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Abstract

Entity linking, which aligns mentions in the
text to entities in knowledge bases, is essen-
tial for many natural language processing tasks.
Considering the real-world scenarios, recent re-
search hotspot of entity linking has focused on
the zero-shot setting, where mentions need to
link to unseen entities and only the description
of each entity is provided. This task challenges
the language understanding ability of models
to capture the coherence evidence between the
mention context and entity description. How-
ever, entity descriptions often contain rich in-
formation from multiple views, and a mention
with context only relates to a small part of the
information. Other irrelevant information will
introduce noise, which interferes with models
to make the right judgments. Furthermore, the
existence of these information also makes it dif-
ficult to synthesize key information. To solve
these problems, we select key views from de-
scriptions and propose a KVZEL framework
for zero-shot entity linking. Specifically, our
KVZEL first adopts unsupervised clustering to
form sub views. Then, it employs a mention-
aware key views selection module to iteratively
accumulate mention-focused views. This puts
emphasis on capturing mention-related infor-
mation and allows long-range key information
integration. Finally, we aggregate key views to
make the final decision. Experimental results
show the effectiveness of our KVZEL and it
achieves the new state-of-the-art on the zero-
shot entity linking dataset.

1 Introduction

Entity linking (EL) is the task of assigning ambigu-
ous mentions in textual input to their corresponding
entities in a given real-world knowledge base. EL,
as a fundamental task in the information extraction
area, plays an important role in many downstream
natural language processing (NLP) applications,
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Figure 1: The motivation illustration of our proposed
framework. Usually, an entity can be linked by different
mentions from multiple views. Our proposed frame-
work comes from this observation and selects key views
from entity descriptions to better align mentions with
divergent context.

such as semantic search (Blanco et al., 2015), con-
tent analysis (Huang et al., 2018) and question an-
swering (Welbl et al., 2018; Li et al., 2020). Tradi-
tional EL approaches are built on the assumption
that the train and test set share the same entity dis-
tributions, which means that linked entities in the
test set are seen during training. However, in many
real-world scenarios, the process of labeling data is
labor-intensive and error-prone. More importantly,
for some specialized domains such as medical and
legal domains, the training data is sensitive or pro-
prietary. Thus, it is not easy to obtain labeled data
for these domains. Therefore, EL models need to
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have the capability of generalizing to new entities
of new domains.

To address this, the zero-shot entity linking task
(Logeswaran et al., 2019) has been proposed, where
mentions need to be linked to unseen entities of new
domains. Moreover, considering that there is no
external knowledge (e.g. frequency statistics and
structured data) in many specialized domains, the
textual description for each entity is the only infor-
mation provided in this task. Based on the above,
we can see that the entity description, as the only
identification information of entities, is crucial for
this task. Some previous works (Yao et al., 2020;
Tang et al., 2021) have realized its importance and
constructed models to circumvent the length limi-
tation problem of BERT-based models to capture
richer entity description information.

However, to the best of our knowledge, all previ-
ous methods utilize the same entire entity descrip-
tion to match different mentions with divergent
context. This seems struggling to manage entities
with rich multiple views information. We argue
that only part of description information is related
to mentions and other irrelevant information will
introduce noise and make models reduce emphasis
on the corresponding details. An example shown
in Figure 1a, the entity description of “LeBron
James” contains multiple views information, such
as his NBA journey, his family, etc. For the first
mention, it only relates to “View 1” in the entity
description. Other views are useless in determining
whether the “James” should link to the entity “Le-
Bron James”. For the second mention, it is related
to “View 2” and “View 4”. However, the descrip-
tion of “LeBron James” mainly concentrates on his
professional journey, which will introduce noise to
interfere with entity linking models matching “his
father” and “LeBron James”. Furthermore, “View
2” and “View 4” may exist in different parts of the
description, which makes it not trivial to synthesize
the key information of the two views.

