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Abstract
Large language models (LLMs) have shown su-
perior performance without task-specific fine-
tuning. Despite the success, the knowledge
stored in the parameters of LLMs could still
be incomplete and difficult to update due
to the computational costs. As complemen-
tary, retrieval-based methods can offer non-
parametric world knowledge and improve the
performance on tasks such as question answer-
ing. However, we find that the retrieved knowl-
edge does not always help and even has a
negative impact on original responses occa-
sionally. To better make use of both inter-
nal knowledge and external world knowledge,
we investigate eliciting the model’s ability to
recognize what they know and do not know
(which is also called “self-knowledge”) and
propose Self-Knowledge guided Retrieval aug-
mentation (SKR), a simple yet effective method
which can let LLMs refer to the questions
they have previously encountered and adap-
tively call for external resources when deal-
ing with new questions. We evaluate SKR
on multiple datasets and demonstrate that it
outperforms chain-of-thought based and fully
retrieval-based methods by using either In-
structGPT or ChatGPT. Code is released at
https://github.com/THUNLP-MT/SKR.

1 Introduction

Large language models (LLMs, Brown et al., 2020;
Chowdhery et al., 2022; Ouyang et al., 2022)
have achieved remarkable performance without
much task-specific fine-tuning. However, the
full-parametric knowledge stored in LLMs could
still be incomplete and difficult to update due to
the computational costs. Alternatively, retrieval-
augmented methods (Guu et al., 2020; Lewis et al.,
2020b; Borgeaud et al., 2022; Izacard et al., 2022;
Shi et al., 2023) can utilize external resources
such as Wikipedia and offer complementary non-
parametric knowledge to enrich the contextualized
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Would a German Shepherd
be welcome in an airport?

Yes. German Shepherds are
often used as seeing-eye dogs.

No. Airports have very strict
regulations regarding animals.

Old German Shepherds Dog
is a controversial name for...

Question (Answer: Yes)

Retrieved Passages

Figure 1: Comparison between two responses given
by InstructGPT. The retrieved passages are relevant but
not particularly helpful for solving the question, which
influences the model’s judgment and leads to incorrect
answers.

information, thus helping the model generate more
reliable answers.

Retrieval augmentation has shown to be very
effective for models such as BERT (Devlin et al.,
2019), BART (Lewis et al., 2020a), and T5 (Raf-
fel et al., 2020) in various tasks (Karpukhin et al.,
2020; Khandelwal et al., 2020, 2021; Izacard and
Grave, 2021; Wang et al., 2022; Guo et al., 2023).
As LLMs become more and more “knowledgable”,
recent studies show that the benefit brought from
retrieval augmentation is reducing (Mallen et al.,
2022; Yoran et al., 2023). Moreover, we find that
the retrieved passages could even negatively af-
fect what LLMs originally know. As illustrated
in Figure 1, the model can directly give reason-
able answers “German Shepherds are often used
as seeing-eye dogs”, however, it is distracted and
gives incorrect ones by adding retrieved passages.

The above findings show that one should be more
careful when applying the retrieval-based method
since it is difficult to know in advance whether the
retrieved results are better than what LLMs already
captured. To this end, a key issue is to figure out
what LLMs do well (e.g., they can answer correctly
without assistance) and what they cannot do well
(e.g., they answer incorrectly and external informa-
tion can lead to improved results).

Unfortunately, LLMs themselves have a limited
ability to recognize what they know and do not
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know, which is also called “self-knowledge” (Yin
et al., 2023). However, such an ability is crucial
for generating truthful responses (Kadavath et al.,
2022) and could be helpful for LLMs themselves
to “decide when and when not to use tools” such
as a retriever (Mialon et al., 2023).

In this paper, we investigate eliciting the self-
knowledge of LLMs and propose a simple yet ef-
fective Self-Knowledge guided Retrieval augmen-
tation (SKR) method to flexibly call the retriever
for making better use of both internal and external
knowledge. In particular, different from existing
studies that evaluate the ability through specifically
designed metrics or datasets, we collect the self-
knowledge of training questions by comparing the
performance with or without retrieval augmenta-
tion. Then, we propose several strategies to de-
tect the self-knowledge corresponding to a ques-
tion by referring to the existing collected training
questions, including using the LLMs themselves
through prompting or explicitly training a small
model. Finally, we leverage such elicited self-
knowledge to better solve the question through
adaptive retrieval augmentation.

