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Abstract

Ultra-fine entity typing plays a crucial role in in-
formation extraction by predicting fine-grained
semantic types for entity mentions in text. How-
ever, this task poses significant challenges due
to the massive number of entity types in the
output space. The current state-of-the-art ap-
proaches, based on standard multi-label classi-
fiers or cross-encoder models, suffer from poor
generalization performance or inefficient infer-
ence. In this paper, we present CASENT, a
seq2seq model designed for ultra-fine entity
typing that predicts ultra-fine types with cal-
ibrated confidence scores. Our model takes
an entity mention as input and employs con-
strained beam search to generate multiple types
autoregressively. The raw sequence probabil-
ities associated with the predicted types are
then transformed into confidence scores using
a novel calibration method. We conduct exten-
sive experiments on the UFET dataset which
contains over 10k types. Our method outper-
forms the previous state-of-the-art in terms of
F1 score and calibration error, while achieving
an inference speedup of over 50 times. Addi-
tionally, we demonstrate the generalization ca-
pabilities of our model by evaluating it in zero-
shot and few-shot settings on five specialized
domain entity typing datasets that are unseen
during training. Remarkably, our model out-
performs large language models with 10 times
more parameters in the zero-shot setting, and
when fine-tuned on 50 examples, it significantly
outperforms ChatGPT on all datasets.1

1 Introduction

Classifying entities mentioned in text into types,
commonly known as entity typing, is a fundamen-
tal problem in information extraction. Earlier re-
search on entity typing focused on relatively small

∗ This work was done while the first author was at
Carnegie Mellon University.

1Our code, models and demo are available at https://
github.com/yanlinf/CASENT.

Input:  
In addition, Greer said, scientists do not know if 
chemically treated oil will degrade as quickly as oil that 's 
dispersed through wind and wave, and if it 's more toxic.

Box4Types (Onne et al., 2021):

LITE (Li et al., 2022):  

CASENT (ours):

object (0.83)

petroleum (0.99) oil (0.99) object (0.99) substance (0.99)

liquid (0.99) material (0.98)

oil (0.68) liquid (0.59) substance (0.39) object (0.39)

petroleum (0.36) fluid (0.32)

Figure 1: Comparison of predicted labels and confi-
dence scores for a UFET test example using Box4Types
(Onoe et al., 2021), LITE (Li et al., 2022), and our ap-
proach, CASENT. Predictions are sorted in descending
order based on confidence. Box4Types fails to gener-
alize to rare and unseen types, while LITE does not
predict calibrated confidence scores and exhibits slow
inference speed.

type inventories (Ling and Weld, 2012) which im-
posed severe limitations on the practical value of
such systems, given the vast number of types in
the real world. For example, WikiData, the cur-
rent largest knowledge base in the world, records
more than 2.7 million entity types2. As a result,
a fully supervised approach will always be ham-
pered by insufficient training data. Recently, Choi
et al. (2018) introduced the task of ultra-fine entity
typing (UFET), a multi-label entity classification
task with over 10k fine-grained types. In this work,
we make the first step towards building an efficient
general-purpose entity typing model by leveraging
the UFET dataset. Our model not only achieves
state-of-the-art performance on UFET but also gen-
eralizes outside of the UFET type vocabulary. An

2Estimated from the unique children in the subclassOf
(P279) relations using the February 2023 Wikidata dump.
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example prediction of our model is shown in Fig-
ure 1.

Ultra-fine entity typing can be viewed as a multi-
label classification problem over an extensive label
space. A standard approach to this task employs
multi-label classifiers that map contextual represen-
tations of the input entity mention to scores using a
linear transformation (Choi et al., 2018; Dai et al.,
2021; Onoe et al., 2021). While this approach of-
fers superior inference speeds, it ignores the type
semantics by treating all types as integer indices
and thus fails to generalize to unseen types. The
current state-of-the-art approach (Li et al., 2022)
reformulated entity typing as a textual entailment
task. They presented a cross-encoder model that
computes an entailment score between the entity
mention and a candidate type. Despite its strong
generalization capabilities, this approach is ineffi-
cient given the need to enumerate all 10k types in
the UFET dataset.

