
The Fourth Workshop on Insights from Negative Results in NLP, pages 33–44
May 5, 2023 ©2023 Association for Computational Linguistics

Encoding Sentence Position in Context-Aware Neural Machine Translation
with Concatenation

Lorenzo Lupo1 Marco Dinarelli1 Laurent Besacier2
1Université Grenoble Alpes, France

2Naver Labs Europe, France
lorenzo.lupo@univ-grenoble-alpes.fr

marco.dinarelli@univ-grenoble-alpes.fr
laurent.besacier@naverlabs.com

Abstract

Context-aware translation can be achieved by
processing a concatenation of consecutive sen-
tences with the standard Transformer archi-
tecture. This paper investigates the intuitive
idea of providing the model with explicit in-
formation about the position of the sentences
contained in the concatenation window. We
compare various methods to encode sentence
positions into token representations, including
novel methods. Our results show that the Trans-
former benefits from certain sentence position
encodings methods on En→Ru, if trained with
a context-discounted loss (Lupo et al., 2022b).
However, the same benefits are not observed
on En→De. Further empirical efforts are nec-
essary to define the conditions under which the
proposed approach is beneficial.

1 Introduction

Current neural machine translation (NMT) systems
have reached human-like quality in translating stan-
dalone sentences, but there is still room for im-
provement when it comes to translating entire doc-
uments (Läubli et al., 2018; Castilho et al., 2020).
Researchers have attempted to close this gap by
developing various context-aware NMT (CANMT)
approaches, where context refers to the sentences
preceding or following the current sentence to be
translated. A common approach to CANMT is
sentence concatenation (Tiedemann and Scherrer,
2017; Agrawal et al., 2018; Junczys-Dowmunt,
2019). The current sentence and its context are con-
catenated into a unique sequence that is fed to the
standard Transformer architecture (Vaswani et al.,
2017). Despite its simplicity, the concatenation
approach has been shown to achieve competitive or
superior performance to more sophisticated, multi-
encoding systems (Lopes et al., 2020; Lupo et al.,
2022a). However, learning with long concatena-
tion sequences has been proven challenging for the
Transformer architecture, because the self-attention

can be "distracted" by long context (Zhang et al.,
2020; Bao et al., 2021).

Recently, Lupo et al. (2022b) introduced the
segment-shifted position embeddings as a way to
help concatenation approaches discerning the sen-
tences concatenated in the processed sequence and
improve attention’s local focus. Explicitly telling
the model which tokens belong to each sentence is
not a new idea, but an intuitive one that was already
tested successfully in other tasks and approaches
(Devlin et al., 2019; Voita et al., 2018; Zheng et al.,
2020). We believe that encoding into token repre-
sentations explicit information about the position of
the sentences in the concatenation sequence can im-
prove translation quality. The temporal structure of
the document constitutes essential information for
its understanding and for the correct disambigua-
tion of inter-sentential discourse phenomena. This
work investigates this intuitive idea by comparing
various approaches to encoding sentence position
in concatenation approaches.

Our contributions are the following: (i) we com-
pare segment-shifted position embeddings with
three kinds of segment embeddings, evaluating
their impact on the performance of the concatena-
tion approach; (ii) we propose and evaluate making
sentence position encodings persistent over layers,
adding them to the input of every layer in addition
to the first; (iii) we propose and evaluate fusing
position embeddings and segment embeddings into
a single vector where token and sentence positions
are encoded in two orthogonal sets of dimensions,
allowing a clearer distinction between them, along
with memory savings.

To the best of our knowledge, this is the first
comparative study on the employment of sentence
position encodings for CANMT. The sentence po-
sition encoding variants proposed are not found
to improve the performance of the concatenation
approach except for one specific setting where a
context-discounted training loss is employed (Lupo
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et al., 2022b). More empirical studies are needed to
clearly define the conditions under which the pro-
posed approaches are beneficial to CANMT with
concatenation. Nonetheless, we find it useful to
share these preliminary results with the scientific
community. In fact, the proposed approaches are
intuitive and easy to implement, hence something
that many practitioners would presumably try. We
hope that our findings can guide future research
on sentence position encodings, by avoiding redun-
dant experiments on failing settings.

2 Proposed approach

A common method for training a concatenation
model and translating is by sliding windows (Tiede-
mann and Scherrer, 2017). The sliding concatena-
tion approach sKtoK translates a window xj

K =
xj−K+1xj−K+2 · · ·xj−1xj , of K consecutive sen-
tences belonging to the source document, including
the current (jth) sentence and K − 1 context sen-
tences, into yj

K . In this work we only consider past
context, although future context can also be present
in the concatenation window. At training time, the
standard NMT loss is calculated over the whole
output yj

K . At inference time, only the translation
yj of the current sentence is kept, while the context
translation is discarded. Then, the window is slid
by one sentence forward to repeat the process for
the (j + 1)th sentence and its context.

