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Abstract

Computer Vision (CV), Natural Language Pro-
cessing (NLP), and Recommender Systems
(RecSys) are three prominent AI applications
that have traditionally developed independently,
resulting in disparate modeling and engineering
methodologies. This has impeded the ability
for these fields to directly benefit from each
other’s advancements. With the recent devel-
opment of foundation models, large language
models have emerged as a potential general-
purpose interface for unifying different modali-
ties and problem formulations. In light of this,
we propose the development of a multimodal
foundation model (MFM) considering visual,
textual, and personalization modalities under
the P5 recommendation paradigm, thus named
VIP5 (Visual P5), to unify various modalities
and recommendation tasks. This will enable the
processing of multiple modalities in a shared ar-
chitecture for improved recommendations. To
achieve this, we introduce multimodal personal-
ized prompts to accommodate multiple modal-
ities under a shared format. Additionally, we
propose a parameter-efficient training method
for foundation models, which involves freezing
the P5 backbone and fine-tuning lightweight
adapters, resulting in improved recommenda-
tion performance and increased efficiency in
terms of training time and memory usage. Code
and data of VIP5 are available at https://
github.com/jeykigung/VIP5.

1 Introduction

With rapid growth, recommender systems have
gradually become an indispensable element in peo-
ple’s daily lives. With more time spent on the Web,
people reveal their interests through richer modali-
ties than before. In response to the trend, current
recommendation systems (Meng et al., 2020; Hou
et al., 2019; Zhang et al., 2021a, 2017) consider
more diverse contents when making recommenda-
tion decisions to users.

Historically, the technical developments for pro-
cessing different types of information (such as
personalization, visual, and textual) are mostly
spread across different research communities. For-
tunately, recent advances in Foundation Models
(FMs) such as Large Language Models (LLMs)
unfold a promising route for building general-
purpose models and unifying diverse modalities,
so that one single architecture can handle visual,
textual and personalized information at the same
time, enabling the possible approach towards Arti-
ficial General Intelligence (AGI) (Ge et al., 2023)
and Artificial General Recommender (AGR) (Lin
and Zhang, 2023). As a pioneering work, GPT-3
(Brown et al., 2020) can perform in-context learn-
ing, enabling it to solve brand-new problems given
few-shot demonstration examples as prompts. Sim-
ilarly, CLIP (Radford et al., 2021; Geng et al.,
2022d) maintains superior zero-shot generalization
ability when shifting to an out-of-distribution vi-
sual domain if provided with appropriate prompt.
With more and more emergent abilities (Wei et al.,
2022b) revealed in foundation models, they be-
come not only a popular backbone to finetune
downstream tasks (Alayrac et al., 2022; Sanh et al.,
2022; Wei et al., 2022a) but also an effective train-
ing scheme for unifying multiple modalities in a
shared interface (Wang et al., 2022; Chen et al.,
2022; Cho et al., 2021; Jiang et al., 2022). Follow-
ing the trend in language and vision domains, P5
(Geng et al., 2022c) and M6-Rec (Cui et al., 2022)
put forward the concept of personalized foundation
models for recommendation and propose to pre-
train LLMs on instructional prompts to accommo-
date various recommendation tasks under a shared
model and training objective.

While there are large models for language (Raf-
fel et al., 2020; Brown et al., 2020), vision (Yu
et al., 2022; Radford et al., 2021), graphs (Ye et al.,
2023; Geng et al., 2022b) and recommendation
(Geng et al., 2022c; Cui et al., 2022) domains
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I find the purchase history list of user_1035 :

VIP5

4406

Pick the most suitable item from the following list and recommend to user_251 :

2317

Sequential Recommendation

Direct Recommendation

Explanation Generation

Based on the feature word exercises , generate an explanation for user_45 about this product : Black Mountain Products 

Resistance Band Set with Door Anchor, Ankle Strap, Exercise Chart, and Resistance Band Carrying Case

Good for those small 
exercises that one can't 

do with freeweights

, 4541 , 11615

7162 , 10964

, 5709 , 326 , 9910 , 2317…

4011 -> 3531 -> 5632 -> 5603 

-> 5634  I wonder what is the next item to recommend to the user . Can you help me decide ?  -> 5633 

Figure 1: An example task scope of VIP5 covering three popular recommendation tasks. Based on multimodal personalized
prompts (left) that interleave language and visual tokens, VIP5 is able to transfer all task and all modalities into a unified sequence
format, and generates target outputs (right) according to certain task descriptions. VIP5 treats large language models as a fixed
general-purpose interface and finetunes extra visual and language processing layers to achieve the ability for handling various
recommendation tasks.

separately, in this work, we take one step further
and aim to unify the above foundation models to
jointly process multi-modality information sources
for personalization and recommendation. To this
end, we follow the “Pretrain, Personalized Prompt
and Predict Paradigm (P5)” for recommendation
(Geng et al., 2022c; Xu et al., 2023) and propose
a Multimodal Foundation Model (MFM) named
VIP5 (Visual P5), which provides the following
advantages for recommender systems: 1) VIP5
provides multimodal personalized prompts for sup-
porting all modalities’ connections to the recom-
mendation foundation model. Specifically, to con-
struct multimodal personalized prompts, VIP5 em-
ploys a mapping network to transfer features from
other modalities into the corresponding tokens. By
this step, multimodal features are projected to the
same manifold space of the backbone foundation
model. 2) The VIP5 framework provides the abil-
ity of Parameter-efficient tuning rather than Pre-
training in existing recommendation foundation
models such as P5 (Geng et al., 2022c). Different
from the pre-training step of P5 that updates all
the parameters in the backbone foundation model
– which is impractical when the size of foundation
model grows explosively – VIP5 only finetunes a
small proportion of extra lightweight adapter mod-
ules during training while maintaining the large
language model backbone fixed. 3) With the ability
of multi-modality learning and parameter-efficient
tuning, VIP5 further improves the performance of
recommendation foundation models with both less
training time and less memory usage, making it
easier to train and deploy foundation models for
recommendation. Overall, our key contributions

are outlined as follows:

• We propose VIP5 framework to unify CV, NLP,
and RecSys foundation models and facilitate rec-
ommendation with multimodal information.