To address these problems, in this paper, we try
to select key views from entity descriptions for
different mentions with divergent context, which
is shown in Figure 1b. This can also help entity
linking models solve the problem of length limi-
tation in BERT-based models, since the selected
views are only a part of entity description. We pro-
pose a novel Key Views selection framework for
Zero-shot Entity Linking in this paper, KVZEL in
short. KVZEL first adopts unsupervised clustering

to group the sentences, and those in each cluster
compose a sub view. When judging whether a
mention in text matches the entity, humans tend to
read the whole description and only focus on the
view that is most relevant to the mention. Consid-
ering that this mention may be related to multiple
views of entity description, after finding that a sin-
gle view is insufficient to make the judgment, hu-
mans will use the previously relevant views as clues
and move on to find the next relevant view. With
the inspiration of the human’s thinking process, our
KVZEL designs a mention-aware key views selec-
tion module to iteratively accumulate the most rele-
vant views. These views are then aggregated into a
new text, which serves as the mention-focused and
highly-condensed version of original entity descrip-
tion. Finally, the text replaces the description and
is utilized by our entity linking module to make the
final decision.

To summarize, our major contributions are
shown as follows:

• To the best of our knowledge, this work is the
first to select key views from entity descrip-
tions to link different mentions with divergent
context. This is very meaningful for entities
with rich multiple views information.

• We propose a novel framework KVZEL for
zero-shot entity linking, which imitates the
human’s thinking process to iteratively accu-
mulate mention-related views. These views
are aggregated to measure the matching score
between mentions and entities.

• Experimental results on zero-shot entity link-
ing dataset (Logeswaran et al., 2019) show
that our KVZEL achieves new state-of-the-art
performance. Further analysis demonstrates
the effectiveness of our framework.

2 Related Work

2.1 Entity Linking

Entity linking, as a bridge between real-world text
and standard knowledge base, has been widely ex-
plored in recent years. Many entity linking meth-
ods (Sun et al., 2015; Yamada et al., 2016; Le and
Titov, 2018; Yang et al., 2019; Tedeschi et al., 2021;
Barba et al., 2022) have achieved great success in
both academic research and industrial applications.
While these results are impressive, the models in
these methods are learned under the setting where
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[SEP]
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[SEP]

Figure 2: The overall architecture of our KVZEL framework, which includes three modules: a sub view clustering
module, a mention-aware key views selection module and an entity linking module.

linked entities in the test set are available during
training. Furthermore, with the expansion of knowl-
edge in knowledge bases, many state-of-the-art
methods (Ganea and Hofmann, 2017; Kundu et al.,
2018; Raiman and Raiman, 2018; Orr et al., 2021)
have made full use of external knowledge. How-
ever, in many real-world scenarios, labeled data
and external knowledge are not easily available in
many specialized domains. Based on empirical
evidence, the performance of models deteriorates
substantially when dealing with new entities of new
domains without external knowledge. This moti-
vates many researchers to study zero-shot entity
linking (Logeswaran et al., 2019).

2.2 Zero-Shot Entity Linking

Zero-shot entity linking is the task where mentions
must be linked to unseen entities and only the de-
scription of each entity is available. It consists of
two phases: candidate generation (Wu et al., 2020;
Sun et al., 2022; Sui et al., 2022) and candidate
ranking (Yao et al., 2020; Tang et al., 2021). Fol-
lowing previous works (Logeswaran et al., 2019;
Yao et al., 2020; Tang et al., 2021), we only fo-
cus on the candidate ranking phase and use the
traditional Information Retrieval (IR) approach of
BM25 (Robertson et al., 1994) in the candidate
generation phase. Logeswaran et al. (2019) uses a
cross-encoder architecture that concatenates men-
tion context and entity description and feeds it into
BERT (Devlin et al., 2019) to produce the match-
ing score by performing cross-attention. However,
BERT-based models may lose important descrip-
tion information due to the limitation of their input

length. Yao et al. (2020) solves the problem by ini-
tializing larger position embeddings to expand the
effective reading length of BERT. Tang et al. (2021)
proposes a bidirectional multi-paragraph reading
model which segments a long description into short
paragraphs to make use of more description infor-
mation. However, the consideration of paragraphs
that are irrelevant to the mention may introduce
noise in the final representation and limit the long-
range dependencies between relevant information.
This motivates us to select key views from entity
descriptions for different mentions with divergent
context to address these problems.