2.1 Sentence position encodings

To improve the discernability of the sentences con-
catenated in the window, we propose to equip the
sKtoK approach with sentence position encodings.
In particular, we experiment with segment-shifted
position embeddings and three segment embedding
methods. Segment-shifted position embeddings
(Lupo et al., 2022b) consist in a slight modification
of the Transformer’s token position scheme, where
the original token positions are shifted by a con-
stant factor every time a new sentence is encoun-
tered in the concatenation window. The resulting
positions are encoded with sinusoidal embeddings
as for Vaswani et al. (2017).

We also experiment with one-hot, sinusoidal,
and learned segment embeddings, like BERT’s
segment embeddings (Devlin et al., 2019). Seg-
ment embeddings encode the position k of each
sentence within the window of K concatenated sen-
tences into a vector of size d. We attribute sentence
positions k = 1, 2, ...,K starting from right to left.

The underlying rationale is always to attribute the
position k = 1 to the current sentence, no matter
how many sentences are concatenated as context.
The simplest strategy to integrate segment embed-
dings (SE) with position embeddings (PE) and to-
ken embeddings (TE) is by adding them (Devlin
et al., 2019). This operation requires that all three
embeddings have same dimensionality dmodel:

Hey bud [sep] You ok ? [end]

TEHey TEbud TE[sep] TEYou  TEok  TE? TE[end]

SE2 SE2 SE2 SE1 SE1 SE1 SE1

PE1 PE2 PE3 PE4 PE5 PE6 PE7

Input

Token 
Embeddings
Segment 
Embeddings
Position 
Embeddings

2.2 Persistent encodings
We propose to make sentence position encodings
persistent across Transformer’s blocks, as Liu et al.
(2020) did for position embeddings. In other words,
we propose adding segment-shifted position em-
beddings or segment embeddings to each block’s
input instead of limiting to the first one.

2.3 Position-segment embeddings (PSE)
In the Transformer, position embeddings are sinu-
soidal. Their sum with the learnable token em-
beddings is based on the premise that the model
can still distinguish both signals after being added
up. This distinction is accomplished by learning
token embeddings in a way that guarantees them
to be distinguishable. Adding non-learnable seg-
ment embedding to this sum, however, rises the
question whether they can be distinguished from
the sinusoidal position embeddings. In some cases,
learning to distinguish these two sources of infor-
mation after their sum might be impossible. For
instance, if segment embeddings are sinusoidal too,
their sum with sinusoidal position embeddings is
not bijective.1

Instead, concatenating PE and SE would make
them perfectly distinguishable because they would
belong to orthogonal spaces. Unfortunately, con-
catenating two dmodel-dimensional embeddings
would then oblige to project the resulting vector
back to a dmodel-dimensional space. To avoid this
expensive operation, we propose to reduce the di-
mensionality of PE and SE from dPE = dSE =
dmodel to values that sum up to the model dimen-
sion, i.e., dPE + dSE = dmodel. Thus, each

1Consider, for example, the equivalence between, PEt +
SEk and PEk + SEt.
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Figure 1: Cumulative ratio of the variance explained by
the principal components of the of the sinusoidal posi-
tion embedding matrix PE ∈ R1024×512, representing
1024 positions with 512 dimensions. Less than half of
the principal components can explain the entirety of the
variance represented in the sinusoidal embeddings. In
other words, 1024 positions can be represented with the
same resolution using less than half the dimensions.

PE-SE pair can be concatenated into a unique
vector named position-segment embedding (PSE):
PSEt,k = [PEt, SEk], of size dmodel.
Reducing the dimensionality of PE and SE can be
made without loss of information up to a certain
degree, as it can be shown with a Principal Com-
ponent Analysis (Jolliffe and Cadima, 2016) of the
sinusoidal position embedding matrix (Figure 1).

In the experimental section, we will empirically
evaluate the impact of representing token and sen-
tence positions with PSE, where the former are
encoded with sinusoids and the latter with either
one-hot, sinusoidal, or learned representations.

3 Experiments

We experiment with two models: base, a context-
agnostic Transformer-base (Vaswani et al., 2017),
and s4to4, a context-sensitive concatenation ap-
proach with the same architecture as base. s4to4
process sliding windows of 4 concatenated sen-
tences in input and decodes the whole window
into the target language. We equip s4to4 with the
sentence position encoding options presented in
the previous Section, and we evaluate their impact
on performance. When experimenting with PSE,
we allocate 4 dimensions to segment embeddings
(dSE = 4), which is enough to encode the position
of each of the 4 sentences in the concatenation win-
dow, with both one-hot and sinusoidal encodings.
Since dmodel = 512, this leaves dPE = 508 dimen-
sions available to the sinusoidal representation of
token positions.