• We introduce multimodal personalized prompts
to adapt multi-modality information into a shared
tokenized space with textual, visual and person-
alization inputs.

• We develop adapter-based parameter-efficient
tuning for VIP5 to achieve a better recommenda-
tion performance and training efficiency.

• Based on the experimental results, VIP5 beats
strong baselines on three task groups while sav-
ing substantial training time and memory usage.

2 Related Work

Prompt Learning. Prompt learning (Liu et al.,
2021) gradually emerges as a popular paradigm
to control the behavior of large language models
since it can effectively adapt a pretrained model to
downstream tasks in either zero-shot or few-shot
style. The success of GPT series (Radford et al.,
2019; Brown et al., 2020) attracts the first wave
of interests on the topic. The in-context learning
capability of GPT-3 (Brown et al., 2020) inspires
many efforts on automatic prompt search or genera-
tion (Gao et al., 2021; Jiang et al., 2020; Shin et al.,
2020; Zhang et al., 2022) to achieve higher-quality
discrete prompts. However, it is naturally hard to
optimize these approaches in a discrete space. To
solve this issue, soft prompt based approaches such
as Prefix-Tuning (Li and Liang, 2021), Prompt-
Tuning (Lester et al., 2021), CoOp (Zhou et al.,
2022), and Visual-Prompt Tuning (Jia et al., 2022)
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are proposed to leverage additional trainable con-
tinuous embeddings as prefix to conduct finetuning
on downstream tasks. While achieving better scal-
ability and generalization ability, the learned soft
prompts are more difficult to interpret than discrete
prompts. To accommodate all above merits, in-
struction prompts that directly describe different
tasks via natural language instructions are adopted
by a lot of methods (Weller et al., 2020; Wei et al.,
2022a; Sanh et al., 2022; Aribandi et al., 2022;
Mishra et al., 2022), highlighting significant im-
provements on unseen tasks.

Large Recommendation Models. Motivated by
the success of Large Language Models (LLMs), the
RecSys community started to pay more attention
to recommendation model’s generalization ability
and transferability (Li et al., 2023b). For example,
inspired by the prompt learning paradigm, PETER
(Li et al., 2021) and PEPLER (Li et al., 2022) pro-
poses to learn personalized continuous prompts to
represent user and item IDs and generates natural
language explanations to justify recommendations.
In contrast, M6-Rec (Cui et al., 2022) converts all
user behavior information to plain text sequences
and feeds them into a Transformer encoder, and
then designs a task-specific training loss for down-
stream tasks and finetuning. Apart from previous
efforts, P5 (Geng et al., 2022c) and OpenP5 (Xu
et al., 2023) leverage not only instruction-based
finetuning on LLMs to represent personalized fields
for users and items but also unifies various tasks
via natural language instructions. Hence, P5 is
able to unify various recommendation tasks into
a shared encoder-decoder architecture and a joint
training objective. P5-ID (Hua et al., 2023b) fur-
ther explores different item ID creation methods for
LLM-based recommendation models, such as se-
quential indexing, collaborative indexing, semantic
indexing, and hybrid indexing.

Multimodal Recommendation. Current ap-
proaches to multimodal recommendation can be
divided into three categories. The most common
usage is to leverage multimodal content as side
information to assist recommendation decisions.
For example, VBPR (He and McAuley, 2016) pro-
poses using visual features to supplement user feed-
back and improve matching-based recommenda-
tions. PiNet (Meng et al., 2020) proposes to cover
more personalized visual preferences about users.
It simultaneously learns heterogeneous visual fea-
tures with semantic and collaborative information

and then fuses different visual information through
a dual-gating module. JRL (Zhang et al., 2017) pro-
poses Joint Representation Learning over multiple
modalities for improved recommendation. Another
stream of approaches focus on providing recom-
mendations along with correlated visual explana-
tions. These methods usually work in domains
where visual information is important to user be-
havior patterns, such as fashion (Hou et al., 2019;
Verma et al., 2020; Chen et al., 2019), travel (Geng
et al., 2022a), and food (Meng et al., 2020). Fur-
thermore, several recent approaches have been pro-
posed to discover the rich intra-item and inter-item
semantic structures from multimodal contents to
facilitate better item representations and thus en-
hance recommendation performances (Zhang et al.,
2021b,a; Deldjoo et al., 2022).

3 VIP5 Paradigm with Multimodal
Personalized Prompts

We introduce the proposed VIP5 paradigm in this
section. In Section 3.1, we incorporate multimodal
signals into personalized prompts. In Section 3.2,
we elaborate how to conduct parameter-efficient
tuning with adapters based on multimodal person-
alized prompts.