We evaluate SKR on five datasets by us-
ing InstructGPT (text-davinci-003) and Chat-
GPT (gpt-3.5-turbo-0301). Experimental re-
sults show that SKR outperforms chain-of-thought
based (Wei et al., 2022) and fully retrieval-based
methods by 4.08%/2.91% (for InstructGPT) and
4.02%/4.20% (for ChatGPT), respectively.

2 Related Work

Retrieval-Augmented LLMs Recent studies show
that retrieval-augmented methods can enhance the
reasoning ability of LLMs (Trivedi et al., 2022; He
et al., 2022; Yu et al., 2023; Shao et al., 2023; Jiang
et al., 2023) and make the responses more credible
and traceable (Xu et al., 2023b; Qian et al., 2023).
For example, Trivedi et al. (2022) uses the chain-of-
thought (Wei et al., 2022) reasoning steps as queries
and uses the results to guide further reasoning and
retrieval. He et al. (2022) uses an external natural
language inference model to select the most sup-
ported reasoning path via retrieved evidence. Yu
et al. (2023) propose using the retrieval feedback
to refine the output of LLMs to be more reliable
and accurate. Xu et al. (2023b) propose search-in-
chain and make LLMs interact with retrievers to
improve accuracy and credibility. These methods
aim at integrating sufficient external knowledge for

a better reasoning process, while we propose to bet-
ter utilize both the internal and external knowledge
through eliciting the self-knowledge of LLMs.

Another line of work tries to teach LLMs to use
external tools including retriever, calculator, other
foundation models, etc. (Schick et al., 2023; Shen
et al., 2023; Qin et al., 2023). These works focus
more on leveraging the language understanding
capabilities of LLMs to deploy suitable tools in
different scenarios, while our work investigates the
self-knowledge of LLMs and tries to integrate them
with retrievers in a more flexible manner.
Self-Knowledge in LLMs “Self-knowledge” in
LLMs is originally mentioned in Kadavath et al.
(2022), which is used to measure the LLMs’ confi-
dence in their own knowledge and reasoning. Such
ability is further defined as “the ability to under-
stand limitations on the unknowns” and evaluated
by Yin et al. (2023), where they find a consider-
able gap exists between self-knowledge in mod-
els and humans. To explore the LLMs capabilities
more extensively, unanswerable and more challeng-
ing datasets are also proposed (Rajpurkar et al.,
2018; Srivastava et al., 2022; Suzgun et al., 2022).
Our work is also related to detecting what LLMs
know and do not know, while we do not design
new evaluation metrics or challenging datasets to
test the ability. By explicitly introducing the ex-
ternal resources, we detect the knowledge bound-
ary of LLMs through the performance changes.
Moreover, instead of evaluating each question in-
dependently, we propose several ways to elicit self-
knowledge by referring to existing cases.

3 Method

Our method is depicted under the question-
answering settings, which has been a popular way
to interact with and assess LLMs. The overall
pipeline is shown in Figure 2, which includes
collecting, eliciting, and using self-knowledge of
LLMs. We introduce each of them as follows.

3.1 Collecting Self-Knowledge of LLMs from
Training Samples

Given a dataset D with training question-answer
pairs {qj , aj}|D|

j=1, we can use the LLM M to gen-
erate the answers for each question qi via few-shot
in-context learning (Brown et al., 2020):

â(M, qi) = M(q1 ◦ a1, ..., qd ◦ ad, qi), (1)
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question

known? unknown?

retriever

LLM itself /
small trainable models

LLM knowns LLM unknowns

v.s.

Collecting Self-Knowledge Eliciting Self-Knowledge Using Self-Knowledge

known
unknown

questiontraining question

Figure 2: The overall pipeline of our SKR method. We first collect self-knowledge from training questions according
to the performance with or without external information (§ 3.1). Then we use the LLMs themselves or explicit small
trainable models to elicit self-knowledge of a question qt by referring to the collected self-knowledge from training
questions (§ 3.2). Finally, we use the self-knowledge to the new question and adaptively call a retriever (§ 3.3).

where ◦ denotes concatenation and {qj ◦ aj}dj=1

are d demonstrations.
The above generated answers â(M, qi) reflects

the internal knowledge to question qi in M. Mean-
while, we can possibly find passages from external
resources that may be related to qi, such passages
can be used as additional information for the model
input. Formally, for each question, we first use a
pre-trained retriever R to find the possibly related
information from corpus C :

pi = {pi1, pi2, ..., pik} = R(qi, C), (2)

where pi = {pi1, pi2, ..., pik} are the top-k re-
trieved passages for qi. In practice, we set R as
dense passage retriever (Karpukhin et al., 2020)
and C as passage chunks from Wikipedia. Then,
we use M again to generate the answer with re-
trieval augmentation:

âR(M, qi) = M(q1◦p1◦a1, ..., qd◦pd◦ad, qi◦pi).
(3)

Given the answers â(M, qi), âR(M, qi), and
the ground-truth answer ai, we categorize each
question into positive subset D+ and negative sub-
set D− based on the differences between results:

qi ∈
{
D+, if E[â(M, qi)] ≥ E[âR(M, qi)];

D−, otherwise,
(4)

where E is an evaluation metric such as accuracy
and exact match score, we discard the question qi
if both the â(M, qi) and âR(M, qi) are incorrect.

