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Abstract

The decoder in simultaneous neural machine
translation receives limited information from
the source while having to balance the oppos-
ing requirements of latency versus translation
quality. In this paper, we use an auxiliary target-
side language model to augment the training of
the decoder model. Under this notion of target
adaptive training, generating rare or difficult
tokens is rewarded which improves the transla-
tion quality while reducing latency. The predic-
tions made by a language model in the decoder
are combined with the traditional cross entropy
loss which frees up the focus on the source side
context. Our experimental results over multiple
language pairs show that compared to previous
state of the art methods in simultaneous trans-
lation, we can use an augmented target side
context to improve BLEU scores significantly.
We show improvements over the state of the
art in the low latency range with lower average
lagging values (faster output). 1

1 Introduction

Simultaneous Machine Translation (SiMT; Gris-
som II et al. (2014); Cho and Esipova (2016)) is a
special case of neural machine translation (NMT;
Vaswani et al. (2017)) that aims to produce real
time-translations in the target language from a
streaming input in the source language. The cor-
nerstone of this task, as well as a key challenge,
is the trade-off between the translation quality and
the latency in producing the translations. This bal-
ance is ensured by a fixed (Ma et al., 2019; El-
bayad et al., 2020) or adaptive (Arivazhagan et al.,
2019; Ma et al., 2020; Zhang and Feng, 2022b)
read/write policy that determines whether to wait
for the next source token (a READ action) or to
generate a translation (a WRITE action). Adaptive
policies dynamically predict the action based on

1github.com/sfu-natlang/target_rescale_siMT
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Figure 1: Prior work on simultaneous MT weighs ev-
ery target token equally. Top: Normalized negative
log-likelihood (nll) scores of each generated in-context
target token as scored by the baseline SiMT along with
the number of reads preceding a target token, and a
target language model (LM). As the translations are im-
perfect, the LM shows disagreement by following an
opposite nll trend compared to the translation model.
Bottom: Our method rescales the importance of each
target token using the target context during training.

the current source and target contexts (Zheng et al.,
2020). Although adaptive policies achieve a better
latency/BLEU trade-off, they often fail to account
for the varying importance of different tokens when
deciding a READ/WRITE action.

In Figure 1 (top), there is a negative correlation
between the normalized negative log likelihoods
of output tokens as measured by MMA (a SiMT
model with an adaptive policy; Ma et al. 2020)
versus a left-to-right language model (LM). This
reflects a translation which the SiMT model is con-
fident about, but which the LM regards as poor
English (possibly due to the semantic mismatch
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evident in “warm in winter”). Since a simultane-
ous policy can only access partial source context,
its outputs are likely to reflect imperfect guesses
such as these, particularly when translating in real-
time between language pairs with different word or-
derings (Subject-Object-Verb) and very long com-
pounds. As a result, training objectives which treat
all translated tokens with equal importance are sub-
optimal.

In the context of translation, content words are
generally considered more informative than func-
tion words (Chen et al., 2020). This is because
content words carry the main semantic and lexical
meaning of a sentence, while function words pro-
vide grammatical context and help to convey the
syntactic structure of a sentence. Similarly, high-
frequency words that are easier for the translation
model to generate may sometimes carry less in-
formation than the desirable low-frequency (rare)
words that the model struggles to generate (Chen
et al., 2017). To this end, Zhang et al. (2022b) pro-
posed to leverage conditional mutual information
(MI) to estimate the weight-coefficients between
the source and target to reweigh the importance
of each target token. However, such an approach
hasn’t been explored to address simultaneous or
streaming MT to the best of our knowledge, and
the lack of a complete source context makes the
adaptation of this method to SiMT non-trivial. To
improve simultaneous MT, Alinejad et al. (2018)
proposed a prediction mechanism on the source
side to get future information and aid the lack of
information on target-side for translation. Instead
of directly predicting a source token, Zhang and
Feng (2022a) predict its aligned future-position for
a given target token to guide its policy. On the
other hand, Zhang and Feng (2022b) and Zhang
et al. (2022a) explored policies that assign varying
importance to source/target tokens based on their
level of information, with more informative tokens
having a greater influence on the model.

