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Abstract

Multilingual neural translation models exploit
cross-lingual transfer to perform zero-shot
translation between unseen language pairs. Past
efforts to improve cross-lingual transfer have
focused on aligning contextual sentence-level
representations. This paper introduces three
novel contributions to allow exploiting near-
est neighbours at the token level during train-
ing, including: (i) an efficient, gradient-friendly
way to share representations between neighbor-
ing tokens; (ii) an attentional semantic layer
which extracts latent features from shared em-
beddings; and (iii) an agreement loss to har-
monize predictions across different sentence
representations. Experiments on two multilin-
gual datasets demonstrate consistent gains in
zero shot translation over strong baselines.

1 Introduction

Many-to-many multilingual neural translation mod-
els (Firat et al., 2016; Johnson et al., 2017; Khan-
delwal et al., 2020; Fan et al., 2022) share a single
representation space across multiple language pairs,
which enables them to perform zero-shot transla-
tions between unseen pairs (Ha et al., 2017; Chen
et al., 2022; Wu et al., 2022). Prior work on zero-
shot translation has focused on aligning contextual,
sentence-level representations from multiple lan-
guages (Ji et al., 2020; Pan et al., 2021a), to make
these more ‘universal’ or language-agnostic (Gu
et al., 2018; Gu and Feng, 2022). Non-contextual,
token-level representations offer another space in
which this kind of alignment could be pursued, but
this space has not been thoroughly explored in prior
work. Even lexicon-based methods (Conneau et al.,
2020; Reid and Artetxe, 2022), which exploit token-
level anchors from multilingual dictionaries (Duan
et al., 2020), still use these to align representations
at the sentence level.

In this work, we explore a novel technique for
sharing information across languages at the token
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Figure 1: NN-informed embeddings average representa-
tions from nearby subwords in the embedding space.

level, which exploits nearest neighbours (NNs) to
aggregate information from subwords across multi-
ple languages. When analysing embedding spaces,
many authors speak in terms of “neighborhoods”
or “subspaces” which group together tokens from
a particular semantic field or other natural class.
These neighborhoods form implicitly as a model
learns similarities between embedded words or sub-
words. We propose to make this neighborhood
structure explicit by forcing a model to consider
a token’s neighbors when learning its embedding.
Specifically, we dynamically perturb a translation
model’s token embeddings at training time by av-
eraging them with their nearest neighbors; thus a
token like soccer may end up mixed together with
related tokens such as football, fußball, or futbol
from potentially distinct languages (Figure 1). This
encourages the model to organize its subword em-
beddings in such a way that nearby tokens convey
similar information to one another. We hypothe-
size that this process will produce a more structured
embedding space which will in turn enable more
fluent outputs. This process only uses the model’s
embedding layer, and does not require any offline
dictionaries or additional data.

Our experiments and ablations show that this
simple technique significantly increases the effec-
tiveness of translation models on the IWSLT17
and TED59 massively multilingual datasets. Con-
cretely, our contributions include: (i) an efficient,
gradient-friendly, soft representation-mixing tech-
nique which exploits token-level neighbors without
changing the Transformer architecture; (ii) an atten-
tional semantic layer which extracts features from
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Figure 2: A NN-informed embedding for an arbitrary subword shire is produced by averaging across nearby
subwords from various languages, and combining with a semantic representation extracted from this average.

mixed representations to give neighbour-informed
latent word embeddings, and which is a drop-in
replacement for a conventional embedding layer;
and (iii) an agreement loss which harmonizes pre-
dictions with and without neighbor-informed em-
beddings.

2 Translation with Nearest Neighbour
Augmented Embeddings

We describe our model for nearest-neighbour in-
formed token level embeddings (Figure 2) of sub-
words from multiple source languages.