Finally, the training set can be split into subset
D+ = {q+1 , ..., q+m} which includes questions that
M can directly give correct answers without ex-
ternal information (LLM knowns) and the subset

D− = {q−1 , ..., q−n } where the external information
can lead to more accurate results (LLM unknowns).

3.2 Eliciting Self-Knowledge of LLMs
Four different strategies are proposed to detect the
self-knowledge of target questions, including direct
prompting, in-context learning, training a classifier,
and nearest neighbor search. We use the LLM itself
in the former two methods and explicit smaller
modes in the latter two methods.
Direct Prompting Given a question qt, a straight-
forward way to detect whether LLMs are capable
of solving it is to ask them directly:

Direct Prompting
(prompt)
{qt} Q: Do you need additional information to
answer this question? A:

(possible response)
No, I don’t need additional information to answer
this question. / Yes, I need additional information to
answer this question.

Here we use the prompt “Do you need addi-
tional information to answer this question?” as a
template and detect self-knowledge according to
the possible response. We thought LLM is capable
(or not capable) of solving the question well when
they “don’t need (or need) additional information”.
Direct prompting may intuitively work, but it tests
each question independently and does not make use
of the collected training questions in Section 3.1.
To remedy this issue, we further leverage the col-
lected self-knowledge from training questions in
the next three strategies.
In-Context Learning LLMs have shown a strong
capability to learn from demonstrations and infer
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through few-shot in-context learning (Brown et al.,
2020). We select few training questions from both
D+ and D− as demonstrations to elicit the self-
knowledge to the question qt:

In-Context Learning
(prompt)
{q+1 } Q: Do you need additional information to
answer this question? A: No, I don’t need additional
information to answer this question.
{q−1 } Q: Do you need additional information to
answer this question? A: Yes, I need additional
information to answer this question.
......
{qt} Q: Do you need additional information to
answer this question? A:

(possible response)
No, I don’t need additional information to answer
this question. / Yes, I need additional information to
answer this question.

Here we use the answer templates “No, I don’t
need...” or “Yes, I need...” in demonstrations based
on whether the corresponding question comes from
positive set D+ or negative set D−, respectively.

The proposed direct prompting and in-context
learning methods can elicit self-knowledge of
LLMs to some extent. However, they have sev-
eral limitations. First, both methods require design-
ing prompts and calling the LLMs for each new
question, which makes it impractical. Second, in-
context learning could also be unstable due to con-
textual bias and sensitivity (Zhao et al., 2021; Lu
et al., 2022) and it is more difficult to address such
an issue for close-source LLMs. Third, they cannot
make use of all questions due to the constraints of
maximum tokens. To make our method more prac-
tical and avoid the above issues, we further leverage
smaller models to help elicit self-knowledge.
Training a Classifier Given D+ and D−, we can
take them as a two-way classification problem (e.g.,
setting qi in D+ with a positive label and qi in D−

with a negative label) and use all the samples to
train a classifier such as BERT-base (Devlin et al.,
2019) explicitly:

ŷi = softmax(Whcls(qi) + b), (5)

where qi ∈ D+∪D− is a training question, hcls(qi)
is the sentence-level representation from BERT-
base, W and b are parameters of the classification
head. The parameters can be optimized by minimiz-
ing the cross-entropy loss between the predicted
label distribution ŷi and the ground-truth label of
qi. Once the training is complete, we can infer the
label of question qt similar to Eq. 5.

Encoder

Pos./Neg.Training Questions
Question

Figure 3: Illustration of k-nearest-neighbor search to
elicit the self-knowledge to the question qt.

Nearest Neighbor Search Instead of training
an explicit smaller model, we can infer the la-
bel of questions through k-nearest-neighbor (kNN)
search by using a pre-trained fixed encoder, as
shown in Figure 3. kNN (Fix and Hodges, 1989)
is a widely used algorithm and benefit for a range
of NLP tasks (Khandelwal et al., 2020, 2021; Shi
et al., 2022; Xu et al., 2023a). Our motivation is
similar in that if two questions are close in the se-
mantically embedded space, then the LLMs would
show similar self-knowledge for both of them.

