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Abstract

This work deals with the compilation of a
machine-readable corpus of technical docu-
ments ready to be processed for the develop-
ment of data-driven dialogue system applica-
tions in the industrial sector. To this end, we
propose a pipeline to convert technical PDF
documents into a set of JSON files that allow
machine processing of their information. This
procedure is able to extract and organise a vari-
ety of content types such as text, images, and
tables in order to obtain a corpus of structured
information, which additionally allows easy
conversion into other formats for further vi-
sualization or processing purposes. A quali-
tative analysis of the proposed procedure by
expert technical operators has resulted in a pos-
itive validation of the proposal. The compiled
sample includes Question Answering annota-
tions and instances of the dialogue ontology
related to industrial procedures that shall allow
the development of voice user interfaces to as-
sist technical operators dealing with industrial
tasks.

1 Introduction

The emergence of virtual assistants, mainly in the
leisure and domestic scopes, proves that interact-
ing through natural language with different devices
and applications is a reality that keeps improving.
In this context, the demand for such capacities in
industry is increasing, since natural communica-
tion with industrial systems leads to productivity
and security improvements which reduce opera-
tion time and costs (González-Docasal et al., 2021),
providing operators 4.0 with powerful and intuitive
interaction mechanisms to perform their tasks suc-
cessfully (Romero et al., 2020).

In fact, the concept of human-centric manufac-
turing where a collaborative intelligence assists op-
erators in their needs (Lu et al., 2022) has recently
been introduced, replacing more traditional system-
centric factories. In order to reduce the cost of

developing such systems, machine learning based
methods are increasingly being considered (Tor-
res, 2013; Zamora et al., 2017), as they are easier
to develop and maintain. However, these systems
require considerable amounts of data for develop-
ment (Wang et al., 2018), and one of the main
caveats in industrial settings is the lack of corpora
for model training (Serras et al., 2020; Vázquez
et al., 2023; Justo et al., 2010). A common prac-
tice to obtain data for under-resourced scenarios is
to exploit available documentary records from the
domain at hand (Tiedemann, 2014). In industrial
scenarios, common relevant sources are technical
documents such as user manuals and manufactur-
ing and assembly dossiers, which are usually avail-
able in PDF format.

Automatic information extraction and structur-
ing from PDF documents is a difficult unsolved
task (Bast and Korzen, 2017), with scarce previous
work, especially in the industrial domain. Docu-
mented approaches (Dong et al., 2021) exploit PDF
technical reports with relatively simple structures
and only consider text extraction, leaving aside the
preservation of images and tables, which are espe-
cially frequent and relevant in industrial technical
documents.

This work proposes a pipeline to convert in-
dustrial technical documents in PDF format into
a machine-readable JSON structure, that can be
used to develop data-driven dialogue system ap-
plications. In particular, annotations for Question
Answering (QA) and procedure-related instances
for the development of ontology-based Dialogue
Systems (DS) have been compiled. QA systems
allow obtaining information from a collection of
unstructured documents (Wang et al., 2021; Xing-
guang et al., 2022), and are evolving towards con-
versational interfaces (Reddy et al., 2019), whereas
ontology-based DS allow to define domains in de-
tail and reduce ambiguity between agents (An-
tonelli and Bruno, 2017), leading to structured



Manufacturer Machines Tasks
ABB IRB120 Maintenance
Stäubli Robotic arm Maintenance
Fanuc F11 and F12 CNC
Fagor 8055, 8060 CNC
Fagor 8065, 8070 CNC
Siemens PG 1106 CNC
Heidenhain TNC 426 CNC
Heidenhain TNC 430 CNC
Ikor RACK 81.51 Assembly

Table 1: Source technical manuals.

knowledge representations required in procedu-
ral assistance applications. The combination of
these technologies shall enable the development of
voice-based assistants aimed at guiding operators
throughout maintenance tasks, providing answers
to technical questions and/or assisting operators
in procedures extracted from industrial technical
documents.

The rest of the paper is structured as follows.
Section 2 introduces the main characteristics of
industrial technical documents and a machine-
readable corpus structure for them. Section 3 de-
scribes the proposed pipeline to convert technical
documents into the that format, while the annota-
tion procedure for relevant question-answer pairs
is presented in Section 4. Next, Section 5 provides
details regarding the corpus compiled using the pro-
posed pipeline, as well as some evaluation metrics.
Finally, conclusions are drawn in Section 6.