Black-box large language models, such as GPT-3
and ChatGPT, have demonstrated impressive zero-
shot and few-shot capabilities in a wide range of
generation and understanding tasks (Brown et al.,
2020; Ouyang et al., 2022). Yet, applying them to
ultra-fine entity typing poses challenges due to the
extensive label space and the context length limit
of these models. For instance, Zhan et al. (2023)
reported that GPT-3 with few-shot prompting does
not perform well on a classification task with thou-
sands of classes. Similar observations have been
made in our experiments conducted on UFET.

In this work, we propose CASENT, a Calibrated
Seq2Seq model for Entity Typing. CASENT pre-
dicts ultra-fine entity types with calibrated con-
fidence scores using a seq2seq model (T5-large
(Raffel et al., 2020)). Our approach offers sev-
eral advantages compared to previous methods: (1)
Standard maximum likelihood training without the
need for negative sampling or sophisticated loss
functions (2) Efficient inference through a single
autoregressive decoding pass (3) Calibrated confi-
dence scores that align with the expected accuracy
of the predictions (4) Strong generalization perfor-
mance to unseen domains and types. An illustration
of our approach is provided in Figure 2.

While seq2seq formulation has been successfully
applied to NLP tasks such as entity linking (De Cao
et al., 2020, 2022), its application to ultra-fine entity
typing remains non-trivial due to the multi-label
prediction requirement. A simple adaptation would

employ beam search to decode multiple types and
use a probability threshold to select types. How-
ever, we show that this approach fails to achieve
optimal performance as the raw conditional prob-
abilities do not align with the true likelihood of
the corresponding types. In this work, we propose
to transform the raw probabilities into calibrated
confidence scores that reflect the true likelihood
of the decoded types. To this end, we extend Platt
scaling (Platt et al., 1999), a standard technique
for calibrating binary classifiers, to the multi-label
setting. To mitigate the label sparsity issue in ultra-
fine entity typing, we propose novel weight sharing
and efficient approximation strategies. The ability
to predict calibrated confidence scores not only im-
pacts task performance but also provides a flexible
means of adjusting the trade-off between precision
and recall in real-world scenarios. For instance, in
applications requiring high precision, predictions
with lower confidence scores can be discarded.

We carry out extensive experiments on the UFET
dataset and show that filtering decoded types based
on calibrated confidence scores leads to state-of-
the-art performance. Our method surpasses the
previous methods in terms of both F1 score and cal-
ibration error while achieving an inference speedup
of more than 50 times compared to cross-encoder
methods. Furthermore, we evaluate the zero-shot
and few-shot performance of our model on five
specialized domains. Our model outperforms Flan-
T5-XXL (Chung et al., 2022), an instruction-tuned
large language model with 11 billion parameters in
the zero-shot setting, and surpasses ChatGPT when
fine-tuned on 50 examples.

2 Related Work

2.1 Fine-grained Entity Typing

Ling and Weld (2012) initiated efforts to recognize
entities with labels beyond the small set of classes
that is typically used in named entity recognition
(NER) tasks. They proposed to formulate this task
as a multi-label classification problem. More re-
cently, Choi et al. (2018) extended this idea to ultra-
fine entity typing and released the UFET dataset,
expanding the task to include an open type vocab-
ulary with over 10k classes. Interest in ultra-fine
entity typing has continued to grow over the last
few years. Some research efforts have focused on
modeling label dependencies and type hierarchies,
such as employing box embeddings (Onoe et al.,
2021) and contrastive learning (Zuo et al., 2022).
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constrained beam 
search w/ prefix trie

seq2seq

“ <M>Mr. Dorfman</M> states that an 
investor who invested $100,000 a year ago 

in the first four … ”

“ Plavsic‘s Interior Ministry said in … 
that <M>they</M> would take all 

legal measures … ”

investor

Training

Inference

“ … sentenced <M>a Palestinian</M> 
to 16 life terms for forcing a bus off a 

cliff … ”

type log p(t | e)

person -0.5

criminal -0.96

adolescent -1.37

…

type ... person criminal adolescent …

log p(t | ∅) -1.04 -5.31 -2.23

(pre-computed model bias)

seq2seq

seq2seq calibration

millionaire

organization

government

businessman

person:    0.98  

criminal:  0.7    

adult:       0.2    

    …            …

Figure 2: Overview of the training and inference process of CASENT. We present an example output from our model.