3 Methodology

Figure 2 shows the overall architecture of our pro-
posed KVZEL framework. We first use the sub
view clustering module to generate sub views from
descriptions. Then we design a mention-aware key
views selection module to select relevant sub views
for different mentions with divergent context. Fi-
nally, our entity linking module makes the final
decision based on the selected views. In this sec-
tion, we introduce these three modules in detail.

3.1 Sub View Clustering

The goal of our sub view clustering module is to
cluster sentence chunks describing the same view
together, so as to select key views later. For each
given entity description, we first segment it into
sentence chunks S = [s1, s2, ..., sL]. Intuitively,
each individual sentence in the description is taken
as a chunk. However, the understanding of short
sentences is often not easy and needs the help of
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context. A simple solution is to segment the entire
description into chunks of fixed length. However,
this destroys the syntactic relationship and may
lead to clustering errors. Thus, we fuse these two
ways and set a fixed capacity c for each chunk.
Each chunk loads as many sentences as possible.
After loading sentences, the sentence sequences in
chunks are padded to c with zero values.

We feed the sentence chunks S into BERT (De-
vlin et al., 2019) in the form of [CLS] si [SEP]
to extract features, which are the vectors in the
last hidden layer corresponding to the position
of [CLS] tokens. Then, we adopt mean-shift
(Cheng, 1995) clustering approach to group sen-
tence chunks. Compared to other traditional unsu-
pervised clustering approaches (such as k-means
(Lloyd, 1982), spectral clustering (Ng et al., 2001),
etc), mean-shift does not need to specify the num-
ber of clusters, which is more suitable for our ap-
plication scenario. Those sentence chunks in each
cluster compose a sub view:

V = Mean-Shift(BERT(S; θBERT1))

3.2 Mention-Aware Key Views Selection
The goal of our mention-aware key views selection
module is to iteratively accumulate mention-related
views for the final entity linking process. This is
similar to human reading through the whole de-
scription view by view to measure the relevance of
the mention and each view. Then they will focus
on the view that is most relevant to the mention.
When moving on to find the next relevant view,
they will still remember previously relevant views
and utilize them as clues to help this process.

3.2.1 Feature Extraction
For a given mention m, suppose there are P can-
didate entities of m and we have n sub views
V = [V1, V2, ..., Vn] of the p-th candidate entity
ep. In the initial stage, our clues only consist of the
mention m and the entity title:

[CLS] me [SEP] t (1)

where me and t are the inputs of the mention
m and the entity title. Following Wu et al.
(2020), me and t are constructed as: me =
cl [Ms] mention [Me] cr and t = title [ENT],
where mention, cl, cr, title are the word-piece
tokens of the mention, context before and after the
mention and the entity title respectively. [Ms] and
[Me] are special tokens to tag the mention, and

[ENT] is the special token to separate entity title
and entity description. The clues are concatenated
with the n views separately and a special separator
token [SEP] is added at the end. We feed them into
a BERT encoder (θBERT2) to extract features. It pro-
duces a matrix representation X = [x1, x2, ..., xn]
to represent the clues-view pairs, where xi ∈ Rd is
the output of the last hidden layer corresponding
to the position of the [CLS] token for the i-th view
and d is the dimension of hidden states of BERT.

3.2.2 Module Training
Since the process of labeling data is labor-intensive
and error-prone, we do not have any labels about
key views. Therefore, we introduce a matching
task to enable our module to learn relevance scores
between mentions and views. We argue that views
that are more relevant to the mention can contribute
more to determining whether the mention and the
candidate entity are matched.

Specifically, we use a trainable weight parameter
Wa ∈ R1×d as one of the inputs and utilize the
SoftMax function to calculate the attention scores
of the matching result with regard to the views:

G = SoftMax(WaX
T )

where G ∈ R1×n. Then, we utilize the weighted
aggregation with the attention scores to obtain the
mention-entity representation: Z = GX , where
Z ∈ Rd. Finally, we get the binary prediction ŷ
by feeding the representation into a feed-forward
neural network FFNN: ŷ = FFNN(Z; θF1). The
prediction measures whether the mention and the
candidate entity are matched.