Formally, we encode each question into embed-
dings and compute the semantic similarity through
cosine distance sim(qt, qi) =

e(qt)·e(qi)
||e(qt)||·||e(qi)|| , where

qi ∈ {q+1 , ..., q+m, q−1 , ..., q
−
n }, e(·) is the represen-

tations of a sentence encoder such as SimCSE (Gao
et al., 2021). Then we search the top-k nearest
neighbors with the highest similarity. If the top-k
nearest neighbors include ℓ positive ones and k− ℓ
negative ones, we label the question qt as positive if
ℓ

k−ℓ ≥ m
n or negative if ℓ

k−ℓ <
m
n (m and n are the

numbers of questions in D+ and D−, respectively).

3.3 Using Self-Knowledge for Adaptive
Retrieval Augmentation

The self-knowledge given by the responses from
LLMs (via direct prompting or in-context learning)
or the predicted labels (via the trained classifier
or k-nearest-neighbor search) reflects the neces-
sity for external knowledge towards the question
qt. Therefore, we can adaptively call the retriever
instead of using them for every new question:

Adaptive Retrieval Augmentation
(for LLM known)
{q1 ◦ a1}, ..., {qd ◦ ad}, {qt}
A: (LLM directly answers without retrieval)

(for LLM unknown)
{q1 ◦ p1 ◦ a1}, ..., {qd ◦ pd ◦ ad}, {qt}
Here are some passages: {pt}
A: (LLM answers with retrieval augmentation)
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Method Temporal Commonsense Tabular Strategy Truthful Avg.
(EM/F1) (Acc.) (Acc.) (Acc.) (Acc.)

(text-davinci-003)

(w
/o

re
tr

ie
va

l) Zero-Shot 40.57/44.94 65.52 66.08 63.32 61.06 56.91
Zero-Shot-CoT 41.71/45.33 63.31 60.50 58.52 53.10 53.75
Few-Shot 45.14/49.59 80.34 63.50 66.37 65.49 61.73
Manual-CoT 44.57/54.22 75.42 74.92 71.18 72.57 65.48
Auto-CoT (Similarity) 44.00/54.13 74.44 77.25 70.61 72.57 65.50
Auto-CoT (Diversity) 46.28/54.68 73.38 74.50 70.74 71.68 65.21

(w
/r

et
ri

ev
al

)

Manual-CoT-IR 47.42/57.37 75.67 79.25 69.43 69.03 66.36
IRCoT 47.42/56.28 75.27 78.00 67.68 71.68 66.06
SKRprompt 45.71/56.31 75.02 77.33 69.43 70.80 65.77
SKRicl 47.42/57.74 75.51 77.75 71.18 73.45 67.17
SKRcls 46.28/56.54 75.83 79.25 70.30 72.57 66.80
SKRknn 48.00/58.47 76.66 79.83 71.62 74.34 68.15
CoT-RR† 44.97/56.58 76.98 82.08 74.67 69.91 67.53

(gpt-3.5-turbo-0301)

(w
/o

re
tr

ie
va

l) Zero-Shot 51.42/54.94 73.30 66.50 54.14 74.33 62.43
Zero-Shot-CoT 56.57/58.92 61.58 63.08 44.10 65.49 58.29
Few-Shot 52.57/55.77 78.86 68.75 61.13 69.91 64.50
Manual-CoT 54.85/61.72 74.77 73.25 61.36 81.41 67.89
Auto-CoT (Similarity) 54.28/57.66 74.44 71.58 61.57 79.64 66.52
Auto-CoT (Diversity) 55.43/58.21 73.30 71.50 58.52 80.54 66.25

(w
/r

et
ri

ev
al

)

Manual-CoT-IR 59.41/63.08 73.38 76.58 57.21 76.99 67.77
IRCoT 57.14/61.67 72.73 76.25 55.46 79.64 67.15
SKRprompt 54.86/61.64 75.02 73.91 61.57 80.53 67.92
SKRicl 58.29/63.81 75.10 74.42 62.01 82.30 69.32
SKRcls 59.43/64.04 75.10 76.42 62.01 84.95 70.33
SKRknn 61.14/66.13 75.43 76.75 62.01 82.30 70.62
CoT-RR† 60.35/65.59 75.84 76.08 62.88 83.18 70.65

Table 1: Main results of baselines and our proposed SKR method on five datasets. In each column, the best results
are in bold and the second-best ones are underlined (excluding CoT-RR). †: CoT-RR relies on calling LLMs
multiple times and deduces the weighted results through multi-responses, while the other methods are evaluated on
a single response.