Another line of research has concentrated on
data augmentation and leveraging distant super-
vision. For instance, Dai et al. (2021) obtained
training data from a pretrained masked language
model, while Zhang et al. (2022) proposed a de-
noising method based on an explicit noise model.
Li et al. (2022) formulated the task as a natural lan-
guage inference (NLI) problem with the hypothesis
being an “is-a” statement. Their approach achieved
state-of-the-art performance on the UFET dataset
and exhibited strong generalization to unseen types,
but is inefficient at inference due to the need to enu-
merate the entire type vocabulary.

2.2 Probability Calibration

Probability calibration is the task of adjusting the
confidence scores of a machine learning model to
better align with the true correctness likelihood.
Calibration is crucial for applications that require
interpretability and reliability, such as medical di-
agnoses. Previous research has shown that modern
neural networks while achieving good task per-
formance, are often poorly calibrated (Guo et al.,
2017; Zhao et al., 2021). One common technique
for calibration in binary classification tasks is Platt
scaling (Platt et al., 1999), which fits a logistic re-
gression model on the original probabilities. Guo
et al. (2017) proposed temperature scaling as an
extension of Platt scaling in the multi-class setting.

Although probability calibration has been exten-
sively studied for single-label classification tasks
(Jiang et al., 2020; Kadavath et al., 2022), it has
rarely been explored in the context of fine-grained
entity typing which is a multi-label classification
task. To the best of our knowledge, the only excep-
tion is Onoe et al. (2021), where the authors applied
temperature scaling to a BERT-based model trained
on the UFET dataset and demonstrated that the re-
sulting model was reasonably well-calibrated.

3 Methodology

In this section, we present CASENT, a calibrated
seq2seq model designed for ultra-fine entity typing.
We start with the task description (§3.1) followed
by an overview of the CASENT architecture (§3.2).
While the focus of this paper is on the task of entity
typing, our model can be easily adapted to other
multi-label classification tasks.

3.1 Task Definition

Given an entity mention e, we aim to predict a set
of semantic types t = {t1, . . . , tn} ⊂ T , where T
is a predefined type vocabulary (|T | = 10331 for
the UFET dataset). We assume each type in the
vocabulary is a noun phrase that can be represented
by a sequence of tokens t = (y1, y2, . . . , yk). We
assume the availability of a training set Dtrain with
annotated (e, t) pairs as well as a development set
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for estimating hyperparameters.

3.2 Overview of CASENT
Figure 2 provides an overview of our system. It
consists of a seq2seq model and a calibration mod-
ule. At training time, we train the seq2seq to output
a ground truth type given an input entity mention by
maximizing the length-normalized log-likelihood
using an autoregressive formulation

log pθ(t | e) =
1

k

k∑

i=1

log pθ(yi | y<i, e) (1)

where θ denotes the parameters of the seq2seq
model.

During inference, our model takes an entity men-
tion e as input and generates a small set of candi-
date types autoregressively via constrained beam
search by using a relatively large beam size. We
then employ a calibration module to transform the
raw conditional probabilities (Equation 1) associ-
ated with each candidate type into calibrated con-
fidence scores p̂(t | e) ∈ [0, 1].3 The candidate
types whose scores surpass a global threshold are
selected as the model’s predictions.

The parameters of the calibration module and
the threshold are estimated on the development
set before each inference run (which takes place
either at the end of each epoch or when the training
is complete). The detailed process of estimating
calibration parameters is discussed in §3.4.

3.3 Training
Our seq2seq model is trained to output a type t
given an input entity mention e. In the training
set, each annotated example (e, t) ∈ Dtrain with
|t| = n ground truth types is considered as n sepa-
rate input-output pairs for the seq2seq model.4 We
initialize our model with a pretrained seq2seq lan-
guage model, T5 (Raffel et al., 2020), and finetune
it using standard maximum likelihood objective:

min
θ


−

∑

(e,t)∈Dtrain

∑

t∈t
log pθ(t | e)


 (2)

Our seq2seq formulation greatly simplifies the
training process by eliminating the need for nega-

3Here, we make a slight abuse of notation by treating t as
a binary random variable that indicates whether e belongs to
type t.