In this paper, we propose a technique to alleviate
this problem in SiMT using an information theo-
retic approach and an adaptive training paradigm.
Inspired by the recent work in using pointwise mu-
tual information for guiding the decoder in full-
sentence (non-simultaneous) translation (Lee et al.,
2022), we differentiate the importance of various
target tokens by their dependence on the source
sentence. As shown in Figure 1 (bottom), to guide
our simultaneous translation model, we incorporate

a language model that provides an additional sig-
nal indicating the importance of each target token
or sentence. This target-context aware estimation
leverages the relative probabilities of the translation
model and language model to guide the generation
process by explicitly re-weighting the training loss
of each target token in the translation. Experiments
show the strength of our simple method, outper-
forming several strong baselines in terms of both
latency and BLEU scores. We perform exhaustive
analysis to show that our model performs particu-
larly well on translating low frequency words and
longer sentences.

2 Background

Target adaptive training (Lin et al., 2017) in
NMT addresses the token imbalance problem (Gu
et al., 2020). While a translation model is conven-
tionally trained with conditional maximum likeli-
hood estimation or cross-entropy:

LCE(x,y) = −
N∑

j=1

log p (yj | y<j ,x) (1)

adaptive training rescales this objective by assign-
ing static or dynamic weights to further guide the
translation model:

Ladapt(x,y) = −
N∑

j=1

wj log p (yj | y<j ,x) (2)

Frequency based approaches (Gu et al., 2020; Xu
et al., 2021) to assign these weights are promis-
ing but maintaining a frequency count can be
an expensive overhead and would not be directly
transferable to a simultaneous setting. More re-
cently, Zhang et al. (2022b) proposed to leverage
pointwise mutual information (MI) to estimate the
weight-coefficients between the source x and target
y as :

MI(x,y) = log

(
p(x,y)

p(x).p(y)

)
(3)

which can reflect the importance of target tokens
for translation models.

Monotonic Infinite-Lookback Attention Ari-
vazhagan et al. (2019) models a Bernoulli variable
to make the READ or WRITE decision at every
time step, while processing the input sequence in-
crementally. Ma et al. (2020) present monotonic
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multihead attention to extend this policy to the mul-
tihead attention of transformers. For each encoder
state in MMA, every head in the cross-attention of
each decoder layer produces a probability pi,j that
dictates if it should write target token yj while hav-
ing read till the source token xi, or wait for more
inputs. This is computed using the softmax energy:

energyi,j =

(
mjW

K
(
si−1W

Q
)T

√
dk

)

i,j

pi,j = Sigmoid
(
energyi,j

)
(4)

where m signifies the encoder states, W the input
projection matrix for query Q and key K, and dk is
the dimension of the attention head. The probabil-
ity pi,j is then used to parameterize the Bernoulli
random variable:

bi,j ∼ Bernoulli (pi,j) (5)

If bi,j = 1 then the model performs a WRITE
action on yj based on previous source tokens, oth-
erwise it performs a READ.

Our method is based on MMA and we use it as
our main simultaneous policy. To mitigate the nega-
tive impact of outlier heads2 on the read/write path,
we have made slight modifications to MMA to en-
sure more stable performance. Instead of allowing
the heads in each decoder layer to independently
determine the READ/WRITE action, we now share
the READ/WRITE action between the decoder lay-
ers. This adjustment helps to avoid outlier heads
that could potentially disrupt the system perfor-
mance and stability (Indurthi et al., 2022).

3 Approach

3.1 Target-context Aware Information
Quotient

Inspired by Lee et al. (2022), we leverage the point-
wise mutual information (MI) between each target
token and its source context under the condition of
previous target context. For a target token yj and
the streaming source context x ≤ i, factoring in
the partially constructed target prefix y < j gives
the target information quotient (TIQ) is calculated

2In MMA, every head in the transformer multihead atten-
tion independently decides its read/write action and has access
to all previous encoder states. The write action only takes
place when the slowest head has arrived to a write decision.

as:

TIQ (yj) = log

(
p (yj ,x≤i | y<j)

p (yj | y<j) · p (x≤i | y<j)

)

= log

(
p (yj | x≤i,y<j) · p (x≤i | y<j)

p (yj | y<j) · p (x≤i | y<j)

)

= log

(
p (yj | x≤i,y<j)

p (yj | y<j)

)

= log

(
pSiMT (yj)

pLM (yj)

)

(6)

where pSiMT(.) is the simultaneous translation
model probability and pLM(.) is the auxiliary target-
side language model of the same size as the transla-
tion decoder. By decomposing the conditional joint
distribution, this can be formalized as the log quo-
tient of the streaming translation model probability
and target language model probability. This cap-
tures the information of a target token conditioned
on the target context and uses it to rescale the loss,
thereby making the model pay more attention to
more “informative" words.