The models are trained and evaluated on two lan-

guage pairs covering different domains: En→Ru
movie subtitles prepared by Voita et al. (2019),
and En→De TED talk subtitles released by
IWSLT17 (Cettolo et al. (2012), see Table 6 for
statistics). In addition to evaluating the aver-
age translation quality with BLEU2, we employ
two contrastive sets to evaluate the translation
of context-dependent anaphoric pronouns. For
En→Ru, we adopt Voita et al. (2019)’s set for the
evaluation of inter-sentential deixis, lexical cohe-
sion, verb-phrase ellipsis, and inflectional ellipsis.
For En→De, we evaluate the models on the trans-
lation of context-dependent ambiguous pronouns
with ContraPro (Müller et al., 2018), a large set of
contrastive translations of inter-sentential pronom-
inal anaphora. Appendix B includes more setup
details. The implementation of our experiments is
open-sourced on GitHub.3

3.1 Results

First, we study the impact of sentence position en-
codings in the En→Ru setting. In Table 1, we
compare models equipped with different combina-
tions of encodings (Enc.) and integration methods:
persistency (Pers.) and fusion with position encod-
ings (PSE). We primarily focus on the contrastive
evaluation of discourse translation since average
translation quality metrics like BLEU have been
repeatedly shown to be ill-equipped to detect im-
provements in CANMT (Hardmeier, 2012). Indeed,
BLEU displays negligible fluctuations throughout
the whole table. However, the performance on the
contrastive sets is not encouraging either: most of
the encoding variants degrade s4to4’sperformance.
The one-hot encoding helps, but only by a thin mar-
gin. Making encoding persistent or concatenating
them into PSE does not help either. The only ex-
ception is s4to4+lrn+pers+PSE (last line), which
gains more than two accuracy points over base-
line. However, this result is solely driven by the
net improvement on deixis disambiguation (almost
+5 points, see Table 10), while the performance is
degraded on the other three discourse phenomena.
In conclusion, sentence position encodings do not
seem to benefit the vanilla s4to4 approach.

3.1.1 Training with context-discounted loss
Following Lupo et al. (2022b), we hypothesize
that sentence position encodings can be leveraged

2Moses’ multi-bleu-detok (Koehn et al., 2007) for De,
multi-bleu for lowercased Ru as Voita et al. (2019).

3https://github.com/lorelupo/focused-concat
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System Enc. Pers. PSE Voita BLEU

base 46.64 31.98
s4to4 72.02 32.45

s4to4 shift 71.28 32.27
s4to4 shift ✓ 71.80 31.93

s4to4 1hot 72.52 32.61
s4to4 1hot ✓ 71.44 32.42
s4to4 1hot ✓ 71.24 32.33
s4to4 1hot ✓ ✓ 71.16 32.41

s4to4 sin 71.92 32.39
s4to4 sin ✓ 71.20 32.38
s4to4 sin ✓ 71.26 32.56
s4to4 sin ✓ ✓ 71.68 32.38

s4to4 lrn 71.80 32.56
s4to4 lrn ✓ 71.40 32.50
s4to4 lrn ✓ 70.36 32.37
s4to4 lrn ✓ ✓ 73.20 32.38

Table 1: En→Ru models’ accuracy on Voita’s con-
trastive set and BLEU on the test set. s4to4 models
are equipped with sentence position encodings (Enc.) of
four kinds: segment-shifted position embeddings, one-
hot segment embeddings, sinusoidal segment embed-
dings, or learned segment embeddings. Persistent encod-
ings (Pers.) are added to the input of each Transformer’s
block. Alternatively to being added, segment embed-
dings can be concatenated with position embeddings
(PSE). Values in bold are the best within their block of
rows and outperform the baselines (base, s4to4).

more effectively by training the concatenation ap-
proach with a context-discounted objective (see
Appendix A for details). Indeed, the context-
discounted objective function incentivizes distin-
guishing among different sentences. Table 2 dis-
plays the results of the s4to4+CD model equipped
with the various combinations of encodings tested
before, except the non-persistent PSE.4 In this case,
too, vanilla sentence encoding methods do not sig-
nificantly help the s4to4+CDmodel. However, mak-
ing the encodings persistent boosts performance
in the case of segment-shifted positions (+2.52
accuracy points over s4to4+CD) and learned em-
beddings (+2.14). One-hot segment embeddings
benefit only slightly (+0.48) from being persistent,
while no improvement is measured in the case of
sinusoidal segment embeddings. As discussed in
Section 2.3, this was expected since one-hot or
sinusoidal segment embeddings might not be dis-

4Since preliminary experiments where not encouraging,
we do not provide results for the non-persistent PSE combina-
tion in order to economize experiments.