4Note that although a training example (e, t) is separated
into n input-output pairs, the forward pass at the encoder only
needs to be computed once.

tive sampling, which is required by previous cross-
encoder approaches (Li et al., 2022; Dai et al.,
2021).

3.4 Calibration

At the core of our approach is a calibration mod-
ule that transforms raw conditional log-probability
log pθ(t | e) into calibrated confidence p̂(t | e).
We will show in section 4 that directly applying
thresholding using pθ(t | e) is suboptimal as it
models the distribution over target token sequences
instead of the likelihood of e belonging to a certain
type t. Our approach builds on Platt scaling (Platt
et al., 1999) with three proposed extensions specifi-
cally tailored for the ultra-fine entity typing task: 1)
incorporating model bias pθ(t | ∅), 2) frequency-
based weight sharing across types, and 3) efficient
parameter estimation with sparse approximation.

Platt Scaling: We first consider calibration for
each type t separately, in which case the task re-
duces to a binary classification problem. A stan-
dard technique for calibrating binary classifiers
is Platt scaling, which fits a logistic regression
model on the original outputs. A straightforward
application of Platt scaling in our seq2seq set-
ting computes the calibrated confidence score by
σ(wt · log pθ(t | e) + bt), where σ is the sigmoid
function and calibration parameters wt and b are
estimated on the development set by minimizing
the binary cross-entropy loss.

Inspired by previous work (Zhao et al., 2021)
which measures the bias of seq2seq models by feed-
ing them with empty inputs, we propose to learn
a weighted combination of both the conditional
probability pθ(t | e) and model bias pθ(t | ∅).
Specifically, we propose

σ
(
w

(1)
t · log pθ(t | e) + w

(2)
t · log pθ(t | ∅) + bt

)

as the calibrated confidence score. We will show
in section 4 that incorporating the model bias term
improves task performance and reduces calibration
error.

Multi-label Platt Scaling: We now discuss the
extension of this equation in the multi-label setting
where |T | ≫ 1. A naive extension that consid-
ers each type independently would introduce 3|T |
parameters and involve training |T | logistic regres-
sion models on |Ddev| · |T | data points. To mitigate
this difficulty, we propose to share calibration pa-
rameters across types based on their occurrence
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Algorithm 1: Calibration parameters estimation

1 function GetCalibrationParams(Ddev, model,
n_groups)

2 D← [[] for i in range(n_groups)]
// D stores the data points for

estimating calibration parameters
3 for e, types in Ddev do
4 for t in model.beam_search(e) do
5 X← [log pθ(t|e), log pθ(t|∅)]
6 if t in types then
7 y← +1

8 else
9 y← -1

10 D[ϕ(t)].append((X, y))

11 W← np.zeros((n_groups, 2))
12 B← np.zeros(n_groups)
13 for i in range(n_groups) do
14 W[i, :], B[i]←

FitLogisticRegression(D[i])

15 return W, B

frequency in the dataset:

p̂(t | e) = σ
(
w

(1)
ϕ(t) · log pθ(t | e)

+ w
(2)
ϕ(t) · log pθ(t | ∅) + bϕ(t)

) (3)

where

ϕ(t) =
⌈
log2 (Freq(t) + 1)

⌉
(4)

maps type t to its frequency category.5 Intuitively,
rare types are more vulnerable to model bias thus
should be handled differently compared to frequent
types.

Furthermore, instead of training logistic regres-
sion models on all |Ddev| · |T | data points, we
propose a sparse approximation strategy that only
leverages candidate types generated by the seq2seq
model via beam search.6 This ensures that the
entire calibration process retains the same time
complexity as a regular evaluation run on the devel-
opment set. The pseudo code for estimating cali-
bration parameters is outlined in algorithm 1. Once
the calibration parameters have been estimated, we
select the optimal threshold by running a simple
linear search.

