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Abstract

Fake news and misinformation spread rapidly
on the Internet. How to identify it and how to
interpret the identification results have become
important issues. In this paper, we propose a
Dual Co-Attention Network (Dual-CAN) for
fake news detection, which takes news con-
tent, social media replies, and external knowl-
edge into consideration. Our experimental re-
sults support that the proposed Dual-CAN out-
performs current representative models in two
benchmark datasets. We further make in-depth
discussions by comparing how models work in
both datasets with empirical analysis of atten-
tion weights.1

1 Introduction

The development of the Web and social media plat-
forms helps us obtain news quickly, but also pro-
vides a gateway for spreading false information.
The impact of false information is wide, and the
spread speed might be even faster than the actual
one (Vosoughi et al., 2018). For example, fake
news is proven empirically to influence the 2016
U.S. presidential election (Bovet and Makse, 2019;
Grinberg et al., 2019; Budak, 2019). Given the
impact of false information, previous studies paid
a lot of effort to detect it from different aspects, in-
cluding (1) news content only (Santos et al., 2020;
Kim and Ko, 2021), (2) the combination of news
articles and social media replies (Li et al., 2020;
Lu and Li, 2020), and (3) additional publisher/user
information (Long et al., 2017; Yuan et al., 2020;
Del Tredici and Fernández, 2020). In this work,
we focus on using both news contents and social
media replies, and further add external knowledge
to enhance the model’s ability to capture critical
entities.

Named entities play an important role in docu-
ment understanding and influence text generation

1Code repository: https://github.com/SinHanYang/
Dual-CAN

performances (Narayan et al., 2021, 2022). In-
spired by this notion, we design a novel model,
named Dual Co-Attention Network (Dual-CAN),
which takes entities’ descriptions into considera-
tion to enhance the background knowledge of the
model. The proposed Dual-CAN is modified based
on one of the representative fake news detection
models, dEFEND (Shu et al., 2019a). There are
three major improvements in the proposed Dual-
CAN: (1) Inspired by Hu et al. (2021), we add en-
tities’ descriptions for enhancing the performance.
(2) Instead of using LSTM-based architectures
(Shu et al., 2019a; Lu and Li, 2020), we adopt
attention architecture (Vaswani et al., 2017) as the
backbone. (3) We further tailor-made a co-attention
layer for comparing the given news article with en-
tity descriptions. In sum, in addition to adopting
entity descriptions from Wikipedia, we design a
new architecture to fusion all information. Our
main contribution is providing a novel model for
fake news detection and pointing out a new direc-
tion for enhancing performance.

2 Related Works

Previous works in fake news detection mainly fo-
cused on two aspects: news content based and so-
cial context based. Rashkin et al. (2017) focus
on the linguistic characteristics of the news con-
tent to detect fake news, and find that fake news
often contain specific kinds of words. Ma et al.
(2016) use recurrent neural networks (RNN) to
learn the hidden representations from the contex-
tual information of relevant posts over time. Monti
et al. (2019) analyze social graph and user profile
to predict fake news. Shu et al. (2019b) find that
user profile features are useful in fake news de-
tection. Shu et al. (2019a) and Lu and Li (2020)
use co-attention model to leverage news content
and social context. Their models not only have
better performance but also provide interpretability
to their models. Several works also use external
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knowledge to improve model’s predictions. Wang
et al. (2020) and Hu et al. (2021) use entity linking
method to capture entity descriptions and leverage
them in their models. Inspired by these works, we
use external knowledge for entities to enhance per-
formance, and use both news content and social
media context in the proposed model.

3 Method

Figure 1 shows the architecture of the proposed
Dual-CAN. This section describes the details of the
proposed Dual-CAN model, which is composed of
five components.2 The first one is news content
encoder, which employs word-level attention net-
work and sentence-level encoder to generate fea-
tures for the corresponding news contents. The sec-
ond is entity description encoder. For each entity
in news content, entity description encoder grabs
its descriptions from the external knowledge base
and creates features to represent them. The third
is user engagement encoder, which employs the
same method as news content encoder to create
features to represent user comments. The fourth is
dual co-attention component, which captures the
relation between (news content, entity description)
and (news content, user engagement) pairs. The
last is prediction component, which combines all
information from the previous components to make
the final predictions.