We employ cross-entropy as our loss objective,
which is calculated as follows:

LSelection = −(ylogŷ + (1− y)log(1− ŷ)) (2)

where y takes the value 1 if the mention and the
candidate entity are matched.

3.2.3 Key Views Selection
During the matching task training, the vector G
learns to measure the degree to which each view
contributes to determining whether mentions and
entities are matched. In the inference stage, we
use it as the relevance scores between clues and all
views of the candidate entity and utilize an Argmax
function to obtain the most key view:

k = Argmax(G) (3)
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Algorithm 1: The key views selection pro-
cess of our KVZEL.
Input: The mention with context m,

candidate entity ep, candidate view
list V of ep, number of iterations Q.

Output: The selected view list V̂ .
1 Construct initial clues by Eq. 1.
2 for each iteration q = 1 to Q do
3 Calculate LSelection by Eq. 2 and train

our key views selection module.
4 Calculate the most key view Vk by Eq. 3

in the inference stage.
5 Add Vk to existing clues and the

selected view list V̂ .
6 Remove Vk from the candidate view list

V .
7 end
8 return V̂

where k is the view marker. Then, we add this view
Vk (e.g. V2) to our existing clues. And we will
not consider the view Vk in the next iteration. We
summarize the key views selection process of our
KVZEL in Algorithm 1.

3.3 Entity Linking

The goal of our entity linking module is to aggre-
gate key views into a new text ˆdes to make the final
decision. Considering that the first view sentences
(view V0) are able to generally describe the entity,
we first add the first view V0 to ˆdes to enhance
the overall understanding of the entity. Then we
sort the selected key views to maintain the relative
ordering in the original description to preserve the
syntactic dependencies. The key views are then
added to ˆdes one by one. The new text ˆdes serves
as the mention m focused highly-condensed ver-
sion of the entity description of ep. Finally, ˆdes
replaces the original entity description and is read
by our entity linking module.

Following Wu et al. (2020) and similar to Eq. 1,
the input text of the mention m and the candidate
entity ep is constructed as: [CLS] me [SEP] t ˆdes
[SEP]. Then the input text is entered into a BERT
encoder (θBERT3) to produce the vector represen-
tation Up, which is the output of the last hidden
layer corresponding to the position of the [CLS]
token. Finally, the representation Up is input into a
feed-forward neural network FFNN and the score
sp between the mention m and its p-th candidate

Domains Length Entities Mentions

Training

American Football 665.06 31929 3898
Doctor Who 264.14 40281 8334
Fallout 229.68 16992 3286
Final Fantasy 497.35 14044 6041
Military 870.55 104520 13063
Pro Wrestling 639.53 10133 1392
StarWars 379.76 87056 11824
World of Warcraft 242.16 27677 1437

Validation

Coronation Street 264.55 17809 1464
Muppets 161.50 21344 2028
Ice Hockey 282.62 28684 2233
Elder Scrolls 269.03 21712 4275

Test

Forgotten Realms 257.29 15603 1200
Lego 223.86 10076 1199
Star Trek 393.21 34430 4227
YuGiOh 643.68 10031 3374

Table 1: Overall statistics of the Zeshel dataset, which
consists of the average length of documents, the number
of entities and labeled mentions.

entity ep is calculated using a SoftMax function:

ŝp = FFNN(Up; θF2), sp =
exp(ŝp)∑P
j=1 exp(ŝj)

where P is the number of candidate entities of the
mention m. We employ cross-entropy as our loss
objective, which is calculated as follows:

LLinking = −
P∑

p=1

yp log sp+(1− yp) log(1− sp)

where yp ∈ {0, 1} and yp takes the value 1 if the
candidate entity ep is the gold entity of the mention
m, otherwise it takes the value 0.

4 Experiments

4.1 Dataset
Following recent zero-shot entity linking works
(Logeswaran et al., 2019; Wu et al., 2020; Yao et al.,
2020; Tang et al., 2021), we evaluate our frame-
work KVZEL under the Zeshel dataset,1 which is
constructed by Logeswaran et al. (2019). Overall
statistics of the dataset are shown in Table 1. The
dataset was built based on the documents in Wikia.2

Wikia consists of encyclopedias, each specialized
1https://github.com/lajanugen/zeshel
2https://www.wikia.com
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Methods Forgotten Realms Lego Star Trek YuGiOh Macro Acc. Micro Acc.