3.1 Multimodal Personalized Prompts

A personalized prompt includes personalized fields
for users and items (Geng et al., 2022c; Li et al.,
2022, 2023a), with formats ranging from ID num-
bers to detailed descriptions. In our work, we de-
velop foundation models as a general-purpose in-
terface to connect available modalities that could
be helpful for eliciting user preferences. To facili-
tate this end, we propose “multimodal personalized
prompts”. Technically, we consider textual, visual,
and personalization information as three example
modalities in our multimodal personalized prompts
(Figure 2).

Given an item image I ∈ RH×W×3, where
H and W are the image height and width, we
first adopt a visual encoder such as CLIP image
branch (Radford et al., 2021) to extract its feature
x ∈ Rdv , where dv represents the visual feature
dimension. To connect the image feature to other
text-based tokens in a personalized prompt, as illus-
trated in Figure 2(c), we design a mapping network
f with two linear layers to transfer the original im-
age feature to k image tokens: p1, . . . , pk = f(x).
Then we append the image tokens to their corre-
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Multimodal Personalized Prompt (b)

 Pick the most suitable item for user_251 : , 4541 , 23177162 CLIP Image 
Encoder

<i1> <i2>

Mapping
Network

!

❄

(c)

Visual 
Tokens<i3> <i4>

<i5> <i6>

Token

Position

Whole-word

pick the most suitable item for _

<p1> <p2> <p3> <p4> <p5> <p6> <p7> <p8> <p9> <p10> <p11> <p12> <p13> <p14> <p15>

<w1>

Category <c—text>

<i1>

<c-visual>

<i2>

(a)

❄

P5 Encoder

!

Adapter

 ✕ L

23<s>

1723

!

Adapter

❄

P5 Decoder
 ✕ L

user 25 1 : 71 62 , 45 41 <i5> <i6>23 17

<p16> <p17> <p18>

<i3> <i4>

<p19> <p20>

,

<p21> <p22> <p23> <p24> <p25>

<w3> <w4> <w5> <w6> <w7> <w8> <w9> <w10> <w11> <w12> <w13> <w14> <w15> <w16> <w17> <w18> <w19><w2>

<c—text> <c-visual> <c—text> <c-visual>

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

VIP5 Model
Architecture

Figure 2: An illustration of the VIP5 framework. VIP5 is built on an encoder–decoder Transformer model that takes in textual
inputs as well as image inputs to produce responses or make recommendation decisions. In the figure, a fire symbol represents
training with parameter update while a snow flake symbol stands for the frozen parameters.

sponding item tokens to construct a multimodal
personalized field M:

M : w1 · · ·wm︸ ︷︷ ︸
item tokens

, p1, . . . , pk︸ ︷︷ ︸
image tokens

. (1)

We create a collection of 29 multimodal personal-
ized prompts covering three important task families
– sequential recommendation, direct recommenda-
tion, and explanation. The full list of prompts is
provided in Figure 8, 9, and 10. Based on the collec-
tion of multimodal personalized prompts, we use
the multimodal personalized field M as in Eq.(1)
to substitute the item field in the prompt. It is worth
noting that the prompts for sequential and direct
recommendation usually contain more than one
multimodal personalized fields.

3.2 Parameter-efficient Tuning with Adapters
Our VIP5 framework is shown in Figure 2(a). For
tokenized multimodal sequence S, we first apply
position encoding P and whole-word embedding
W on S to help the model better recognize the
absolute positions of input tokens and important
user/item fields (e.g., “user_251” is split into 4 sep-
arate tokens [“user”, “_”, “25”, “1”], but they share
the same whole-word embedding “⟨w7⟩”). Besides,
we adopt an additional category embedding C to
identify whether a token is textual or visual. Af-
terwards, we feed the resulting sequence into the
L-layered text encoder E and decoder D modules.

Besides multimodal personalized prompts, we
propose parameter-efficient tuning using adapters
for computation- and memory-efficient training.
By inserting adapters into the foundation model
backbone, freezing its parameters, and updating
lightweight adapter modules, this strategy largely

reduces trainable parameters, decreasing training
time and memory usage. Tuning few additional
parameters addresses efficiency concerns when in-
corporating visual tokens into text-based person-
alized prompts. More importantly, fine-tuning the
entire backbone may cause over-fitting for easier
tasks, whereas parameter-efficient tuning can lever-
age both training efficiency and the power of large
foundation models.

Formally, if we denote the input sequence for the
i-th layer of text encoder as Si = [s1, · · · , sn], in
traditional Transformer, Si will go through one self-
attention block and a feed-forward network. While
in VIP5, we insert adapters (Houlsby et al., 2019;
Sung et al., 2022) in both the self-attention block
and the feed-forward network, the exact position is
after each module and before the LayerNorm (Ba
et al., 2016). The whole process can be written as:

Si+1 = A2

(
FFN

(
A1

(
Attention

(
SiWQ,SiWK,SiWV

))))
,
(2)

where WQ,WK,WV ∈ Rd×dh are weight matrices
for projecting query, key, and value, respectively,
dh = d/h is the dimensionality for each head. The
Attention function is defined as:

Attention(Q,K,V) = softmax

(
QK⊤
√
dh

)
V.