System Enc. Pers. PSE Voita BLEU

base 46.64 31.98
s4to4 72.02 32.45
s4to4+CD 73.42 32.37

s4to4+CD shift 73.56 32.45
s4to4+CD shift ✓ 75.94 31.98

s4to4+CD 1hot 73.06 32.35
s4to4+CD 1hot ✓ 73.90 32.56
s4to4+CD 1hot ✓ ✓ 74.50 32.33

s4to4+CD sin 73.48 32.53
s4to4+CD sin ✓ 73.40 32.52
s4to4+CD sin ✓ ✓ 74.68 32.27

s4to4+CD lrn 73.68 32.45
s4to4+CD lrn ✓ 75.56 32.43
s4to4+CD lrn ✓ ✓ 74.48 32.35

Table 2: En→Ru context-discounted s4to4’s accuracy
on Voita’s contrastive set and BLEU. Values in bold are
the best within their block of rows and outperform the
baselines (base, s4to4, s4to4+CD).

tinguishable from sinusoidal position embeddings
once they are added together. Instead, when one-
hot and sinusoidal segment embeddings are con-
catenated to position embeddings into a unique
PSE and made persistent, they boost s4to4+CD by
+1.08 and +1.26 accuracy points, respectively.

With the aim of evaluating the generalizability
of these results to another language pair and do-
main, we train the context-discounted approach
on the En→De IWSLT17 dataset and evaluate
it on ContraPro (Müller et al., 2018).5 Table 3
summarizes the results. Unfortunately, the im-
provements achieved on En→Ru do not transfer to
this setting. The s4to4+CD slightly benefits from
segment-shifted position embeddings, but the other
approaches degrade its performance. We hypothe-
size that the model does not undergo sufficient train-
ing in this setting to reap the benefits of sentence
position encodings. In En→De IWSLT17, the train-
ing data volume is smaller than in the En→Ru
setting by an order of magnitude: 0.2 million sen-
tences versus 6 million (see Table 6). Therefore,
we extended the experiments on En→De by train-
ing models on millions of sentences. The details
and results are presented in Appendix C and Ta-
ble 7. Unfortunately, even in this case, the En→De
s4to4+CD does not benefit from the proposed sen-
tence position encoding options.

5We don’t experiment again with one-hot encodings since
it was the less promising approach on the En→Ru setting.
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System Enc. Pers. PSE ContraPro BLEU

base 43.57 29.63
s4to4 72.12 29.48
s4to4+CD 74.78 29.32

s4to4+CD shift 74.56 29.20
s4to4+CD shift ✓ 71.46 27.50

s4to4+CD sin 74.46 29.23
s4to4+CD sin ✓ 74.35 29.26
s4to4+CD sin ✓ ✓ 74.02 28.73

s4to4+CD lrn 72.49 28.35
s4to4+CD lrn ✓ 71.07 27.87
s4to4+CD lrn ✓ ✓ 71.89 28.63

Table 3: Accuracy on ContraPro of models trained on
En→De IWSLT17, and BLEU on the test set.

System6 Voita

Chen et al. (2021) 55.61
Sun et al. (2022) 58.13
Zheng et al. (2020) 63.30
Kang et al. (2020) 73.46
Lupo et al. (2022b) 73.56
Zhang et al. (2020) 75.61
s4to4 + shiftpers + CD 75.94

Table 4: Benchmarking on En→Ru (accuracy).

4 Benchmarking

In Tables 4 and 5, we compare our best perform-
ing systems with other CANMT systems from the
literature. For En→Ru (Table 4), we compare
with works that adopted the same experimental
conditions as ours. Our s4to4 concatenation ap-
proach trained with context discounting and per-
sistent segment-shifted positions achieves the best
accuracy on Voita’s contrastive set. For En→De
(Table 5), we compare to the works adopting Müller
et al. (2018)’s contrastive set for evaluation, even
if the training conditions are not comparable. Our
s4to4+CD trained on the high resource setting (see
Appendix C) is second of the list, by a negligi-
ble margin. Notably, Huo et al. (2020)’s system
is also a concatenation approach, but trained on
x10 parallel sentences with respect to our system.
This comparison indicates that context discounting
(Lupo et al., 2022b) makes training efficient.

6Whenever the cited works present and evaluate multiple
systems, we compare to the best performing one. For the
majority of these works, BLEU scores are not available for
comparison on the same test set.

7Reported in Müller et al. (2018).

System6 ContraPro

Maruf et al. (2019) 45.04
Voita et al. (2018)7 49.04
Stojanovski and Fraser (2019) 57.64
Müller et al. (2018) 59.51
Lupo et al. (2022a) 61.09
Lopes et al. (2020) 70.8
Lupo et al. (2022b) 74.56
Majumder et al. (2022) 78.00
Fernandes et al. (2021) 80.35
Huo et al. (2020) 82.60
s4to4 + CD 82.54

Table 5: Benchmarking on En→De (accuracy).

5 Conclusions

Intending to improve concatenation approaches to
context-aware NMT (CANMT), we investigated
an intuitive idea: encoding into token represen-
tations the position of their sentence within the
processed sequence. Besides adopting existing en-
coding methods (segment-shifted position embed-
dings and segment embeddings), we proposed a
novel approach to integrate token and sentence
position embeddings in a unique vector called
position-segment embedding (PSE). We also pro-
pose to make sentence position encodings persis-
tent throughout the model’s layers.

We compared these encoding approaches on the
En→Ru/De language pairs. Consistent improve-
ments were observed on En→Ru when persistent
sentence position encoding methods were used in
conjunction with the context-discounted training
objective proposed by Lupo et al. (2022b). How-
ever, results on En→De were negative.