2 Industrial Technical Documents

Industrial documents of technical nature cover a
wide range of topics. In this work, we have se-
lected a set of 9 documents, focusing on three rel-
evant industrial tasks in which operators used to
frequently consult technical documents when inter-
acting with industrial production machines and pro-
cesses, and where the development of QA systems
as well as procedural assistants, along with spoken
interfaces, can have considerable productivity im-
pact: (a) maintenance, (b) machine programming,
and (c) manufacturing and assembly tasks.

Table 1 details the selected documents from dif-
ferent manufacturers, spanning from robot main-
tenance manuals, or computer numerical control
(CNC) programming manuals to manufacturing
and assembly dossiers, all in PDF format.

Despite the structures of the manuals fluctuate

Figure 1: Fragment of a manual showing an image with
a pointer to a relevant position for a maintenance task.
The image has been intentionally blurred to comply with
copyright restrictions.

across manufacturers, all documents include head-
ers and footers, chapter and sub-chapter based lev-
els, as well as a considerable amount of tables and
images embedded in the text. In addition, tables
and images usually include key information that
cannot be overlooked for QA and DS applications
for industrial procedure assistance, e.g. they often
describe processes or show parts of the machine
where actions are required. For instance, Figure 1
shows a PDF fragment including an image indicat-
ing the concrete positioning of a particular element,
to be considered during mechanical failure repara-
tions or maintenance activities.

So, relevant information for QA and dialogue for
assistance can correspond to components of various
sizes from an entire section or subsection, to a short
span of text, or even be a table or a part of it, or an
image. Thus, it is of key importance that converted
documents are structured in a way that preserves
all this information in a machine-readable format.

In order to enable dialogue applications to ex-
ploit the structural information of the source in-
dustrial technical documents in PDF format, the
following machine-readable corpus structure has
been defined:

• Manual. Each manual gives rise to a dialogue
use case, so there is a folder for each manual.

• Chapters. The contents of the manuals are
divided into chapters, so there is a folder for
each chapter.

• Sections. Chapters are often divided into sec-
tions, so a JSON file is created for each sec-
tion, comprising its contents in a structured
way. If the chapter has no sections, a single
file is created for the chapter’s contents. Each



Figure 2: Main steps of the corpus compilation pipeline.

chapter folder also contains an images folder
where the images extracted are stored.

• Subsections. Sections can be further divided
into subsections, when they appear as part of
the numbered structure (e.g., 4.1.1 is a subsec-
tion of section 4.1 in chapter 4), or what we
called titles, which are distinguished parts of
the contents with their own name but which
do not follow the numbered schema. We also
consider as title the level below subsection
when it exists, numbered or not.

• Contents in the deepest level. When the deep-
est level of a manual’s structure is reached for
each element of the nested listings (e.g., a sub-
section with no title elements as children), its
contents are incorporated as a dictionary struc-
ture including: the raw text; the processed
(clean) text; the images found for the excerpt,
as a list of the names with which they have
been stored; the list of tables that appear in
the excerpt; and the final text after manual
revision and corrections.

3 PDF Document Conversion Pipeline

The pipeline proposed to automatically transform
the source industrial technical PDF documents into
the machine-readable corpus structure introduced
in Section 2 and depicted in Figure 2, consists of
four main steps:

1. Outline generation. This outline is a struc-
tured representation in JSON format of the
different levels of contents conforming the
document.

2. Content extraction. This step consists of ex-
tracting the contents in the original manuals,
using the outlines produced in step one to cor-
rectly locate fragments, and saving them in a

structured form. This step includes the extrac-
tion of three types of contents of interest: text,
images, and tables.

3. Text processing. The raw text extracted from
the manuals is processed to produce a clean
version containing only the text in the main
body, free of undesired segments such as page
headers and footers, text fragments that be-
long inside tables, or contents belonging to
other fragments that have not been correctly
delimited in the extraction step.

4. Content Revision. An optional revision can
be carried out manually to ensure that the final
contents of the documents are correct.