(3)
Besides, FFN is a feed-forward module consisting
of two fully-connected layers. A1 and A2 are the
feature adapters after the self-attention and feed-
forward network. They are both bottleneck fully-
connected layers with an activation function in be-
tween. We can represent these adapters as:

A = fup (σ (fdown(Si))) + Si, (4)
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where fdown and fup are the down-sampling and
up-sampling layers of an adapter, and σ is the
GELU activation function (Hendrycks and Gim-
pel, 2016). Similar to text encoder, we also adopt
adapters between the cross-attention block and its
LayerNorm layer inside text decoder.

VIP5 utilizes the conditional token generation
loss for all three recommendation tasks. After en-
coding the input multimodal personalized prompts
into a contextualized latent sequence with E , the
text decoder D autoregressively predict next tokens
conditioned on the already generated tokens y<j

and the input text t. In summary, VIP5 adopts the
following training objective to perform parameter-
efficient tuning with adapters:

Lθ = −
|y|∑

j=1

logPθ (yj | y<j , t) . (5)

After training, we perform inference with VIP5
based on given multimodal personalized prompts.
For sequential and direct recommendation task
groups, we create a list of candidate items for rec-
ommendation via beam search. For explanation
task group, we simply apply greedy decoding for
text generation.

4 Experiments

In this section, we provide the performance com-
parison between the VIP5 framework and repre-
sentative approaches for different task groups. We
conduct extensive experiments and ablation studies
to explore the following research questions:

• RQ1: Does the proposed parameter-efficient
VIP5 framework perform well when compared
with baseline methods across the three task
groups?

• RQ2: When conducting parameter-efficient tun-
ing, which parts should we insert adapters and
perform finetuning? In addition, will different
adapter reduction rates affect the performance
and efficiency of VIP5?

• RQ3: Does visual information play an important
role in multimodal personalized prompts? What
if we change the number of image tokens and the
type of visual encoder?

4.1 Experimental Setups
Datasets. We employ four real-world datasets
collected from Amazon platform for experiments

Dataset Clothing Sports Beauty Toys

#Users 39,387 35,598 22,363 19,412
#Items 23,033 18,357 12,101 11,924
#Reviews 278,677 296,337 198,502 167,597
#Photos 22,299 17,943 12,023 11,895
#Sparsity (%) 0.0307 0.0453 0.0734 0.0724

Table 1: Detailed statistics of the datasets used in our paper.

and ablation studies, namely Clothing, Shoes &
Jewelry, Sports & Outdoors, Beauty, and Toys &
Games. These datasets1 contain user purchase
records, reviews, item descriptions, and images.
Table 1 offers detailed dataset statistics.
Tasks and Metrics. In this paper, we cover three
recommendation task groups: A) sequential rec-
ommendation, B) direct recommendation, and C)
explanation generation. We follow the same pre-
processing steps and train/validation/test splits as
in (Geng et al., 2022c). For sequential recommen-
dation, the last and second last items in each user’s
interaction history are adopted as test and valida-
tion ground-truths, with remaining items as training
data. For direct recommendation, we use sequen-
tial recommendation’s train/validation/test splits
to generate 100 candidate lists as in (Zhao et al.,
2022). For explanation generation, we adopt an
8:1:1 random split and extract rating explanations
using the Sentires library (Zhang et al., 2014).

We evaluate sequential and direct recommenda-
tion task groups using Hit Ratio (HR@k) and Nor-
malized Discounted Cumulative Gain (NDCG@k),
while explanation generation tasks are assessed us-
ing text generation metrics like BLEU and ROUGE.
In all tables, bold numbers indicate the best ap-
proach for each metric.
Implementation Details. We utilize the pre-
trained P5-small checkpoint as VIP5’s backbone,
as it often outperforms P5-base (Geng et al., 2022c).
VIP5’s encoder and decoder consist of 6 Trans-
former blocks, a 512-dimension embedding size,
and 8 attention heads. To process visual informa-
tion, we use CLIP’s (Radford et al., 2021) image
branch as VIP5’s visual encoder and pre-extract
image features. Similar to P5, we employ the Sen-
tencePiece (Sennrich et al., 2016) tokenizer with a
32,100 vocabulary size to generate sub-word input
tokens. By default, the mapping network serves
as the image tokenizer in VIP5 and the number of
image tokens is set to 2, while the adapters have a
reduction factor of 8 for the bottleneck dimension.

For each task group, all multimodal personal-

1http://jmcauley.ucsd.edu/data/amazon/links.html
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Methods
Sports Beauty

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

HGN 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266
SASRec 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327

P5 (A-3) 0.0272 0.0169 0.0361 0.0198 0.0503 0.0370 0.0659 0.0421
VIP5 (A-3) 0.0412 0.0345 0.0475 0.0365 0.0556 0.0427 0.0677 0.0467

P5 (A-9) 0.0258 0.0159 0.0346 0.0188 0.0490 0.0358 0.0646 0.0409
VIP5 (A-9) 0.0392 0.0327 0.0456 0.0347 0.0529 0.0413 0.0655 0.0454

Methods
Clothing Toys

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

HGN 0.0107 0.0071 0.0175 0.0092 0.0321 0.0221 0.0497 0.0277
SASRec 0.0107 0.0066 0.0194 0.0095 0.0463 0.0306 0.0675 0.0374
S3-Rec 0.0076 0.0045 0.0135 0.0063 0.0443 0.0294 0.0700 0.0376

P5 (A-3) 0.0478 0.0376 0.0554 0.0401 0.0655 0.0570 0.0726 0.0593
VIP5 (A-3) 0.0603 0.0564 0.0632 0.0573 0.0662 0.0577 0.0749 0.0604

P5 (A-9) 0.0455 0.0359 0.0534 0.0385 0.0631 0.0547 0.0701 0.0569
VIP5 (A-9) 0.0569 0.0531 0.0597 0.0540 0.0641 0.0556 0.0716 0.0580

Table 2: Performance comparison on sequential recommendation.