Further research is needed to clearly define the
conditions under which the proposed approaches
are beneficial to CANMT with concatenation. We
encourage practitioners to test the most promising
sentence-position encodings - persistent segment-
shifted positions - should they want to get the
most out of their CANMT systems, but only in
conjunction with context discounting.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Samuel Läubli, Rico Sennrich, and Martin Volk. 2018.
Has machine translation achieved human parity? a
case for document-level evaluation. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4791–4796, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Xuanqing Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, and
Cho-Jui Hsieh. 2020. Learning to encode position
for transformer with continuous dynamical model.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,

38

https://cris.fbk.eu/handle/11582/314425#.XlZ3xeF7mkA
https://cris.fbk.eu/handle/11582/314425#.XlZ3xeF7mkA
https://cris.fbk.eu/handle/11582/314425#.XlZ3xeF7mkA
https://doi.org/10.18653/v1/2021.acl-long.267
https://doi.org/10.18653/v1/2021.acl-long.267
https://aclanthology.org/2020.lrec-1.461
https://aclanthology.org/2020.lrec-1.461
https://aclanthology.org/2012.eamt-1.60
https://aclanthology.org/2012.eamt-1.60
https://doi.org/10.18653/v1/2021.acl-long.222
https://doi.org/10.18653/v1/2021.acl-long.222
https://doi.org/10.18653/v1/2021.acl-long.222
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.505
https://doi.org/10.18653/v1/2021.acl-long.505
https://doi.org/10.4000/discours.8726
https://doi.org/10.4000/discours.8726
https://aclanthology.org/2020.wmt-1.71
https://aclanthology.org/2020.wmt-1.71
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.18653/v1/W19-5321
https://doi.org/10.18653/v1/W19-5321
https://doi.org/10.18653/v1/W19-5321
https://doi.org/10.18653/v1/2020.emnlp-main.175
https://doi.org/10.18653/v1/2020.emnlp-main.175
https://doi.org/10.18653/v1/2020.emnlp-main.175
https://doi.org/10.18653/v1/D19-6503
https://doi.org/10.18653/v1/D19-6503
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/D18-1512
https://doi.org/10.18653/v1/D18-1512
http://proceedings.mlr.press/v119/liu20n.html
http://proceedings.mlr.press/v119/liu20n.html


Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 6327–6335. PMLR.

António Lopes, M. Amin Farajian, Rachel Bawden,
Michael Zhang, and André F. T. Martins. 2020.
Document-level neural MT: A systematic compar-
ison. In Proceedings of the 22nd Annual Conference
of the European Association for Machine Translation,
pages 225–234, Lisboa, Portugal. European Associa-
tion for Machine Translation.

Lorenzo Lupo, Marco Dinarelli, and Laurent Besacier.
2022a. Divide and rule: Effective pre-training for
context-aware multi-encoder translation models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 4557–4572, Dublin, Ireland. As-
sociation for Computational Linguistics.

Lorenzo Lupo, Marco Dinarelli, and Laurent Besacier.
2022b. Focused Concatenation for Context-Aware
Neural Machine Translation. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 830–842, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Zhiyi Ma, Sergey Edunov, and Michael Auli. 2021. A
Comparison of Approaches to Document-level Ma-
chine Translation. ArXiv preprint, abs/2101.11040.

Suvodeep Majumder, Stanislas Lauly, Maria Nade-
jde, Marcello Federico, and Georgiana Dinu. 2022.
A baseline revisited: Pushing the limits of multi-
segment models for context-aware translation.

Sameen Maruf, André F. T. Martins, and Gholamreza
Haffari. 2019. Selective attention for context-aware
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3092–3102, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Mathias Müller, Annette Rios, Elena Voita, and Rico
Sennrich. 2018. A large-scale test set for the evalua-
tion of context-aware pronoun translation in neural
machine translation. In Proceedings of the Third
Conference on Machine Translation: Research Pa-
pers, pages 61–72, Brussels, Belgium. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz
Kaiser, and Geoffrey Hinton. 2017. Regularizing
Neural Networks by Penalizing Confident Output
Distributions. ArXiv preprint, abs/1701.06548.
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A Context-discounted loss

In CANMT with sliding concatenation windows
we should prioritize the quality of the translation of
the current sentence because the context translation
will be discarded during inference. Therefore, the
standard NMT objective function is not suitable
in this case. Lupo et al. (2022b) propose to en-
courage the concatenation approach to focus on the
translation of the current sentence xj by applying
a discount 0 ≤ CD < 1 to the loss generated by
context tokens:

LCD(x
j
K ,yj

K) = CD·Lcontext + Lcurrent (1)

= CD·L(xj
K ,yj−1

K−1) + L(xj
K ,yj).

with L(x,y) being the standard NMT objective
function:

L(x,y) =
|y|∑

t=1

logP (yt|y<t,x), (2)

The authors demonstrate the efficacy of this loss
function, that leads to a self-attentive mechanism
that is less influenced by noisy contextual informa-
tion. As a result, they show a marked improvement
in the translation of inter-sentential discourse phe-
nomena.