3.1 News Content Encoder

A news story is composed of a sequence of sen-
tences S = [s1, s2, ..., sN], and a sentence is com-
posed of up to M words si = [wi1,w2i, ...,wiM].
Here, N is the maximum number of sentences in a
piece of news, and M is the maximum number of
words in a sentence. We perform padding to con-
trol the maximum number of sentences and words
in news content. To create features to represent a
news story, we use word-level attention network
to encode each sentence, and use sentence-level
encoder to encode all sentences in news content.

3.1.1 Word-Level Attention Network
We use Glove (Pennington et al., 2014) to create
word embedding of d dimensions during the pre-
processing stage for each word in sentences. For
a sentence s ∈ Rd×M , we utilize bi-directional
Gating Recurrent Units (GRU) (Chung et al., 2014)
to learn the word-level representation. The output

2The hyperparameters are reported in Appendix B.

Figure 1: Architecture of Dual-CAN. D.C.L., E.D.E.,
N.C.E., and U.C.E. stand for dual co-attention layer,
entity description encoder, news content encoder, and
user comment encoder, respectively.

of the BiGRU is vi = BiGRU(wi) ∈ R2h, i ∈
{1, 2, ...M}, where h is the dimension of the GRU.
Next, we perform the basic attention mechanism to
increase performance and interpretability (Lu and
Li, 2020) of the word encoder. Attention weight αi

shows the importance of the ith word. The word-
level attention network generates the representation
of a sentence vector v′ ∈ R2h×1 calculated as fol-
lows:

v′ =
M∑

i=1

αivi (1)

where ai is:

ki = tanh(Pnvi + bn)

αi =
exp(unki)∑M
j=1 exp(unkj)

(2)

Pn ∈ R2h×h, un ∈ Rh×1 are learnable parame-
ter. We preform a linear layer on vi, and use a
parameter kj to calculate the attention weight.

3.1.2 Sentence-Level Encoder
We use BiGRU again to encode sentences in a news
story. A sentence vector si ∈ R2h×1 is calculated
from the output of word-level attention network:

si = BiGRU(v′
i), i ∈ {1, 2, ..., N} (3)

Finally, single news content is represented by a list
of sentence vectors S = [s1, s2, ..., sN] ∈ R2h×N .

3.2 Entity Description Encoder
For each news content, we identify entities in it
and grab their descriptions from Wikipedia using
tools TAGME (Ferragina and Scaiella, 2010). For
each entity description, we only use the first E
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sentences. With the word-level attention network in
Section 3.1.1, we create features that describe entity
descriptions D = [d1,d2, ...,dE]. Finally, entity
descriptions for a piece of news is represented by
a list of sentence vectors D = [d1,d2, ...,dE] ∈
R2h×E .

3.3 User Comment Encoder

For all user comments related to a news story, we
only use the first U sentences. We extract features
to describe user comments C = [c1, c2, ..., cU]
with the word-level attention network in Sec-
tion 3.1.1. Finally, user comments for a news
story are represented by a list of sentence vectors
C = [c1, c2, ..., cU] ∈ R2h×U .

3.4 Dual Co-Attention Component

Because we want to know whether the entity de-
scription confirms/refutes the news content and
whether user comments reflect the character of
the news content, we adopt co-attention net-
work for capturing the relationship between news
content and entity descriptions, and another co-
attention network for linking the relationship be-
tween news content and user comments. Given
news content feature vectors S = [s1, s2, ..., sN] ∈
R2h×N , entity description feature vectors D =
[d1,d2, ...,dE] ∈ R2h×E , and user comments fea-
ture vectors C = [c1, c2, ..., cU] ∈ R2h×U , we
use dual co-attention mechanism for interpreting
model predictions.

3.4.1 Entity Description Co-attention
First, we compute a relation matrix F

F = tanh(DWrS) ∈ RE×N (4)

to capture the relationship between news content
and entity descriptions, where Wr ∈ R2h×2h is a
learnable parameter. Second, we calculate interac-
tion maps for news content Hs and entity descrip-
tion Hc,

Hs = tanh(WsS+WdDFT )

Hd = tanh(WdD+WsSF)
(5)

where Ws,Wd ∈ R2h×2h are learnable parame-
ters. Third, we calculate attention weights on each
sentence in news content and entity descriptions.

as1 = softmax(whsHs)

ad = softmax(whdHd)
(6)

where whs and whd ∈ R1×2h are learnable pa-
rameters. After we get attention weights as1 ∈
R1×N ,ad ∈ R1×E , we generate new feature vec-
tors for news contents and entity descriptions:

ŝ1 = as1S
T

d̂ = adD
T

(7)

Finally, we represent news content in a feature vec-
tor ŝ1 ∈ R1×2h, and entity descriptions in a feature
vector d̂ ∈ R1×2h.