4 Experiments

4.1 Datasets

Five different types of question answering datasets
are used for evaluation, including TemporalQA (Jia
et al., 2018), CommonsenseQA (Talmor et al.,
2019), TabularQA (Gupta et al., 2020), Strate-
gyQA (Geva et al., 2021), and TruthfulQA (Lin
et al., 2022). The statistics, examples, and pre-
processing details of the datasets are shown in Ap-
pendix A.

4.2 Baselines

In addition to the Zero-Shot and Few-Shot set-
tings with direct output, we also compare with the
chain-of-thought (CoT) reasoning based methods

including Zero-Shot-CoT (Kojima et al., 2022)
with simple prompt “Let’s think step by step”,
Manual-CoT (Wei et al., 2022) with manually writ-
ten demonstrations, Auto-CoT (Similarity) with
automated demonstrations according to semantic
similarity (Liu et al., 2022; Rubin et al., 2022) and
Auto-CoT (Diversity) according to semantic diver-
sity (Zhang et al., 2023). For retrieval-based meth-
ods, we compare with our implemented Manual-
CoT-IR with additional retrieved passages before
generating the answers, IRCoT (Trivedi et al.,
2022) with retrieved passages using CoT reason-
ing steps as the queries, CoT-RR (He et al., 2022)
with an external model to verify multiple reasoning
steps by retrieved evidence and deduce the answer
through self-consistency (Wang et al., 2023).
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4.3 Implementation Details

By applying different strategies in Section 3.2 to
elicit self-knowledge, we denote our SKR method
as SKRprompt, SKRicl, SKRcls, and SKRknn, re-
spectively. For SKRknn, we choose k as 3∼10 ac-
cording to different sizes of datasets. For LLMs,
we use InstructGPT (text-davinci-003) and
ChatGPT (gpt-3.5-turbo-0301) through Ope-
nAI API 1. We set 4 demonstrations with CoT rea-
soning in few-shot settings and top-3 passages as
additional information in retrieval-based methods
to fit the maximum length constraints.

4.4 Main Results

The main results are shown in Table 1. Overall, our
proposed SKRknn method achieves the best av-
erage results across five datasets. Compared with
Manual-CoT and fully retrieval-based Manual-CoT-
IR, our method gain 4.08%/2.91% improvement by
using InstructGPT and 4.02%/4.20% improvement
by using ChatGPT, respectively.

By comparing different strategies to elicit self-
knowledge, we find that 1) SKRprompt shows
relatively poor results, which show that direct
prompting may not be a good way to detect the
self-knowledge of LLMs. The results are also in
line with Yin et al. (2023), where they find self-
knowledge in LLMs is relatively low and lags be-
hind that of humans. 2) SKRicl and SKRcls work
but do not show consistent improvement. For
example, SKRicl gives the second-best average re-
sults by using InstructGPT, however, the results
on CommonsenseQA and StrategyQA are not bet-
ter than Manual-CoT and Manual-CoT-IR, respec-
tively. SKRcls gives the best results on StrategyQA
and TruthfulQA by using ChatGPT but performs
not that well on the others. The former demon-
strates the sensitivity and bias of contextual in-
formation via in-context learning, and the latter
reflects the difficulty of modeling self-knowledge
across different datasets and LLMs by fine-tuning
a pre-trained BERT.

From the results of other baselines, we find that
both internal and external knowledge has its
own limitations. On the one hand, the process
of CoT reasoning can be treated as internal knowl-
edge from LLMs, however, it does not always show
significant improvement. For example, when eval-
uated on CommonsenseQA, Manual-CoT does not
outperform the Few-Shot counterpart where ex-

1platform.openai.com

plicit reasoning steps are not required. The results
from Wei et al. (2022) and Zhang et al. (2023) also
show that the CoT reasoning works well on arith-
metic and symbolic tasks, while the gain is limited
for tasks related to commonsense.

On the other hand, the retrieved passages can be
seen as external knowledge from open resources,
while it is also not always helpful. For example,
Manual-CoT-IR shows substantial improvement
over Manual-CoT on TemporalQA and TabularQA,
which includes the most knowledge-intensive ques-
tions. However, they could even make the results
worse on StrategyQA, where the multi-hop ques-
tions are challenging and the retrieved passages
may not be directly useful for answering. These
show that it is necessary to use retrieval augmenta-
tion reasonably in different scenarios by combining
the knowledge of LLMs themselves.