To incorporate weights into the adaptive training
objective (equation 2), two separate weights are
used:

Token-level weight is used to determine weights
of loss from each target token yj and streaming
source context, conditioned on the obtained partial
translation at the current timestep. We use a token
TIQ measure and normalise it to reduce variance:

TIQtok =
(
TIQ(yj)− µtok

)
/σtok (7)

where µtok, and σtok are the mean and standard
deviation of TIQ(yj) respectively, for every sen-
tence.

Sentence-level weight on the other hand, is
token-level TIQ is aggregated and averaged over
the target sentence length |y|:

TIQsen =


 1

|y|

|y|∑

j=1

TIQ(yj)− µsen


 /σsen (8)

where µsen, and σsen are the mean and standard
deviation of TIQ(yj) respectively, over a batch.

The final rescaling factor to assign weights in
equation 2 is calculated as:

wj = (λtokTIQtok + 1) · (λsenTIQsen + 1) (9)

The rescaling allows the model to learn the source
side information for a particular target token yj ,
while also factoring in the target context so far.
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Figure 2: Results on IWSLT15 Vi → En (a), and IWSLT14 En⇔De (b,c)

Given that information (from source) is con-
strained in the nature of this task, this additional
signal of the target context acts as reinforcement
for translation. The likelihood score from the LM
should serve to strengthen the predictive capabil-
ity of the decoder. Frequent words would have a
higher LM score and therefore a smaller weight
wj . On the other hand, rare words would be scored
lower by the LM, and thus have a higher rescaling
weight wj , allowing the model to focus on them
more.

3.2 Final Training Objective with Adaptive
Weights and Latency Constraints

In MMA models, following Ma et al. (2020), we
use the weighted average of differentiable lagging
metric C (Arivazhagan et al., 2019) over all the
attentions heads as the weighted average latency
Lavg constraint3.

The MMA model uses both these loss terms in its
final loss, with the hyperparameters λavg and λvar

respectively. Combining the latency average loss
and the target-context aware information quotient,
the final training objective for our model is:

LMMA+TC = Ladapt(TIQ) + λavgLavg (10)

where Ladapt is adaptive cross-entropy loss from
equation 2 with TIQ (equation 9) as its rescaling-
weight, and λavg is a hyperparameter to control the
latency constraint.

3Early experiments with other policies such as GMA and
Wait-info showed the approach to be ineffective. The explicit
latency loss in MMA is crucial for the working of target adap-
tive training for simultaneous MT.

4 Experiments

4.1 Data
IWSLT’15 English ↔ Vietnamese (133K pairs)
with TED tst2012 (1553 pairs) as validation set and
TED tst2013 (1268 pairs) as test set. The vocabu-
lary sizes of English and Vietnamese are 17K and
7.7K respectively.

IWSLT’14 English ↔ German (160K pairs)
with validation set and test set of 7283 and 6750
pairs respectively. The vocabulary size of German
is 13.5K and 9.98K for English.

4.2 Baselines and Model Settings
The following are the main baselines we compare
our method against:

Offline Transformer (Vaswani et al., 2017)
model for full-sentence translation.

Wait-k policy (Ma et al., 2019) which is a fixed-
policy that reads k source tokens initially, and then
alternates between reading and writing.

Efficient Wait-k (Elbayad et al., 2020) uses
multiple k’s to train a Wait-k model and relieves
the constraint of test k being equal to train k.

Monotonic Multihead Attention (MMA; Ma
et al. (2020)) extends infinite lookback attention
(Arivazhagan et al., 2019) to all the Transformer
heads.

Wait-Info (Zhang et al., 2022a) quantifies
source and target token info to decide R/W action.

We also juxtapose our method against several
other baselines on the En → Vi direction:

344



3 4 5
Average Lagging (AL)

25

26

27

28

29

BL
EU

GMA
Wait-k
Efficient Wait-k
 

Adaptive Waitk
MoE WaitK
MMA+TC(ours)
Offline

MMA
Wait-Info
ITST
 

Figure 3: Performance of several methods on the
En→Vi dataset in the low latency (AL<5) window.

Gaussian Multihead Attention (GMA; Zhang
and Feng (2022a)) that predicts the aligned
source position for a target token and rescales at-
tention with a gaussian distribution centred at this
position.