B Details on experimental setup

All experiments are implemented in fairseq (Ott
et al., 2019). All models follow the Transformer-
base architecture (Vaswani et al., 2017): hidden
size of 512, feed forward size of 2048, 6 layers,
8 attention heads. They are trained on 4 Tesla
V100, with a fixed batch size of approximately
32k tokens for En→Ru and 16k for En→De, as it
has been shown that Transformers need a large
batch size to optimize performance (Popel and
Bojar, 2018). We stop training after 12 consec-
utive non-improving validation steps (in terms of
loss on dev), and we average the weights of the
best-performing checkpoint and the 4 checkpoints
that follow it. We train models with the optimizer

configuration and learning rate (LR) schedule de-
scribed in Vaswani et al. (2017). The maximum
LR is optimized for each model over the search
space {7e − 4, 9e − 4, 1e − 3, 3e − 3}. The LR
achieving the best loss on the validation set after
convergence was selected. We use label smoothing
with an epsilon value of 0.1 (Pereyra et al., 2017)
for all settings. We adopt strong model regular-
ization (dropout=0.3) following Kim et al. (2019)
and Ma et al. (2021). At inference time, we use
beam search with a beam of 4 for all models. We
adopt a length penalty of 0.6 for all models. The
other hyperparameters were set according to the
relevant literature (Vaswani et al., 2017; Popel and
Bojar, 2018; Voita et al., 2019; Ma et al., 2021;
Lopes et al., 2020). When experimenting with
segment-shifted position embeddings, the shift is
equal to the average sentence length calculated over
the training data, following (Lupo et al., 2022b). In
particular, we set shift= 8 for En→Ru, shift= 21
for En→De.

B.1 Data pre-processing

Since Voita’s data have already been pre-processed
(Voita et al., 2019), we only apply byte pair en-
coding (Sennrich et al., 2016) with 32k merge
operations jointly for English and Russian. For
IWSLT17, instead, we tokenize data with the
Moses toolkit (Koehn et al., 2007), clean them by
removing long sentences, and encode them with
byte pair encoding. The byte pair encoding is
learned on the En→De training data released by
WMT17 for the news translation task using 32k
merge operations jointly for source and target lan-
guages, to be compatible with the experiments pre-
sented in the next section of the Appendix (C).

C Increasing training data for the English
to German pair

We hypothesize that the model does not undergo
sufficient training in the En→De setting to reap
the benefits of segment embeddings. Indeed, the
training data volume is smaller than in the En→Ru
setting: 0.2 million sentences versus 6 million
(see Table 6). Therefore, we choose to experi-
ment with more En→De training data, employ-
ing the same high-resource setting of Lupo et al.
(2022a). This setting expands the IWSLT17 train-
ing data (Cettolo et al., 2012) by adding the News-
Commentary-v12 and Europarl-v7 sets released
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Corpus Tgt Docs Sents Doc Length Sent Length Sent Length (BPE)

mean std max mean std max mean std max

Voita Ru 1.5M 6.0M 4.0 0.0 4 8.3 4.7 64 8.6 4.9 69
IWSLT17 De 1.7k 0.2M 117.0 58.4 386 20.8 14.3 153 23.3 16.3 195

High De 12.2k 2.3M 188.4 36.2 386 27.3 16.1 249 29.1 17.4 408

Voita Ru 10k 40k 4.0 0.0 4 8.2 4.8 50 8.5 5.0 58
Both De 62 5.4k 87.6 53.5 296 19.0 12.5 114 21.1 14.0 132

Voita Ru 10k 40k 4.0 0.0 4 8.2 4.8 42 8.5 5.0 50
Both De 12 1.1k 90.0 29.2 151 19.3 12.7 102 21.6 14.3 116

Table 6: Statistics for the training (1st block), validation (2nd block) and test set (3rd block) after pre-processing,
and after BPE tokenization. All figures refer to the English text (source side).

System Enc. Pers. PSE CP BLEU

s4to4+CD 82.24 31.69
s4to4+CD shift ✓ 80.45 30.71
s4to4+CD sin ✓ ✓ 80.85 31.40
s4to4+CD lrn ✓ 79.82 31.58

Table 7: Context-discounted s4to4 trained on the
En→De high-resource setting, evaluated with the ac-
curacy on ContraPro (CP) and BLEU on the test set.

by WMT178. The resulting training set comprises
2.3M sentences (see statistics in Table 6). Train-
ing on this data is more expensive than training on
the En→Ru setting, considering that the average
sentence length is 27.3 tokens versus 8.3 tokens,
respectively. Therefore, we only train the most
promising approaches.9 Their performances are
compared in Table 7. As expected, the s4to4+CD
model drastically improves its performance com-
pared to training on IWSLT17 alone: +7.93 accu-
racy points on ContraPro and +2.37 BLEU points
on the test set (c.f. Table 3). However, even with
larger training volumes, segment position encod-
ings do not seem to help s4to4+CD on the En→De
language pair.

