
ation normalization. They also incorporated
contrastive learning objectives.

3.5 Automatic Evaluation

We rank the system performance based on BLEU
scores. The detailed results can be found in Ap-
pendix B.2.

3.5.1 Speech-to-Text

English-German On the Common test set, the
ranking is HW-TSC, CUNI-KIT, FBK, NAIST,
CMU, as shown in Table 17. Meanwhile, on the
Non-Native test set, the ranking differs consider-
ably. While HW-TSC performs best on Common
test set, they end up second to last on Non-Native.
The situation is reversed for NAIST and CMU
who end up at the tail of Common scoring but
reach the best scores on the Non-Native set. We
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attribute this to better robustness of NAIST and
CMU towards the noise in Non-Native test set.

English-Chinese The ranking is HW-TSC,
CUNI-KIT, XIAOMI, NAIST, as shown in
Table 18.

English-Japanese The ranking is HW-TSC,

CUNI-KIT, NAIST, as shown in Table 19.

3.5.2 Speech-to-Speech

Despite the great novelty and difficulty of speech-
to-speech track, there are 5 submissions in total:
2 in German, 2 in Chinese and 1 in Japanese.
The full results can be seen in table Table 20.
For English-to-German, the ranking is CMU, HW-
TSC. For English-to-Chinese, HW-TSC is the
only participant. For English-to-Japanese, the
ranking is HW-TSC, NAIST.

We also provide the BLASER scores, which
directly predict the quality of translations based
on speech embeddings. We note that since refer-
ence audios are not available in our datasets, we
use text LASER (Heffernan et al., 2022) to embed
reference text to compute the scores. While the
BLASER scores indicate the same quality rank-
ing for English to German as BLEU scores, on
the Japanese output they are similar. It’s pos-
sible that BLASER is adequately developed on
Japanese outputs

3.6 Human Evaluation

In the Simultaneous task, speech-to-text track,
English-German and English-Japanese were man-
ually evaluated, each with a different scoring
method.

3.6.1 English-German

For English-to-German, we used the same human
evaluation method as last year, originally inspired
by Javorsky et al. (2022). We evaluated (1) the
best system selected by BLEU score, and (2) tran-
scription of human interpretation, the same as used
in last year evaluation (more details can be found
in Anastasopoulos et al. (2022a), Section 2.6.1).

Figure 1 plots automatic and manual evalua-
tion in relation with each other. We confirm the
generally good correlation with BLEU (Pearson
.952 across the two test set parts), as observed by
Machécek et al. (2023), although individual sys-
tem results are rather interesting this year.
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Figure 1: Manual and automatic evaluation of Simulatenous speech-to-text English-to-German translation on the
Common (TED talks) and Non-Native test sets. The error bars were obtained by bootstrap resampling, see the

caption of Table 22.

On the Common test set, HWTSC performed
best in terms of BLEU but the manual scor-
ing seems to prefer CUNI-KIT and FBK. CMU
and NAIST are worst in BLEU but on par with
HWTSC in terms of manual scores.

The situation is very different on the Non-
Native test set: CMU and NAIST score best both
in manual scores and in BLEU while CUNI-KIT
and esp. FBK get much worse scores, again, both
manual and automatic.

The Non-Native test set is substantially harder
with respect to sound conditions, and the striking
difference drop observed for both CUNI-KIT and
FBK can be an indication of some form of over-
fitting towards the clean input of Common (TED
talks).

Appendix A.1.1 presents details of the human
evaluation and results are shown in Table 22.

3.6.2 English-Japanese

For English-to-Japanese, we also followed the
methodology in the last year. We hired a profes-
sional interpreter for human evaluation using JTF
Translation Quality Evaluation Guidelines (JTF,
2018) based on Multidimensional Quality Metrics
(MQM; Lommel et al., 2014). We applied the
error weighting by Freitag et al. (2021a). Ap-
pendix A.1.2 presents details of the human eval-
uation.
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The human evaluation results are shown in Ta-
ble 23. The error score almost correlates with
BLEU against the additional reference, but the dif-
ference in the error scores was very small between
HW-TSC and CUNI-KIT in spite of the 0.8 BLEU
difference.

3.7 Final remarks

This year, we simplified the conditions by focus-
ing solely on low-latency systems to reduce the
burden of submission and evaluation. We also
introduced the novel and challenging speech-to-
speech track, and were happy to receive 5 submis-
sions.

We note potential modifications for future edi-
tions:

* Providing further simplified submission for-
mat.

* Ranking with better designed metrics to ad-
dress the overfitting towards BLEU scores.

* Aligning more with offline tasks on more test
domains and evaluation metrics.

4 Automatic Subtitling

In recent years, the task of automatically creating
subtitles for audiovisual content in another lan-
guage has gained a lot of attention, as we have



seen a surge in the amount of movies, series and
user-generated videos which are being streamed
and distributed all over the world.

For the first time, this year IWSLT proposed a
specific track on automatic subtitling, where par-
ticipants were asked to generate subtitles of audio-
visual documents, belonging to different domains
with increasing levels of complexity.

4.1 Challenge

The task of automatic subtitling is multi-faceted:
starting from speech, not only the translation has
to be generated, but it must be segmented into
subtitles compliant with constraints that ensure
high-quality user experience, like a proper read-
ing speed, synchrony with the voices, the maxi-
mum number of subtitle lines and characters per
line, etc. Most audio-visual companies define
their own subtitling guidelines, which can differ
slightly from each other. Participants were asked
to generate subtitles according to some of the tips
listed by TED, in particular:

* the maximum subtitle reading speed is 21
characters / second;

e lines cannot exceed 42 characters, white
spaces included;

* never use more than two lines per subtitle.

It was expected that participants used only the au-
dio track from the provided videos (dev and test
sets), the video track being of low quality and pro-
vided primarily as a means to verify time syn-
chronicity and other aspects of displaying subtitles
on screen.

The subtitling track requires to automatically
subtitle in German and/or Spanish audio-visual
documents where the spoken language is always
English, and which were collected from the fol-
lowing sources:

* TED talks from the MuST-Cinema® corpus;

* press interviews from the Multimedia Centre
of the European Parliament (EPTV)?;

* physical training videos offered by Peloton'”
* TV series from ITV Studios.'!
$https://ict.fbk.eu/must-cinema
*https://multimedia.europarl.europa.eu

https://www.onepeloton.com
https://www.itvstudios.com
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domain set | AV | hh: ref subtitles
docs ‘mm de es

dev 17 | 04:11 | 4906 4964

TED test 14 | 01:22 | 1375 1422
dev 12 | 01:03 | 960 909

EPTV test 10 | 01:01 | 891 874
Pelot dev 9 03:59 | 4508 4037
GO0 est |8 | 02:43 | 2700 2661
TV dev 7 06:01 | 4489 4763
test 7 05:08 | 4807 4897

Table 4: Statistics of the dev and test sets for the subti-
tling task.

4.2 Data and Metrics

Data. This track proposed two training condi-
tions to participants: constrained, in which only
a pre-defined list of resources is allowed, and un-
constrained, without any data restrictions. The
constrained setup allowed to use the same train-
ing data as in the Offline Speech Translation task
(see Section 2.2 for the detailed list), with the ob-
vious exclusion of the parallel resources not in-
volving the English-{German, Spanish} pairs. In
addition, two monolingual German and Spanish
text corpora built on OpenSubtitles, enriched with
subtitle breaks, document meta-info on genre and
automatically predicted line breaks, have been re-
leased.

For each language and domain, a development
set and a test set were released. Table 4 provides
some information about these sets.

The evaluation was carried out from three per-
spectives, subtitle quality, translation quality and
subtitle compliance, through the following auto-
matic measures:

 Subtitle quality vs. reference subtitles:
— SubER, primary metric, used also for
ranking (Wilken et al., 2022)'?;
— Sigma (Karakanta et al., 2022b)'3.

* Translation quality vs. reference translations:
— BLEU' and CHRF" via sacreBLEU
— BLUERT (Sellam et al., 2020)

Phttps://github.com/apptek/SubER
I3https ://github.com/fyvo/EvalSubtitle
4sacreBLEU signature: nrefs:1|case:mixed|
leff:noltok:13a|smooth:exp|version:2.0.0
BsacreBLEU signature: nrefs:1|case:mixed|
leff:yes|nc:6|nw:0|space:no|version:2.0.0


https://github.com/apptek/SubER
 https://github.com/fyvo/EvalSubtitle

Automatic subtitles are realigned to the ref-
erence subtitles using mwerSegmenter (Ma-
tusov et al., 2005a)'® before running sacre-
BLEU and BLEURT.

* Subtitle compliance:!”

— rate of subtitles with reading speed
higher than 21 char / sec (CPS);

— rate of lines longer than 42 char (CPL);

— rate of subtitles with more than two lines
(white spaces included) (LPB).

4.3 Submissions

Three teams submitted automatically generated
subtitles for the test sets of this task.

e APPTEK (Bahar et al., 2023) submitted runs
in the constrained setup for both language
pairs. The primary submissions came from a
cascade architecture composed of the follow-
ing modules: neural encoder-decoder ASR,
followed by a neural Machine Translation
model trained on the data allowed in the con-
strained track, with the source (English) side
lowercased and normalized to resemble raw
ASR output, as well as adapted to the IWSLT
subtitling domains, followed by a subtitle line
segmentation model (intelligent line segmen-
tation by APPTEK). A contrastive run was
generated for the en—de pair only by a direct
speech translation system with CTC-based
timestamp prediction, followed by the intel-
ligent line segmentation model of APPTEK.
The system was trained on the constrained al-
lowed data plus forward translated synthetic
data (translations of allowed ASR transcripts)
and synthetic speech data for selected sen-
tences from the allowed parallel data. For the
en—de pair, APPTEK also submitted a run in
the unconstrained setup, where a cascade ar-
chitecture was employed consisting of: neu-
ral encoder-decoder CTC ASR, followed by
a neural punctuation prediction model and
inverse text normalization model, followed
by an MT model adapted to the IWSLT do-
mains (sentences similar in embedding sim-
ilarity space to the development sets of the

Yhttps://www—1i6.informatik.
rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

"https://github.com/hlt-mt/
FBK-fairseq/blob/master/examples/speech_
to_text/scripts/subtitle_compliance.py
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four domains TED, EPTV, ITV, Peloton), fol-
lowed by a subtitle line segmentation model
(intelligent line segmentation by APPTEK).

* FBK (Papi et al., 2023) submitted primary
runs for the two language pairs, generated
by a direct neural speech translation model,
trained in the constrained setup, that works
as follows: 1) the audio is fed to a Subtitle
Generator that produces the (un-timed) sub-
title blocks; ii) the computed encoder repre-
sentations are passed to a Source Timestamp
Generator to obtain the caption blocks and
their corresponding timestamps; iii) the sub-
title timestamps are estimated by the Source-
to-Target Timestamp Projector from the gen-
erated subtitles, captions, and source times-
tamps.

* MATESUB (Perone, 2023) submitted primary
runs for the two language pairs, automatically
generated by the back-end subtitling pipeline
of MATESUB, its web-based tool that sup-
ports professionals in the creation of high-
quality subtitles (https://matesub.com/). The
MATESUB subtitling pipeline is based on a
cascade architecture, composed of ASR, text
segmenter and MT neural models, which al-
lows covering any pair from about 60 lan-
guages and their variants, including the two
language pairs of the task. Since MATESUB
is a production software, its neural models
are trained on more resources than those al-
lowed for the constrained condition, there-
fore the submissions fall into the uncon-
strained setup.

4.4 Results

Scores of all runs as computed by automatic met-
rics are shown in Tables 24 and 25 in the Ap-
pendix. Averaged over the 4 domains, APPTEK
achieved the lowest SubER scores with their pri-
mary submission for en—de in the constrained and
unconstrained condition, with the overall best re-
sults for the latter. For en—es, MATESUB obtained
the overall lowest SubER with their unconstrained
system.

We observe that in terms of domain difficulty,
the TV series (from ITV) pose the most challenges
for automatic subtitling. This has to do with di-
verse acoustic conditions in which speech is found
in movies and series - background music, noises,


https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py
https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py
https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py

shouts, and cross-talk. All of this makes the task
of recognizing speech quite challenging, which
results in error accumulation in the downstream
components. Unconstrained systems by APPTEK
and MATESUB perform significantly better on this
domain, which shows the importance of training
on additional data that is more representative of
real-life content.

The second-hardest domain are the fitness
videos from Peloton. Here, despite a gener-
ally clear single-speaker audio with reduced back-
ground noise, the challenge is the MT: some of the
fitness- and sports-specific terminology and slang
pose significant challenges in translation to their
German and Spanish equivalents.

Surprisingly, even the EPTV interviews pose
significant challenges for subtitling, despite the
fact that the topics discussed in the interviews
are found in abundance in the allowed speech-
to-text and text-to-text parallel data for the con-
strained condition (Europarl, Europarl-ST). Here,
the issues such as spontaneous speech with many
pauses, as well as speaker separation may have
been cause of some of the errors.

The TED talks which have been the main
domain for the IWSLT evaluations in the past
years are the easiest to be automatically subti-
tled. Whereas the current level of subtitle quality
for TED talks may require minimal human cor-
rections or can even be shown unedited on the
screen, for the other three domains the automatic
subtitles will require significant post-editing. This
shows the importance of running evaluations not
only under very controlled conditions as in the
case of TED talks, but on a variety of real-life con-
tent where multiple research challenges in speech
translation are yet to be overcome.

This year’s direct speech translation systems
seem to be too weak to compete with the cascaded
approaches. In particular, a full end-to-end ap-
proach like the one from FBK that directly gen-
erates subtitle boundaries is currently inferior in
comparison with the systems that adopt a specific
solution for segmenting the text (intelligent line
segmentation by APPTEK and a neural text seg-
menter by MATESUB). Such specific solutions
lead to almost perfect subtitle compliance. But
even in terms of pure speech translation quality as
measured e.g. with BLEU and BLEURT the cas-
caded systems currently provide better translations
even under constrained training data conditions.
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Regarding the automatic metrics used in the
evaluation, we observed that the metric Sigma pro-
vides scores which are not consistent with the
other measures: for example, German subtitles
from MATESUB seem to be the worst as measured
by Sigma, but this is unlikely based on the val-
ues of the other metrics. Yet the pure MT quality
metrics also exhibit some discrepancies in how the
performance of the same system on the four do-
mains is ranked. This ranking sometimes differs
depending on whether you choose BLEU, ChrF, or
BLEURT as the “primary” metric. The two most
striking cases are:

* the en—~de APPTEK unconstrained primary
submission, for which the BLEU score for
the ITV test data was 14.43 and for Pelo-
ton 10.47, but the BLEURT scores were very
similar: 0.4069 and 0.4028;

* the en—de FBK constrained primary system,
for which the BLEU score was 7.73 on the
Peloton part of the test data vs. 8.05 on the
ITV part, but the BLEURT scores showed a
better quality for Peloton translations: 0.3137
vs. 0.2255.

All of these discrepancies highlight the impor-
tance of human evaluation, which we have not
conducted this time. One of the reasons for this
is that in most prior research (Matusov et al.,
2019; Karakanta et al., 2022a) the automatic sub-
titling quality is evaluated in post-editing scenar-
ios, which are too expensive to be run on signifi-
cant amounts of data as they require professional
subtitle translators. On the other hand, as men-
tioned above, for 3 out of 4 domains the quality of
the automatically generated subtitle translations is
low, so that an evaluation of user experience when
watching subtitles would be also challenging, es-
pecially if the users would have to assign evalu-
ation scores to individual subtitles or sentences.
With all of this in mind, we decided to postpone
any human evaluation to the next edition of the
subtitling track at IWSLT.

Overall, this first edition of the subtitling track
emphasised the crucial role of the following com-
ponents related to speech processing: noise re-
duction and/or speech separation, speaker diariza-
tion, and sentence segmentation. So far they
have been underestimated in speech translation re-
search. Current automatic solutions do not reach
the level of quality that is necessary in subti-
tling. Therefore, we encourage further research



into these areas, for which subtitle translation is
a good test case.

S Multilingual SLT

The NLP and speech communities are rapidly ex-
panding with increasing focus on broader lan-
guage coverage and multilinguality. However, de-
spite the community’s efforts on ASR and SLT, re-
search is rarely focused on applying these efforts
to the data within the scientific domain. It is clear
from recent initiatives to caption technical presen-
tations at NLP and speech conferences that tran-
scription and translation in the technical domain
is needed, desired, and remains a disproportionate
challenge for current ASR and SLT models com-
pared to standard datasets in these spaces. Mo-
tivated by the ACL 60-60 initiative'® to translate
the ACL Anthology to up to 60 languages for the
60th anniversary of ACL, which will be reported
on at this year’s ACL conference co-located with
IWSLT, this year’s Multilingual Task evaluates the
ability of current models to translate technical pre-
sentations to a set of ten diverse target languages.

5.1 Challenge

Translating technical presentations combines sev-
eral challenging conditions: domain-specific ter-
minology, recording conditions varying from
close-range microphones to laptop microphones
with light background noise or feedback, diverse
speaker demographics, and importantly unseg-
mented speech typically 10-60 minutes in dura-
tion. This task focuses on one-to-many translation
from English to ten target languages. Providing
English ASR was optional though encouraged. In-
domain data is scarce, particularly parallel data,
though all language pairs are covered by current
publicly available corpora; further challenging for
current domain adaptation techniques, monolin-
gual data is typically available for the source lan-
guage (English) only. We present two conditions:
constrained (using only the out-of-domain data
allowed and provided for other tasks this year)
and unconstrained (allowing any additional data,
included crawled, which may facilitate e.g., do-
main adaptation). To evaluate submissions, we
use evaluation sets curated from presentations at
ACL 2022 which were professionally transcribed

Bhttps://www.2022.aclweb.org/
dispecialinitiative
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and translated with the support of ACL and the 60-
60 initiative as described in Salesky et al. (2023).

5.2 Data and Metrics

Data. We use the ACL 60-60 evaluation sets cre-
ated by Salesky et al. (2023) to evaluate this chal-
lenge task. The data comes from ACL 2022 tech-
nical presentations and is originally spoken in En-
glish, and then transcribed and translated to ten
target languages from the 60/60 initiative: Ara-
bic, Mandarin Chinese, Dutch, French, German,
Japanese, Farsi, Portuguese, Russian, and Turk-
ish. The resulting dataset contains parallel speech,
transcripts, and translation for ten language pairs,
totaling approximately one hour for the develop-
ment set and one hour for the evaluation set.

During the evaluation campaign, the only in-
domain data provided is the development set. To
simulate the realistic use case where recorded
technical presentations would be accompanied by
a research paper, in addition to the talk audio
we provide the corresponding paper title and ab-
stract, which are likely to contain a subset of
relevant keywords and terminology and could be
used by participants to bias or adapt their systems.
Constrained training data follows the Offline task
(see Sec. 2.2) with pretrained models and out-of-
domain parallel speech and text provided for all
10 language pairs. The unconstrained setting al-
lowed participants to potentially crawl additional
in-domain data to assist with adaptation, as was
done by one team (JHU). For the official rankings,
we use the official evaluation set, which was held
blind until after the evaluation campaign.

To mimic realistic test conditions where the
audio for technical presentations would be pro-
vided as a single file, rather than gold-sentence-
segmented, for both the development and evalu-
ation sets we provided the full unsegmented wav
files, as well as an automatically generated base-
line segmentation using SHAS (Tsiamas et al.,
2022) to get participants started. Two teams used
the baseline segmentation, while one (JHU) used
longer segments which improved the ASR qual-
ity of their particular pretrained model. To evalu-
ate translation quality of system output using any
input segmentation, we provided gold sentence-
segmented transcripts and translations, which sys-
tem output could be scored with as described be-
low in ‘Metrics.’


https://www.2022.aclweb.org/dispecialinitiative
https://www.2022.aclweb.org/dispecialinitiative

Metrics. Translation output was evaluated us-
ing multiple metrics for analysis: translation out-
put using chrF (Popovié¢, 2015a), BLEU (Pap-
ineni et al., 2002b) as computed by SACREBLEU
(Post, 2018), and COMET (Rei et al., 2020b) and
ASR output using WER. For BLEU we use the
recommended language-specific tokenization in
SACREBLEU for Chinese, Japanese, Korean, and
the metric-default otherwise. Translation metrics
were calculated with case and punctuation. WER
was computed on lowercased text with punctua-
tion removed. NFKC normalization was applied
on submitted systems and references. All offi-
cial scores were calculated using automatic reseg-
mentation of the hypothesis based on the refer-
ence transcripts (ASR) or translations (SLT) by
mwerSegmenter (Matusov et al., 2005b), using
character-level segmentation for resegmentation
for those languages which do not mark whites-
pace. The official task ranking is based on average
chrF across all 10 translation language pairs.

5.3 Submissions

We received 11 submissions from 3 teams, as de-
scribed below:

* BIT (Wang et al., 2023b) submitted a single
constrained one-to-many multilingual model
to cover all 10 language pairs, trained using a
collection of multiple versions of the MuST-
C dataset (Di Gangi et al., 2019b). They use
English ASR pre-training with data augmen-
tation from SpecAugment (Park et al., 2019),
and multilingual translation finetuning for all
language pairs together. The final model is an
ensemble of multiple checkpoints. No adap-
tation to the technical domain is performed.

* JHU (Xinyuan et al., 2023) submitted two
cascaded systems, one constrained and one
unconstrained, combining multiple differ-
ent pretrained speech and translation mod-
els, and comparing different domain adap-
tation techniques. Their unconstrained sys-
tem uses an adapted Whisper (Radford et al.,
2022) ASR model combined with NLLB
(NLLB Team et al., 2022), M2M-100 (Fan
et al.,, 2020), or mBART-50 (Tang et al.,
2020) MT models depending on the lan-
guage pair, while the constrained system
uses wav2vec2.0 (Baevski et al., 2020a) and
mBART-50 or M2M-100. They compare us-
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ing talk abstracts to prompt Whisper to train-
ing in-domain language models on either the
small amount of highly-relevant data in the
talk abstract or larger LMs trained on signifi-
cantly more data they scraped from the ACL
Anthology and release with their paper. They
see slight improvements over the provided
SHAS (Tsiamas et al., 2022) segments us-
ing longer segments closer what Whisper ob-
served in training. They show that prompting
Whisper is not competitive with in-domain
language models, and provide an analysis of
technical term recall and other fine-grained
details.

e KIT (Liu et al., 2023) submitted multiple
constrained multilingual models, both end-
to-end and cascaded, which combine several
techniques to adapt to the technical domain
given the absence of in-domain training data,
using pretrained speech and translation mod-
els as initializations (WavLM: Chen et al.
2021, DeltaLM: Ma et al. 2021, mBART-
50: Tang et al. 2020). These include kNN-
MT to bias generated output to the techni-
cal domain; data diversification to enrich pro-
vided parallel data; adapters for lightweight
finetuning to the language pairs for trans-
lation (though they note that this does not
necessarily stack with data diversification);
and for their cascaded model, adaptation of
the ASR model to the target technical do-
main using n-gram re-weighting, noting that
it is typically easier to adapt or add lexical
constraints to models with separate LMs, as
opposed to encoder-decoder models. Addi-
tional techniques (ensembling, updated ASR
encoder/decoder settings, knowledge distilla-
tion, synthesized speech) are also used for
further small improvements.

5.4 Results

All task results are shown in Appendix B.4. The
official task ranking was determined by the aver-
age chrF across all 10 target languages after reseg-
mentation to the reference translations.Table 26.
Scores for all submissions by individual language
pairs are shown in Table 28 (chrF), Table 29
(COMET), and Table 30 (BLEU).

Overall, the majority of approaches combined
strong pretrained speech and translation mod-
els to do very well on the ACL 60-60 evalua-



tion data. For this task, cascaded models per-
formed consistently better than direct/end-to-end
approaches; all of the top 6 submissions were cas-
cades, and 4/5 of the lowest-performing systems
were direct. Optional English ASR transcripts
were submitted for 3 systems (JHU,constraineds
KIT, imarys JHUconstrained)> all of which were
cascades; we see that WER aligns with speech
translation performance in these cases. The only
unconstrained model, from JHU, utilized larger
pretrained models and crawled in-domain lan-
guage modeling data for ASR to great success, and
was the top system on all metrics (Table 26). The
remaining submissions were all constrained (here
meaning, used the white-listed training data and
smaller pretrained models). The KIT)imary SYS-
tem was the best performing constrained model.
While BIT trained models from scratch on TED
to reasonable performance on MuST-C, large pre-
trained models and domain adaptation were key
for high performance on the technical in-domain
test set. chrF and BLEU result in the same sys-
tem rankings, while COMET favors the end-to-
end models slightly more, though not affecting
the top 3 systems (JHUunconstrainedv KITp'rimaryv
KITconstrastivel)-

Domain adaptation techniques had consistent
positive impact on system performance. The KIT
team submitted constrained systems only and thus
were limited to the dev bitext and talk abstracts
for domain adaptation. Despite its small size
(<500 sentences) they were able to generate con-
sistent improvements of up to ~I1chrF and ~ 1
BLEU using kKNN-MT (primary/contrastivel vs
contrastive?2); with this method, extending the dev
data to include the abstracts for the evaluation set
talks (primary vs contrastivel) had neglible ef-
fect on all 3 metrics. The JHU submissions saw
that decoding with interpolated in-domain lan-
guage models outperformed knowledge distilla-
tion or prompting pretrained models with informa-
tion for each talk in this case; small talk-specific
LMs did provide slight improvements in WER, but
significant improvements of 2-3 WER were gained
by extending the limited highly relevant data from
talk abstracts and the dev set to the larger domain-
general data crawled from the 2021 ACL confer-
ence and workshop proceedings.

Without in-domain target-language monolin-
gual data, conventional techniques for adaptation
of end-to-end ST models did not apply (finetun-
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Figure 2: Official task metric performance (chrF) vs
terminology recall for teams’ primary submissions.

ing, backtranslation, ...). The data diversifica-
tion applied by KIT via TTS ‘backtranslation’
(contrastive5, contrastive7) did not affect chrF or
BLEU, but did provide small (0.5-0.6) improve-
ments on COMET.

In addition to the overall evaluation set, we look
at the recall of specific terminology annotated for
the ACL evaluation sets. For the three submissions
(JHUunconstramed, KITpm'marya JHUconstrained)
which provided supplementary ASR, we first in-
vestigate terminology recall and propagation be-
tween ASR and downstream ST. Recall that the
overall WER of these systems was 16.9, 23.7, and
34.1, respectively. Of the 1107 labeled terminol-
ogy words and phrases from the ACL 60-60 eval-
uation set annotations, 87.8% / 77.3% / 71.7% in-
dividual instances were correctly transcribed by
these systems, respectively. Of these, 12.0% /
7.4% | 7.9% were then maintained and correctly
translated to each target language respectively on
average. We plot the official task metric (chrF)
against terminology recall in Figure 2 for all pri-
mary submissions. We see that there were consis-
tent differences across languages in how terminol-
ogy was maintained, which generally but not fully
corresponds to overall performance (ex: Dutch,
Turkish). While the domain adaptation techniques
used ensured strong transcription performance for
the JHU and KIT submissions, this was not gen-
erally maintained for franslation with a significant
drop, converging with BIT which did not perform
domain adaptation. Additional work is needed to



ensure targeted lexical terms are correctly tran-
scribed and translated, both in general as well as
comparably across different languages.

While the JHU submissions finetuned to each
target language individually, the KIT systems fine-
tuned multilingually; no contrastive systems were
submitted with which to ablate this point, but both
teams’ papers describe consistently worse perfor-
mance finetuning multilingually rather than bilin-
gually, which KIT was able to largely mitigate
with language adapters in development in isola-
tion but in their final submission on eval language
adapters were consistently slightly worse (con-
trastive4 ‘with’ vs contrastive3 ‘without.”). It re-
mains to be seen the degree to which one-to-many
models can benefit from multilingual training.

The Offline task additionally used the ACL 60-
60 evaluation sets as part of their broader evalu-
ation for 3 language pairs (en— de, ja, zh), en-
abling a wider comparison across 25 total sys-
tems. We show the Multilingual task submissions
compared to the Offline on these languages in Ta-
ble 27. On these three language pairs, perfor-
mance is generally higher than the remaining lan-
guage pairs in the Multilingual task. We again
consistently see stronger performance on this task
from cascaded models, and unconstrained sub-
missions or those with larger pretrained LLMs,
though there are notable outliers such as the HW-
TSC constrained model. The Offline submissions
did not perform domain adaptation specifically to
the technical ACL domain, but appear to be benefit
from better domain-general performance in some
cases, particularly for submissions targeting only
Chinese. We note slight differences in system
rankings between metrics (COMET and BLEU)
and target languages, particularly for Japanese and
Chinese targets, possibly highlighting the differ-
ence in metric tokenization for these pairs.

6 Speech-to-Speech Translation

Speech-to-speech translation (S2ST) involves
translating audio in one language to audio in an-
other language. In the offline setting, the transla-
tion system can assume that the entire input audio
is available before beginning the translation pro-
cess. This differs from streaming or simultaneous
settings where the system only has access to par-
tial input. The primary objective of this task is to
encourage the advancement of automated methods
for offline speech-to-speech translation.

18

6.1 Challenge

The participants were tasked with creating speech-
to-speech translation systems that could translate
from English to Chinese using various methods,
such as a cascade system (ASR + MT + TTS or
end-to-end speech-to-text translation + TTS), or
an end-to-end / direct system. They were also al-
lowed to use any techniques to enhance the per-
formance of the system, apart from using uncon-
strained data.

6.2 Data and Metrics

Data. This task allowed the same training data
from the Offline task on English-Chinese speech-
to-text translation. More details are available in
Sec. 2.2. In addition to the Offline task data,
the following training data was allowed to help
build English-Chinese speech-to-speech models
and Chinese text-to-speech systems:

* GigaS28, target synthetic speech for the Chi-
nese target text of GigaST (Ye et al., 2023)
that was generated with an in-house single-
speaker TTS system;

e aishell 3 (Shi et al., 2020), a multi-speaker
Chinese TTS dataset.

It’s noted that several datasets allowed for the
Offline task such as Common Voice (Ardila
et al., 2019) actually contain multi-speaker Chi-
nese speech and text data that could help for this
task.

Metrics. All systems were evaluated with both
automatic and human evaluation metrics.

Automatic metrics. To automatically evaluate
translation quality, the speech output was auto-
matically transcribed with a Chinese ASR sys-
tem' (Yao et al., 2021), and then BLEU? (Pa-
pineni et al., 2002a), chrF?! (Popovi¢, 2015b),
COMET? (Rei et al., 2022) and SEScore2** (Xu
etal., 2022) were computed between the generated
transcript and the human-produced text reference.
BLEU and chrF were computed using SacreBLEU

Yhttps://github.com/wenet-e2e/wenet/
blob/main/docs/pretrained_models.en.md
PsacreBLEU signature: nrefs:1|case:mixed|
eff:noltok:zh|smooth:exp|version:2.3.1
2lsacreBLEU signature: nrefs:1|case:mixed|
eff:yes|nc:6|nw:0|space:no|version:2.3.1
2https://huggingface.co/Unbabel/
wmt22-comet-da
Bhnttps://github.com/xul998hz/SEScore2


https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.en.md
https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.en.md
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
https://github.com/xu1998hz/SEScore2

(Post, 2018). Furthermore, the output speech
could be evaluated directly using BLASER (Chen
et al., 2022). More information could be found at
stopes?* (Andrews et al., 2022).

Human evaluation. Output speech translations
were evaluated with respect to translation quality
and speech quality.

* Translation quality: Bilingual annotators
were presented with the source audio, source
transcript and the generated target audio, then
gave scores on the translation quality be-
tween 1 and 5 (worst-to-best)). There were
4 annotators per sample and we retained the
median score.

* Output speech quality: In addition to trans-
lation quality (capturing meaning), the qual-
ity of the speech output was also human-
evaluated. The annotators were requested to
give an overall score by considering three di-
mensions: naturalness (voice and pronunci-
ation), clarity of speech (understandability),
and sound quality (noise and other artifacts).
Each sample was assessed by 4 annotators
and scored on a scale of 1-5 (worst-to-best)),
with a minimum score interval of 0.5.

The detailed guidelines for output speech qual-
ity evaluation were similar to last year (Anasta-
sopoulos et al., 2022a).

6.3 Submissions

We received eight submissions from five teams.
The MINETRANS team submitted four systems
and each of the other teams submitted one system.

* HW-TSC (Wang et al., 2023a) submitted a
cascaded system composed of an ensemble
of Conformer and Transformer-based ASR
models, a multilingual Transformer-based
MT model and a diffusion-based TTS model.
Their primary focus in their submission is to
investigate the modeling ability of the diffu-
sion model for TTS tasks in high-resource
scenarios. The diffusion TTS model takes
raw text as input and generates waveform
by iteratively denoising on pure Gaussian
noise. Based on the result, they conclude that
the diffusion model outperforms normal TTS

¥https://github.com/facebookresearch/
stopes/tree/main/demo/iwslt_blaser_eval
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models and brings positive gain to the entire
S2ST system.

KU (Yang et al., 2023) submitted a cascade
system composed of a speech-to-text transla-
tion (ST) model and a TTS model. Their ST
model comprises a ST decoder and an ASR
decoder. The two decoders can exchange in-
formation with each other with the interactive
attention mechanism. For the TTS part, they
use FastSpeech2 as the acoustic model and
HiFi-GAN as the vocoder.

NPU-MSXEF (Song et al., 2023) submitted a
cascaded system of separate ASR, MT, and
TTS models. For ASR, they adopt ROVER-
based model fusion and data augmentation
strategies to improve the recognition accu-
racy and generalization ability. Then they use
a three-stage fine-tuning process to adapt a
pre-trained mBART50 model to translate the
output of ASR model. The three-stage fine-
tuning is based on Curriculum Learning and
it involves three sets of data: (1) the original
MT data, (2) the MT data in ASR transcrip-
tion format and (3) the ASR outputs. For
TTS, they leverage a two-stage framework,
using network bottleneck features as a ro-
bust intermediate representation for speaker
timbre and linguistic content disentangle-
ment. Based on the two-stage framework,
pre-trained speaker embedding is leveraged
as a condition to transfer the speaker timbre
in the source speech to the translated speech.

X1A0MI (Huang et al., 2023) submitted a cas-
cade system composed of a speech-to-text
translation (ST) model and a TTS model. The
ST model is the same as the one they sub-
mitted to the Offline SLT track. It is based
on an encoder-decoder architecture from the
pre-trained HuBERT and mBART models.
For the TTS model, they use the Tacotron2
framework. It is first trained with AISHELL-
3 dataset and then finetuned with GigaS2S
dataset. Furthermore, they implement sev-
eral popular techniques, such as data filtering,
data augmentation, speech segmentation, and
model ensemble, to improve the overall per-
formance of the system.

MINETRANS (Du et al.,, 2023) submitted
three end-to-end S2ST systems (MINE-


https://github.com/facebookresearch/stopes/tree/main/demo/iwslt_blaser_eval
https://github.com/facebookresearch/stopes/tree/main/demo/iwslt_blaser_eval

TRANS_E2E, including primary, con-
trastivel, and contrastive2), and a cascade
S2ST system (MINETRANS_Cascade). Their
end-to-end systems adopt the speech-to-unit
translation (S2UT) framework. The end-
to-end S2UT model comprises a speech
encoder, a length adapter and an unit de-
coder. The S2UT model is trained to convert
the source speech into units of target speech.
A unit-based HiFi-GAN vocoder is finally
applied to convert the units into waveform.
Based on their results, they conclude that the
widely used multi-task learning technique
is not important for model convergence
once large-scale labeled training data is
available, which means that the mapping
from source speech to target speech units
can be learned directly and easily. Further-
more, they apply other techniques, such as
consistency training, data augmentation,
speech segmentation, and model ensemble
to improve the overall performance of the
system. Their cascade system consists of
ASR, MT and TTS models. Their ASR and
MT replicates those used for the Offline
SLT submission. Their TTS model is a
combination of FastSpeech2 and HiFi-GAN.

6.4 Results

Results as scored by automatic metrics are shown
in Table 31 and human evaluation results are
shown in Table 32 in the Appendix.

Overall results. According to the automatic
metrics used in the evaluation, XIAOMI obtained
the highest score in ASR-BLEU, ASR-chrF, ASR-
COMET and ASR-SEScore2. NPU-MSXF ob-
tained the second highest score, followed sub-
sequently by HW-TSC, MINETRANS_E2E, KU
and MINETRANS_Cascade. The BLEU, chrF,
COMET and SEScore?2 rankings were exactly the
same. The scores for the test-expanded data were
lower than those for the test-primary data, likely
due to a domain mismatch with the training data.
For human evaluation along the translation quality
perspective, XIAOMI obtained the highest score,
followed by NPU-MSXF, then HW-TSC and
MINETRANS_E2E, then MINETRANS_Cascade,
and finally KU. This ranking was mostly con-
sistent with the automatic ranking, showing that
automatic metrics were useful in evaluating the
translation quality of systems. For human evalu-
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ation along the speech quality perspective, NPU-
MSXF obtained the highest score, followed by
HW-TSC, X1AoMI, MINETRANS_E2E, MINE-
TRANS_Cascade and KU. With a equal weighting
of translation quality and speech quality, NPU-
MSXEF obtained the highest overall score in hu-
man evaluation, followed by X1AOMI and the oth-
ers.

S2ST approaches. This year, all systems but
MINETRANS_E2E were cascaded systems, with
three systems adopting an ASR + MT + TTS ap-
proach and two systems adopting an end-to-end
S2T + TTS approach. This showed that cascade
approach was still dominant in the community. Al-
though MINETRANS_E2E performed better than
MINETRANS _Cascade in all evaluation metrics,
we could not draw conclusions on the comparison
between cascade and end-to-end given the limited
data points. Future challenges can encourage more
direct or end-to-end submissions.

6.5 Conclusion

This is the second time that speech-to-speech
translation (S2ST) is presented in one of the
IWSLT tasks. S2ST is an important benchmark for
general Al as other NLP tasks, e.g. dialogue sys-
tem, question answering and summarization can
also be implemented in speech-to-speech manner.
Compared to the setting last year, the size of the
training data set available to the participants is
much larger. The BLEU scores obtained in this
challenge is high in general, compared to MT and
ST of the same language direction. Although not
required by the task, NPU-MSXF is the only
team that implemented speaker timbre transfer in
their system. We plan to include evaluation met-
rics addressing this aspect in the next edition.

7 Dialect SLT

The Dialect Speech Translation shared task is a
continuation of last year’s task. We use the same
training data as 2022 and evaluated systems on
the 2022 evaluation set to measure progress; in
addition, we added a new 2023 evaluation set as
blind test. From the organizational perspective, we
merged the call for shared task with the the Low-
Resource tasks (Section 8) in order to encourage
cross-submission of systems.



7.1 Challenge

Diglossic communities are common around the
world. For example, Modern Standard Arabic
(MSA) is used for formal spoken and written com-
munication in most parts of the Arabic-speaking
world, but local dialects such as Egyptian, Moroc-
can, and Tunisian are used in informal situations.
Diglossia poses unique challenges to speech trans-
lation because local “low” dialects tend to be low-
resource with little ASR and MT training data, and
may not even have standardized writing, while re-
sources from ‘“high” dialects like MSA provides
opportunities for transfer learning and multilin-
gual modeling.

7.2 Data and Metrics

Participants were provided with the following
datasets:

e (a) 160 hours of Tunisian conversational
speech (8kHz), with manual transcripts

e (b) 200k lines of manual translations of the
above Tunisian transcripts into English, mak-
ing a three-way parallel data (i.e. aligned au-
dio, transcript, translation) that supports end-
to-end speech translation models

¢ (¢) 1200 hours of Modern Standard Arabic
(MSA) broadcast news with transcripts for
ASR, available from MGB-2

* Approximately 42,000k lines of bitext in
MSA-English for MT from OPUS (specifi-
cally: Opensubtitles, UN, QED, TED, Glob-
alVoices, News-Commentary).

In 2022, we constructed three conditions: The
basic condition trains on (a) and (b), provided by
the Linguistic Data Consortium (LDC); the di-
alect adaptation condition trains on (a), (b), (c),
(d); the unconstrained condition can use any addi-
tional data and pre-trained models. In 2023, due
to the coordinated organization with other Low-
Resource Tasks this year, we renamed basic con-
dition as “constrained condition’, and the other
two conditions are merged as the ‘“‘unconstrained
condition”.

All train and test sets are time-segmented at
the utterance level. Statistics are shown in Table
5. There are three test sets for evaluation with
BLEU?,

25 . . .
SacreBLEU signature for dialect speech translation
nrefs:1|case:lc|eff:noltok:13a|smooth:exp|version:2.0.0
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* testl: Participants are encouraged to use this
for internal evaluation since references are
provided. This is part of LDC2022EO01 re-
leased to participants for training and devel-
opment, obtained by applying the standard
data split and preprocessingS.

e test2: official evaluation for 2022, from
LDC2022E02

e test3: official evaluation for 2023, from
LDC2023E09

7.3 Submissions

We received submission from four teams:

e GMU (Mbuya and Anastasopoulos, 2023)
participated in five language-pairs in the
Low-Resource tasks as well as this task.
They focused on investigating how different
self-supervised speech models (Wav2vec 2.0,
XLSR-53, and HuBERT) compare when ini-
tialized to an end-to-end (E2E) speech trans-
lation architecture.

e JHU (Hussein et al., 2023) submitted both
cascaded and E2E systems, using transformer
and branchformer architectures. They inves-
tigated the incorporation of pretrained text
MT models, specifically mBARTS50 and dis-
tilled NLLB-200. Further, they explored dif-
ferent ways for system combination and han-
dling of orthographic variation and channel
mismatch.

* ON-TRAC (Laurent et al., 2023) partici-
pated in two language-pairs in the Low-
Resource task as well as this task. For this
task, they focused on using SAMU-XLS-R
as the multilingual, multimodal pretrained
speech encoder and mBART as the text de-
coder.

e USTC (Deng et al.,, 2023) proposed a
method for synthesis of pseudo Tunisian-
MSA-English paired data. For the cascaded
system, they explored ASR with different
feature extraction (VGG, GateCNN) and neu-
ral architectures (Conformer, Transformer).
For E2E, they proposed using SATE and a
hybrid SATE architecture to take advantage

26https ://github.com/kevinduh/
iwslt22-dialect
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Dataset Speech Text (#lines) Use

(#hours) | Tunisian | MSA | English
LDC2022EQ1 train 160 200k - 200k | Constrained condition
LDC2022E01 dev 3 3833 - 3833 Constrained condition
LDC2022EO01 testl 3 4204 - 4204 | Participant’s internal evaluation
LDC2022E02 test2 3 4288 - 4288 | Evaluate progress from 2022
LDC2023EQ9 test3 3 4248 - 4248 Official evaluation for 2023
MGB2 1100 - 1.IM - Unconstrained condition
OPUS - - 42M 42M Unconstrained condition
Any other data - - - - Unconstrained condition

Table 5: Datasets for Dialect Shared Task.

of the pseudo Tunisian-MSA-English text
data. Additionally, methods for adapting to
ASR errors and system combination were ex-
amined.

7.4 Results

The full set of BLEU results on the English trans-
lations are available in Tables 33 and 34. We also
evaluated the WER results for the ASR component
of cascaded systems, in Table 35.

In general, there is an improvement compared to
2022. On test2, the best system in 2022 (achieved
by the CMU team) obtained 20.8 BLEU; several
systems this year improved upon that result, for
example USTC’s primary system achieved 23.6
BLEU and JHU’s primary system achieved 21.2
BLEU. On the official evaluation on test3, the best
system achieved 21.1 BLEU in the unconstrained
condition and 18.1 BLEU in the constrained con-
dition.

From the system descriptions, it appears the in-
gredients for strong systems include: (a) effective
use of pretrained speech and text models, (b) sys-
tem combination among both cascaded and E2E
systems, and (c) synthetic data generation to in-
crease the size of dialectal data.

We do not plan to continue this shared task next
year. Instead, the plan is to make the data available
from the LDC. We encourage researchers to con-
tinue exploring dialectal and diglossic phenomena
in the future.

8 Low-resource SLT

The Low-resource Speech Translation shared task
focuses on the problem of developing speech tran-
scription and translation tools for low-resourced
languages.
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8.1 Challenge

This year, the task introduced speech translation of
recorded utterances from Irish to English, Marathi
to Hindi, Maltese to English, Pashto to French,
Tamasheq to French, and Quechua to Spanish.
The different language pairs vary by the amount
of data available, but in general, they have in
common the dearth of high-quality available re-
sources, at least in comparison to other much
higher-resourced settings.

8.2 Data and Metrics

We describe the data available for each language
pair below. Table 6 provides an overview of the
provided datasets.

Irish-English Irish (also known as Gaeilge) has
around 170,000 L1 speakers and 1.85 million peo-
ple (37% of the population) across the island (of
Ireland) claim to be at least somewhat proficient
with the language. In the Republic of Ireland,
it is the national and first official language. It is
also one of the official languages of the European
Union (EU) and a recognized minority language
in Northern Ireland with the ISO ga code.

The provided Irish audio data were compiled
from Common Voice (Ardila et al., 2020a),”
and Living-Audio-Dataset.”® The compiled data
were automatically translated into English and
corrected by an Irish linguist. The Irish-English
corpus consists of 11.55 hours of Irish speech data
(see Table 6), translated into English texts.

Marathi-Hindi Marathi is an Indo-Aryan lan-
guage which has the ISO code mr, and is domi-

"ttps://commonvoice.mozilla.org/en/
datasets

Bnttps://github.com/Idlak/
Living-Audio-Dataset
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Language Pairs Train Set Dev Set Test Set Additional Data

Irish-English ga—eng  9.46 1.03 0.44 n/a

Marathi—-Hindi mr—hi  15.3 3.7 4.4 monolingual audio with transcriptions
(ASR), monolingual text

Maltese-English mlt-eng 2.5 - 1.35 monolingual audio with transcriptions
(ASR), monolingual text

Pashto-French  pus—fra 61 2.5 2 n/a

Tamasheq—French tmh—fra 17 - - untranscribed audio, data in other re-
gional languages

Quechua—Spanish que-spa 1.60 1.03 1.03 60 hours of monolingual audio with

transcriptions (ASR) and MT data (not
transcribed)

Table 6: Training, development and test data details (in hours) for the language pairs of the low-resource shared

task.

nantly spoken in the state of Maharashtra in India.
It is one of the 22 scheduled languages of India
and the official language of Maharashtra and Goa.
As per the 2011 Census of India, it has around 83
million speakers which covers 6.86% of the coun-
try’s total population.?’ Marathi is the third most
spoken language in India.

The provided Marathi—Hindi corpus consists of
22.33 hours of Marathi speech data (see Table 6)
from the news domain, extracted from News On
Air*® and translated into Hindi texts.’! The dataset
was manually segmented and translated by Panlin-
gua.>? Additionally, the participants were directed
that they may use monolingual Marathi audio data
(with transcription) from Common Voice (Ardila
et al., 2020a),>} as well as the corpus provided
by He et al. (2020)** and the Indian Language Cor-
pora (Abraham et al., 2020).%

Maltese-English Maltese is a Semitic lan-
guage, with about half a million native speakers,
spoken in the official language of Malta and the
EU. It is written in Latin script.

The provided data was divided into three parts.
First, around 2.5 hours of audio with Maltese tran-
scription and an English translation were released,

Phttps://censusindia.gov.in/nada/
index.php/catalog/42561
®nttps://newsonair.gov.in
3'https://github.com/panlingua/
iwslt2023_mr-hi
Znttp://panlingua.co.in/
¥nttps://commonvoice.mozilla.org/en/
datasets
34https://www.openslr.org/64/
¥https://www.cse.iitb.ac.in/~pjyothi/
indiccorpora/
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along with about 7.5 hours of audio with only Mal-
tese transcriptions. Last, the participants were di-
rected to several monolingual Maltese textual re-
sources. The provided datasets were taken from
the MASRI corpus (Hernandez Mena et al., 2020).

Pashto-French Pashto is spoken by approxi-
mately forty to sixty million people in the world.
It is particularly spoken by the Pashtun people in
the south, east and southwest of Afghanistan (it
is one of the two official languages), as well as
in the north and northwest Pakistan but also in
Iran, Tajikistan and India (Uttar Pradesh and Cash-
mere) and one of the two official languages of
Afghanistan.

The corpus was totally provided by ELDA,
and is available on the ELRA catalog: TRAD
Pashto Broadcast News Speech Corpus (ELRA
catalogue, 2016b) that consists of audio files and
TRAD Pashto-French Parallel corpus of tran-
scribed Broadcast News Speech - Training data
(ELRA catalogue, 2016a) which are their tran-
scriptions.

This dataset is a collection of about 108 hours of
Broadcast News with transcriptions in Pashto and
translations into French text. The dataset is built
from collected recordings from 5 sources: Ashna
TV, Azadi Radio, Deewa Radio, Mashaal Radio
and Shamshad TV. Original training data contains
99 hours of speech in Pashto, which corresponds
to 29,447 utterances translated into French. Train-
ing data corresponds to 61 hours of speech (Ta-
ble 6).

Tamasheq-French Tamasheq is a variety of Tu-
areg, a Berber macro-language spoken by nomadic
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tribes across North Africa in Algeria, Mali, Niger
and Burkina Faso. It accounts for approximately
500,000 native speakers, being mostly spoken in
Mali and Niger. This task is about translating spo-
ken Tamasheq into written French. Almost 20
hours of spoken Tamasheq with French transla-
tion are freely provided by the organizers. A ma-
jor challenge is that no Tamasheq transcription is
provided, as Tamasheq is a traditionally oral lan-
guage.

The provided corpus is a collection of radio
recordings from Studio Kalangou®® translated to
French. It comprises 17 hours of clean speech
in Tamasheq, translated into the French language.
The organizers also provided a 19-hour version of
this corpus, including 2 additional hours of data
that was labeled by annotators as potentially noisy.
Both versions of this dataset share the same vali-
dation and test sets. Boito et al. (2022a) provides
a thorough description of this dataset.

In addition to the 17 hours of Tamasheq audio
data aligned to French translations, and in light of
recent work in self-supervised models for speech
processing, we also provide participants with un-
labeled raw audio data in the Tamasheq language,
as well as in other 4 languages spoken from Niger:
French (116 hours), Fulfulde (114 hours), Hausa
(105 hours), Tamasheq (234 hours) and Zarma
(100 hours). All this data comes from the ra-
dio broadcastings of Studio Kalangou and Studio
Tamani.’’

Note that this language pair is a continuation of
last year’s shared task. An additional separate test
set was provided this year.

Quechua-Spanish Quechua is an indigenous
language spoken by more than 8 million peo-
ple in South America. It is mainly spoken in
Peru, Ecuador, and Bolivia where the official high-
resource language is Spanish. It is a highly inflec-
tive language based on its suffixes which aggluti-
nate and are found to be similar to other languages
like Finnish. The average number of morphemes
per word (synthesis) is about two times larger than
in English. English typically has around 1.5 mor-
phemes per word and Quechua has about 3 mor-
phemes per word.

There are two main regional divisions of
Quechua known as Quechua I and Quechua II.
This data set consists of two main types of

¥nttps://www.studiokalangou.org/
%ttps://www.studiotamani.org/

Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO: gquy) and Cusco, Peru (Quechua
Collao ISO: quz) which are both part of Quechua
IT and, thus, considered a ‘““southern” languages.
We label the data set with que - the ISO norm for
Quechua II mixtures.

The constrained setting allowed a Quechua-
Spanish speech translation dataset along with the
additional parallel (text-only) data for machine
translation compiled from previous work (Ortega
et al., 2020). The audio files for training, valida-
tion, and test purposes consisted of excerpts of the
Siminchik corpus (Cardenas et al., 2018) that were
translated by native Quechua speakers. For the un-
constrained setting, participants were directed to
another larger data set from the Siminchik corpus
which consisted of 60 hours of fully transcribed
Quechua audio (monolingual).