ITST (Zhang and Feng, 2022b) finds the op-
timal information transport between source and
target.

Adaptive Wait-k(Zheng et al., 2020) dynami-
cally chooses an optimal k in the wait-k policy at
every step.

MoE Wait-k (Zhang and Feng, 2021b) uses
attention heads as experts trained with different k
with the wait-k policy.

MMA+TC (ours) is the proposed MMA model
with target context aware adaptive training objec-
tive. We use an auxiliary target-side LM decoder
of the same configuration as the MT decoder. Note
that the LM is only used during training and dis-
carded at test time. We do not use extra data.

The implementation of our method is based on
fairseq (Ott et al., 2019). Following MMA, we
use transformer (Vaswani et al., 2017) with 6 en-
coder and decoder layers and 4 monotonic attention
heads for the IWSLT datasets En↔Vi, De↔En. All
baselines are trained with same configurations and
are trained with 16k tokens. Our auxiliary language
model follows the decoder settings in the model.

4.3 Evaluation
We evaluate using BLEU (Papineni et al., 2002) for
translation quality and Average Lagging (AL) (Ma
et al., 2019) for latency. AL denotes the lagging be-
hind the ideal policy (Wait-0). Other metrics used
are Average Proportion (AP) (Cho and Esipova,
2016) and Differentiable Average Lagging (DAL)
(Arivazhagan et al., 2019). Given a read/write pol-
icy gi, AL is :

AL =
1

τ

τ∑

i=1

gi −
i− 1

|y|/|x| (11)

where τ = argmaxi (gi = |x|), |x| and |y| are
source sentence and target sentence lengths respec-
tively.

5 Results

Figure 2 shows the comparison of BLEU vs. La-
tency (in terms of Average Lagging) of our method
against previous methods on the IWSLT’15 Vi →
En and IWSLT’14 En ↔ De directions. For Vi →
En, we observe a significant improvement in the
BLEU scores at the same latencies, compared to
the baselines. We also reach the offline translation
quality in low AL on this dataset. In the En →
De, De → En directions too, there is a boost in
the translation quality, more noticeably for lower
latencies. The plots show that our method boosts
translation quality in the earlier latencies and the
effect of reweighing is more pronounced in these
regions, where the source context is more limited.
In higher latency regions, when the source infor-
mation window increases, the other baselines start
to reach our BLEU score in the English-German
directions.

In Figure 3, we compare against several state-
of-the-art methods on the En → Vi. Our method
gets better translation quality compared all others,
in the low-latency zone, matching the offline score
at 3.86 AL. We show the BLEU vs. AL plot in a
low latency range to compare performance in the
more challenging area of this task, the low latency
points.

6 Analysis

6.1 Token-level vs. Sentence-Level Weight
Ablation Study The two hyperparameters in our
method are Sentence-Level Weight and Token-
Level Weight, which determine the sentence and
token-level effect of rescaling with LM. In Fig. 5
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Token Order
(Descending)

Avg.
Freq. Ref (%) MMA

(%)
MMA+
TC (%)

[0, 10%) 1385 85.56 87.63 87.21
[10, 30%) 56 6.89 6.48 6.34
[30, 50%) 20 2.19 1.75 1.95
[50, 70%) 11 1.30 0.70 0.86
[70, 100%] 6 0.95 0.26 0.31

Table 1: Avg. frequency on the training set and the
proportion of tokens of different frequencies in the test
set and the translations generated by the baseline and
our model.

2 3 4 [5,10) [10,100)
Word Frequency

0.4

0.5

0.6

F-
m

ea
su

re MMA
MMA+TC (Ours)

Figure 4: F-measure between model outputs and refer-
ence tokens for the low-frequency words, bucketed by
frequency of the reference token.

we report the BLEU scores with different hyperpa-
rameter settings on Vi-En. (AL across the table are
similar as experiments are done with the same λ).
We set the values of these hyperparameters to 0.2
in all our experiments.

0.1 0.2 0.3
Sentence-Level Scale

0.
1

0.
2

0.
3

To
ke

n-
le

ve
l S

ca
le 25.36 26.03 25.83

25.83 26.38 26.26

25.74 25.68 25.83

Figure 5: MMA+TC with different combinations for
tok-level scale (λtok) and sent-level scale (λsen) values.