Nearest Neighbor Retrieval Let Lemb be a word
embedding layer that performs a lookup EMBp¨q us-
ing weights Wemb P R|V|ˆD, where V is a joint
subword vocabulary over all languages and D is
a fixed embedding dimension. Given the embed-
ding q “ EMBpwq P R1ˆD of a subword w, we
wish to find q’s nearest neighbour n (or neighbors
n1, ..., nk) using maximum inner product search
(MIPS) over the weight matrix Wemb:

n “ argmin
xĂWemb

||q ´ x||22
“ argmin

xĂWemb

p||x||22 ´ 2qTxq (1)

Approximate solutions to (1) can be efficiently com-
puted on-the-fly using anisotropic vector quantiza-
tion (Guo et al., 2020).1

Given the approximate nearest neighbors
(ANNs) n1, ..., nk of subword w, we compute a
weighted average over these tokens’ embeddings

1Exact and approximate solutions yield similar results, but
approximation gives significant gains in training speed.

with a weighting term λ:

EMBµpwq “ λ
1

k

kÿ

i“1

pEMBpniqq ` p1 ´ λqEMBpwq
(2)

EMBµp¨q is computed directly from Wemb, which
ensures that our technique remains gradient-
friendly2 and does not need a separate warm-up
step. Previous NN-based proposals for translation
(Khandelwal et al., 2020) and language modeling
(Khandelwal et al., 2019) have only explored NNs
of contextualized representations, strictly for gen-
eration, and using neighbors from an offline frozen
datastore of pretrained candidates. Their method
proved effective for MT domain adaptation, rather
than zero-shot translation which is the focus of
this work. The ability to propagate gradients to a
subword’s neighbors during training is novel and
unique compared to previous NN-based techniques.

Attentional Semantic Representation To
extract contextually-salient information from
EMBµpwq, which combines information from
many subwords in potentially disparate languages,
we use a shared semantic embedding inspired by
Gu et al. 2018; Wang et al. 2018 that shows a
similar effect as topical modelling.

We introduce Wsem P RNˆD, where each of
the N rows is taken to be a language-agnostic se-
mantic representation. Wsem is shared across all
languages. We use attention (Luong et al., 2015) to
compute a latent embedding EMBlatentpwq using

2In Section 3.3 we introduce a caching heuristic which is
not gradient-friendly; however, this is simply an implemen-
tation detail to speed up training, and the gradient-friendly
presentation in this section achieves equivalent performance.
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De - It De - Nl De - Ro It - Nl It - Ro Nl - Ro zero sup.
Ð Ñ Ð Ñ Ð Ñ Ð Ñ Ð Ñ Ð Ñ

Base M2M 15.64 15.28 18.46 18.14 14.42 14.98 18.16 18.79 17.91 20.14 15.81 16.41 17.01 30.62
SRA (2019) 16.44 16.45 18.44 19.15 15.07 15.83 19.30 19.10 18.52 21.52 16.83 17.66 17.85 30.41
SF (2019) 16.34 15.77 18.37 18.16 14.74 15.25 18.6 19.18 18.54 21.64 16.09 16.94 17.46 30.50
LV (2021) 16.82 15.81 18.74 18.64 15.12 16.32 18.92 19.29 18.70 22.13 16.21 18.22 17.91 30.51
CL (2021b) 17.31 16.21 19.70 19.57 15.32 16.25 18.90 20.09 19.07 22.44 17.14 17.99 18.33 30.29
DP (2021) 16.62 15.64 19.64 18.78 15.07 15.96 19.01 20.15 18.67 21.56 16.46 18.18 17.97 30.49

Ours 17.41 16.89 19.71 19.21 15.60 16.22 19.30 20.10 19.60 21.88 17.25 18.40 18.47 30.62

Table 1: BLEU on IWSLT17 test set (mean of 3 runs). Zero and sup. are average zero-shot and supervised results.

the averaged embedding EMBµpwq as query:

EMBlatentpwq “ SoftmaxpEMBµpwq.WT
semqWsem (3)

A residual connection from EMBµpwq gives the
final NN-informed word embedding:

EMBknnpwq “ EMBlatentpwq ` EMBµpwq (4)

EMBknnpwq is a drop-in replacement for a conven-
tional word embedding EMBpwq.