D Allocating more space to segments in
PSE

For the En→Ru language pair, we have found that
one-hot and sinusoidal segment embeddings need
to be integrated into PSE for being leveraged by
s4to4+CD (Section 3.1.1). Instead, learned embed-

8http://www.statmt.org/wmt17/translation-task.html
9We set shift= 27 for segment-shifted position embed-

dings, consistently with the average sentence length of the
training data.

dings worked best when added to position embed-
dings.
Here, we evaluate whether PSE with learned seg-
ment embeddings would perform better if more
dimensions were allocated to segments. In partic-
ular, we let the model learn to represent sentence
positions in dSE = 128 dimensions, which leaves
dPE = dmodel − dSE = 384 dimensions to posi-
tion embeddings, largely enough as shown in Sec-
tion 2.3.
As shown in Table 8, increasing the number of
dimensions allocated to segment embeddings de-
teriorates the performance on Voita’s contrastive
set. The reason could simply be that adding more
learnable parameters makes the task harder.

E Persistent positions

Making sentence position encodings persistent
across the layers have been found beneficial
for context-discounted models on the En→Ru
setting (Table 2). The best-performing model,
s4to4+CD+shift+pers, shifts token positions by a
constant factor every time we pass from one sen-
tence to the next and makes the resulting position
embeddings persistent throughout Transformer’s
blocks. In Table 9, we benchmark this model
against models employing persistent token position
embeddings but without segment-shifting. Both
vanilla and context-discounted s4to4 perform better
when positions are persistent across Transformer’s
blocks, as suggested by Liu et al. (2020) and Chen
et al. (2021). Segment-shifting further enhances
performance, which confirms that the model bene-
fits from a sharper distinction between sentences.
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System Enc. Pers. PSE Deixis Lex co. Ell. inf Ell. vp Voita BLEU

s4to4+CD lrn ✓ 4 93.20 47.40 72.20 64.40 74.48 32.35
s4to4+CD lrn 128 83.88 46.33 65.20 50.20 67.38 32.43
s4to4+CD lrn ✓ 128 78.20 46.40 40.60 30.60 60.14 32.35

Table 8: s4to4 trained on En→Ru OpenSubtitles. Accuracy on Voita’s En→Ru contrastive set and BLEU on the test
set. The accuracy on the contrastive set is detailed on the left, with the accuracy on each subset corresponding to a
specific discourse phenomenon. Result: allocating more dimensions to segments in PSE deteriorates performance.

System Enc. Pers. PSE Voita BLEU

s4to4 72.02 32.45
s4to4 ✓ 72.44 32.29

s4to4+CD 73.42 32.37
s4to4+CD ✓ 74.10 32.12
s4to4+CD shift ✓ 75.94 31.98

Table 9: En→Ru: making positions persistent across
Transformer’s blocks improve discourse disambiguation
performance both for vanilla and context-discounted
s4to4. Segment-shifting positions further improves per-
formance.

F Details of the evaluation on discourse
phenomena

In Tables 10 and 11, we provide more details on
the evaluation of the models presented in the tables
of the paper, documenting their accuracy on the
different subsets of the contrastive sets employed.
For Voita’s En→Ru contrastive set (Voita et al.,
2019), we report the accuracy on each of the 4 dis-
course phenomena included in it; for the En→De
ContraPro (CP, Müller et al. (2018)), the accuracy
on anaphoric pronouns with antecedents at differ-
ent distances d = 1, 2, ... (in number of sentences).
We complement Voita/CP with two other metrics,
Voita/CPavg and CPd>0. Metrics are calculated as
follow:

Voita = 2500∗Deixis+1500∗Lex co.+500∗Ell. inf+500∗Ell. vp
5000

(3)

CPalld = 2400∗(d=0)+7075∗(d=1)+1510∗(d=2)+573∗(d=3)+442∗(d>3)
12000

(4)

CPd>0 =
7075∗(d=1)+1510∗(d=2)+573∗(d=3)+442∗(d>3)

9600
(5)

Voitaavg/CPavg =
(d=1) + (d=2) + (d=3) + (d=4)