6.2 Effect on Low-frequency Words

With reweighing loss using the Language Model
likelihood, we aim to reduce the effect of frequency
imbalance in the corpus on training. We compare
our translations against MMA on rare and frequent
words. In addition to an overall BLEU improve-
ment, we also see an improvement in the F-measure
of rare words. As shown in Figure 4, our method
does better on extremely rare words (freq ≤ 10).
Table 1 shows that while the baseline overfits to
the most frequent words, our method captures rare
words, from the bottom two frequency bins (50-
70% and 70-100%), better. The results show that
our method makes the model train better on rare
words and remedy the effect of token imbalance.

POS Ref MMA (%) +TC (%) MSE (↓)

ADJ 1497 82.1 83.5 0.18 | 0.16
ADV 1323 83.5 87.6 0.20 | 0.12
INTJ 74 98.6 94.6 0.01 | 0.04
NOUN 4187 90.5 93.4 0.09 | 0.06
PROPN 1315 99.4 99.4 - | -
VERB 3226 94.0 95.7 0.06 | 0.04

Table 2: Our method generates more content words
than the baseline MMA. Columns 2 and 3 show the
percentage of the reference content words recovered in
MMA and MMA+TC (in blue) respectively. The last
column shows normalized mean squared error (MSE)
of the recovered content words wrt reference. Lower
MSE values are better.

Content word occurrences. Zhang et al. (2022a)
show that focusing on the right content words in
the target is crucial to getting the necessary target
information in a subcutaneous translation setting.
Following Moradi et al. (2019) we inspect the con-
tent words generated by our model using spacy to
get POS tags over the translations. As evident from
Table 2, our model recovers more content words in
the translations wrt the reference.

6.3 Effect on Translation Length

Following the rationale of Lakew et al. (2019) in
NMT and Zhang and Feng (2022d) in simultaneous
translation, we inspect the translation quality of our
model on varying target sentence lengths in Figure
8 and observe that our method shows a big im-
provement in BLEU on the longer sentences. Our
method prevents the model from over-producing
words (as seen in the top figure in Figure 8). We
hypothesize that this is because the model does
not generate as many words (and overuse them)
from the most frequent word bin (see Table 1, top
10% bin) as MMA. Our target sentence lengths are
consistently less than MMA’s and are closer to the
ground truth sentence lengths (as shown in the bin
0, Fig. 8 (top)).

6.4 Effect on Translation Paths

Attention Heatmaps and READ/WRITE Se-
quences. Figure 6 compares attention heatmaps
from MMA and MMA+TC (our method) on the
Vi → En direction. As evident, our method per-
forms READ actions in smaller intervals between
predicting consecutive WRITE actions.

Consider the READ/WRITE actions generated
by MMA and MMA+TC for the given source sen-
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Figure 6: Attention heatmap comparison on the Vi → En direction. The Read-Write policy is drawn with red and
green arrows respectively. The pink column at the start denotes the source tokens read to produce the target token
on the left (darker implies more source words read, and white denotes 0 reads between consecutive target tokens)
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Figure 7: Sufficiency as a function of target length. All
models produce translation with an AL of 4.

tence are:

Src: Chúng tôi còn vt mu đây . Nó còn khá m .

MMA: RRR W RRR WWW RRR WW RRR W RR WWWWW

Ours: RRR W RRR WW RR W R WW RRR W R W R WWWW

In this example, MMA reads more than required
for a write in certain places. It shows that at a
similar lag, our model gets a higher probability of
a WRITE action, compared to MMA, after having
read the same number of source words.

Sufficiency of the READ actions. Zhang and
Feng (2022c) introduce a metric of sufficiency
ASuf in Read/Write paths with the notion that too

many but not all necessary READs would result in
high latency while few but not sufficient READ ac-
tions would exclude needed information and could
cause poor translation quality. When the ground
truth aligned source position of the jth target word
is denoted by aj , and the number of source words
read when writing target jth word is denoted by rj :

ASuf =
1

|y|

|y|∑

j=1

1aj≤rj (12)

We compare our method against MMA and Wait-
Info on AL=4 with the sufficiency metric. Using
equation(12) across sentences of varying lengths,
we evaluate the read-write paths of each model,
against reference alignments from Eflomal (Östling
and Tiedemann, 2016)4. In Figure 7, we can see a
clearly increasing and higher score on sufficiency
as compared to the baselines - Wait-Info and MMA.
This signifies that our target-context augmented
training helps the model read sufficient source to-
kens required for producing a translation, while
maintaining the same latency as others, showing
that the model learns and correctly gauges the in-
formation it requires to translate a target token, and

4We use the Eflomal library to get alignment priors
from IWSLT’15 Vi-En train set, and use them to gen-
erate alignments for the test set. https://github.com/
robertostling/eflomal
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makes READ actions accordingly.