Modelling Prediction Consistency Given a
source sentence represented using conventional
word embeddings and using NN-informed em-
beddings, following Kambhatla et al. (2022b) we
model the loss with respect to target sentence yi as:

Li “ α1 Li
NLLp pΘp yi|xiq qlooooooooooooomooooooooooooon

source x-entropy

` α2 Li
NLLp pΘp yi| kNNpxiqq qlooooooooooooooooomooooooooooooooooon
k-NN embeds. source x-entropy

` β Li
distp pΘp yi|xiq, pΘp yi|kNNpxiqq qloooooooooooooooooooooooomoooooooooooooooooooooooon

agreement loss

(5)

where kNNpxiq denotes the set of k-nearest neigh-
bors to token xi. This loss combines three
terms: the first two are conventional negative
log-likelihoods, while the third is an agreement
loss measuring pairwise symmetric KL diver-
gence between the output distributions for xi and
kNNpxiq. This agreement-loss term performs co-
regularization by allowing explicit interactions
between source sentences with and without NN-
informed embeddings.

3 Experiments

3.1 Datasets

We conduct experiments on 2 multilingual datasets,
each with BPE (Sennrich et al., 2016) vocabulary
size of 32k subwords:

IWSLT17 (Cettolo et al., 2012) is an English-
centric dataset3 totalling 1.8M parallel sentences.
It has 8 supervised directions to and from Ger-
man, Italian, Dutch and Romanian, each with about
220,000 parallel sentences, and 12 zero-shot direc-
tions. We use the official validation and test sets.

Ted59 (Qi et al., 2018) is a massively multilin-
gual English-centric dataset4 with 116 translation
directions totalling 10.8M parallel sentences. The
imbalanced data—from 0.25M to just 2000 parallel
samples for some language pairs—makes it ideal
to study the effects of our method. Following (Aha-
roni et al., 2019; Raganato et al., 2021) we evaluate
on 16 supervised pairs and 4 zero-shot (Arabic Ø
French, Ukranian Ø Russian).

3.2 Baselines and Related Work

We compare against methods for encoder manifold
alignment. These include strong baselines such
as sentence representation alignment (SRA; Ari-
vazhagan et al. 2019), softmax forcing (SF; Pham
et al. 2019), the contrastive multilingual model (CL;
Pan et al. 2021b), multilingual Transformer with
disentagled positional embedding (DP; Liu et al.
2021), and latent variable based denoising (LV;
Wang et al. 2021), along with the vanilla many-
to-many zero-shot model (M2M). On TED59, we
compare against CL and 3 explicit multilingual
alignment techniques proposed by Raganato et al.
(2021): word-alignment, language tag alignment,
and the union of the two. We also implement and
compare against Raganato et al.’s (2021) sparse
1.5entmax cross-attention variant.

3.3 Model and Implementation Details

All models use the configuration in Vaswani et al.
2017 using the fairseq toolkit (Ott et al., 2019).
See reproducibility details in Appendix A.

3https://wit3.fbk.eu/2017-01
4github.com/neulab/word-embeddings-for-nmt
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Θ EnÑX XÑEn Zero-Shot Acc0

Aharoni et al. – 106 langs 473M 20.11 29.97 9.17 -
Aharoni et al. – 59 langs 93M 19.54 28.03 - -

Transformer M2M reimp. 93M 18.98 27.22 7.12 74.10
Constrastive (2021b) 93M 19.09 27.29 8.16 73.90

Ours 77M 19.01 27.11 10.03 95.81

Raganato et al. (2021)
ZS + 1.5entmax (ibid.) 93M 18.90 27.21 10.02 87.81
ë Word Align (ibid.) 93M 18.99 27.58 8.38 73.12
ë LangID Align (ibid.) 93M 18.98 27.48 6.35 65.01
ë Word + LangID Align 93M 19.06 27.37 11.94 97.25

Ours + 1.5entmax 77M 18.94 27.42 12.11 98.90

Table 2: Average BLEU scores on the TED59 dataset. Our model produces zero-shot translations in the correct
output language with high accuracy (Acc0).

We use ScANN (Guo et al., 2020) for efficient
ANN search 5 with k “ 3. To increase train-
ing speeds, we cache each subword’s ANNs for
400 iterations before recomputing them. We only
(peridocally) cache subword IDs: the embedding
EMBµp¨q is always computed directly from Wemb.
We set λ “ 0.5, α1, α2 “ 1, and β “ 5. The atten-
tional latent semantic representation layer has 512
dim (same as the embedding layer) and a size N of
1000 for IWSLT17 (smaller dataset) and 5000 for
TED59 (larger dataset). We did not tune this hyper-
parameter and chose the values based on the size of
the datasets. For evaluation, we report sacreBLEU
(Post, 2018).