Cross-encoder 85.60 76.90 75.80 67.22 76.38 74.21
Erepeat – – – – 77.58 –
Uni-MPR 85.55 77.42 78.23 68.29 77.62 75.78
Bi-MPR 89.09 77.18 79.20 69.98 78.61 76.70

KVZEL w/o iteration 87.10 76.90 78.42 71.36 78.45 77.35
KVZEL w/o V0 88.30 76.08 78.96 73.41 79.19 78.24
KVZEL (Ours) 88.80 77.93 80.65 73.50 80.22 79.30

Table 2: Results on the test set of Zeshel dataset. Macro Acc. represents the average accuracy of these four test
domains. Micro Acc. represents the weighted average accuracy of these four domains. In the results, the highest
values are in bold and the results unavailable are left blank. All scores are averaged 5 runs using different random
seeds, and our results over all baselines are statistically significant with p < 0.05 with the t-test.

in a particular subject such as sports and film series.
Each particular subject can be considered as a do-
main. Zeshel consists of 16 specialized domains, 8
domains for training, 4 for validation, and 4 for test.
Each domain has its individual entity dictionary,
allowing the performance evaluation on entire un-
seen entities of new domains. The training set has
49,275 labeled mentions while the validation and
test sets both have 10,000 unseen mentions.

4.2 Implementation Details

For a fair comparison, we use the BERT-base-
uncased (Devlin et al., 2019) as our encoder and
use the accuracy as our evaluation metric. For the
sub view clustering module, the capacity c is set
to 64. For the mention-aware key views selection
module, following Tang et al. (2021), we set the
maximum sequence length of the mention context
to be 256. We train this module 1 epoch per iter-
ation using a batch size of 8 and a learning rate
of 2e-5. The number of iterations Q is set to 3,
which can get the best results. We use the AdamW
(Loshchilov and Hutter, 2017) optimizer to opti-
mize our module. For the entity linking module,
also following Tang et al. (2021), the max length
for the mention context and entity description are
both set to 256. We train this module in 5 epochs.
All parameters are also optimized by AdamW, with
learning rate 2e-5, and 10% warmup steps. Exper-
iments were conducted on two NVIDIA GeForce
RTX A6000 GPUs with 48 GB memory.

4.3 Comparison Methods

For the quantitative evaluation of our KVZEL,
we use the following state-of-the-art methods (Lo-
geswaran et al., 2019; Wu et al., 2020; Yao et al.,
2020; Tang et al., 2021) for comparison. All of
these methods including our KVZEL are based on

the cross-encoder (Logeswaran et al., 2019; Wu
et al., 2020), which feeds the concatenation of men-
tion context and entity description to BERT and out-
puts the [CLS] token’s embeddings to produce the
relevance scores. Erepeat (Yao et al., 2020) extends
the effective reading length of BERT by repeating
the position embedding to solve the long-range
modeling problem in entity descriptions. Uni-MPR
(Tang et al., 2021) segments a long description into
short paragraphs to make use of more description
information. Bi-MPR (Tang et al., 2021) is based
on Uni-MPR, which segments mention context into
short paragraphs to incorporate more mention infor-
mation. Note that we do not consider any domain-
adaptive techniques in our KVZEL and comparison
methods, which improves the final performance but
outsides our work scope.

4.4 Overall Performance

The comparison results on the Zeshel dataset are
shown in Table 2. We can observe that our KVZEL
outperforms all baseline methods on average, il-
lustrating the effectiveness of our KVZEL and the
superiority of selecting key views for different men-
tions with divergent context. It’s worth noting that
all baselines perform worse on the YuGiOh do-
main. We conjecture that this is because the entities
in this domain has more views since we find that
the entities with longer descriptions contain more
views. This is consistent with our claim that pre-
vious methods seem struggling to manage entities
with rich multiple views information. We observe
that our KVZEL makes a significant improvement
on the domains (e.g. Star Trek and YuGiOh) whose
descriptions have rich multiple views information.
Our KVZEL avoids the noise brought by irrelevant
view information and allows long-range key infor-
mation integration, which is very effective for these
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Figure 3: The effect of the number of selected views.
Dashed lines indicate the accuracy on the four test do-
mains and solid lines indicate the average accuracy.

domains. In general, our KVZEL outperforms the
baseline methods for 1.61% and 2.60% on Macro
Acc. and Micro Acc. on the test set of Zeshel
dataset, respectively.