Ratio of Aligned READ actions. We compare
MMA and our Read-Write policy against the ref-
erence source-target alignments by computing the
overlap between the hard alignments and the trans-
lation path for all output translations :

IoUa,r =
∑

i=1

(
intersection(ai, ri)

union(ai, ri)

)
(13)

where ai is the reference alignment matrix for the
ith sentence, made by setting all aligned source po-
sitions to 1 and ri is the upper triangular matrix set
to 1 using reads from the policy.5 The IoU scores
for our policy and for MMA are shown in Figure
8 (bottom) with varying sentence lengths. Our pol-
icy shows a stronger adherence to the source-target
monotonic alignment path.

7 Related Work

Simultaneous Translation. Fixed Policy meth-
ods (Ma et al., 2019; Elbayad et al., 2020) follow
the fixed rule of waiting for the first k source tokens
before generating a target token, and alternate there-
after. Adaptive Wait-k (Zheng et al., 2020) dynam-
ically chooses the best k at every step. Han et al.
(2020) applied meta learning in wait-k. Zhang and
Feng (2021b) use each attention head as an expert
of wait-k policy whereas Zhang and Feng (2021a)

5We choose this metric to show the extent to which the
policy follows the source-target alignments. In an ideal setting,
IoU = 1.

introduce a character level wait-k policy. But fixed
policy methods aren’t feasible for complex inputs
and cannot adapt to them. Full-sentence MT has
also been leveraged to augment the policy with
future information (Zhang et al., 2020; Alinejad
et al., 2021). But using such oracle or gold (Zheng
et al., 2019; Arthur et al., 2021) READ/WRITE
actions does not optimize policy with translation
quality. Alinejad et al. (2018) proposes providing
future-information on the source side using predic-
tion. Grissom II et al. (2014) predict unseen verbs
and uses reinforcement learning to learn when to
trust these predictions and when to wait for more
input. In contrast, we leverage target side context
to strengthen the simultaneous translations.

Zhang and Feng (2022c) train two models on
either language directions and make their policies
converge. Wilken et al. (2020) propose external
ground-truth alignments to train the policy. Papi
et al. (2023) use cross attention scores to guide pol-
icy. Infinite-lookback (Arivazhagan et al., 2019)
and chunkwise (Chiu* and Raffel*, 2018) atten-
tion propose to use a soft monotonic attention over
previous encoder states. We use a variant of the
policy proposed by Ma et al. (2020) that adapts
monotonic attention to the multihead architecture
of the Transformer. GMA (Zhang and Feng, 2022a)
predicts the aligned source position of the current
target token and rescales attention based on it. But
these methods treat all words equally during train-
ing whereas our method improves upon MMA via
adaptive training.

Some recent work explores capturing and quan-
tifying information from the source tokens and use
it to model READ/WRITE actions (Zhang et al.,
2022a; Zhang and Feng, 2022b). But these works
do not use the target context in their information.
Unlike their quantization method, we present a sim-
ple scoring by using an auxiliary target-side LM.

Adaptive Training for MT. Target adaptive ob-
jectives have been explored by (Lin et al., 2017)
which uses probability of a class to scale, but actu-
ally only scale down high frequency classes; (Jiang
et al., 2019) which directly uses normalized fre-
quency count but have high variance. (Gu et al.,
2020) use a chi-square and an exponential distri-
bution function with frequency. However these
use only static word frequency. BMI (Xu et al.,
2021) attempt to capture mutual information be-
tween each source and target token. CBMI (Zhang
et al., 2022b) incorporate target context as well, in
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mutual information. However, these adaptive meth-
ods are not directly transferable to the streaming
nature of our task.

8 Conclusion

We have presented a simple technique for rescaling
target-token importance in simultaneous transla-
tion using an information theoretic approach and
an adaptive training paradigm. We differentiate the
importance of various target tokens by their depen-
dence on the source sentence. To guide our simul-
taneous translation model, we incorporate a target-
side language model that provides an additional sig-
nal indicating the importance of each target token
or sentence under the condition of the previous tar-
get context. Our model shows strong performance
on several datasets and outperforms several state-of-
the-art techniques in the low latency range (AL<5).
Further analysis shows that our technique is bet-
ter able to translate long sentences and those with
rare words. We also showed that the translation
path (read/write action sequence) has a stronger
correlation to the source-target alignment.