8.2.1 Metrics

We use standard lowercase BLEU as well as
charF++ to automatically score all submissions.
Additional analyses for some language pairs are
provided below.

Due to the exceptionally hard setting, which
currently leads to generally less competent transla-
tion systems, we did not perform the human eval-
uation of the outputs.

8.3 Submissions

Below we discuss all submissions for all language
pairs, given that there were several overlaps. A
brief summary per language is below:

* Irish-English received four submissions from
one team (GMU);

e Marathi—-Hindi received submissions from
four teams (ALEXA Al, BUT, GMU, and
SRI-B);

* Maltese—English received five submissions
from one team (UM-DFKI);

¢ Pashto—French received submissions from
two teams (GMU, ON-TRAC);

submissions
GMU,

* Tamasheq—French received
from four teams (ALEXA Al,
NAVER, and ON-TRAC);

* Quechua-Spanish received three submissions
(GMU, NAVER, and QUESPA).
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Below we discuss each team’s submission in de-

e ALEXA AI (Vishnu et al., 2023) submitted
one primary and three contrastive systems,
all of these are in the unconstrained condition
(Table 44) for Tamasheq-French, and one pri-
mary and five contrastive systems on the un-
constrained condition for Marathi—Hindi. For
Marathi-Hindi, their systems relied on an
end-to-end speech translation approach, us-
ing the wav2vec 2.0 base model finetuned
on 960 hours of English speech (Baevski
et al., 2020b) as encoder baseline and it was
also finetuned on 94 hours of Marathi au-
dio data. The team focused on evaluating
three strategies including data augmentation,
an ensemble model and post-processing tech-
niques. For Tamasheq—French, they reuse
the same end-to-end AST model proposed
by the ON-TRAC Consortium in the last
year’s IWSLT edition (Boito et al., 2022b).
This model consists of a speech encoder that
is initialized by the wav2vec 2.0 (Baevski
et al., 2020a) base model pre-trained on 243
hours of Tamasheq audio data released by
the ON-TRAC Consortium . The decoder
of this model is a shallow stack of 2 trans-
former layers with 4 attention heads. A
feed-forward layer is put in between the en-
coder and the decoder for matching the di-
mension of the encoder output and that of
the decoder input. In this work, they fo-
cus on leveraging different data augmenta-
tion techniques including audio stretching,
back translation, paraphrasing, and weighted
loss. Another important endeavor of their
work is experimenting with different post-
processing approaches with LLMs, such as
re-ranking, sentence correction, and token
masking. Besides, they also ensemble AST
models trained with different seeds and data
augmentation methods, which is proven to
improve the performance of their systems.
Their primary system scores 9.30 BLEU on
the 2023 test set.

* BUT (Kesiraju et al., 2023) submitted one
primary and one contrastive system using the

Bnttps://huggingface.

ESPnet (Inaguma et al., 2021) toolkit. The
primary system was built with the end-to-
end and bilingual ASR model while the con-
trastive was built with a cascade which uses
various backbone models including ASR, the
bilingual ASR, transformer-based seq2seq
MT, LM for re-scoring and XLM.

GMU (Mbuya and Anastasopoulos, 2023)
focused on end-to-end speech translation
systems.  End-to-end (E2E) transformer-
based encoder-decoder architecture (Vaswani
et al.,, 2017) was used for primary con-
strained submission. For unconstrained sub-
missions, they explored self-supervised pre-
trained speech models and used wav2vec 2.0
(Baevski et al., 2020a) and HuBERT (Hsu
et al., 2021) for the low resource task. They
used wav2vec 2.0 - with removing the last
three layers - for their primary submission.
HuBERT was used for the contrastivel sub-
mission - without removing any layer. For
contrastive2, End-to-end with ASR (E2E-
ASR) architecture uses the same architec-
ture as the E2E. The difference is that a pre-
trained ASR model was used to initialize its
encoder.

ON-TRAC (Laurent et al., 2023) partic-
ipated in the Pashto—French (one primary
and three contrastive systems, both for con-
strained and unconstrained settings) and
Tamasheq—French (one primary and five con-
trastive systems, all of which are uncon-
strained (c.f. Table 44). For Pashto—French,
the primary cascaded system is based on a
convolutional model (Gehring et al., 2017)
upgraded, while contrastive3 is based on
small basic transformers. For Primary and
contrastivel systems, SAMU-XLS-R (Khu-
rana et al., 2022) was used with pre-trained
encoder with 100 and 53 languages. The two
constrained contrastive E2E systems share
the same encoder-decoder architecture using
transformers (Vaswani et al., 2017). The dif-
ference lies in the use or not of a transformer
language model trained from scratch on the
provided dataset.

All of their systems for Tamasheq—French
are based on the same end-to-end encoder-
decoder architecture. In this architec-

co/LIA-AvignonUniversity/

IWSLT2022-tamasheg-only ture, the encoder is initialized by a pre-
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trained semantic speech representation learn-
ing model named SAMU-XLS-R (Khurana
et al., 2022), while the decoder is initialized
with the decoder of the pre-trained mBART
model. Their work heavily relies on different
versions of the SAMU-XLS-R model, which
are pre-trained on different combinations of
multilingual corpora of 53, 60, and 100 lan-
guages. In addition, they leverage training
data from higher resource corpora, such as
CoVoST-2 (Wang et al., 2020a) and Europarl-
ST (Iranzo-Sanchez et al., 2020), for train-
ing their end-to-end models. Their primary
system, which scores 15.88 BLEU on the
Tamasheq—French 2023 test set, was trained
on the combination of (CoVoST-2, Europarl-
ST and the IWSLT 2022’s test set), with the
encoder is initialized by the SAMU-XLS-R
model trained on the data gathered from 100
languages.

NAVER (Gow-Smith et al., 2023) submit-
ted one primary and two contrastive sys-
tems to the Tamasheq—French track, as well
as one primary and two contrastive sys-
tems for the unconstrained condition in the
Quechua—Spanish track. In their work for
the Tamasheq—French track, they concentrate
on parameter-efficient training methods that
can perform both ST and MT in a multilin-
gual setting. In order to do so, they initial-
ize their models with a pre-trained multilin-
gual MT model (mBART (Liu et al., 2020) or
NLLB (NLLB Team et al., 2022)), which is
then fine-tuned on the ST task by inputting
features extracted with a frozen pre-trained
speech representation model (wav2vec 2.0 or
HuBERT (Hsu et al., 2021)). The encoder
of their translation model is slightly modified
where they stack several modality-specific
layers at the bottom. In addition, adapter
layers are also inserted in between layers of
the pre-trained MT model at both the en-
coder and decoder sides. While these new
components get fine-tuned during the train-
ing process, the pre-trained components of
the MT model are frozen. One of the appeal-
ing characteristics of their approach is that it
allows the same model to do both speech-to-
text and text-to-text translation (or transcrip-
tion). Furthermore, their method maximizes
knowledge transfer to improve low-resource

26

performance. Their primary system, which is
ensembled from 3 different runs on the com-
bination of both ST and ASR data, scores
23.59 BLEU on the 2023 test set.

For the Quechua—Spanish track, the overall
architecture for their systems consists of first
initializing a PLM which was then fine-tuned
on the speech translation task by inputting
features from a frozen pre-trained speech rep-
resentation. Similar adaptations were done
with an MT model to control domain and
length mismatch issues. One of the interest-
ing takeaways from their approaches is that
their contrastive 2 system (1.3 billion pa-
rameters (NLLB Team et al., 2022)) outper-
formed their contrastive 1 system (3.3 billion
parameters (NLLB Team et al., 2022)) de-
spite it having less parameters. NAVER’s
primary submission was an ensemble ap-
proach that included the use of PLMs for
both the ASR (Baevski et al., 2020a) and
MT systems (NLLB Team et al., 2022))
and included training on both Tamasheq and
Quechua data. Their submissions to QUE—-
SPA did not include the use of mBART or
HuBERT (Hsu et al., 2021) as was done for
other language pairs that NLE submitted.

QUESPA (Ortega et al., 2023) submitted
to both conditions (constrained and uncon-
strained) a total of six systems including a
primary, contrastive 1, and contrastive 2 for
each condition. They also claim to have tried
several other combinations but did not sub-
mit those systems. For the constrained condi-
tion, their primary system scored second best,
slightly less than team GMU with a BLEU
score of 1.25 and chrF2 of 25.35. They also
scored third best for the constrained condi-
tion with 0.13 BLEU and 10.53 chrF2 us-
ing their contrastive 1 system. It is worth-
while to note that chrF2 was used by the
organizers when BLEU scores were below
five. For their constrained systems, a di-
rect speech translation system was submit-
ted similar to the GMU team’s primary ap-
proach that used Fairseq (Wang et al., 2020b).
QUESPA extracted mel-filter bank (MFB)
features similar to the S2T approach in previ-
ous work Wang et al. (2020b). The main dif-
ference between QUESPA’s submission and
GMU’s submissions was that the GMU team



increased the number of decoder layers to
6 which resulted in a slightly better system
for GMU. The other systems submitted for
the constrained setting were cascade systems
where ASR and MT were combined in a
pipeline setting. Their contrastive 1 and 2
system submissions for the constrained task
respectively used wav2letter++ (Pratap et al.,
2019) and a conformer architecture similar
to previous work (Gulati et al., 2020) along
with an OpenNMT (Klein et al., 2017) trans-
lation system trained on the constrained ST
and MT data. Both of those systems per-
formed poorly scoring less than 1 BLEU. For
the unconstrained condition, the three sys-
tems that were presented by QUESPA con-
sisted of pipeline approaches of PLMs that
were fine-tuned on the additional 60 hours
of Siminchik audio data along with the con-
strained data. Their primary and contrastive
1 unconstrained ASR systems were trained
using the 102-language FLEURS (Conneau
et al., 2023) model and used the MT sys-
tem that was based on NLLB (NLLB Team
et al.,, 2022) which just so happens to in-
clude Quechua as one of its languages. Their
contrastive 2 ASR system was based on
wav2letter++ (Pratap et al., 2019) while their
contrastive 2 MT system was identical to the
MT systems used for their Primary and Con-
trastive 1 submissions.

SRI-B (Radhakrishnan et al., 2023) submit-
ted four systems. For Marathi—English, they
submitted one primary and one contrastive
system in the constrained setting and one
primary and one contrastive system in the
unconstrained setting. They used end-to-
end speech translation networks comprising a
conformer encoder and a transformer decoder
for both constrained and unconstrained.

UM-DFKI (Williams et al., 2023) submit-
ted five systems. It included one primary and
four contrastive systems in unconstrained set-
tings. They used a pipeline approach for all
of their submissions. For ASR, their system
builds upon (Williams, 2022) on fine-tuning
XLS-R based system. mBART-50 was used
for fine-tuning the MT part of the pipeline.
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8.4 Results

Irish-English As discussed earlier, only the
GMU team participated in the GA-ENG trans-
lation track and submitted one primary system to
constrained, one primary system to unconstrained
and the rest of the two systems to contrastive
on unconstrained conditions. The end-to-end and
end-to-end with ASR models submitted primary
constrained and contrastive2 unconstrained sys-
tems. Both the systems achieved 15.1 BLEU
scores. They did not perform well in comparison
to the wav2vec 2.0 and HuBERT models. The de-
tail of the results of this track can be found in Ta-
ble 36 and 37.

Marathi-Hindi The results of this translation
track can be found in Table 38 and 39. Over-
all we see varying performances among the sys-
tems submitted to this track, with some perform-
ing much better on the test set. Out of the 16
submissions, the SRI-B team’s primary system
achieved the best result of 31.2 and 54.8 in BLEU
and in charF++ respectively on the constrained
condition while the BUT team’s primary system
achieved the best results of 39.6 in BLEU and
63.3 in charF++ on the unconstrained condition.
In both constrained and unconstrained conditions,
the GMU systems achieved the lowest results of
3.3and 5.9 in BLEU and 16.8 and 20.3 in charF++
respectively.

Maltese-English The results of this translation
track can be found in Table 42. UM-DFKI used
contrastive approaches in training their ASR sys-
tem. For their contrastivel system, their fine-
tuning consisted of using Maltese, Arabic, French
and Italian corpora. Their contrastive2, con-
trastive3, and contrastive4 approaches respectively
use a subset from Arabic, French and Italian ASR
corpus along with Maltese data. The best result
of 0.7 BLEU was achieved with their contrastivel
system.

Pashto-French The detailed results can be
found in Table 41 and Table 40 of the Appendix.
We rank the system performance based on test
BLEU scores. The best score BLEU was achieved
by ON-TRAC primary system (SAMU-XLS-R
model trained on 100 languages). For the con-
strained condition, the cascaded approach based
on convolutional models, gives the best perfor-
mance.



Tamasheq-French The results of this transla-
tion track can be found in Table 43 and 44. Com-
pared to the last year’s edition, this year has wit-
nessed a growing interest in this low-resource
translation track in terms of both quantity and
quality of submissions. Almost all submissions
achieve relatively better results than the last year’s
best system (5.7 BLEU on test2022 (Boito et al.,
2022b)). Furthermore, it is notable that cascaded
systems are not favorable in this track while none
of the submitted systems is of this kind.

This year, this language pair remains a chal-
lenging low-resource translation track. There is
only one submission to the constrained condi-
tion from GMU with an end-to-end model scor-
ing 0.48 BLEU on this year’s test set. For
this reason, all the participants are in favor of
exploiting pre-trained models, hence being sub-
ject to the unconstrained condition. Among
these pre-trained models, self-supervised learn-
ing (SSL) from speech models remains a popu-
lar choice for speech encoder initializing. Us-
ing a wav2vec2.0 model pre-trained on unlabelled
Tamasheq data for initializing their speech en-
coder, GMU gains +7.55 BLEU score in compari-
son with their Transformer-based encoder-decoder
model training from scratch (their primary con-
strained system). At the decoder side, pre-trained
models such as mBART or NLLB are commonly
leveraged for initializing the decoder of the end-to-
end ST model. Besides, data augmentation and en-
sembling are also beneficial as shown by ALEXA
Al when they consistently achieve ~ 9 BLEU in
all of their settings.

Outstanding BLEU scores can be found in the
work of the ON-TRAC team. An interesting pre-
trained model named SAMU-XLS-R is shown to
bring significant improvements. This is a multilin-
gual multimodal semantic speech representation
learning framework (Khurana et al., 2022) which
fine-tunes the pre-trained speech transformer en-
coder XLS-R (Babu et al., 2021) using semantic
supervision from the pre-trained multilingual se-
mantic text encoder LaBSE (Feng et al., 2022).
Exploiting this pre-trained model and training
end-to-end ST models on the combinations of dif-
ferent ST corpora, they achieve more than 15
BLEU in all of their settings.

NAVER tops this translation track by a multilin-
gual parameter-efficient training solution that al-
lows them to leverage strong pre-trained speech
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and text models to maximize performance in low-
resource languages. Being able to be trained on
both ST and ASR data due to the multilingual na-
ture, all of their submissions heavily outperform
the second team ON-TRAC by considerable mar-
gins. Their primary system, which is ensembled
from 3 different runs, uses NLLB1.3B as the pre-
trained MT system, and wav2vec2.0 Niger-Mali **
as the speech presentation extractor. After be-
ing trained on a combination of both ST corpora
(Tamasheq-French, mTEDx fr-en, mTEDx es-fr,
mTEDx es-en, mTEDx fr-es (Salesky et al., 2021))
and AST corpora (TED-LIUM v2 (Rousseau et al.,
2014), mTEDx fr, mTEDxX es), this system estab-
lishes an impressive state-of-the-art performance
of the Tamasheq-French language pair, scoring
23.59 BLEU on the 2023 test set.

Quechua-Spanish The QUE-SPA results for
all systems submitted to this low-resource trans-
lation track can be found in Table 45 and 46 of
the appendix. To our knowledge, this first edi-
tion of the QUE-SPA language pair in the low-
resource track of IWSLT has witnessed the best
BLEU scores achieved by any known system in
research for Quechua. The two best performing
systems: 1.46 BLEU (constrained) and 15.70 (un-
constrained) show that there is plenty of room to
augment approaches presented here. Nonetheless,
submissions from the three teams: GMU, NAVER,
and QUESPA have shown that it is possible to use
PLMs to create speech-translation systems with as
little as 1.6 hours of parallel speech data. This is
a notable characteristic of this task and surpasses
previous work in the field.

We have found that the NLLB (NLLB Team
et al., 2022) system’s inclusion of Quechua in re-
cent years has had a greater impact than expected
for ease-of-use. Similarly, the use of Fairseq
(Wang et al., 2020b) seems to be the preferred
toolkit for creating direct S2T systems, cascaded
or not. The QUE-SPA submissions for the un-
constrained conditions preferred the use of a cas-
cading system in a pipeline approach where pre-
trained models were fine-tuned first for ASR and
then for MT.

The constrained setting leaves much room for
improvement. Nonetheless, GMU and QUESPA’s
near identical submissions have shown that the in-

¥nttps://huggingface.
co/LIA-AvignonUniversity/
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crease of 3 layers during decoding can be powerful
and should be explored further. It would be worth-
while for the organizers of the QUE-SPA track to
obtain more parallel data including translations for
future iterations of this task.

The unconstrained setting clearly can benefit
from an ensembling technique and training with
multiple languages — in these submissions, the
training of a model with an additional language
like Tamasheq alongside Quechua does not seem
to have a negative impact on performance. Al-
though, it is hard to ascertain whether the slight
performance gain of less than 1 BLEU point of the
NLE team’s submission compared to QUESPA’s
submission was due to the ensembling, freezing of
the models, or the language addition.

As a final takeaway, the NLE team’s submis-
sions scored quite well under the unconstrained
condition. It should be noted that for other lan-
guage pairs NLE’s high system performance was
also due to the ensembling of systems that were
executed using different initialization parameters
on at least three unique runs. As an aside, small
gains were achieved under the constrained condi-
tion when comparing the GMU submission to the
QUESPA system due to the increase in decoding
layers. QUESPA’s inclusion of a language model
on top of a state-of-the-art dataset (Fleurs) allowed
them to achieve scores similar to NAVER’s with-
out additional tuning or ensembling. State-of-the-
art performance was achieved by all three teams
that submitted systems.

General Observations As in previous years, the
low-resource shared task proved particularly chal-
lenging for the participants, but there are several
encouraging signs that further reinforce the need
for more research in the area.

First, more teams than ever participated in the
shared task, showing a continued interest in the
field. Second, we note that for the language
pair that was repeated from last year (Tamasheq—
French), almost all submissions outperformed last
year’s best submission, with an accuracy increase
of more than 17 BLEU points in the unconstrained
setting. Last, we highlight the breadth of different
approaches employed by the participants, ranging
from the use of finetuned pre-trained models to
pre-training from scratch, to parameter efficient
dine-tuning as well as cascaded pipeline systems,
all of which seem to have benefits to offer, to a
certain extent, to different language pairs.
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Limitations As noted by some participants,
the Irish-English and Maltese—English transla-
tion track data has limitations. For Irish—English,
the speech translation systems can achieve very
high BLEU scores on the test set if the built
systems have used wav2vec 2.0 and/or the Irish
ASR model which is trained on the Common
Voice (Ardila et al., 2020b) dataset. Similarly,
the GMU team has achieved high BLEU scores
especially when they used wav2vec 2.0 and Hu-
BERT models. We plan to continue this translation
track next year by updating the test and training
data to thoroughly investigate the data quality as
well as the reason to obtain the high BLEU scores.
For Maltese—English, some participants reported
issues with the data quality, which we hope to re-
solve in future iterations of the shared task.

9 Formality Control for SLT

Different languages encode formality distinctions
in different ways, including the use of honorifics,
grammatical registers, verb agreement, pronouns,
and lexical choices. While machine translation
(MT) systems typically produce a single generic
translation for each input segment, SLT requires
adapting the translation output to be appropriate to
the context of communication and target audience.
This shared task thus challenges machine transla-
tion systems to generate translations of different
formality levels.

9.1 Challenge

Task Given a source text, X in English, and a
target formality level, [ € {F,IF'}, the goal in
formality-sensitive machine translation (Niu et al.,
2017) is to generate a translation, Y, in the target
language that accurately preserves the meaning of
the source text and conforms to the desired formal-
ity level, [. The two formality levels typically con-
sidered are “F” for formal and “IF” for informal,
resulting in two translations: Yy and Y7 respec-
tively. For example, the formal and informal trans-
lations for the source text “Yeah Did your mom
know you were throwing the party?” (originally
informal) in Korean are shown in the table below:

This shared task builds on last year’s offering,
which evaluated systems’ ability to control for-
mality on the following translation tasks: trans-
lation from English (EN) into Korean (KO) and
Vietnamese (VI) in the supervised setting, and
from English (EN) into Portugal Portuguese (PT)



Source: Yeah Did your mom know you were
throwing the party?

Korean Informal: 71, o] ™32 [F]J] 7H/F]
1 3tE A A [F]ekA[/F]?
Korean Formal: 1, 1™ d - [F]d o|[/F] L
atE] A A [FlobA £ [/F]?

Table 7: Contrastive formal and informal translations
into Korean. Grammatical formality markers are anno-
tated with [F]text[/F].

and Russian (RU) in the zero-shot setting. Re-
sults showed that formality-control is challeng-
ing in zero-shot settings and for languages with
many grammatical and lexical formality distinc-
tions. This year’s edition invited participants to
advance research in effective methods for bridg-
ing the gap in formality control for zero-shot cases
and for languages with rich grammatical and lexi-
cal formality distinctions.

9.2 Data and Metrics

Participants were provided with test data, as well
as MT quality and formality control metrics. In
addition, we provided training data, consisting of
formal and informal translation of texts for the su-
pervised language pairs (EN-KO, EN-VI).

9.2.1 Formality Annotated Dataset

We provide targeted datasets comprising source
segments paired with two contrastive reference
translations, one for each formality level (informal
and formal) for two EN-VI, EN-KO in the super-
vised setting and EN-RU, EN-PT in the zero-shot
setting (see Example 7)*°. The sizes and proper-
ties of the released datasets for all the language
pairs are listed in Table 8. Formal translations tend
to be longer than informal texts for Vietnamese
compared to other language pairs. The number
of phrasal formality annotations ranges from 2 to
3.5 per segment, with Korean exhibiting a higher
diversity between the formal and informal transla-
tions as indicated by the TER score.

9.2.2 Training Conditions

We allowed submissions under the constrained
and unconstrained data settings described below:

“https://github.com/amazon-science/
contrastive-controlled-mt/tree/main/
IWSLT2023
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Constrained (C) Participants were allowed to
use the following resources: Textual MuST-C v1.2
(Di Gangi et al.,, 2019b), CCMatrix (Schwenk
et al.,, 2021), OpenSubtitles (Lison and Tiede-
mann, 2016) and dataset in the constrained set-
ting from the Formality Control track at IWSLT22
(Anastasopoulos et al., 2022a).

Unconstrained (U) Participants could use any
publicly available datasets and resources: the use
of pre-trained language models was also allowed.
Additionally, using additionally automatically an-
notated bitext with formality labels was also al-
lowed.

9.3 Formality Classifier

We release a multilingual classifier (M C') trained
to predict the formality of a text for all the lan-
guage pairs: EN-KO, EN-VI, EN-RU, and EN-
PT. We finetune an x Im-roberta-base (Con-
neau et al., 2020) model on human-written formal
and informal translations following the setup from
Briakou et al. (2021). Our classifier achieves an
accuracy of > 98% in detecting the formality of
human-written translations for the four target lan-
guages (Table 10). Participants were allowed to
use the classifier both for model development and
for evaluation purposes as discussed below.

9.4 Automatic Metrics

We evaluate the submitted system outputs along
the following two dimensions:

1. Overall translation quality, evaluated using
SacreBLEU v2.0.0 (Papineni et al., 2002b;
Post, 2018), and COMET (Rei et al., 2020b)
on both the shared task-provided test sets
based on topical chat (Gopalakrishnan et al.,
2019) and on the FLORES devtest (NLLB
Team et al., 2022; Goyal et al., 2022).

Formality control, evaluated using:

* Matched-Accuracy (mACC), a reference-
based corpus-level automatic metric that
leverages phrase-level formality markers
from the references to classify a system-
generated hypothesis as formal, informal,
or neutral (Nadejde et al., 2022).
Classifier-Accuracy (cACC), a reference-
free metric that uses the multilingual for-
mality classifier discussed above to label a
system-generated hypothesis as formal or
informal.
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LANGUAGE TYPE SIZE LENGTH # PHRASAL ANNOTATIONS TER(F, IF)
SOURCE FORMAL INFORMAL FORMAL INFORMAL
EN-VI Train 400 20.35 28.52 25.48 271 1.49 23.70
Test 600 21.82 29.59 26.77 2.79 1.55 23.00
Train 400 20.00 13.41 13.40 3.35 3.35 24.52
EN-KO
Test 600 21.22 13.56 13.55 3.51 3.51 25.32
EN-RU Test 600 21.02 18.03 18.00 2.06 2.05 13.59
EN-PT Test 600 21.36 20.22 20.27 1.93 1.93 10.46
Table 8: Formality Track Shared Task Data Statistics.
PARTICIPANT SETTINGS CLASSIFIER USE LANGUAGES MODEL TYPE FORMALITY
UMD-baseline U v All Multilingual Exemplars
CoCoOA-baseline C X EN-{VI,KO} Bilingual Side-constraint
APPTEK U X EN-{PT,RU} Bilingual Side-constraint
HW-TSC U+C v All Bilingual Side-constraint
KUXUPSTAGE U v All Bilingual N/A
UucCscC U X EN-{VI, KO} Multilingual Style-Embedding

Table 9: Formality Track Submissions Summary. Most participants train bilingual systems but leverage a diverse

set of formality encoding mechanisms for control.

Target Language Accuracy
Korean 99.9%
Vietnamese 99.3%
Russian 99.9%
Portuguese 98.6%

Table 10: The multilingual classifier can identify the
target formality for human written text across all lan-
guages with > 98% accuracy.

The final corpus-level score for each of the
two metrics described above is the percent-
age of system outputs that matches the de-
sired formality level. For example, the cACC
for the target formality, Formal (F), is given
by, cAcc(F) = & M 1[MC(Y) == F],
where M is the number of system outputs.

9.5 Submissions

We provide methodology descriptions and a sum-
mary of the two baseline systems and four sub-
missions received for the shared task below and in
Table 9. Three out of six submissions made use
of the formality classifier released for system de-
velopment. We received two multilingual and four
bilingual systems. We refer the reader to the sys-
tem description papers for more details.
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COCOA (baseline) uses a supervised method
where a generic neural MT model is fine-
tuned on labeled contrastive translation pairs
(Nadejde et al., 2022). For the constrained,
supervised setting, the generic neural MT
model was trained on parallel data allowed
for the constrained task and fine-tuned on for-
mal and informal data released for the shared
task. Following Nadejde et al. (2022), con-
trastive pairs were upsampled with a fixed up-
sampling factor of five for all language pairs.

UMD (baseline) uses 16 few-shot tar-
get formality-specific exemplars to prompt
XGLM-7.5B (Lin et al., 2021) to generate
style-controlled translations. For the su-
pervised setting, these examples are drawn
from the official training data, whereas for
the zero-shot setup, the examples from the
Tatoeba corpus (Artetxe and Schwenk, 2019)
are filtered and marked with target formality
using the provided formality classifier.

APPTEK (Bahar et al., 2023) submitted out-
puts using their production quality translation
systems that support formality-controlled
translation generation for EN-PT and EN-



RU. These are Transformer-Big models
trained on a large public dataset from the
OPUS collection (Tiedemann, 2012), auto-
matically marked with formality using a se-
quence of regular expressions. The formality
level is encoded with a pseudo-token at the
beginning of each training source sentence
with one of 3 values: formal, informal, or no
style.

* HW-TSC (Wang et al., 2023a) describes a
system that uses a multi-stage pre-training
strategy on task-provided data to train strong
bilingual models. Using these bilingual mod-
els, they employ beam re-ranking on the out-
puts generated using the test source. The gen-
erated hypothesis are ranked using the for-
mality classifier and phrasal annotations, it-
eratively fine-tuning the model on this data
until test performance convergences. Initial
formality control is enabled by a special to-
ken and re-affirmed through classifier output
and annotations from training.

* KUXUPSTAGE (Lee et al., 2023) uses large-
scale bilingual transformer-based MT sys-
tems trained on high-quality datasets and
MBART for the supervised and zero-shot set-
tings respectively. They generate a formality-
controlled translation dataset for supervision
in the zero-shot setting using GPT-4 and fil-
ter the generated source-translation pairs us-
ing the formality classifier. All bilingual
models are then finetuned independently for
the two target formality directions to gen-
erate formality-controlled outputs, resulting
in #(Language-pairs) x 2 (Formal/Informal)
models.

e UCSC (Vakharia et al., 2023) focused on us-
ing a single multilingual translation model
for all the language pairs under the uncon-
strained setting. They finetune the pre-trained
model, mBART-large—-50 (Tang et al,
2020), using the provided contrastive transla-
tions (§ 9.2.1) with an added style embedding
intervention layer.

9.6 Results

Tables 47 and 48 in the Appendix show the main
automatic evaluation results for the shared task.
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Overall Results For the supervised language
pairs in both constrained and unconstrained set-
tings, most submitted systems were successfully
able to control formality. The average mAcc
scores ranged from 78-100. Controlling formality
in Korean was found to be more challenging than
translating with formality control in Vietnamese
as reflected by the relatively lower mAcc scores
which we believe to be due to the variation in for-
mality expression of Korean honorific speech re-
flected in pretraining data.

HW-TSC consistently achieves the best scores
across the board for all language pairs and both
settings due to the use of transductive learning.
Interestingly, the constrained submission by HW-
TSC achieves better or competitive results com-
pared to their unconstrained system suggesting
that the use of a pre-trained language model or
additional resources is not necessary to gener-
ate high-quality formality-controlled translations.
Generally, the systems generate higher quality out-
puts in the formal setting relative to the informal
setting for both supervised language pairs accord-
ing to BLEU and COMET, which might be due
to the bias of the dataset used during pre-training
which is typically news and hence more formal.

In the zero-shot unconstrained setting, this for-
mality bias is even more prominent. We observe
a much wider distribution in the formality scores
for English-Portuguese (mAcc: F 90-100, IF: 58-
100), possibly due to the high ambiguity in the
informal language and the confounding dialectal
influence of Brazilian Portuguese dominant in the
pre-training corpora, which is known to use for-
mal register even in typically informal contexts
(Costa-jussa et al., 2018). HW-TSC and APPTEK
achieve the best translation quality for English-
Portuguese and English-Russian respectively. The
lowest scoring submission in both quality and for-
mality control (UCSC) did not include any fine-
tuning or adaptation of the base MBART model to
the two zero-shot language pairs: English-Russian
and English-Portuguese. This suggests that for-
mality information is not transferred from the un-
related language pairs, EN-KO and EN-VI, and
that some language-specific supervision is needed
to mark grammatical formality appropriately in
Russian and Portuguese.

How well do systems match the desired tar-
get formality? We show the distribution of the
scores generated using the formality classifier for
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Figure 3: Formality Classifier Scores’ Distribution on the submitted system outputs in the Unconstrained setting:
HW-TSC can precisely match the target formality as depicted by the peaky distribution.

all the systems submitted to all language pairs un-
der the unconstrained setting in Figure 3. For su-
pervised language pairs, formal (blue) and infor-
mal (orange) output scores peak at 1.0 and 0.0 re-
spectively. In the zero-shot setting, for both Por-
tuguese (APPTEK, UCSC) and Russian (UCSC)
translations, the informal outputs have a bimodal
distribution, highlighting that these models gener-
ate many formal translations under informal con-
trol.

How contrastive are the generated transla-
tions? We show the Translation Edit Rate (TER)
between the formal and informal outputs for all
submitted systems across all language pairs in Fig-
ure 4. While the references are designed to be min-
imally contrastive, the formal and informal system
outputs exhibit a much larger edit distance. HW-
TSC has the lowest TER rate for all language pairs
except English-Korean.

Discussion Overall, the shared task results
show that finetuning a strong supervised general-
purpose MT system with as low as 400 in-
domain contrastive samples seems to be sufficient
in generating high-quality contrastive formality-
controlled translations. However, several avenues
for improvement remain open. The languages that
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Figure 4: TER between the Formal (F) and Informal
(IF) Outputs for all submitted systems across all lan-
guage pairs.

exhibit an ambiguous or richer formality distinc-
tion either due to close dialectal variations (like
Portuguese) or due to multiple levels of honorifics
(like Korean and Japanese) still remain challeng-
ing. Unsupervised transfer of formality knowl-
edge between related languages remains relatively
unexplored (Sarti et al., 2023). Furthermore, this
year’s task only considered two levels of formal-
ity distinctions with minimal edits. It remains un-
clear whether the models are also capable of mod-
eling multiple levels of formality potentially with
minimal edits in the generated translations. Fi-
nally, no submissions have explored monolingual
editing of translations as a potential solution for



formality-controlled MT, despite the edit-focused
nature of the contrastive translations. We recom-
mend that future work on formality-controlled ma-
chine translation targets these challenges.

10 Automatic Dubbing
10.1 Challenge

This task focuses on automatic dubbing: translat-
ing the speech in a video into a new language such
that the new speech is natural when overlayed on
the original video (see Figure 5).

Participants were given German videos, along
with their text transcripts, and were asked to pro-
duced dubbed videos where the German speech
has been translated in to English speech.

Automatic dubbing is a very difficult/complex
task (Brannon et al., 2023), and for this shared
task we focus on the characteristic which is per-
haps most characteristic of dubbing: isochrony.
Isochrony refers to the property that the speech
translation is time aligned with the original
speaker’s video. When the speaker’s mouth is
moving, a listener should hear speech; likewise,
when their mouth isn’t moving, a listener should
not hear speech.

To make this task accessible for small academic
teams with limited training resources, we make
some simplifications: First, we assume the input
speech has already been converted to text using an
ASR system and the desired speech/pause times
have been extracted from the input speech. Sec-
ond, to alleviate the challenges of training a TTS
model, the output is defined to be phonemes and
their durations. These phonemes and durations are
played through an open-source FastSpeech2 (Ren
et al., 2022) text-to-speech model to produce the
final speech.*!

10.2 Data and Metrics

Official training and test data sets were provided*?
by the organizers. The training data was derived
from CoVoST2 (Wang et al., 2021) and consists
of:

1. Source (German) text

2. Desired target speech durations (e.g. 2.1s of
speech, followed by a pause, followed by 1.3s
of speech)

“nttps://github.com/mtresearcher/
FastSpeech2

“https://github.com/amazon-science/
iwslt-autodub-task/tree/main/data

3. Target (English) phonemes and durations cor-
responding to a translation which adheres to
the desired timing

The test data was produced by volunteers and

consists of videos of native German speakers
reading individual sentences from the German
CoVoST-2 test set.*> This test set was divided in to
two subsets; Subset I where there are no pauses in
the speech and Subset 2 where there is one or more
pause in the speech. More details on this data are
presented in (Chronopoulou et al., 2023).

10.3 Submissions

Despite high initial interest, we received only
one submission, which was from the Huawei
Translation Services Center (HW-TSC) (Rao
et al,, 2023). However, we had two systems
(Chronopoulou et al., 2023; Pal et al., 2023) built
for the task for which we had not yet performed
human evaluation, so we still had enough systems
for a interesting comparison.

e Interleaved (Baseline): Our first baseline
and the basis for this shared task is from
Chronopoulou et al. (2023). They propose to
jointly model translations and speech timing,
giving the model the freedom to change the
translation to fit the timing, or and make scar-
ifies in translation quality to meet timing con-
straints or relax timing constraints to improve
translation quality. This is achieved by sim-
ply binning target phoneme durations and in-
terleaving them with target phonemes during
training and inference. To avoid teaching the
model that speech durations should be prior-
itized over translation quality**, noise with
standard deviation 0.1 is added to the target
phrase durations to simulate the source dura-
tions used at inference.

e Factored (Baseline): Pal et al. (2023) build
on the first baseline by using target factors
(Garcia-Martinez et al., 2016), where along-
side predicting phoneme sequences as the
target, we also predict durations for each
phoneme as a target factor. Additionally, they
propose auxiliary counters, which are simi-
lar to target factors except the model is not

“*Each volunteer provided their consent to use this data
for automatic dubbing task.

“Median speech overlap is just 0.731 in a large corpus of
human dubs (Brannon et al., 2023)


https://github.com/mtresearcher/FastSpeech2
https://github.com/mtresearcher/FastSpeech2
https://github.com/amazon-science/iwslt-autodub-task/tree/main/data
https://github.com/amazon-science/iwslt-autodub-task/tree/main/data

Your system
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[source text]

[desired speech durations]

h(.1s) ax(.3s) [pause] h(.1s) a(.2s) ©(.2s) _ a:(.1s) j(.3s) u:(.4s)

[target phonemes & phoneme durations]

Figure 5: To illustrate, here’s an example in which “hallo! wei gehts?” is translated to “hi! how are you?” such
that the output will fit in the desired target speech durations of 0.4s and 1.3s, with a pause in between

trained to predict them. Instead, they pro-
viding additional information to the decoder
consisting of (1) the total number of frames
remaining, (2), the number of pauses remain-
ing, and (3) the number of frames remaining
in the current phrase. As in the first base-
line, noise of standard deviation 0.1 is added
to the target phrase durations during training
to simulate source durations.

» Text2Phone (Baseline): As a sanity check,
we added a third, non-isochronic baseline
trained to take in German text and produce
English phonemes, without any duration in-
formation. We train on the same data as the
first two baselines, but exclude duration in-
formation from training and instead predict
phoneme durations using the duration model
from the FastSpeech2 model.

e HW-TSC: In contrast to our three baselines,
(Rao et al., 2023) took a more traditional
approach to dubbing and followed the prior
works on verbosity control (Lakew et al.,
2021, 2019) to first generate a set of transla-
tion candidates and later re-rank them. Their
system consists of four parts: 1) voice ac-
tivity detection followed by pause alignment,
2) generating a list of translation candidates,
3) phoneme duration prediction, followed by
4) re-ranking/scaling the candidates based on
the durations (see Figure 6). With the last
step in the pipeline, the top scored candidate
is ensured to have the best speech overlap
with the source speech amongst all candidate
translations.

10.4 Evaluation & Metric

The dubbed English videos were judged by a mix-
ture of native and non-native speakers, all of which
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Figure 6: System diagram for HW-TSC dubbing sys-

tem. Image from Rao et al. (2023).

were researchers in automatic dubbing. For each
video in the the test set, one judge was shown the
four system outputs in random order and asked to
rate them from 1-6. The judges were not given
a defined rubric or guidelines to follow but were
asked to be consistent.

As a metric we opted for mean opinion score
(MOS) methodology where the scores for a system
as judged by humans are averaged in one score.*’

Feedback from the judges indicate that the base-
line and submitted systems often produce poor
translations (perhaps due to the small amount of
training data used by each system), and the voice
quality from the FastSpeech 2 model was far from
perfect. However, they felt that having all systems
share the same voice made it much easier to com-
pare across dubbing systems.

When we looked at the distribution of scores per

45https ://en.wikipedia.org/wiki/Mean_
opinion_score
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annotator (judge) level, the numbers showed that
each annotator had a bias towards dubbing, some
liked dubbing more than others which is intuitive
but has not been studied before in the context of
automatic dubbing. As shown in Table 11, it is
clear that annotator A2 had a significantly higher
preference for dubbing as compared to annotator
A4 in terms of MOS.

Annotator | MOS? CI
Al 3.34 | £0.16
A2 3.74 | £0.19
A3 3.53 | £0.13
A4 3.07 | £0.15

Table 11: MOS (on a scale of 1-6) with confidence in-
terval (CI) at 95% per annotator showing the biases to-
wards general purpose dubbed content.

We also looked at MOS for the two different
subsets to understand whether it was difficult for
the submitted systems to dub the videos. As it
turns out, Subset I has an significantly higher
MOS of 3.54 (+ 0.11) compared to Subset 2 with
a MOS of 3.31 (+ 0.11). This shows it is signifi-
cantly more difficult for all systems to dub Subset
2 than Subset 1.

10.5 Results

Results are shown in Table 12.  All three
dubbing systems outperform the non-isochronic
Text2Phone baseline (Chronopoulou et al., 2023),
as expected. The factored baseline improves over
the interleaved baseline, consistent with the auto-
matic metric results reported by Pal et al. (2023).

The HW-TSC system (Rao et al., 2023) outper-
forms all the baselines in terms of mean opinion
score, making it the clear winner of the IWSLT
2023 dubbing shared task. Unfortunately, since
HW-TSC system was unconstrained (it trains on
additional bitext compared to the baselines) and
uses fundamentally different approaches than the
baselines, it is not possible to attribute it’s perfor-
mance to any single factor.

Lip-sync is an important feature of dubbing,
it is important that the final generated audio is
in sync with the lip movements of the on-screen
speaker in the original video. As an analy-
sis, we looked at Lip-Sync Error Distance (LSE-
D) (Chung and Zisserman, 2016) following the
evaluation methodology in Hu et al. (2021). LSE-
D is not a perfect metric but it is an indication to
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MOS?
System Constrained? | Mean CI
Text2Phone Yes 3.16 +0.19
Interleaved Yes 333 =+0.18
Factored Yes 343  £0.19
HW-TSC No 3.77  £0.19
Table 12: Mean opinion score for baselines 1)

Text2Phone 2) Interleaved (Chronopoulou et al., 2023)
3) Factored (Pal et al., 2023) and 4) submitted system
of HW-TSC (Rao et al., 2023).

LSE-D|
System Subsetl | Subset2
Original 7.39 7.67
Text2Phone 11.64 13.31
Interleaved 11.71 12.35
Factored 11.73 12.48
HW-TSC 12.11 12.77

Table 13: Results of Lip-Sync Error Distance (LSE-D)
via Syncnet pre-trained model (Chung and Zisserman,
2016). Lower the better.

the amount of Lip-Sync errors in the video. From
Table 13, Subset 1 consistently has a lower lip-
sync error than Subset 2 in all cases pointing that
its difficult to generate lip-synced dubs for Sub-
set 2. This result is also in line with the MOS
scores we obtained for two subsets where the an-
notators preferred dubs for Subset 1. Secondly,
original videos show significantly lower lip-sync
error distance (12.x v/s 7.x) than dubbed videos
showing that automatic dubbing research still has
a long way to go to reach lip-sync quality in origi-
nal videos.
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A  Human Evaluation

Human evaluation was carried out for the Simultaneous and Offline SLT shared tasks. At the time of
writing, only the former evaluation has been completed which is reported here. The human evaluation of
the Offline Task will be recounted during the conference and possibly in an update version of this report.

A.1 Simultaneous Speech Translation Task

Simultaneous Speech Translation Task ran two different types of manual evaluation: “continuous rating”
for English-to-German and MQM for English-to-Japanese.

A.1.1 Human Evaluation for the English-to-German Simultaneous Task

We used a variant of “continuous rating” as presented by Javorsky et al. (2022). The evaluation process
and the guidelines presented to annotators were the same as during the last year evaluation (consult
Section A.1.1 in Anastasopoulos et al. (2022a) for more details).

Time Shift for Better Simultaneity Last year, we reduced the delay by shifting the subtitles ahead in
time to ease the memory overload of the evaluators. Since this year only a low latency regime was used,
we left the subtitles intact for the system outputs. For interpreting, we used the same shift as last year.

Two Test Sets: Common and Non-Native The main part of the test set for the English-to-German
task was the Common test set. The Common test set is a new instance (different from previous years)
consisting of selected TED talks and it serves both in the Offline Speech Translation task as well as in
the Simultaneous Translation task. Following the last year, we also added the Non-Native part that was
created and is in use since IWSLT 2020 Non-Native Translation Task. The Non-Native part is described
in Ansari et al. (2020) Appendix A.6.

We show the size of the corpus, as well as the amount of annotation collected in Table 21.

Processing of Collected Rankings Once the results are collected, they are processed as follows. We
first inspect the timestamps on the ratings, and remove any ratings that have timestamps more than 20
seconds greater than the length of the audio. Because of the natural delay (even with the time-shift) and
because the collection process is subject to network and computational constraints, there can be ratings
that are timestamped greater than the audio length. If the difference is however too high, we judge it to
be an annotation error. We also remove any annotated audio where there is fewer than one rating per 20
seconds, since the annotators were instructed to annotate every 5-10 seconds.

Obtaining Final Scores To calculate a score for each system, we average the ratings across each
annotated audio,*’ then average across the multiple annotations for each audio to obtain a system score
for that audio. Finally we average across all audios to obtain a score for each system. This type of
averaging renders all input speeches equally important and it is not affected by the speech length.

We show the results in Table 22. We observe that all systems perform better on the Common part
of the test set than on the Non-Native one. The difference in scores between the best and the worst
system is not so significant: It makes only ~0.3. When examining the evaluation of Non-Native audios,
we can see that best systems on the Common part are worst on Non-Native. Given that the quality of
the recordings in the non-native part is low on average and the speakers are not native, we hypothesize
that systems with worse performance on Common part are more robust. Such systems then achieve an
increased performance given noisy inputs.

A.1.2 Human Evaluation for the English-to-Japanese Simultaneous Task

For the English-to-Japanese Simultaneous Translation Task, we conducted a human evaluation using a
variant of Multidimensional Quality Metrics (MQM; Lommel et al., 2014). MQM has been used in recent
MT evaluation studies (Freitag et al., 2021a) and WMT Metrics shared task (Freitag et al., 2021b). For
the evaluation of Japanese translations, we used JTF Translation Quality Evaluation Guidelines (JTF,

“"TNote that the ratings could be also weighted with respect to the duration of time segments between the ratings but
Machécek et al. (2023) documented on 2022 data that the difference is negligible.
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2018), distributed by Japan Translation Federation (JTF). The guidelines are based on MQM but include
some modifications in consideration of the property of the Japanese language.

We hired a Japanese-native professional interpreter as the evaluator, while the evaluator was a trans-
lator in the last year (Anastasopoulos et al., 2022a). The evaluator checked translation hypotheses along
with their source speech transcripts and chose the corresponding error category and severity for each
translation hypothesis using a spreadsheet. Here, we asked the evaluator to focus only on Accuracy and
Fluency errors, because other types of errors in Terminology, Style, and Locale convention would not
be so serious in the evaluation of simultaneous translation. Finally, we calculated the cumulative error
score for each system based on the error weighting presented by Freitag et al. (2021a), where Critical
and Major errors are not distinguished.
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Appendix B. Automatic Evaluation Results and Details
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B.1 Offline SLT

- Systems are ordered according to the BLEU score computed on the concatenation of the three test sets
(Joint BLEU, third column).
- The “D” column indicates the data condition in which each submitted run was trained, namely: Con-
strained (C), constrained* XM (C*), Unconstrained (U).
- For the BLEU scores computed on the TED test set, “Orig” and “New” respectively indicate the results
computed on the original (subtitle-like) TED translations and the unconstrained (exact, more literal)
translations as references.
- Direct systems are indicated by gray background.
- “*” indicates a late submission.

i+

indicates an unofficial submission.

System D Joint TED ACL EPTV
BLEU | COMET BLEU COMET BLEU | COMET | BLEU | COMET
Ref New ‘ Orig ‘ Both | New Orig
HW-TSC C 324 0.8213 | 34.8 | 30.2 | 42.1 | 0.8327 | 0.8208 | 38.1 0.8090 16.7 0.3829
HW-TSC 8] 323 0.8209 | 349 | 309 | 424 | 0.8331 | 0.8223 | 36.9 0.8073 16.9 0.3819
HW-TSC c* | 319 0.8210 | 344 | 30.6 | 41.9 | 0.8332 | 0.8230 | 37.2 0.8063 16.8 0.3823
NeuroDub™ | U 304 0.8089 | 31.8 | 25.8 | 38.5 | 0.8205 | 0.8082 | 41.1 0.7956 154 0.3784
NEMo C 28.5 0.7759 | 30.5 | 264 37.7 0.7977 | 0.7871 | 31.9 0.7171 15.6 0.3680
UPC Cct| 279 0.7892 | 29.8 | 25.5 36.6 0.8098 | 0.7985 | 32.1 0.7473 15.6 0.3746
I2R Ct| 224 0.7070 | 24.0 | 20.3 295 0.7248 | 0.7172 | 239 0.6841 13.3 0.3506
BIGATI* C* | 203 0.6945 | 223 | 19.3 274 0.7128 | 0.7055 | 19.6 0.6295 11.5 0.3555
Table 14: Official results of the automatic evaluation for the Offline Speech Translation Task, English to German.
System D Joint TED ACL
BLEU | COMET BLEU COMET BLEU | COMET
Ref New | Orig | Both | New | Orig
HW-TSC | U 21.0 0.8177 18.8 | 22.6 | 29.1 | 0.8111 | 0.8029 30.7 0.8473
HW-TSC | C 20.9 0.8181 187 | 227 | 29.0 | 0.8123 | 0.8042 30.1 0.8443
HW-TSC | C* 20.9 0.8177 18.7 | 22.6 | 289 | 0.8114 | 0.8034 30.7 0.8463
NeMo C 18.1 0.7741 16.5 | 204 | 25.6 | 0.7734 | 0.7666 24.9 0.7769
BIGATI* c* 10.7 0.7122 10.7 | 13.2 | 16.8 | 0.7201 | 0.7228 10.4 0.6769
Table 15: Official results of the automatic evaluation for the Offline Speech Translation Task, English to Japanese.
System D Joint TED ACL
BLEU | COMET BLEU COMET BLEU | COMET
Ref New | Orig | Both | New | Orig
USTC U 54.7 0.8627 539 | 36.8 | 62.1 | 0.8648 | 0.7992 58.0 0.8535
USTC U 52.8 0.8357 529 | 355 | 60.6 | 0.8439 | 0.7798 52.5 0.7999
HW-TSC C 51.1 0.8499 50.6 | 345 | 57.8 | 0.8521 | 0.7876 53.0 0.8404
HW-TSC c* 51.1 0.8494 50.6 | 345 | 57.9 | 0.8514 | 0.7870 53.0 0.8406
HW-TSC U 51.0 0.8497 50.6 | 345 | 57.8 | 0.8519 | 0.7874 52.8 0.8401
NIUTRANS C 494 0.8255 50.0 | 343 | 579 | 0.8376 | 0.7740 47.1 0.7733
XIAOMI c* 47.1 0.8279 472 | 324 | 54.1 | 0.8375 | 0.7773 46.5 0.7866
NeMo C 45.6 0.8032 46.5 | 31.8 | 53.8 | 0.8177 | 0.7575 41.8 0.7404
MINETRANS | U 45.0 0.7920 46.3 | 32.0 | 53.2 | 0.8134 | 0.7546 39.9 0.6997
BIGATI* ct 31.9 0.7260 33.0 | 233 | 38.6 | 0.7428 | 0.7014 27.4 0.6534
MINETRANS | C 28.7 0.6371 27.7 | 18.6 | 322 | 0.6375 | 0.5976 31.8 0.6354

Table 16: Official results of the automatic evaluation for the Offline Speech Translation Task, English to Chinese.
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B.2 Simultaneous SLT

Team

BLEU | LAAL | AL | AP | DAL | ATD

Common

HW-TSC | 29.63 | 2.26(3.93) | 2.11 (3.86) | 0.83(1.59) | 3.17(8.99) | 2.28 (6.77)
CUNI-KIT | 2851 | 2.35(3.63) | 2.24 (3.56) | 0.79 (1.11) | 2.88 (4.50) | 2.26 (2.96)

FBK 28.38 | 2.25(2.99) | 2.09 (2.88) | 0.84 (1.03) 2.70 (3.65) 2.15(2.48)

NAIST 26.05 | 2.36(3.30) | 2.22(3.21) | 0.82(1.07) 3.05 (4.45) 2.25 (3.06)

CMU 25.78 | 1.99 (3.39) | 1.92 (3.33) | 0.82(1.31) 3.78 (6.56) 2.46 (4.63)
Non-Native

NAIST 2296 | 2.43(3.52) | 1.95(3.22) | 0.845(1.02) | 3.37(4.71) 3.13 (3.92)

CMU 22.84 | 247 (3.74) | 2.36 (3.63) | 0.798 (1.16) | 4.54 (6.77) 3.77 (5.47)

CUNI-KIT | 19.94 | 3.42(5.00) | 3.24 (4.87) | 0.744 (1.04) | 4.14(5.87) | 3.82(4.84)
HW-TSC 17.91 | 3.57(6.67) | 3.44 (6.61) | 0.705 (1.65) | 4.39 (12.91) | 4.04 (11.13)
FBK 15.19 | 4.10(5.34) | 3.94 (5.22) | 0.89 (1.12) | 4.53(5.85) | 3.76 (4.65)

Table 17: Simultaneous Speech-to-Text Translation, English to German. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team | BLEU | LAAL | AL | AP | DAL | ATD

HW-TSC 4495 | 2.13(3.80) | 2.06 (3.76) | 0.78 (1.48) | 3.21 (8.66) | 0.99 (5.31)
CUNI-KIT | 44.16 | 2.13(3.30) | 2.06 (3.25) | 0.77 (1.08) | 2.78 (4.38) | 0.89 (1.54)
XIAOMI 43.69 | 2.30(3.03) | 2.23 (2.98) | 0.80 (1.08) | 2.93 (4.08) | 0.90 (1.47)
NAIST 36.80 | 2.00(2.80) | 1.88 (2.74) | 0.76 (1.03) | 2.66 (4.22) | 0.77 (1.49)

Table 18: Simultaneous Speech-to-Text Translation, English to Chinese. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team |BLEU| LAAL | AL | AP | DAL | ATID

HW-TSC | 16.63 | 2.60 (4.38) | 2.56 (4.36) | 0.71 (1.31) | 3.62 (9.07) | 0.83 (5.12)
CUNI-KIT | 14.92 | 2.20 (3.55) | 2.16 (3.53) | 0.68 (1.06) | 2.74 (5.17) | 0.53 (1.50)
NAIST 14.66 | 2.52(3.43) | 2.45(3.39) | 0.75 (1.03) | 3.24 (5.16) | 0.60 (1.57)

Table 19: Simultaneous Speech-to-Text Translation, English to Japanese. Except for AP, the latency is measured
in seconds. Numbers in brackets are computation aware latency.