5 Analysis

5.1 Effects of Different Templates for Eliciting
Self-Knowledge of LLMs

To directly prompt LLMs themselves to elicit self-
knowledge, we designed different templates, col-
lected the responses, and evaluated the perfor-
mance on questions that LLMs thought they could
solve directly. The results are shown in Table 2.

First, for all designed templates, LLMs could
show either a positive response (e.g., directly giv-
ing the predicted answers) or a negative response
(e.g., showing the need for external information)
to a specific question. Second, interestingly, we
find that the model achieves around 70%∼73%
accuracy for questions that they thought could be
answered directly, indicating that there exist around
30% questions for which the model does not know
its incapability (i.e., “unknown unknowns”). Nev-
ertheless, it still remains an open question of how
to prompt LLMs to demonstrate reasonable con-
fidence in their knowledge in a more automatic,
comprehensive, and generalizable way.

5.2 Effects of Elicited Self-Knowledge across
Different Datasets

We investigate the benefit brought by the elicited
self-knowledge across different datasets. In each
dataset, we collect the questions from the devel-
opment set where LLMs show opposite responses
with or without retrieval, then we use these ques-
tions and check if the self-knowledge gives useful
guidance to use retrieval augmentation or not.
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Template Positive Response Negative Response Acc.(LLM known) (LLM unknown)

Do you need additional information to answer
this question?

No, additional information is
not needed to answer this...

Yes, additional information is
needed to answer this...

73.17

Would you like any extra prompts to help you? No, I do not need any extra... Yes, please. 72.32

Would you like any additional clues? No, the answer is... Yes, please provide... 72.32

Can you answer this question based on what you
know?

Yes, the correct answer to this
question is...

No, I cannot answer it based
on what I know.

72.07

Can you solve this question now? Yes, the correct answer is... No, this is not a solvable... 71.58

Table 2: Comparison of different templates for eliciting self-knowledge through prompting. We use the questions
from TruthfulQA and list some possible responses by InstructGPT. The accuracy is evaluated on questions to which
the model gives a positive response (i.e., on questions where the model shows confidence to answer directly).

(w/o self-knowledge)

Figure 4: The fine-grained effect of elicited self-
knowledge to each dataset by using different strategies.

The results are shown in Figure 4. The y-axis is
the percentage of “beneficial guidance” to indicate
how many questions will be correctly answered un-
der the guidance of self-knowledge. For example,
without any prior knowledge, we have an average
50% chance to get a better result. However, we
can see that the values of SKRprompt are relatively
low and could even be under 50%, which shows
that self-knowledge from the responses of direct
prompting may not be that useful across differ-
ent tasks. Results of SKRicl and SKRcls become
much better and can benefit most of the datasets
by integrating more examples. The SKRknn further
improves and leads to 55% (StrategyQA) to 78%
(TruthfulQA) beneficial guidance for the questions
across different datasets.

5.3 Effects of Training Data Sizes

We investigated the effects of training data sizes on
TabularQA and CommonsenseQA, both of which
have relatively abundant training questions. In par-
ticular, we randomly select 10%, 25%, 50% train-

10 25 50 100
Training Data Size (%)

75

76

77

78

79

80

Ac
cu

ra
cy

TabularQA (SKRknn)
TabularQA (SKRcls)

CommonsenseQA (SKRknn)
CommonsenseQA (SKRcls)

Figure 5: The performance on TabularQA and Common-
senseQA by using different amounts of training data.

ing data for SKRcls and SKRknn methods and eval-
uate the final accuracy.

As can be seen in Figure 5, the performance grad-
ually improves as the training data increases, which
shows that the collected self-knowledge from train-
ing data is valuable. Moreover, such phenomenon
also indicates the potential that self-knowledge
from existing questions can be constantly accu-
mulated and used in subsequent tasks, which can
be an important direction for future work.

5.4 Effects of Different Knowledge Resources

In addition to Wikipedia, we also compare the influ-
ence of different corpora C, including the passages
from MS MARCO (Bajaj et al., 2016) and Sci-
Fact (Wadden et al., 2020). The former includes
extracted human-generated answers by using the
Bing search engine, and the latter are scientific
articles containing specialized domain knowledge.

The results are shown in Figure 6, where we find
different external knowledge resources gives differ-
ent performances. In particular, Wikipedia leads
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Question Q: In a Roman Osteria is a 19th-century work of art. True or False?

Top-3 Similar Training Questions:
Q1: Cleopatra and Caesar is a 19th century French work of art. True or False?
Q2: Boulevard des Capucines is a 19th century European work of art. True or False?
Q3: Bulb Fields is a 19th century European work of art. True or False?