Limitations and Future Work

Since our auxiliary target-side LM decoder is
spawned with the same configuration as the MT
decoder, this significantly adds to the model size at
training time. This makes it difficult to scale/slower
to train with translation models of large size. While
this problem can be easily mitigated by using a
GPU of larger memory, we would like to explore
more efficient ways of incorporating the target con-
text which we leave for future work. Secondly,
even though our method gives a significant boost
to translation quality in the early latencies, it relies
on the MMA (Ma et al., 2020) policy that has some
limitations in terms of latency because of a subopti-
mal decision making using multiple heads (Indurthi
et al., 2022). While our policy shows improvement,
it could be further optimized, for instance, in fol-
lowing reference alignments more closely which
would have a positive effect on latency. Finally,
using additional monolingual data is also a viable
direction for future work to strengthen the language
model used in the approach.
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A Hyperparameters

Hyperparameter
IWSLT’15 En ↔ Vi
IWSLT’14 De ↔ En

encoder layers 6
encoder attention heads 4
encoder embed dim 512
encoder ffn embed dim 1024
decoder layers 6
decoder attention heads 4
decoder embed dim 512
decoder ffn embed dim 1024
dropout 0.3
optimizer adam
adam-β (0.9,0.98)
clip-norm 0
lr 5e-4
lr scheduler inverse sqrt
warmup-updates 4000
warmup-init-lr 1e-7
weight decay 0.0001
label-smoothing 0.1
max tokens 16000

Table 3: Hyperparameters used in our experiments

All models were trained on 2 x Titan RTX with
24 GB memory each. An entire training run fin-
ishes within 2.5 hours with fp32 completing about
40 epochs.

B Detailed Results
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IWSLT15 En-Vi Transformer-Small

Full-sentence MT AP
1.00

AL
22.08

DAL
22.08

BLEU
28.91

MMA

λ
0.4
0.3
0.2
0.1
0.04
0.02

AP
0.58
0.59
0.63
0.67
0.70
0.76

AL
2.68
2.98
3.57
4.63
5.44
7.09

DAL
3.46
3.81
4.44
5.65
6.57
8.29

BLEU
27.73
27.90
28.47
28.42
28.33
28.28

Wait-K

k
1
3
5
7
9

AP
0.63
0.71
0.78
0.83
0.88

AL
3.03
4.80
6.46
8.21
9.92

DAL
3.54
5.42
7.06
8.79
10.51

BLEU
25.21
27.65
28.34
28.60
28.69

Efficient Wait-K

k
1
3
5
7
9

AP
0.63
0.71
0.78
1.96
0.87

AL
3.06
4.66
6.38
8.13
9.80

DAL
3.61
5.20
6.94
8.69
10.34

BLEU
26.23
28.21
28.56
28.62
28.52

Wait-Info

K
1
2
3
4
5
6
7
8

AP
0.67
0.69
0.71
0.74
0.77
0.80
0.82
0.84

AL
3.76
4.10
4.60
5.28
6.01
6.80
7.61
8.39

DAL
4.33
4.71
5.28
5.97
6.71
7.51
8.33
9.11

BLEU
28.37
28.45
28.54
28.59
28.70
28.78
28.80
28.82

MMA+TC

λ
0.55
0.5
0.3
0.2
0.1
0.01

AP
0.66
0.67
0.68
0.71
0.74
0.89

AL
3.1
3.60
3.86
4.58
5.34
9.89

DAL
5.12
5.78
6.12
7.22
8.18
14.37

BLEU
28.6
28.81
28.9
28.74
28.65
28.67

Table 4: Experiments on IWSLT15 English → Vietnamese
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IWSLT15 Vi - En Transformer-Small

Full-sentence MT
(Offline)