51



Target Language ‘ Team ‘ ASR BLEU ‘ BLASER ‘ Start Offset ‘ End Offset ‘ ATD
German CMU 22.62 0.122 237 5.21 4.22
HW-TSC 19.74 -0.442 2.04 5.09 3.75

Japanese HW-TSC 15.53 -1.70 2.37 3.48 3.56
P NAIST 10.19 -1.68 2.58 4.32 3.49
Chinese | HW-TSC | 3168 | -069 | 192 | 312 | 323

Table 20: Simultaneous Speech-to-Speech from English Speech. The latency is measured in seconds. The BLEU
scores are computed based on transcript from the default Whisper (Radford et al., 2022) ASR model for each
language direction.

Common Non-native

Number of audios 42 43
Mean audio length (seconds) 400.3 208.8
Mean ratings per audio 65.6 36.5

Table 21: Human evaluation for the English-to-German task on two test sets: the Common one (used also in
automatic scoring) and the Non-native one. We show the size of the test sets, and the number of ratings collected.
On average, our annotators provide a quality judgement ever 6 seconds.

Common

Non-native

CUNI-KIT 3.103.04-3.16

1.631.5451.72

FBK 3.083.02-3.14 1.261.20-1.30
HWTSC 2919855208 2.041.92-2.15
NAIST 2.84 2.78-2.91 2'272.18—>2.34
CMU 2.792.72287 2.382.30-2.46
Interpreter - 2.7997159.87

Table 22: Human evaluation results for English-to-German Simultaneous task on the 1-5 (worst-to-best) scale,
with 95% confidence intervals. We calculate a mean score for each annotated audio file, then a mean across
annotators (for each audio), then a mean across all audio files for each system. To compute confidence intervals,
we take the scores for annotated audios, perform 10,000x bootstrap resampling, compute the mean score for each
resample, then compute [2.5,97.5] percentiles across the resampled means.

Team BLEU (on two talks) Error Score Number of errors
TED ref. | Additional ref. Critical | Major | Minor
HW-TSC 26.59 18.71 383 1 56 98
CUNI-KIT 24.21 17.95 384 0 56 104
NAIST 25.10 16.75 398 0 61 93
Baseline 7.69 6.27 1,074 3 205 34

Table 23: Human evaluation results on two talks (107 lines) in the English-to-Japanese Simultaneous speech-to-
text translation task. Error weights are 5 for Critical and Major errors and 1 for Minor errors.
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B.3 Automatic Subtitling

team con- domain

dition

system

Subtitle quality
SubER Sigma

Translation quality
Bleu ChrF Bleurt

Subtitle compliance
CPS CPL LPB

APPTEK U  prmry

cntrstv

70.64 73.35
59.72  74.33
73.98 67.09
77.63  72.79

15.38 38.36 .4376
23.74 49.14 .5683
15.81 45.21 .5229
10.47 33.18 .4069

87.74 100.00 100.00
92.58 100.00 100.00
86.65 100.00 100.00
88.98 100.00 100.00

Table 24: Automatic evaluation results for the Subtitling Task: en—de. C and U stand for constrained and uncon-
strained training condition, respectively; prmry and cntrstv for primary and contrastive systems.

team con-

dition

system domain

Subtitle quality
SubER Sigma

Translation quality
Bleu ChrF Bleurt

Subtitle compliance
CPS CPL LPB

MATESUB U prmry

68.11 68.37
45.94 66.85
74.47  59.59
74.87 70.99

22.34 47.38 .5059
40.36 65.72 .7047
21.06 54.11 .5728
1596 41.86 .4666

86.07 99.52 100.00
92.62 99.48 100.00
90.15 99.44 100.00
88.27 99.60 100.00

Table 25: Automatic evaluation results for the Subtitling Task: en—es. Legenda in Table 24.
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B.4 Multilingual Speech Translation

Below we show the Multilingual task (§5) results and overall rankings, ordered according to the
average chrF across all 10 target languages after resegmentation to the reference translations.

We also compare to the Offline submissions on the ACL 60-60 evaluation set
on the 3 language pairs used for the Offline task.

Finally, we show the scores for each metric (chrF, COMET, BLEU) per language pair for all systems.

System Constrained? chrF | COMET BLEU English WER
I JHUynconstrained 61.1 82.3 39.3 16.9
2 KITprimary v +LLM 57.5 77.0 349 23.7
3 KlTeontrastivel v +LLM 57.5 76.8 34.8 —
4 KIT contrastive2 v +LLM 56.4 76.5 34.0 —
5  KlTcontrastived v +LLM 56.2 76.4 33.7 —
6 KlTcontrastives v +LLM 559 76.3 33.5 —
T KlITcontrastives v + LLM 54.5 76.7 31.7 —
8  KlTcontrastiver v +LLM 53.9 76.6 31.1 =
9  KlTcontrastives v +LLM 53.7 75.9 30.9 —
10 JHU onstrained v +LLM  48.1 65.3 24.5 34.1
11 BITprimary v 310 | 517 117 —

Table 26: Overall task ranking with metrics averaged across all ten language pairs on the evaluation set.

We show the official task metric (chrF) as well as the unofficial metrics (COMET, BLEU, and English WER).

All metrics are calculated after resegmentation to reference transcripts and translations. Direct/ end-to-end systems
are highlighted in gray.

de ja zh

System Task Constrained? COMET BLEU COMET BLEU COMET BLEU
USTC Off. 854 (1) 58.0 (1)
HW-TSC Off. v 80.9 (2) 38.1 (3) 84.4 (3) 30.1 (7) 84.0 (2) 53.0 (2)
JHU Mult. 81.3 (1) 41.2 (1) 84.7 (1) 339 4) 82.0 (3) 46.5(11)
HW-TSC Off. 80.7 (3) 36.9 (6) 84.7 (1) 30.7 (6) 84.0 (2) 52.8 (3)
HW-TSC Off. v +LLM 80.6 (4) 37.2 (5) 84.6 (2) 30.7 (6) 84.0 (2) 53.0 (2)
NeuroDub Off. 79.6 (5) 41.1 (2)

USTC Off. 80.0 (4) 52.5 (4)
KIT,, Mult. v +LLM 74.9 (6) 37.5 (4) 82.0 (4) 35.7 (1) 79.3 (5) 494 (6)
KIT.1 Mult. V' +LLM 74.6 (8) 36.5 (7) 82.0 (4) 352 (2) 79.3 (5) 49.7 (5)
KIT. Mult. v +LLM 74.3 (9) 36.5 (7) 81.6 (6) 34.0 (3) 78.6 (10) 494 (6)
KIT.3 Mult. v +LLM 74.7 (7) 36.1 (9) 81.4 (7) 33.3 (5) 784 (11) 48.6 (7)
KIT,4 Mult. v +LLM 74.2 (10) 36.4 (8) 81.7 (5) 339 4) 784 (11) 48.2 (8)
KIT,5 Mult. v +LLM 74.9 (6) 33.8 (10) 80.3 (8) 27.3 (8) 79.1 (6) 46.7 (10)
UPC Off. v + LLM 74.7 (7) 32.1 (12)

KITg Mult. v' +LLM 739 (11) 329 (11) 80.0 (9) 26.6 (9) 789 (7) 45.7 (13)
KIT.; Mult. v + LLM 73.9 (11) 329 (11) 80.3 (8) 25.6 (10) 78.8 (8) 46.0 (12)
Xiaomi Off. v + LLM 78.7 (9) 46.5 (11)
NiuTrans Off. v 77.3 (12) 47.1 (9)
NeMo Off. v 71.7 (12) 31.9 (13) 77.7 (10) 24.9 (11) 74.0 (13) 41.8 (14)
I2R Off. v +LLM 68.4 (13) 23.9 (14)

JHU Mult. v +LLM 59.0 (15) 23.7 (15) 69.3(11) 18.9 (12) 67.9 (15) 37.4(16)
MINE-Trans Off. 70.0 (14) 39.9 (15)
BIGAT* Off. v +LLM 63.0 (14) 19.6 (16) 67.7 (12) 10.4 (13) 65.3 (16) 27.4 (18)
MINE-Trans Off. v 63.5(17) 31.8 (17)
BIT Mult. v 47.2 (16) 11.1 (17) 56.2 (13) 8.0 (14) 55.7 (18) 19.8 (19)

Table 27: Submissions from all tracks on the ACL 60-60 evaluation sets on the three language pairs shared across
tracks (En — De, Ja, Zh), ordered by average metric ranking. Direct / end-to-end systems are highlighted in gray.
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Submission ar de fa fr ja nl pt ru tr zh | Avg.

JHU ynconstrained | 62.4 67.6 57.8 734 420 71.6 750 56.8 625 422 | 61.1
KITprimary 569 648 554 678 423 676 69.6 512 573 425|575
KIT contrastivel 569 646 556 678 420 676 69.6 512 567 427 | 575
KIT contrastive2 56.1 63.6 529 673 408 665 692 506 556 413 | 564
KIT contrastived 562 633 53.0 672 407 665 688 504 551 403 | 56.2
KIT contrastives 55,5 637 521 669 403 660 689 50.0 552 40.6 | 559
KIT contrastives 553 613 53.8 652 359 637 673 486 549 392 | 545
KIT contrastiver 547 603 540 644 345 634 672 478 542 382|539
KIT contrastives 546 603 5277 643 355 627 664 482 538 384 | 537
JHU constrained 452 534 445 624 268 621 622 468 463 30.8 | 48.1
BIT 28.9 36.8 28.8 452 145 417 430 284 259 17.2 | 310

Table 28: chrF with resegmentation for each target language on the evaluation set, sorted by the system average.
Direct / end-to-end systems are highlighted in gray.

Submission ar de fa fr ja nl pt ru tr zh | Avg.
JHU nconstrained | 82.7 813 80.6 81.4 847 84.1 849 789 825 820 | 823
KIT,rimary 78.0 749 758 744 820 777 784 725 766 793 | 770

KT constrastiver | 77.7 74.6 757 745 82.0 77.6 784 722 764 793 | 7638
KIT constrastives | 78.5 749 759 746 803 76.8 785 71.6 769 79.1 | 76.7
KIT constrastiver | 782 73.9 763 742 803 76.7 803 713 762 788 | 76.6
KIT constrastive2a | 77.3 743 749 743 816 773 784 72.1 758 78.6 | 765
KIT constrastivea | 77.2 742 75.0 743 81.7 773 782 720 755 784 | 764
KIT constrastives | 76.9 747 746 742 814 769 782 71.8 757 784 | 763
KIT constrastives | 77.8 739 752 733 80.0 754 777 708 757 789 | 759
JHU constrained 67.9 590 66.1 632 693 662 67.8 620 640 679 | 653
BIT 52.8 472 487 522 562 53.8 54.8 47.77 480 55.7 | 51.7

Table 29: COMET with resegmentation for each target language on the evaluation set, sorted by the system average.
Direct / end-to-end systems are highlighted in gray.

ar de fa fr ja nl pt ru tr zh  Avg.
JHU ynconstrainea 334 412 35.0 50.0 339 448 51.7 279 28.1 465 393
KIT,rimary 259 375 298 413 357 404 443 224 21.8 494 349
KlIT constrastiver ~ 25.6  37.5 30.1 41.1 352 40.6 445 226 213 497 348
KIT constrastivea 247 365 280 424 340 38.8 43.8 219 20.6 494 340
KIT constrastivea 244 364 284 421 339 389 43.0 21.6 203 482 337
KIT constrastives 240 36.1 27.6 419 333 382 43.6 215 20.1 486 335
KIT constrastives 237 33.8 287 39.6 273 359 40.7 196 20.6 46.7 31.7

KITeonstrastiver 234 329 286 388 256 360 409 19.1 20.1 460 31.1
KITeonstrastives~ 23.0 329 283 389 266 350 397 197 19.1 457 309
JHU spnstrained 150 237 219 33.1 189 313 332 172 12.8 374 245
BIT 57 11.1 74 197 80 163 186 63 41 198 117

Table 30: BLEU with resegmentation for each target language on the evaluation set, sorted by the system average.
BLEU scores in grey are calculated using language-specific tokenization (ja) or at the character-level (zh); see §5.2
for specific tokenization details. Direct / end-to-end systems are highlighted in gray.

55



B.5 Speech-to-Speech Translation

System Test-primary Test-expanded Overall

Ref BLEU | chrF | COMET | SEScore2 ‘ BLEU | chrF | COMET | SEScore2 | BLEU | chrF | COMET | SEScore2
Cascade Systems

XIAOMI 479 41.0 79.91 -12.27 34.5 29.2 79.07 -20.15 384 323 79.35 -17.48
NPU-MSXF 47.4 40.7 79.90 -12.21 34.0 28.5 78.68 -20.23 37.7 31.8 79.09 -17.52
HW-TSC 432 36.9 76.96 -14.23 324 27.7 76.43 -21.61 353 30.1 76.61 -19.12
KU 36.7 313 69.09 -17.07 25.0 21.7 67.94 -25.68 28.2 24.3 68.33 -22.77
MINETRANS_Cascade 33.9 28.6 67.49 -17.68 24.7 21.5 64.71 -26.34 27.2 234 65.65 -23.41
E2E Systems

MINETRANS_E2E (contrastive2) 45.0 383 74.83 -13.62 31.1 264 73.28 -22.03 349 29.6 73.81 -19.18
MINETRANS_E2E (contrastivel) 44.5 38.0 74.14 -13.92 31.0 264 72.90 -22.20 34.8 29.5 73.32 -19.40
MINETRANS_E2E (primary) 44.4 38.0 74.40 -13.86 31.1 26.4 73.00 -22.12 34.7 29.5 73.47 -19.32

Table 31: Official results of the automatic evaluation for the English to Chinese Speech-to-Speech Translation
Task.

System Translation Quality Score | Speech Quality Score | Overall
Cascade Systems

NPU-MSXF 3.70 3.98 3.84
XIAOMI 3.72 3.67 3.70
HW-TSC 3.58 3.75 3.67
MINETRANS_Cascade 3.16 3.26 3.21
KU 292 3.01 297
E2E Systems

MINETRANS_E2E (contrastive2) ‘ 3.58 3.50 3.54

Table 32: Official results of the human evaluation for the English to Chinese Speech-to-Speech Translation Task.
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B.6 Dialectal SLT

Tunisian Arabic—English (Unconstrained Condition)

test2 test3

Team System BLEU | bp | prl | chrF | TER | BLEU | bp | prl | chrF | TER
USTC primary 23,6 | 1.0 | 527 | 467 | 64.6 | 21.1 | 1.0 | 49.0 | 43.8 | 69.0
USTC contrastivel | 22.8 | 1.0 | 51.7 | 45.7 | 65.7 | 20.2 | 1.0 | 47.7 | 42.9 | 70.7
JHU contrastive5 | 21.6 | .99 | 50.7 | 450 | 669 | 19.1 | 1.0 | 46.6 | 41.9 | 72.3
JHU primary 212 | 1.0 | 50.0 | 448 | 67.7 | 187 | 1.0 | 46.0 | 41.9 | 73.1
JHU contrastive4 | 20.7 | 1.0 | 493 | 442 | 684 | 183 | 1.0 | 455 | 41.3 | 73.7
JHU contrastive3 | 199 | 98 | 49.0 | 43.0 | 68.7 | 182 | 1.0 | 45.5 | 40.5 | 73.1
JHU contrastivel | 194 | 99 | 482 | 424 | 69.8 | 17.1 | 1.0 | 443 | 39.7 | 749
JHU contrastive2 | 18.7 | 97 | 484 | 41.8 | 694 | 17.1 | 1.0 | 44.7 | 39.2 | 74.1
ON-TRAC | post-eval 182 | 1.0 459 | 427 | 738 | 163 | 1.0 | 41.6 | 40.3 | 79.6
GMU contrastivel | 15.0 | 1.0 | 414 | 384 | 782 | 134 | 1.0 | 37.2 | 36.1 | 839
GMU contrastive2 | 14.1 | 1.0 | 40.1 | 375 | 79.8 | 129 | 1.0 | 36.6 | 354 | 84.7
GMU primary 16.6 | 1.0 | 445|397 | 741 | 146 | 1.0 | 404 | 37.6 | 79.6
ON-TRAC | primary 7.0 1.0 | 27.3 | 364 | 86.9 6.2 1.0 | 242 | 343 | 92.0
2022 best:CMU 20.8 | .93 | 53.1 | 443 | 645 - - - - -

Table 33: Automatic evaluation results for the Dialect Speech Translation task, Unconstrained Condition. Systems
are ordered in terms of the official metric BLEU on test3. We also report brevity penalty (bp) and unigram precision
(prl) of BLEU, chrF, and TER.

Tunisian Arabic—English (Constrained Condition)
test2 test3

Team | System | BLEU | bp | prl | chrF | TER | BLEU | bp | prl | chrF | TER
USTC | primary | 20.5 | .99 | 499 | 43.6 | 67.6 18.1 1.0 | 45.7 | 40.8 | 73.1
JHU primary | 19.1 | .94 | 505 | 424 | 67.2 17.6 | 96 | 46.6 | 39.9 | 71.9
GMU | primary 5.0 1.0 | 20.3 | 21.9 | 102.2 4.5 1.0 | 18.4 | 20.7 | 105.5
2022 best:CMU 204 | 94 | 522 | 43.8 | 654 - - - -
baseline 11.1 | .88 | 40.0 | 31.9 | 77.8 104 | 90 | 36.6 | 29.9 | 814

Table 34: Automatic evaluation results for the Dialect Speech Translation task, Constrained Condition.

Tunisian Arabic ASR Automatic Evaluation Results

ASR System test2 WER| test2 CER| test3 WER| test3 CER|
Orig ‘ Norm | Orig ‘ Norm | Orig ‘ Norm | Orig ‘ Norm
JHU / constrained / primary 703 | 4377 | 30.7 | 22.7 | 740 | 449 | 33.1 | 24.8
JHU / unconstrained / primary 693 | 406 | 29.0 | 20.7 | 729 | 416 | 315 | 229
USTC / constrained / primary 495 | 40.8 | 242 | 209 | 523 | 432 | 27.1 | 23.8
USTC / unconstrained / primary 474 | 393 | 23.1 | 200 | 49.2 | 405 | 252 | 221
2022best:ON-TRAC/unconstrained | 65.7 | 41.5 | 28.1 | 21.1 - - - -

Table 35: Word Error Rate (WER) and Character Error Rate (CER) of the ASR component of submitted cascaded
systems on test2 and test3. The original version (Orig) matches the minimal text pre-processing provided by the
organizer’s data preparation scripts, and results in relatively high WER. As diagnosis, we ran additional Arabic-
specific normalization (Norm) for e.g. Alif, Ya, Ta-Marbuta on the hypotheses and transcripts before computing
WER/CER. We are grateful to Ahmed Ali for assistance on this.
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B.7 Low-Resource SLT

Irish—English (Constrained Condition)
Team | System | BLEU | chrF2
GMU | primary | 15.1 26.5

Table 36: Automatic evaluation results for the Irish to English task, Constrained Condition.

Irish—English (Unconstrained Condition)
Team System BLEU | chrF2
GMU primary 68.5 74.5
GMU | contrastivel | 77.4 81.6
GMU | contrastive2 | 15.1 26.5

Table 37: Automatic evaluation results for the Irish to English task, Unconstrained Condition.

Marathi—Hindi (Constrained Condition)
Team System BLEU | chrF2
GMU primary 33 16.8
SRI-B | primary 31.2 54.8
SRI-B | contrastive | 25.7 494

Table 38: Automatic evaluation results for the Marathi to Hindi task, Constrained Condition.

Marathi—Hindi (Unconstrained Condition)
Team System BLEU | chrF2
Alexa Al primary 28.6 494
Alexa Al | contrastivel | 25.6 46.3
Alexa Al | contrastive2 23 41.9
Alexa Al | contrastive3 | 28.4 49.1
Alexa Al | contrastive4 | 25.3 46.3
Alexa Al | contrastive5 19.6 39.9
BUT primary 39.6 63.3
BUT contrastive 28.6 54.4
GMU primary 7.7 23.8
GMU contrastivel 8.6 24.7
GMU contrastive2 59 20.3
SRI-B primary 324 55.5
SRI-B contrastive 29.8 53.2

Table 39: Automatic evaluation results for the Marathi to Hindi task, Unconstrained Condition.
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Pashto—French (Unconstrained Condition)

BLEU

Team System valid | test

ON-TRAC | primary 24.82 | 24.87
ON-TRAC | contrastivel | 23.38 | 23.87
GMU primary 11.99 | 16.87
GMU contrastivel | 11.27 | 15.24
ON-TRAC | contrastive2 | 12.26 | 15.18
ON-TRAC | contrastive3 | 12.16 | 15.07
GMU contrastive2 | 9.72 | 13.32

Table 40: Automatic evaluation results for the Pashto to French task, Unconstrained Condition.

Pashto—French (Constrained Condition)

BLEU
Team System valid | test
ON-TRAC | primary 14.52 | 15.56
ON-TRAC | contrastivel | 11.06 | 15.29
ON-TRAC | contrastive2 | 11.11 | 15.06
ON-TRAC | contrastive3 | 10.5 9.2
GMU primary 2.66 | 592

Table 41: Automatic evaluation results for the Pashto to French task, Constrained Condition.

Maltese—English (Unconstrained Condition)

Team System BLEU
UM-DFKI | primary 0.6
UM-DFKI | contrastivel 0.7
UM-DFKI | contrastive2 04
UM-DFKI | contrastive3 0.3
UM-DFKI | contrastive4 0.4

Table 42: Automatic evaluation results for the Maltese to English task, Unconstrained Condition.

Tamasheq—French (Constrained Condition)
System | BLEU | chrF2 | TER
primary | 0.48 | 19.57 | 106.23

Team
GMU

Table 43: Automatic evaluation results for the Tamasheq to French task, Constrained Condition.
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Tamasheq—French (Unconstrained Condition)

Team System BLEU | chrF2 | TER
NAVER primary 23.59 | 49.84 | 64.00
NAVER contrastivel | 21.31 | 48.15 | 66.41
NAVER contrastive2 | 18.73 | 46.11 | 70.32

ON-TRAC primary 15.88 | 43.88 | 73.85
ON-TRAC | contrastivel | 16.35 | 44.22 | 74.26
ON-TRAC | contrastive2 | 15.46 | 43.59 | 75.30
ON-TRAC | contrastive3 | 15.49 | 43.74 | 75.07
ON-TRAC | contrastive4 | 16.25 | 44.11 | 74.26
ON-TRAC | contrastive5 | 15.54 | 43.91 | 75.08
Alexa Al primary 9.30 | 32.29 | 81.25
Alexa Al | contrastivel | 8.87 | 32.04 | 81.03
Alexa AI | contrastive2 | 9.50 | 33.67 | 80.85
Alexa Al | contrastive3 | 9.28 | 32.86 | 82.33

GMU primary 8.03 | 33.03 | 87.81

GMU contrastivel 1.30 | 23.63 | 96.72

GMU contrastive2 | 2.10 | 24.33 | 94.58

Table 44: Automatic evaluation results for the Tamasheq to French task, Unconstrained Condition.

Quechua—Spanish (Constrained Condition)

Team System BLEU | chrF2
GMU primary 146 | 21.46
QUESPA primary 1.25 | 25.35
QUESPA | contrastivel | 0.13 10.53
QUESPA | contrastive2 | 0.11 10.63

Table 45: Automatic evaluation results for the Quechua to Spanish task, Constrained Condition. ChrF2 scores

were only taken into account for those systems that scored less than 5 points BLEU.

Quechua—Spanish (Unconstrained Condition)

Team System BLEU
GMU primary 1.78
GMU contrastivel 1.86
GMU contrastive2 1.63
NAVER primary 15.70
NAVER | contrastivel | 13.17
NAVER | contrastive2 | 15.55
QUESPA primary 15.36
QUESPA | contrastivel | 15.27
QUESPA | contrastive2 | 10.75

Table 46: Automatic evaluation results for the Quechua to Spanish task, Unconstrained Condition. ChrF2 scores

were only taken into account for those systems that scored less than 5 points BLEU.
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B.8 Formality Control for SLT

Model EN-KO EN-VI
BLEU COMET mAccC cAcc BLEU COMET mAcC cAccC
2 11.1 0.5044 28.5 55 43.2 0.6189 99 99
E COCOA (baseline)
= 11.1 0.5125 80.4 58 41.5 0.6021 98 99
=~
7 F 25.6 0.7512 89 100 51.3 0.7522 100 100
Z HW-TSC
8 IF 26.1 0.7367 100 100 49.8 0.7209 100 100
. 49 0.2110 78 99 26.7 0.3629 96 95
UMD (baseline)
IF 4.9 0.1697 98 99 25.3 0.3452 97 98
a
% F 25.4 0.7347 87 100 48.2 0.7214 100 100
£ HW-TSC
é IF 26.2 0.7218 100 100 48.3 0.7102 100 100
[
wn
4 26. 72 7 1 47. . 1
&  KUXUPSTAGE 6.6 0.7269 8 00 0 0.6685 99 00
‘z’ IF 27.1 0.7145 98 95 45.6 0.6373 99 100
-
UCSC F 23.3 0.5210 86 98 44.6 0.6771 99 98
IF 22.8 0.4724 98 96 43.5 0.6281 99 100

Table 47: Results for the Formality Track (Supervised Setting). Most systems perform well in this setting, though
MT quality on formal (F) tends to be higher than informal (IF)

Model EN-PT EN-RU
BLEU COMET mAcc cAcc BLEU COMET mAcCc cAcc
5 F 47.4 0.7337 100 100 36.5 0.6472 100 100
z. HW-TSC
= IF 47.9 0.7442 100 100 35.6 0.6442 100 100
=
W
Z
=
Q
. 27.3 0.4477 96 98 21.3 0.3492 96 92
UMD (baseline)
IF 30.9 0.4161 93 91 21.0 0.3475 84 85
a
E F 34.6 0.6089 99 99 354 0.6165 99 98
Z APPTEK
;g IF 42.4 0.6776 64 65 33.3 0.6026 98 97
H
z F 45.4 0.7737 100 100 33.7 0.5804 100 100
© HW-TSC
‘g IF 49.1 0.7845 100 100 324 0.5558 100 100
)
31.0 0.5251 100 100 25.8 0.4446 100 100
KUXUPSTAGE
IF 19.9 0.2486 68 90 26.3 0.4181 100 100
UCSC F 26.6 0.4048 90 91 18.4 -0.1713 99 79
IF 28.4 0.4252 58 42 14.9 -0.2766 52 67

Table 48: Results for the Formality Track (Zero-shot Setting). Appreciable differences in formality control exist
between formal (F) and informal (IF), suggesting that formality bias exists in participant systems.
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Abstract

We present the ACL 60/60 evaluation sets for
multilingual translation of ACL 2022 technical
presentations into 10 target languages. This
dataset enables further research into multilin-
gual speech translation under realistic record-
ing conditions with unsegmented audio and
domain-specific terminology, applying NLP
tools to text and speech in the technical domain,
and evaluating and improving model robustness
to diverse speaker demographics.

1 Introduction

The NLP and speech communities are rapidly ex-
panding, which has motivated increased interest in
multilingual scientific communication and accessi-
bility. From the automatic captioning at NAACL
2019 provided by Microsoft to the current ACL
60-60 initiative' for the 60th anniversary of ACL
at 2022, it is clear that transcription and translation
in the technical domain is needed, desired, and still
a disproportionate challenge for current models
compared to standard datasets in these spaces.

Translating technical presentations presents chal-
lenging conditions, from domain-specific terminol-
ogy and adaptation, to recordings often captured
with a laptop microphone and light background
noise, diverse speaker demographics as well as
unsegmented speech typically 10-60 minutes in
duration. We have curated evaluation sets from
presentations at ACL 2022 which have been pro-
fessionally transcribed and translated with the sup-
port of ACL and the 60-60 initiative. In this pa-
per we describe the methodology to create this
dataset, considerations and methods to evaluate
speech translation models with it, and open chal-
lenges we believe this dataset may support research
towards. We release all data and intermediate steps
to support further research in this space.

lh’ctps: //www.2022.aclweb.org/dispecialinitiative
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B fosmes prorert

< én: In this presentation..

de: In dieser Prasentation...
zh : FERNETRS. ..

Figure 1: Multilingual translation of ACL presentations.

We present the ACL 60/60 evaluation sets to en-
able greater development of tools by the field for
the field. Specifically, we hope that this data en-
ables further research into speech translation and
other NLP applications in the technical domain
with resegmentation and terminology, given a di-
verse speaker set and realistic recording conditions,
with the goal of increased accessibility and multi-
linguality. Our dataset is publicly available through
the ACL Anthology.”

2 Evaluation under realistic conditions

To evaluate transcription and translation under real-
istic conditions may require different metrics than
with e.g. provided segmentation. Here we present
the necessary metrics in order to discuss the dataset
creation process.

2.1 Resegmentation

While most offline speech translation models are
trained with provided segmentation, in an applica-
tion setting segmentation is unlikely to be provided.

2https ://aclanthology.org/2023.iwslt-1.2
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Most models are typically unable to maintain out-
put quality given audio of typical talk lengths (10+
minutes), necessitating the use of automatic seg-
mentation methods. In order to evaluate output
with variable segmentation, resegmentation to a
fixed reference is necessary.

The standard tool within the field for many years
has been mwerSegmenter (Matusov et al., 2005),
which resegments model output to match a refer-
ence segmentation for downstream evaluation with
various metrics. This is done by dynamically re-
segmenting the output using a given tokenization
to minimize word error rate to the reference.’ We
use mwerSegmenter for all scores in this paper and
suggest that resegmentation be the scoring standard
for the ACL 60/60 dataset.

2.2 Evaluation metrics

We compare a variety of evaluation metrics to ana-
lyze both transcription and translation quality using
the evaluation sets, as well as the results of interme-
diate steps in corpus creation such as post-editing.

For translation, we compare chrF (Popovié,
2015) which is tokenization-agnostic and more ap-
propriate for a wider array of target languages than
BLEU; BLEU (Papineni et al., 2002) as computed
by SACREBLEU (Post, 2018); and the model-
based metric COMET (Rei et al., 2020), which
often has higher correlation with human judge-
ments (Mathur et al., 2020) though is limited by
language coverage in pretrained models. For BLEU
we use the suggested language-specific tokenizers
in SACREBLEU for our non-space delimited tar-
get languages, Japanese (MeCab*) and Chinese
(character-level).

To analyze both automatic and post-editing tran-
scription quality, we use word error rate (WER).
We note that we use case-sensitive and punctuation-
sensitive WER here as these are both maintained in
system output during dataset creation in order to be
post-edited and translated. For downstream evalua-
tion of ASR model quality using the final dataset,
it may be desired to compute WER without case
and without punctuation; if so, the scores would
not be directly comparable to those presented here.
We also use translation error rate (TER) (Snover
et al., 2006) to assess the expected level of editing
necessary to match the final reference quality.’

3We use word-level tokenization for all languages except
Japanese and Chinese here, where we use character-level.
4h'ctps ://taku910.github.io/mecab/

We calculate TER with --ter-normalized and
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We caution against using any one translation
metric in isolation, and suggest chrF and COMET
as the standard evaluation metrics for this dataset.

3 Creating the ACL 60/60 evaluation sets

3.1 Languages

All data is originally spoken in English and then
transcribed and translated to ten diverse languages
from the 60/60 initiative for which publicly avail-
able speech translation corpora are available (see
Table 5: § A.3): Arabic, Mandarin Chinese, Dutch,
French, German, Japanese, Farsi, Portuguese, Rus-
sian, and Turkish. The resulting dataset contains
three-way parallel (speech, transcripts, transla-
tions) one-to-many data for ten language pairs, and
multi-way parallel text data for 100 language pairs.

3.2 Data selection

Data was selected from the ACL 2022 paper pre-
sentations for which precorded audio or video pre-
sentations were provided to the ACL Anthology.
Talks were selected such that each of the two evalu-
ation sets, development and evaluation, would have
approximately one hour total duration. Oral pre-
sentations were advised to be up to 12 minutes per
recording, resulting in 5 talks for each set with rel-
atively balanced durations of ~11.5 minutes each.

From the 324 available recordings, the final 10
were selected in order to balance speaker demo-
graphics, accents, and talk content, while lightly
controlling for recording conditions. The major-
ity of recordings were created using laptop micro-
phones in quiet conditions, but background noise,
microphone feedback, speech rate and/or volume
in some cases affected understanding of the content.
We selected talks with representative but minimal
noise where conditions did not affect understand-
ing of the content. We aimed for a gender balance
representative of conference participation,® result-
ing in a 3:7 female:male speaker ratio. This is also
a global field with a wide variety of native and non-
native English accents, which remains a necessary
challenge for speech models to address to mitigate
performance biases (Sanabria et al., 2023; Feng
et al., 2021; Koenecke et al., 2020; Tatman and
Kasten, 2017). Talks were chosen and assigned to
each set to maximize accent diversity, aiming for
L1s from all continents with language families fre-

--ter-asian-support in SACREBLEU.

SAggregate conference participation statistics provided by
ACL 2022; see §A.2.
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Figure 2: Distribution of English segment lengths via speech duration (seconds) and text length (word count) for
each of three segmentations: VAD, subtitles, and sentences.

quently represented in the ACL community while
balancing topic diversity and gender. We note na-
tive language and country where available. Talks
were chosen to cover a diverse set of tracks and
topics and therefore diverse technical vocabulary
representative of the needs of the field. Where pre-
sentations were chosen within the same track, they
covered different focuses and methodology, e.g.
math word problems versus release note generation
or few-shot adaptation for structured data. Meta-
data for all talks with exact durations and track and
speaker annotations are shown in Table 3 in § A.1.
Holding out speakers and topics per set opti-
mizes for overall system generalization but reduces
the match between dev and eval sets; this e.g. re-
duces the benefit of finetuning on the dev set to
maximize test set performance and overfitting the
model or chosen hyperparameters to the dev set
will adversely affect test set performance. How-
ever, high performance on both sets is more likely
to indicate generalizable systems and representa-
tive performance beyond these data points than if
the dev and eval data were more closely matched.

3.3 Automatic transcription

The first pass through the data used automatic seg-
mentation and transcription to provide initial tran-
scripts. We used the Azure API speech-to-text
service,” which has the best cost and quality bal-
ance of currently available models. In addition to
transcription, the service performs speaker diariza-
tion, with implicit voice activity detection (VAD),
segmenting the initially ~11.5 minute audio files
into segments of approximately 30 seconds or less

"https://azure.microsoft.com/en-us/products/
cognitive-services/speech-to-text
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based on pauses, speech, and non-speech phenom-
ena. Figure 2 shows the resulting distribution of
segment lengths. Evaluating these initial automatic
transcripts against the final released version with
resegmentation (§2.1), the automatic transcription
yielded a WER of 15.4 and 22.4 for the develop-
ment and evaluation sets, respectively.

3.4 Human post-editing: Transcription

We contracted with aiXplain Inc. to professionally
post-edit the ASR output. There was a three tier
review process: an initial annotator post-edited per
segment, followed by a quality assurance (QA) an-
notator who went through each full talk to ensure
quality and consistency, and then finally 10-20%
of the segments were randomly chosen for a final
check. In addition to semantic content, annotators
may theoretically also fix segmentation boundaries
but in practice this rarely occurs. The annotators
provided additional information about the speak-
ers, namely gender (male, female) and age (child,
young adult, adult, elderly). The annotators were
also shown the video of the presentation to aid them
ing recognizing technical terms, which may appear
in the slides. Disfluencies were standardized such
that false starts and repetitions were kept where
there were perceivable pauses between them, and
two hesitation spelling variations (ah, um) were
used. The annotator guidelines and LabelStudio
interface are shown in § A.4. After the professional
post-editing pass, a domain expert verified and cor-
rected the technical terms.

Post-editing analysis. ASR output is strongly
monotonic with respect to the original speech, and
accordingly most post-edits are for incorrectly tran-


https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text
https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text
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Figure 3: Sample ASR errors from dev using SCLITE.
Corrections are emphasized with CASE.

scribed words, case, and punctuation. 93% of
words were correctly transcribed by the initial ASR
pass. Spurious punctuation and casing in the ASR
output (ex ‘“Thank. You.”) accounted for 43% of the
errors captured by WER. Setting punctuation and
case aside, in the professional post-editing pass,
60% of sentences had at least one correction made.
The majority of post-edits were word-level sub-
stitutions for incorrectly transcribed words (62%).
Dropped words were not common, with only 1.6%
of words dropped by the ASR model and later in-
serted. Slightly more common (1.8%) were inser-
tions due to words incorrectly transcribed as multi-
ple tokens by the ASR system, and later corrected.
Examples are shown in Figure 3.

Further corrections by a domain expert were
made for 3% of words. While the majority were
corrections to terminology requiring technical con-
text (‘CONEL’ — ‘CONLL’ or ‘position or’ — ‘po-
sitional’), some fixes were for subtle number and
tense changes in the ASR transcription possibly in-
fluenced by recording conditions or pronunciation.

Technical terms. The subset of technical terms
appearing in the terminology lists created by the
60-60 initiative were automatically tagged on the
source side (see Figure 4). These lists were not
exhaustive but provide an initial keyword set to
bootstrap identification and translation of technical
terms and their evaluation, and which future work
may find beneficial.

Technical terms comprised the majority of ASR
errors. 86% of the tagged terminology were cor-
rectly transcribed the ASR model, 8% were cor-
rected by the professional post-editors, and the re-
maining 6% were corrected by a domain expert.

3.5 Sentence segmentation

While it is common in speech corpora to segment
based on voice activity detection or subtitle-like cri-
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And in fact, [automatically] [detecting] [lexical]
borrowings ah has proven to be useful [for] [NLP]
[downstream] [tasks] such as [parsing], [text]-to-
[speech] synthesis or [machine translation].

Figure 4: Example of tagged terminology from dev.
Terminology lists were not exhaustive; [text-to-speech]
did not appear, leading [text] and [speech] to be tagged
separately.

teria, this may result in segments which are not par-
allel across languages (in the case of multilingual
speech), which are too short to translate without
additional context, or which are too long for effec-
tive system evaluation. For a multilingual dataset
intended to be multi-way parallel and to be used
for translation, it is critical to have consistent seg-
mentation across all languages and for all segments
to contain the necessary context to translate to the
desired target languages.

The VAD segments facilitated transcription, but
resulted in a wide distribution of segment lengths,
some just one to two words long, and others con-
taining multiple sentences, potentially skewing
downstream evaluation metrics and providing a
mismatch to common training conditions. One
option would be to subdivide the segments using
subtitle guidelines,® where those segments which
do not conform to particular length guidelines are
realigned into smaller segments which is done us-
ing forced alignment. However, subtitle segments
often contain partial sentences, which, particularly
when including languages with different word or-
ders or degrees of reordering from the source lan-
guage (English), may place verbs across segment
boundaries for some languages and not others. Sen-
tences, then, may be a more appropriate unit for
multi-way parallel segments. We resegmented the
final post-edited English transcriptions into sen-
tences manually to avoid noise from currently avail-
able tools. Examples of all three segmentations
(VAD, subtitles, and sentences) are shown in Fig-
ure 12 in § A.8. To ensure the speech and text
were correctly aligned given the final sentence seg-
ments, they were re-force aligned using WHISPER-
TIMESTAMPED (Louradour, 2023), an extension
of OpenAl’s Whisper model (Radford et al., 2022)
which uses DTW (Giorgino, 2009) to time align at
the word level, and were manually rechecked by
the annotators.

8Subtitle guidelines are shown in § A.7.



Metric ar de fa fr ja nl pt ru tr zh
chrF 75.3 72.8 54.9 80.0 56.9 82.7 82.3 59.3 69.0 60.5
§ BLEU 54.1 48.3 253 63.0 63.6 65.9 30.5 39.1
COMET 86.2 83.6 76.8 84.5 89.1 88.1 87.9 82.5 85.9 87.4
. chrF 77.2 71.7 56.3 83.7 53.6 86.6 84.8 65.3 77.0 62.7
§ BLEU 554 48.5 271 68.3 71.5 68.7 39.4 51.6
COMET 86.2 83.6 79.5 84.5 89.1 88.1 87.9 82.5 85.9 87.4

Table 1: Evaluating the initial commercial MT from ground-truth transcripts against the final released references.

BLEU scores in

We compare the distribution of segment lengths
for each of the three approaches (VAD, subtitles,
and sentences) in terms of both duration (seconds)
and number of words (English) in Figure 2. VAD
results in the most uneven distribution, with seg-
ments ranging from <1 second to >30 seconds. Sub-
titles result in more uniform but distinctly shorter
segments, with 58% containing less than 10 words
and 19% shorter than two seconds, likely too short
for some downstream tasks or metrics. Sentences
result in less extreme segment lengths. Examples
of each segmentation are shown in § A.8. The final
data contains 468 sentences in the development set
and 416 sentences in the evaluation set.

3.6 Machine translation

The first translation pass used publicly available
bilingual MT models to translate the final sentence
segments. We used the ModernMT API° for the
9 of 10 language pairs supported, and the Azure
API'? for English-Farsi. We evaluate the commer-
cial machine translation output against the final
released translation references (§3.7) using the met-
rics discussed in §2.2, shown in Table 1.

Each metric suggests a different story about
translation quality and the degree to which it is
language-specific. While COMET suggests rel-
atively consistent performance across languages,
chrF and BLEU do not. chrF and BLEU sug-
gest significantly worse performance for a subset
of target languages, including all but one of the
non-Latin script and non-Indo European languages.
BLEU yields 1.7x greater variance than chrF. By
all metrics, though, MT quality was consistent be-
tween the development and evaluation sets. We see
in the next section that the amount of post-editing
required to create the final references, however, is
9h’ctps: //www.modernmt.com/api/

Ohttps://azure.microsoft.com/en-us/products/
cognitive-services/translator
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are calculated using language-specific tokenization (ja) or at the character-level (zh); see §2.2.

not necessarily indicated by these metrics.

3.7 Human post-editing: Translation

Post-editing has become the industry standard due
its increased productivity, typically reducing pro-
cessing time and cognitive load compared to direct
translation, particularly for domain-specific texts
(O’Brien, 2007; Groves and Schmidtke, 2009; Tat-
sumi, 2009; Plitt and Masselot, 2010).

We contracted with Translated to professionally
post-edit the MT output. There was a two tier re-
view process: an initial annotator who was a native
speaker of the target language post-edited per seg-
ment, followed by a second to review the output
and consistency of the first. Annotator guidelines
and the post-editing interface are shown in § A.5.

Technical terms. Terminology was not handled
separately during the MT step nor automatically
tagged, given that the MT systems may omit or
incorrectly translate technical terms. We did not
use constrained decoding given the terminology
lists translations as their validity could be context-
dependent and some terms had multiple possible
translations. Instead, translation post-editors were
instructed to correct the translations of tagged ter-
minology on the source if they were not maintained
and then tag the appropriate target translations
for each source tagged source span. Capitalized
acronyms and terminology not on the lists and un-
known to the translators was left in English.

Post-editing analysis. While the metrics in the
previous section give a sense for the automatic
translation quality, they do not necessarily reflect
the effort required to post-edit the translations to
final reference quality. Using TER to assess the
degree of post-editing necessary, we see in Fig-
ure 5 that this varies by language. Most noticeably,
we see that Farsi, Russian, Japanese as target lan-
guages required the highest amount of post-editing.


https://www.modernmt.com/api/
https://azure.microsoft.com/en-us/products/cognitive-services/translator
https://azure.microsoft.com/en-us/products/cognitive-services/translator
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Figure 5: Estimated translation post-editing effort re-
quired per target language, as measured by TER.

For Farsi and Japanese, we see that this is pre-
dominantly due to reordering. Isolating reorder-
ing from semantic corrections by looking only at
those tokens!! which did not need to be corrected,
we use Levenshtein distance to assess the degree
of reordering from the MT output required. We
observed a strong bias towards source language
word order in the machine translation output, caus-
ing a greater degree of post-editing for languages
with differing word orders. Figure 6 shows that
reordering requirements are moderately correlated
with overall post-editing effort for most languages
(p = 0.41), while TER is only weakly suggested
by COMET (p = 0.29) and is negatively correlated
with chrF and BLEU (—0.63, —0.21 respectively).

For most target languages, there was no signifi-
cant difference in post-editing effort between dev
and test, but where there was a difference it was the
dev talks that required additional editing, most no-
ticeably for Turkish and Russian and to a lesser de-
gree Dutch. Dividing the data into individual talks,
which each vary in content within the technical do-
main, there was some variation in the quality of the
first-pass MT (Figure 7). We found that which talks
require similar levels of post-editing is moderately
to strongly correlated across languages, suggesting
this was due to topic rather than language, with the

"'Characters rather than words were used for this analysis for
Japanese and Chinese.
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Figure 6: Degree of reordering done in MT post-editing.

exception of Farsi and Japanese (Figure 8). This
correlation does not appear to be influenced by lan-
guage family and was not related to the proportion
of tagged terminology per talk. For Russian and
Turkish, a particular talk skewed overall dev TER,
possibly due to a greater proportion of polysemous
terms with domain-specific meaning in that area.

Terminology. Tagged terminology was more of-
ten correctly automatically transcribed than trans-
lated. Between 70-75% of the tagged spans were
translated correctly by the initial MT model de-
pending on the target language, as measured by an
exact match with the final tagged post-edited span.
The remaining 25-30% were manually corrected
by the post-editors. In addition, 2-5% of words
overall were left in English, predominantly made
up of additional terminology and names.

4 Challenges to Address with ACL 60/60

4.1 Segmentation

Speech translation datasets customarily provide a
segmentation for translation and evaluation, seg-
mented either manually (e.g. CoVoST) or automat-
ically (e.g. MuST-C). In realistic use cases, such
segmentation is unavailable and long audio cannot
be processed directly, resulting in mismatched con-
ditions at inference time. There can be a noticeable
performance gap between manual segmentation
and automatic methods (Tsiamas et al., 2022).

We illustrate the impact of different speech seg-
mentations on downstream transcription and trans-
lation quality by comparing manual sentence seg-
mentation to the initial VAD segments as well as
to SHAS (Tsiamas et al., 2022), using the top line
commercial ASR and MT systems used during the
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Figure 7: Range in TER by talk per language.

dataset creation pipeline. As seen in Table 2,'2
under certain circumstances automatic segmenta-
tion methods can perform as well as manual sen-
tence segmentation, though this is not always the
case and small resulting differences in ASR perfor-
mance may cascade into larger performance gaps
in downstream MT, meriting further research.

Variation due to segmentation also depends on
model training conditions. Models are typically
optimized for the segment lengths observed in
training and/or may use additional internal seg-
mentation. For example, when we compare the
Whisper 1 srge model (Radford et al., 2022) which
is trained on longer segments, sentences are sub-
optimal compared to SHAS and VAD (0.1-0.9
WER), and when they are further segmented up
to 4 by its internal VAD this cascades to dispro-
portionately worse downstream MT performance
(by up to 8 chrF) than with the Azure ASR.

ASR MT
Segmentation dev test dev test
Manual sentences 15.2 214 69.4 71.5
Commercial VAD 154 224 62.0 59.6
SHAS 16.4 21.5 61.9 60.4

Table 2: Comparison between manual sentence segmen-
tation and high quality automatic segmentation for ASR
and cascaded ST in WER and avg. chrF, respectively.

Segmentation is an important open challenge,
and we suggest that this dataset be used to evalu-
ate segmentation by making the dataset standard
scoring with resegmentation.

12¢hrF for individual languages is shown in Table 6.
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Figure 8: Correlation in TER across languages.

4.2 Demographic fairness

The field is diverse and rapidly growing with a wide
variety of speaker demographics and native and
non-native English accents. As we train increas-
ingly large and multilingual models it is important
to evaluate their fairness to ensure any biases we
may find decrease rather than increase over time,
which we believe this dataset may help with.

The variety of speaker demographics in both the
field and these evaluation sets remain disproportion-
ately challenging to current ASR models. Looking
at the average WER among talks of each gender,
we see a margin of 10.5. 15% of dev sentences
and 26% of eval sentences were misclassified as
non-English languages when using the multilingual
Whisper pasg model, showing a bias against varied
pronunciations and L1s that it is necessary to ad-
dress when pursuing multilingual modelling. WER
is 23% better when the model is prompted to gen-
erate English only, however, there is still a further
16% gap to the English-only BASE model. Mov-
ing to the larger multilingual model, the discrep-
ancy in performance with and without language
prompting becomes 2.4x larger, though overall
performance improves. At worst, the AWER be-
tween speakers is 62.2, and at best, 8.0, highlight-
ing a significant discrepancy which needs to be
improved.

Demographic fairness is an important issue
which requires targeted research to address. We
hope these evaluations sets may facilitate further
research in this space, despite their small size.

4.3 Domain adaptation and terminology

Terminology. Constrained decoding of techni-
cal terms or domain-specific translations is an area



of active research (Hu et al., 2019; Post and Vi-
lar, 2018; Hokamp and Liu, 2017). The terminol-
ogy lists were not exhaustive, containing just over
250 terms, but provide an initial keyword set to
bootstrap identification and translation of technical
terms in context and their evaluation, which future
work may find beneficial.