5 Analysis

5.1 Ablation Study

To better understand our KVZEL framework, we
investigate the contribution of some components
through ablation studies, and the results are also
shown in Table 2. Considering that our entity link-
ing module is based on cross-encoder, the compari-
son results to cross-encoder could also be regarded
as the ablation study to justify the advantage of
our KVZEL. To evaluate the contribution of iter-
atively accumulating key views, we train the key
views selection module only once and select the
same number of key views for the entity linking
module. We find that this leads to a significant
performance drop, which demonstrates the effec-
tiveness of utilizing the previously selected views
as clues to move on to find the next key view. We
then do not add the first view V0 to ˆdes and only
consider the selected views in our entity linking
module. It can be observed that KVZEL w/o V0

performs worse than KVZEL. This indicates that
the adding of V0 helps our entity linking module
understand entities better, since we observe the first
view sentences of most entities are able to generally
describe the entity.

5.2 Effect of Number of Selected Views

We also explore the effect of different numbers of
selected views on our KVZEL performance. The
experimental results are shown in Figure 3. We

Length Number Proportion

(0, 200) 2752 40.40%
[200, 500) 2025 29.73%
[500, 1000) 954 14.00%
[1000, 2000) 554 8.13%
[2000,+∞) 527 7.74%

Table 3: The statistics of entities with different descrip-
tion lengths. We partition the entities by the tokens
number in entity descriptions.
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 Cross-encoder
 KVZEL
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Figure 4: The effect of cross-encoder and our KVZEL
on entities with different description lengths. We calcu-
late metrics based on the partition in Table 3.

can find that the required number of selected views
changes with different domains. For domains with
rich views in entity descriptions (e.g. YuGiOh),
the integration of more information from multiple
views becomes particularly important. While for
domains whose views are not as rich (e.g. Forgot-
ten Realms, Lego), single or two views are suffi-
cient to help our entity linking module to correctly
link to gold entities. In general, we can observe
that our KVZEL with 3 selected views performs
best on average. If the number of selected views
is too small, there will be not enough information
to help our entity linking module make the correct
decision. Conversely, if this number is too large,
this will introduce noise from irrelevant views and
cause the performance to drop.

5.3 Effect of Description Length

Through our observation, we find that the enti-
ties with longer descriptions contain more views.
To further show the effectiveness of our proposed
KVZEL framework, we evaluate the effect of cross-
encoder and our KVZEL on entities with different
description lengths. The statistics of entities on the
test set of Zeshel dataset are shown in Table 3 and
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Mention with context Description input of baselines Description input of KVZEL

Lucifer reuses the cat single-stud mould
introduced for the Friends theme. It fea-
tures Lucifer standing up with bent back,
elevated head looking straight ahead and
long tail lying flat curled...

The Cat is a Friends animal figure intro-
duced in 2013. The black one, released
in the first series of Friends Animals, be-
came available even in December 2012...

The first selected view: The cat is
a single-stud mould, which features it
standing up with bent back, elevated
head looking straight ahead and long tail
lying flat curled around the left side...

Having just defeated Sherry, Akiza
walks over to her. Sherry protests that
Akiza ran away from the Academy. Ak-
iza admits that she ran away, and ac-
knowledges that Duel Academy Sanc-
tuary may foster elite... She asks Akiza
where she learned the trick of riding her
Duel Runner with her eyes shut...

Sherry LeBlanc is a Psychic Duelist with
an ability referred to as Hand Scan, in
which she can view her opponent’s cur-
rent hand. Design. Appearance. Sherry
has long, waist length, blond hair with
bangs that curl away from her face in
a horizontal direction and has emerald
color eyes...