Detailed information about the tools that were
tested and those that were finally integrated into
the pipeline as well as on the implementation of
the different steps of the pipeline are presented in
the next subsections.

3.1 Outline Generation
PDF documents with a valid navigation-enabling
outline, preserve information about their internal
structure (i.e., chapters, sections, subsections, etc.
and their starting pages) in their metadata. Exploit-
ing this information enables to generate the base
JSON structure of the outline in an automatic way.

The pdftohtml (Glyph & Cog, 2021b) PDF con-
version utility of the xpdf (Glyph & Cog, 2021d)
toolkit was used to extract the PDF’s metadata rel-
ative to the contents outline in a structured HTML
format that preserves the elements’ hierarchy, titles
and start pages. The result can be parsed to extract
the relevant information and format it into the tar-
geted JSON structure. The library used to parse
the HTML information was AdvancedHTMLParser
(Savannah, 2021). The fragments’ end page num-
bers, which are not present in the PDF files outlines,
are established by some heuristics and assumptions.

3.2 Content Extraction
There exists a variety of tools aimed at automati-
cally extracting content from PDF files. However,
after trying several, none of them seemed to be
optimal for extracting all three targeted types of
contents, text, images, and tables. For this reason,
different methods were tested and selected for the
extraction of each content type.

The methodology used for testing and selecting
the optimal tools for content extraction involved



the following steps: 1) Applying each tool on a
selected manual; 2) Analysing the produced result;
3) If the result was unsatisfactory the tool would be
discarded; 4) The tools that performed best would
be applied to other manuals to check whether the
results were consistent on other documents from
different manufacturers, and so deem them as ac-
ceptable.

3.2.1 Text Extraction
The following tools available which are oriented to
the extraction of text from PDF documents were
tested for our pipeline:

• pdfplumber (Singer-Vine, 2021). Although
this library is more oriented to the extraction
of tables from PDF files, its text extraction
functionality was also tested. Results were
bad, given that text spacing was not inter-
preted correctly by the extractor and words
appeared joined together.

• tika-python (Mattmann, 2021) is a library
that makes use of the Apache Tika toolkit1

for extracting text from PDF. Results of apply-
ing this library across manuals were generally
good, although there were some cases where
page numbers appeared joined together with
the main text, without spacing.

• pdftotext (Glyph & Cog, 2021c) is xpdf’s
command line utility to extract text from PDF
files. As no errors were detected when ap-
plying it across the manuals, this tool was
selected and incorporated in the pipeline for
text extraction.

3.2.2 Images Extraction
We found only a few tools capable of extracting
images from PDF files. Some included little to no
documentation on how to use this functionality. For
example, pdfplumber extracts some image repre-
sentation objects from the PDF’s metadata, but it
does not provide information on how to obtain the
original images from those representations. The
image extractors that produced valid results when
applied to our manuals are:

• pdfimages (Glyph & Cog, 2021a) is a xpdf’s
command line utility to extract images from
PDF files. Images across manuals were cor-
rectly extracted and saved into a target folder.
Errors were found with some images’ formats.

1http://tika.apache.org/

• PyMuPDF (Jorj X. McKie and Liu, 2021) along
with Pillow (Clark, 2021). The combination
of both Python libraries allows extracting and
saving images from PDF files. Results were
comparable to the previous tool, some errors
being still encountered with certain images.
This method was selected and incorporated to
the pipeline for image extraction.

3.2.3 Tables Extraction
As for table extraction, we only found a couple of
tools aimed at extracting tables from PDF files.
General content extractors such as the already-
mentioned pdftohtml would not recognise tables.
The tools specialised in table extraction that we
tested are:

• pdfplumber (Singer-Vine, 2021): Despite
this library is specifically oriented to extract
tables from PDF files, the results of its ap-
plication were bad. For some tables, only the
header row was recognised as a table, and their
text contents included spacing errors. Many
other tables were simply not recognised as
such.

• camelot (Mehta, 2021) is also a Python li-
brary specifically aimed at extracting tables
from PDF documents, and it allows saving
the extracted tables as JSON, among other
formats. Results of applying this tool across
manuals were mostly good, with a few cases
of tables not automatically recognised as such.
This was the tool selected and incorporated
into the pipeline for table extraction.