3.4 Results

Main Results. Tables 1 and 2 show our main
results. On IWSLT17, our latent k-NN embed-
ding model outperforms several strong baselines,
including sentence-representation alignment and
contrastive learning, by an average of 0.62 and
0.11 BLEU respectively across the 12 zero-shot
pairs. Compared to the baseline many-to-many
model, our method yields a 1.5 BLEU gain on av-
erage. Our method is able to improve zero-shot
performance without deteriorating supervised per-
formance.

On the TED59 dataset, we follow Raganato
et al. (2021) in comparing against two multilin-
gual model variants: the standard Transformer, and
the Transformer with sparse entmax instead of stan-
dard softmax cross-attention. Our approach gains
„3 BLEU points against the baseline, and 2 BLEU

5We use asymmetric hashing with 2-dimensional blocks
and a quantization threshold of 0.2, and re-order the top 100
ANN candidates.

against the stronger contrastive model. Further, our
model consistently outperforms strong, explicitly
alignment-based methods.

Target-language Accuracy. To supplement the
evaluation, we provide the accuracy score for tar-
get language identification6 in zero-shot scenarios,
called Acc0. While the classical many-to-many
NMT models (Johnson et al., 2017; Aharoni et al.,
2019) enable zero-shot translations, several studies
have shown that these models fail to reliably gener-
alize to unseen language pairs, ending up with an
off-target translation issue (Zhang et al., 2020). The
model ignores the language label and the wrong
target language is produced as a result. We ob-
serve significant improvements in target language
accuracy, up to nearly 99% (absolute).

4 Analysis

Ablation Study. Table 3 reports ablations on the
IWSLT17 test set. We find that kNN embeddings
alone yield improvements over the baseline many-
to-many model. By contrast, absent the other parts
of our model, the attentional semantic layer dete-
riorates model performance. Only in combination
with the agreement loss do we observe a benefit
from this component.

Embedding Analysis. Figure 3 visualizes sub-
word representations from models trained on
IWSLT17. Each subword is colored according to
the language in which it is most frequent. The over-
all layout of the two spaces is similar, although the

6We utilize FastText (Joulin et al., 2017) as a language
identification tool to compare the translation language with
the reference target language and keep count of the number of
matches.
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ID Component dev.2010 test.2010

1 many-to-many (zero-shot) 15.95 18.46

2 1 + attn. semantic repr. 15.43 17.83
3 1 + kNN embeds 17.11 19.69
4 2 + kNN embeds 16.60 19.08

5 3 + agreement loss 17.99 20.91
6 4 + agreement loss 18.31 21.01

Table 3: Effect of different components of our model on
the IWSLT17 datasets. We report sacreBLEU scores on
the two official validation sets with beam size 1.

baseline model (left) exhibits a clear ring-shaped
gap dividing the embeddings into two groups. With
ANN embeddings (right), this gap is eliminated and
the layout of the embeddings appears more homo-
geneous. Quantitatively, the average distance from
a subword to its neighbors exhibits a smaller vari-
ance in the ANN model than in the baseline, which
further supports the reading that ANN training cre-
ates a more homogeneous representation space in
which subwords are more uniformly distributed.

Figure 3: t-SNE visualization of subword embeddings
from IWSLT17 models trained without (left) and with
(right) ANN embeddings. Points are colored according
to the language where the corresponding subword is
most frequent. ANN embeddings decrease the separa-
tion between some monolingual subspaces, and remove
others entirely.

Table 4 shows nearest neighbors for a random
sample of subwords (additional examples in Table 5
in Appendix B). With ANN training, a subword’s
nearest neighbors are generally its synonyms (e.g.
_wonderful, _large _tremendous, and _big
as neighbors to _great) or derived forms (e.g.
_încep, _începem, _început, _începe be-
side _înceap). In the baseline, it is more likely
to find neighbors with no apparent relation, such as
_erzählen ‘tell’ and _stemmen ‘hoist’ or ‘accom-
plish’ beside _America. This suggests that ANN
embeddings help a model to better organize its sub-
word embedding space into coherent, semantically-
related subspaces.