The first selected view: Akiza chose
to leave the academy due to it’s eli-
tist ways, which made Sherry feel be-
trayed and harbor a hatred for Akiza...
The second selected view: After the
Duel, Sherry and Akiza become friends
again after Sherry questions Akiza on
where she learned to drive a Duel Run-
ner with her eyes closed...

Table 4: Qualitative analysis of test samples in Zeshel dataset. We analyze the gold entity description input of
baselines and our KVZEL. The mentions in text are written in bold.

the experimental results are shown in Figure 4. We
can find that the cross-encoder (without selecting
key views) obtains passable performance on enti-
ties with few views but fails to manage those multi-
view entities as the length of descriptions increases.
For example, the accuracy of cross-encoder is over
80% for entities with 0-500 description tokens but
about 60% for entities with over 1000 description
tokens. This is the limitation for zero-shot entity
linking. Our KVZEL avoids the noise brought by
irrelevant view information and allows long-range
key information integration by iteratively accumu-
late key views. This helps our framework manage
the entities with rich multiple views information.
Our KVZEL significantly improves the accuracy
to 71.66% (+10.29%) and 66.98% (+12.33%) for
entities with 1000-2000 tokens and over 2000 to-
kens, respectively. Furthermore, considering its
ability to avoid noise brought by irrelevant views
information, our KVZEL also slightly improves
the performance on entities with few views, which
achieves the accuracy of 80.67% (+0.26%) and
83.21% (+2.12%) for entities with 0-200 tokens
and 200-500 tokens respectively.

5.4 Case Study
To conduct a qualitative analysis, Table 4 shows
two examples from the test set of Zeshel dataset.
While the baseline methods tend to input the en-
tire entity descriptions, our KVZEL only inputs the
mention-focused views of entity descriptions. This
indeed helps our framework avoid noise brought
by irrelevant information and enhances emphasis
on the corresponding details. For these two exam-
ples, our KVZEL can point to the gold entities “Cat
(Friends)” and “Sherry LeBlanc (manga)” instead

of “Catherine Cat” and “Sherry LeBlanc” like base-
lines. This indicates that baseline methods can only
capture the rough meaning of a description from a
general view, while our KVZEL is able to dive into
the descriptions and capture more fine-grained se-
mantic information from key views. Furthermore,
for the second example, the mention with context
is related to multiple views. A key observation is
that our KVZEL can precisely select key views to
aggregate to make the final decision, which indi-
cates that our KVZEL has the ability of long-range
key information integration.

6 Conclusion

In this paper, we explore an issue that was over-
looked when only textual descriptions are avail-
able in zero-shot entity linking scenarios, that is,
only part of description information is related to
mentions and other irrelevant information will in-
troduce noise and make models reduce emphasis
on the corresponding details. To overcome this is-
sue, we propose a KVZEL framework to select key
views from entity descriptions for different men-
tions with divergent context. Specifically, it first
adopts unsupervised clustering to form sub views.
Then, it imitates the human’s thinking process to it-
eratively accumulate mention-related views, which
helps our entity linking module have the ability of
long-range information integration. The selected
views are aggregated into a new text, which re-
places the original description as the input of our
entity linking module to make the final decision.
Experimental results demonstrate that the proposed
KVZEL framework achieves new state-of-the-art
performance on the zero-shot entity linking dataset.
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Limitations

Although our KVZEL achieves new state-of-the-art
for zero-shot entity linking, it also poses several
limitations as follows: 1) In this work, for simplic-
ity, we only use the traditional unsupervised cluster-
ing approach mean-shift to form sub views. How-
ever, other state-of-the-art clustering approaches
also can be used and may work better. We leave
the selection of a more effective cluster approach
to future work. 2) In this work, we only focus
on the zero-shot entity linking setting, which is a
low-resource scenario and only provides the textual
description information for each entity. This task
challenges the ability of entity linking models to
understand the language consistency between men-
tion contexts and entity descriptions. Our KVZEL
improves this ability by selecting key views from
entity descriptions. Therefore, when our KVZEL
is extended to other entity linking settings which
may have much external knowledge (e.g. frequency
statistics and structure data, etc.) and not focus on
the language understanding ability so much, the
improvement of performance may be insignificant.
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