We highlight the reduction in terminology re-
call between the strong ASR and MT systems
used in the dataset creation pipeline below in Fig-
ure 9. It is clear that even commercial systems
struggle with domain-specific terminology particu-
larly without adaptation. While there are discrep-
ancies across language pairs, terminology recall is
strongly correlated with overall translation perfor-
mance (p = 0.8) as measured by chrF.

Metric
—— terminology: MT

terminology: ASR

100
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80
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401
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Language
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Figure 9: Terminology recall of ASR vs MT, with over-
all translation performance shown behind (chrF).

Lightweight domain adaptation. There are few
publicly available datasets with technical content,
and fewer translated. While it is possible to scrape
in-domain material e.g. from the ACL Anthology,
this would be in the source language (English) only
rather than the target languages. While only having
target-domain data in the source language is a real-
istic scenario, it is not the setting typically found
in current research or approaches, and highlights
the need for new methods for domain adaptation
which can make use of this data. We additionally
provide paper titles and abstracts, which are likely
to contain both particularly important vocabulary
and cue the talk topic. We hope this data may prove
beneficial for lightweight methods to adapt to the
technical domain or specific talk settings or to lexi-
cally constrain or prompt particular translations.
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5 Related work

Previous work has studied data from the ACL An-
thology for term mining and identification (Schu-
mann and Martinez Alonso, 2018; Jin et al., 2013)
and concept relation (Gabor et al., 2016) in the
scientific domain.

Few speech translation datasets in the technical
domain exist but those that do such as the QCRI
Educational Corpus (Abdelali et al., 2014; Guzman
et al., 2013) have primarily targeted educational
lectures and videos. Additional datasets specifi-
cally for speech translation evaluation (Conneau
et al., 2023) are primarily ‘general domain.’

Significant previous work has studied various
aspects of translation post-editing, including post-
editing effort (Scarton et al., 2019), evaluating post-
editing quality and reference bias (Bentivogli et al.,
2018), bias from the initial MT quality and output
patterns (Zouhar et al., 2021; Picinini and Ueffing,
2017), and the the efficacy of post-editing in highly
technical domains (Pinnis et al., 2016) and resulting
translation biases (éulo and Nitzke, 2016).

The impact of automatic segmentation quality
on various ST metrics has been evaluated in recent
IWSLT shared tasks (Ansari et al., 2020; Anasta-
sopoulos et al., 2021, 2022) and research (Tsiamas
et al., 2022; Sen et al., 2022; Ansari et al., 2021)
using other datasets (TED) with longer reference
segmentations than ours. With longer sequences
there is greater potential for variation, and past cam-
paigns have observed larger differences between
segmentations than seen here and even improve-
ments over the provided segmentation. Significant
additional work has been done in the simultaneous
translation space, which we do not address here.

6 Conclusions

We introduced a new dataset to evaluate multilin-
gual speech translation from English into ten target
languages specifically in the technical NLP domain.
We have discussed in detail the steps to create the
corpus and the tools and considerations required.
We have also provided a further view into evalua-
tion methodology mimicking realistic conditions
where segmentation is not provided. We hope that
this dataset may be useful for the field to study the
effectiveness of the tools we develop both for trans-
lation and additional applications in the technical
domain in an increasingly multilingual space.



Limitations

While we have done our best to create high-quality
evaluation data, there are limitations that should be
kept in mind when using these datasets. It is known
that creating translations by post-editing may bias
data towards the output of the MT systems used
for initial translations; however, many transcription
and translation vendors now exclusively use post-
editing rather than translation from scratch and so
direct translation may not be an option in all cases.
This could influence metrics toward similar MT
systems. The presented evaluation sets are moder-
ately sized compared to datasets in other domains
with plentiful mined data, and may be best used
in conjunction by reporting on both the develop-
ment and evaluation sets for statistical significance.
The evaluation sets also have a necessarily limited
set of speakers which may not be fully representa-
tive. Systems which tune to the development set
run the risk of over-fitting to specific speakers or
content. We do not perform a comparison to hu-
man evaluation here, but refer interested readers to
the IWSLT’23 evaluation campaign findings paper
which runs this comparison for a variety of systems
with the ACL 60/60 data (Agarwal et al., 2023).

Ethical Considerations

This dataset is constructed from a small set of
speakers where each speaker may be the only rep-
resentative of certain cross-sectional axes, and as
such, even reporting aggregate metadata may break
anonymity. While we do not distribute speaker an-
notations with the data some information is inher-
ently recoverable due to the link to the Anthology.
We nonetheless believe this data will be beneficial
to the community in order to study language pro-
cessing on technical data, and it is necessary to
have a diverse evaluation set to provide a more real-
istic and representative measure for generalization.
It is difficult and costly to construct datasets with
human-edited transcripts and translations and this
was the largest set possible to collect. Post-editors
were compensated with professional wages.
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A Appendix
A.1 Additional Metadata for ACL 60/60 Evaluation Sets

Below we list the duration for talks in the evaluation sets, along with additional demographic metadata
about the presenting author (speaker) and content (conference track). Conference tracks are taken from the
ACL 2022 handbook. Gender annotations were checked with speakers’ listed pronouns'? and validated
by speakers where available. For speaker demographics and accent we list L1 and native country where
available, as well as country of affiliation as a rough proxy.

Gender L1 Country Affiliation Time Track
M Kinyarwanda Rwanda USA 0:11:35 Theme: Language Diversity (Best Paper)
M — — USA 0:11:35 Dialogue and Interactive Systems
F Spanish Spain Spain 0:12:17 Resources and Evaluation
F Marathi India USA 0:12:09 Question Answering
M Polish Poland  Poland 0:09:37 Machine Learning for NLP
0:57:13 Total development set duration
M Chinese China China 0:12:03 NLP Applications
M — Belgium Netherlands 0:12:02 Resources and Evaluation
F Romanian Romania Germany 0:09:22 Language Grounding, Speech and Multimodality
M Japanese Japan Japan 0:14:02 NLP Applications
M Hebrew Israel Israel 0:11:53 NLP Applications
0:59:22 Total evaluation set duration

Table 3: Additional metadata for talks in the evaluation sets.

A.2 ACL 2022 Conference Participation Statistics

Aggregate statistics for self-identified gender as listed on conference registrations were provided by ACL.

Gender # %
Woman 909 28.7
Man 2164 68.3
Non-binary / Genderqueer / Third gender 14 <1
Genderfluid / Gender non-confirming <10 <1
Prefer not to say 77 2.4
Specify your own <10 <1
TOTAL 3170 100

Table 4: Aggregate statistics on gender of ACL 2022 conference participants.

BThough we note pronouns do not always indicate gender.
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A.3 Publicly Available Corpora

Below are the current publicly available multi-way parallel speech translation corpora with English as the
speech source. We note that for MuST-C not all target languages are available in all versions of the corpus
as successive versions added additional language coverage. For full coverage v1.2 or above is required.

Corpus Src Tgt
MuST-C (Di Gangi et al., 2019) en all (10) ar, de, fa, fr, ja, nl, pt, ru, tr, zh
CoVoST (Wang et al., 2020) en all (10) ar, de, fa, fr, ja, nl, pt, ru, tr, zh

Europarl-ST (Iranzo-Sanchez et al., 2020) en some (4) de, fr, pt, tr

Table 5: Current publicly available aligned speech translation corpora covering the ACL 60/60 language pairs.
Target languages are abbreviated using ISO 639-1 codes as follows — Arabic: ar, German: de, Farsi: fa, French: fr,
Japanese: ja, Dutch: nl, Portuguese: pt, Russian: ru, Turkish: tr, Mandarin Chinese: zh.

A.4 Transcription Post-editing Guidelines and Interface

The following guidelines were used for transcription post-editing by aiXplain. The acceptance criterion
was word accuracy >95%.

* Accuracy. Only type the words that are spoken in the audio file. Phrases or words you don’t
understand should NOT be omitted. Instead, they should be annotated using the label “#Unclear”.

» Keep everything verbatim. Include every utterance and sound exactly as you hear. All filler words
should be included (ex. #ah, #hmm). If the user corrects his/her self, all the utterances should be
transcribed and corrected words need to preceded with a # mark (ex. She says #said that).

* Do not paraphrase. Do not correct the speaker’s grammar nor rearrange words. Also, do not cut
words that you think are off-topic or irrelevant. Any words not spoken should not be included. Type
the actual words spoken. If the speaker makes a grammatical mistake, the transcript must reflect the
mistake (ex. If the speaker says: “he were”, it should be transcribed as is without correction).

* Repeat repeated words in the transcript. For example, if the user says: I I said, you must include both
instances of 1.

* Do not add additional information such as page numbers, job numbers, titles or your comments in
your submission.

* Foreign words should be transliterated using Latin letters.

* All abbreviations need to be spelled out. For example, doctor should NOT be spelled as Dr. Similarly,
percent should NOT be spelled as %.

 All numbers and special symbols (ex.: %, $, +, @, =, etc.), or combinations of both must be spelled
out as words, and must match what the speaker says exactly.

* All proper names (ex. Google, NATO, Paris) should be transliterated in English.

* Proper punctuation needs to be placed in the text (ex. He, the boy, .). Please pay special attention
and do not miss/omit these punctuation marks: , . 7 ! : )(

* Personally identifiable information (like phone number, address, IDs) should be marked in the text as
<PII></PII>. For example: My address is <PII>address</PII>

* Use double dashes “--” to indicate truncated words, attached whether at the beginning or the end of
the word (ex. transfor—).
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Figure 10: LabelStudio interface for transcription post-editing.

A.5 Translation Post-editing Instructions and Interface

The translation post-editing task was carried out in Mateca

t14

, an open-source CAT tool that allows

annotators to collaborate and get suggestions from ModernMT in real-time. Matecat also offers an
embedded glossary feature that ensures effective and consistent terminology management (as shown in
the interface image in Figure 11 below, featuring Matecat glossary suggestions).

The following guidelines were used for translation post-editing:

* Any term found in the 60-60 terminologies list, should be translated using the translation in the

terminologies list.

* Any abbreviation if not found in the terminologies list, should be kept it in the English form

* The terms in the terminologies list may contain one or more translation for each term separated by
‘::’. The translator should pick the proper one based on the context

* If the translator thinks that none of the given translations for a specific term makes sense in the given
context, the translators can use a better translation if they are very confident. If not very confident,

keep the word in the English form

14https ://site.matecat.com/
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Well, [lexical] borrowing is basically the incorporation of [words] from one [language] into another [language] ) Eh bien, 'emprunt [lexical] est fondamentalement I'incorporation de [mots] d'une [langue] dans une autre

[langue).
B

Glossary (5)

[lexical] [lexicale]
[words] [mots]
[word] [mot]

[language] {langue]

Figure 11: Matecat interface for translation post-editing.

A.6 Segmentation Comparison

Set  Segmentation ar de fa fr ja nl pt ru tr zh  Avg.
Sentences 66.9 68.7 534 739 478 743 740 550 624 504 62.7

§ Commercial VAD 66.6 68.5 527 74.1 46.2 73.6 7377 539 60.6 49.8 62.0
SHAS 66.5 68.6 528 737 469 73.8 735 543 599 497 62.0

. Sentences 64.0 66.1 513 69.0 439 710 719 558 638 460 60.3
§ Commercial VAD 63.5 663 51.1 69.0 43.7 704 720 55.1 629 47.1 60.1
SHAS 644 664 515 69.6 420 714 724 557 63.1 454 60.2

Table 6: Cascaded ST by language for different source speech segmentations, resegmented and scored with chrF.

A.7 Subtitle Guidelines

Subtitle guidelines following industry standards, see for example Netflix'> and TED!®:

* No one segment is allowed to be longer than 30 seconds.
» Each line can not be longer than 42 characters.
¢ A maximum of 2 lines of text can be shown on screen at once.

* The subtitle reading speed should kept to a maximum of ~20 characters per second.'”

If one of the segments created by the VAD does not adhere to the above guidelines, an English model is
used to force alignment the long audio segment and its transcript to get the timestamp of each token, and
then the segment is split into shorter subsegments. Note that these guidelines are automatically applied;
the above means that if a VAD segment conforms to these guidelines it will not be resegmented, and
subtitle segments may differ from manually created subtitles were semantic coherence may be prioritized
over longer segments within these guidelines, or text may be lightly changed from what is spoken to
optimize subtitle quality (here not allowed).

BShttps://partnerhelp.netflixstudios.com/hc/en-us/articles/217350977-English-Timed-Text-Style-Guide
16ht‘cps://www.'ced.com/participate/translate/subtitling—tips
"Varies by program audience, commonly between 17 and 21.
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A.8 Segmentation Examples

Examples of each transcript segmentation approach discussed (VAD, subtitles, and sentences) for sample
data from the development set. Examples were chosen to show segments from the longest and shortest
VAD quartiles, and the resulting subtitles following subtitle guidelines from § A.7.

VAD

Subtities

Sentences

hology that is by most morphologically rich
byte pair ding. ization algorithm that I used
cannot extract the exact subword lexical units, meaning the morphemes, which
are needed for effective representation. For example, here we have three
Kinyarwanda words that have several morphemes in them, but the BPE
algorithms cannot extract them. This is because some morphological rules

Due to the complex
1 the ubiqui

produce different surface forms that hide the exact lexical information, and
BPE, which is solely based on the surface forms, does not have access to this
lexical model.

VAD

Due to the complex morphology that is
ically ricl

Due to the complex morphology that is expressed by most morphologically rich
the ubiqui i i kenizati

d by most hol

languages, the ubiquitous byte pair
encoding tokenization algorithm that I

used cannot extract the exact subword
lexical units, meaning the

byte pair algorithm that I used
cannot extract the exact subword lexical units, meaning the morphemes, which
are needed for effective representation.

For example, here we have three Kinyarwanda words that have several
morphemes in them, but the BPE algorithms cannot extract them.

which are needed for effective

representation. For example, here we have

This is because some morphological rules produce different surface forms that
hide the exact lexical information, and BPE, which is solely based on the
surface forms, does not have access to this lexical model.

three Kinyarwanda words that have
several morphemes in them, but the BPE

algorithms cannot extract them. This
is because some morphological rules

produce different surface forms that hide
the exact lexical information, and BPE,

which is solely based on the surface
forms, does not have access to this

| lexical model.

|
|
|
|
|

Subtitles

Sentences

In the vanilla transformer,

‘ In the vanilla transformer,

with full attention connectivity, relations of each token to every other token
have to be calculated. The onal ity of attention, this depends

on the number of layers 1,

‘ sequence length n,

another length, and the di ionality of
the decoder's cross attention, to this picture on the right side,

Similarly, in

with full attention connectivity,
relations of each token to every other

token have to be calculated. The
computational complexity of attention,

In the vanilla transformer, with full attention connectivity, relations of each
token to every other token have to be calculated.

The computational complexity of attention, this depends on the number of
layers 1, sequence length n, another sequence length, and the dimensionality of
Tepresentations.

‘ this depends on the number of layers 1,

Similarly, in the decoder's cross attention, to this picture on the right side, the

‘ length n,

the only difference here is that the target tokens are attending to the input tokens
in this case.

another sequence length, and the
dimensionality of representations.

Similarly, in the decoder's cross
attention, to this picture on the

right side, the only difference here is
that the target tokens are attending to

‘ the input tokens in this case.

only diff here is that the target tokens are attending to the input tokens in
this case.

Figure 12: Examples of each discussed transcript segmentation approach for sample data from the development set.
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Abstract

This paper presents the MINETRANS English-
to-Chinese speech translation systems devel-
oped for two challenge tracks of IWSLT 2023:
Offline Speech Translation (S2T) and Speech-
to-Speech Translation (S2ST). For the offline
S2T track, MINETRANS employs a practi-
cal cascaded system consisting of automatic
speech recognition (ASR) and machine transla-
tion (MT) modules to explore translation per-
formance limits in both constrained and uncon-
strained settings. To this end, we investigate the
effectiveness of multiple ASR architectures and
two MT strategies, i.e., supervised in-domain
fine-tuning and prompt-driven translation using
ChatGPT. For the S2ST track, we propose a
novel speech-to-unit translation (S2UT) frame-
work to build an end-to-end system, which en-
codes the target speech as discrete units via
our trained HuBERT and leverages the stan-
dard sequence-to-sequence model to learn the
mapping between source speech and discrete
units directly. We demonstrate that with a large-
scale dataset, such as 10,000 hours of training
data, this approach can well handle the map-
ping without any auxiliary recognition tasks
(i.e., ASR and MT tasks). To the best of our
knowledge, we are the first and only one to suc-
cessfully train and submit the end-to-end S2ST
model on this challenging track.

1 Introduction

In this paper, we describe the MINETRANS
English-to-Chinese speech translation systems
which participate in two challenge tracks of the
IWSLT 2023 (Agarwal et al., 2023) evaluation
campaign: Offline Speech Translation (S2T) and
Speech-to-Speech Translation (S2ST).

The annual IWSLT evaluation campaign com-
pares the models produced by different institutions
on the task of automatically translating speech from
one language to another. Traditional S2T/S2ST sys-
tems typically use a cascade approach (Ney, 1999;
Sperber et al., 2017; Zhang et al., 2019; Wang et al.,
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2021b; Hrinchuk et al., 2022), which combines au-
tomatic speech recognition (ASR), machine trans-
lation (MT), and text-to-speech (TTS, for S2ST)
components. Recent advances in end-to-end mod-
els (Liu et al., 2019; Jia et al., 2019; Lee et al.,
2022; Du et al., 2021, 2022; Zhang et al., 2022b,a)
that directly translate one language speech to an-
other without intermediate symbolic representa-
tions, have shown great potential in overcoming
the problems inherent in cascaded systems, such
as error propagation and slow inference. Despite
this, there is still a gap between the two approaches,
as end-to-end models have much less supervised
training data than sub-tasks, i.e., ASR, MT, and
TTS. Last year’s IWNSLT offline S2T track (Anasta-
sopoulos et al., 2022) confirmed this, with the best
end-to-end model submission scoring 1.7 BLEU
points lower than the top-ranked cascade system.
This year’s competition aims to answer the ques-
tion of whether cascade solutions remain domi-
nant, particularly in the S2ST track, where there
has large-scale data for training.

In the offline S2T track, MINETRANS employs
a practical cascaded system to explore the limits
of translation performance in both constrained and
unconstrained settings, in which the entire system
consists of automatic speech recognition (ASR),
and machine translation (MT) modules. We also
investigate the effectiveness of multiple ASR ar-
chitectures and explore two MT strategies: super-
vised in-domain fine-tuning (Wang et al., 2022) and
prompt-driven translation using ChatGPT' (Jiao
et al., 2023; He et al., 2023).

In the S2ST track, MINETRANS utilizes a
speech-to-unit translation (S2UT) framework to
construct an end-to-end system, which is simi-
lar to Lee et al. (2021a) but removes all auxil-
iary recognition tasks (i.e., ASR and MT tasks).
This framework converts target speech into dis-
crete units via our pre-trained HuBERT and then

1https: //chat.openai.com
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leverages the standard sequence-to-sequence model
to learn the mapping between source speech and
discrete units directly. We found that with a large-
scale dataset, such as 10,000 hours of training data,
the previous multi-task learning technique (Jia;
Lee et al., 2021a,b; Popuri et al., 2022; Dong
et al., 2022) is not necessary for model conver-
gence, and this approach can successfully han-
dle the mapping between source speech and dis-
crete units. We also explore various initializa-
tion strategies and several techniques to improve
model performance, including (1) different self-
supervised pre-trained speech encoders and pre-
trained text-to-unit models, (2) data filtering and
augmentation, consistency training, and model en-
sembles. To the best of our knowledge, we are
the first and only one to successfully train and sub-
mit the end-to-end S2ST model on this challeng-
ing track. Our code is open-sourced at: https:
//github.com/duyichao/MINETrans-IWSLT23.

The remainder of this paper is organized as fol-
lows: Section 2 describes data preparation, includ-
ing data statistics, data preprocessing, and data
filtering. Section 3 describes our solution for the
offline speech translation track. Section 4 describes
our solution to the speech-to-speech track. In Sec-
tion 5, we conclude this paper.

2 Data Preparation

2.1 Data Statistics

Table 1 lists statistics of the speech corpus we used
for MINETRANS training, which can be divided
into four categories: unlabeled speech, ASR, TTS
and S2ST Corpus.

Unlabeled Speech. As shown in Table 1, we in-
tegrate source side speech from VoxPopuli (Wang
etal., 2021a) and GigaSS? to build a large-scale un-
labeled English speech corpus for self-supervised
training of speech encoders Wav2vec2.0 (Baevski
et al., 2020) and HuBert (Hsu et al., 2021), which
are used for initializing the S2UT model in the
S2ST track. Similarly, we also integrate target
speech from GigaSS and AISHELL-3 (Shi et al.,
2020) to train the Chinese HuBert, which is used
for discretizing Chinese speech.

ASR Corpus. To train data-constrained English
ASR models, we merge MuST-C (Gangi et al.,
2019), Common Voice v11 (Ardila et al., 2019),

2https://github.com/SpeechTranslation/Gigaszs

80

Librispeech (Panayotov et al., 2015), and Europarl-
ST (Iranzo-Séanchez et al., 2019), resulting in ap-
proximately 4500 hours of labeled ASR corpus, as
shown in Table 1. For MuST-C and Europarl-ST,
we collect source speech for all translation direc-
tions and de-duplicated them based on audio identi-
fiers. In addition, GigaSpeech (Chen et al., 2021) is
used to construct data-unconstrained ASR model,
which includes 10k hours data covering various
sources (audiobooks, podcasts, and stream media),
speaking styles (reading and spontaneous), and top-
ics (arts, science, sports, etc.). Of these corpus, we
use MuST-C as the in-domain for the Offline track
and the rest as the out-of-domain.

MT Corpus. To train data-constrained English-
to-Chinese MT models, MuST-C v1&v2 are
considered in-domain corpora, while OpenSubti-
tles2018 (Lison et al., 2018) and NewsCommen-
tary> corpora are considered out-of-domain. Addi-
tionally, we utilize in-house corpora to train data-
unconstrained MT models, although we cannot pro-
vide further details about it.

TTS Corpus. To ensure target speech timbre
matching with the S2ST track, we consider the
single-speaker GigaSS-S, a small subset of GigaSS,
as in-domain and the multi-speaker AISHELL-
3 (Shiet al., 2020) as out-of-domain. These corpora
are used to train the TTS model and its correspond-
ing vocoder.

S2ST Corpus. The full version of GigaSS is
used to train our end-to-end S2UT model, which
is an large-scale S2ST corpora derived from Gi-
gaSpeech (Chen et al., 2021) via MT and TTS.
We also construct S2ST pseudo-data, the details of
which will be presented in Section 4.1.2.

2.2 Data Pre-processing and Filtering

In general, a simple way to improve model perfor-
mance is to provide them with better data. How-
ever, through a careful review of the data, we iden-
tified issues with the quality of the original data.
To address this, we performed the following pre-
processing and filtering:

* We convert all audio data to mono-channel
16kHz wav format. Since the sentences of spo-
ken translation are generally short, we discarded
sentences with text longer than 100 and speech
frames longer than 3000. Then 80-dimensional

3https://opus.nlpl.eu/News—Commentary.php
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Corpus Utterances (k) Duration (h) S2T CST. S2ST CST.
Unlabeled VoxPopuli 22,905 28,708 v v
MuST-C ASR v1&v2 342 617 v -
Common Voice v11.0 1680 3,098 v -
ASR  Librispeech 281 960 v -
Europarl-ST 34 81 v -
GigaSpeech 8,030 10,000 X —
NewsCommentary 32 - v -
MT OpenSubtitles 9,969 - v -
MuST-C vi&v2 543 - v -
In-house - - X -
TTS AISHELL 3 88 85 - v
GigaSS-S 210 244 - v
GigaSS 7,635 9,000 - v
S2ST  CoVoST synthetic 288 288 - v
MuST-C synthetic 358 587 - v

Table 1: Statistics of the training data. The "CST." indicates that a corpus is in the task constrained corpus list of
corresponding S2T or S2ST. The "-" indicates this corpus is not available in that column.

log-mel filter banks acoustic features are ex-
tracted with a stepsize of 10ms and a window
size of 25ms. The acoustic features are normal-
ized by global channel mean and variance.

* We use a pre-trained ASR model on Librispeech
to filter the audio with very poor quality, i.e.,
word error rate (WER) more than 75.

Since the annotation format is not uniform across
multiple datasets, we remove non-printing char-
acters, speaker names, laughter, applause and
other events. In addition, we also regularize punc-
tuation marks.

For the English-to-Chinese direction of MuST-C,
we first merge the v1 and v2 versions and then
remove duplicates based on audio identifiers.

3 Offline Speech Translation

3.1 Cascaded MINETRANS S2T System

3.1.1 Speech Recognition

A standard RNN-Transducer (Graves, 2012) model
is used for speech recognition. It consists of an
acoustic encoder, a prediction network and a joint
network. The acoustic encoder contains 18 Con-
former (Gulati et al., 2020) layers with the follow-
ing dimensions: attention size is 512, feed-forward
size is 2048, number of attention heads is 4, and
convolutional kernels is 31. The prediction network
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is a standard 1-layer LSTM with a hidden size of
1024. The joint network is linear with a size of
512. The input acoustic features are 80-dim Fbank
plus 3-dim pitch, which are down-sampled by a
2-layer CNN with a factor of 6 in the time-axis
before being fed into the acoustic encoder. The
overall parameter budget is 126M. During training,
SpecAugment (Park et al., 2019) is consistently
adopted for data augmentation. The training on
both GigaSpeech and MuST-C datasets lasts for
50 epochs each, which consumes 32 Nvidia V100
GPUs. The Adam optimizer is adopted, with peak
learning rate of 5e-3, warmup steps of 25k and in-
verse square root decay schedule(Vaswani et al.,
2017a). Model weights from the last 10 epochs are
averaged before decoding. The default decoding
method described in Graves (2012) is adopted with
a beam size of 10. External language models in
any form are not adopted.

ASR Output Adaptation. In the realm of au-
tomatic speech recognition (ASR) and machine
translation (MT), it is common for ASR output to
lack punctuation, whereas MT models are sensitive
to punctuation. To address this issue, we propose
an ASR output adaptation method by incorporating
a punctuation model between ASR and MT. Specif-
ically, we adopt a BERT-based punctuation model
that can automatically recover the original punctu-



ation. The objective of this approach is to bridge
the disparity between ASR and MT, leading to im-
proved overall performance in speech translation
tasks.

Speech Segmentation. Speech translation is a
multi-faceted task that requires overcoming the
challenges of bridging the gap between automatic
speech recognition (ASR) and machine translation
(MT) systems. To address these challenges, we
employ several text augmentation techniques to
improve the quality and accuracy of our training
data. Specifically, we have utilized speech-based
audio segmentation (SHAS (Tsiamas et al., 2022))
to identify and segment meaningful units of speech
that can be accurately translated by the MT system.

3.1.2 Machine Translation

In our systems, we adopt four different types of
translation strategies:

TRANSFORMER is a system trained on the
constrained data. We train the Transformer-
base (Vaswani et al., 2017b) model on the con-
strained general data and finetune the model on
the in-domain MuST-C data.

M2M-100* (Fan et al., 2021)is a multilingual
model trained for many-to-many multilingual
translation. We employ the supervised in-domain
fine-tuning strategy to finetune the M2M-100
1.2B-parameter model on the downstream MuST-
C data.

CHATGPT is a large language model product de-
veloped by OpenAl. Previous studies (Jiao et al.,
2023; Wang et al., 2023) have demonstrated that
ChatGPT is a good translator on high-resource
languages. Therefore we utilize the proper trans-
lation prompts with ChatGPT to carry out the
translation task.

IN-HOUSE MODEL We fine-tune our in-house
translation model (Huang et al., 2021) using
the MuST-C data. Our in-house model is a
Transformer-big (Vaswani et al., 2017b) model
with a deep encoder (Dou et al., 2018).

Data Re-Annotation. We have identified two is-
sues with the annotation of the English-to-Chinese
translation direction in the MuST-C v2.0 test set”.

4https ://github.com/facebookresearch/fairseq/
tree/main/exa\mples/m2m_100
Shttps://ict.fbk.eu/MuST-C/
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Firstly, we have observed samples of incorrect lit-
eral translations. For example, for the parallel sen-
tence pair, “I remember my first fire. lll 124 &,
% — 3% X, we usually translate the English word
“fire” into Chinese word “:X % (huo zhai)” not “ X
(huo)”. Secondly, we have noticed inconsisten-
cies in the punctuation annotation, as most Chinese
translations lack proper full stop marks. To address
these challenges, we have employed the services of
a professional translator to accurately translate the
English sentences. We will release the data, aiming
to facilitate future research in the field.

Domain Augmentation. The MuST-C v2.0 train-
ing data contains considerable bilingual sentence
pairs that are partially aligned. In the specific
pair “Thank you so much Chris. lll 3F % #f#f
2. 698 dEF R ¥, we are unable to lo-
cate the corresponding translation for the Chinese
phrase “89 7 4k % & %" in the English sentence.
As Koehn and Knowles (2017); Wang et al. (2018)
pointed out, data noise (partially aligned data) has
been demonstrated to impact the performance of
Neural Machine Translation (NMT). To address
this issue, we employ a data rejuvenation strat-
egy (Jiao et al., 2020). Specifically, we first fine-
tune the model using the raw parallel data and then
rejuvenate the low-quality bilingual samples to en-
hance the training data.

3.2 Experiment

The Cascaded MINETRANS S2T System we pro-
pose comprises an Automatic Speech Recogni-
tion (ASR) model and a machine translation (MT)
model. In our evaluation, we assess the perfor-
mance of each component separately. For the ASR
system evaluation, we employ the Word Error Rate
(WER) metric, while the BLEU score is utilized to
evaluate the performance of our machine transla-
tion model.

The evaluation results obtained on the MuST-C
dataset, with and without fine-tuning, are presented
in Table 2. When the GigaSpeech ASR system
is used without fine-tuning, we observe a WER
of 10.0 on the MuST-C test set. However, when
the system is fine-tuned using the MuST-C dataset,
a significant improvement in performance is ob-
served, resulting in a noticeable decrease in the
error rate from WER of 10.0 to 5.8. This highlights
the effectiveness of fine-tuning on the MuST-C
dataset in enhancing the overall performance of our
system.


https://github.com/facebookresearch/fairseq/tree/main/exa \ mples/m2m_100
https://github.com/facebookresearch/fairseq/tree/main/exa \ mples/m2m_100
https://ict.fbk.eu/MuST-C/

System Dev  Test
Gigaspeech 9.3 10.0
+ MuST-C Finetune 4.8 5.8

Table 2: ASR performance measured in terms of word
errTor rates.

We evaluate various translation strategies us-
ing the MuST-C test set. The experimental re-
sults are presented in Table 2. In the constrained
scenario, TRANSFORMER achieved a test BLEU
score of 25.04, whereas M2M-100 attained a
marginally higher score of 25.40. In the uncon-
strained setting, CHATGPT demonstrated superior
performance with a BLEU score of 28.25, while IN-
HOUSE MODEL obtained the highest BLEU score
of 30.91. These results emphasize the significance
of utilizing in-domain data for achieving optimal
performance in spoken language translation.

System Dev  tst-=COMMON
TRANSFORMER 13.93 25.04
M2M-100 16.53 25.40
CHATGPT — 28.25
IN-HOUSE MODEL 21.52 3091

Table 3: Offline speech translation performance mea-
sured in terms of the BLEU score.

4 Speech-to-Speech Translation
4.1 End-to-End MINETRANS S2ST System

As shown in Figure 1, we construct an end-to-
end S2UT (Lee et al., 2021a) model comprising a
speech encoder, length adapter, and unit decoder.
Following (Lee et al., 2021a), we encode target
speech as discrete units via our trained Chinese
HuBert and remove consecutive repetitive units
to generate a reduced unit sequence. Unlike (Lee
et al., 2021a), our S2UT model directly learns the
mapping between source speech and discrete units
without any auxiliary recognition tasks (i.e., ASR
and MT tasks), which hyper-parameters are diffi-
cult to tune. Then we leverage a unit-based HiFi-
GAN Vocoder to achieve unit-to-waveform con-
version (Polyak et al., 2021). Next, we detail the
efforts making in pre-training for model initializa-
tion, data augmentation, consistency training and
model ensemble, which are used to improve the
translation quality of our system.

&3

Target waveform

Unit Hifigan
Vocoder
y

K
Target unit
Unit

Decoder
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Length
Adapter
7
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f
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Figure 1: The overall architecture of the end-to-end
S2ST system.

4.1.1 Pretrained Models

Previous experiences (Dong et al., 2022; Popuri
et al., 2022) shown that better initialization can
reduce learning difficulty, we explore pre-training
of both the speech encoder and unit decoder.

Speech Encoder Pre-training. We use Wav2vec
2.0 (Baevski et al., 2020) and HuBert (Hsu et al.,
2021), which are trained in a self-supervised man-
ner, as speech encoders. Due to the data limitation
of the S2ST track, we use the unlabeled speech
described in Table 1 for training speech encoder:

* Wav2vec 2.0 uses a multi layer convolution neu-
ral network to encode audio and then uses a
transformer-based context encoder to construct a
contextual representation. The model is trained
by having a masked span of contrast loss on the
input of the context encoder. In this paper, we
modify Transformer as Conformer to obtain bet-
ter performance.

HuBert has the same model architecture as
Wav2vec 2.0. However, its training process dif-
fers primarily in the use of cross-entropy and ad-
ditionally in the construction of targets through a
separate clustering process.

Unit Decoder Pre-training. We use the standard
sequence-to-sequence model to model the Text-to-
unit (T2U) task on GigaSS, and the decoder of



this model will be used for the initialization of the
unit decoder of S2UT. The T2U model contains
12 transformer layers for the encoder and coder,
respectively. More specifically, we set the size of
the self-attention layer, the feed-forward network,
and the head to 1024, 4096, and 8, respectively.

4.1.2 Model Finetuning

We combine the pre-trained speech encoder and
unit decoder, and adding a randomly initialized
length adapter between the pre-trained modules.
The length adapter consists of a one-dimensional
convolutional layer with a stride of 2, which miti-
gates the length difference between the source au-
dio and the reduced target unit, as well as the mis-
match between representations.

Consistency Training. To further improve the
consistency of our model, we employ the R-Drop
algorithm (Liang et al., 2021) with a weight « set to
5. The R-Drop algorithm reduces inconsistencies
predicted by the model between training and infer-
ence through dropout, thereby improving general-
ization. Specifically, it randomly drops out parts
of the model during training, forcing it to learn
more robust representations that are less sensitive
to small changes in the input. For a more detailed
description of the R-Drop algorithm and its imple-
mentation, please refer to the paper by (Liang et al.,
2021).

4.1.3 Unit-based Vocoder

We utilize the unit-based HiFi-GAN (Polyak et al.,
2021) vocoder to convert discrete units into wave-
form for the speech-to-unit model. Following
the (Lee et al., 2021a) setup, we augment the
vocoder with a duration prediction module for the
reduced unit output, which consists of two 1D con-
volutional layers, each with ReLLU activation, fol-
lowed by layer normalization and a linear layer.

4.1.4 Ensemble

Model ensemble can reduce the inconsistency of
the system to some extent, and we consider the
ensemble of four variants of S2UT models:

* W2V2-CONF-LARGE: The speech encoder is
initialized using Conformer-based Wav2vec 2.0
LARGE model. The unit decoder is initialized
randomly.

* W2V2-CONF-LARGE+T2U: The speech en-
coder is initialized using Conformer-based
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Wav2vec 2.0 LARGE model. The unit decoder is
initialized from the T2U model.

W2V2-TRANS-LARGE+T2U: The speech en-
coder is initialized using Transformer-based
Wav2vec 2.0 LARGE model. The unit decoder is
initialized from the T2U model.

HUBERT-TRANS-LARGE+T2U: The speech
encoder is initialized using Transformer-based
HuBert LARGE model. The unit decoder is ini-
tialized from the T2U model.

4.1.5 Data Augmentation

We utilize well trained Fastspeech2 (Ren et al.,
2020) TTS models (see Section 4.2 for details) to
generate speech for MuST-C and CoVoST Chinese
texts to construct pseudo-corpora. These pseudo-
corpora are used as training data together with the
original labeled S2ST corpus.

4.2 Experiments
4.2.1 Implementation Details

All end-to-end S2UT models are implemented
based on the FAIRSEQ® (Ott et al., 2019) toolkit.
We use pre-trained Chinese HuBERT model and
k-means model to encode Chinese target speech
into a vocabulary of 250 units. The Chinese Hu-
BERT and k-means models are learned from the
TTS data in Table 1. The architectural details of the
S2UT models are detailed in section 4.1.4. During
training, we use the adam optimizer with a learning
rate set to Se-5 to update model parameters with 8K
warm-up updates. The label smoothing and dropout
ratios are set to 0.15 and 0.2, respectively. In prac-
tice, we train S2UT with 8 Nvidia Tesla A100
GPUs with 150K update steps. The batch size in
each GPU is set to 1200K, and we accumulate the
gradient for every 9 batches. For the first 5K steps
of S2UT model training, we freeze the update of the
speech encoder. The Unit HiFi-GAN Vocoder is
trained using SPEECH-RESYNTHESISRES’ toolkit
for 500k steps. For FastSpeech2 and HiFi-GAN,
we followed the paddlespeech AISHELL recipe®
for training. During inference, we average the
model parameters on the 30 best checkpoints based
on the performance of the GigaSS dev set, and
adopt beam search strategy with beam size of 10.

6https://github.com/facebookresearch/fairseq

"https://github.com/facebookresearch/
speech-resynthesis

8https://github.com/PaddlePaddle/PaddleSpeech/
tree/develop/examples/aishell3/tts3
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ID Model BLEU chrF
1 W2V2-CONF-LARGE 277 234
2 W2V2-CONF-LARGE+T2U 27.8 23.7
3 W2V2-TRANS-LARGE+T2U 252 223
4 HUBERT-TRANS-LARGE+T2U 26.2 232
5 HUBERT-TRANS-LARGE+T2U* 257 22.6
6 Ensemble(1, 2, 4) 28.0 239
7 Ensemble(2, 4, 5) 272  23.0

Table 4: ASR-BLEU and ASR-chrF on GigaSS valida-
tion set. “*’ indicates adding the GigaST test set to the
training data and fine-tuning it for one round.

4.2.2 Results

To evaluate the speech-to-speech translation sys-
tem, we use a Chinese ASR system’ trained on
WenetSpeech (Zhang et al., 2021) to transcribe
the speech output with the ctc_greedy_serach
mode. Based on this, we report case-sensitive
BLEU and chrF scores between the produced tran-
script and a textual human reference using sacre-
BLEU. The results on the GigaSS validation set
is shown in Table 4. Comparing W2V2-CONF-
LARGE+T2U and W2V2-TRANS-LARGE+T2U,
using Conformer-based architecture pre-trained
speech encoder for initialization has better perfor-
mance. In addition, we find that adding the GigaST
test set to training leads to a weak performance
degradation on the validation set, possibly because
the annotations of the test set are calibrated by hu-
mans and their style differs from that of the training
data.

5 Conclusion

This paper presents the MINETRANS system for
two challenge tracks of the IWSLT 2023: Offline
Speech Translation (S2T) and Speech-to-Speech
Translation (S2ST). For the S2T track, MINE-
TRANS employs a cascaded system to investigate
the limits of translation performance in both con-
strained and unconstrained settings. We explore
two machine translation strategies: supervised in-
domain fine-tuning and prompt-guided translation
using a large language model. For the S2ST track,
MINETRANS builds an end-to-end model based on
the speech-to-unit (S2U) framework. To the best
of our knowledge, we are the first and only team to
successfully train and submit the end-to-end S2ST

https://github.com/wenet-e2e/wenet/blob/main/
docs/pretrained_models.en.md
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on this track. This model uses our trained Hu-
BERT to encode the target speech as discrete units
and leverages the standard sequence-to-sequence
model to directly learn the mapping between source
speech and discrete units without the need for auxil-
iary recognition tasks such as ASR and MT. We use
several techniques to improve MINETRANS’s per-
formance, including speech encoder pre-training
on large-scale data, data filtering, data augmen-
tation, speech segmentation, consistency training,
and model ensemble.
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Abstract

End-to-end automatic speech translation (AST)
relies on data that combines audio inputs with
text translation outputs. Previous work used ex-
isting large parallel corpora of transcriptions
and translations in a knowledge distillation
(KD) setup to distill a neural machine transla-
tion (NMT) into an AST student model. While
KD allows using larger pretrained models, the
reliance of previous KD approaches on manual
audio transcripts in the data pipeline restricts
the applicability of this framework to AST. We
present an imitation learning approach where a
teacher NMT system corrects the errors of an
AST student without relying on manual tran-
scripts. We show that the NMT teacher can
recover from errors in automatic transcriptions
and is able to correct erroneous translations of
the AST student, leading to improvements of
about 4 BLEU points over the standard AST
end-to-end baseline on the English-German
CoVoST-2 and MuST-C datasets, respectively.
Code and data are publicly available.'

1 Introduction

The success of data-hungry end-to-end automatic
speech translation (AST) depends on large amounts
of data that consist of speech inputs and corre-
sponding translations. One way to overcome the
data scarcity issue is a knowledge distillation (KD)
setup where a neural machine translation (NMT)
expert (also called oracle) is distilled into an AST
student model (Liu et al., 2019; Gaido et al., 2020).
The focus of our work is the question of whether the
requirement of high-quality source language tran-
scripts, as in previous applications of KD to AST,
can be relaxed in order to enable a wider applicabil-
ity of this setup to AST scenarios where no manual
source transcripts are available. Examples for such

*All work was done at Heidelberg University.
"https://github.com/HubReb/imitkd_ast/
releases/tag/vl.1
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scenarios are low-resource settings (e.g., for lan-
guages without written form for which mostly only
audio-translation data are available), or settings
where one of the main uses of source transcripts
in AST — pre-training the AST encoder from an
automatic speech recognition (ASR) system— is
replaced by a large-scale pre-trained ASR system
(which itself is trained on hundreds of thousands
hours of speech, but the original training transcripts
are not available (Radford et al., 2022; Zhang et al.,
2022b)). Relaxing the dependence of pre-training
AST encoders on manual transcripts has recently
been studied by Zhang et al. (2022a). Our focus
is instead to investigate the influence of manual
versus synthetic transcripts as input to the student
model in an imitation learning (IL) approach (Lin
et al., 2020; Hormann and Sokolov, 2021), and to
lift this scenario to AST. To our knowledge, this has
not been attempted before. We present a proof-of-
concept experiment where we train an ASR model
on a few hundred hours of speech, but discard the
manual transcripts in IL training, and show that
this ASR model is sufficient to enable large NMT
models to function as error-correcting oracle in
an IL setup where the AST student model works
on synthetic transcripts. Focusing on the IL sce-
nario, we show that one of the key ingredients to
make our framework perform on synthetic ASR
transcripts is to give the AST student access to the
oracle’s full probability distribution instead of only
the expert’s optimal actions. Furthermore, when
comparing two IL algorithms of different power —
either correcting the student output in a single step,
or repairing outputs till the end of the sequence —
we find that, at least in the setup of a reference-
agnostic NMT teacher, the single-step correction
of student errors is sufficient.

One of the general reasons for the success of
our setup may be a reduction of data complexity
and an increase of variations of outputs, similar to
applications of KD in NMT (Zhou et al., 2020).
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To investigate the special case of imitation-based
KD on synthetic speech inputs, we provide a man-
ual analysis of the NMT expert’s behavior when
faced with incorrect synthetic transcripts as input,
or when having to correct a weak student’s transla-
tion in the IL setting. We find that the NMT oracle
can correct errors even if the source language input
lacks semantically correct information, by utiliz-
ing its language modeling capability to correct the
next-step token. This points to new uses of large
pre-trained ASR and NMT models (besides initial-
ization of encoder and decoder, respectively) as
tools to improve non-cascading end-to-end AST.

2 Related Work

Imitation learning addresses a deficiency of
sequence-to-sequence learning approaches, nick-
named exposure bias (Bengio et al., 2015; Ranzato
et al., 2016), that manifests as the inference-time
inability to recover from own errors, leading to
disfluent or hallucinated translations (Wang and
Sennrich, 2020). IL aims to replace the standard
learning paradigm of teacher forcing (Williams and
Zipser, 1989) (which decomposes sequence learn-
ing into independent per-step predictions, each con-
ditioned on the golden truth context rather than
the context the model would have produced on its
own) by enriching the training data with examples
of successful recovery from errors. We build upon
two previous adaptations of IL to NMT (Lin et al.,
2020; Hormann and Sokolov, 2021) and lift them
to AST.

Knowledge distillation (Hinton et al., 2015)
transfers the knowledge encoded in a large model,
called teacher, to a far smaller student model by
using the teacher to create soft labels and train the
student model to minimize the cross-entropy to the
teacher. KD has been successfully used for ma-
chine translation (Kim and Rush, 2016), speech
recognition (Wong and Gales, 2016) and speech
translation (Liu et al., 2019).

Synthetic speech translation training datasets
have been used previously to train AST models:
Pino et al. (2020) used an ASR-NMT model cas-
cade to translate unlabeled speech data for aug-
mentation. To obtain more machine translation
(MT) training data, Jia et al. (2019); Pino et al.
(2019) generated synthetic speech data with a text-
to-speech model. Liu et al. (2019) applied KD
between an NMT expert and an AST student with
manual transcriptions as expert input to improve
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AST performance. Gaido et al. (2020) improved
upon this by increasing the available training data
by utilizing a MT model to translate the audio tran-
scripts of ASR datasets into another language, yet
they still use manual transcripts for distillation in
the following finetuning phase.

Further attempts focused on improving AST
models by utilizing MT data for multitask learn-
ing with speech and text data (Tang et al., 2021b,a;
Bahar et al., 2019; Weiss et al., 2017; Anastasopou-
los and Chiang, 2018), such as XSTNet (Ye et al.,
2021) and FAT-MLM (Zheng et al., 2021).

A question orthogonal to ours, concerning the
influence of pre-training encoder and/or decoder on
source transcripts, has been investigated by Zhang
et al. (2022a). They achieved competitive results
without any pretraining via the introduction of pa-
rameterized distance penalty and neural acoustic
feature modeling in combination with CTC regular-
ization with translations as labels. Their question
and solutions are orthogonal to ours and are likely
to be yield independent benefits.

3 Imitation-based Knowledge Distillation

We view an auto-regressive NMT or AST system
as a policy 7 that defines a conditional distribution
over a vocabulary of target tokens v € V that is con-
ditioned on the input = and the so far generated pre-
fix y<¢: m(v|y<¢; x). This policy is instantiated as
the output of the softmax layer. When training with
teacher-forcing, the cross-entropy (CE) loss /(+) is
minimized under the empirical distribution of train-
ing data D: Lcg(n) = Eg,a)on[> o L(ye, 7).
To perform well at test time we are interested in the
expected loss under the learned model distribution:
L(m) = Ey ymn[Xi £ye, 7))

As shown by Ross et al. (2011), the discrepancy
between £ and Lcg accumulates quadratically with
the sequence length 7', which in practice could
manifest itself as translation errors. They proposed
the Dagger algorithm which has linear worst-case
error accumulation. It, however, relies on the ex-
istence of an oracle policy 7* that, conditioned on
the same input x and the partially generated 7’s pre-
fix y«¢, can produce a single next-step correction
to y«¢. Ross and Bagnell (2014) further proposed
the AggreVaTe algorithm which relies on an even
more powerful oracle that can produce a full contin-
uation in the task-loss optimal fashion: For NMT,
this means continuing the y; in a way that maxi-
mizes BLEU, as done for example in Hormann and
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Figure 1: Diagram of AST training with imitation
learning and synthetic transcripts coming from ASR
models. (1) With probability 1 — 3 the AST student
creates a hypothesis ¢ that replaces the reference trans-
lation y. (2) The ASR model generates the synthetic
transcript ¢ for the audio sample z, to feed the NMT
oracle as input. (3) Calculation of Dagger or AggreVaTe
loss as shown in Algorithm 1.

Sokolov (2021).

IL for NMT We pretrain a large NMT model to
serve as an oracle 7* that either simply predicts the
next-step optimal output vocabulary token v} given
a source sentence x and any (potentially, erroneous)
partial NMT student hypothesis y; (Dagger):

ey

vy = argmax (v | y<i; ),
veV

or continues y; till the end (AggreVaTe):

Ysy = ar%max T (y<t + ar + Y=t | y<t;2), (2)
>t

where ¥~ is the continuation, a; is an exploratory
action, and the last argmax is implemented as
beam search. The predicted v} or y%, are viewed
as one-step or multi-step corrections of the current
policy, and the student is updated to increase the
probability of the correction via the cross-entropy
loss on triples (y:, z,v;) in case of Dagger, or to
decrease a square loss between logit () of the se-
lected action a; and the BLEU of the predicted
suffix? from that action in case of AggreVaTe.

2We use the difference between the BLEU values of the
full sequence and that of the prefix (Bahdanau et al., 2016).
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Both algorithms proceed iteratively, where the
newly generated set of triples form a provisional
training data set D);. Originally, Dagger and Ag-
greVaTe train the student’s m; on the aggregated
dataset Uj<;D; and use a probabilistic mixture for
the current roll-out policy, which queries the oracle
with probability 3; and the student otherwise. This
setup guarantees that the prediction error scales
at most linearly with time, unlike the quadratic
scaling of the standard teacher forcing (Ross et al.,
2011), which is standardly used in sequence-level
KD. This makes Dagger and AggreVaTe promising
candidates to improve over KD.

In our implementation, we follow Lin et al.
(2020), who save memory via training on individ-
ual D; in each iteration ¢, instead of training on
the set union. They further speed up training by
keeping the reference translation ¢ with probability
(i, and otherwise generate a translation ¢ of the
source sentence x from the student policy (see Al-
gorithm 1). For each ¢ in the algorithm, AggreVaTe
needs to generate an exploration token a; and cal-
culate the BLEU it would lead to, according to the
oracle continuation starting off this action.

IL for AST Adapting Dagger and AggreVaTe to
an AST student is relatively straightforward (see
Figure 1): We feed the NMT oracle the source lan-
guage transcript s of the audio data sample x, that
is also given to the AST student. We define an algo-
rithm IKD (imitation knowledge distillation) that
optimizes the cross-entropy of the student’s policy
w.r.t. the optimal expert prediction:

Lixp(r) =E

T
—> logm(v} |y<t;ma)] . 3)

t=1

with v} as in (1). Algorithm IKD™ optimizes the
cross-entropy w.r.t. the expert’s policy:

Ligpt(m) = 4
E |- Z (v | y<t; xs) - log (v | Z/<t;$a)] .
veV

An important modification to these objectives
that we propose in this work is to replace the
gold source language transcripts xs fed to the
NMT oracle by synthetic transcripts generated by
a pretrained ASR model. We call this algorithm
SynthIKD, with a respective SynthIKD* variant.



Algorithm 1: Dagger/AggreVaTe for distil-
lation in NMT; combined from (Lin et al.,
2020) and (Hormann and Sokolov, 2021).

Data: Let D be original bi-text dataset, 7* the NMT
oracle policy, I the total number of iterations,
T the max sequence length, @) the final logits,
and B the batch size.

Initialize 7r1 arbitrarily.

fori=1...1do

Initialize D; <

forb=1...Bdo

Sample an example (z,y) ~ D.

Sample uniformly u ~ [0, 1]

if v > 3; then

Generate ¢ from 7; given x.

Replace y with .

if Dagger then

fort=1...Tdo

Predict v; = argmax 7" (v | y<¢; x)

veV

Append (y<¢, z,v{) to D;

else // AggrevaTe

Sample uniformly ¢ € {1,..,T}.