We quantify this trend by labeling each subword
according to the language in which it is most fre-
quently attested. In the baseline model, we find
that on average only 2.7 of a subword’s 6 nearest
neighbors come from the same language as that sub-
word. This average rises to 3.6 in the ANN model,
demonstrating that ANN training significantly in-
creases the number of same-language neighbors on
average.

In the ANN model, a few rare subwords (?, ž, ć)
are disproportionately common among the nearest
neighbors of many other subwords. We speculate
that these tokens may act as pivots for informa-
tion to flow between their many neighbours. Their
high centrality means that these tokens provide
avenues for information to flow between a large
number of subwords, even those which never occur
in sentences together. Because these tokens are
rare, there is also very little penalty for the model
to “corrupt” their representations with information
from neighboring subwords.

5 Other Related Work

A vast body of work addresses zero-shot transla-
tion. Most methods focus on producing language-
agnostic encoder outputs (Pham et al., 2019). Wei
et al. (2021) introduce multilingual contrastive
learning, while Yang et al. (2021) adopt auxiliary
target language prediction. To enable the input to-
kens to be positioned without constraints, Liu et al.
(2021) eliminate the residual connections within
a middle layer of the encoder. Yang et al. (2022);
Gu and Feng (2022) employ optimal transport to
improve contextual cross-alignments, in contrast
to our method which performs soft, non-contextual
alignment between subwords in the continuously-
updating embedding space. Other methods ex-
tend the training data using monolingual data (Al-
Shedivat and Parikh, 2019) to pretrain the decoder
(Gu et al., 2019), and random-online backtransla-
tion (Zhang et al., 2020). Lin et al. (2021); Reid and
Artetxe (2022) use dictionary based alignments to
produce pseudo-cross-lingual sentences. Other ap-
proaches that enhance token level representations
include multiple subword segmentations (Wu et al.,
2020; Kambhatla et al., 2022a), enciphered source
text (Kambhatla et al., 2022b) and stroke sequence
modelling (Wang et al., 2022). While all these tech-
niques rely on multilingual training paradigm for
machine translation, they either rely on external
data and use explicit augmentations. We do not
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Subword Nearest Neighbors (Baseline) Nearest Neighbors (Ours)

_great _gesproken _schaffen ppy ită _prosper _senior _wonderful _large _tremendous _big _great ?
_înceapă _popolare _condotto _mişcă _bekijken _crească _creeze _gepubliceerd _încep _începem _început _începe muovono
_America tate _erzählen _stemmen dine _facultate _chestiune _USA _Asia _Africa _American _America ć
_play _lavori eranno _tenuto _bekijken - möglichkeiten play _playing _Play _played _play ?
_football _pesci bon _surf _betrachten _Hintergrund möglichkeiten _weather _baseball ball _montagna _biodiversità _football
ing ificazione izăm amento tung erende ende ling ting ung ž ingen ing
_fish _petrec schen _Sachen _feed _chestii möglichkeiten fisch _pesce _pesca _Fisch _fish ?

Table 4: Approximate nearest neighbors for a sample of subwords, computed with (right) and without (left) ANN
training.

use any external data or explicit alignments and
our model can be trained end-to-end like a regular
multilingual model.

6 Conclusion

We described a novel approach to harness near-
est neighbors at the token level and learn nearest-
neighbour informed word embeddings for every
word in a source language for many-to-many multi-
lingual translation. Our experiments show that this
simple yet effective approach results in consistently
better zero-shot translations across multiple multi-
lingual datasets. Additionally, our model produces
translations in the right target language with high
accuracy. Our analysis shows that our model learns
to organize subwords into semantically-related
neighborhoods, and reduces the separation between
monolingual subspaces in the embedding space.

