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Abstract

This paper describes the Kyoto speech-to-
speech translation system for IWSLT 2023.
Our system is a combination of speech-to-text
translation and text-to-speech synthesis. For
the speech-to-text translation model, we used
the dual-decoder Transformer model. For the
text-to-speech synthesis model, we took a cas-
cade approach of an acoustic model and a
vocoder.

1 Introduction

This paper describes the Kyoto speech-to-speech
translation system for IWSLT 2023 (Agarwal et al.,
2023). Our system is a combination of speech-to-
text translation and text-to-speech synthesis. For
speech-to-text translation model, we used dual-
decoder Transformer model following Le et al.
(2020). For text-to-speech synthesis model, we
took cascade approach of an acoustic model and a
vocoder. We used FastSpeech 2 (Ren et al., 2021)
as the acoustic model and HiFi-GAN (Kong et al.,
2020) as the vocoder.

2 System Description

The speech-to-speech translation system is a com-
bination of speech-to-text translation and text-to-
speech synthesis.

2.1 Speech-to-Text Translation
We adopt the end-to-end speech-to-text translation
architecture. The speech-to-text translation model
is based on dual-decoder Transfomer (Le et al.,
2020).

As shown in Figure 1, the model is a
Transformer-based model, comprising two de-
coders - one for speech-to-text translation (ST) and
the other for automatic speech recognition (ASR).
The task of ASR and ST can be defined as follows:

• For ASR, the input sequence s = [s1, ..., sTs ]
is a sequence of speech features. The out-

put sequence x = [x1, ..., xTx ] is the corre-
sponding transcription, where Tx indicates the
length of the transcription.

• For ST, the input sequence s = [s1, ..., sTs ] is
the same with ASR and the output sequence
y = [y1, ..., yTy ] is the corresponding transla-
tion in target language, where Ty indicates the
length of the translation.

The model performs the multi-task learning of
ASR and ST and the output distributions can be
written as

Dasr-st = p(x,y|s)

=

max(Tx,Ty)∏

t=0

p(xt, yt|x<t,y<t, s) (1)

The training objective is a weighted sum of cross-
entropy losses for both tasks:

Lasr-st = αLasr + (1− α)Lst (2)

Different decoders can exchange information
with each other with the interactive attention mech-
anism, which refers to replacing attention sub-
layers in the standard Transformer decoder with
interactive attention sub-layers (Liu et al., 2020). In
our models, the replaced sub-layers are the encoder-
decoder attention sub-layers.

As illustrated in the lower part of Figure 1, an
interactive attention sub-layer consists of one main
attention sub-layer and a cross-attention sub-layers.
The main attention sub-layer is the same as the
replaced attention sub-layer. The cross-attention
sub-layers receive query Q from the same decoder
A and receive key K and value V from another
decoder B. We adopt the parallel variation of dual-
decoder Transformers where K and V are hidden
states from the same layer in decoder B.

The final output is obtained by merging the out-
put of the primary attention sub-layer Hmain with
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the output of the cross attention sub-layer Hcross.
We adopt linear interpolation as the merging func-
tion. Therefore the output representations of the
interactive attention sub-layers are

Hdual = Hmain + λHcross (3)

where λ is a learnable parameter.
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Figure 1: General architecture of dual-decoder Trans-
former (upper) and interactive attention mechanism
(lower). Interactive attention sub-layers are marked
with dotted boxes. They merge the outputs of the main
attention sub-layers (red boxes) and cross-attention sub-
layers (yellow boxes).

2.2 Text-to-Speech Synthesis

We adopted the approach to cascade an acoustic
model and a vocoder. We used FastSpeech 2 (Ren
et al., 2021) as the acoustic model and HiFi-GAN
(Kong et al., 2020) as the vocoder. FastSpeech 2
adopts Transformer-based architecture for the en-
coder and the Mel-spectrogram decoder, and the
variance adapter between them predicts the dura-
tion, pitch, and energy of the audio. HiFi-GAN em-
ploys generative adversarial networks to generate
waveforms from Mel-spectrograms. It is composed
of one generator and two discriminators, a multi-
period discriminator, and a multi-scale discrimi-
nator. We used the PaddleSpeech toolkit (Zhang
et al., 2022a) and the pretrained models provided
by Zhang et al. (2022a) to generate waveforms.

Dataset Sentence Embedding
Model Used for Filtering

Total Length
(Hours)

MuST-C None 600.2
GigaST None 9873.2
GigaST LASER 919.1
GigaST Sentence Transformers 601.1

Table 1: The size of the datasets and the filtered versions
used for training the ST system.

3 Experiments

3.1 Speech-to-Text Translation

3.1.1 Datasets

To train our ST system, we utilized two distinct
datasets: MuST-C (Di Gangi et al., 2019) v2 with
Chinese translations, and GigaST (Ye et al., 2022)
which is the original dataset that was used to con-
struct the GigaS2S dataset provided by the organiz-
ers.

Both datasets offer unique advantages. While
GigaST is in the same domain as the development
and test data, MuST-C is not. In addition, GigaST
is considerably larger than MuST-C. However, it is
worth noting that the translations in GigaST were
generated by a machine translation system and may
not be of the same quality as those in MuST-C,
which were translated by human. As a result, deter-
mining which dataset is more likely to yield better
results requires further experimentation.