Predict a; = argmax (v | y<¢; )

veV

Predict
Y5 = argmax 7w (Yt | y<t + ag; )

Y>t
Append (y<t¢, x, at, BLEU(y%,)) to D;

T
Lpageer = Ep;, [_ > logmi(vf | y<i; m)}
i=1

ACAggreVaTe =
T L2
Ep, |:Zl (U(Q(at | y<t; 7)) — BLEU(y>t)) :|
t=
Letmiy1 =mi —ay - %ﬁ

4 Experiments

We experiment with English-German AST on the
CoVoST2 (Wang et al., 2021) (430 hours) and
the MuST-C (Di Gangi et al., 2019) datasets (408
hours)3. As expert model, we use the Transformer
from Facebook’s submission to WMT19 (Ng et al.,
2019), which is based on the Big Transformer
architecture proposed by (Vaswani et al., 2017).
Our sequence-to-sequence models for students are
RNNs and Base Transformers. All models are
based on the fairseq framework (Ott et al.,
2019; Wang et al., 2020), but use different set-
tings of meta-parameters and preprocessing than
the default models. More details on models, meta-
parameters and training settings are given in the
Appendix A.

Our training setups are summarized in Table 1.
We compare our trained student models with sev-
eral baseline approaches: “Standard” denotes AST

3We also experimented with a smaller Europarl-ST dataset
and to save space we report results in Appendix B. Overall,
they are similar to these on larger datasets.

92

Variant Expert Input Loss
Standard - CE
KD" (Liu et al., 2019)  gold CE
SynthKD* synthetic CE
IKD (Lin et al., 2020) gold L1xp
IKD™ (L1n etal., 2020) gOld l:]KDJr
SynthIKD (ours) synthetic Lixkp
SynthIKD™ (ours) synthetic Lixp+

Table 1: Summary of training variants: “Standard” de-
notes AST trained via cross-entropy (CE) on ground
truth targets with a label smoothing. KD denotes word-
level knowledge distillation between the expert’s and
student’s full output probability. IKD and IKD™ denote
imitation knowledge distillation where student model is
corrected by the optimal expert action or the full expert
policy (Lin et al., 2020), respectively. SynthIKD and
SynthIKD™ are our variants with synthetic transcripts.
Expert Input indicates whether the NMT expert is given
the original transcripts from the dataset or synthetic
transcripts created by ASR. All IKD methods use the
exponential decay schedule for S that (Lin et al., 2020)
found to work best.

trained by teacher forcing on ground truth targets
with a label smoothing (Szegedy et al., 2016) factor
of 0.1. KD™ (Liu et al., 2019) denotes word-level
knowledge distillation between the expert’s and
student’s full output probability. IKD and IKD™
denote imitation knowledge distillation, where stu-
dent model is corrected by the empirical distribu-
tion of the optimal expert actions or the full expert
policy (Lin et al., 2020), respectively. SynthIKD
and SynthIKD™ are our variants with synthetic tran-
scripts. We used the same same exponential decay
schedule (8 = %) used by (Lin et al., 2020) as
early experiments showed that this performed best
in our setup.

All AST models’ encoders are initialized with
the encoder of the corresponding ASR model,
trained on the respective datasets with cross-
entropy and the label-smoothing factor of 0.1. Be-
cause of the relatively small size of these datasets,
our experiments should seen as proof-of-concept,
showing that ASR models trained on a few hun-
dred hours of audio provide synthetic transcripts
of sufficient quality to enable imitation-based KD
for AST. The standalone performance of our ASR
models is listed in Table 2.



CoVoST2 MuST-C
Model dev test dev test
RNN 26.68 3394 2342 2444
Transformer 2093 26.60 21.10 20.68

Table 2: WER( results for ASR models pretrained on
CoVoST2 and MuST-C. These models are used to cre-
ate the synthetic transcripts for respective experiments.
Standard development and test splits were used for CoV-
0ST2. For MuST-C, we tested on t st —COMMON.

4.1 Feasibility of Oracle Correction

The idea of using synthetic transcripts in place of
gold transcripts has merit only if the NMT oracle’s
translations have higher quality than the transla-
tions the AST model generates. Therefore, we first
verify if the NMT oracle is capable of complet-
ing an AST models’ partial hypotheses y.; while
improving quality at the same time.

We follow Lin et al. (2020) and let the AST
models trained with label-smoothed CE on ground
truth targets translate the audio input with greedy
decoding up to a randomly chosen time step. Then,
we feed the NMT expert the gold transcript as input
and the partial translation as prefix, and let the
oracle finish the translation with greedy decoding.

As Table 2 shows, the out-of-the-box ASR per-
formance is relatively low (high WER), so errors
in synthetic transcripts will be propagated through
the NMT oracle. The question is whether the ex-
pert’s continuation can be of higher quality than
the student’s own predictions despite the partially
incorrect synthetic transcripts. In Table 3, lines 1
and 2 (or, 5 and 6) set the lower (end-to-end) and
upper (cascade) bounds on the performance. We
see that the NMT expert is able to complete the
student hypotheses successfully (lines 3, 4 and 7,
8), bringing gains in both gold and synthetic setups,
and reaching the upper bound (lines 3 vs. 2 and
7 vs. 6) for gold ones. Although the mistakes in
the synthetic transcripts do result in lower BLEU
scores (lines 4 and 8) they still improve over the
AST student complete translations (lines 1 and 5).

4.2 Main Results

Table 4 shows the main results of applying Algo-
rithm 1 for training an AST student with imitation-
based knowledge distillation on CoVoST2 and
MuST-C.

Dagger First we present results for the Dagger
algorithm. In Table 4, for both CoVoST2 and
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MuST-C models, Dagger with the Transformer ar-
chitecture outperforms all baselines*, and matching
full teacher distributions (the ‘+’-versions of losses)
gives consistent gains. Distillation with RNNs, on
the other hand, fails to improve BLEU scores over
baselines, most likely due to their overall lower
translation quality. This leads to the student hy-
potheses that are too far from the reference so that
the expert’s one-step corrections are not able to
correct them.

The results show that Transformers and RNNs
with synthetic transcripts show statistically insignif-
icant differences in performance to the ones that
are using gold transcripts. This is notable since
the partially synthetic transcripts provided to the
NMT oracle are often incorrect, yet do not result in
a noticeable effect on the final student performance
if used in the IL framework. A similar observa-
tion can be made when comparing the use of gold
transcripts versus synthetic transcripts: Transform-
ers on both datasets perform comparably and erro-
neous transcripts do not seem to harm the trained
AST model.

AggreVaTe Finally, we evaluate the performance
of AggreVaTe both with gold and synthetic tran-
scripts. During training we targeted and evalu-
ated with the non-decomposable BLEU metric (i.e.
training with sentence-BLEU and evaluating with
corpus-BLEU) as well as with the decomposable
TER metric (Table 5). Following Hormann and
Sokolov (2021) we warm-started AggreVaTe with
differently trained standard or Dagger models, and
trained with AggreVaTe objectives for up to 50
epochs with early stopping on respective develop-
ment sets.

Surprisingly, we found that AggreVaTe does not
bring additional benefits on top of Dagger despite
the promise for a better matching between training
and inference objectives. Also there is no signifi-
cant difference between the results with the TER
rewards objective and sentence-BLEU rewards on
both CoVoST2 and MuST-C. We explain these re-
sults by the sufficiency of one-step corrections to
correct a “derailed” student, with little benefit of
continuing demonstration till the end of translation.
The fact that Dagger turns out to reap all of the ben-
efits from training with IL is good news in general,
since running beam search during training (to get
AggreVaTe’s full continuations) is more expensive

4p-value < 0.005 using the paired approximate random-
ization test (Riezler and Maxwell, 2005)



Architecture Hypotheses # Decoding Setup Source Transcripts dev-BLEU?t

full 1 AST . - 11.9

RNN 2 ASR transcribes, NMT expert translates - 21.8

ial 3 AST starts, NMT expert completes gold 21.9

par 4  AST starts, NMT expert completes synthetic 15.6

full 5 AST _ - 16.7

T . 6  ASR transcribes, NMT expert translates - 254
ransformer

. 7  AST starts, NMT expert completes gold 25.4

partial 8  AST starts, NMT expert completes synthetic 19.9

Table 3: Feasibility experiment: BLEU score on CoVoST2 development set of NMT expert’s completion of AST
model full or partial hypotheses with greedy decoding; gold denotes the usage of the dataset’s source language
transcripts as NMT inputs and synthetic denotes synthetic transcripts created by the respective ASR model.

. CoVoST2 MuST-C
Achitecture Models dev  test | dev test
2 Standard 13.6 10.0 | 146 14.1
'S KD* 146 111|179 17.2
RNN S IKD* 13.1 10.1 | 157 149
»# SynthKD™ 14.1 10.6 | 169 159
8 SynthIKD* 12.8 9.7 | 163 15.1
% Standard 184 142|195 194
0 KDt 213 17.7 | 177 222
Transformer & IKD* 21.8 18.4 | 232 233
v SynthKDt 21.7 18.0 | 225 226
3 SynthIKD* 21.8 18.5 | 23.5 23.5

Table 4: Main results: RNN and Transformer student
models trained on expert inputs and loss variants of Ta-
ble 1, using Dagger for IL. We used the t st —~COMMON
as the test set for MuST-C. (Synth)IKD is not included
since its performance is worse than (Synth)KD™. Trans-
formers trained with IL outperform all baselines, while
pure KD is the best for generally lower-quality RNN-
based models. Synthetic transcripts do not harm perfor-
mance for Transformer student models.

than greedily selecting one action (as does Dagger).

4.3 Quality of Synthetic Transcripts

In this section, we investigate explanations for
the high performance of Dagger on synthetic tran-
scripts: The first hypothesis is that synthetic tran-
scripts are already “good enough” and per-step IL
corrections add nothing on top. Second, the gains
could be due to the known NMT “auto-correcting’
ability and due to general robustness to the quality
of the source (cf. the success of back-translation in
NMT), and all benefits could be reached with KD
alone. To test both hypotheses, we create new train-
ing datasets where we replace references with trans-
lated gold or synthetic transcripts by the same NMT
expert with beam size 5. Evaluating on the unmodi-
fied references, we trained Transformer-based base-
lines and the IL model from Lin et al. (2020) on

>

94

these two new corpora.

As Table 6 shows, Transformer KD trained on
translated gold transcripts outperforms its coun-
terparts trained on translated synthetic transcripts,
confirming errors in the synthetic transcripts. This
refutes the first hypothesis.

Regarding the second hypothesis, we compare
the KD to IKD™ from the synthetic translated part
in Table 6. Were “auto-correction” sufficient we
would see similar performance in both lines. This
rejects the second hypothesis and suggests that IL.
adds value on top of general NMT robustness to
inputs.

4.4 Qualitative Analysis

Here, we perform a human evaluation of success-
ful IL corrections, aiming at an explanation of the
performance of Dagger on synthetic transcripts.

We randomly sample 100 examples from the
CoVoST?2 training set on which the ASR Trans-
former has a non-zero sentence-wise word error
rate, and compare the NMT expert’s probability
distributions over time for the given synthetic tran-
scripts. From the WER histogram in Figure 2 we
see that most of the sentences have a single-digit
number of errors.

0 10 20 30 40 50 60 70
WER

Figure 2: Histogram of sentence-wise WER of ASR
Transformer on 100 samples from CoVoST2.
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CoVoST2 MuST-C

IL Algorithm Model Data BLEU?T TER| BLEU?T TER|
dev test dev test | dev test dev test
Standard gold 184 142 69.1 77.1 | 195 194 708 694
Dagger IKD* gold 21.8 184 637 700 | 232 233 674 65.6
SynthIKD* synth 21.8 185 63.6 69.8 | 23.5 235 672 656

BLEU?T TER| BLEU?T TER|
Warm-start Model  Data dev test dev test | dev test dev test

sentence-BLEU reward-to-go
Standard gold 187 146 682 760 | 199 199 702 68.1
Standard synth 187 146 682 759 | 200 19.7 70.1 68.7
IKD* gold 221 185 63.1 69.6 | 23.5 234 674 657
+
AggreVaTe SynthIKD synth 22,1 185 63.1 69.7 | 23.5 23.6 67.0 656
TER reward-to-go

Standard gold 187 147 67.8 754 | 200 199 70.0 685
Standard synth 187 146 679 756 | 199 19.6 69.8 0684
IKD* gold 220 185 631 694 | 233 234 673 655
SynthIKD* synth 221 185 63.1 69.6 | 23.5 23.6 67.0 653

Table 5: Comparison of Dagger with warm-started AggreVaTe with a maximum of 50 epochs on CoVoST2 and

MuST-C.

Trainin CoVoST2 MuST-C

€ dev test dev test

training on translated gold transcripts

Standard  18.1 149 20.0 20.0
KD* 213 17.6 234 23.1
IKD* 226 186 235 23.7
training on translated synthetic transcripts
Standard 17.8 142 19.2 19.2
KD* 202 165 221 22.5
IKD™" 21.0 174 23.0 23.1

Table 6: BLEU scores of Transformer models trained
on the training set with original references replaced by
translations of gold and synthetic transcripts in com-
parison to using the original training set (lower part of
Table 4).

As WER cannot be used to differentiate between
small but inconsequential (to the understanding of
the sentence) errors and mistakes that change the
meaning of the sentence, we further compare the
generated transcript to the gold transcript and look
at the top-8 output probabilities of the expert at
each time step for each sample to classify each er-
ror in the synthetic transcripts. We further feed the
sampled sentences to the NMT expert and find that
in 36 out of 100 samples (all but the last two lines
in Table 7), the expert is able to generate output
probability distributions that favor the correct tar-
get token despite errors in the transcript. Although
the expert can put large probability mass on the
correct target token, whether it does so depends
on the error type in the generated transcript. The
expert is often able to deal with surface form errors,
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Error Type Freq
omitted tokens 2
surface form error 17
contentual error, correct target in top-1 5
contentual error, correct target in top-8 12
critical error, expert predicts correctly due to prefix 32
critical error, expert does not predict correctly 32

Table 7: Error types in the synthetic transcripts created
by the ASR model.

such as different spellings, punctuation errors and
different word choice (17 occurrences). When the
synthetic transcripts contain critical errors, e.g. par-
tially hallucinated transcript, the expert is still able
to produce the correct translation if the missing or
wrong information can be still inferred from the
prefix (32 occurrences).

Next, we verify that the decoder language mod-
eling capability is what primarily drives the cor-
rection process. We do this by feeding parts of
reference translations as prefix conditioned on erro-
neous synthetic transcripts. Consider the transcript
“The king had taken possession of Glamis Castle
and plywood.” generated by the ASR model. Its
gold transcript reads “plundered it” instead of “ply-
wood”. In Figure 3 we illustrate output probabili-
ties that the expert generates in the last time-steps.

Assume as in Figure 3a that the expert has been
given the prefix “Der Konig hatte Glamis Castle
in Besitz genommen und”. According to the out-
put probabilities, the next output symbol is the
subword unit “Sperr” and would not be a proper



correct transcript: The king had taken possession of Glamis Castle and plundered it .
transcript: The king had taken possession of Glamis Castle and plywood .
target: Der Konig hatte Gla@@ mis Castle in Besitz genommen und ge@@ pl@@ Un@@ dert . </s>

prefix: Der Konig hatte Gla@@ mis Castle in Besitz genommen und
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(a) with y<; = “Der Konig hatte Glamis Castle in Besitz
genommen und ”

correct transcript: The king had taken possession of Glamis Castle and plundered it .
transcript: The king had taken possession of Glamis Castle and plywood .
target: Der Konig hatte Gla@@ mis Castle in Besitz genommen und ge@@ pl@@ Un@@ dert . </s>

prefix: Der Konig hatte Gla@@ mis Castle in Besitz genommen und ge@@
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(b) with y<; = “Der Konig hatte Glamis Castle in Besitz
genommen und ge”

Figure 3: NMT expert top-8 output probabilities when translating the incorrect synthetic transcript “The king had

taken possession of Glamis Castle and plywood it.”

correct transcript: Said he &apos;d consider it .
transcript: Slow down ! .
target: S@@ ag@®@ te , er wiirde es in Bet@@ racht ziehen . </s>
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transcript: Slow down ! .
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Figure 4: NMT expert top-8 output probabilities when translating the incorrect synthetic transcript “Slow down!”

correction. At the next timestep, however, the last
symbol in the prefix is the subword unit “ge” and,
as Figure 3b shows, the expert, being driven by its
decoder language modeling capability, puts highest
probabilities on subword units that are most likely
to produce a fluent output (the correct one “pl@ @”,
and less probable “pflan@ @ and “kl@ @ rather
then paying attention to the (wrong) information in
the synthetic transcripts.

Similar situations can be observed in samples
with entirely wrong synthetic transcripts. In Fig-
ure 4, the expert has received the synthetic tran-
script “Slow down!” as input, which shares no
meaning with the gold transcript “Said he’d con-
sider it.” As shown in Figure 4a, the expert as-
signs the highest probability to “@ @low” if it is
given the prefix “S” (as the expert has a shared
vocabulary, it can complete the output this way),
which turns the partial translation into an exact
copy of the transcript. Again, the top-8 predic-

tions do not share similar meaning with the tran-
script. After, in Figure 4b, the expert has received
the prefix “Sagte,”, it still attempts to complete
Y<¢ by generating output symbols that would turn
y into a valid translation of this wrong transcript
(“langsam” (slow), “ruhig” (quiet), “langs@ @*))
with the rest of options being mostly driven by
language modeling rather then reproducing source
semantics (“ent@ @”, “verlan@ @”).

Overall, with the SynthIKD™ training, the expert
induces smoothed output distributions and fluency
on the student more than it enforces the student to
predict one-hot labels produced by the expert as is
done by sequence-level KD.

5 Conclusion

We showed that a pretrained NMT model can suc-
cessfully be used as an oracle for an AST student,
without requiring gold source language transcripts
as in previous approaches to imitation learning for
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AST. This widens the applicability of imitation
learning approaches to datasets that do not con-
tain manual transcripts or to pre-trained ASR mod-
els for which training transcripts are not available.
Our qualitative analysis suggests an explanation of
the fact that the NMT oracle is robust against mis-
matches between manual and synthetic transcripts
by its large language model capabilities that allow
it to continue the prefix solely based on its learned
contextual knowledge.

6 Limitations

There are several limitations of this study. First, itis
done on one language pair although we believe this
should not qualitatively change the results. Second,
only one set of standard model sizes was evaluated
for AST student and NMT expert; we expect it
be in line with reported findings for NMT (Ghor-
bani et al., 2021). Finally, while alluding to the
potential of using large pre-trained ASR models in-
stead of manual transcripts for IL-based AST, our
current work must be seen as a proof-of-concept
experiment where we train ASR models on a few
hundred hours of audio, and discard the manual
transcripts in IL training, showing the feasibility of
our idea.
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BLEU?T
Model dev test
original dataset
Standard 13.8 14.4
KD™ 17.4 17.8
SynthKD*™  17.5 18.0
IKD* 17.0 17.1
SynthIKD*  17.0 17.0
translated gold training set
Standard 15.3 15.3
KD* 18.2 18.4
IKD 16.8 17.0
IKD+ 17.1 17.5
synthetic translated training set
Standard 14.7 15.3
KD™* 17.0 16.8
IKD 16.1 16.0
IKD+ 16.3 16.6

Table A.1: Results on Europarl-ST

A Models, Meta-parameters, and
Training Settings

We use the speech-to-text module of the fairseqg
framework (Ott et al., 2019; Wang et al., 2020)
for all experiments and train both RNNs with con-
volutional layers for time dimension reduction as
in Berard et al. (2018) and small Transformers as
in Wang et al. (2020), which consist of a convo-
lutional subsampler of two convolutional blocks,
followed by 12 encoder layers and 6 decoder layers.
The dimension of the self-attention layer is 256 and
the number of attention heads is set to 4. For the
NMT oracle, we use the trained Transformer model
from the Facebook’s submission to WMT19 (Ng
et al., 2019) 5. which is based on the big Trans-
former (Vaswani et al., 2017) which has 6 encoder
and decoder layers, 16 attention heads and the di-
mension of 1024, with a larger feed-forward layer
size of 8192. This NMT oracle had been trained
on all available WMT19 shared task en-de training
data and on back-translated english and german
portions of the News crawl dataset.

For all models we use Adam (Kingma and Ba,
2015) with gradient clipping at norm 10 and stop
training if the development set loss has not im-
proved for 10 epochs. For RNN architectures, we
return the best model on the development set and

5As the WMT19 submission consists of an ensemble of
models, we use the modell . pt for our experiments.

for Transformers, we create each model by aver-
aging over the last 10 checkpoints. For inference,
a beam size of 5 was used and we report case-
sensitive detokenized BLEU (Papineni et al., 2002)
computed with sacreBLEU (Post, 2018). We tested
for statistical significance with the paired approx-
imate randomization test (Riezler and Maxwell,
2005).

For all experiments, we preprocess the datasets
as follows: We extract log mel-scale filterbanks
with a povey window, 80 bins, a pre-emphasis filter
of 0.97, a frame length of 25 ms and a frame shift
of 10 ms. We discard samples with less than five or
more than 3000 frames and subtract the mean of the
waveform from each frame and zero-pad the FFT
input. For the text data, we normalize punctuation,
remove non-printable characters, use the Moses
tokenizer (Koehn et al., 2007) for tokenization and
segment the text data into subword units with byte-
pair encoding (Sennrich et al., 2016). We used a
random seed of 1 for all experiments.

We list the final used and best performing hy-
perparameters in Table A.2. Parameters that do
not differ between the training methods are not re-
peated in the table. We determine the batch size by
defining a maximum number of input frames in the
batch.

B Europarl-ST

We performed additional experiments on the
Europarl-ST dataset (Iranzo-Sdnchez et al., 2020)
that provides 83 hours of speech training data. We
train RNNs with a learning rate of 0.002 and a max-
tokens size of 40,000 for a total of 80,000 updates.
All other hyper-parameters are the same as listed
for MuST-C in Table A.2. We only trained RNNs
on the Europarl-ST dataset due to the small amount
of available training data. We present the results in
Table A.1.

Both improvements over standard training and
by training on both the gold-translated and
synthetic-translated translated training data corre-
spond with the results presented in the main body
of this work. Hence, the results presented here hold
for relatively small datasets, too.

C Additional Example of NMT Expert
Correction

Here we give another example of the NMT expert
predicting the correct output token despite receiv-
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Model Hyperparameter CoVoST2 MuST-C

RNN
standard learning rate le-3 le-3
max-tokens 60000 40000
scheduler fixed fixed
warmup-updates 20000 20000
encoder freezing updates 10000 10000
dropout 0.2 0.2
KD™ learning rate le-3 2e-3
max-tokens 50000 30000
warmup-updates 25000 20000
max-update 250000 250000
encoder-freezing updates 20000 10000
scheduler inverse square root inverse square root

Transformer

ASR learning rate 2e-3 le-3
max-tokens 50000 40000
max-update 60000 100000
scheduler inverse square root inverse square root
warmup-updates 10000 10000
dropout 0.15 0.1

AST
standard learning rate 2e-3 2e-3
max-update 30000 100000
encoder-freezing updates 1000 -
KD* max-tokens 50000 20000

Table A.2: list of hyperparameters that are dependent on model and dataset; we list only parameters which differ

from the previous model’s

ured by the Canadian Cancer Society and the World Health Organization
d by the Canadian Cancer Society and the World Health Service St
ancer Society und der Welt@@

y
gesundheits@@ organisation ge

d der Welt@@ gesundheits@@

Probability

Output symbol

Figure C.1: NMT expert top-8 output probabilities with
Yy« = Er wurde spiter von der Canadian Cancer Soci-
ety und der Weltgesundheits”.

ing a transcript with incomplete or false informa-
tion.

Figure C.1 shows the expert’s output probabili-
ties in response to receiving factually false informa-
tion in the transcript. The ASR model transcribed

“World Health Organization” as “World Health Ser-
vice Scheme”, yet the expert produces a probability
distribution that is skewed in favor of the correct
proper name due to its learned context knowledge.
Note that the probability of generating the correct
output token “organisation” (organization) is above
0.8.
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Abstract

This paper presents the USTC system for
the IWSLT 2023 Dialectal and Low-resource
shared task, which involves translation from
Tunisian Arabic to English. We aim to investi-
gate the mutual transfer between Tunisian Ara-
bic and Modern Standard Arabic (MSA) to en-
hance the performance of speech translation
(ST) by following standard pre-training and
fine-tuning pipelines. We synthesize a substan-
tial amount of pseudo Tunisian-English paired
data using a multi-step pre-training approach.
Integrating a Tunisian-MSA translation mod-
ule into the end-to-end ST model enables the
transfer from Tunisian to MSA and facilitates
linguistic normalization of the dialect. To in-
crease the robustness of the ST system, we op-
timize the model’s ability to adapt to ASR er-
rors and propose a model ensemble method.
Results indicate that applying the dialect trans-
fer method can increase the BLEU score of
dialectal ST. It is shown that the optimal sys-
tem ensembles both cascaded and end-to-end
ST models, achieving BLEU improvements of
2.4 and 2.8 in test] and test2 sets, respectively,
compared to the best published system.

1 Introduction

In this paper, we present the USTC’s submission
to the Dialectal and Low-resource track of IWSLT
2023 Evaluation Campaign (Agarwal et al., 2023),
aiming to translate Tunisian Arabic speech to En-
glish text. Modern Standard Arabic (MSA) is the
official language of Arabic-spoken countries. How-
ever, Arabic dialects like Tunisian and Egyptian are
prevalent in everyday communication, exhibiting
a similar relation between Chinese and Cantonese.
MSA benefits from an abundant supply of unla-
beled speech and text data, as well as relatively
adequate automatic speech recognition (ASR) and
machine translation (MT) paired data. In contrast,
dialectical forms of Arabic have much less paired
data and more irregularities in both pronunciation
and writing (Ben Abdallah et al., 2020).

This paper aims to explore the transfer between
high-resource MSA and low-resource Tunisian di-
alects, as well as effective training and decoding
strategies for speech translation (ST) tasks related
to low-resource dialects. To facilitate dialect trans-
fer, we introduce two approaches. Firstly, we pre-
train a model using high-resource MSA data, which
is then fine-tuned using low-resource Tunisian data.
This approach involves transferring model parame-
ters and can be used to train various models, e.g.,
ASR, MT, end-to-end ST. Secondly, we also de-
velop two transformation models for explicit di-
alect transfer. On one hand, for the augmentation
of MT data, we build an MT model that translates
MSA into Tunisian, resulting in a vast amount of
pseudo Tunisian-English paired data. On the other
hand, the Tunisian-MSA MT encoder module is
built and then integrated into the end-to-end ST
model, which can implicitly normalize dialectal
expressions. In addition, we also propose robust
training and decoding strategies from two perspec-
tives. To improve the robustness of the MT model
against ASR errors, we fine-tune the MT model
with the ASR output from the CTC (Graves et al.,
2006) layer or the ASR decoder. The model ensem-
ble method is exploited to decode multiple models
synchronously, which is shown to be rather benefi-
cial for the performance.

The rest of this paper is organized as follows.
Section 2 describes data preparation (e.g., datasets,
pre-processing). Section 3 presents the methods for
training and decoding ASR, MT and ST models.
Experimental setup and results are given in Section
4. Finally, Section 5 concludes this work.

2 Data Preparation

2.1 Datasets

In this year’s shared task, there are two types of
data conditions: constrained and unconstrained. In
order to provide a fair comparison with last year’s
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Task Dataset Condition Utterances Hours
Tunisian A 0.2M 160

ASR MGB2 B 1.IM 1100
MGB2+Private data C 3.4M 4600

ST  Tunisian A 0.2M 160

Table 1: The summary of the Audio data.

Dataset Condition Ta-En MSA-En
B Tunisian A 0.2M -
S OPUS B - 4M
S  OPUS+Private data C - 61M
2 Tunisian A 0.2M -
g oprus B - 32M
K OPUS+Private data C - 47M

Table 2: The summary of the text data.

Translation direction ~ Training data ~ MT model
Tunisian-English Ta-En Ta2En
English-Tunisian En-Ta En2Ta

MSA-English MSA-En MSA2En
English-MSA En-MSA En2MSA
Tunisian-MSA Ta-MSA Ta2MSA
MSA-Tunisian MSA-Ta MSA2Ta

Tunisian-MSA-English ~ Ta-MSA-En -

Table 3: Summary of abbreviations used in this paper.

results, we subdivided the unconstrained condition
into the dialect adaption condition and the fully
unconstrained condition. For convenience, we de-
note the constrained condition as condition A, the
dialect adaption condition as condition B, and the
fully unconstrained condition as condition C.

Table 1 summarizes statistics of the ASR and
ST datasets. The Tunisian dataset' in condition A
is Arabic dialect data. In addition to the MGB2
data (Ali et al., 2016) of condition B, we used ad-
ditional private data mainly from MSA for ASR
training in condition C. Table 2 summarizes the
statistics of the MT datasets. The MT data for con-
dition A are Tunisian-English (Ta-En) paired data,
while for condition B/C, the MT data consist of
MSA-English (MSA-En) paired data(Tiedemann
and Thottingal, 2020). All MT data undergoes pre-
processing, which includes cleaning and filtering.
Table 3 summarizes the abbreviations for MT mod-
els and training data associated with the translation
direction that are used in the sequel.

'The LDC Catalog ID of the Tunisian dataset for IWSLT
is LDC2022EO01.

2.2 Audio data pre-processing

As the audio data of condition B/C had a sampling
rate of 16kHz, we upsampled the speech signal in
the Tunisian dataset from 8kHz to 16kHz using the
sox toolkit>. We extracted 40-dimensional log-mel
filterbank features with a frame length of 25ms and
a frame shift of 10ms, and then normalized these
features with a zero mean and unit variance. We
applied SpecAugment (Park et al., 2019) in the
time dimension with mask parameters (my,T) =
(2, 70). Afterwards, we filtered out audio data that
is longer than 3k frames. Further, we introduced
speech perturbations at ratios of 0.9 and 1.1.

2.3 Text Processing & Filtering

We kept the MSA and Tunisian text data in their
original form without any normalization such as re-
moving diacritical marks or converting Alif/Ya/Ta-
Marbuta symbols. We removed punctuations from
MSA, Tunisian, and English text while we con-
verted the English text to lowercase. Our data fil-
tering process in condition B/C includes Length
Match and Inference Score.

* Length Match: Text samples exceeding 250
words were dropped first. Next, we calculated
the length ratio between the source and target
language text. Text samples with length ra-
tios exceeding 2 or below 0.4 were deemed to
be length mismatching cases and were subse-
quently removed. As such, approximately 6M
text data in condition B were eliminated.

* Inference Score: Initially, a basic MT model
(scoring model) was trained on raw MSA-En
data in condition B. Subsequently, the scoring
model was used to infer the same MSA-En
raw data, resulting in inference scores based
on logarithmic posterior probabilities. Finally,
MSA-En data associated with lower inference
scores were removed, leading to another 4M
text data being eliminated from condition B.

Table 2 summarizes the filtered data used for train-
ing. In total, 10M text data in condition B and 4M
text data in condition C were removed.

3 Methods

3.1 Automatic Speech Recognition

We employed several ASR models with differ-
ent structures in experiments, including the VGG-

Zhttp://sox.sourceforge.net
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Figure 1: The data augmentation method for Tunisian-English Text, where * indicates the pseudo text.

Conformer model (Simonyan and Zisserman, 2014;
Gulati et al., 2020), VGG-Transformer model
(Vaswani et al., 2017) and GateCNN-Conformer
model (Dauphin et al., 2017). These ASR mod-
els differ in their feature extractor modules (VGG,
GateCNN) and acoustic modules (Conformer,
Transformer). We chose diverse models with the
expectation that increasing the variability of ASR
models would improve the final ASR performance
when using model ensemble methods. For dialect
transfer in condition B/C, we pre-trained an ASR
model using MSA data, which was then fine-tuned
using the Tunisian data. Note that for condition
A, we initially attempted to pre-train a phoneme
recognition model for Tunisian but found it to be
useless after fine-tuning the pre-trained model.

3.2 Data Augmentation for MT

We considered various data augmentation tech-
niques for MT. To augment the Tunisian-English
(Ta-En) dialect MT data, we used the back transla-
tion and forward translation (BTFT) method to cre-
ate a synthetic parallel corpus that can be merged
with the true bilingual data. To accomplish dialect
transfer from MSA to Tunisian, we constructed
a pivot MT model that converts MSA to Tunisian
and produces abundant synthetic Ta-En data.

BTFT: Two MT models were first trained from
Tunisian to English (Ta2En) and from English to
Tunisian (En2Ta) using MT data of condition A.
The Tunisian text and English text were then re-
spectively fed to the corresponding MT models for
inference, resulting in paired Tunisian to synthetic-
English text and paired synthetic-Tunisian to En-
glish text. It is worth noting that the Ta2En model
implements the forward translation approach simi-
larly to the sequence-level knowledge distillation
method (Kim and Rush, 2016), while the En2Ta
model employs the backward translation (Sennrich

et al., 2016a) approach. Ultimately, the obtained
synthetic data and the original data were merged to
form the BTFT dataset.

Dialect Transfer: In the IWSLT 2022 dialect
ST track, (Yang et al., 2022) presented an ef-
fective Ta2En-bt-tune model that generates syn-
thetic Tunisian-English data by converting MSA
to pseudo-Tunisian with an MSA2Ta MT model.
In Figure 1, we modified this approach by intro-
ducing a multi-step pre-training technique that im-
proves the quality of pseudo-Tunisian and enhances
downstream translation tasks. Our dialect transfer
method is outlined as follows:

(1) Firstly, the En2MSA (English to MSA)
model was pre-trained using condition B/C MT
data and then fine-tuned using the MT data from
condition A to create the En2Ta model.

(2) The En2MSA and En2Ta models were uti-
lized separately with the English texts from con-
dition A and condition B/C as inputs to generate
paired Ta-MSA-En triple text data for condition
A/B/C. The pseudo-text in condition A is the MSA*
text, whereas the pseudo-text in condition B/C is
the Tunisian* text (* representing pseudo-text). No-
tably, during this step, the pseudo-Tunisian* text
derived from condition B/C is marked as the first
iteration.

(3) Next, we trained an MSA2Ta (MSA to
Tunisian) model, which serves as a pivot MT model.
We pre-trained the model with the MSA-Ta* data
of condition B/C and fine-tuned it using the MSA*-
Ta data of condition A from step 2.

(4) Lastly, we input the MSA text of condition
B/C to the MSA2Ta model for inference, generat-
ing the second iteration of the pseudo-Tunisian text
(marked as pseudo-Tunisian**). We re-created the
paired triple text data of Ta-MSA-En text by merg-
ing the pseudo-Tunisian** text with the primary
MSA-English text from condition B/C.
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Figure 2: The top figure shows the SATE model (Xu et al., 2021), which implements a forward dialect transfer
system from MSA to Tunisian through pre-training and fine-tuning techniques. The bottom part shows the Hybrid
SATE model with a hierarchical text encoder, which can be used to reversely transfer from Tunisian to MSA.

3.3 End-to-end ST Model

The end-to-end ST approaches can mitigate issues
of error propagation that often appears in low-
resource scenarios. We developed an E2E ST sys-
tem utilizing the SATE model (Xu et al., 2021) due
to its effectiveness and simplicity for implementa-
tion, which is shown in Figure 2. In particular, we
suggest two dialect transfer approaches for condi-
tion B/C, specifically the forward dialect transfer
system from MSA to Tunisian and the reverse di-
alect transfer method from Tunisian to MSA.

3.3.1 Forward dialect transfer system

The forward dialect transfer system aims to transfer
information from MSA to Tunisian by pre-training
the ASR and MT models on the MSA dataset, re-
spectively. These models are then fine-tuned us-
ing the Tunisian dataset to transfer from MSA to
Tunisian. Note that the forward dialect transfer
system is treated as a transfer of model parameters.
In order to create an E2E ST system, we utilize
the SATE model with pre-trained Tunisian ASR
and MT models, followed by fine-tuning the SATE
model with Tunisian ST dataset.

During training, the SATE model utilizes multi-
task optimization, including the CTC loss of the
source language EgaTC, the cross-entropy loss for
the target language ﬁg}}] and the knowledge distil-
lation (KD) losses for both the source and target
languages, i.e., E%) and L’E‘f). The overall loss
function reads

L= ML+ A LEL + XN LE + LB, (1)

with four respective hyper weight parameters. The
SATE model utilizes an adaptor to map speech fea-
tures into the text feature space but suffers from
inconsistent in-between sequence lengths. For this,
we proposed a robust training method. Specifi-
cally, the Tunisian ASR model was first decoded

by retaining both the repeated tokens and blank
symbols of the CTC output. The resulting output
was then combined with its corresponding English
text to fine-tune the Ta2En MT model. The modi-
fied Ta2En MT model was well-suited to initialize
the MT module of the SATE model.

3.3.2 Reverse dialect transfer system

It is a common issue that the Tunisian Arabic di-
alect is considered as being non-standardized at
the linguistic level (Ben Abdallah et al., 2020). To
address this, we proposed a reverse dialect transfer
system that converts the Tunisian dialect to MSA,
serving as a regularization of the dialect, which
is illustrated in Figure 2. We modified the SATE
model with a hierarchical text encoder (resulting in
Hybrid SATE) to enable the reverse dialect trans-
fer system. The proposed Hybrid SATE model
primarily comprises a speech encoder, a Ta2MSA
text encoder and an MSA2En MT module.

In order to initialize the model parameter for the
Ta2MSA text encoder module in the Hybrid SATE
model, we trained a Ta2MSA MT model. Based
on the generated Ta-MSA* data in condition A
and Ta**-MSA paired data in condition B/C from
Section 3.2, we first pre-trained a Ta2MSA MT
model with the Ta**-MSA data from condition
B/C. Notably, the Ta2MSA MT model is equipped
with a CTC layer on top of its encoder and is trained
with an additional CTC loss for MSA. Then, we
fine-tuned the model using the Ta-MSA* data from
condition A. Finally, the encoder attached with a
CTC layer of the Ta2MSA MT model was used to
initialize the Ta2MSA text encoder.

The hybrid SATE model is optimized with an
additional CTC loss for MSA, denoted as £Y58,
resulting in the overall loss function

L =ML+ MLER + M3 L5 + ML
+ A5 LMBA. )
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3.4 Model Ensemble Method

As training a single model can lead to implicit
model bias, it is expected that a model ensemble
decoding method can improve system robustness,
especially in low-resource ST scenarios. We imple-
mented synchronous decoding with multiple mod-
els and averaged the posterior probabilities pre-
dicted by each model at each time step. Consistent
with single model decoding, the beam search de-
coding strategy was used with a beam size of 10.
Subsequently, multiple models decoded the next to-
kens based on the same historical tokens. It should
be noted that either E2E ST or MT models can
be used for the model ensemble. Consequently,
we can form ensembles of E2E ST and cascaded
ST systems by using transcriptions from the ASR
models as inputs for the MT models.

4 Experiments and results

4.1 Model Configurarions

ASR: For condition A, we employed the base
model configurations, whereas the large model
configurations were used for the experiments on
condition B/C. Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016b) subword segmentation with the
Tunisian text was trained and the dictionary size
was 1000. The detailed model configurations are
given in Appendix A.

MT: We considered two encoder-decoder archi-
tectures for MT: the normal transformer model
(Vaswani et al., 2017) and the macaron-like trans-
former model (Lu et al., 2019). The latter uses
several FFN-attention-FFN layers instead of the
attention-FFN layer used in the former. Our MT
model has three variants based on the number of
layers in the encoder and decoder and the type of
model architecture: MT base, MT large, and MT
macaron. For detailed model and dictionary sizes,
please refer to Table 13 in Appendix A.

E2E ST: Since both the SATE and hybrid SATE
models are initialized by pre-trained ASR and MT
modules, the model parameters can be inferred
straightforwardly from the aforementioned ASR
and MT model settings.

4.2 Results
4.2.1 Automatic Speech Recognition

Table 4 shows the ASR performance in terms of
word error rate (WER) of MSA. Among the three
different model structures, the VGG-Conformer

B C
Model dev test | dev test
VGG-Conformer 143 132 | 125 12
VGG-Transformer 16,6 155|142 133
GateCNN-Conformer | 15.1 142 | 143 134

Table 4: The WER of the MSA MGB?2 corpus.

A B C
Model ‘ dev testl | dev testl | dev testl
VGG-Conformer 48.5 554|454 532 | 42 49.7
VGG-Transformer 492 57 | 49 56.8|44.7 52.1
GateCNN-Conformer | 46.6 53.4 |47.2 53.7 |46.1 53.3

Ensemble |44.5 517 |43.4 509 |40.8 48.7

Table 5: The original WER on Tunisian. Due to the
non-standard orthography and grammar in Tunisian,
the value of original WER is relatively higher than the
normalized WER in Table 11.

model achieves the best performance. It is clear
that the performance can be further improved by
using additional private data in condition C.

The pre-trained MSA ASR models are fine-
tuned using Tunisian data for dialect transfer in
condition B/C. As shown in Table 5, the VGG-
Conformer model continues to perform best among
different single models in condition B/C, while the
GateCNN-Conformer model performs best in con-
dition A. We further ensemble the three single mod-
els mentioned above and get the final ASR model
results for each condition®. This demonstrates that
model ensemble can significantly improve the ASR
performance, especially in condition A. Comparing
the ASR results in condition B/C with that in con-
dition A, we find that pre-training on high-resource
MSA data can improve the ASR performance in
low-resource Tunisian.

4.2.2 Cascaded Speech Translation

We will demonstrate the usage of the BTFT data
via an ablation study on condition A. For condition
B/C, we compare the quality of different versions
of Ta-En pseudo data. Besides, we introduce two
methods for robust training, called constrained
fine-tune and error adaptation fine-tune.

BTFT and Constrained Fine-Tune Our base-
line MT model of condition A is trained using the
original Ta-En MT data. From Table 6, we see

3For model ensemble of condition B, the VGG Trans-
former and GateCNN-Conformer models are from condition
A, and the VGG-Conformer model is from condition B.
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MT Cascaded ST

Data & Method ‘ dev  testl ‘ dev  testl
Baseline | 263 23.0 | 194 16.7
BTFT data 282 240 | 203 17.1
+ Constrained FT | 28.5 24.3 | 20.6 17.3

Table 6: The BLEU score of MT and cascaded MT
experiments in condition A.

Model  Pretrain Model MT BLEU
dev testl
En2Ta - 124 10.0
En2Ta En2MSA 16.6 12.5
MSA2Ta* - 8.3 6.8
MSA*2Ta MSA2Ta* 12.1 9.6

Table 7: The BLEU score of different pivot MT models
using Ta-MSA*-En triple text data of condition A.

that combining the training data with BTFT data
brings a considerable performance gain for both
MT and cascaded ST. The MT model trained by
the BTFT data are further fine-tuned by the original
true paired Ta-En data. In order to prevent exces-
sive over-fitting while fine-tuning, we proposed a
constrained fine-tune method, as depicted in Figure
3. Specifically, the student model is constrained
by the teacher model using KL divergence loss to
avoid catastrophic forgetting and over-fitting. In
case of using the constrained fine-tune method, the
MT training objective function is given by

L =Lk, + LcE. 3)

Pseudo Ta-En paired data From Table 7, we see
that the model initialized by a pre-trained model
generates higher quality translations, i.e., higher
quality pseudo-data. However, the performance
comparison between the En2Ta model and the
MSA*2Ta model may not be convincing since the
input for the two models is different.

Comparing the performance of the Ta2En MT
model is more appropriate to directly reveal the
quality of the two versions of pseudo Ta-En data.
In Table 8, it is clear that pre-training the MT model
using Ta-En pseudo-data performs better than using
MSA-En data. Moreover, the second version of Ta-
En pseudo data outperforms the first when used
for pre-training the Ta2En MT model. We believe
that the MSA2Ta model is preferable for the En2Ta
model due to the consistent use of MSA data during
training and decoding. The En2Ta model employs
English text from condition A for training, but uses

Model MT Cascaded ST
dev testl | dev  testl
MSA2En-large - - - -
+ BTFT data FT 293 260 | 222 19.0

+ Constrained FT | 30.1 26.2 | 22.5 19.2

Ta*2En-large 163 156 | 133 114
+ BTFT data FT 299 265 (225 193

+ Constrained FT | 304 26.6 | 22.8 19.5
Ta**2En-large 16.7 155 | 133 120
+ BTFT data FT 304 266 | 23.1 192

+ Constrained FT | 30.8 27.0 | 23.2 19.5

Table 8: The BLEU score of the MT and the cascaded
ST systems in condition C.

MT Cascaded ST
Model dev testl | dev testl
Condition A Best 285 243 (206 173
+ Error Adapation FT | 28.3 239 | 20.5 17.1
Condition C Best 30.8 27.0 | 23.2 19.5
+ Error Adapation FT | 30.7 26.6 | 23.3 19.7

Table 9: The BLEU score of the MT and the cascaded
ST systems in condition A/C when using error adaption
fine-tune method.

Y Ground Truth Y Ground Truth

losscg lossc

lossgp
YClean

Yieacher lossg, Ystudent Y'asr P lossgr Yasr

Initialize Initialize

MT, MT,

teacher teacher

Ta2En MT Ta2En MT

XClean input XClean input XASR output

Figure 3: Left: Constrained Fine-tune, Right: Error
Adaptation Fine-tune.

English text from condition B/C to generate pseudo-
Tunisian text. In comparison, the MSA2Ta model
consistently uses MSA data from condition B/C for
both training and decoding.

Error Adaptation Fine-tune As shown in Fig-
ure 3, the error adaptation fine-tune method (Zhang
et al., 2022) slightly adjusts the MT model to mit-
igate potential ASR prediction errors. This tech-
nique fine-tunes the Ta2En MT model using a com-
bination of the ASR output text and the text from
the target language. It is based on the constrained
fine-tune method by incorporating true text from
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Model \ SATE | Hybrid-SATE |
Speech encoder ‘ Conformer ‘ Transformer ‘ Conformer ‘ Ensemble
MT module | MT MT-Macaron | MT | MT |
A dev 20.2 20.1 19.5 - 21.2
test1 17.2 17.3 16.6 - 18.2
B dev 22.0 22.0 20.9 22.0 234
test1 19.0 19.1 18.0 18.9 20.3
C dev 23.8 23.7 234 23.1 24.9
test1 20.7 20.2 20.0 20.2 22.0

Table 10: The BLEU scores of our E2E ST in condition A/B/C, where the speech encoder and MT module represent
the sub-modules, and MT and MT-Macaron represent MT large and MT macaron models, respectively.

the source language as soft-labels to enhance the
training with the KD loss Lxp. The loss function
for the error adaptation fine-tune method is given
by

L =05Lkp + 0.5Lk1, + LcE. 4

From Table 9, we can observe that the error adap-
tion fine-tune method enhances the performance
of the cascaded ST system, albeit at a cost of MT
performance decline. This reveals that this method
is not effective in condition A but rather useful in
condition B/C.

4.2.3 End-to-end Speech Translation

The SATE model can be instantiated in various
structures by using different speech encoder and
MT modules. Table 10 demonstrates that the con-
former encoder outperforms the transformer en-
coder, showing an average improvement of 0.7
BLEU in condition A/B/C. For the different MT
modules, the normal MT module is slightly better
than the MT module in the macaroon form. Again,
the results indicate model ensemble increases about
1.1 BLEU on the test] set in condition A/B/C. The
results of dialect transfer show an improvement
for ST by 2.1 BLEU in condition B compared to
condition A, and this is even greater in condition
C,i.e., 3.8 BLEU. Additionally, the hybrid SATE
model significantly improves the ST performance
when used as a sub-model for model ensemble.

4.2.4 Model Ensemble

Table 11 presents the overall results of our
ASR/MT/ST systems. The ASR results in terms of
the normalized WER are derived from the model
ensemble method in Table 5. It is worth noting that
the ASR models are trained on original transcrip-
tions but evaluated in a normalized form, which

#  data condition A B C
ASR WER/|
JHU-IWSLT2022 44.8 43.8 44.5

A1l ASR Ensemble 43.0 42.9 40.6
MT BLEU?
CMU-IWSLT2022 228236 -

M1 MT base 23.8 26.5 26.5

M2 MT large 23.9 26.3 26.6

M3 MT macaron 23.8 26.6 26.9

M4 MT Ensemble 24.3 269 27.4
Cascaded ST BLEUT
CMU-IWSLT2022 175179 -

Cl Al+Ml 17.7 19.3 19.6

C2 Al+M2 17.8 19.5 20.0

C3 Al1+M3 17.6 19.5 19.9

C4 Al +M4 18.4 19.9 20.2
E2E ST BLEU?
CMU-IWSLT2022 (Mix) 18.7 18.9 -

El1 Ensemble of SATE 18.2 20.0 21.3

E2 Ensemble of SATE + Hybrid SATE - 20.3 22.0
Cascaded and E2E ST BLEU?
CMU-IWSLT2022 (Ensemble) 19.2 195 -

E3 Ensemble of C4 + E1 19.0 20.5 21.4

E4 Ensemble of C4 + E2 - 20.8 21.9

Table 11: The overall results of our ASR/MT/ST sys-
tems on testl set. The hypothesis and reference are
normalized before computing normalized WER in or-
der to be consistent with last year’s ASR system. We
substituted the MT base model of condition C with the
MT base model of condition B. JHU-IWSLT2022 and
CMU-IWLST2022 are taken from (Yang et al., 2022)
and (Yan et al., 2022), respectively.

may cause a performance drop. The ensemble of
three single MT models achieves an average im-
provement of 0.4 BLEU in text translation and cas-
caded ST systems of condition A/B/C, compared to
the best single model of each data condition. The
results of the E2E ST systems are derived from
Table 10. We find that the E2E ST system falls
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slightly behind the cascaded system in condition A
but significantly surpasses it in condition B/C.

In the constrained condition, the primary system
of our submission comprises an ensemble of cas-
caded and E2E ST models (see row E3 of condition
A). Additionally, for the unconstrained condition,
we add the hybrid SATE model to the ensemble of
cascaded and E2E ST models, which leads to a sig-
nificant improvement of approximately 0.4 BLEU.
Although the ensemble of cascaded and E2E ST
system shows a 0.1 BLEU drop in condition C, it
helps achieve the best performance in condition
A/B. Therefore, the primary system of the submis-
sion for the unconstrained condition is in row E4
of condition C. Moreover, we submit a contrastive
system (i.e., row E4 of condition B) to compare the
performance without using private data.

5 Conclusion

This paper presents the methods and experimen-
tal results of the USTC team for the dialect ST
(Tunisian Arabic to English) task in IWSLT 2023.
The proposed forward and reverse dialect trans-
fer methods, which were shown to be effective for
augmenting text data and building hybrid SATE
models. We utilized various model structures for
implementing ASR, MT and ST tasks, and im-
proved the robustness through model ensembling
and error adaptation during training. The experi-
ments showed a significant improvement in dialec-
tal ST through the use of dialect transfer method.
In unconstrained condition, our E2E ST system
performs better than the cascaded ST system but is
slightly less effective in constrained condition. Fu-
ture studies might include the exploration of E2E
ST models for unified modeling of multiple dialects
(e.g., Tunisian, Egyptian) with MSA.
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A Appendix. Model configurations

The detailed model configurations for ASR systems
are as following:

* Condition A: The model configurations are
almost identical to the ESPnet (Inaguma et al.,
2020) baseline. There are 12-layer encoder
and 6-layer decoder. The attention module of
both the encoder and decoder comprises 256
hidden units and 4 attention heads. The size
of the FFN module is 1024 for the encoder
but 2048 for the decoder. We use two VGG
blocks as the feature extractor for both the
VGG-Conformer and the VGG-Transformer
models. For the GateCNN-Conformer model,
the feature extractor has a 6-layer GateCNN.

e Condition B/C: The model difference be-
tween the condition A and the condition B/C
lies in the model size. For condition B/C, the
attention module has 512 hidden units and 8
attention heads, and the size of FFN is 4096.
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Condition | Training Stage | I

| Max-tokens | Warmup | Dropout rate | Training steps

A Stagel: BTFT Pretrain Se-4 12000 4000 0.3 120000
Stage2: Constrained Fine-tune - 4096 - 0.3 40000

Stagel: MSA-En Pretrain le-3 40000x8 4000 0.1 200000

Stage2: Ta**-En Pretrain Se-4 40000x 8 None 0.1 20000

B/C Stage3: BTFT Fine-tune 4e-5 6144 4000 0.3 120000
Stage4: Constrained Fine-tune - 2048 - 0.3 80000

Stage5: Error Adaptation Fine-tune | le-5 4096 None 0.3 10000

non

Table 12: Hyper parameters in different stages (

Condition A B/C
Encoder dim 256 512
Encoder FFN dim 1024 2048
Encoder attn heads 4 8
Decoder dim 256 512
Decoder FEN dim 1024 2048
Decoder attn heads 4 8
Tunisian BPE units 1000 1000
MSA BPE units - 32000
English BPE units 4000 32000

Table 13: The model sizes and dictionary sizes for MT
training, where "attn" represents attention module.