AP
1.00

AL
27.56

DAL
27.56

BLEU
26.11

MMA

λ
0.4
0.3
0.2
0.1
0.05
0.01

AP
0.63
0.64
0.67
0.75
0.77
0.88

AL
3.60
3.95
4.54
7.14
7.61
13.63

DAL
6.96
7.59
9.09
11.60
15.70
23.95

BLEU
25.36
24.75
25.33
25.84
25.31
26.11

Wait-K

k
1
3
5
7
9
11
13

AP
0.42
0.53
0.61
0.67
0.76
0.80
0.84

AL
-2.89
-0.18
1.49
3.28
6.75
7.91
10.37

DAL
1.62
3.24
5.08
7.05
8.96
10.71
12.36

BLEU
7.57
14.66
17.44
19.02
22.39
23.28
24.80

Wait-Info

K
4
5
6
7
8
9
10

AP
0.62
0.67
0.72
0.76
0.79
0.82
0.84

AL
2.58
4.08
5.61
7.01
8.26
9.37
10.56

DAL
5.06
6.27
7.72
9.19
10.66
11.98
13.30

BLEU
22.45
23.75
25.19
25.45
25.86
25.93
26.13

MMA+TC

λ
0.4
0.3
0.2
0.1
0.05
0.04
0.01

AP
0.63
0.65
0.67
0.71
0.76
0.77
0.89

AL
3.51
4.01
4.62
5.67
7.23
7.55
13.31

DAL
5.902
6.558
7.527
9.212
10.579
11.76
18.627

BLEU
26.38
26.04
26.32
26.63
26.52
26.85
26.67

Table 5: Experiments on IWSLT15 Vietnamese → English
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IWSLT15 De-En Transformer-Small
Full-sentence MT
(Offline)

AP
1.00

AL
22.97

DAL
22.97

BLEU
33.64

MMA

λ
0.4
0.3
0.2
0.1

AP
0.67
0.69
0.72
0.77

AL
3.91
4.27
4.97
6.08

DAL
6.36
6.84
7.82
9.47

BLEU
30.8
31.12
31.34
31.95

Wait-Info

K
1
2
3
4
5
6
7
8

AP
0.57
0.59
0.64
0.69
0.739
0.77
0.80
0.82

AL
1.32
1.97
3.08
4.27
5.30
6.26
7.17
8.06

DAL
2.53
3.17
4.35
5.61
6.84
8.03
9.09
9.94

BLEU
26.26
27.39
29.01
30.36
30.92
31.45
31.82
32.05

Wait-K

k
3
5
7
9

AL
1.8
4
6
8

BLEU
26
28.6
29.7
31.5

Efficient Wait-K

k
3
5
7
9

AL
2
4
6
8

BLEU
26.4
27
30
31.7

MMA+TC

λ
0.5
0.4
0.3
0.2
0.1

AP
0.66
0.68
0.70
0.73
0.77

AL
3.68
4.06
4.49
5.06
6.10

DAL
5.92
6.51
7.12
7.93
9.54

BLEU
30.97
31.33
31.69
32.2
32.22

Table 6: Experiments on IWSLT14 German → English
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IWSLT15 En-De Transformer-Small
Full-sentence MT
(Offline)

AP
1.00

AL
22.21

DAL
22.21

BLEU
27.46

MMA

λ
0.5
0.4
0.3
0.2
0.1
0.05

AP
0.69
0.71
0.72
0.74
0.79
0.84

AL
4.32
4.70
4.97
5.44
6.86
8.25

DAL
6.42
6.95
7.28
7.96
9.72
11.42

BLEU
26.03
26.20
26.30
26.19
26.77
26.91

Wait-Info

K
1
2
3
4
5
6
7
8

AP
0.61
0.63
0.68
0.73
0.77
0.80
0.83
0.86

AL
2.62
3.15
4.24
5.36
6.38
7.23
8.23
9.25

DAL
3.09
3.89
5.30
6.77
8.09
9.18
10.35
11.46

BLEU
21.75
22.42
24.48
25.60
26.18
26.35
26.61
26.74

Wait-K

k
3
5
7
9

AL
3.41
5.00
6.83
8.72

BLEU
22.00
25.21
26.32
26.61

Efficient Wait-K

k
3
5
7
9

AL
3.51
5.27
7.03
8.81

BLEU
23.01
24.80
25.93
26.11

MMA+TC

λ
0.6
0.5
0.4
0.3
0.2
0.1
0.06

AP
0.68
0.69
0.69
0.71
0.74
0.79
0.82

AL
4.04
4.19
4.38
4.87
5.51
6.74
7.75

DAL
6.07
6.25
6.52
7.14
8.09
9.80
10.94

BLEU
26.03
26.19
26.43
26.56
26.71
26.76
27.01

Table 7: Experiments on IWSLT14 English → German
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