3.5 Inference
At test time, given an entity mention e, we employ
constrained beam search to generate a set of can-
didate types autoregressively. Following previous

5On the UFET dataset, this reduces the number of calibra-
tion parameters from 30993 to 27.

6This reduces the maximum number of calibration data
points to |Ddev| × BeamSize.

work (De Cao et al., 2020, 2022), we pre-compute
a prefix trie based on T and force the model to se-
lect valid tokens during each decoding step. Next,
we compute the calibrated confidence scores us-
ing Equation 3 and discard types whose scores fall
below the threshold.

In section 4, we also conduct experiments on
single-label entity typing tasks. In such cases, we
directly score each valid type using Equation 3 and
select the type with the highest confidence score.

4 Experiments

4.1 Datasets

We use the UFET dataset (Choi et al., 2018), a stan-
dard benchmark for ultra-fine entity typing. This
dataset contains 10331 entity types and is curated
by sampling sentences from GigaWord (Parker
et al., 2011), OntoNotes (Hovy et al., 2006) and
web articles (Singh et al., 2012).

To test the out-of-domain generalization abili-
ties of our model, we construct five entity typing
datasets for three specialized domains. We derive
these from existing NER datasets, WNUT2017
(Derczynski et al., 2017), JNLPBA (Collier and
Kim, 2004), BC5CDR (Wei et al., 2016), MIT-
restaurant and MIT-movie.7 We treat each an-
notated entity mention span as an input to our
entity typing model. WNUT2017 contains user-
generated text from platforms such as Twitter and
Reddit. JNLPBA and BC5CDR are both sourced
from scientific papers from the biomedical field.
MIT-restaurant and MIT-movie are customer re-
view datasets from the restaurant and movie do-
mains respectively. Table 1 provides the statistics
and an example from each dataset.

4.2 Implementation

We initialize the seq2seq model with pretrained
T5-large (Raffel et al., 2020) and finetune it on
the UFET training set with a batch size of 8. We
optimize the model using Adafactor (Shazeer and
Stern, 2018) with a learning rate of 1e-5 and a con-
stant learning rate schedule. The constrained beam
search during calibration and inference uses a beam
size of 24. We mark the entity mention span with a
special token and format the input according to the
template “{CONTEXT} </s> {ENTITY} is </s>”.
Input and the target entity type are tokenized using
the standard T5 tokenizer.

7https://groups.csail.mit.edu/sls/downloads/
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Dataset Domain Entity Types (T ) Example

UFET News, web articles 10331 types [The explosions]event, calamity, attack, disaster occurred
on the night of October 7, against the Hilton Taba
and campsites used by Israelis in Ras al-Shitan.

WNUT2017 Social media {corporation, creative_work, group, location, per-

son, product}
RT @MarshmallowDoof: I did drawn the [Tiger
Mama]creative_work @BuxbiArts

JNLPBA Biomedical {DNA, RNA, cell_line, cell_type, protein} In vivo control of [NF-kappa B]protein activation by
I kappa B alpha.

BC5CDR Biomedical {disease, chemical} In a previous phase II study with 3 - weekly bolus
[5-FU]chemical, FA and mitomycin C ( MMC ) we
found a low toxicity rate and response rates com-
parable to those of regimens such as ELF, FAM or
FAMTX, and a promising median overall survival.

MIT-restaurant Customer review {rating, amenity, location, restaurant, price, hours,

dish, cuisine}
Can you make a reservation at [pf changs]restaurant

for tonight?

MIT-movie Customer review {actor, plot, opinion, award, year, genre, origin, di-

rector, soundtrack, relationship, character, quote}
An [animated]genre movie about a criminal master-
mind that attempts to steal the moon

Table 1: Dataset statistics and examples. Only UFET has multiple types for each entity mention.

4.3 Baselines

We compare our method to previous state-of-the-art
approaches, including multi-label classifier-based
methods such as BiLSTM (Choi et al., 2018),
BERT, Box4Types (Onoe et al., 2021) and ML-
MET (Dai et al., 2021). In addition, we include a
bi-encoder model, UniST (Huang et al., 2022) as
well as the current state-of-the-art method, LITE
(Li et al., 2022), which is based on a cross-encoder
architecture.