For MT models, the 6-layer encoder and 6-layer
decoder are used for both MT base and MT mac-
aron models, but 12-layer encoder and 6-layer de-
coder for MT large model. The details of the MT
system are summarized in Table13.

B Appendix. Training and Inference

ASR: We used the fairseq tool (Ott et al., 2019)
for training and inference. During training, we used
a dropout rate of 0.3, set the label-smoothing rate
to 0.1 and used a CTC loss weight of 0.3. The max
tokens and max sentences per batch were 32000
and 120, respectively. We used the inverse square
learning rate schedule for training, with a learning
rate of 1e-3 and warmup steps of 8000 for condition
A. For condition B/C, we pre-trained with MSA
ASR data and used a learning rate of le-3 and
warmup steps of 30000. We used a learning rate of
2e-4 and warmup steps of 8000 while fine-tuning
with in-domain Tunisian ASR data. The models
were optimized through the Adam optimizer with
51 = 0.9, B2 = 0.98. During inference, we used
an attention-based decoding strategy with a beam
size of 10. We averaged the model parameters of 5
best model based on the WER on the dev set.
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means reuse from the former stage and "x" the GPU numbers).

# A B C
test2 ASR WER/
IWSLT2022 43.8 429 41.5
Al 40.8 40.5 39.3
test2 ST BLEU?T
IWSLT2022 20.4 20.8 18.7
E3 20.5 - -
E4 - 22.8 23.6
test3 ASR WER|

Al 43.2 42.3 40.5
test3 ST BLEU?T

E3 18.1 - -
E4 - 20.2 21.1

Table 14: The overall results of our ASR/ST systems
on test2 set (IWSLT 2022 evaluation set) and test3 set
(IWSLT 2023 evaluation set).

MT: The MT model training was also conducted
using the fairseq toolkit. We conducted all train-
ing stages on the NVIDIA A40 GPU, varying the
specific GPU number depending on the stage. Dif-
ferent training methods and hyper-parameters were
used for optimal results depending on the condition,
where we classified them into condition A and B/C.
Specifically, we divided our training method into
several stages, see Table 12. In Stage2 and Stage5
of condition B/C, the number of training steps is
significantly lower than other stages. This was be-
cause the model had a tendency to overfit quickly
during these stages; hence learning rate warmup
method was not used during training. During in-
ference, the beam size of decoding is 10. We used
the official sacrebleu tool (Post, 2018) to calculate
the normalized case-insensitive BLEU score. We
averaged the model parameters of 5 best models
based on the BLEU score on the dev set.

E2E ST: The hyper-parameters of the model
training and inference are almost consistent with
those used for ASR. The knowledge distillation
weight (KD) for ASR is set to 0.2 but 0.3 for MT.
The CTC loss weight for the speech encoder is set



to 0.2 while it is 1.2 for the Ta2MSA text encoder
of hybrid SATE. Note that the CTC loss weight for
the Ta2MSA text encoder is much larger because
translating Tunisian to MSA with pseudo Ta-MSA
MT data is challenging.

C Appendix. Official Evaluation Results

The official evaluation results of our submitted sys-
tems on both test2 and test3 sets (both being blind
tests) are summarized in Table 14. Our submis-
sions outperformed last year’s best performance in
all data conditions (constrained and unconstrained)
for both ASR and ST evaluations (e.g, see the re-
sults of test2 set).
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Abstract

Many existing speech translation benchmarks
focus on native-English speech in high-quality
recording conditions, which often do not match
the conditions in real-life use-cases. In this
paper, we describe our speech translation sys-
tem for the multilingual track of IWSLT 2023,
which focuses on the translation of scientific
conference talks. The test condition features
accented input speech and terminology-dense
contents. The tasks requires translation into
10 languages of varying amounts of resources.
In absence of training data from the target do-
main, we use a retrieval-based approach (KNN-
MT) for effective adaptation (+0.8 BLEU for
speech translation). We also use adapters to
easily integrate incremental training data from
data augmentation, and show that it matches
the performance of re-training. We observe
that cascaded systems are more easily adapt-
able towards specific target domains, due to
their separate modules. Our cascaded speech
system outperforms its end-to-end counterpart
on scientific talk translation, although their per-
formance remains similar on TED talks.

1 Introduction

This paper summarizes Karlsruhe Institute of Tech-
nology’s speech translation system for the multilin-
gual track of IWSLT 2023 (Agarwal et al., 2023).
In this track, the task is to translate scientific talks
in English into 10 languages: Arabic (ar), Chinese
(zh), Dutch (nl), French (fr), German (de), Japanese
(ja), Persian/Farsi (fa), Portuguese (pt), Russian
(ru), Turkish (tr). The talks are from presentations
in the 60th Annual Meeting of the Association for
Computational Linguistics (ACL 2022).
Translating scientific talks presents several chal-
lenges. On the source side, most speakers are
non-native, and the recording conditions often vary.
This requires acoustic robustness to accents and
noise. On the target side, domain-specific termi-
nologies are frequently used, calling for accurate

translation of these words that rarely occur in the
training data. The styles of the talks, e.g. formal-
ity, also differ from other domains. As no training
data from the same domain is provided, effective
few-shot or zero-shot adaptation is crucial.

As the task focuses on one-to-many translation,
it is also an interesting testbed for whether mul-
tilinguality improves speech translation quality.
For text-to-text translation, the gain from multi-
linguality is mostly concentrated in many-to-one
translation (Aharoni et al., 2019; Fan et al., 2021),
i.e., multilinguality on the source side. In con-
trast, for X-to-many translation, it remains unclear
whether incorporating more target languages im-
proves translation quality.

In this system description paper, we present
cascaded and end-to-end systems for the English-
to-many speech translation task. We lever-
age pretrained models, including WavLM (Chen
et al., 2022), mBART50 (Tang et al., 2020), and
DeltaLM (Ma et al., 2021). The systems do not use
additional data beyond the allowed corpora, and
therefore fall under the constrained data condition.

For the cascaded system, to handle the unique
style of scientific talks, we use kNN-MT (Khan-
delwal et al., 2021) to bias the output generation
towards the target domain. Moreover, as no target
monolingual data is provided, we use data diversi-
fication (Nguyen et al., 2020) to enrich the existing
parallel data. We also use adapters (Rebuffi et al.,
2017; Bapna and Firat, 2019) as a lightweight ap-
proach for incremental learning and language adap-
tation. For the ASR model, we improve over last
year’s performance by using a more recent audio
encoder (Chen et al., 2022) and adding a dedicated
decoder. To adapt the ASR system to the target
domain, we use n-gram re-weighting and synthe-
sized data for the target domain. For the end-to-end
system, we use our machine translation model for
knowledge distillation. We also ensemble models
trained with and without synthesized speech data.
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Our main findings are as follow:

* For cascaded ST systems, we can effectively
adapt the model towards a target domain/style
using KNN-MT (Khandelwal et al., 2021). A
datastore as small as a few hundred sentence
pairs was sufficient for achieving consistent
gains (avg. +0.8 BLEU over 10 languages).

* Besides the common use-case of adding
language-specific capacity, adapters (Bapna
and Firat, 2019) is also an effective method
when subsequently adding training data. Em-
pirically, we show it matches the performance
of re-training on all new data.

* For ASR, lexical constraints for domain adap-
ation are more easily integrated in CTC mod-
els. For encoder-decoder model, the control
could be achieved by TTS-synthesized source
speech, but it requires more careful tuning.

2 Data and Preprocessing

After describing the evaluation data (§2.1), we out-
line the training data and preprocessing steps for
our automatic speech recognition (ASR; §2.2), ma-
chine translation (MT; §2.3), casing/punctuation
restoration (§2.4), and speech translation (ST; §2.5)
models.

2.1 Development and Test Data

In the multilingual track, the testing condition is
scientific conference talks. Therefore, we primarily
rely on the ACL development (dev) set for valida-
tion. It consists of English transcripts of the talks
and translations into the 10 target languages. The
systems are then evaluated on a blind test set. The
dev and test sets consist of 5 talks each. The paper
abstracts for all talks are available in English. The
talks are pre-segmented. In all experiments, we use
the given segmentation.

We also report performance on tst-COMMON
of MuST-C (Di Gangi et al., 2019), tst2019 and
tst2020 from previous years’ evaluations (Anasta-
sopoulos et al., 2021, 2022).

An overview of the development and test data is
in Table 1.

2.2 Speech Recognition Data

For the ASR training, we use Common
Voice (Ardila et al., 2020), LibriSpeech (Panayotov
et al., 2015), MuST-C v2 (Di Gangi et al., 2019),
TED-LIUM v3 (Hernandez et al., 2018), and

Dev/Test set Hours # Utterances Domain
ACL dev 1.0 468 ACL conference talks
tst-COMMON 4.9 2823 TED talks
tst2019 4.8 2279 TED talks
tst2020 4.1 1804 TED talks

Table 1: Overview of development and test data.

Corpus / Data Source Hours # Utterances
Common Voice 1667 1225k
LibriSpeech 963 281k
MuST-C v2 482 251k
TED-LIUM v3 452 268k
VoxPopuli 501 177k
TTS 7284 4.7M

Table 2: ASR data overview.

VoxPopuli (Wang et al., 2021). The data overview
is in Table 2.

Synthesized Speech Data To adapt the ASR
model to the ACL talks, we add synthesized speech
created by a text-to-speech (TTS) model. Specifi-
cally, from the MT bitext English side (Table 3), we
select sentences similar to the ACL domain based
on similarity with the provided ACL dev bitext and
abstracts. Inspired by data selection strategies for
MT (Eck et al., 2005; Koneru et al., 2022), we
use n-gram overlap as similarity metric. 4.7M sen-
tences are selected and then synthesized to speech
by a VITS (Kim et al., 2021) model trained on
MuST-C. The synthesized data amount is shown in
the last row of Table 2.

2.3 Machine Translation Data

The MT training data include the following
text-to-text translation corpora: Europarl v7
and v10 (Koehn, 2005), NewsCommentary v16,
OpenSubtitles v2018 (Lison and Tiedemann,
2016), Tatoeba (Tiedemann, 2012), and ELRC-
CORDIS_News, JParaCrawl (Morishita et al.,
2022) for Japanese, and TED2020 (Reimers and
Gurevych, 2020) for German'. We also include
the text translation part of the following ST cor-
pora: MuST-C (Di Gangi et al., 2019), CoVoST
v2 (Wang et al., 2020), and Europarl-ST (Iranzo-
Sanchez et al., 2020). The aggregated data amount
per language is summarized in the “Original” col-
umn of Table 3.

'This dataset has deplication with past evaluation sets:
tst2019 tst2020 and tst-COMMON. The deplications were
removed prior to training.
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Original After Diversification
Lang. # sent. (M) #sent. (M) # tokens (M)
ar 26.0 65.2 865.0
zh 11.2 21.5 254.3
nl 33.1 82.1 1162.7
fr 38.9 91.6 1427.8
de 23.0 54.4 860.0
ja* 2.6 27.2 832.7
fa 5.8 11.3 162.1
pt 29.0 72.3 1024.3
ru 22.1 51.5 685.3
tr 36.7 89.7 1021.2
Total 228.4 566.8 82954

Table 3: MT data overview. *: For ja, the original data
of 2.6M sentences did not include JParaCrawl, which
was announced later as allowed data.

As preprocessing, we perform truecasing, dedu-
plication, length ratio filtering, and histogram filter-
ing using the statistics by Fan et al. (2021). Then
we perform subword segmentation using Sentence-
piece (Kudo and Richardson, 2018) based on the
vocabulary of mBARTS50 (Tang et al., 2020).

Data Diversification Different from last years’
shared tasks (Anastasopoulos et al., 2021, 2022),
no monolingual (non-English) data is provided.
This means conventional data augmentation tech-
niques like backward translation are not directly
applicable. On the other hand, forward translation
from existing English monolingual data may intro-
duce undesirable errors in the translation targets,
especially on lower-resource languages. In this
light, we use data diversification (Nguyen et al.,
2020), a data augmentation method that enriches
existing parallel data by forward and backward
translating the training bitext. As the model has
seen the parallel data in training, the synthetic trans-
lations are expected to have relatively high quality.
Moreover, either the source or target side of the
synthetic data is from the original bitext. The di-
versified data amount after deduplication is shown
in Table 3. Here we perform one round of forward
and backward translation, as Nguyen et al. (2020)
have empirically shown further rounds do not lead
to substantial gains.

2.4 Casing/Punctuation Restoration Data

The ASR outputs are lower-cased and unpunctu-
ated, while the MT model expects cased and punc-
tuated inputs. We randomly sample 1.5 million En-
glish sentences from the MT training data (Table 3),
and remove the casing and punctuation marks as

training source data. We then train a model to re-
store the casing and punctuation marks.

2.5 Speech Translation Data

The speech translation data are shown in Ta-
ble 4. We additionally use our trained MT model
to create forward translations based on the fol-
lowing transcript-only datasets: Common Voice,
TEDLIUM, and VoxPopuli. The TTS data de-
scribed in §2.2 is also used.

Lang. Corpus/Data Source Hours # Utterances
ar CoVoST 429 289k
MuST-C 463 212k
TTS 283 203k
zh CoVoST 429 289k
MuST-C 596 358k
TTS 204 183k
nl MuST-C 434 248k
europarl-ST 75 32k
TTS 1138 713k
fr MuST-C 485 275k
europarl-ST 76 32k
TTS 1768 998k
de CoVoST 429 289k
MuST-C 440 269k
europarl-ST 77 33k
TTS 1891 779k
ja CoVoST 429 289k
MuST-C 541 329k
TTS 73 56k
fa CoVoST 429 289k
MuST-C 347 182k
TTS 89 88k
pt MuST-C 377 206k
europarl-ST 75 32k
TTS 1678 639k
ru MuST-C 482 265k
TTS 331 331k
tr CoVoST 429 289k
MuST-C 446 236k
TTS 428 511k
all Common Voice 1488 948k
TEDLIUM 453 268k
VoxPopuli 502 177k

Table 4: ST data overview. The last section “all” indi-
cates forward translated synthetic targets from transcript-
only corpora, which are available for all 10 languages.

3 Cascaded System

For the cascaded system, we introduce our ASR
(83.1) and MT (§3.2) models.

3.1 Automatic Speech Recognition Module

Baseline Models The first baseline is our ASR
model for last year’s offline track (Pham et al.,
2022). It is a Wav2vec 2.0 (Baevski et al., 2020)
with LARGE configuration pretrained on 960 hours
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of Librispeech data. This year, after seeing ini-
tial favourable results compared to Wav2vec, we
opt for WavLM (Chen et al., 2022) as audio en-
coder. We use the LARGE configuration with 24
layers. We use the mBARTS50 (Tang et al., 2020)
decoder along with the WavLM encoder. As the
ASR model only needs to transcribe English?, we
trim the mBARTS0 vocabulary from 256k down to
62k tokens by removing all non-alphabetic tokens.

In-Domain TTS Data We also use the synthe-
sized TTS data. Compared to the same model
without TTS data, the word error rate (WER) im-
proves from 11.6% to 10.7% on ACL dev, but de-
grades from 8.4% to 9.0% on the TEDLIUM test
set. There are two potential explanations: First, the
noisy TTS speech may be helpful for handling the
non-native utterances prominent in the ACL dev
set. Second, the target side of the TTS data is more
relevant to the ACL domain, as we selected them
based on n-gram overlap with ACL data. This in
turn improves ASR performance on the ACL dev
set.

As shown in Table 5, compared to last year’s sub-
mission, this year’s ASR model achieves consistent
gains across domains on ACL dev, tst-COMMON,
and tst2020.

Model ACL dev tstCom. tst2020

ASR 2022 (Pham et al., 2022)  12.5 54 5.6
WavLM + mBARTS50 10.7 39 4.8

Table 5: ASR results in WER(]) in comparison to our
submission last year (Pham et al., 2022) which used
Wav2vec trained with CTC and a 5-gram LM. By using
WavLM audio encoder and the mBART decoder, we
achieve consistent gains across domains (ACL and TED,
i.e., tst*).

Language Model (LM) Adaptation Aside from
using TTS data, we also investigate other meth-
ods to adapt towards the ACL domain using the
provided paper abstracts. On preliminary experi-
ments with Connectionist Temporal Classification
(CTC) + n-gram LM models, we integrate ACL
abstract 5-grams statistics into the language mod-
els. As shown in the upper section of Table 6, this
improves on ACL dev (WER 13.8% — 13.0%)
while preserving the performance on TED talks
(tst-COMMON WER stays at 7.6%).

’BART, the English-only predecessor of mBART, is not
among the allowed pretrained models.

As our final system is an encoder-decoder model
(WavLM + mBART50), adapting the LM alone
is less straightforward. We create pseudo ASR
training data with ACL data on the transcript side.
Specifically, we use our TTS model to synthesize
speech from the ACL dev and test abstracts. As the
amount of ACL abstract data is very limited (less
than 100 sentences in total), we heavily upsampled
them, so that they consist of 60% of the training
data. As shown in the lower section of Table 6, this
leads to a minor improvement of WER for ACL
dev. However, the gain does not carry over to ST
performance when later cascading with our MT
model. Therefore, our final ASR system did not
use the abstracts. The lack of improvement could
be related to the low amount of ACL abstract data,
which requires heavy upsampling of the TTS data,
and as a result hinders the ability of transcribing
real speech.

The contrast between the two sets of experiments
may be related to diminishing gains as WER im-
proves, i.e., for the Wav2vec + CTC + LM model,
gaining over a WER of 13.8% is easier than starting
from a 10.7% WER. Another interpretation of the
difference could be that adding specific constraints
to “end-to-end” ASR models is more challenging
than the counterparts with separate LMs.

Model ACL dev tst-COMMON
Wav2vec + CTC + 5-gram 13.8 7.6
+ ACL abstract 5-gram 13.0 7.6
WavLM + mBARTS50 10.7 39
+ ACL abstract TTS (upsampled) 10.5 4.3

Table 6: ASR adaptation results in WER({,). On prelim-
inary experiments with Wav2vec + CTC + LM models,
we improve ASR performance on ACL dev by integrat-
ing n-gram statistics from the ACL abstracts. For the
WavLM + mBART 50 model, adding synthesized audio-
transcript data based ACL dev abstracts does not give
consistent gain.

Casing/Punctuation Restoration We take a
sequence-to-sequence approach to the casing and
punctuation restoration problem. Specifically,
we train a punctuation model initializing from
DeltaLM-base (Ma et al., 2021) to restore the cas-
ing and punctuation information, using the training
data described in §2.4.

3.2 Machine Translation Module

Baseline Model We start with the pretrained
DeltalL.M (Ma et al., 2021) with LARGE configura-
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ACL dev (en—X)

TED (en—de)

ID de ja zh ar nl fr fa pt ru tr Avg  tst2019 tst2020
From ground-truth transcripts (MT alone)

(1) base 39.8 442 474 304 457 489 236 51.1 195 229 374 29.5 329
(2) data divers. all 41.6 445 49.8 33.6 50.7 51.1 254 525 215 24.6 395 30.0 33.7
(3) (1) + data divers.; adapter 414 458 48.8 333 49.8 51.5 252 541 219 24.1 39.6 29.5 332
(4) ensemble (2) + (3) 41.7 46.1 49.6 33.7 50.8 52.1 259 543 23.1 248 402 30.4 33.7
(5) (4) + ENN-MT 437 473 49.8 354 523 52.8 272 553 239 27.1 415 30.4 334
From ASR outputs (cascaded ST)

(1) base 343 382 41.6 253 36.6 399 19.1 40.7 16.7 189 3l1.1 26.5 28.0
(2) data divers. all 354 38.6 443 26.8 39.2 41.5 20.5 42.6 18.7 19.5 32.7 27.0 29.3
(3) (1) + data divers.; adapter 355 39.0 43.6 264 389 419 20.2 43.0 193 19.6 32.7 26.7 28.3
(4) ensemble (2) + (3) 36.1 39.8 444 269 39.8 423 20.7 435 19.2 19.7 332 26.9 28.7
(5) (4) + kNN-MT 36.8 40.2 44.6 282 40.8 42.0 21.8 445 19.7 21.1 34.0 26.9 28.5
End-to-end ST

(6) WavLM + mBART50 decoder 31.7 29.2 40.7 25.0 36.7 40.5 19.5 43.0 169 13.5 30.2 27.0 29.3
(7) (6) + TTS 332 29.2 40.5 255 379 41.0 20.1 439 165 18.9 30.7 27.0 29.1
(8) ensemble (6) + (7) 34.0 299 41.7 255 38.2 42.0 20.2 444 18.3 202 314 27.3 29.6

Table 7: MT and ST results in BLEU(7).

tion. The pretrained model has 24 and 12 encoder
and decoder Transformer layers respectively. It
uses postnorm layer normalization. It is a fully
multilingual model where all parameters are shared
across languages. The target language tokens are
prepended to the source target sentences. We use
temperature-based sampling (Arivazhagan et al.,
2019) with 7 = 5.0 to counteract the data imbal-
ance between languages. When training, we use
a relatively large effective batch size of 128k as
preliminary experiments with smaller batch sizes
showed more instabilities in training. This might
be a side effect of the postnorm layer normaliza-
tion (Nguyen and Salazar, 2019). The results of the
baseline are shown in Row (1) of Table 7, with an
average score of 37.4 BLEU? on ACL dev.

Data Diversification As motivated in §2.3, we
use data diversification as an alternative data aug-
mentation method in absence of monolingual target
data for backtranslation. As data diversification
needs forward and backward translations on the
training data, we additionally train a 10-to-English
model to create the backward translations. Row (2)
of Table 7 shows the results after data diversifica-
tion on all languages pairs. On average, this data
augmentation approach improves MT quality by
2.1 BLEU and (37.4 — 39.5), and ST quality by
1.6 BLEU (31.1 — 32.7).

*By default using tok.13a from sacreBLEU (Post,
2018), except for zh and ja where we use tok.zh and
tok.ja-mecab-0.996-IPA.

Adapters for Incremental Data Retraining on
the new training data after diversification (Row
(2) of Table 7) is time-consuming and costly.
To adapt the initial model (Row (1) of Table 7)
rapidly towards to the augmented data, we use
adapters (Bapna and Firat, 2019; Philip et al., 2020).
In this case, the adapters are target-language-
specific. The adapters are inserted after each en-
coder and decoder layer. We initialize from the
trained baseline (Row (1) in Table 7), freeze trained
parameters and update the adapters only. We use
the efficient implementation from Baziotis et al.
(2022). As shown in Row (3) of Table 7, only train-
ing the adapters on the new diversified training data
performs on par with the re-training setup in Row
(2) (39.6 on MT and 32.7 on ST on average for
ACL dev). These results demonstrate that adapters
are suitable for fast and effective incremental learn-
ing when additional training data emerges later.

To our surprise, adding adapters to the model
trained with full data diversification (Row (2) from
Table 7) does not bring further gain. A similar
observation was reported by Pires et al. (2023),
who opted for training the full network from scratch
along with adapters instead. In our case, it therefore
would be interesting to see the impact of training
on data diversification with adapters from scratch.

Multilingual vs Bilingual To investigate the im-
pact of interference from multiple target languages,
in preliminary experiments, we also compare the
multilingual and bilingual translation performance
for selected language pairs. As shown in Table 8,
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compared to bilingual models, the multilingual
model lags behind especially on higher-resource
languages. Adding the adapters partly closes this
gap. Note the score difference to main result table
(Table 7) is because the preliminary experiments
did not fully use diversified data for all languages.

Source (ASR output): ... in a zero shot evaluation setup,
meaning that pre trained word embedding models are ap-
plied out of the box without any additional fine tuning
w/o kNN-MT (Table 7 row (4)): in einer
Null-Shot-Bewertungs-Setup (zero-shot evaluation setup),
was bedeutet, dass vorgebildete (pre-educated) Wort-
Einbettungsmodelle ohne zusitzliche Feinabstimmung di-
rekt angewendet werden.

w/ kNN-MT (Table 7 row (5)): ... in einer Null-Shot-
Bewertung (zero-shot evaluation), was bedeutet, dass
vortrainierte (pretrained) Wort-Einbettungsmodelle ohne
zusitzliche Feinabstimmung direkt angewendet werden.

Model ACL dev tst-COMMON
en-de en-ru en-fa en-de en-ru en-fa
bilingual 41.0 200 242 343 227 16.0
multilingual 39.8 19.5 23.6 341 219 159
+ adapters 409 202 237 347 222 163

Table 8: Comparison of bilingual vs multilingual trans-
lation performance in BLEU (1) on German (de), Rus-
sian (ru), Farsi (fa), which are high-, mid-, low-resource
in the training data (Table 3). Multilingual system falls
behind bilingual system, while adapters partly closes
the gap. Note the score difference to main result table
(Table 7) is because the experiments here did not fully
use diversification.

Ensemble Although the models in Row (2) and
(3) in Table 7 are trained on the same data and
share the same base architecture, we expect their
representations to be sufficiently different, as (3)
additionally uses adapters. We therefore ensemble
these two models. The results are in Row (4) of Ta-
ble 7. On MT and ST, for ACL, ensembling shows
an improvement of 0.6 and 0.5 BLEU respectively
over the single models in Row (2) and (3). On
TED, however, ensembling does not seem to im-
pact the scores compared to the single models. One
explanation is that the adapter model from Row
(3) performs worse than its non-adapter counter-
part (Row (2)) on TED, which limits the overall
effectiveness of ensembling.

kKNN-MT We also adapt the MT model to the tar-
get domain of scientific talks. A challenge is that
we do not have sufficient training data to fully fine-
tune the MT model towards the desired domain or
style. In this case, we use kENN-MT (Khandelwal
et al., 2021) to adapt the model at inference time.
In KNN-MT, bitexts are passed through a trained
MT model. For each target token, its decoder hid-
den state 1s stored in a datastore. At inference time,
based on the current decoder hidden state, k candi-
date target tokens are retrieved from the datastore
using a nearest neighbor lookup. The retrieved to-
ken distribution is then interpolated with the MT
target distribution, which in turn generates the out-
put tokens. Hyperparameters for ANN-MT include

Source (ASR output): Hello. My name is Ramachandra,
and I will present our paper.

w/o kNN-MT (Table 7 row (4)): /REF (Hello; addressing
a single person), T IHFFEE R FTREBELFE (publish)F
3L

w/ KNN-MT (Table 7 row (5)): KZKIF (Hi all; addressing
a group of audience), B I/ FHERER), FEN4H (intro-
duce) HATHIIBIL -

Table 9: Examples of KNN-MT improving transla-
tion quality for en—de (upper) and en—zh (lower).
KNN-MT creates more accurate terminology transla-
tions (“pre trained” for en—de) and create more context-
appropriate translation (“Hello” for en—zh).

the number of retrieved neighbors k, the tempera-
ture for smoothing the kNN distribution 7', and the
interpolation weight w.

In our experiments, we use systems (2) and (3)
from Table 7 for creating the datastores. As differ-
ent models’ hidden states (which serve as keys in
the datastore) also differ substantially, the datastore
is MT-model-dependent. To use KNN-MT when
ensembling systems (2) and (3), we therefore need
two datastores for systems (2) and (3) respectively.
The kKNN-MT candidate tokens are interpolated
with the output vocabulary distribtuion before the
ensembling operation.

We use hyperparameters k = 8, T' = 50,
w = 0.3, after an initial search with T" €
[10, 50,100}, w € [0.1,0.3,0.5]. Our implemen-
tation mostly follows Zheng et al. (2021), which
uses the FAISS toolkit (Johnson et al., 2019) for
efficient kNN operations. Comparing the infer-
ence speed of system (4) and (5), with the same
batch size of 64 sentences®, using kNN-MT takes
roughly 50% more time on a Nvidia Titan RTX
GPU with 24GB memory.

Naively using all ACL dev bitext as datastore
would lead the model to copying the oracle targets.
To simulate the scenario on the blind test set, when

*System (5) requires more GPU memory than system (4).
The latter would be able to use a larger batch size of 128
sentences.
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translating the i-th talk, we use the other j;»; €
[n] talks’ bitext as datastore, where n is the total
number of talks.

As shown in Row (5) of Table 7, ANN-MT
brings an additional gain of 1.3 BLEU on MT and
0.8 BLEU on ST. These results shows a datastore
as small as hundreds of sentence pairs can be effec-
tively used for inference-time domain adaptation.

Table 9 shows two examples of KANN-MT im-
proving translation quality, apart from generic im-
provements in fluency and accuracy, in these ex-
amples KNN-MT also helps generate correct termi-
nologies and context-appropriate greetings.

4 End-to-End System

For the end-to-end system, similar to our ASR
model, after seeing initial favourable results of
WavLM over Wav2vec, we choose WavLM as
the audio encoder. Following last year’s submis-
sion (Pham et al., 2022), we use the mBARTS50
decoder. The results are shown in Row (6) of Ta-
ble 7. Contrasting Row (6) and (7) reveals that
adding the TTS data does not substantially change
ST performance. However, ensembling the two
models trained with and without TTS data (Row
(8)) improves over the single models (on average
+0.7 for ACL, +0.4 for TED), despite them having
the identical architecture.

Compared to the strongest cascaded system
(Row (5)), the end-to-end system falls behind 2.6
BLEU on ACL dev. On TED, however, it appears
to slightly outperform the cascaded system. One
explanation is that the MT model of the cascaded
system has not been separately adapted to TED
texts (although parts of the full training data do
cover TED data), which was shown essential in im-
proving performance on TED test sets (Zhang et al.,
2022; Pham et al., 2022). The end-to-end system,
on the other hand, has seen a larger proportion of
TED data in training (Table 4).

Similar to the previous year (Poldk et al., 2022),
we also adapt our end-to-end offline model for si-
multaneous track (Poldk et al., 2023).

5 Conclusion

In this paper, we described our systems for the mul-
tilingual speech translation track of IWSLT 2023,
which translates English speech into 10 target lan-
guages. To tackle the task of translating scien-
tific conference talks, which feature non-native in-
put speech and terminology-dense contents, our

systems have several novelties. Lacking suitable
training data for the target domain, we used kNN-
MT for inference-time adaptation and showed an
improvement of +0.8 BLEU for cascaded speech
translation system. We also used adapters to in-
tegrate incremental data from augmentation, and
achieved performance on-par with re-training on
all data. In our experiments, we observed that cas-
caded systems are more easily adaptable towards
desired target domains due to their separate mod-
ules. Our cascaded speech system outperforms
its end-to-end counterpart on scientific talk transla-
tion, although their performance remains similar on
TED talks. For future work, we are interested in the
feasibility of applying the adaptation approaches
shown effective on MT to end-to-end ST.
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Abstract

This paper describes the BIGAI’s submission
to IWSLT 2023 Offline Speech Translation task
on three language tracks from English to Chi-
nese, German and Japanese. The end-to-end
systems are built upon a Wav2Vec2 model for
speech recognition and mBARTS50 models for
machine translation. An adapter module is ap-
plied to bridge the speech module and the trans-
lation module. The CTC loss between speech
features and source token sequence is incorpo-
rated during training. Experiments show that
the systems can generate reasonable transla-
tions on three languages. The proposed models
achieve BLEU scores of 22.3, 10.7 and 33.0
on tst2023 en—de, en—ja and en—zh TED
datasets. It is found that the performance is
decreased by a significant margin on complex
scenarios like presentations and interviews.

1 Introduction

Speech translation aims to solve the problem of
translating speech waveform in source language
into written text in target language. Cascade sys-
tems decompose the problem into automatic speech
recognition (ASR) to transcribe source speech into
source text and machine translation (MT) to trans-
late source text into target text (Wang et al., 2021b;
Zhang et al., 2022a). It is clear that such architec-
ture has the advantage of ensembling results from
state-of-the-art (SOTA) ASR models and MT mod-
els and the disadvantages of accumulating subsys-
tem errors and discarding paralinguistic features.
Recent end-to-end speech translation (E2E ST) sys-
tems have shown the potential to outperform cas-
cade systems (Hrinchuk et al., 2022; Shanbhogue
et al., 2022). However, due to the lack of high-
quality parallel training data, it is difficult to quan-
tify the gap between the two categories.

Inspired by Zhang et al.’s (2022b) work, this
submission explores various techniques to address
problems in speech translation. 1) Perform fine-
grained data filtering by calculating WERs for

speech data and alignment scores for translation
data. 2) Apply a straightforward split-and-merge
method to split long audio clips into short seg-
ments. 3) Employ a three-stage training strategy to
concatenate the finetuned speech module and the
translation module. 4) Incorporate connectionist
temporal classification (CTC) loss to leverage the
divergence between speech features and source to-
ken sequences (Graves et al., 2006). Experiments
are carried out to perform speech translation at sen-
tence level and corpus level. The performance of
the three PT36 models is finally evaluated on the
tst2023 datasets with automatic metrics.

The rest of this paper is organized as follows.
Section 2 describes how speech data and translation
data are processed in the experiments. Section 3
explains how finetuned models are assembled to
perform speech translation on all three languages.
Section 4 illustrates experiment setups, results and
analysis. Section 5 concludes the submission.

2 Data Processing

2.1 Speech Corpora

Under the constrained condition, there are five
speech datasets used to train ASR models, namely
LibriSpeech (Panayotov et al., 2015), Mozilla Com-
mon Voice v11.0 (Ardila et al., 2019), MuSTC (Cat-
toni et al., 2021), TEDLIUM v3 (Hernandez et al.,
2018) and VoxPopuli (Wang et al., 2021a). Statis-
tics on each dataset are shown as Table 1. Note that
only the MuSTC datasets are used to train speech
translation systems on the three language tracks,
English-to-German (en—de), English-to-Japanese
(en—ja) and English-to-Chinese (en—zh).

In general, all speech files are unified to single
channel 16kHz format. During training, utterances
shorter than 0.2s or longer than 20s are removed.
An extra W2V model with 24 Transformer layers is
finetuned on the LibriSpeech dataset and calculates
WER scores by performing CTC greedy decoding
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Table 1: Statistics on speech datasets

Dataset Utterances  Hours
CommonVoice 948,736 1,503.28
LibriSpeech 281,241 961.05
MuSTC en—de v3 269,851 440.18
MuSTC en—ja v2 328,637 541.04
MuSTC en—zh v2 358,852 596.20
TEDLIUM 268,263 453.81
VoxPopuli 182,466 522.60
Total, loaded 2,638,046  5,018.17
Total, filtered 2,528,043  4,713.35

Table 2: Statistics on translation datasets

Dataset en—de en—ja en—zh
MuSTC 0.269m 0.328m  0.358m
OpenSubtitles 22.512m  2.083m 11.203m
Commentaries 0.398m  0.002m  0.322m
Total 23.181m 2.414m 11.884m

at character level on the other speech datasets, so ut-
terances with WER scores over 75% are discarded
as well. As a result, the speech corpora contains
nearly 2.53 million valid utterances with the total
duration of 4,713.35 hours.

2.2 Translation Corpora

In addition to the MuSTC datasets, the OpenSubti-
tles v2018 (Lison et al., 2018) and the News Com-
mentaries v16 (Farhad et al., 2021) datasets are
added up to train MT models. Statistics on these
translation datasets are described as Table 2. Since
translation pairs do not perfectly match all the
time, the translation quality is measured by the fas?-
align' toolkit in terms of the percentage of aligned
words. Word sequences are obtained by splitting
English texts and German texts using whitespaces
and converting Chinese texts and Japanese texts
into character sequences. Parallel training exam-
ples are filtered out if: 1) the source sentence con-
tains more than 150 words; 2) the alignment score
in either forward translation or backward transla-
tion is lower than a certain threshold.

3 Method
3.1 Pretrained Models

Two state-of-the-art models pretrained with self-
supervised objectives are employed as base models
for downstream tasks with labeled data, namely the

"https://github.com/clab/fast_align

wav2vec2-large-960h-1v60-self> model for speech
recognition and the mbart-large-50-one-to-many-
mmt> model for machine translation.

The W2V models (Baevski et al., 2020) are
trained with contrastive learning to distinguish
whether two transformations of convolution fea-
tures result in similar latent representations. The
first transformation is to learn high-level contex-
tual speech representations through a sequence of
Transformer layers (Vaswani et al., 2017). The sec-
ond transformation is to create discrete targets for
self-training by the quantization module. The best
partial representations chosen from multiple code-
books with the Gumbel softmax (Jang et al., 2016)
are concatenated and transformed to a quantized
representation with a linear layer.

The mBART25 models (Liu et al., 2020) are
Transformer-based encoder-decoder models that
are pretrained on monolingual sentences from
many languages and finetuned with parallel trans-
lation data on 25 languages. The pretraining ob-
jective is a denoising loss so that the model learns
to reconstruct corrupted sentences to their original
forms. The noise function randomly masks 35% of
input sentences in consecutive spans and permutes
sentence orders for document-level MT if multiple
sentences are given. The mBART50 models (Tang
et al., 2020) extend embedding layers with an extra
set of 25 languages and are finetuned on translation
task from English to the other 49 languages.

3.2 Finetuned Models

The two base models result in one ASR model,
three MT models and three E2E ST models. Writ-
ten texts in the four languages are tokenized into
subword tokens in byte-pair encoding (BPE) us-
ing the SentencePiece toolkit (Kudo and Richard-
son, 2018). The tokenizer is inherited from the
mBART50 model with a multilingual configura-
tion by prepending language symbols and the total
number of BPE tokens in the vocabulary is 250k.
For speech recognition, the finetuned model
(ASR12) takes the first 12 Transformer layers from
the base model. An adapter module (Li et al., 2020;
Shanbhogue et al., 2022) compresses the feature
vectors by a factor of eight, which consists of three
one-dimensional convolution layers with a stride
of two. A linear layer transforms the compressed
representations into output probabilities.

facebook/wav2vec2-large-960h-1v60-self
3facebook/mbart-large-50-one-to-many-mmt
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For end-to-end speech translation, the mod-
els have similar architecture as the PT36 mod-
els in Zhang et al.’s (2022b) work instead of the
PT48 models to reduce computational complex-
ity. Within a PT36 model, the speech module
and the translation module are initialized with the
ASR12 model and the MT24 model respectively.
The adapter module that connects the two modules
is not trained from random initialization, because
it has been trained with the ASR12 model on the
first stage. The training loss combines the cross
entropy loss for machine translation and the CTC
loss for speech recognition with a hyperparameter
to balance the weights between the two losses.

3.3 Speech Resegmentation

Past years’ systems (Anastasopoulos et al., 2021;
Antonios et al., 2022) have proved that speech re-
segmentation has a great impact on the translation
performance at corpus level. During evaluation,
audio clips are splitted into segments with a simple
two-stage strategy using the WebRTCVAD* toolkit.
On the split stage, long audios are processed with
three-level settings of aggressiveness modes in-
creasing from 1 to 3 and frame sizes decreasing
from 30ms to 10ms. In this way, most segments are
no longer than a maximum duration dury,,,; and
the outliers are further segmented into Ldg%ti%ﬂ
chunks brutally. On the merge stage, consecutive
segments are merged into final segments no shorter
than a minimum duration du7 ;.

4 Experiments

4.1 Settings

All the models are implemented with the Speech-
Brain toolkit (Ravanelli et al., 2021). The total num-
ber of parameters in a PT36 model is about 794.0M,
183.2M in the speech module and 610.9M in the
translation module. The feature extractor processes
speech waveform with seven 512-channel convo-
lution layers, in which kernel sizes and strides are
[10,3,3,3,3,2,2] and [5,2,2,2,2,2,2]. There are 12
Transformer layers with 16 attention heads, model
dimension of 1024 and inner dimension of 4096
in speech encoder, text encoder and decoder. The
adapter module has three Conv1D layers with ker-
nel sizes and strides being [3,3,3] and [2,2,2].

On the first stage, the ASR12 model is finetuned
on the speech corpora using 16 NVIDIA A100
GPUs for 21 epochs with the batch size of 3 and

*https://github.com/wiseman/py-webrtcvad

Table 3: WER scores on test speech datasets

LibriSpeech TEDLIUM MuSTC
27.23 32.17 34.73

Table 4: BLEU scores on tst-COMMON datasets

Model en—de en—ja en—zh

MT24 31.04 1474 22.80
+ finetune  33.00 17.11 23.44

PT36 26.45 14.28 19.65

the update frequency of 8. The parameters in the
Wav2Vec2 module and the linear layer are sepa-
rately optimized by the Adam optimizer (Kingma
and Ba, 2014). The learning rates are initialized
with 1e~* and 4e~* with the annealing factors set
t0 0.9 and 0.8. The learning rates are updated based
on the improvement of the training losses between
the previous epoch and the current epoch. During
training, speech waveform is perturbed with a ran-
dom speed rate between 0.9 and 1.1 and speech fea-
tures are augmented with the SpecAugment tech-
nique (Park et al., 2019).

On the second stage, three MT24 models are
finetuned on the translation corpora with the batch
size of 12 and the update frequency of 4. The
en—de MT24 model is trained using 8 A100 GPUs
for 2 epochs and the other two models are trained
using 4 A100 GPUs for 6 epochs and 3 epochs. The
model parameters are optimized with the Adam
optimizer and the initial learning rates are set to
5e~% with the annealing factor set to 0.9.

On the third stage, three PT36 models are fine-
tuned on the corresponding MuSTC datasets, each
of which is trained using 4 A100 GPUs for 10
epochs with the batch size of 12 and the update
frequency of 4. The learning rates are initialized
to 3e~° for the W2V module and 5¢~° for the
mBART module with the annealing factors set to
0.9. The loss weights are set to 0.1 for the ASR
module and 0.9 for the MT module since the per-
formance of the ASR module is not good enough.

4.2 Speech Recognition

Table 3 lists WER scores on test speech datasets,
where 34.73% is the average WER score of the
three MuSTC datasets. Obviously, the performance
of the ASR12 model is much worse than that of
other systems (Zhang et al., 2022b; Wang et al.,
2021b) with WERs around 10%. Due to extremely
large vocabulary size, the model requires a long
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Table 5: Statistics on short segments in the tst2020 dataset with different dur;,;, and dur,,, settings.

id durpg,  durige: levell level2 level3 brutal split merge
1 5 20 3473 342 449 185 4,449 2,621
2 10 30 3,568 146 258 69 4,041 1,699
3 15 60 3,624 35 115 0 3,774 1,237
4 20 90 3,635 9 73 0 3,717 970

Table 6: BLEU scores on calculated on past years’ IWSLT en—de test sets with hypotheses automatically reseg-
mented by the mwerSegmenter toolkit (Ansari et al., 2021) based on source transcriptions and target translations.

id durpin  durpe: 2010 2013 2014 2018 2019 2020 A

1 5 20 2144 27.37 2587 1241 1895 20.14 21.03
2 10 30 23.79 30.33 2853 1629 21.22 22.60 +2.76
3 15 60 2417 31.16 29.23 18.38 22.04 2346 +3.71
4 20 90 2431 31.73 30.05 1798 22.16 23.55 +3.93

time to train. As a result, the model is still far from
converge at the time of this submission.

4.3 Sentence-level Translation

The tst-COMMON datasets are used to evaluate the
translation performance at sentence level and the
BLEU scores are calculated by the SacreBLEU?
toolkit, where Japanese texts are tokenized by the
Mecab® morphological analyzer and Chinese texts
are tokenized into characters. The BLEU scores on
the three datasets are listed in Table 4.

For machine translation, compared with the
base MT24 models, the performance of the fine-
tuned MT24 models is improved by 1.96 (~6.3%),
2.37 (~16.1%) and 0.64 (~2.8%) BLEU scores on
en—de, en—ja and en—zh translations. It indi-
cates that adding out-of-domain corpora like Open-
Subtitles and NewsCommentaries is able to boost
the machine translation quality.

For speech translation, compared with the fine-
tuned MT24 models, the performance of PT36
models is degraded by a large margin with 6.55
(~19.8%), 2.83 (~16.5%) and 3.79 (~16.2%) BLEU
scores on en—de, en—ja and en—zh translations.
Compared with the base MT24 models, the gaps
are still relatively large with 4.59 (~14.8%), 0.46
(~3.1%) and 3.15 (~13.8%) BLEU scores.

4.4 Corpus-level Translation

The translation performance of en—de PT36 model
is further evaluated on past years’ test datasets with
challenging scenarios. To keep consistency, all test
audios are resegmented using the method described

Shttps://github.com/mjpost/sacrebleu
®https://github.com/taku910/mecab

in Section 3.3. Statistics on short segments in the
tst2020 dataset are shown as Table 5. It is noticed
that the number of brutal segments is decreased to
zero when dur,,;, 1s set to more than 15s.

Table 6 lists BLEU scores on past years’ test
datasets with different dur,,;, and dur,,.: set-
tings. It is found that the performance is boosted
as the segment duration gets longer, which means
that more contextual information is provided to
the model. When dur,,;, and dur,,., are set to
20s and 90s, the best BLEU scores are achieved
on most test datasets with an increment of 3.93
(~18.7%) mean BLEU score. Further investigation
on long audio segments finds that avoiding brutal
segmentation is another factor of such improve-
ment. Comparing experiment 2 and experiment 3,
the mean BLEU score is increased by 0.95 (~3.9%)
points, when the number of brutal segments is de-
creased from 69 to 0. Comparing experiment 3
and experiment 4, the mean BLEU score is merely
increased by 0.22 (~0.8%) points.

4.5 Submissions

The three PT36 models are finally evaluated on
tst2023 datasets (Agarwal et al., 2023) with more
challenging scenarios like presentations and inter-
views. Test audios are resegmented with dur,n
and dury,q. set to 20s and 90s. Official metrics are
presented as Table 7 for en—de datasets, Table 8
for en—ja datasets and Table 9 for en—zh datasets.

Comparing the performance between in-domain
TED datasets and out-of-domain ACL datasets, the
BLEU scores are decreased by 2.7 (~12.1%), 0.3
(~2.8%) and 5.6 (~16.9%) points on en—de, en—ja
and en—zh translations. Noticeably, the perfor-
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Table 7: Official metrics on the tst2023 en—de subsets with hypotheses automatically resegmented by the mwerSeg-
menter toolkit (Ansari et al., 2021) based on source transcriptions and target translations.

TED ACL Sub
Comet BLEU chrF Comet | BLEU | chrF | Comet | BLEU | chrf
ref2 refl ref2 | refl | both | refl | ref2
0.7128 | 0.7055 | 22.3 | 19.3 | 27.4 | 0.49 | 0.50 | 0.6295 19.6 | 0.46 | 0.3555 11.5 | 045
Table 8: Official metrics on the tst2023 en—ja subsets.
TED ACL
Comet BLEU Comet | BLEU
ref2 refl ref2 | refl | both
0.7201 | 0.7228 | 10.7 | 13.2 | 16.8 | 0.6769 104

mance is almost halved (~48.4%) with only 11.5
BLEU scores on the en—de Sub dataset. The re-
sults indicate that the proposed PT36 models have
inadequate abilities of handling non-native speak-
ers, different accents, spontaneous speech and con-
trolled interaction with a second speaker.

5 Conclusion

In conclusion, this paper describes the end-to-end
speech translation systems for IWSLT 2023 of-
fline tasks. Built upon pretrained models, the sys-
tems are further trained on large amount of parallel
data using the three-stage finetuning strategy. The
PT36 model consists of an ASR12 module with
an adapter module for ASR and an MT24 module
for MT. The training loss sums up the CTC loss
for ASR and the cross entropy loss for MT. Experi-
ments demonstrate that the proposed methods have
the potential to achieve a reasonable performance.
However, due to limited resources, some modules
has not well trained, which has a negative impact
on subsequent tasks. Therefore, the end-to-end
models still underperform SOTA systems.

References

Milind Agarwal, Sweta Agrawal, Antonios Anasta-
sopoulos, Ondfej Bojar, Claudia Borg, Marine
Carpuat, Roldano Cattoni, Mauro Cettolo, Mingda
Chen, William Chen, Khalid Choukri, Alexandra
Chronopoulou, Anna Currey, Thierry Declerck, Qian-
gian Dong, Yannick Esteve, Kevin Duh, Marcello
Federico, Souhir Gahbiche, Barry Haddow, Benjamin
Hsu, Phu Mon Htut, Hirofumi Inaguma, David Ja-
vorsky, John Judge, Yasumasa Kano, Tom Ko, Rishu
Kumar, Pengwei Li, Xutail Ma, Prashant Mathur,
Evgeny Matusov, Paul McNamee, John P. McCrae,
Kenton Murray, Maria Nadejde, Satoshi Nakamura,
Matteo Negri, Ha Nguyen, Jan Niehues, Xing Niu,

Atul Ojha Kr., John E. Ortega, Proyag Pal, Juan Pino,
Lonneke van der Plas, Peter Poldk, Elijah Rippeth,
Elizabeth Salesky, Jiatong Shi, Matthias Sperber, Se-
bastian Stiiker, Katsuhito Sudoh, Yun Tang, Brian
Thompson, Kevin Tran, Marco Turchi, Alex Waibel,
Mingxuan Wang, Shinji Watanabe, and Rodolfo Ze-
vallos. 2023. Findings of the IWSLT 2023 Evaluation
Campaign. In Proceedings of the 20th International
Conference on Spoken Language Translation (IWSLT
2023). Association for Computational Linguistics.

Antonios Anastasopoulos, Ondiej Bojar, Jacob Bremer-
man, Roldano Cattoni, Maha Elbayad, Marcello Fed-
erico, Xutai Ma, Satoshi Nakamura, Matteo Negri,
Jan Niehues, Juan Pino, Elizabeth Salesky, Sebas-
tian Stiiker, Katsuhito Sudoh, Marco Turchi, Alexan-
der Waibel, Changhan Wang, and Matthew Wies-
ner. 2021. Findings of the iwslt 2021 evaluation
campaign. In Proceedings of the 18th International
Conference on Spoken Language Translation (IWSLT
2021), pages 1-29, Bangkok, Thailand (online). As-
sociation for Computational Linguistics.

Ebrahim Ansari, Ondfej Bojar, Barry Haddow, and Mo-
hammad Mahmoudi. 2021. Sltev: Comprehensive
evaluation of spoken language translation. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: System Demonstrations, pages 71-79.

Anastasopoulos Antonios, Barrault Loc, Luisa Ben-
tivogli, Marcely Zanon Boito, Bojar Ondiej, Roldano
Cattoni, Currey Anna, Dinu Georgiana, Duh Kevin,
Elbayad Maha, et al. 2022. Findings of the iwslt
2022 evaluation campaign. In Proceedings of the
19th International Conference on Spoken Language
Translation (IWSLT 2022), pages 98—157. Associa-
tion for Computational Linguistics.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M Tyers, and
Gregor Weber. 2019. Common voice: A massively-
multilingual speech corpus. arXiv preprint
arXiv:1912.06670.

127


https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.18653/v1/2021.iwslt-1.1

Table 9: Official metrics on the tst2023 en—zh subsets.