3.4.2 User Comment Co-attention
We apply co-attention model as shown in Sec-
tion 3.4.1 to news content and user comments.
We represent news content in a feature vector
ŝ2 ∈ R1×2h, and user comments in a feature vector
ĉ ∈ R1×2h. The attention weights vector for news
content and user comments are as2 ∈ R1×N and
ac ∈ R1×U .

3.5 Prediction Component
Our task is a binary classification task with
real/fake labels. First, we concatenate all feature
vectors f = [ŝ1, d̂, ŝ2, ĉ], and feed the result into a
2-layer linear neural network. It is calculated by:

ŷ = W2(W1f + b1) + b2 (8)

where W1 and W2 are learnable parameters and
b1,b2 are bias terms. The prediction result ŷ =
[y0, y1] indicates the probabilities of label 0 is y0,
and label 1 is y1. We choose cross entropy as our
loss function:

L(θ) = −ylog(ŷ1)− (1− y)log(1− ŷ0) (9)

where θ is all parameters in our model. We choose
Adam optimizer (Kingma and Ba, 2014) to opti-
mize all parameters θ.

4 Experiments

4.1 Datasets
We adopt two datasets in our experiment. The first
dataset is GossipCop (Shu et al., 2018), which col-
lects both news content and social context from
fact-checking website. The second dataset is
CoAID (Cui and Lee, 2020), which is a benchmark
dataset for COVID-19 misinformation. Please re-
fer to Appendix A for the statistics of the datasets.
We follow the evaluation settings as previous stud-
ies (Shu et al., 2018; Cui and Lee, 2020) to use (Ac-
curacy, F1, Precision, Recall) for GossipCop and
use (PR-AUC, F1, Precision, Recall) for CoAID.
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Model (Input) (# of Parameters)
GossipCop CoAID

Accuracy F1 Precision Recall PR-AUC F1 Precision Recall

BiGRU (N+C+E) (28M) 0.580 0.367 0.290 0.500 0.876 0.782 0.769 0.804
BERT (N+C+E) (339M / 110M) 0.787 0.776 0.787 0.771 0.940 0.877 0.901 0.859
RoBERTa (N+C+E) (384M / 125M) 0.894 0.890 0.896 0.887 0.918 0.877 0.901 0.859
LinkBERT (N+C+E) (330M / 110M) 0.824 0.811 0.841 0.802 0.927 0.880 0.903 0.863
dEFEND (N+C) (5M) 0.771 0.758 0.771 0.754 0.749 0.799 0.792 0.808

Dual-CAN (N+E) (33M) 0.895 0.891 0.901 0.885 0.853 0.884 0.905 0.868
Dual-CAN (N+C) (33M) 0.914 0.912 0.913 0.911 0.937 0.887 0.907 0.872
Dual-CAN (N+C+E) (33M) 0.949 0.947 0.946 0.949 0.954 0.884 0.905 0.868

Table 1: Experimental results. N, C, and E denote news content, user comments, and entity description, respectively.
BERT-based models are implemented in two methods (details in Appendix B) with different number of parameters.

4.2 Results
We compare the results with the following repre-
sentative models: BiGRU (Chung et al., 2014),
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), LinkBERT (Yasunaga et al., 2022)), and
dEFEND (Shu et al., 2019a).3 Table 1 shows
our experimental results. Our Dual-CAN outper-
forms all baselines in both datasets. In addition,
our Dual-CAN uses fewer parameters than BERT-
based models. Our approach also performs better
than dEFEND (Shu et al., 2019a) when no entity
descriptions are provided. This is because we use
different preprocessing methods, and the differ-
ences between two model architectures. The bot-
tom half of Table 1 shows ablation analysis of the
proposed model. The results indicate the impor-
tance of adding entity information to the proposed
model, especially in GossipCop. However, only a
few improvements in PR-AUC when experiment-
ing with CoAID. CoAID usually are short posts that
contain few entities, which results in the limitation
of the proposed entity-aware concept. The main
source to predict whether a piece of news is fake is
the news content itself. Therefore, N+E, N+C, and
N+C+E results only have small differences because
they both contain N. The roles of C and E are to
improve the predictions.