We also compare with ChatGPT 8 and Flan-T5-
XXL (Chung et al., 2022), two large language mod-
els that have demonstrated impressive few-shot and
zero-shot performance across various tasks. For the
UFET dataset, we randomly select a small set of ex-
amples from the training set as demonstrations for
each test instance. Instruction is provided before
the demonstration examples to facilitate zero-shot
evaluation. Furthermore, for the five cross-domain
entity typing datasets, we supply ChatGPT and
Flan-T5-XXL with the complete list of valid types.
Sample prompts are shown in Appendix A.

5 Results

5.1 UFET

In Table 2, we compare our approach with a suite of
baselines and state-of-the-art systems on the UFET
dataset. Our approach outperforms LITE (Li et al.,
2022), the current leading system based on a cross-
encoder architecture, with a 0.7% improvement in

8We use the gpt-3.5-turbo-0301 model available via the
OpenAI API.

Method P R F1

Few-shot methods

ChatGPT (0-shot) 55.5 10.5 17.6
ChatGPT (8-shot) 46.7 34.9 40.0
ChatGPT (16-shot) 47.8 36.7 41.5
ChatGPT (32-shot) 45.9 37.3 41.2

Supervised methods

BiLSTM (Choi et al., 2018) 47.1 24.2 32.0
BERT (Onoe and Durrett, 2019) 51.6 33.0 40.2
Box4Types (Onoe et al., 2021) 52.8 38.8 44.8
MLMET (Dai et al., 2021) 53.6 45.3 49.1
UniST (Huang et al., 2022) 50.2 49.6 49.9
LITE (Li et al., 2022) 52.4 48.9 50.6
CASENT (Ours) 53.3 49.5 51.3

Table 2: Macro-averaged precision, recall and F1 score
(%) on the UFET test set. The model with highest F1
score is shown in bold and the second best is underlined.

the F1 score. Among the fully-supervised models,
cross-encoder models demonstrate superior perfor-
mance over both bi-encoder methods and multi-
label classifier-based models.

ChatGPT exhibits poor zero-shot performance
with significantly low recall. However, it is able to
achieve comparable performance to a BERT-based
classifier with a mere 8 few-shot examples. Despite
this, its performance still lags behind recent fully
supervised models.

5.2 Out-of-domain Generalization

We evaluate the out-of-domain generalization per-
formance of different models on the five datasets
discussed in §4.1. The results are presented in Ta-
ble 3. It is important to note that we don’t compare
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Method
Social Media Biomedical Customer Review

WNUT 2017 JNLPBA BC5CDR MIT-restaurant MIT-movie Avg.

Zero-shot methods

Random 16.7 20.0 50.0 12.5 8.3 21.5
Flan-T5-XXL 62.9 71.8 63.0 39.6 45.4 56.5
ChatGPT 76.3 85.4 96.7 80.3 77.2 83.2
LITE (Li et al. 2022) 67.0 74.9 96.1 47.7 54.5 68.0
CASENT (no finetuning, no calibration) 65.5 79.2 98.2 52.9 51.2 69.4

Few-shot methods

RoBERTa-large (finetuned on 50 examples) 65.5 85.1 96.2 75.0 69.9 78.3
CASENT (no finetuning, calibration on dev) 74.2 84.0 98.2 68.5 71.7 79.3
CASENT (finetuned on 50 examples) 77.3 92.2 98.8 81.8 86.2 87.2

Table 3: Test set accuracy on five specialized domain entity typing datasets derived from existing NER datasets.
The best score is shown in bold and the second best is underlined. The results of LITE are obtained by running
inference using the model checkpoint provided by the authors.

with multi-label classifier models like Box4Types
and MLMET that treat types as integer indices, as
they are unable to generalize to unseen types.

In the zero-shot setting, LITE and CASENT are
trained on the UFET dataset and directly evaluated
on the target test set. Flan-T5-XXL and ChatGPT
are evaluated by formulating the task as a classifica-
tion problem with all valid types as candidates. As
shown in Table 3, ChatGPT demonstrates superior
performance with a large margin compared to other
models. This highlights ChatGPT’s capabilities on
classification tasks with a small label space. Our
approach achieves comparable results to LITE and
significantly outperforms Flan-T5-XXL, despite
having less than 10% of its parameters.