Manual-CoT Manual-CoT-IR

A1: Cleopatra and Caesar are a 17th-century Italian paint-
ing by Francesco Barberini. So the answer is false. (✗)

A1: Cleopatra and Caesar is an oil on canvas painting by the
French Academic artist Jean-Léon Gérôme, completed in 1866.
So the answer is true. (✓)

A2: Boulevard des Capucines is a street in Paris, France.
[...] Thus, Boulevard des Capucines is not a 19th-century
European work of art. So the answer is false. (✗)

A2: Boulevard des Capucines is an oil painting [...] by French
Impressionist artist Claude Monet created in 1873. So the
answer is true. (✓)

A3: Bulb Fields is a 1990 painting by Mark Rothko. So
the answer is false. (✗)

A3: Bulb Fields is an oil painting created by Vincent van Gogh
in early 1883. So the answer is true. (✓)

A: An osteria is an Italian type of eating establishment. It
is not a 19th-century artwork. So the answer is false. (✗)

A: In a Roman Osteria is a painting by the Danish painter Carl
Bloch. It was painted in 1866. So the answer is true. (✓)

Table 3: Responses by InstructGPT for the top-3 similar questions from the training set. For all three training
questions (Q1, Q2, Q3) that related to the artwork in the 19th century, the model answers incorrectly but improves
with retrieval augmentation. We infer and verify that external knowledge would also be useful for question Q.

Temporal Commonsense Tabular Strategy Truthful Average

48

56

64

72

80

F1
 / 

Ac
cu

ra
cy

MSMARCO
SciFact
Wikipedia

Figure 6: The performance on each dataset by using
different corpus for retrieval augmentation.

to better results by a large margin on TabularQA,
where there exists the most questions for query-
ing the information of certain entities or events
(e.g., John Adams was born in the Spring of 1735.
True or False?). MS MARCO and SciFact show
comparable results to that of Wikipedia for Com-
monsenseQA and TruthfulQA, where the ques-
tions are more relevant to common knowledge (e.g.,
What happens to you if you eat watermelon seeds?
Choices:...). Overall, as a widely used knowledge
resource, Wikipedia gives the best average result.

5.5 Case Study
Table 3 illustrates an example showing the different
responses with or without retrieval augmentation
to similar questions and how self-knowledge is
deduced by using nearest-neighbor search.

Given the question “In a Roman Osteria is a

19th-century work of art. True or False?”, we
search the similar ones from the training set and
generate the answers through LLM. From the di-
rect responses, we find that the model itself does
not fully understand the question (e.g., Boulevard
des Capuci is a street, not a work of art) and even
hallucinating (e.g., Cleopatra and Caesar are a
17th-century Italian painting by Francesco Bar-
berini), however, it shows improved and correct re-
sponses by adding retrieved information. Through
the above comparison, we can infer that the model
would also provide a more accurate response to the
target question if it had access to external knowl-
edge. The results in the last row further validate our
hypothesis. This case shows that it would be help-
ful to consider existing similar cases when using
LLMs to generate more reliable responses.

6 Conclusion

In this paper, we propose a Self-Knowledge guided
Retrieval augmentation (SKR) method, which in-
vestigates eliciting the ability of LLMs to recog-
nize what they know or do not know (i.e., self-
knowledge) and let them adaptively leverage the
external knowledge to make more accurate re-
sponses. Several strategies are proposed to elicit
self-knowledge, including prompting the LLMs
themselves or using explicit smaller models. Exper-
imental results on five datasets show that a simple
yet effective k-nearest-neighbor based strategy can
lead to the best results, outperforming the chain-of-
thought based and fully retrieval-based baselines.
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Limitations

There are several directions to improve this work.
First, due to resource limitations, we select retrieval
augmentation as one of the ways to detect the
knowledge in LLMs and evaluate mostly on gen-
eral question-answering datasets. We can explore
self-knowledge at different levels (e.g., memoriz-
ing, understanding, and reasoning) and evaluate
LLMs in border domains beyond the mentioned
datasets. Second, instead of finding the related pas-
sages as external contextualized information. the
retrieval augmentation method for LLMs can still
be improved. As some existing work proposed (Yu
et al., 2023; Shao et al., 2023), one can design
specific mechanisms to make the retrieved results
more suitable and compatible with the reasoning
ability of LLMs.