TED ACL
Comet BLEU Comet | BLEU
ref2 refl ref2 | refl | both
0.7428 | 0.7014 | 33.0 | 23.3 | 38.6 | 0.6534 | 27.4

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.

Advances in neural information processing systems,
33:12449-12460.

Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Ben-
tivogli, Matteo Negri, and Marco Turchi. 2021. Must-
¢: A multilingual corpus for end-to-end speech trans-
lation. Computer Speech & Language, 66:101155.

Akhbardeh Farhad, Arkhangorodsky Arkady, Biesialska
Magdalena, Bojar Ondrej, Chatterjee Rajen, Chaud-
hary Vishrav, Marta R Costa-jussa, Espafia-Bonet
Cristina, Fan Angela, Federmann Christian, et al.
2021. Findings of the 2021 conference on machine
translation (wmt21). In Proceedings of the Sixth
Conference on Machine Translation, pages 1-88. As-
sociation for Computational Linguistics.

Alex Graves, Santiago Fernandez, Faustino Gomez, and
Jiirgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369-376.

Francgois Hernandez, Vincent Nguyen, Sahar Ghannay,
Natalia Tomashenko, and Yannick Esteve. 2018. Ted-
lium 3: Twice as much data and corpus repartition for
experiments on speaker adaptation. In Speech and
Computer: 20th International Conference, SPECOM
2018, Leipzig, Germany, September 18-22, 2018,
Proceedings 20, pages 198-208. Springer.

Oleksii Hrinchuk, Vahid Noroozi, Ashwinkumar
Ganesan, Sarah Campbell, Sandeep Subramanian,
Somshubra Majumdar, and Oleksii Kuchaiev. 2022.
Nvidia nemo offline speech translation systems for
iwslt 2022. In Proceedings of the 19th International
Conference on Spoken Language Translation (IWSLT
2022), pages 225-231.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing
Tang, Juan Pino, Alexei Baevski, Alexis Conneau,
and Michael Auli. 2020. Multilingual speech trans-
lation with efficient finetuning of pretrained models.
arXiv preprint arXiv:2010.12829.

Pierre Lison, Jorg Tiedemann, and Milen Kouylekov.
2018. Opensubtitles2018: Statistical rescoring of
sentence alignments in large, noisy parallel corpora.
In Proceedings of the 11th International Confer-
ence on Language Resources and Evaluation (LREC
2018). European Language Resources Association
(ELRA).

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206-5210.
IEEE.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga,
Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem
Subakan, Nauman Dawalatabad, Abdelwahab Heba,
Jianyuan Zhong, et al. 2021. Speechbrain: A
general-purpose speech toolkit. arXiv preprint
arXiv:2106.04624.

Akshaya Shanbhogue, Ran Xue, Ching Yun Chang, and
Sarah Campbell. 2022. Amazon alexa ai’s system for
iwslt 2022 offline speech translation shared task. In
Proceedings of the 19th International Conference on
Spoken Language Translation (IWSLT 2022), pages
169-176.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

128



Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu,
Chaitanya Talnikar, Daniel Haziza, Mary Williamson,
Juan Pino, and Emmanuel Dupoux. 2021a. Voxpop-
uli: A large-scale multilingual speech corpus for rep-
resentation learning, semi-supervised learning and
interpretation. arXiv preprint arXiv:2101.00390.

Minghan Wang, Yuxia Wang, Chang Su, Jiaxin Guo,
Yingtao Zhang, Yujia Liu, Min Zhang, Shimin Tao,
Xingshan Zeng, Liangyou Li, et al. 2021b. The hw-
tsc’s offline speech translation systems for iwslt 2021
evaluation. arXiv preprint arXiv:2108.03845.

Weitai Zhang, Zhongyi Ye, Haitao Tang, Xiaoxi Li,
Xinyuan Zhou, Jing Yang, Jianwei Cui, Pan Deng,
Mohan Shi, Yifan Song, et al. 2022a. The ustc-
nelslip offline speech translation systems for iwslt
2022. In Proceedings of the 19th International Con-
ference on Spoken Language Translation (IWSLT
2022), pages 198-207.

Zigiang Zhang, Junyi Ao, Shujie Liu, Furu Wei, and
Jinyu Li. 2022b. The yitrans end-to-end speech trans-
lation system for iwslt 2022 offline shared task. arXiv
preprint arXiv:2206.05777.

129



Enhancing Video Translation Context with Object Labels

Jeremy Gwinnup'2, Tim Anderson?, Brian Ore?, Eric Hansen?, Kevin Duh!
!Johns Hopkins University, 2Air Force Research Laboratory

{jeremy.gwinnup.1,

timothy, anderson.20,

brian.ore.l, eric.hansen.5}@us.af.mil,

kevinduh@cs. jhu.edu

Abstract

We present a simple yet efficient method to en-
hance the quality of machine translation models
trained on multimodal corpora by augmenting
the training text with labels of detected objects
in the corresponding video segments. We then
test the effects of label augmentation in both
baseline and two automatic speech recognition
(ASR) conditions. In contrast with multimodal
techniques that merge visual and textual fea-
tures, our modular method is easy to imple-
ment and the results are more interpretable.
Comparisons are made with Transformer trans-
lation architectures trained with baseline and
augmented labels, showing improvements of
up to +1.0 BLEU on the How2 dataset.

1 Introduction

Video streams are rich sources of content and the
application of machine translation to videos present
open research challenges. Specifically, we are in-
terested in translating the speech content present
in videos, using the visual modality as auxiliary
input to improve translation quality. Intuitively, vi-
sual signals may help disambiguate under-specified
words or correct speech recognition errors.

There has been much research in speech trans-
lation, which focuses on speech input, and multi-
modal machine translation, which focuses on vi-
sual and textual inputs; this work combines aspects
of both areas. We assume a cascaded pipeline,
where the speech in a video input is first passed to
a speech recognition component, then the text tran-
scripts together with the video frames are passed to
a multimodal machine translation (MMT) system.
Our contribution is a MMT system that augments
text-based training data with labels obtained from
a computer vision object detector (Fig. 1).

In contrast to more complex multimodal fusion
techniques that combine vision and translation neu-
ral networks into end-to-end models, our modu-
lar approach is simple to implement, requiring no

toolkit changes, and allows for easier interpretation
of results.

On the How?2 dataset (Sanabria et al., 2018), we
experiment with using clean transcripts and au-
tomatic speech recognition transcripts of varying
quality as input to our translation systems. This
tests the effectiveness of our multimodal approach
in noisy conditions, beneficial in real-world use
cases. Results show gains of +0.4 to +1.0 BLEU
on the How?2 held-out test set.

src: And then you’re going to t it so have your
stirrer available. PERSON CUP BOTTLE

tgt: E entdo vocé vai mexer, entdo tenha seu
agitador disponivel.

Figure 1: Demonstration of augmenting source data
with detected object labels to provide additional context.

2  Object Class Label Augmentation

When considering the translation of instructional
videos, the speaker’s narration may use ambiguous
language when describing the steps to the task as
the viewer may be able to infer the intent through
objects or actions in the scene. If MT systems
are trained on the speaker’s words and translations,
these cues from the scene are not present. We
proposed to address this omission by analyzing
clips of the video and augmenting the text data
with objects found in that clip.

Augmentation Process: To augment training
data with object labels, an object recognition model
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Figure 2: Tllustration of the object label augmentation processing pipeline.

was applied to each of the videos in the training
set in order to generate lists of objects present. To
that end, we apply the YOLOvS' (Jocher et al.,
2021) model (specifically yolov5s) to the 189k
video clips corresponding to the utterances from the
How? training data. The object detection model
can detect 80 types of objects as outlined in the
COCO (Lin et al., 2015) dataset.

The detected labels for the time-slices in the
video clip are collated and collapsed in order to
keep final sentence length to a manageable size -
we are interested in the presence of an object class
versus how many times that class has occurred in
the scene or the time slices in the video clip.

Once processed, the per-clip labels are appended
to the source side of the training, dev and test sets
as “context-markers”. We do not apply these labels
to the target side as we wish to generate coherent
sentences in the target language. This processing
pipeline is illustrated in Figure 2.

In particular, we note in the example in Figure 1
that the transcription discusses a stirrer but does not
give context to what kind of stirrer: A laboratory
sample stirrer, a paint stirrer, or in this case a stirrer
to mix a drink. Using the object labels from the
example, we see that the stirrer in this case refers
to a drink - adding valuable context.

The augmented How?2 corpus will be available
for download at a future date.

Distribution of Augmentation Labels: When
examining the counts of per-segment object class
annotations in the training set (shown in Figure
3), we note that over 64% of the segments have
between one and three object classes present, 13%
have no detected object classes, and the remain-
ing 23% have four or greater classes present with

"You Only Look Once
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Figure 3: Training segments with N object classes de-
tected.

higher class counts forming a long tail. Full class
object counts are shown in Table 1.

Observing the most-detected class labels in train-
ing segments (shown in Figure 4), we see that PER-
SON is by far the most common object class with
over 164k occurrences, while CUP and BOTTLE
are the next most common with around 23.8k occur-
rences each. As How?2 is comprised of instructional
videos in which the authors are demonstrating how
to perform a task, PERSON’s high occurrence rate
seems reasonable. The figure shows the top 15
object classes detected, the full list of detection
counts is shown in Table 2.

While the above analyses focus on the train-
ing portion of the dataset, similar distributions are
present in both the validation and test sets.

3 How2 Dataset

The How?2 (Sanabria et al., 2018) dataset is a collec-
tion of instructional videos hosted on YouTube that
are paired with spoken utterances, English subtitles
and a set of crowdsourced Portuguese translations.
Additional metadata such as video descriptions and
summaries are also available. The dataset contains
upwards of 2,000 hours of videos, but only a 300



Classes Segments | Classes Segments | Classes Segments

0 15,544 | 6 7,508 | 12 143
1 44,496 | 7 4,300 | 13 79
2 41,950 | 8 2,259 | 14 42
3 32,077 | 9 1,166 | 15 14
4 21,428 | 10 626 | 16 7
5 13,011 | 11 293 | 17 3
Table 1: Video segments with n object classes present.
Class Count | Class Count | Class Count
PERSON 164,605 | MICROWAVE 4,298 | TOILET 1,333
CUP 23,870 | REFRIGERATOR 4,014 | BROCCOLI 1,327
BOTTLE 23,809 | CAKE 3,911 | SURFBOARD 1,281
CHAIR 17,806 | DONUT 3,729 | HORSE 1,222
CELL_PHONE 17,016 | DOG 3,496 | BED 1,141
REMOTE 16,127 | TOOTHBRUSH 2,839 | BOAT 1,056
BOWL 13,524 | SUITCASE 2,730 | BACKPACK 1,034
POTTED_PLANT 13,045 | APPLE 2,714 | TRUCK 924
TV 11,455 | BASEBALL_GLOVE 2,682 | TRAFFIC_LIGHT 919
SPORTS_BALL 10,290 | SPOON 2,636 | ORANGE 841
TIE 9,971 | HANDBAG 2,352 | COW 794
LAPTOP 9,066 | COUCH 2,316 | SANDWICH 763
VASE 9,033 | BASEBALL_BAT 2,293 | FIRE_HYDRANT 722
BOOK 7,612 | BIRD 2,292 | TEDDY_BEAR 713
WINE_GLASS 7,229 | BANANA 2,145 | AIRPLANE 576
DINING_TABLE 6,315 | PIZZA 2,103 | BUS 516
TENNIS_RACKET 5,922 | CAT 2,054 | SKIS 456
KNIFE 5,355 | CARROT 1,986 | SNOWBOARD 387
CAR 5,198 | BENCH 1,899 | TRAIN 338
MOUSE 5,107 | MOTORCYCLE 1,872 | ELEPHANT 265
SINK 4,688 | BICYCLE 1,856 | STOP_SIGN 246
FRISBEE 4,675 | HOT_DOG 1,652 | PARKING_METER 218
OVEN 4,450 | SCISSORS 1,529 | SHEEP 215
CLOCK 4,382 | FORK 1,480 | BEAR 198
KEYBOARD 4,353 | UMBRELLA 1,408 | GIRAFFE 177
SKATEBOARD 4,304 | KITE 1,384 | ZEBRA 158
Table 2: Detected class counts for training segments.
hour subset contains the full set of annotations. This portion consists of 13,493 videos consist-
This work focuses on that subset. ing of a total run-time of 305.1 hours from which
189,276 utterances are extracted. These videos and
Videos Hours Sentences segments are then segregated into training, vali-
train 13,168 2982 184,949 dation and test sets as shown in Table 3. These
validation 150 32 2,022 segments are then used to train systems in down-
test 175 3.7 2.305 stream tasks such as MT.

Table 3: How?2 300h subset statistics
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Figure 4: Top 15 classes present in training video snip-
pets.

4 Experiments

To gauge the effectiveness of the label augmenta-
tion approach, we train baseline and object-label
augmented systems in Marian (Junczys-Dowmunt
et al., 2018) with a transformer-base (Vaswani et al.,
2017) architecture. We also replicate the base-
line and image feature augmented shallow recur-
rent neural network (RNN systems) described in
(Sanabria et al., 2018) for comparison.

4.1 Training Hyperparameters

The Marian (Junczys-Dowmunt et al., 2018) sys-
tems trained for our experiments use transformer-
base settings as described in Vaswani et al. (2017):
6-layer encoder, 6-layer decoder, 8 transformer
heads, 2048 hidden units. These training sessions
were performed on 2 NVidia Titan-X Pascal de-
vices each with 12Gb GPU RAM, taking 6.5-7.5
hours per model.

4.2 Data preprocessing

In order to prepare the augmented data for use in
training MT systems, we employ SentencePiece
(Kudo and Richardson, 2018) unigram-model sub-
word processing with a disjoint> vocabulary size
of 32k. One important change we introduce is to
preserve each of the COCO class labels as atomic
tokens that are not broken apart. These labels are
additionally in all caps to both disambiguate from
natural occurrences of the label words and provide
a convenient marker for diagnosis.

4.3 Pruning Over-represented Object Labels

As noted in Section 2, PERSON is by far the
most represented object class label. We posit this
prevalence may have a negative effect on perfor-
mance. To investigate this hypothesis, we examine

2Separate vocabularies for English and Portuguese.

three methods to prune over-prevalent or under-
represented object class labels: naive dropping of
the N most-represented labels, inverse document
frequency (IDF) thresholding and normalized term
frequency-inverse document frequency (TF-IDF)
thresholding. For the first method, object labels are
simply removed in the most common order - e.g.
drop-3 removes the three most common classes:
PERSON, CUP, and BOTTLE.

Total Corpus Lines

IDFr =logo (1)

# Lines with T present

Inverse document frequency thresholding (as cal-
culated by Equation 1) removes labels that fall be-
low a specified threshold compared to a precom-
puted table of IDF scores for each class, effectively
removing the most represented labels.

Lastly, normalized TF-IDF thresholding does the
same using the product of TF (calculated by the
number of times an object label occurs in video
time-slices®) and IDF scores normalized from 0
to 1 - this tries to bring a balance between most
represented labels and more unique labels that may
add a distinct contribution to a translation.

4.4 ASR-Degraded experiments

The How?2 dataset is provided with reference
speech transcription, but in realistic settings one
may need to derive these automatically. Automatic
speech recognition (ASR) errors may lead to ad-
ditional ambiguity in the MT input, but hopefully
can be recovered partially with image context. We
build Kaldi (Povey et al., 2011) ASR systems to
recognize the speech of the speakers in the How?2
videos, then match the ASR output timings to those
of the gold-standard utterances. These new utter-
ances are used as the source side of the training
corpus for both the baseline and object label aug-
mented condition.

In a second experiment, we add 5 dB of back-
ground noise to the audio in the How?2 videos using
noise samples from the MUSAN corpus (Snyder
et al., 2015). The same ASR system described
above is then evaluated on the noisy audio to pro-
duce a second set of ASR hypotheses.

The English speech recognition system was
trained using the Kaldi ASR toolkit. The acoustic
models utilized 2400 hours of audio from Fisher

3This is different than our use of object class occurrences

in augmentation; the larger video-timeslice object count is
needed for the TF-IDF calculation to work properly.
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(Cieri et al., 2004-2005), TEDLIUM-v3 (Hernan-
dez et al., 2018), and ATC (Godfrey, 1994); the
language models (LM) were estimated on 1 bil-
lion words from Fisher, News-Crawl 2007-2017
(Kocmi et al., 2022), News-Discuss 2014-2017
(Kocmi et al., 2022), and TED. This system used
Mel frequency cepstral coefficient (MFCC) fea-
tures as input to a factorized time delay neural
network (TDNN) with residual network style skip
connections. Initial decoding was performed using
a finite state transducer (FST) built from a bigram
LM, and the resulting lattices were rescored with a
RNN LM. The vocabulary included 100k words.

4.5 Results

Armed with an array of label pruning strategies,
we run a series of experiments to determine the
effectiveness of each method.

4.5.1

Marian label augmentation and pruning results are
shown in Table 4 reporting scores for BLEU (Pap-
ineni et al., 2002), chrF2 (Popovié, 2015) and TER
(Snover et al., 2006) as calculated by SacreBLEU
(Post, 2018) and COMET (Rei et al., 2020) with
the default wmt 20-comet—da model.

We note that drop-3, tfidf at 0.20, and idf at 4.0
each yield a +0.9-1.0 gain in BLEU over baseline.
We also report the number of labels pruned at each
experimental threshold noting that drop and tfidf
remove approximately 42-43% of object class la-
bels at maximum performance, while idf removes
a much larger 74.73%.

As we see from the results, each of the three label
pruning methods yields improvements over both
the text-only and non-pruned augmented systems.
Using the compare-mt (Neubig et al., 2019) tool,
we take a closer look at various characteristics of
the translation hypotheses of each of these five
systems to see if any trends emerge. Table 5 shows
averaged sentence BLEU scores for hypotheses
with outputs of varying lengths. The intuition is
that these average scores will help determine if a
given system or pruning strategy is better at certain
output lengths.

From these averaged scores, we note that plain
label augmentation tends to improve over base-
line with hypothesis lengths between 30 and 60
tokens but performs worse when outside of those
ranges. Of the three pruning strategies, drop 3
tends to bring the most improvement, especially
with shorter hypotheses and idf 4.0 tends to help

Marian Label Augmented Systems

the longer sequences.

4.5.2 Nmtpytorch Baseline Experiments

For nmtpytorch baseline comparison systems, we
note that maximum training sequence has an ef-
fect on system performance, most likely due to the
shallow RNN architecture. Table 6 shows that us-
ing the default 120 max token limit from Sanabria
et al. (2018) yields better performance (+0.9-1.1
BLEU) with both the visual perturbation and our
label augmentation approach. These results show
our approach yields a similar performance gain.

4.5.3 ASR Noise Experiments

For the ASR-based experiments shown in Table 7,
we see improvements of +0.7 BLEU with both the
clean and noisy Kaldi systems. We expect that
the speech-recognition based systems would not
perform as well as the gold-standard systems, but
the use of object labels can help mitigate this loss
in performance.

4.6 Analyzing Attention Outputs

We use Marian’s ability to output soft attention
weights to compare an augmented system against
its baseline counterpart, as shown in Figure 5. For
this example, line 221 of the test set, the baseline
system scores a sentence-BLEU of 30.66 versus the
augmented system’s 61.32. We note the attention
contributions of the object labels on the output
tokens. Utilizing this feature as part of an unaltered
MT toolkit allows for quick and easy analysis of
the benefits of object label augmentation.

5 Related Work

Perhaps most closely related to our approach is
ViTA (Gupta et al., 2021), which adds object labels
extracted from images in an image captioning trans-
lation task. While the motivation of adding object
labels are similar, there are important differences
with our setup: 1) We work on video narration of
an author’s task demonstration where objects ap-
pear at different points in the clip, which differs
significantly from static image captions. 2) Our
work focuses on training MT systems from scratch
as opposed to fine-tuning existing models.

For a broad survey of multimodal translation,
refer to Sulubacak et al. (2020). Specifically
for video translation on How2, Sanabria et al.
(2018) investigates a MT system that adds a 2048-
dimensional feature vector averaging features for
every 16 frames to create a global feature vector for
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System BLEU chrF2 TER COMET  Dropped Labels
Marian baseline ~ 57.9 75.0 29.6 0.6819 -

nmtpy baseline 562 742 307 0.6234 -

nmtpy visual 55.9 74.0 31.1  0.6090 -

drop 0 576 749 299 0.6732 0 (0%)

drop 1 58.6 754 289 0.6785 164,605 (33.55%)
drop 2 58.7 75.5 289 0.6840 188,475 (38.41%)
drop 3 589 757 287 0.6907 212,284 (43.26%)
drop 4 58.5 753  29.1  0.6766 230,090 (46.89%)
drop 5 58.5 752 293  0.6687 247,106 (50.36%)
tfidf 0.10 58.3 75.1 295  0.6778 162,762 (33.17%)
tfidf 0.20 588 754 28.8 0.6817 205,938 (41.97%)
tfidf 0.30 58.8 755 290 0.6812 398,643 (81.24%)
idf 3.0 584 752 292 0.6832 212,284 (43.26%)
idf 4.0 589 755 29.0 0.6887 366,695 (74.73%)
idf 5.0 58.5 754  29.0 0.6857 428,655 (87.36%)

Table 4: Marian system scores for How2 en—pt test set, measured in BLEU, chrF2, TER and COMET. There are
490,697 object class labels present in the entire augmented training corpus.
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Figure 5: Attention grid for the same output sentence for
Baseline (top, 30.66 sentence-BLEU) and Augmented
(bottom, 61.32 sentence-BLEU) systems. We note the
attention contributions of the augmented object labels.

length base aug drop3 tfidf0.2 idf4.0
<10 527 518 534 52.8 53.1
[10,20) 57.6 57.1 58.7 583 57.8
[20,30) 53.7 53.6 5438 55.1 55.2
[30,40) 53.1 54.1 554 54.9 55.8
[40,50) 524 52.0 529 52.6 531
[50,60) 483 493 521 49.8 48.8
>=60 46.6 44.6 455 47.3 48.8

Table 5: Averaged sentence BLEU scores for hypotheses
in incremental length bins.

that entire video. This differs from our approach
of creating labels solely for the objects in a clip
directly corresponding to that text segment. Mad-
hyastha et al. (2017) uses a similar approach as
How?2 on static imagery.

The Vatex (Wang et al., 2020) video description
dataset includes a Video-guided Machine Transla-
tion (VMT) approach that utilizes an action detec-
tion model feeding a video encoder with temporal
attention and a text source encoder with attention
that both inform the target decoder, producing trans-
lated output from a unified network. The authors
perform experiments in an video captioning setting,
as opposed How?2’s task narration setting.

As part of the work in Calixto and Liu (2017),
the authors project static image features into the
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System Max Tok BLEU
nmtpy base 120 55.0
nmtpy vis 120 56.1
nmtpy aug 120 55.9
nmtpy base 250 56.2
nmtpy vis 250 55.9
nmtpy aug 250 55.7

Table 6: Max token length effect on BLEU for nmtpy-
torch baseline, visual perturbation and our label aug-
mented systems.

System BLEU COMET
Kaldi clean base 52.0 0.556
Kaldi clean aug 52.7 0.583
Kaldi 5 dB noise base 50.8 0.459
Kaldi 5 dB noise aug 51.5 0.459

Table 7: Results for clean and noisy Kaldi systems for
both baseline and augmented conditions.

word embedding space to produce image-based
first and last words to influence word choice in
their bidirectional RNN systems.

While there are a few examples of object detec-
tion as a separate task (including our work), Bal-
trusaitis et al. (2019) notes the rapid jump to joint
representations as neural networks became popular
tools for a variety of multimodal tasks, explaining
the prevalence of work following that approach.

6 Future Work

Having proven our object label augmentation tech-
nique on How?2, future work includes applying
label augmentation to other datasets such as the
VATEX (Wang et al., 2020) video description
and VISA (Li et al., 2022) ambiguous subtitles
datasets. Further research into the effects of
ASR degraded speech and examining task-agnostic
image-language models such as CLIP (Radford
et al., 2021) for label augmentation may also be
useful.

7 Conclusion

We present a straight-forward method to improve
MT context quality by augmenting training data
with objects detected in corresponding video clips.
Using these augmented corpora, we realize gains of
up to +1.0 BLEU over baselines without changes

to the underlying MT toolkits used to build mod-
els. We additionally show improvements of up to
+0.7 BLEU with object label augmentation when
substituting ASR speech for gold standard inputs.
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Abstract

This paper presents the submission of Huawei
Translation Services Center for the IWSLT
2023 dubbing task in the unconstrained set-
ting. The proposed solution consists of a
Transformer-based machine translation model
and a phoneme duration predictor. The Trans-
former is deep and multiple target-to-source
length-ratio class labels are used to control tar-
get lengths. The variation predictor in Fast-
Speech?2 is utilized to predict phoneme dura-
tions. To optimize the isochrony in dubbing, re-
ranking and scaling are performed. The source
audio duration is used as a reference to re-rank
the translations of different length-ratio labels,
and the one with minimum time deviation is
preferred. Additionally, the phoneme duration
outputs are scaled within a defined threshold to
narrow the duration gap with the source audio.

1 Introduction

Automatic dubbing (AD) (Federico et al., 2020;
Brannon et al., 2022; Chronopoulou et al., 2023)
technology uses artificial intelligence (Al) to auto-
matically generate dubbed audio for video content.
Dubbing is the process of replacing the audio with
a translation of the original audio in a different
language. Al dubbing technology automates this
process by using machine learning algorithms to
translate the original audio and synthesize a new
voice that sounds natural and resembles a human
voice. The synthesized voice is then synchronized
with the lip movements of the characters in the
video to produce dubbed audio. This technology
has the potential to significantly reduce the time
and cost of creating dubbed audio and make it eas-
ier to reach a global audience by translating video
content into multiple languages.

Recent advances in the field of automatic dub-
bing have contributed to the development of more
efficient and cost-effective methods for producing
localized content. Researchers have utilized var-

ious techniques and technologies, including ma-
chine translation (MT) (Lopez, 2008; Vaswani
et al., 2017), speech synthesis (Wang et al., 2017b;
Ren et al., 2022), and speech recognition (Gulati
et al., 2020; Schneider et al., 2019), to improve the
accuracy and quality of automatic dubbing systems.

{ Source Text } ESource Audio}
Pause
Alignment

Segmented Source

<Xlonger> l <Longer>

{Target 1] {Target 2] [Target 3] {Target 4] {Target 5]

<Shorter> l <Xshorter>

Variation
Predictor

Re-ranking &
Scaling

Figure 1: System pipeline.

Isometric machine translation (Lakew et al.,
2022; Li et al., 2022) is a technique used in au-
tomatic dubbing where translations should match
a given length to allow for synchronicity between
source and target speech. For neural MT, generat-
ing translations of length close to the source length,
while preserving quality is a challenging task. Con-
trolling MT output length comes at a cost to trans-
lation quality, which is usually mitigated with a
two-step approach of generating N-best hypotheses
and then re-ranking based on length and quality.

Another area of research focuses on the syn-
chronization of the dubbed audio with the original
source audio. This is essential for ensuring that the
dubbed audio matches the timing and intonation of
the original speech. Researchers have developed
various methods for achieving accurate synchro-
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nization, including the use of phoneme duration
predictors and machine learning algorithms to de-
tect and align speech segments (Virkar et al., 2021;
Effendi et al., 2022; Virkar et al., 2022).

One of the latest developments in automatic dub-
bing research is the use of deep neural networks for
speech synthesis (Chronopoulou et al., 2023; Ren
et al., 2022). These networks enable the creation of
more naturalistic and expressive speech, improving
the overall quality of the dubbed audio. In con-
clusion, recent research in automatic dubbing has
shown significant progress and promise for the fu-
ture of localized content production. By combining
advanced machine learning techniques with speech
synthesis, speech recognition, and sentiment analy-
sis, researchers are developing more accurate, ef-
ficient, and cost-effective automatic dubbing sys-
tems.

The IWSLT 2023 (Agarwal et al., 2023) dubbing
task focuses on isochrony in dubbing, which refers
to the property that the speech translation is time
aligned with the original speaker’s video. The task
assumes that the front Automatic Speech Recog-
nition (ASR) output text and subsequent Text-to-
Speech (TTS) models already exist, and the goal is
to predict the phonemes and their durations. Our
proposed solution involves using a Transformer-
based (Vaswani et al., 2017) machine translation
model and a phoneme duration predictor. A Deep
Transformer (Wang et al., 2017a, 2019) model is
utilized to handle multiple target-to-source length-
ratio class labels, which are used to control target
lengths. The phoneme duration predictor is based
on the variation predictor used in FastSpeech2 (Ren
et al., 2022). To optimize isochrony in dubbing, the
solution utilizes re-ranking and scaling techniques.
The translations generated by different length-ratio
labels are re-ranked based on their time deviation
from the source audio duration, with the minimum
deviation one preferred. The phoneme duration out-
puts are also scaled within a predefined threshold
to narrow the duration gap with the source audio.
These techniques help to ensure that the translated
speech is synchronized with the original speaker’s
video.

2 Data

The data provided in the constrained setting is de-
rived from CoVoST2 (Wang et al., 2020) De-En
data, consisting of German source text, English tar-
get text, speech durations, and English phonemes

and durations (Brannon et al., 2022). We addition-
ally apply WMT2014 De-En data for training the
MT model. The amount of data for both sets is
shown in Table 1.

Data Size
CoVoST2  0.289M
WMT2014 4.5M

Table 1: The bilingual data sizes.

To achieve better training results of the MT
model, we used some data pre-processing methods
to clean the bilingual data, including removing du-
plicate sentences, using Moses (Koehn et al., 2007)
to normalize punctuation, filtering out overly long
sentences, using langid (Lui and Baldwin, 2011,
2012) to filter out sentences that do not match the
desired language, and using fast-align (Dyer et al.,
2013) to filter out unaligned sentence pairs.

3 System

The system consists of four parts: Pause Alignment,
Machine Translation, Phoneme Duration Variation
Predictor, and Re-ranking and Scaling. Figure 1
shows the system pipeline. The following describes
the four parts in detail.

3.1 Pause Alignment

During inference, we use a Voice Activity Detector
(VAD) (Team, 2021) to obtain speech segments
and their durations from the source audio. The
test data for the task already provides text seg-
ments separated by pauses. However, we found
that the number of speech segments obtained by
VAD sometimes does not match the number of text
segments provided, resulting in incorrect matching
of pause counts. This can cause significant dis-
crepancy between the synthetic dubbing and the lip
movements of the character in the video when the
pause duration is long.

To address this issue, we first perform pause
alignment between the source text and the source
audio. We use the proportion of tokens in each
text segment to the total number of tokens, and
the proportion of duration of each speech segment
to the total duration, to find the best alignment
between the text and speech segments. When the
number of text segments is less than the number of
speech segments, we merge the audio segments to
reduce the number of speech segments. The final
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speech segments that need to be retained are split
at the following points:

ol .
1 = argmin
J

7 iy

[s1.4] _ [t
S T

Where |1, ;| means total number of tokens from
the first to the i-th text segment. |s ;j| means total
duration from the first to the j-th speech segment.
T and S represent the total number of tokens in
the text and the total duration of the speech, respec-
tively. i is the i-th speech segmentation point after
merging, corresponding to the i-th text segment.

Conversely, when the number of speech seg-
ments is less than the number of text segments,
we merge the text segments. The final retained text
segmentation points are:

’

g sl sl
j = argmin -
(2

T S |’
3.2 Machine Translation

We trained a Neural Machine Translation (NMT)
model using Deep Transformer, which features pre-
layer normalization, 25 encoder layers, and 6 de-
coder layers. Other structural parameters are con-
sistent with the Transformer-Base model.

Following existing length control methods, we
divided the bilingual data into 5 categories based
on the target-to-source character length ratio (LR)
for each sample (Lakew et al., 2022; Li et al.,
2022). The labels were defined based on LR
thresholds: Xshorter < 0.8 < Shorter <
0.9 < Fqual < 1.1 < Longer < 1.2 <
Xlonger. During training, we added a length tag
<Xshorter/Shorter/Equal/Longer/Xlonger> at the
beginning of each source sentence. In the inference
process, text segments are sent to the translation
model separately and the required tag is prepended
at the beginning of each input segment.

=

3.3 Phoneme Duration Variation Predictor

As with FastSpeech2 (Ren et al., 2022), after us-
ing an open-source grapheme-to-phoneme tool
(Park, 2019) to convert the NMT output transla-
tion sequence into a phoneme sequence, the pre-
trained variation predictor module in FastSpeech?2
was used to generate initial phoneme durations.
The variation predictor takes the hidden sequence
as input and predicts the variance of the mean
squared error (MSE) loss for each phoneme’s du-
ration. It consists of a 2-layer 1D-convolutional

network with ReL U activation, followed by layer-
normalization and dropout layers, and an additional
linear layer to project the hidden state into the out-
put sequence. The final output is the length of each
phoneme.

3.4 Re-ranking and Scaling

To select the best isochrony dubbing, we used
source texts with 5 different tags prepended as in-
puts for the NMT model. After converting the
output translations into phoneme durations using
the phoneme duration variation predictor, we re-
ranked them based on the source audio duration
as reference, and selected the output with the least
duration deviation.

Additionally, we used the ratio of the source
audio duration to the total predicted phoneme du-
ration as a reference, and scaled the predicted
phoneme duration within a certain threshold to
further optimize the synchronization between the
synthesized dubbing and the source video.

5; = argmlin(’sjk‘ —|sj]); k € [1,5]
S]k

|s;]

S;' = 5;- - Scale(=7)
S .
]
11, r>1.1
Scale(r) = r, 09<r<l1.1
0.9, < 0.9

Where |s;| is the total duration of source speech

segment s, s;’ is the total duration of generated

dubbing segment s;. And Scale() is a scaling func-
tion.

4 Experiments

We used SentencePiece (Kudo and Richardson,
2018) to process NMT bilingual text and obtain
subword vocabularies, resulting in a German vo-
cabulary of 29k and an English vocabulary of 25k.
We trained a Transformer NMT model using fairseq
(Ott et al., 2019), with an encoder of 25 layers, a
decoder of 6 layers, 8 attention heads, embeddings
of 512, and FFN embeddings of 2048. The model
was optimized using Adam (Kingma and Ba, 2017)
with an initial learning rate of 5e-4, and warmup
steps of 4000. Dropout was set to 0.1. The model
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was trained on 8 GPUs, with a batch size of 2048
tokens and an update frequency of 4.

During the inference phase, an open-source VAD
tool was used to process the source speech and ob-
tain speech segments and durations for subsequent
selection of NMT translated text lengths and adjust-
ing the duration of synthetic dubbings. The NMT
translated text was then converted to phoneme
sequences using an open-source grapheme-to-
phoneme tool, and the initial phoneme durations
were predicted using a pre-trained variation predic-
tor module in FastSpeech?2.

As the main evaluation method for this task
is manual evaluation, and our method allows for
adjustment of phoneme duration prediction, We
mainly experiment and compare BLEU (Papineni
et al., 2002) under different strategies of machine
translation. To measure the synchronicity between
source and dubbed speech, we use speech overlap
(SO) (Chronopoulou et al., 2023) metric. It should
be noted that the metrics presented don’t take into
account speech naturalness, which is extremely im-
portant to people viewing dubs. (Brannon et al.,
2022) showed that human dubbers produces natural
speech even at the cost of isochrony. The experi-
mental results on the two test sets of the task are
shown in Table 2.

Strategy subsetl subset2
BLEU SO BLEU SO
Xlonger 248 071 220 049
Longer 2800 0.82 26.1 0.70
Equal 374 083 324 0.83
Shorter 4277 079 374 0.85
Xshorter 4577 073 433 0.83
Re-ranking 31.2 092 338 093
Scaling 312 097 338 098
- w/o PA 31,6 0.89 347 0.87

Table 2: Experimental results of NMT.

We present the BLEU and SO results using five
different LR tags, re-ranking and scaling strategies.
The results of the two test sets have the same trend
in BLEU, that is, the shorter the generated transla-
tion, the higher the BLEU value. Since subset2 has
pause punctuation, it is more difficult to translate,
so under the same LR tag at all levels, the BLEU
value of subset2 will be lower than that of subset].
In terms of SO, both too long or too short trans-
lations will cause SO to decrease. The results of
medium LR settings can achieve the highest SO

value.

Too long translations will result in lower quality
of machine translation, while short translations will
result in insufficient duration for generating dub-
bing. After re-ranking, the translations can achieve
more moderate results in translation quality and
duration. Moreover, by setting appropriate scaling
thresholds, scaling operation can further improve
the isochrony without affecting BLEU.

We also compared the results without pause
alignment, as shown in the last row of Table 2.
The SO of both test sets decreased significantly,
but the BLEU increased slightly. After analysis,
the MT translation is more likely to mismatch with
the shorter segment duration, so the shorter transla-
tion is selected during re-ranking. While our results
show that the shorter the translation, the higher the
BLEU.

5 Conclusion

This paper describes the submission of Huawei
Translation Services Center for the IWSLT 2023
dubbing task under the unconstrained setting. Our
solution consists of four parts: pause alignment,
machine translation, phoneme duration variation
predictor, re-ranking and scaling. Pause alignment
is used to align source audio and source text to im-
prove synchronization between synthetic dubbing
and source video. The machine translation model
is trained using the Deep Transformer structure.
To control the output translation length, multiple
target-to-source length-ratio tags are used to adjust
the length. Pre-trained variation predictor in Fast-
Speech? is used to predict phoneme durations. In
order to optimize the isochrony in dubbing, the re-
sults of different lengths of the machine translation
output are re-ranked and scaled. Using the source
audio duration as a reference, the translations with
different length ratios are re-ranked, and the output
with the smallest time deviation is preferred. In
addition, the phoneme duration output is scaled
within a defined threshold, further narrowing the
duration gap from the source audio. We compare
the experimental results of different length-ratio
strategies, and our method can achieve a balanced
result in BLEU and speech overlap.
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Abstract

This paper presents NAVER LABS Europe’s
systems for Tamasheq-French and Quechua-
Spanish speech translation in the IWSLT 2023
Low-Resource track. Our work attempts to
maximize translation quality in low-resource
settings using multilingual parameter-efficient
solutions that leverage strong pre-trained mod-
els. Our primary submission for Tamasheq
outperforms the previous state of the art by
7.5 BLEU points on the IWSLT 2022 test set,
and achieves 23.6 BLEU on this year’s test set,
outperforming the second best participant by
7.7 points. For Quechua, we also rank first and
achieve 17.7 BLEU, despite having only two
hours of translation data. Finally, we show that
our proposed multilingual architecture is also
competitive for high-resource languages, out-
performing the best unconstrained submission
to the IWSLT 2021 Multilingual track, despite
using much less training data and compute.

1 Introduction

The vast majority of speech pipelines are developed
for high-resource languages, a small percentage of
languages that have ample amounts of annotated
data available (Joshi et al., 2020). However, the
assessment of systems’ performance based only on
high-resource settings can be problematic, since it
fails to reflect the real-world performance these ap-
proaches will have in diverse and smaller datasets.
Moreover, as around half of the world’s languages
are considered to be not only low-resource, but
also from oral tradition (i.e., without a written
form), there is an urgent need for speech technol-
ogy that can operate robustly in such low-resource
settings (Bird, 2011). In this context, the IWSLT
conference' proposes low-resource speech trans-
lation (ST) challenges that allow the speech com-
munity to realistically benchmark ST approaches

*Work done during an internship at NAVER LABS Eu-
rope.

*Equal contribution
"https://iwslt.org/

using diverse and representative datasets. This
paper describes NAVER LABS Europe’s (NLE)
submission to two of the language pairs from the
IWSLT 2023 (Agarwal et al., 2023) Low-Resource
Track: Tamasheq-French (Tag-Fr) and Quechua-
Spanish (Que-Es).

Most successful approaches for tackling scenar-
ios where ST data is scarce perform transfer learn-
ing across languages and modalities, leveraging
multilingual pre-trained models for both speech
and text (Anastasopoulos et al., 2022). However,
due to the large number of parameters of cur-
rent Transformer-based (Vaswani et al., 2017) ap-
proaches, training such systems is computationally
expensive and not accessible to everyone. NLE’s
submission focuses on a multilingual parameter-
efficient training solution that allows us to lever-
age strong pre-trained speech and text models
to maximize performance in low-resource lan-
guages.

We present new SOTA results for the 7ag-
Fr pair (17 hours of training data) that represent
a 57% BLEU increase compared to the results
achieved by Khurana et al. JWSLT 2022 post-
evaluation).” This same system achieves 23.6
BLEU on the IWSLT 2023 test set, an improve-
ment of 7.71 BLEU compared to the second best
result submitted this year. We also present SOTA
results in the unconstrained setting for the Que-
Es pair (2hours of training data), while main-
taining most of the performance in the Tag-Fr
pair. In addition, to showcase the usefulness of
our parameter-efficient multilingual solution we
evaluate it on the high-resource setting of the
IWSLT 2021 Multilingual Task (Anastasopoulos
et al., 2021). We find that our approach outper-
forms the best IWSLT 2021 submission (FAIR,
Tang et al., 2021), despite training considerably
fewer parameters (-64%), and using substantially

https://www.clsp. jhu.edu/
Jjsalt-2022-closing-presentations/
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Figure 1: An illustration of our multilingual ST architecture as described in Section 2. The bold arrow path
corresponds to the speech-to-text training path. At decoding time, we can choose between producing speech-to-text

or text-to-text translations. Figure best seen in color.

less training data and compute.

This paper is organized as follows. We first de-
scribe the architecture and training settings of our
multilingual ST systems in Section 2. We next
list the resources we use in Section 3. Section 4
presents our results in both low and high-resource
settings. Lastly, we highlight the zero-shot poten-
tial of our approach in Section 5 and present our
concluding remarks in Section 6.

2 System Description

In this work we focus on a parameter-efficient train-
ing solution that allows us to input the features
from a pre-trained speech representation model
into a pre-trained multilingual MT model, produc-
ing translations from both speech and text in mul-
tilingual settings. This setting also allows us to
leverage automatic speech recognition (ASR; i.e.
speech-to-transcript) data. The general architecture
is presented in Figure 1. The architecture is consid-
ered parameter-efficient because a small portion of
its parameters are trained (bottom encoder layers
and small adapters layers).

Architecture. We initialize our models with a
pre-trained multilingual MT model, which we
adapt to the ST task by inputting features extracted
with a frozen pre-trained speech representation
model. The MT model is also frozen, except for
the bottom 2 or 3 encoder layers and small adapter
modules (those introduced by Bapna and Firat
(2019), with bottleneck dimension 64) added af-
ter each encoder and decoder layer. As we show in
our results, the fine-tuned encoder layers are able

to map the speech features into the representation
space of the pre-trained MT model and the adapters
can help with domain adaptation (and possibly help
alleviate the length mismatch). At inference, this
model can be used for MT with very little memory
overhead: the convolutional layers and adapters
are disabled, and the bottom encoder layers are
swapped with those of the initial pre-trained model.

Training settings. We train on 4 V100
GPUs (80GB) for up to 200 000 updates, with a
maximum batch size of 4 000 source features (or
80 seconds of audio) and accumulated gradients
over two batches.> We sample language pairs
with a temperature of 3.* We validate every 5000
updates and perform early stopping on valid
BLEU for the language pair(s) of interest, with
a patience of 5, averaging model weights across
the last 3 checkpoints.> We find best results using
a single convolutional layer with stride 2, which
downsamples the sequence of speech features by a
factor of 2. The other hyperparameters are listed in
Appendix Section A.1.

3This corresponds to a total of 32 000 features per update,
or 640 seconds of audio. In practice, with padding, each
update corresponds to approximately 80 utterances or 530 sec-
onds of audio.

4pk = ui/ 3 / Z ui/ 3 where uy 1S the utterance count for
language pair k.

SWhile all the configurations presented in this paper use
checkpoint averaging, we later re-trained our contrastive sub-
mission for Tag-Fr and found virtually the same results with-
out it.
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Model # params T‘"al‘:yf::smer d.Featm:e Task Source Target hours:minutes  # utterances
Tamasheq (Boito et al., 2022b) 95M 12 768 ASR ~ Quechua  Quechua 5139 8,301
Niger-Mali (Boito et al., 2022b) 95M 12 768 ST Quechua Spanish 2:42 698
mHuBERT-Tamasheq 95M 12 768 ST Tamasheq French 15:43 5,025
XLSR-53 (Conneau et al., 2021) 317M 24 1024

XLS-R (Babu et al., 2022) 317M 24 1024

Table 1: Speech representation models. The top portion
presents Tamasheq-dedicated models, while the bottom
lists large general purpose multilingual models.

3 Resources

3.1 Pre-trained Speech Representation
Models

We experiment with different versions of two
speech representation models: HuBERT (Hsu et al.,
2021) and wav2vec 2.0 (Baevski et al., 2020). We
do not fine-tune these models in any of our con-
figurations, but instead use them as feature extrac-
tors (see Figure 1). Because of this, our models
are sensitive to the layer we extract features from.
Pasad et al. (2021) argue that, for wav2vec 2.0 mod-
els that are not fine-tuned on ASR, speech features
from middle layers tend to have a higher abstrac-
tion from the speech signal, which is beneficial to
downstream tasks. The results from Boito et al.
(2022b) seem to confirm this observation holds for
low-resource ST. To the best of our knowledge,
there is no similar investigation for HuUBERT mod-
els.b

Table 1 presents the speech representation mod-
els we experiment with. The Tamasheq model is
a monolingual wav2vec 2.0 Base model trained
on 243 h of Tamasheq speech. The Niger-Mali
is a wav2vec 2.0 Base model trained on the
same Tamasheq speech data plus 111 h of French,
109h of Fulfulde, 100h of Hausa, and 95h of
Zarma. This gives 658h in total. The data for
both models is sourced from the Niger-Mali audio
collection (Boito et al., 2022a). The unreleased
mHuBERT-Tamasheq model uses this same audio
collection for training, while also including Com-
mon Voice (Ardila et al., 2020) data in four other
languages (English, French, Arabic and Kabyle),
resulting in 5 069 h of speech. XLSR-53 (56k hours)
and XLS-R (500k hours) are massively multilingual
wav2vec 2.0 Large models covering 53 and 128 lan-
guages, respectively. Neither of these two multi-
lingual models have seen Tamasheq or Quechua

®We hypothesize that layer selection is less important for

HuBERT architectures due to the multi-iteration approach that
increases signal abstraction at each iteration.

Table 2: Speech Translation (ST) and Speech Recogni-
tion (ASR) data provided by the organizers (train+valid).
The ASR data is outside of the constrained setting.

speech during training.’

3.2 Pre-trained Multilingual MT Models

To initialize our ST models, we first experi-
mented with mBART for many-to-many transla-
tion (mMBARTS50NN; Tang et al., 2020), but found
the NLLB-200 models (Costa-jussa et al., 2022)
to give better results. We experiment with the
dense NLLB models of various sizes: the distilled
600M-parameter and 1.3B-parameter versions, and
the 3.3B-parameter version. We end up using the
larger versions in our submissions (1.3B and 3.3B).
Note that NLLB covers 202 languages, including
Tamsheq and Quechua, which is not the case for
mBART. At the same model size, despite covering
more languages, NLLB is also a stronger machine
translation model overall than mBART. Also, un-
like mBART, it is not English-centric.

Contrary to Tang et al. (2021), we keep the orig-
inal mBART or NLLB vocabularies of size 250k
and do not train any embeddings. Instead, like
Berard et al. (2021), we find that it is possible to
filter the vocabulary at test time to only cover the
languages of interest, significantly reducing the
memory footprint of the model with a minor re-
duction in performance.® We can also filter the
vocabulary and embeddings before ST fine-tuning
and achieve the same performance as with the full
vocabulary without needing to train any embed-
dings. See Table 14 in Appendix for a comparison
of these approaches. In order to study the zero-shot
translation capabilities of our models (i.e., trans-
lating to languages and language pairs unseen at
training), we do not apply vocabulary filtering to
the configurations presented in the main paper.

" Appendix Table 16 lists all models with links for down-
loading checkpoints, when available.

Swith NLLB, 44k tokens are enough for a 100% cov-
erage of the training data (mTEDx, TED-LIUM, Quechua,
Tamasheq), or 35k when restricting to our Tag-Fr setting. This
represents a reduction of more than 200M parameters.
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Task Source Target hours:minutes  # utterances

ASR English English 208:00 91,003

ASR French French 218:59 117,081

ASR  Spanish  Spanish 214:15 103,076
ST French English 57:39 31,207
ST French Spanish 42:14 21,862
ST Spanish  English 79:37 37,168
ST Spanish French 9:34 4,568

Table 3: ASR and ST data in English, French and Span-
ish sourced from TED talks (unconstrained setting).

3.3 Datasets

We tackle the low-resource setting by building mul-
tilingual systems that utilize both ASR and ST
data in the languages of interest (Tamasheq and
Quechua), and in high-resource directions whose
target language is of interest (French and Span-
ish). Note that we also include X—English data,
as we initially planned to participate in the Irish-
English task. Including more data in high-resource
languages has several advantages. Firstly, it has a
regularization effect that prevents us from immedi-
ately overfitting the low-resource training data. Sec-
ondly, this enables knowledge transfer from com-
mon target languages and from similarly-sounding
source languages.” Thirdly, as we build multilin-
gual ST systems by mapping the speech representa-
tion vectors into the same space as the multilingual
MT model, our goal is to produce a model that is
as multilingual as possible, not specializing in one
specific language. Our results show that training
on multiple languages at once achieves this effect,
while also producing good zero-shot ST results.

Table 2 presents statistics for the datasets pro-
vided by the IWSLT 2023 organizers. The Que-Es
dataset'? is an unreleased dataset prepared for this
year’s challenge. It corresponds to a translated
subset of the Quechua ASR data (“Siminchik’)
from Cardenas et al. (2018). The Tag-Fr dataset
was introduced by Boito et al. (2022a). Table 3
presents statistics for the datasets in high-resource
languages. English ASR data comes from TED-
LIUMvV2 (Rousseau et al., 2014), and the other
data comes from mTEDx (Salesky et al., 2021).
Appendix Table 15 lists the datasets used in each
of our submissions. In Section 4.3, we also run

“Manual inspection revealed that audio from both datasets
presents some degree of target language borrowing (e.g.,
Spanish words present in the Quechua speech, French words
present in the Tamasheq speech).

0We are aware the dataset reference is Que-Spa. We chose

to use the ISO 639-1 two letters abbreviation for Spanish for
consistency with the other datasets used in this work.

Taq-Fr Que-Es
IWSLT IWSLT | IWSLT
2022 2023 2023
Taq- primary 20.75 23.59 X
F‘rl contrastive 1  19.06 2131 X
contrastive 2 18.58 18.73 17.74
Que- primary 18.58 18.73 17.74
Es contrastive 1 16.84 X 15.67
contrastive 2 16.21 X 15.25

Table 4: Results on the official test sets for the IWSLT
2023 Low-Resource Task. We also show results on the
IWSLT 2022 Tag-Fr test set. Note that all Quechua
models are trained on Tamasheq data, but the reverse
is not true (see Appendix Table 15). Lines 3 and 4
correspond to the same model.

experiments in the setting of the IWSLT 2021 Mul-
tilingual Task to measure how good our approach
is on high-resource languages. The datasets used
for this setting are presented in Appendix Table 10.

4 Experiments and Results

All our submissions to the low-resource ST task
are in the unconstrained setting, due to the use of
pre-trained models, and from training on data in
other languages. The datasets used in each submis-
sion are listed in Appendix Table 15. This section
is organized as follows. We present our Taqg-Fr re-
sults (4.1) with a detailed ablation study justifying
our architectural choices. We then present our Que-
Es results (4.2). Lastly, we evaluate and analyze
our approach in a high-resource setting (4.3).