We also conduct experiments in the few-shot
setting, where either a small training set or develop-
ment set is available. We first explore re-estimating
the calibration parameters of CASENT on the tar-
get development set by following the process dis-
cussed in §3.4 without weight sharing and sparse
approximation.9 Remarkably, this re-calibration
process, without any finetuning, results in an ab-
solute improvement of +9.9% and comparable
performance with ChatGPT on three out of five
datasets. When finetuned on 50 randomly sampled
examples, our approach outperforms ChatGPT and
a finetuned RoBERTa model by a significant mar-
gin, highlighting the benefits of transfer learning
from the ultra-fine entity typing task.

9The number of calibration parameters is 3|T |, which is
less than 40 on all five datasets.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0
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cu
ra

cy

Calibration on rare types
Perfect calibration
CASENT

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Calibration on frequent types

Perfect calibration
CASENT

Figure 3: Reliability diagrams of CASENT on the UFET
test set. The left diagram represents rare types with
fewer than 10 occurrences while the right diagram rep-
resents frequent types.

6 Analysis

6.1 Calibration

Table 4 presents the calibration error of different
approaches. We report Expected Calibration Error
(ECE) and Total Calibration Error (TCE) which
measures the deviation of predicted confidence
scores from empirical accuracy. Interestingly, we
observe that the entailment scores produced by
LITE, the state-of-the-art cross-encoder model, are
poorly calibrated. Our approach achieves slightly
lower calibration error than Box4Types, which ap-
plies temperature scaling (Guo et al., 2017) to the
output of a BERT-based classifier. Figure 3 dis-
plays the reliability diagrams of CASENT for both
rare types and frequent types. As illustrated by the
curve in the left figure, high-confidence predictions
for rare types are less well-calibrated.
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Method Calibration Method Test-F1 (%) Test-ECE (%) Test-TCE (%) Dev-TCE (%)

Box4Types Temperature scaling 44.8 - - 11.19
LITE - 50.6 52.36 52.36 52.56

CASENT Eq. 3 51.3 1.23 9.75 9.38
Eq. 3 without the model bias term pθ(t | ∅) 49.4 3.87 20.34 14.76
Eq. 3 with ϕ(t) = t (independent weights) 48.8 7.37 57.00 9.72
Eq. 3 with ϕ(t) = t0 (all types share same weights) 47.8 3.89 34.57 36.29
pθ(t | e) (no calibration) 47.3 12.19 118.16 100.31

Table 4: Macro F1, ECE (Expected Calibration Error) and TCE (Total Calibration Error) on the UFET dataset. ECE
and TCE are computed using 10 bins. The best score is shown in bold. Onoe et al. (2021) only reported calibration
results on the dev set thus the results of Box4Types on the test set are not included.

Method # params F1

T5-small 80M 40.9
T5-small + CASENT 47.2

T5-base 250M 45.4
T5-base + CASENT 49.6

T5-large 780M 47.3
T5-large + CASENT 51.3

T5-3B 3B 48.6
T5-3B + CASENT 51.4

Table 5: Macro F1 score (%) of CASENT on the UFET
test set with different T5 variants.

6.2 Ablation Study
We also perform an ablation study to investigate the
impacts of various design choices in our proposed
calibration method. Table 4 displays the results of
different variants of CASENT. A vanilla seq2seq
model without any calibration yields both low task
performance and high calibration error, highlight-
ing the importance of calibration. Notably, a naive
extension of Platt scaling that considers each type
independently leads to significant overfitting, illus-
trated by an absolute difference of 47.28% TCE
between the development and test sets. Removing
the model bias term also has a negative impact on
both task performance and calibration error.

6.3 Choice of Seq2seq Model
In Table 5, we demonstrate the impact of calibra-
tion on various T5 variants. Our proposed cali-
bration method consistently brings improvement
across models ranging from 80M parameters to 3B
parameters. The most substantial improvement is
achieved with the smallest T5 model.