Given that table extractors work at page level, a
common consequence is that tables that span over
several pages are always considered as individual,
separate tables. Since in the manuals it is usual for
tables to repeat the header row when continuing in
a new page, a processing function was created to
automatically join split tables when necessary.

3.3 Text Processing
This step of the pipeline aims to delete undesired
information. Within text fragments this mainly
includes headers and footers, page numbers, text
fragments that belong inside tables, and content
that has not been correctly delimited and does not
belong to the current fragment. In some cases, it
also includes expressions that do not provide mean-
ingful information and hinder readability of the

http://tika.apache.org/


Figure 3: Above, text as extracted in step 2. Below, same text after applying the text processing step. Contents have
been intentionally blurred to comply with copyright restrictions.

corresponding fragment (e.g. “Continued on next
page" or alphanumeric codes used by the manufac-
turer, such as “M000..." in Figure 3).

Regular expressions are used to delete headers,
footers, page numbers, and undesired information
in general. They are fed from a configuration file
adapted to each manual format, as it changes across
industrial documents. Although some of the em-
ployed regular expressions are simple and straight-
forward, others get more complex to avoid deleting
meaningful information inside the text. Figure 3
shows an example of a text fragment in which the
footer, page number, and an alphanumeric code
that deteriorates readability have been erased.

The process used to automatically delete content
not belonging to a particular text fragment consists
of the following steps: 1) The level of the current
element is identified (section 6.7 in Figure 3); 2)
Any text appearing before the title of the current
element is deleted (in the example, text belonging
to section 6.6 is deleted); 3) The title of the next
element is identified and all text from that point on,
if included, is erased from the current fragment.

3.4 Quality Revision

The final step of the pipeline involves an optional
manual revision process in order to ensure the qual-
ity of the final corpus.

In order to make this process easier for human
reviewers, each fragment to be reviewed is dumped
into a text file following this format: (i) A header
including the fragment’s starting and ending page
in the PDF, plus the fragment’s title and a separator;
(ii) The processed text as obtained from the previ-

ous step of the pipeline, and a separator; and (iii)
A preview of the tables found for the current frag-
ment, formatted as text using the tabulate (As-
tanin, 2021) library on the JSON table data. The
first and third parts are provided as helping refer-
ences, while the part appearing between separators
is the one to be reviewed and possibly modified.
This part is then loaded and included in the final
JSON after revision.

3.5 Pipeline in use

The presented PDF document conversion pipeline
has been applied and qualitatively validated extract-
ing the information contained in the technical man-
uals listed in Table 1. Generally speaking, struc-
turing and automatic content extraction have been
quite satisfactory. This impression was confirmed
at the content revision step, where three technical
reviewers agreed that the information extracted was
correct to a great extent. In addition, four expert
technical operators have also provided a very posi-
tive opinion of the pipeline output, validating it for
annotation and information presentation purposes
within the project.

The outline generation module was capable of
extracting an accurate content structure from the
PDF files’ metadata. The selected content extrac-
tion tools were capable of extracting raw text, im-
ages, and tables without major problems across
the varied set of analysed industrial technical docu-
ments. And the implemented text processing mod-
ule allowed to adequately filter out undesired (e.g.,
headers and footers), irrelevant (e.g. “Continued
on next page"), and duplicated information auto-



Figure 4: A sample fragment of a manual in its original PDF format (top left), the structured JSON produced by
our pipeline (bottom), and recomposed for visualisation on an annotation tool (top right). Contents have been
intentionally blurred to comply with copyright restrictions.

matically.
In a few occasions, some content extraction

anomalies were detected, such as missing text con-
tent, which was mostly caused by the missing text
being wrongly considered part of a table, and addi-
tional text content, the origin of which was mostly
related with some subsections and their parent sec-
tions’ names being equal, causing content delim-
iters to fail. Furthermore, additional content was
also generated when tables were incorrectly ex-
tracted as text or text from images was considered
as part of the main body of text.

Tables, although generally well-extracted, pre-
sented more problems than text content. The most
common issues were related to content (empty,
missing, or incomplete tables and multiple tables
that were incorrectly joined) and format (misplaced
cell content or moved content when cells had
itemised or numbered lists).