Methods
Sports Beauty

HR@1 HR@5 NDCG@5 HR@10 NDCG@10 HR@1 HR@5 NDCG@5 HR@10 NDCG@10

BPR-MF 0.0314 0.1404 0.0848 0.2563 0.1220 0.0311 0.1426 0.0857 0.2573 0.1224
BPR-MLP 0.0351 0.1520 0.0927 0.2671 0.1296 0.0317 0.1392 0.0848 0.2542 0.1215

VBPR 0.0262 0.1138 0.0691 0.2060 0.0986 0.0380 0.1472 0.0925 0.2468 0.1245
P5 (B-5) 0.0574 0.1503 0.1050 0.2207 0.1276 0.0601 0.1611 0.1117 0.2370 0.1360

VIP5 (B-5) 0.0606 0.1743 0.1185 0.2539 0.1441 0.0580 0.1598 0.1099 0.2306 0.1327
P5 (B-8) 0.0567 0.1514 0.1049 0.2196 0.1269 0.0571 0.1566 0.1078 0.2317 0.1318

VIP5 (B-8) 0.0699 0.1882 0.1304 0.2717 0.1572 0.0615 0.1655 0.1147 0.2407 0.1388

Methods
Clothing Toys

HR@1 HR@5 NDCG@5 HR@10 NDCG@10 HR@1 HR@5 NDCG@5 HR@10 NDCG@10

BPR-MF 0.0296 0.1280 0.0779 0.2319 0.1112 0.0233 0.1066 0.0641 0.2003 0.0940
BPR-MLP 0.0342 0.1384 0.0858 0.2327 0.1161 0.0252 0.1142 0.0688 0.2077 0.0988

VBPR 0.0352 0.1410 0.0877 0.2420 0.1201 0.0337 0.1294 0.0808 0.2199 0.1098
P5 (B-5) 0.0320 0.0986 0.0652 0.1659 0.0867 0.0418 0.1219 0.0824 0.1942 0.1056

VIP5 (B-5) 0.0481 0.1287 0.0890 0.1992 0.1116 0.0428 0.1225 0.0833 0.1906 0.1051
P5 (B-8) 0.0355 0.1019 0.0688 0.1722 0.0912 0.0422 0.1286 0.0858 0.2041 0.1099

VIP5 (B-8) 0.0552 0.1544 0.1058 0.2291 0.1297 0.0433 0.1301 0.0875 0.2037 0.1110

Table 3: Performance comparison on direct recommendation.

ized prompts except the last are used to train VIP5.
Prompts A-3/A-9, B-5/B-8, and C-3/C-12 are used
for evaluation purpose, with A-3, B-5, C-3 testing
model performance under seen prompts and A-9,
B-8, C-12 under zero-shot unseen prompts. VIP5
is trained for 10 epochs with a batch size of 36 on
four NVIDIA A100 GPUs, using a learning rate
of 1 × 10−3 and AdamW (Loshchilov and Hut-
ter, 2018) optimizer. As multimodal personalized
prompts contain more image tokens, we set input
token’s maximum length to 1024. During infer-
ence, beam size B is set to 20 for sequential and
direct recommendation tasks that require generat-
ing a list of candidate items.

Comparison Baselines. To make performance
comparisons, we consider a collection of baselines
for each task group. For all three task groups, we
include P5 (Geng et al., 2022c) as a baseline to com-
pare with existing foundation models for recom-
mendation. P5 pre-trains all tasks with predefined

text-based personalized prompts via autoregressive
language modeling loss and performs inference
using greedy decoding or beam search to gener-
ate outputs. Additionally, we compare with task-
specific approaches. For sequential recommenda-
tion, baseline methods include HGN (Ma et al.,
2019), SASRec (Kang and McAuley, 2018), and
S3-Rec (Zhou et al., 2020). For direct recommen-
dation, we compare with BPR-MF (Rendle et al.,
2009), BPR-MLP, and VBPR (He and McAuley,
2016). For explanation generation, we inherent
the baselines of P5: Attn2Seq (Dong et al., 2017),
NRT (Li et al., 2017), and PETER (Li et al., 2021).
When providing a hint feature word as input, PE-
TER becomes its variant PETER+, which we also
use as an explanation generation baseline.