6.4 Training and Inference Efficiency
In Table 6, we compare the efficiency of our
method with previous state-of-the-art systems. Re-
markably, CASENT only takes 6 hours to train on a

Method Training Time Inference Latency GPU Mem.

MLMET 180h† 0.02± 0.05s 0.5Gb
LITE 40h† 23.1± 5.73s 1.4Gb
CASENT 6h 0.39± 0.04s 2.8Gb

Table 6: Training time, inference latency and inference
time GPU memory usage estimated on a single NVIDIA
RTX A6000 GPU. Inference time statistics are estimated
using 100 random UFET examples. Results marked by
† are reported by Li et al. (2022).
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Figure 4: Test set Macro F1 score and Expected Cali-
bration Error (ECE) with respect to the beam size on
the UFET dataset.

single GPU, while previous methods require more
than 40 hours. While CASENT achieves an infer-
ence speedup of over 50 times over LITE, it is still
considerably slower than MLMET, a BERT-based
classifier model. This can be attributed to the need
for autoregressive decoding in CASENT.

6.5 Impact of Beam Size

Given that the inference process of CASENT relies
on constrained beam search, we also investigate
the impact of beam size on task performance and
calibration error. As shown in Figure 4, a beam

15557



size of 4 results in a low calibration error but also
low F1 scores, as it limits the maximum number of
predictions. CASENT consistently maintains high
F1 scores with minor fluctuations for beam sizes
ranging from 8 to 40. On the other hand, a beam
size between 8 and 12 leads to high calibration
errors. This can be attributed to our calibration
parameter estimation process in algorithm 1, which
approximates the full |Ddev| · |T | calibration data
points using model predictions generated by beam
search. A smaller beam size leads to a smaller
number of calibration data points, resulting in a
suboptimal estimation of calibration parameters.

7 Conclusion

Engineering decisions often involve a tradeoff be-
tween efficiency and accuracy. CASENT simulta-
neously improves upon the state-of-the-art in both
dimensions while also being conceptually elegant.
The heart of this innovation is a constrained beam
search with a novel probability calibration method
designed for seq2seq models in the multi-label clas-
sification setting. Not only does this method outper-
form previous methods—including ChatGPT and
the existing fully-supervised methods—on ultra-
fine entity typing, but it also exhibits strong gener-
alization capabilities to unseen domains.

8 Limitations

While our proposed CASENT model shows promis-
ing results on ultra-fine entity typing tasks, it does
have certain limitations. Our experiments were
conducted using English language data exclusively
and it remains unclear how well our model would
perform on data from other languages. In addition,
our model is trained on the UFET dataset, which
only includes entity mentions that are identified
as noun phrases by a constituency parser. Conse-
quently, certain types of entity mentions such as
song titles are excluded. The performance and ap-
plicability of our model might be affected when
dealing with such types of entity mentions. Future
work is needed to adapt and evaluate the proposed
approach in other languages and broader scenarios.
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A ChatGPT / Flan-T5 Prompts

Below is a sample prompt for ChatGPT and Flan-
T5-XXL for the five out-of-domain datasets:

Instruction: Identify the type of the entity men-
tion tagged by <mark>. Output the type directly
and do not write any explanation.
Choices: DNA, RNA, cell_line, cell_type, protein
Entity: Number of <mark>glucocorticoid recep-
tors</mark> in lymphocytes and their sensitivity
to hormone action .
Label:

For the UFET dataset, it is not feasible to provide
the model with the entire type vocabulary. Instead
we provides demonstration examples sampled from
the training set. Below is a sample prompt with
two demonstration examples:

Instruction: Predict the fine-grained

entity types for the entity mention tagged

by <mark>. Separate the types with commas.

Entity: <mark>He</mark> get ’s zero

from Arafat , ” said Benjamin Begin , the

science minister .

Labels: academician, scientist, person

Entity: President Obama ’s surprise

proposal to cancel the $ 108 billion

moon program and the jobs that go with

<mark>it</mark> triggered an uproar in

Texas , Florida and other states with

space - related industries .

Labels: work, job, bill

Entity: On <mark>late Monday night</mark> ,

30th Nov 2009 , Bangladesh Police arrested

Rajkhowa somewhere near Dhaka .

Labels:
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