All in all, the conversion pipeline is able to pro-
duce a comprehensive version of the original con-
tents in PDF to a machine-exploitable structured
JSON format.

4 Annotation Procedure

Once converted, the industrial technical documents
were annotated by four skilled operators, in order
to identify relevant question-answer pairs and pro-

cedures to develop both question-answering and
dialogue systems for procedure assistance, respec-
tively. The employed annotation tool (Justo et al.,
2016) requires the input to be formatted as Mark-
down text, which allows inline HTML code. Know-
ing this, processed text was easily converted from
the original JSON files and displayed by the tool
with minimal changes (e.g. adapting line breaks).
Nevertheless, references to images and tables still
had to be converted from JSON to their HTML
equivalents to be visualized.

Figure 4 depicts a fragment from a PDF manual,
including text, an image, and a table, at three differ-
ent stages: On the top left, the fragment is shown
in its original PDF format; The bottom image illus-
trates the results of applying the PDF conversion
pipeline, where contents are presented as a struc-
tured JSON; Finally, the image on the top right
shows how the same contents are displayed by the
annotation tool.

Two types of question-answer pairs were identi-
fied by annotators: Generic and Specific. Generic
questions usually describe a procedure (e.g., dis-
assembling part of a robot) and corresponded to
whole subsections or, depending on the manual,
sub-subsections. On the other hand, answers to
specific questions were extracted from either sub-
sections or sub-subsections and generally referred



Manual # Chapters # Running Words Vocabulary size Norm. Lev. distance
IRB120 3 3167 807 0.66
Controller 2 8368 1883 0.78
Robotic Arm 2 2329 780 0.93
F11 8 23302 3650 0.93
F12 5 37974 4862 0.70
CNC 8060/8065 15 61730 4975 0.91
PG 1106 11 46430 6794 0.81
TNC 426/TNC 430 12 65410 6270 0.86
RACK AA.81.51.2001 9 5019 1525 0.91

Table 2: Basic information about the number of chapters and words per manual as well as the normalized Levenshtein
between the manually corrected text and the automatically corrected text.

to particular queries (e.g., what tools should I use
to disassemble the part). In total and during six
months, the four operators annotated 1416 generic
and 751 specific question-answer pairs.

5 Corpus Description and Evaluation

Table 2 provides a general description of the ob-
tained corpus in terms of number of chapters, num-
ber of running words and vocabulary size. In order
to gain a better insight into the performance of the
conversion pipeline we compare the manually cor-
rected text with the text extracted by the system. To
this end we considered the Levenshtein distance,
which calculates the minimum number of changes,
i.e. adding, deleting, or replacing a single charac-
ter, that are needed to transform one string into the
other.

In this way, we can evaluate how well the auto-
matic text extractor and text processor based on reg-
ular expressions work. However, it heavily depends
on the length of both strings to be compared and
does not provide any meaningful information in
our case, where the length varies significantly from
one manual to the other. To solve this problem,
we have adapted it to the normalized Levenshtein
distance, defined in Equation 1

Levnorm = 1− Lev(s1, s2)

max(lens1, lens2)
(1)

where Lev(s1, s2) is the Levenshtein distance
between the strings s1 and s2 and lens1 and lens1

are the length of the strings. Thus, the distance
does not longer depends on the length of both
strings. The value of the normalized Levenshtein
varies between 1.0, where both strings are equal,
and 0.0, where they are completely dissimilar. Ta-
ble 2 incldues the normalised Levenshtein distance

between the correct text with the one extracted
through the proposed PDF conversion pipeline.
This table shows a very good performance of the
extraction and processing tool for most of the man-
uals, being higher than 0.78 for almost all of them.
However, the improper operation of the extraction
and processing tools lead to worse performance for
both the IRB120 and F12 manuals. These manu-
als have numerous images, then the extraction tool
retrieved information embedded in the images.