4.1 Tamasheq-French Results

We submit two systems that have Tag-Fr as the
only low-resource language pair (primary and con-
trastive 1). Additionally, we take our primary sub-
mission for Que-Es, which has also been trained
on Taq-Fr, and submit this as contrastive 2. The
top portion of Table 4 gives the test BLEU scores,
and the top portion of Appendix Table 11 presents
the valid BLEU scores. Table 12 shows statistics
(average and standard deviation) over multiple runs
when applicable.

System description. The contrastive 1 model
uses as a speech feature extractor the Niger-Mali
wav2vec 2.0 model (8™ layer). It was initialized
with NLLB 1.3B, whose bottom 3 encoder layers
were finetuned. We took three runs of this setting
with different random seeds and picked the best
performing one on the validation set (in terms of
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Tag-Fr BLEU) as our contrastive submission. We
then ensembled the three runs as our primary sub-
mission. Finally, constrastive 2 is the ensemble
model used as primary submission to the Que-Es
task, which covers both low-resource languages,
and combines XSL-R Large with NLLB 3.3B.

Results. Our primary submission significantly
outperforms the previous state of the art of
13.2 BLEU (+7.5 BLEU) on the IWSLT 2022 test
set by Khurana et al. (2022).'! Tt also ranks first in
this year’s edition, with +7.7 BLEU over the second
best primary submission. Our contrastive submis-
sions rank second and third (beating the second
best primary submission by +5.4 and +2.8 BLEU).

4.1.1 Ablation Study

In Appendix Table 18 we compare our con-
trastive 1 model (the non-ensembled version of
our primary submission) with other architectures
trained on the same data to validate our choice of
hyperparameters.

Speech features. The wav2vec 2.0 models
trained with Tamasheq (Niger-Mali and Tamasheq)
largely outperform the well-known massively mul-
tilingual models (XLSR-53 and XLS-R) on Taq-Fr
(e.g. +2.5 BLEU Tamasheq compared to XLS-R L).
These models are larger and trained on consider-
ably more data, but do not include any Tamasheq
speech. Similar to previous works (Pasad et al.,
2021; Boito et al., 2022b), when extracting fea-
tures from wav2vec 2.0 we find that the 8™ layer
gives better results than the 11" (penultimate) layer
(+2.5 BLEU for Niger-Mali).

For HuBERT, on the contrary, features from the
11% layer give the best results (+0.2 BLEU com-
pared to 8 layer). When using the right layer, we
find that wav2vec 2.0 outperforms HuBERT (+2.7
BLEU Niger-Mali compared to mHuBERT-Tag).

Finally, Niger-Mali is as good on Tag-Fr as the
Tamasheq wav2vec 2.0, but performs considerably
better on Fr-En (+4.1 BLEU), probably because
it was trained with French audio. The best Fr-En
performance is achieved with XLS-R L. We find
worse performance on Fr-En with XLS-R XL (-2.0
BLEU), but this may be due to layer selection.

Pre-trained MT model. The larger the model
used for initialization, the better the perfor-

""Here we are referencing the model pre-trained
using the Niger-Mali dataset that was presented at
JSALT  2022: https://www.clsp. jhu.edu/
jsalt-2022-closing-presentations/

mance (even more so for Fr-En). However, we
find that the gain from using NLLB 3.3B over
NLLB 1.3B is too small to justify the increase in
model size and decoding latency (3 times slower).
At the same model size, NLLB 600M performs
considerably better than mBART (+1.7 BLEU on
Tag-Fr, +3.6 BLEU on Fr-En).

Trained parameters. Fine-tuning too many en-
coder layers results in overfitting, which hurts
Tag-Fr and Fr-En performance. On the other
hand, fine-tuning just 1 or 2 layers instead of
3 does not result in a large BLEU drop. Simi-
larly, adapter modules are not always needed. Dis-
abling decoder adapters does not degrade 7ag-
Fr performance (+0.2 BLEU), but results in a
slight drop in Fr-En performance (-0.9 BLEU),
which could be attributed to a domain adaptation
effect (to the mTEDx domain). Disabling en-
coder adapters has more impact on performance for
Tag-Fr (-0.8 BLEU), with similar effect on perfor-
mance for Fr-En (-1.0 BLEU). Section 4.3 shows
that these adapters are important for domain adap-
tation.

Convolutions. The number of convolutional lay-
ers does not impact performance much (range of
1.1 BLEU on Tag-Fr and 3.2 BLEU on Fr-En for
0 to 3 layers), but it can have a large impact on
decoding speed: each layer divides the input length
by a factor of 2 resulting in a roughly 3.5 x speed-
up from O to 3 layers. Interestingly, even though
it was trained on much shorter sequences, the MT
model seems to adapt quite well to any input length,
even without any convolutions — we achieve a bet-
ter Tag-Fr result without any convolutions, but a
worse Fr-En result.!? However, models with fewer
convolutional layers seem to converge faster (as
shown in Appendix Figure 2).

Stacked layers. While our approach described
in Section 2 fine-tunes some parameters of the pre-
trained MT model, we can instead plug new Trans-
former layers at the bottom of the encoder, without
changing any existing parameter. These “stacked
layers” result in slightly larger models but are con-
ceptually simpler, as they try to map the speech
features into the same representation space as the
input text embeddings of the MT model. Appendix
Table 17 compares this architecture with the one
used in our submission to the Tag-Fr task. We see

2Without any convolution, the speech feature to target
token ratio is 12:1.
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that it performs similarly well (sometimes better)
and that it does not add any noticeable decoding
latency. We can even reach the same Taq-Fr perfor-
mance as our contrastive submission by just adding
a single Transformer layer plus one convolution
layer and small adapters (28M trained parameters
in total). Finally, disabling all adapters only results
in a small BLEU drop, suggesting that it is indeed
possible to map the speech features into the text
input space, with only one Transformer layer. This
is surprising, considering that the input to this layer
is 6 times as long as the target sequence on average.

4.2 Quechua-Spanish Results

The test and validation scores of our submissions to
the Que-Es task are reported in the second half of
Table 4 and 11, respectively. Because these models
are also trained on Tag-Fr data, we additionally
report their performance on that task.

System description. As we do not have a
speech feature extractor specialized to Quechua
speech, our contrastive 1 submission uses a mas-
sively multilingual wav2vec 2.0 model: XLS-R
Large (18" layer). Compared to our Tamasheq
submission, it is also initialized with a larger MT
model (NLLB 3.3B), which we found to perform
better in this setting. The training settings are the
same as for the Tamasheq models, except that we
only fine-tune the bottom 2 encoder layers (instead
of 3) and validate every 2 500 updates, since this
larger model tends to converge faster. Another
difference is that we train on both Tamasheq and
Quechua data (in addition to the mTEDx and TED-
LIUM data). Like in our Tamasheq submission,
we train 3 models with different random seeds and
ensemble them as our primary submission. Our
constrastive 2 submission uses a single model with
the same training settings, but starts from a smaller
pre-trained MT model (NLLB 1.3B).

Results. Our primary submission in the Que-Es
task also ranked first, with 17.7 BLEU on the of-
ficial test set. The full ranking results were not
communicated in time to this camera-ready. They
will be made available later through the conference
findings paper (Agarwal et al., 2023).

Data contamination. We found shortly after our
submission that all the audio files used in the of-
ficial test and validation sets are also present in
the ASR training data shared by the organizers
for the unconstrained setting. This means that our

Que-Es ST models are evaluated in an unrealistic
setting, where they are tasked to translate Quechua
utterances of which they already know the tran-
scription into Quechua. For this reason, we filtered
the ASR data to remove all audio files also present
in the validation and test sets for Que-Es, and we
re-trained models on this filtered data.'> While our
official submission results presented in Table 4 use
the “contaminated” dataset for comparison with the
other submissions, we think any future comparison
to our work should be done with the updated results
in Appendix Table 11. Note that similar care should
be taken with the results of other participants.

4.3 Results and Analysis in a High-Resource
Setting

The results of our ablation studies (Section 4.1.1)
seem to indicate that our models are reasonably
good on Fr-En translation, even though we do
early stopping and tune our hyper-parameters based
on Taq-Fr performance. Here, we further inves-
tigate the performance of our approach on high-
resource ST by training models in the setting of the
IWSLT 2021 Multilingual Task (Anastasopoulos
et al., 2021). This task evaluates the performance
of multilingual ST models in 4 training directions,
for which in-domain training data is provided, and
3 zero-shot directions, for which no training data is
provided.

We use XLS-R Large as the speech feature
extractor, experiment with both NLLB 1.3B and
NLLB 3.3B as the MT model, and perform early
stopping based on the average validation BLEU
across the 4 official training directions. We train
our models on all the mTEDx language pairs that
are not zero-shot, along with TED-LIUM (English
ASR) and the Tamasheq and Quechua data (see
Table 15). Note that the use of pre-trained models
and English ASR means our models fall into the
unconstrained setting.

Table 5 presents our results on this task,
compared with the best unconstrained submis-
sion (FAIR; Tang et al., 2021).'"* We find that both
our models outperform FAIR’s ensemble submis-
sion in the training directions, even though they
require substantially less compute and data to train,
and they are not ensembled. In the zero-shot direc-

In the updated version, we use NLLB 1.3B by default
instead of NLLB 3.3B, like for 7ag-Fr. Appendix Table 11
presents uncontaminated results.

“SacreBLEU signature (Post, 2018): nrefs:1|

case:mixed|eff:no|tok:13a|smooth:exp|version:2.1.0
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Model Total Trained Training directions Zero-shot directions
params params | Es-En  Fr-En Fr-Es Pt-En | Pt-Es It-En It-Es

FAIR at IWSLT 2021 700M 40.4 36.4 344 29.0 344 28.4 34.6
(Tang et al., 2021) 3x700M (ensemble) 42.2 38.7 36.5 31.0 38.2 294 373
XLS-R+NLLB 1.3B | 317M + 1.38B 70M 43.7 39.4 38.0 31.5 35.9 28.9 35.0
XLS-R + NLLB 3.3B | 317M + 3.36B 115M 44.0 39.9 38.3 33.1 38.1 29.3 36.9
XLS-R + NLLB 1.3B, ASR + MT cascade \ 41.8 35.6 344 29.7 \ 35.8 29.3 352

Table 5: Results on the IWSLT 2021 Multilingual task. We report BLEU scores on the IWSLT 2021 test sets. Our
NLLB 1.3B and 3.3B models took respectively 34 and 46 h to train on 4 V100 GPUs, while FAIR’s models each
took 7 days to train on 8§ V100 GPUs. Also note that FAIR’s models were trained on much larger amounts of data,
including data for the “zero-shot” directions (which, in their case is only zero-shot w.r.t the in-domain TED data).

Model | New params | Taq-Fr
Joint training | 0 | 21.06
Adapters 64 (all) 6.4M 17.60
Adapters 256 (all) 15.9M 18.18
Adapters 256 (bottom) 1.6M 19.24
Conv + Adapters 256 (bottom) 2.5M 19.13

Table 6: BLEU scores on the Tag-Fr validation set,
when training jointly with IWSLT 2021 and Tamasheq
data; versus incremental (2-stage) training. The “New
params” columns give the number of Tamasheq-specific
parameters added.

tions, our NLLB 1.3B version performs worse than
FAIR’s ensemble, which is not surprising since
they used training data for the zero-shot language
directions (from other datasets), whilst we do not.!>
We find that using the larger NLLB 3.3B model for
initialization considerably improves our zero-shot
results.

4.3.1 Incremental Learning

A limitation of our approach for low-resource ST
is that we need to know in advance (when training
the multilingual ST model) the set of low-resource
languages to cover. Here, we show that it is pos-
sible to add a new low-resource language into an
existing model without re-training it, similar to
what has been previously done by Berard (2021)
for text-to-text MT. We train a model following
the IWSLT 2021 setting presented above, but with-
out any Tamasheq or Quechua data. Then, we
attempt to adapt it to Tag-Fr using four different
approaches: 1) adding adapters of dimension 64 in
the bottom layers and training all adapters (includ-
ing in the decoder layers and top encoder layers); 2)
adding adapters of dimension 256 in the bottom lay-
ers and fine-tuning all adapters; 3) adding adapters

SNLLB has been pretrained on these language pairs for
MT, but we do not train on ST data for them.

of dimension 256 in the bottom layers and training
only those; 4) adding adapters of dimension 256 in
the bottom layers and training both those and the
convolutional layer.

We keep the same training settings as before, ex-
cept that: we train on Tag-Fr data only; we train
only the parameters mentioned above; we validate
more often (every 1 000 updates); and we disable
checkpoint averaging. Table 6 shows the perfor-
mance of these four incremental training methods,
compared to training on the entire language set
from scratch. Even though incremental training
does not perform quite as well, it appears to be a vi-
able option that can achieve decent results. Lastly,
we highlight that our experiments were limited to
these four incremental learning settings (without
hyper-parameter search), and that better results may
be obtained with other parameter-efficient adapta-
tion methods, or with more regularization.

4.3.2 Multimodality and Domain Transfer

Since our systems are initialized with an MT model,
of which just a few encoder layers are modified, it
is straightforward to use our ST models for text-to-
text translation: we just need to store both the MT
and ST bottom layers and route tokens through the
MT ones (see Figure 1). However, one question
that remains is whether the ST adapters can be used
for text-to-text decoding.

As an investigation of this, Appendix Table 19
measures the MT performance (NLLB 1.3B) on
the IWSLT 2021 test sets (same domain as the
mTEDx training data) with and without the ST
adapters. Surprisingly, we see that not only can we
use these adapters for both text and speech modali-
ties, but they actually improve the MT scores (+2.7
BLEU on average), even though they were only
trained with ST and ASR data. This suggests that
the fine-tuned bottom layers are able to fully map
the speech representations into the text represen-
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Adapter Encoder Decoder Taq-Fr Taq-En Taq-Ko Taq-Fr Taq-En Taq-Ko
Size Adapters Adapters BLEU BLEU BLEU chrF chrF chrF
64 v v 19.1 17.1 12.6 442 40.8 18.2
128 v v 19.2 16.7 9.6 44.7 40.3 14.5
64 v X 19.3 16.8 14.6 444 42.4 21.5
X X X 17.5 16.2 14.4 43.0 40.8 21.5
ST (contrastive 1) + MT (NLLB 1.3B) cascade X 15.0 15.7 X 38.6 22.2

Table 7: BLEU and chrF results for Tag-{Fr, En, Ko} using contrastive 1 and its variants (models trained without
adapters or with larger adapters), on the IWSLT 2022 Tag-Fr test set or silver-standard Korean and English references
obtained with MT. The last row is a cascade of speech translation followed by text translation (Tag—Fr—X).

tation space and that the adapters further improve
performance by allowing domain adaptation of the
MT model (which is hard to do at the very bottom
layers). Note that the encoder adapters seem to be
the most important ones, which is consistent with
the findings of Cooper Stickland et al. (2021) that
adapting the encoder is the most effective strategy
for domain adaptation. Lastly, we highlight that
adapting the MT model directly with MT data (mT-
EDx’s transcriptions and translations) gives even
better results (+4.6 BLEU on average), but this
cross-modality domain transfer is an interesting
by-product of our parameter-efficient approach.

5 Zero-Shot Capabilities

Throughout this paper we have argued that one ad-
vantage of the multilingual models we propose is
their potential for zero-shot translation, a setting in
which a system produces translation in an unseen
language pair by leveraging its existing knowledge
of both languages. In Section 4.3 we showed that
our models are competitive with the best submis-
sion to IWSLT 2021 on the three zero-shot high-
resource language pairs, despite the fact that these
pairs were not truly zero-shot for that system. In
this section, we further illustrate the zero-shot ca-
pabilities of our models by translating Tamasheq
speech in two settings: 1) target language seen dur-
ing both MT pre-training and ST adaptation (En-
glish); 2) target language only seen during MT
pre-training (Korean).

Evaluation settings. To score BLEU and chrF'®
in the chosen target languages, we use a commer-
cial translation service to translate the French side
of the IWSLT 2022 test set to English and Korean.

16SacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:X|smooth:exp|version:2.3.1, (En:
X=13a, Ko: X=ko-mecab-0.996/ko-0.9.2-KO).
chrF signature: nrefs:1|case:mixed|
eff:yes|nc:6|nw:0|space:no|version:2.3.1

Note that this is only a silver-standard made of syn-
thetic data, and thus the evaluation will inevitably
be biased.!” Our goal is solely to assess whether
our systems have some zero-shot ST abilities. We
evaluate our Tag-Fr contrastive 1 system, and vari-
ants of this system with fewer or larger adapters.
We compare with a cascade baseline, in which we
first perform Taq-Fr ST, followed by Fr-En or Fr-
Ko MT using the text-to-text path from Figure 1. In
this setting, the adapters are disabled during MT.

Results. In Table 7, we measure the zero-shot
translation capabilities of our approach on this
silver-standard test set. We evaluate four mod-
els: our contrastive 1 submission presented in Sec-
tion 4.1, and variants of this model with increased
adapter size, adapters only in the encoder, or no
adapters. We compare against a cascade baseline
that is not zero-shot, which consists in translating
the Tamasheq speech into French text and then
translating this text into English or Korean.

We observe that, in the case of English, which
was seen during ST adaptation, adapters can be
helpful (+2 BLEU over the cascade baseline). On
the other hand, for Korean, unseen during ST adap-
tation, systems with adapters in the decoder (first
two rows) perform worse, as they likely bring some
degree of language confusion. Results are even
worse with larger adapters, with over 40% of out-
put sentences being in the wrong language. In
this setting, the best results are achieved with only
encoder adapters or no adapters at all (-1 BLEU
compared to the baseline).

Appendix Table 13 measures the percentage of
output sentences in the correct language and the
percentage of Hangul versus Latin character in
each system’s outputs. We find that models with

For instance, we observe that these generated translations
contain both the Korean transliteration in Hangul of named
entities and the original version in the Latin script. This will
likely penalize our produced translation during scoring.
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Utterance id Target  Content

Ref Chers auditeurs, rappelez-vous que vous écoutez Studio Kalangou en ce moment.
2016-11-23 id 7 Fr Chers auditeurs, n’oubliez pas que vous étes avec le Studio Kalangou.
- En Well, listeners, don’t forget that you are with Studio Kalangou right now.
Ko A 2 o] Y&, ) Studio Kalangou9} 37 = 2S 912 upA 2.

2016-06-27_id_5 Ref

Les examens du BEPC sont terminés et les corrections ont commencé hier aprés-midi dans la ville de Niamey.

Fr Les examens du BEPC sont terminés et sur toute I’étendue du territoire, les travaux de leur suivi ont débuté hier aprés-midi a Niamey.
En The BEPC exams are over and throughout the country, the monitoring activities started yesterday afternoon in Niamey.
Ko BEPC A @2 255 Uth Aol A AAF G2 o] Al £.% Niameyoll A A 25 g5 U T

Ref

2016-10-27_id_39
Fr

who live in the town of Mena in Niger.

D’autres informations que nous apportons aujourd’hui concernent un projet appelé aniamey.com qui informe que 1'Etat du Nigéria a refoulé

des Nigériens, au nombre de 53, qui arrivent (), qui habitent dans la ville de Mina sur le territoire du Niger ou Neja.

D’autres informations que nous apportons aujourd’hui concernent les informations apportées par un programme dénommé Niamey Point Com qui a
apporté des informations selon lesquelles le Nigeria a accueilli 53 Nigériens qui habitent la ville de Mena qui se trouve sur le territoire du Niger ou le Niger.
Today, we’re going to talk about the information about a program called Niamey Point Com, which reports that Nigeria has brought back 53 Nigerians

Ko | 271909 2% 7]Ako A Niamey Point Comel= =220 2 vo] Al2) ol 7} ujulof] AF el 5399 U129 & ASAATHE 440] ).

Table 8: Some decoding examples for Taqg-Fr, Tag-En and Taq-Ko language pairs, accompanied by the French
reference (Ref). Utterance id corresponds to the suffix of the audio files in the IWSLT 2022 test set.

adapters in the decoder (first two rows) generate
more Latin characters. Note that the ideal transla-
tion is not necessarily 100% Hangul, as it might
sometimes be best to keep the foreign named en-
tities in the Latin alphabet. Table 8 illustrates this
with a few examples of translations from our con-
trastive 1 system.

6 Conclusion

In this paper we presented our parameter-efficient
multilingual systems as submissions to the
IWSLT 2023 Low-Resource Task in the Tamasheq-
French and Quechua-Spanish language pairs. The
architecture we propose has several advantages:
it is computationally and data efficient, it allows
the same model to do both speech-to-text and text-
to-text translation (or transcription), it maximizes
knowledge transfer to improve low-resource per-
formance, and it has good zero-shot translation
capabilities. Our submissions reach a new state of
the art performance, winning both speech transla-
tion challenges, especially for Tamasheq-French,
where we outperform the previous state of the art
by more than 7 BLEU points.

Future work will include a comprehensive eval-
uation of the ASR capabilities of our architecture,
and the investigation of adapters inside the speech
representation model. Moreover, when the speech
representation model is frozen, a more in-depth
analysis of the optimal layer is needed.

Acknowledgements

This work was partially funded by the European
Horizon 2022 project UTTER (Unified Transcrip-
tion and Translation for Extended Reality), under
grant agreement No 101070631.

References

Milind Agarwal, Sweta Agrawal, Antonios Anasta-
sopoulos, Ondfej Bojar, Claudia Borg, Marine
Carpuat, Roldano Cattoni, Mauro Cettolo, Mingda
Chen, William Chen, Khalid Choukri, Alexandra
Chronopoulou, Anna Currey, Thierry Declerck, Qian-
gian Dong, Yannick Esteve, Kevin Duh, Marcello
Federico, Souhir Gahbiche, Barry Haddow, Benjamin
Hsu, Phu Mon Htut, Hirofumi Inaguma, Dévid Ja-
vorsky, John Judge, Yasumasa Kano, Tom Ko, Rishu
Kumar, Pengwei Li, Xutail Ma, Prashant Mathur,
Evgeny Matusov, Paul McNamee, John P. McCrae,
Kenton Murray, Maria Nadejde, Satoshi Nakamura,
Matteo Negri, Ha Nguyen, Jan Niehues, Xing Niu,
Atul Ojha Kr., John E. Ortega, Proyag Pal, Juan Pino,
Lonneke van der Plas, Peter Poldk, Elijah Rippeth,
Elizabeth Salesky, Jiatong Shi, Matthias Sperber, Se-
bastian Stiiker, Katsuhito Sudoh, Yun Tang, Brian
Thompson, Kevin Tran, Marco Turchi, Alex Waibel,
Mingxuan Wang, Shinji Watanabe, and Rodolfo Ze-
vallos. 2023. Findings of the IWSLT 2023 Evaluation
Campaign. In Proceedings of the 20th International
Conference on Spoken Language Translation (IWSLT
2023). Association for Computational Linguistics.

Antonios Anastasopoulos, Loic Barrault, Luisa Ben-
tivogli, Marcely Zanon Boito, Ondfej Bojar, Roldano
Cattoni, Anna Currey, Georgiana Dinu, Kevin Duh,
Maha Elbayad, Clara Emmanuel, Yannick Esteve,
Marcello Federico, Christian Federmann, Souhir
Gahbiche, Hongyu Gong, Roman Grundkiewicz,
Barry Haddow, Benjamin Hsu, D4vid Javorsky,
Véra Kloudova, Surafel Lakew, Xutai Ma, Prashant
Mathur, Paul McNamee, Kenton Murray, Maria
Nédejde, Satoshi Nakamura, Matteo Negri, Jan
Niehues, Xing Niu, John Ortega, Juan Pino, Eliz-
abeth Salesky, Jiatong Shi, Matthias Sperber, Se-
bastian Stiiker, Katsuhito Sudoh, Marco Turchi, Yo-
gesh Virkar, Alexander Waibel, Changhan Wang,
and Shinji Watanabe. 2022. Findings of the IWSLT
2022 evaluation campaign. In Proceedings of the
19th International Conference on Spoken Language
Translation (IWSLT 2022), pages 98—157, Dublin,
Ireland (in-person and online). Association for Com-
putational Linguistics.

Antonios Anastasopoulos, Ondfej Bojar, Jacob Bremer-
man, Roldano Cattoni, Maha Elbayad, Marcello Fed-

152


https://doi.org/10.18653/v1/2022.iwslt-1.10
https://doi.org/10.18653/v1/2022.iwslt-1.10

erico, Xutai Ma, Satoshi Nakamura, Matteo Negri,
Jan Niehues, Juan Pino, Elizabeth Salesky, Sebas-
tian Stiiker, Katsuhito Sudoh, Marco Turchi, Alexan-
der Waibel, Changhan Wang, and Matthew Wiesner.
2021. FINDINGS OF THE IWSLT 2021 EVAL-
UATION CAMPAIGN. In Proceedings of the 18th
International Conference on Spoken Language Trans-
lation (IWSLT 2021), pages 1-29, Bangkok, Thailand
(online). Association for Computational Linguistics.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common voice: A massively-
multilingual speech corpus. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4218-4222, Marseille, France. European
Language Resources Association.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei
Baevski, Alexis Conneau, and Michael Auli. 2022.
XLS-R: Self-supervised Cross-lingual Speech Rep-
resentation Learning at Scale. In Proc. Interspeech
2022, pages 2278-2282.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems,

33:12449-12460.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538—
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Alexandre Berard. 2021. Continual learning in multilin-
gual NMT via language-specific embeddings. In
Proceedings of the Sixth Conference on Machine
Translation, pages 542-565, Online. Association for
Computational Linguistics.

Alexandre Berard, Dain Lee, Stephane Clinchant,
Kweonwoo Jung, and Vassilina Nikoulina. 2021.
Efficient inference for multilingual neural machine
translation. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 8563—-8583, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Steven Bird. 2011. Bootstrapping the language archive:
New prospects for natural language processing in
preserving linguistic heritage. Linguistic Issues in
Language Technology, 6(4).

Marcely Zanon Boito, Fethi Bougares, Florentin Bar-
bier, Souhir Gahbiche, Loic Barrault, Mickael Rou-
vier, and Yannick Esteve. 2022a. Speech resources in

the Tamasheq language. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 2066-2071, Marseille, France. European
Language Resources Association.

Marcely Zanon Boito, John Ortega, Hugo Riguidel, An-
toine Laurent, Loic Barrault, Fethi Bougares, Firas
Chaabani, Ha Nguyen, Florentin Barbier, Souhir Gah-
biche, and Yannick Esteve. 2022b. ON-TRAC con-
sortium systems for the IWSLT 2022 dialect and
low-resource speech translation tasks. In Proceed-
ings of the 19th International Conference on Spoken
Language Translation (IWSLT 2022), pages 308-318,
Dublin, Ireland (in-person and online). Association
for Computational Linguistics.

Ronald Cardenas, Rodolfo Zevallos, Reynaldo Baquer-
izo, and Luis Camacho. 2018. Siminchik: A speech
corpus for preservation of southern quechua. ISI-
NLP 2, page 21.

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Un-
supervised Cross-Lingual Representation Learning
for Speech Recognition. In Proc. Interspeech 2021,
pages 2426-2430.

Asa Cooper Stickland, Alexandre Berard, and Vassilina
Nikoulina. 2021. Multilingual domain adaptation
for NMT: Decoupling language and domain infor-
mation with adapters. In Proceedings of the Sixth
Conference on Machine Translation, pages 578-598,
Online. Association for Computational Linguistics.

Marta R Costa-jussa, James Cross, Onur Celebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:3451-3460.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.

Sameer Khurana, Antoine Laurent, and James Glass.
2022. Samu-xlsr: Semantically-aligned multimodal
utterance-level cross-lingual speech representation.
IEEE Journal of Selected Topics in Signal Processing,
16(6):1493-1504.

Ankita Pasad, Ju-Chieh Chou, and Karen Livescu. 2021.
Layer-wise analysis of a self-supervised speech rep-
resentation model. In 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 914-921. IEEE.

153


https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.18653/v1/2021.iwslt-1.1
https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520
https://doi.org/10.21437/Interspeech.2022-143
https://doi.org/10.21437/Interspeech.2022-143
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://aclanthology.org/2021.wmt-1.62
https://aclanthology.org/2021.wmt-1.62
https://doi.org/10.18653/v1/2021.emnlp-main.674
https://doi.org/10.18653/v1/2021.emnlp-main.674
https://aclanthology.org/2022.lrec-1.222
https://aclanthology.org/2022.lrec-1.222
https://doi.org/10.18653/v1/2022.iwslt-1.28
https://doi.org/10.18653/v1/2022.iwslt-1.28
https://doi.org/10.18653/v1/2022.iwslt-1.28
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.21437/Interspeech.2021-329
https://aclanthology.org/2021.wmt-1.64
https://aclanthology.org/2021.wmt-1.64
https://aclanthology.org/2021.wmt-1.64
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.1109/JSTSP.2022.3192714
https://doi.org/10.1109/JSTSP.2022.3192714

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Anthony Rousseau, Paul Deléglise, and Yannick Esteve.
2014. Enhancing the TED-LIUM corpus with se-
lected data for language modeling and more TED
talks. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 3935-3939, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Elizabeth Salesky, Matthew Wiesner, Jacob Bremerman,
Roldano Cattoni, Matteo Negri, Marco Turchi, Dou-
glas W. Oard, and Matt Post. 2021. Multilingual
tedx corpus for speech recognition and translation.
In Proceedings of Interspeech.

Yun Tang, Hongyu Gong, Xian Li, Changhan Wang,
Juan Pino, Holger Schwenk, and Naman Goyal. 2021.
FST: the FAIR speech translation system for the
IWSLT21 multilingual shared task. In Proceedings
of the 18th International Conference on Spoken Lan-
guage Translation (IWSLT 2021), pages 131-137,
Bangkok, Thailand (online). Association for Compu-
tational Linguistics.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

154


https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1104_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1104_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1104_Paper.pdf
https://doi.org/10.18653/v1/2021.iwslt-1.14
https://doi.org/10.18653/v1/2021.iwslt-1.14

A Appendix
A.1 Hyperparameters

Hyper-parameter | Value
Batch size 4000
Data-parallel GPUs 4
Update freq 2
Max learning rate 0.0005
Initial LR 1077
Schedule inverse square root
Warmup steps 10000
Adam betas 0.9, 0.999
Mixed precision True
Label smoothing 0.2
Weight decay 0.0
Dropout 0.3
Attention dropout 0.1
Gradient clipping none
1D Convolutions 1
Conv channels 80*
Conv kernel size 5
Conv stride 2
Embed scaling factor V1024
Positional encoding sinusoidal®
Encoder layers 24
Decoder layers 24
Embed dim 10244
FFN dim 8192
Activation ReLU
Attention heads 16
Pre-norm True
Adapter dim 64
Vocab size 250k
Lang-pair temperature 3
Heterogeneous batches True
Valid freq 5000
Checkpoint averaging 3
Patience 5
Early stopping metric BLEU
Beam size 5

Table 9: Hyper-parameters used to train our models.

*: a linear layer followed by a ReLU activation is trained
to project the input features (of dimension 768 or 1 024)
to the input dimension of the CNN (80).

t: dropout is also applied to the source and target embed-
dings (after the convolutions and positional encoding)
and FFN activations.

1: 2048 when the pre-trained MT model is NLLB 3.3B.
a: learned positional embeddings in the decoder when
the pre-trained model is mBART.

A.2 Additional Results
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Task Source Target hours:minutes # utterances
ASR French French 218:59 117,081
ASR Italian Italian 118:39 50,895
ASR  Portuguese Portuguese 179:33 91,257
ASR  Spanish Spanish 214:15 103,076
ST French English 57:39 31,207
ST French Spanish 42:14 21,862
ST French Portuguese 26:53 14,322
ST  Portuguese  English 63:13 31,868
ST Spanish French 9:34 4,568
ST Spanish English 79:37 37,168
ST Spanish Italian 11:50 5,616
ST Spanish ~ Portuguese 47:01 22,012
Table 10:  Statistics for all the mTEDx lan-

guages (train+valid) seen by our systems for the IWSLT
2021 evaluation setup described in Section 4.3.

Taq-Fr valid Que-Es valid Que-Es test

primary 26.13 X X

Taq-Fr contrastive 1 24.53 X X
contrastive 2 22.88 20.29 17.74
primary 22.88 20.29 17.74
Que-Es contrastive 1 20.81 19.03 15.67
contrastive 2 21.31 16.78 15.25
primary 2236 16.52 15.70
8“‘; fti g contrastivel 2007 15.15 15.55
p contrastive 2 20.31 16.30 13.17

Table 11: Validation and test results on the IWSLT 2023
low-resource track. Lines 3 and 4 correspond to the
same model. The “Que-Es (updated)” results corre-
spond to new models trained on filtered Quechua ASR
data, where we removed audio files that are also in the
ST valid and test sets. In this updated version, primary
and contrastive 1 use NLLB 1.3B and contrastive 2
uses NLLB 3.3B.

Taq-Fr test Que-Es valid

Taq-Fr contrastive 1  19.13 4+ 0.06 X
1 contrastive 2 16.89 +0.18 18.34 4+ 0.59
Que-Es contrastive 1 16.89 +0.18 18.34 4+ 0.59
Que-Es contrastive 1 16.51 = 1.12 1498 +0.16
(updated) contrastive2 16.56+0.30 15.66 £ 0.60

Table 12: Statistics (BLEU average and standard devia-
tion) for the submitted models which have 3 runs with
different seeds. The Tag-Fr and Que-Es BLEU scores
are respectively over the IWSLT 2022 test set and the
IWSLT 2023 validation set.

Adapter Encoder Decoder Taq-En | Taq-Ko Hangul
Size Adapters Adapters LangID | Lang ID Percentage
64 v v 100% 97% 88%
128 v 4 99% 84% 59%
64 v X 100% 100% 95%
X X X 100% 100% 96%
X X X 100% | 100% 93%

Table 13: Percentage of output sentences in the correct
language according to the NLLB language ID (Costa-
jussaetal., 2022). The last column shows the percentage
of output characters that are in the Korean alphabet.

. Inference Taq-Fr Fr-En )
Train vocab ‘ Inference vocab ‘ params BLEU ‘ BLEU Speed
Full (256k) Full (256k) 1.38B 19.1 36.6 12.5x
e Filtered (35k) 1.19B 18.9 35.8 13.0x
Filtered (35k) Filtered (35k) 1.19B 20.0 35.5 13.0x

Table 14: Speech Translation performance on the
IWSLT 2022 Tag-Fr and mTEDx Fr-En test sets of
our contrastive Tag-Fr submission (non-ensemble ver-
sion of our primary submission) with several vocabulary
filtering strategies: no filtering (first row, corresponds to
our submission); inference-time filtering (second row);
or training-time filtering (third row). See Table 18 for
an explanation of the “speed” column.

40 1 —— NLLB 3.3B (Fr-En)
=== NLLB 1.3B (Fr-En)
35 | NLLB 3.3B (Tag-Fr)
NLLB 1.3B (Tag-Fr)
30 A —— NLLB 3.3B (Que-Es)
=== NLLB 1.3B (Que-Es)
> 25 4
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5 -
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Figure 4: Validation BLEU by language direction (Fr-
En, Tag-Fr and Que-Es) of a multilingual model (XLS-
R + NLLB 1.3B) which includes both Tamasheq and
Quechua (our updated constrastive 1 submission).
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IWSLT 2023 TED-LIUM v2 mTEDx ASR mTEDx ST

Submission Taq-Fr Que-Es Que-Que En-En Fr-Fr Es-Es It-It Pt-Pt | Fr-En Fr-Es Es-Fr Es-En Fr-Pt Pt-En Es-It Es-Pt
Taq-Fr primary v X X v v v X X v v v v X X X X
Taq-Fr contrastive 1 v X X v v v X X v v v v X X X X
Taq-Fr contrastive 2 v v v v v v X X v v v v X X X X
Que-Es primary v v v v v v X X v v v v X X X X
Que-Es contrastive 1 v v v v v v X X v v v v X X X X
Que-Es contrastive 2 v v v v v v X X v v v v X X X X
IWSLT 2021 setup v v o v | v v A v v v v v v v

Table 15: Extensive list of datasets used for training (v) each system presented in this paper.
Model URL
mHuBERT-Tamasheq Unavailable
Tamasheq https://huggingface.co/LIA-AvignonUniversity/IWSLT2022-tamasheg-only
Niger-Mali https://huggingface.co/LIA-AvignonUniversity/IWSLT2022-Niger-Mali
XLSR-53 https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec

XLS-R large and xlarge https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec/xlsr

Table 16: Downloading sources for the speech representation models checkpoints used in our experiments.

Stacked | FT Adapters Total | Trained | Taq-Fr | Fr-En Speed
layers | layers params | params | BLEU | BLEU
1 0 enc+dec (64) | 1.40B 28M 19.2 35.0 | 12.0x
1 0 none 1.39B 22M 17.9 33.8 | 12.2x
0 1 enc+dec (64) | 1.38B 28M 18.2 35.1 12.0x
0 1 none 1.37B 22M 17.5 333 | 12.6x
2 0 enc+dec (64) | 1.42B 49M 19.2 35.1 11.9x
2 0 none 1.41B 43M 18.4 35.0 | 12.5x
0 2 enc+dec (64) | 1.38B 49M 19.0 36.2 | 12.0x
0 3 enc+dec (64) | 1.38B 70M 19.1 36.6 | 12.5x%

Table 17: Training stacked layers (i.e. adding and training new bottom encoder layers) versus fine-tuning the
existing bottom layers; with or without adapters. The other hyper-parameters are identical to our constrastive
submission (underlined scores).
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https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec/xlsr

Speech features MT model ‘ l(; (y)rel:s laszrs Adapters ‘ p::;?rlls ;I;;?::flg TB?]EFJ gig{} Speed
Tamasheq (layer 11) 1.38B 70M 16.8 325 11.6x
Tamasheq (layer 8) 1.38B 70M 19.3 31.6 12.0x
mHuBERT-Taq (layer 11) 1.38B 70M 16.4 37.1 12.1x
mHuBERT-Taq (layer 8) 1.38B 70M 16.2 36.7 12.1x
Niger-Mali (layer 11) NLLB 1.3B 1 3 enc+dec (64) 1.38B 70M 16.6 34.6 11.8%
Niger-Mali (layer 8) 1.38B 70M 19.1 36.6 12.5%
XLSR-53 (layer 18) 1.38B 70M 159 38.0 12.4x
XLS-R L (layer 18) 1.38B 70M 16.8 394 12.7x
XLS-R XL (layer 46) 1.38B 70M 15.4 37.4 11.7x
mBART (600M) 0.61B 41M 16.3 28.9 22.9%

Niger-Mali (layer 8) l\liI]i]i]?S<(6102]1§I)) 1 3 enc+dec (64) ?gég %ﬁ E g %zlgi
NLLB (3.3B) 3.36B 165M 19.3 37.3 4.5%

3 1.38B 70M 18.5 334 25.5%

Niger-Mali (layer 8) NLLB 1.3B ? 3 enc+dec (64) i;gg ;8& ig? ;22 iggi
0 1.38B 70M 19.6 34.4 7.1x

24 1.37B 508M 16.7 30.7 11.9%x

4 1.38B 91M 19.6 36.8 12.3x

Niger-Mali (layer 8) NLLB 1.3B 1 3 enc+dec (64) 1.38B 70M 19.1 36.6 12.5%
2 1.38B 49M 19.0 36.2 12.0x

1 1.38B 28M 18.2 35.1 12.0x

1 enc (64) 1.37B 25M 19.1 342 12.4x

none 1.37B 22M 17.5 333 12.6x

enc+dec (256) 1.40B 88M 18.8 35.8 12.2x

Niger-Mali (layer 8) NLLB 1.3B 1 enc+dec (128) 1.38B 76M 19.2 36.3 12.1x
3 enc+dec (64) 1.38B 70M 19.1 36.6 12.5%

enc (64) 1.37B 67M 19.3 35.7 12.7x

none 1.37B 64M 18.3 35.6 13.1x

Table 18: Ablation study on Tag-Fr ST, with various speech feature extractors, pre-trained MT models used for
initialization, and trained parameters. The total parameter counts do not include the parameters of the speech feature
extractors. The BLEU scores reported are on the IWSLT 2022 Tag-Fr and mTEDx Fr-En test sets. The speed metric
is relative to real time (i.e., seconds in the test set divided by seconds spent decoding) and does not include feature
extraction time. It is obtained by decoding the Tag-Fr test set on a single T4 with a batch size of 10 utterances
(averaged over 3 decoding runs). The underlined numbers all correspond to the same model, which is our first
contrastive submission to the task (the non-ensemble version of our primary submission). All of these models are
trained with the same data (see Table 15) and early stopping is done based on 7ag-Fr valid BLEU scores. The
numbers inside parentheses in the Adapters column correspond to the bottleneck dimension of the trained adapter
modules. Adapters are not added in the encoder layers that are being fine-tuned. These models took between 15 and
47h each to train on 4 V100 GPUs, with an average training time of 26 h.

Training directions Zero-shot directions
Es-En  Fr-En Fr-Es Pt-En | Pt-Es It-En  It-Es
ST NLLB 3.3B enc+dec 440 399 383 331 | 38.1 293 369
enc+dec 43.7 394 38.0 315 | 359 289 350

none 36.7 350 317 238 | 305 252 313

Task Model Adapters

ST NLLB 1.3B

enc 414 383 360 308 | 362 262 35.1
dec 39.1 382 331 269 | 319 279 329
MT NLLB 3.3B none 474 395 392 398 | 486 340 424

none 479 389 396 398 | 485 338 419
enc+dec | 50.2  40.7 422 421 | 51.0 376 452
enc 499 413 426 419 | 506 365 449
dec 48.8 392 41.0 41.1 | 497 356 439
MT | NLLB 1.3B (DA) | enc+dec | 51.3 43.2 452 44.7 | 53.2 378 471

MT NLLB 1.3B

Table 19: Top half: Speech translation BLEU scores on the IWSLT 2021 test sets, when deactivating encoder
adapters, decoder adapters, or both in an ST model at inference time. The ST model is the same one as in Table 5,
trained with encoder and decoder adapters. Bottom half: Text-to-text MT BLEU scores when using the ST adapters
in the initial model and disabling the ST bottom layers and convolutions.
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Abstract

This paper describes the FBK’s participation
in the Simultaneous Translation and Automatic
Subtitling tracks of the IWSLT 2023 Evaluation
Campaign. Our submission focused on the use
of direct architectures to perform both tasks:
for the simultaneous one, we leveraged the
knowledge already acquired by offline-trained
models and directly applied a policy to obtain
the real-time inference; for the subtitling one,
we adapted the direct ST model to produce
well-formed subtitles and exploited the same
architecture to produce timestamps needed for
the subtitle synchronization with audiovisual
content. Our English-German SimulST sys-
tem shows a reduced computational-aware la-
tency compared to the one achieved by the top-
ranked systems in the 2021 and 2022 rounds
of the task, with gains of up to 3.5 BLEU. Our
automatic subtitling system outperforms the
only-existing solution based on a direct system
by 3.7 and 1.7 SubER in English-German and
English-Spanish respectively.

1 Introduction

In recent years, the advances in natural language
processing and machine learning led to a surge of
interest in developing speech translation (ST) sys-
tems that can translate speech from one language
into text in another language without human inter-
vention. Significant progress has been specially
made toward end-to-end ST models (Bérard et al.,
2016; Weiss et al., 2017) trained to directly trans-
late speech without the intermediate steps of tran-
scription (through automatic speech recognition -
ASR) and translation (through machine translation
- MT). Along with this growing interest in direct
ST, also accompanied by a reduction of the perfor-
mance gap with respect to cascaded architectures
(Bentivogli et al., 2021), other trends have emerged
thanks to deep learning advancements, which made
it possible to deploy direct solutions to perform the
task in real-time (i.e. to produce partial translations

while continuing to process the input audio) or
to automatically generate subtitles for audiovisual
content (i.e. pieces of translated text which have to
conform to specific spatiotemporal constraints and
be synchronized with the video).

The International Workshop on Spoken Lan-
guage Translation (IWSLT) is playing an impor-
tant role in advancing the state-of-the-art in these
fields by organizing a series of evaluation cam-
paigns (Ansari et al., 2020; Anastasopoulos et al.,
2021, 2022) focused on simultaneous speech trans-
lation (SimulST) and, this year for the first time,
automatic subtitling. These campaigns provide a
unique opportunity for researchers to compare their
systems against others, share their findings, and
identify areas for further improvement.

In this paper, we describe FBK’s participation
in the IWSLT 2023 Evaluation Campaigns (Agar-
wal et al., 2023) for simultaneous translation and
automatic subtitling. Motivated by the promising
results reported in previous works (Ren et al., 2020;
Papi et al., 2022a), our approach is characterized by
the use of direct ST models to address both tasks.

For the simultaneous speech-to-text transla-
tion (SimulST) task, we participated in the
English—German track and leveraged an offline-
trained direct model without performing any adap-
tation to the real-time scenario, as this has recently
been shown not to be necessary to achieve com-
petitive results (Papi et al., 2022b). For the auto-
matic subtitling task, we participated in both the
English—German and English— Spanish tracks by
adapting a direct ST model to produce well-formed
subtitles and exploiting the same architecture to
produce the timestamps needed for their synchro-
nization with audiovisual contents, as in (Papi et al.,
2022a).

Our results demonstrate the effectiveness of our
approach. In SimulST, the computational-aware
latency of our models is lower compared to the
winning systems of the last two rounds (2021, and
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2022) of the IWSLT SimulST Evaluation Cam-
paign, with gains up to 3.5 BLEU. In automatic
subtitling, our systems improve the results reported
in (Papi et al., 2022a) which, to the best of our
knowledge, represents the only-existing solution
based on a direct model. Specifically, on average
among the various dev sets available for the task,
we achieve 3.7 SubER on en-de and 1.7 SubER on
en-es.

2 Applied Direct Models

For this year’s submission, we applied the direct
ST models to the two different scenarios of simul-
taneous translation and automatic subtitling.

2.1 Simultaneous Translation

Recent trends in SimulST consist of using offline-
trained models for simultaneous inference (Papi
et al., 2022b). There are several motivations for
this choice: i) it avoids re-training or building spe-
cific architectures for SimulST, saving time and
computational resources; ii) only one model has to
be trained and maintained to perform both offline
and simultaneous ST; and iii) there is no need to
train several models, each specialized to support
different latency regimes.

A key aspect of SimulST, also critical when ap-
proaching the task with offline models at inference
time, is the so-called decision policy: the mecha-
nism that is in charge of deciding whether to read
more information or to emit a partial hypothesis.
One of the first and most popular policies is the
wait-k (Ma et al., 2019), initially introduced for
simultaneous MT, and then applied to the speech
scenario (Ma et al., 2020b; Chen et al., 2021; Zeng
et al., 2021; Karakanta et al., 2021b). The wait-k,
which prescribes waiting for an initial number of
k words before starting to translate, is defined as a
“fixed” policy (Zheng et al., 2020) because the de-
cision is taken independently from the source input
content. However, as the actual information con-
tained in the input (e.g. in terms of ambiguity, com-
pleteness, and syntactic/semantic cohesion) is also
important for the sake of good-quality incremental
translations, several “adaptive” policies have been
introduced, which instead adapt their decisions to
the input content. Some adaptive policies require
system re-training or the development of ad-hoc
modules (Liu et al., 2021b; Chang and Lee, 2022;
Zhang and Feng, 2022), while some others do not
(Liu et al., 2020; Nguyen et al., 2021; Papi et al.,

2022e). Since our objective is to avoid any modi-
fications to the offline-trained model, we pointed
our attention to the latter, more conservative cate-
gory. Among these policies, we analyzed the three
following alternatives:

* Local Agreement (LA) (Liu et al., 2020): this
policy prescribes generating a partial hypothe-
sis from scratch at every newly received audio
segment, and emitting it (or only a part of it)
if it coincides with one of those generated in
the previous time step;

* Encoder-Decoder Attention (EDATT) (Papi
et al., 2022e): it exploits the cross-attention
scores modeling the audio-translation relation
to decide whether to emit the words of a par-
tial hypothesis or not. If, for the current word,
the sum of the attention scores of the last A re-
ceived speech frames exceeds a certain thresh-
old « (both \ and « are hyperparameters), the
emission is delayed because the system needs
more context to translate that word. Other-
wise, the word is emitted and we proceed to
the next word of the hypothesis;

* ALIGNATT (Papi et al., 2023b): as for
EDATT, the cross-attention scores are lever-
aged to decide what to emit but, in this case,
instead of summing the attention scores of
the last speech frames, each word is uniquely
assigned (or aligned) to the frame having the
maximum attention score. If the aligned frame
corresponds to one of the last f frames (f be-
ing a hyperparameter that controls the latency)
the emission is stopped. Otherwise, we pro-
ceed to the next word.

2.2 Automatic Subtitling

So far, the adoption of direct ST architectures to
address the automatic subtitling task has only been
explored in (Papi et al., 2022a). As a matter of fact,
all previous works on the topic (Piperidis et al.,
2004; Melero et al., 2006; Matusov et al., 2019;
Koponen et al., 2020; Bojar et al., 2021) rely on
cascade architectures that usually involve an ASR
component to transcribe the input speech, a subtitle
segmenter that segments the transcripts into subti-
tles, a timestamp estimator that predicts the start
and times of each subtitle, and an MT model that
translates the subtitle transcripts.

Cascaded architectures, however, cannot ac-
cess information contained in the speech, such as
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prosody, which related works proved to be an im-
portant source of information for the segmentation
into subtitles (Oktem et al., 2019; Federico et al.,
2020; Virkar et al., 2021; Tam et al., 2022). The im-
portance of such information has been further veri-
fied in (Karakanta et al., 2020a), which proved that
the direct ST models are better in subtitle segmenta-
tion compared to the cascade ones. Another study
by Karakanta et al. 2021a, also pointed out the
importance of consistency between captions (seg-
mented transcripts) and subtitles (segmented trans-
lations), showing that the predicted caption content
can also be useful for the translation. Specifically,
the authors obtained significant improvements by
using a Triangle Transformer-based architecture
(Anastasopoulos and Chiang, 2018) composed of
one encoder and two decoders: the first decoder
is in charge of emitting the transcripts and the
second one is in charge of emitting the transla-
tion by also attending to the output embeddings of
the predicted transcript. Therefore, in our submis-
sion, based on the findings of the aforementioned
work, we inspected the use of both a classic single
encoder-single decoder architectures, as in (Papi
et al., 2022a), and of the Triangle architecture for
automatic subtitling.

3 Experimental Setup

3.1 Data

Simultaneous We developed a pure offline
model trained on the same data used for our
last year’s (constrained) submission (Gaido et al.,
2022b).

Subtitling We used the same data settings of
(Papi et al., 2022a), for which we leverage the
multimodal segmenter by Papi et al. (2022d) to
segment into subtitles ST and machine-translated
ASR corpora as per (Gaido et al., 2021b, 2022a).!
No OpenSubtitles or text-only data were used to
train our models.

3.2 Training Settings

All the models used for our participation were im-
plemented using the newly released implementa-
tion of the Conformer architecture by Papi et al.

'All the corpora used in (Papi et al., 2022a) are
allowed ASR and ST training data for the Subtitling
task (https://iwslt.org/2023/subtitling#
training-and-data-conditions). Therefore, our
submission has to be considered “Constrained”.

(2023a)? based on Fairseq-ST (Wang et al., 2020).
In their paper, the authors analyzed the most
popular open-source libraries for speech recogni-
tion/translation and found at least one bug affect-
ing all the existing Conformer implementations,
therefore claiming the importance of testing code
to avoid the propagation of unreliable findings
masked by good results.

Simultaneous We tested a Conformer-based ar-
chitecture (Gulati et al., 2020) with two configu-
rations: 12 encoder layers and 16 encoder layers.
The number of Transformer decoder layers is 6, 