To shorten the training time and improve per-
formance, we filtered the extremely large GigaST
dataset to select utterances with better translation
quality. As the translations in GigaST are machine-
generated and there are no reference translations
available, we evaluated the translation quality using
the cosine similarity of sentence embeddings from
the source and target sentences. We tested two
different models for generating the embeddings:
LASER1 and “paraphrase-xlm-r-multilingual-v1”
from Sentence Transformers2 (simply referred to
as “Sentence Transformers” subsequently). The re-
sulting similarity distributions are shown in Figure
2. We selected the top 10% of the data based on
similarity scores (data that is on the right-hand side
of the red line). Table 1 shows the sizes of MuST-C
and GigaST before and after filtering.

1https://github.com/facebookresearch/LASER
2https://github.com/UKPLab/

sentence-transformers/tree/master/examples/
training/paraphrases
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Figure 2: Histograms of cosine similarity between
source and target sentence embedding based on LASER
and Sentence Transformers. The red line marks the 90th
percentile.

3.1.2 Training and Decoding
English sentences were normalized and tokenized
using the Moses tokenizer (Koehn et al., 2007),
and punctuations were stripped. Chinese sentences
were tokenized using jieba.3 English and Chinese
tokens were further split into subwords using the
BPE method (Sennrich et al., 2016) with a joint
vocabulary of 16, 000 subwords.

We used Kaldi (Ravanelli et al., 2019) to extract
83-dimensional features normalized by the mean
and standard deviation computed on the training
set. We removed utterances with more than 6, 000
frames or more than 400 characters and used speed
perturbation (Inaguma et al., 2020) with factors of
0.9, 1.0, and 1.1 for data augmentation.

Our implementation was based on the ESPnet-
ST toolkit (Inaguma et al., 2020). We used the
same architecture for all the ST models with a 12-
layer encoder and 8-layer decoders. The coefficient
α in the loss function (Equation 2) was set to 0.3 in
all the experiments. We used the Adam optimizer
(Kingma and Ba, 2015) and Noam learning rate
schedule (Vaswani et al., 2017) with 25, 000 warm-
up steps and a maximum learning rate of 2.5e− 3.
We used a batch size of 48 per GPU and trained
models on a single machine with 4 Tesla V100
GPUs. The models were trained for 25 epochs. We
kept checkpoints after each epoch and averaged the
five best models on the development set based on
prediction accuracy. For decoding, the beam size
was set to 5 for ST and 1 for ASR.

3.1.3 Results
We conducted experiments to investigate the im-
pact of using different datasets for training the sys-
tem. The results are presented in Table 2. Ad-
ditionally, we evaluated the performance of the
system when using different sentence embedding
models for data filtering. Our findings reveal that
LASER produces better results compared to Sen-
tence Transformers. Notably, after filtering the data
using LASER, the total number of hours of audio
is higher compared to that obtained using Sentence
Transformers. Given this observation, it might be
more appropriate to perform filtering based on the
length of the audio rather than the number of utter-
ances.

Our experiments also revealed that training the
model with GigaST alone yielded better results
compared to using only the MuST-C dataset. Fur-

3https://github.com/fxsjy/jieba
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Training Data BLEU

MuST-C 9.71
GigaST (LASER) 13.96
GigaST (Sentence Transformers) 11.57
MuST-C → GigaST (LASER) 13.52
GigaST (LASER) → MuST-C 13.30

Table 2: Experimental results on training with different
datasets. “→” indicates training with the dataset on the
left and use the best checkpoint to initiate the training
with the dataset on the right.

thermore, we evaluated an approach in which we
trained the model with one dataset and use the best
checkpoint to initiate the training with the other
dataset. However, we observed that this approach
did not yield any improvement compared to train-
ing the model with GigaST alone.

Based on these findings, we adopted the transla-
tion generated by the ST system trained solely on
GigaST filtered based on LASER for our submis-
sion.

3.2 Text-to-Speech Synthesis

We used pretrained models provided by Zhang
et al. (2022a) trained on the AISHELL-3 dataset
(Shi et al., 2021). The PaddleSpeech toolkit pro-
vides several models trained with the AISHELL-3
dataset, including FastSpeech 2 and HiFi-GAN.
We used the best-performing model combination in
terms of MOS reported in (Zhang et al., 2022a).
For other configurations, such as grapheme-to-
phoneme conversion, we followed Zhang et al.
(2022a).

The generated audio files have one channel, a
sample width of 16 bit, and a frame rate of 24, 000.
Because the predictions of speech-to-text transla-
tion sometimes contained English words that were
preprocessed to empty strings by the grapheme-to-
phoneme conversion, some (less than 1 % of the
test set) audio files could not be generated.

4 Conclusion

In this paper, we described our system, which is a
combination of speech-to-text translation and text-
to-speech synthesis. For speech-to-text translation,
we trained the Dual-decoder Transformer model
with the GigaST dataset filtered based on the simi-
larity of multilingual sentence embeddings. For the
text-to-speech synthesis model, we took a cascade
approach of an acoustic model and a vocoder and
used a combination of FastSpeech 2 and HiFi-GAN.

In the future, we will try to perform multi-level pre-
training based on transforming SpeechUT (Zhang
et al., 2022b) with phonemes as unit. We will also
try to use Encodec-based speech synthesis method
similar to VALL-EX (Zhang et al., 2023) to in-
crease the accurate representation of emotions and
vocal patterns.
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