Limitations

While our method is effective in zero-shot set-
tings, we find that it has limited implications in
supervised settings. This is because improving
zero-shot translation presents a tug-of-war between
language-agnostic and language-specific represen-
tations, each of which has a distinct effect on the
model. Another major downside is reduced training
speed relative to the baseline many-to-many model.
We note that this is an artifact of the agreement
loss (KLDiv.) which entails two forward-passes for
each update. Finally, in the present work, we com-
pute k-NNs for every source word in a sentence.
Although this has yielded strong results, we would
like to explore a more explainable setting where
k-NNs can be applied to specific source words. We
leave such explorations to future work.
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A Reproducibility Details

A.1 Data

IWSLT17 (Cettolo et al., 2012) is an English-
centric dataset7 totalling 1.8M parallel sentences.
It has 8 supervised directions to and from Ger-
man, Italian, Dutch and Romanian, each with about
220,000 parallel sentences, and 12 zero-shot direc-
tions. We use the official validation and test sets.

Ted59 (Qi et al., 2018) is a massively multilin-
gual English-centric dataset8 with 116 translation
directions totalling 10.8M parallel sentences. The
imbalanced data—from 0.25M to just 2000 parallel
samples for some language pairs—makes it ideal
to study the effects of our method. Following (Aha-
roni et al., 2019; Raganato et al., 2021) we evaluate
on 16 supervised pairs (Azerbaijani, Belarusian,
Galician, Slovak, Arabic, German, Hebrew, and
Italian to and from English) and 4 zero-shot (Ara-
bic Ø French, Ukranian Ø Russian). Note that of
these languages, Azerbaijani, Belarusian, Galician,
and Slovak are low resource with only 5.9k, 4.5k,
10k and 61.5k paralle samples to/from English.

All settings and baselines use sentencepiece9

for subword tokenization using byte-pair encodings
(BPEs; Sennrich et al. 2016) with 32000 merge
operations.

A.2 Model and Hyperparameters

All models follow the basic configuration of
Vaswani et al. (2017), using the fairseq toolkit
(Ott et al., 2019) in PyTorch. This includes 6 lay-
ers of encoder and eecoder each with 512 dim and
2048 feed-forward dimension. The 512 dim word
embedding layer has a vocabulary size of 32000.
All word-embeddings in the model (encoder, de-
coder input/output) are shared, although the latent
embedding layer alone is specific to encoder only.
This implies that any updates to the actual embed-
ding layer because of k-NN tokens also impacts
the decoder.

The attentional latent semantic representation
layer has 512 dim (same as the embedding layer)
and a size N of 1000 for IWSLT17 (smaller
dataset) and 5000 for TED59 (larger dataset). We
did not tune this hyperparameter and chose the val-
ues based on the size of the datasets. This implies
that this layer adds 0.5M trainable parameters to

7https://wit3.fbk.eu/2017-01
8github.com/neulab/word-embeddings-for-nmt
9https://github.com/google/sentencepiece

the IWSLT17 model and 2.5M parameters to the
TED59 model. However, note that the total train-
able parameters are still much lower than that of
the baselines – this because our models have shared
embedding layers.

We use the Adam optimizer with inverse square
root learning scheduling and 6k warm steps, lr “
0.0007 and dropout of 0.3 (IWSLT17), or 10k
warmup steps, lr “ 0.005 and dropout of 0.2
(TED59). The batch size is 4096 tokens for each
of four A100 GPUs.

We use ScANN (Guo et al., 2020) for efficient
ANN search10 with k “ 3. To increase train-
ing speeds, we cache each subword’s ANNs for
400 iterations before recomputing them. We only
(peridocally) cache subword IDs: the embedding
EMBµp¨q is always computed directly from Wemb.
The value of λ is set to 0.5 (Equation 1). We follow
Kambhatla et al. (2022b) to set the values of α1, α2

to 1, and β to 5 (Equation 5).

Evaluation. For evaluation, all translations are
generated with beam size 5. We report case-
sensitive BLEU scores (Papineni et al., 2002) us-
ing sacreBLEU11 (Post, 2018). We report detok-
enized BLEU for IWSLT17 and tokenized BLEU
for TED59 for fair comparison with prior work
(Aharoni et al., 2019; Raganato et al., 2021).

B Nearest Neighbor Examples

See Table 5.

10https://github.com/google-research/
google-research/tree/master/scann . We use asymmet-
ric hashing with 2-dimensional blocks and a quantization
threshold of 0.2, and re-order the top 100 ANN candidates.

11case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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