On the other hand, Table 3 shows the main char-
acteristics of the QA corpus obtained after the an-
notation procedure described in Section 4. This
table provides the number of generic (GQ) and spe-
cific (SQ) questions along with the average lengths
of each manual, in terms of the number of words.
This table shows a high variability in the length
of the answers within the same manual, and from
one manual to another. This fact, along with that
some answers include images, shows the complex-
ity of developing question-answering systems for
the industrial environment. This complexity, for
example, does not exist in other more popular ex-
tractive question-answer datasets such as SQuAD
v1.1 (Rajpurkar et al., 2016) and v2.0 (Rajpurkar
et al., 2018), where images are not included and
the length of the answers is less variable. However,
this dataset has been successfully used for a QA
system, which has been tested in the framework of
the same research project (Ruiz et al., 2023).

Finally, Table 4 provides information about the
corpus for ontology-based DS, detailing instances
derived from the 6 selected procedures in the cor-
pus, represented according to the ontology de-
scribed in (Aceta et al., 2022). From the total of
268 instances, 6 correspond to procedures, 8 to
methods, 20 to tasks and 69 to steps. In a nut-



Manual # Generic Avg. # words % answers # Specific Avg. # words
questions (GQ) in GQ with images question (SQ) in SQ

IRB120 419 1342.2 0 159 101.1
Controller 133 2528.3 0 53 112.3
Robotic Arm 55 1285.7 0 36 88.1
F11 192 2452.9 26 62 120.7
F12 186 2030.9 35 144 182.5
CNC 8060/8065 124 2342.8 21 60 209.7
PG 1106 91 5667.9 27 47 194.1
TNC 426/430 164 2071.4 43 63 210.2
RACK AA.81.51.2001 52 1075.8 48 127 94.7

Table 3: Annotated QA dataset, which includes informations of General (GQ) and Specific Questions (SQ)

Class Instances Avg. instances per
procedure

Avg. instances per
upper-class

Additional info Descriptions
Avg. SD Avg. SD

Procedure 6 - - 3.66 2.71 1 0
Method 8 1.33 1.33 (procedure) 0.75 1.39 1.63 4.6
Task 20 3.33 2.5 (method) 0.5 1.15 0.35 0.49
Step 69 11.5 3.45 (task) 0.52 0.61 0.49 0.68

Table 4: Ontology instantiation overview

shell, each procedure has an average of 1 method,
each method an average of 3 tasks and each task an
average of 4 steps.

The rest of the instances in the dialogue system
ontology instantiation include other details such as
the necessary materials to perform the procedure
given a specific method or the descriptions and ad-
ditional information for each procedure division
class. As for the latter, Table 4 also shows the av-
erage numbers of instances covering each type of
information per each class and the Standard Devi-
ation (SD) to provide more objective insights on
this data. As it can be seen in the table, the number
of instances may differ significantly depending on
the procedure or method.

6 Conclusions and Future Work

This work has been developed in the framework
of a research project whose objective is to facili-
tate industrial maintenance, programming, manu-
facturing, and assembly tasks through the use of
voice-based interfaces. Unlike classic dialogue sys-
tems in which the information to be supplied to
the user is naturally structured in a database (e.g.,
restaurants, types of food, addresses, etc.), human-
machine interaction assisting industrial operators’
tasks needs to handle information that is usually
found in PDF documents.

In this scenario, we have proposed a pipeline
aimed at extracting content from technical PDF
documents and converting them into a machine-
readable format required for the automatic process-
ing of their information. This procedure is able to
extract and organise a variety of content types such
as text, images, and tables in order to get a corpus
of structured information organised in JSON files.

A qualitative analysis of the results of the pro-
posed procedure has been carried out by expert
technical operators, who have provided a very pos-
itive opinion validating the proposal. Moreover,
normalised Levenshtein distance between the man-
ually corrected text and the text generated by the
pipeline is quite high showing a very good perfor-
mance of the pipeline. This way, we are contribut-
ing to the scarce literature addressing multimodal
content extraction from documents in PDF format,
which is still mainly limited to text extraction.

In addition, one of the advantages of the pro-
posed procedure to structure contents into JSON
files is that it can be easily converted into other
formats, such as HTML, for further visualisation
or processing purposes. We have taken advantage
of this feature to facilitate an annotation process
carried out by expert technical operators. These an-
notations as well as the derived ontology instances
have allowed the compilation of a useful corpus
for the development of question answering and



assistance-oriented dialogue system applications in
the industrial sector.
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