4.2 Performance on Task Groups (RQ1)

In this section, we conduct parameter-efficient tun-
ing for VIP5 on multimodal personalized prompts
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Methods
Sports Beauty

BLUE4 ROUGE1 ROUGE2 ROUGEL BLUE4 ROUGE1 ROUGE2 ROUGEL

Attn2Seq 0.5305 12.2800 1.2107 9.1312 0.7889 12.6590 1.6820 9.7481
NRT 0.4793 11.0723 1.1304 7.6674 0.8295 12.7815 1.8543 9.9477

PETER 0.7112 12.8944 1.3283 9.8635 1.1541 14.8497 2.1413 11.4143
P5 (C-3) 0.6212 11.8539 2.0707 9.0189 1.0230 14.3242 2.0761 10.9085

VIP5 (C-3) 1.0639 14.8628 2.1012 11.1059 1.2850 17.7492 2.3482 12.9170

PETER+ 2.4627 24.1181 5.1937 18.4105 3.2606 25.5541 5.9668 19.7168
P5 (C-12) 1.3144 22.9182 4.9976 17.1976 1.6313 24.6267 4.9623 18.6423

VIP5 (C-12) 2.3003 24.4887 5.5057 18.6610 2.8390 26.0513 6.0159 20.4387

Methods
Clothing Toys

BLUE4 ROUGE1 ROUGE2 ROUGEL BLUE4 ROUGE1 ROUGE2 ROUGEL

Attn2Seq 0.6296 11.4588 1.2558 9.0429 1.6238 13.2245 2.9942 10.7398
NRT 0.4599 10.1480 0.9720 8.2434 1.9084 13.5231 3.6708 11.1867

PETER 0.7204 12.1836 1.3912 9.7084 1.9861 14.2716 3.6718 11.7010
P5 (C-3) 0.7569 12.2833 1.8116 9.6023 1.4522 12.6100 3.8144 10.1450

VIP5 (C-3) 1.1904 14.1685 2.0308 10.8488 2.3241 15.3006 3.6590 12.0421

PETER+ 3.6204 28.4342 7.7994 22.4059 4.7919 28.3083 9.4520 22.7017
P5 (C-12) 1.8811 27.7922 7.3203 21.5462 2.6216 27.8984 9.0076 21.6136

VIP5 (C-12) 3.2581 28.9059 8.5168 22.8807 3.9293 28.9225 9.5441 23.3148

Table 4: Performance comparison on explanation generation (numbers are in percentage %).
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Figure 3: Performance comparison between text-based prompt and multimodal prompt.

from all the three task groups. For each task group,
we select one seen and one unseen prompt for eval-
uation. Performance comparisons with baselines
are presented in Table 2, 3, and 4.
Sequential Recommendation. As shown in Ta-
ble 2, we adopt Prompt A-3 and Prompt A-9 to
evaluate the performances of different approaches.
From the table, we can see that VIP5 is able to
achieve better performances than all sequential rec-
ommendation baselines on all the four experiment
datasets, among which a relatively large gap can be
observed on Sports and Clothing datasets. The re-
sults show that our parameter-efficient tuning strat-
egy works effectively on the sequential recommen-
dation task group.
Direct Recommendation. For the direction rec-
ommendation task group, we evaluate different
methods using Prompt B-5 and Prompt B-8 as input
multimodal personalized prompts. Table 3 presents
the performance comparison, showing VIP5 out-
performing all baselines on Sports. While VIP5
achieves marginally lower HR@10 on Toys, Beauty,
and Clothing datasets, it still surpasses all baselines
on other metrics.
Explanation Generation. Table 4 illustrates the
performance comparison for explanation genera-
tion task group. In the table, Prompt C-12 are ap-

plied to evaluate all methods under hint feature
word setup, while Prompt C-3 targets at direct
explanation generation with only the given user–
item pair. The experimental results indicate that
VIP5 outperforms other baselines when equipped
with the multimodal personalized Prompt C-3. For
Prompt C-12, VIP5 achieves superior performances
than P5 across all datasets in terms of all metrics
and has the highest ROUGE1, ROUGE2, ROUGEL
scores of the four experimental datasets.

4.3 Parameter-efficient Tuning (RQ2)

In this section, we discuss how to conduct
parameter-efficient tuning with adapters to show
the impact of different tuning choices.
How to conduct parameter-efficient tuning. We
first try three fine-tuning approaches: 1) inserting
adapters in Transformer’s self-attention blocks and
only fine-tuning them, 2) fine-tuning adapters in
both self-attention and cross-attention blocks, 3)
fully fine-tuning all parameters. For this ablation,
we conduct experiments on Toys with ResNet-101
visual features, a reduction rate of 8, and a sin-
gle image token in multimodal prompt. Figure 4
demonstrates that fine-tuning adapters in all atten-
tion blocks is necessary to achieve better (Prompt
C-12) or comparable (Prompt A-9 & B-8) results
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Figure 4: Performance comparison among only activat-
ing adapters in self-attention blocks, both self-attention
and cross-attention blocks, and full finetuning.

with full fine-tuning. Moreover, Table 5 shows
that the former saves 21.2% time and 18.1% mem-
ory usage during training compared to the latter,
highlighting VIP5’s effectiveness and efficiency.
On adapter reduction rate. The reduction rate is
an important hyper-parameter for adapters. When
decreasing the reduction rate, the hidden dimension
of bottleneck layers will increase correspondingly,
resulting in a higher percentage of trainable param-
eters. We select five different values of reduction
rates and perform all experiments with ResNet-101
visual features and a single image token in multi-
modal prompt. In Figure 5, we can see that 4 and 8
are suitable reduction rates for all the 3 task groups.