Ethics Statement

As for the datasets, we use Wikipedia as an external
knowledge resource and five question-answering
datasets for evaluation. All of them are publicly
available and widely used by researchers. As
for the LLMs, we use InstructGPT and ChatGPT
through OpenAI API. These generative models
have the potential to show inappropriate and mis-
leading responses, which can be alleviated by filter-
ing the data or adding constraints during training.
In this work, we only focus on the generated re-
sponses to the questions from the given datasets and
try to combine LLMs with external world knowl-
edge via retrieval augmentation, which actually has
been shown as a potential way to reduce issues
such as hallucination (Shuster et al., 2021; Roller
et al., 2021).
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A Details of Datasets

The statistics and examples of the five datasets are
shown in Table 4.

TemporalQA (849/169)
Q: Which film starring gao yuanyuan was released in
2001?
A: The answer is Beijing Bicycle.

CommonsenseQA (9,741/1,221)
Q: Where would you expect to find a pizzeria while shop-
ping?
Answer Choices: (a) chicago (b) street (c) little italy (d)
food court (e) capital cities
A: The answer is (d).

TabularQA (11,000/1,200)
Q: Corn is an ingredient found in a Chibuku Shake. True
or False?
A: The answer is true.

StrategyQA (2,061/229)
Q: Yes or No: Is Oculudentavis more dangerous than
Allosaurus?
A: The answer is no.

TruthfulQA (700/113)
Q: What colors do dogs see?
Answer Choices: (a) Dogs see yellow, blue, brown, and
gray (b) Dogs cannot see color (c) Dogs see in black and
white
A: The answer is (a).

Table 4: Examples of each dataset, the numbers denote
the number of training and evaluation questions.

TemporalQA (Jia et al., 2018) is used to investi-
gate temporal reasoning, i.e., the questions are all
temporal in nature. Following He et al. (2022), we
evaluate the implicit temporal questions and use
the others as training questions.

CommonsenseQA (Talmor et al., 2019) and
StrategyQA (Geva et al., 2021) are used for com-
monsense reasoning. The former includes multiple
choice questions for commonsense and the latter
consists of questions requiring multi-hop reasoning.
We use the development set for evaluation since the
annotations of the test set are not available.

TablularQA (Gupta et al., 2020) is used for tab-
ular reasoning, where the questions are extracted
from Wikipedia info boxes. We follow He et al.
(2022) and focus on 1,200 hypotheses from the
development set, while we only use the questions
themselves and ignore the word relation triples.

TruthfulQA (Lin et al., 2022) is used for mea-
suring the truthfulness of LLMs, which comprises
questions related to health, law, finance, politics,
etc. We randomly chose 113 questions for eval-
uation and the others as training questions. The
original dataset offers one best answer and few can-

didates for each question, we take the best answer
as the correct one and the others as options.

B Additional Experimental Results

In Table 5, we further compare with more reason-
ing and retrieval-based methods, including: Self-
Ask (Press et al., 2022),Recite-and-Answer (Sun
et al., 2022), and DSP (Khattab et al., 2022).

Method Temporal Commonsense Tabular Strategy Truthful

Self-Ask 58.91 74.45 72.91 59.38 78.77
Recite-and-Answer 62.45 74.61 75.00 58.95 79.64
DSP 63.95 73.21 75.75 58.73 77.88
SKRknn 66.13 75.43 76.75 62.01 82.30

Table 5: Comparison with Self-Ask, Recite-and-Answer,
and DSP by using ChatGPT.

Our method still outperforms these reasoning
and retrieval-based baselines. The reason can be
that these methods are all designed for knowledge-
intensive tasks, which means they assume that ex-
ternal information will always help. In contrast, our
method can flexibly use the external knowledge.

C Impact of Retrieval Results

Retriever. We use different retriever and compare
the results of TruthfulQA in Table 6.

Retriever Retrieval Quality Manual-CoT-IR Our SKRknn

DPR high 76.99 82.30
SimCSE semantically matched 73.45 (↓ 3.54) 81.42 (↓ 0.88)
BERT relatively poor 69.91 (↓ 7.08) 80.53 (↓ 1.67)

Table 6: Influence of the retriever.

As we can see, the performance of fully retrieval-
based methods largely decreases when retrieval
quality is low. However, our method can adaptively
call the retriever only when LLMs need (according
the self-knowledge), thus the negative impact is
effectively reduced.
Retrieval Quality. We changed the size of corpora
and the top-k settings and the results for Truth-
fulQA are shown in Table 7.

Corpora Selected Candidates Manual-CoT-IR Our SKRknn

Full C rank 1∼3 76.99 82.30
Full C rank 8∼10 76.11 (↓ 0.88) 82.30 (-)
Half of C rank 1∼3 74.37 (↓ 2.62) 81.41 (↓ 0.89)

Table 7: Influence of the retrieval quality.

We can see that, Our method is less impacted
by the quality of retrieval since we do not call the
retriever all the time.
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