4
(6)
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System Enc. Pers. PSE Deixis Lex co. Ell. inf Ell. vp Voita Voitaavg

base 50.00 45.87 51.80 27.00 46.64 43.67
s4to4 85.80 46.13 79.60 73.20 72.02 71.18

s4to4 shift 85.24 46.07 77.20 71.20 71.28 69.93
s4to4 shift ✓ 85.96 46.33 75.20 74.00 71.80 70.37

s4to4 sin 86.36 45.80 76.40 73.60 71.92 70.54
s4to4 sin ✓ 84.96 46.13 74.80 74.00 71.20 69.97
s4to4 sin ✓ 84.64 46.40 76.60 73.60 71.26 70.31
s4to4 sin ✓ ✓ 85.24 46.33 76.40 75.20 71.68 70.79

s4to4 lrn 85.48 46.27 76.20 75.60 71.80 70.89
s4to4 lrn ✓ 84.84 45.93 77.60 74.40 71.40 70.69
s4to4 lrn ✓ 83.60 46.67 74.80 70.80 70.36 68.97
s4to4 lrn ✓ ✓ 90.52 46.00 74.80 66.60 73.20 69.48

s4to4 1hot 86.08 47.07 78.00 75.60 72.52 71.69
s4to4 1hot ✓ 83.76 47.53 78.00 75.00 71.44 71.07
s4to4 1hot ✓ 84.56 46.13 78.20 73.00 71.24 70.47
s4to4 1hot ✓ ✓ 84.56 46.47 76.00 73.40 71.16 70.11

s4to4+CD 87.16 46.40 81.00 78.20 73.42 73.19

s4to4+CD shift 85.76 48.33 81.40 80.40 73.56 73.97
s4to4+CD shift ✓ 88.76 52.13 83.00 76.20 75.94 75.02

s4to4+CD sin 87.96 46.80 78.00 76.60 73.48 72.34
s4to4+CD sin ✓ 86.80 47.00 80.80 78.20 73.40 73.20
s4to4+CD sin ✓ ✓ 89.28 46.67 83.20 77.20 74.68 74.09

s4to4+CD lrn 88.12 46.47 81.20 75.60 73.68 72.85
s4to4+CD lrn ✓ 86.84 52.27 84.60 80.00 75.56 75.93
s4to4+CD lrn ✓ ✓ 93.20 47.40 72.20 64.40 74.48 69.30

s4to4+CD 1hot 86.40 46.73 82.00 76.40 73.06 72.88
s4to4+CD 1hot ✓ 87.68 46.80 81.60 78.60 73.90 73.67
s4to4+CD 1hot ✓ ✓ 88.88 47.67 82.20 75.40 74.50 73.54

Sample size 2500 1500 500 500 5000 5000

Table 10: Accuracy on the En→Ru contrastive set for the evaluation of discourse phenomena (Voita, %), and on its
4 subsets: deixis, lexical cohesion, inflection ellipsis, and verb phrase ellipsis. Voitaavg denotes the average on the 4
discourse phenomena, while Voita represents the average weighted by the frequency of each phenomenon in the test
set (see row "Sample size").
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System Enc. Pers. PSE d=0 d=1 d=2 d=3 d>3 CPd>0 CPavg CP

base 68.75 32.89 43.97 47.99 70.58 37.27 48.86 43.57
s4to4 75.20 68.89 74.96 79.58 87.78 71.35 77.80 72.12
s4to4+CD 76.66 72.86 75.96 80.10 84.38 74.31 78.33 74.78

s4to4+CD shift 75.25 72.56 77.15 80.27 86.65 74.39 79.16 74.56
s4to4+CD shift ✓ 72.41 69.15 74.23 77.13 86.42 71.22 76.73 71.46

s4to4+CD sin 76.75 71.83 76.82 80.97 87.55 73.88 79.29 74.46
s4to4+CD sin ✓ 76.50 72.08 76.35 79.23 85.97 73.82 78.41 74.35
s4to4+CD sin ✓ ✓ 77.25 71.22 76.42 78.88 86.87 73.22 78.35 74.02

s4to4+CD lrn 73.91 70.21 75.29 77.66 85.06 72.14 77.06 72.49
s4to4+CD lrn ✓ 73.66 68.53 72.51 75.74 86.65 70.42 75.86 71.07
s4to4+CD lrn ✓ ✓ 73.54 68.40 79.07 80.27 83.48 71.48 77.81 71.89

High Resource Setting

base 82.83 35.18 44.90 51.13 66.28 39.09 49.37 47.84
s4to4 82.41 80.66 81.72 84.29 88.00 81.38 83.67 81.59
s4to4+CD 83.70 81.79 82.11 82.19 90.04 82.24 84.03 82.54

s4to4+CD shift ✓ 81.70 79.61 81.45 83.42 86.65 80.45 82.78 80.70
s4to4+CD sin ✓ ✓ 84.12 79.85 82.38 84.46 86.87 80.85 83.39 81.50
s4to4+CD lrn ✓ 83.12 79.13 79.73 82.19 88.00 79.82 82.26 80.48

Sample size 2400 7075 1510 573 442 9600 9600 12000

Table 11: Accuracy on the En→De contrastive set for the evaluation of anaphoric pronouns (CP = ContraPro,
%). The columns titled d=* represent the accuracy for each subset of pronouns with antecedents at a specific
distance d ∈ [0, 1, 2, 3, > 3] (in number of sentences). CPavg denotes the average on the 4 subsets of pronouns
with extra-sentential antecedents (d > 0) while CPd>0 represents the average weighted by the size of each of the 4
subsets (see row "Sample size"). CP is equivalent to CPd>0, but it includes the accuracy on d = 0.
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