4.4 Ablation on Visual Components (RQ3)
In this section, we aim to explore whether visual
information matters for different task groups. We
also estimate the influence of the number of image
tokens and the visual encoder type.
Text-based vs. multimodal personalized
prompts. To compare text-based and multimodal
personalized prompts, we set the number of image
tokens to 0 and 1, respectively, and conduct experi-
ments on all four datasets with a reduction rate of
8 and ResNet-101 visual features. Figure 3 shows
that introducing visual signals into personalized
prompts improves all datasets for direct recommen-
dation task group (Prompt B-8). This is in line with
our expectation that an item’s visual appearance
significantly influences people’s choices. For se-
quential recommendation, visual information does
not bring obvious performance improvements, indi-
cating that the purchase sequence itself is more sig-
nificant for predicting next items. For explanation
generation, visual information positively impacts
all datasets, especially for the Toys dataset.
On the number of image tokens. To examine the
influence of the number of image tokens, we select
four different numbers (1, 2, 3, 5) and conduct ad-
ditional experiments on Toys with a reduction rate
of 8 and ResNet-101 visual features. According to
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Figure 5: Ablation on the downsample reduction rate.
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Figure 6: Ablation on the image token number.
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Figure 7: Ablation on the visual encoder type.

Figure 6, enabling 5 image tokens in multimodal
personalized prompt achieves the best performance
on Prompt A-9 and Prompt B-8, while 2 image
tokens perform the best for Prompt C-12. However,
longer visual prompt results in more training time
(e.g., 5 image tokens take 60.8% more time than
2 image tokens). Therefore, we choose 2 image
tokens as default setting considering the trade-off.
On visual encoder type. The visual encoder type
is another factor influencing multimodal person-
alized prompt representation. We explore vari-
ous CLIP visual branch architectures: ResNet50,
ResNet101, ViT-B/32, ViT-B/16, ViT-L/14 (in an
ascending order of visual encoder ability according
to CLIP (Radford et al., 2021)). All experiments
are performed on Toys with a reduction rate of 8
and a single image token. The results are reported
in Figure 7. Similar to our previous conclusions, vi-
sual information matters most for direct recommen-
dation, with continuous performance gains when
using better visual encoders. However, for sequen-
tial recommendation and explanation generation,
better visual encoders do not always improve per-
formance. This is most likely because the purchase
sequence is more crucial than visual information
for predicting the next item in sequential recom-
mendation, leading to similar performances under
different visual encoders. For explanation genera-
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Methods/Metrics Time/Epoch Trainable Param. Memory Usage

Self-Attn 10.55 2.97 27.4
Self- & Cross-Attn 11.10 3.58 29.0
Full (P5) 14.08 100 35.6

Table 5: Comparison of different training strategies in terms
of trainable parameter (%), training time (min), and memory
usage (GB) on the Toys dataset.

tion, hint words significantly influence generated
sentences, and the compatibility between hint word
and visual embedding varies across different visual
encoders. However, VIP5 is still better than the
best baseline under most visual encoders.

5 Conclusions

This paper presents VIP5, a parameter-efficient
multimodal foundation recommendation model uni-
fying vision, language, and personalization in-
formation. We design multimodal personalized
prompts to integrate visual signals with text and
personalization information, enhancing recommen-
dation across diverse modalities. Our parameter-
efficient tuning strategy updates a small propor-
tion of adapters, achieving a better trade-off be-
tween recommendation performance, training ef-
ficiency, and memory usage. Through extensive
experiments, we show the effectiveness of our VIP5
framework and show that multimodality informa-
tion is helpful for various recommendation tasks.
Future work includes further scaling up the back-
bone model, incorporating even more modalities,
and exploring improved prompt strategies, such as
chain-of-thought prompting.

Limitations and Future Work

Despite the promising results and advantages
offered by our Multimodal Foundation Model
(MFM), there are several limitations that need to
be addressed – 1) Bias and fairness: VIP5 relies on
the quality and diversity of training data. Existing
biases may lead to biased and unfair recommen-
dations. Future work could explore methods to
mitigate biases, improve data representativeness,
and promote fairness of LLMs for recommendation
(Li and Zhang, 2023; Hua et al., 2023a). 2) Model
transparency and interpretability: VIP5 lacks in-
herent transparency, which can hinder users’ trust
in recommendations. Future work will aim to en-
hance transparency and explainability for VIP5-
generated recommendations. 3) Scalability to other
modalities: Extending the VIP5 framework to other
modalities, such as audio or video, remains a chal-
lenge. Incorporating these modalities efficiently

is an important aspect for further investigation. 4)
Efficiency of LLM: Efficiency is an important fac-
tor for LLMs to gain practical applications in real-
world systems, because the latency should be lim-
ited to a small amount of time when delivering ser-
vices to users. In this work, we have made an initial
attempt to improve LLM efficiency by proposing
the parameter-efficient tuning approach. In the fu-
ture, it is important to investigate the efficiency of
LLMs on various stages of the pipeline, such as
the effiency of pre-training, fine-tuning and prompt-
based inference (Li et al., 2023a). In conclusion,
addressing these limitations can pave the way for
improved multimodal foundation models and more
effective recommendations across various applica-
tions and domains.
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Appendix

From Figure 8 to Figure 10, we provide a detailed list of 29 multimodal personalized prompts used in our
paper that covers three recommendation tasks.

Prompt A-1
Input template: Given the following purchase 
history of user_{{user_id}}:
{{purchase_history}}
predict next possible item to be purchased by 
the user?
Target template: {{next_item}}

Prompt A-2
Input template: I find the purchase history 
list of user_{{user_id}}:
{{purchase_history}}
I wonder which is the next item to recommend 
to the user. Can you help me decide?
Target template: {{next_item}}

Prompt A-4
Input template: Given the following purchase 
history of {{user_desc}}:
{{purchase_history}}
predict next possible item for the user
Target template: {{next_item}}

Prompt A-5
Input template: Based on the purchase history 
of {{user_desc}}:
{{purchase_history}}
Can you decide the next item likely to be 
purchased by the user?
Target template: {{next_item}}

Prompt A-7
Input template: User_{{user_id}} has the 
following purchase history:
{{purchase_history}}
Does the user likely to buy {{item_id}} 
{{item_photo}} next?
Target template: {{answer_choices[label]}} 
(yes/no)

Prompt A-8
Input template: According to {{user_desc}}'s 
purchase history list:
{{purchase_history}}
Predict whether the user will purchase 
{{item_id}} {{item_photo}} next?
Target template: {{answer_choices[label]}} 
(yes/no)

Prompt A-3
Input template: Here is the purchase history 
list of user_{{user_id}}:
{{purchase_history}}
try to recommend next item to the user
Target template: {{next_item}}

Prompt A-6
Input template: Here is the purchase history 
of {{user_desc}}:
{{purchase_history}}
What to recommend next for the user?
Target template: {{next_item}}

Prompt A-9
Input template: According to the purchase 
history of {{user_desc}}:
{{purchase_history}}
Can you recommend the next possible item to 
the user ?
Target template: {{next_item}}

Figure 8: Multimodal personalized prompts for Task Group A: Sequential Recommendation.
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Prompt B-1
Input template: Will user_{{user_id}} likely 
to interact with item_{{item_id}} 
{{item_photo}}?
Target template: {{answer_choices[label]}} 
(yes/no)

Prompt B-2
Input template: Shall we recommend 
item_{{item_id}} {{item_photo}} to 
user_{{user_id}}?
Target template: {{answer_choices[label]}} 
(yes/no)

Prompt B-3
Input template: For {{user_desc}}, do you 
think it is good to recommend {{item_title}} 
{{item_photo}}?
Target template: {{answer_choices[label]}} 
(yes/no)

Prompt B-5
Input template: Which item of the following 
to recommend for {{user_desc}}?
{{candidate_items}}
Target template: {{target_item}}

Prompt B-6
Input template: Choose the best item from the 
candidates to recommend for {{user_desc}}?
{{candidate_items}}
Target template: {{target_item}}

Prompt B-7
Input template: Pick the most suitable item 
from the following list and recommend to 
user_{{user_id}}:
{{candidate_items}}
Target template: {{target_item}}

Prompt B-8
Input template: We want to make recommendation 
for user_{{user_id}}. Select the best item 
from these candidates: 
{{candidate_items}}
Target template: {{target_item}}

Prompt B-4
Input template: I would like to recommend 
some items for user_{{user_id}}. Is the 
following item a good choice?
{{item_title}} {{item_photo}}
Target template: {{answer_choices[label]}} 
(yes/no)

Figure 9: Multimodal personalized prompts for Task Group B: Direct Recommendation.
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Prompt C-1
Input template: Generate an explanation for 
user_{{user_id}} about this product: 
{{item_title}} {{item_photo}}
Target template: {{explanation}}

Prompt C-2
Input template: Given the following review 
headline {{review_headline}}
can you help generate an explanation of 
user_{{user_id}} for item_{{item_id}} 
{{item_photo}}?
Target template: {{explanation}}

Prompt C-3
Input template: Help user_{{user_id}} 
generate a {{star_rating}}-star explanation 
about this product:
{{item_title}} {{item_photo}}
Target template: {{explanation}}

Prompt C-4
Input template: Generate an explanation for 
{{user_desc}} about this product:
{{item_title}} {{item_photo}}
Target template: {{explanation}}

Prompt C-5
Input template: Based on the following review 
headline: {{review_headline}}
Generate {{user_desc}}'s purchase explanation 
about {{item_title}} {{item_photo}}
Target template: {{explanation}}

Prompt C-6
Input template: Help {{user_desc}} generate a 
{{star_rating}}-star explanation for 
item_{{item_id}} {{item_photo}}
Target template: {{explanation}}

Prompt C-7
Input template: Predict the star rating , then 
use {{feature_word}} as feature word to 
generate user_{{user_id}}'s purchase 
explanation for item_{{item_id}} 
{{item_photo}}
Target template: {{star_rating}},
{{explanation}}

Prompt C-8
Input template: What score will {{user_desc}} 
rate item_{{item_id}} {{item_photo}}? Then 
give an explanation for the rating score. (1 
being lowest and 5 being highest)
Target template: {{star_rating}},
{{explanation}}

Prompt C-9
Input template: Based on the feature word 
{{feature_word}}, generate an explanation for 
user_{{user_id}} about this product: 
{{item_title}} {{item_photo}}
Target template: {{explanation}}

Prompt C-10
Input template: Given the word 
{{feature_word}}, can you help generate an 
explanation for {{user_desc}} about the 
product: 
{{item_title}} {{item_photo}}
Target template: {{explanation}}

Prompt C-11
Input template: Using the word 
{{feature_word}}, write a {{star_rating}}-star 
explanation for user_{{user_id}} about 
item_{{item_id}} {{item_photo}}
Target template: {{explanation}}

Prompt C-12
Input template: According to the feature word 
{{feature_word}}, generate a {{star_rating}}-
star explanation for {{user_desc}} about 
item_{{item_id}} {{item_photo}}
Target template: {{explanation}}

Figure 10: Multimodal personalized prompts for Task Group C: Explanation Generation.
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