5 Interpretability

We examine attention weights [as1 ,ad,as2 ,asc ] to
find those sentences that the proposed model is fo-
cusing on when making predictions. Figure 2 illus-
trates the results. We find that our model pays a cer-
tain degree of attention to the first sentence in the
entity descriptions of both datasets (Figure 2a,2c).

3Because Shu et al. (2019a) did not release the information
for dataset separation, we use the same hyperparameter re-
ported in their work to reproduce the results. All implemental
details are provide in Appendix B

(a) (b) (c) (d)

Figure 2: Attention weights of: (a) GossipCop entity
description, (b) GossipCop user comments, (c) CoAID
entity description, and (d) CoAID user comments. Dark
colors means higher attention weights. The vertical axis
means the index of the sentence.

Our intuition about this phenomenon is that the
first sentence always provides a brief definition of
the entity, and it would be helpful for models to
understand the given entity. On the other hand,
model’s attention weights on user comments of
both datasets are in the middle replies, as shown in
Figure 2b and Figure 2d. It follows our intuition be-
cause the sentences like “FYI. It’s a fake news.” for
clarifying the given news/post is fake news always
appears later than some discussions. Based on Fig-
ure 2d, we also find that models give little attention
weight to the twelfth or later sentences. Besides
weight distributions studies, we also did some case
studies in Appendix C. The results show that atten-
tion weights do reflect the important parts of the
input, which help us interpret the model better. For
example, we understood the importance and usage
of entity descriptions from attention weights.

6 Conclusion

We propose a dual co-attention network for fake
news detection, which improves the previous rep-
resentative model, dEFEND, by (1) adding entity
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description as external knowledge and (2) redesign-
ing co-attention architecture for using all input in-
formation. Our results support the usefulness of the
proposed Dual-CAN model. The interpretability
based on the attention weight is also discussed.

Limitations

The major limitation of the proposed model is that
when the given text (news article or social media
post) is short, and the performance of adding entity
description may not be significantly improved. It is
because such text provides few entities in the nar-
rative, and it will limit the proposed entity-aware
concept.
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Datasets GossipCop CoAID

Total news 4,273 2,162
True news 2,562 1,590
Fake news 1,711 572
User Comments 309,059 37,187
Entity Descriptions 95,150 5,666

Table 3: Dataset statistics.

and CoAID. Due to the size limits, we cannot
upload the dataset via the submission system.
Please download it via the following anonymous
link: https://drive.google.com/file/d/
1QuZeINFHqy8OF1Av5627zTyyVVg7g2HD/view?
usp=sharing.

B Implementation Detail

Below are the implementation details of the base-
line models:

• BiGRU (Chung et al., 2014): We use Glove
300d for word embedding of news content,
entity descriptions and user comments. The
word embedding of three resources are feed
into BiGRU and concatenate their results T =
[vn, vd, vc]. Second, we feed T into linear
neural network described in Section 3.5 to get
final result.

• Pretrained language models (BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019),
LinkBERT (Yasunaga et al., 2022)): We
adopt three representative pretrained language
models for comparison, and implemented in
two different ways.

– Method 1
For each experiment, we feed news con-
tent, entity descriptions, and user com-
ments into three tokenizers respectively.
Afterwards, we feed input id and atten-
tion masks of each resource into three
pretrained language models respectively.
Each pretrained model handles one re-
source. Finally, we concatenate the out-
puts of three pretrained models, and pass
a linear layer to output probability of two
labels ŷ. This method is used for Gossip-
Cop dataset in Table 1.

– Method 2
The number of parameters in Method
1 is huge, but it’s necessary for Gossip-
Cop dataset. We tried another method

to reduce the number of parameters. We
concatenate all three resources and feed
into one tokenizer. Second, we feed in-
put id and attention masks into one pre-
trained models. The final procedure is
same as the previous method. The ex-
periment results for CoAID dataset are
in Table 1, and the results are better than
Method 1’s. The experiment results for
GossipCop dataset is in Table 4. The
performances are worse than Method
1’s. We believe it’s because GossipCop
dataset’s data are too long for a single
pretrained model. Therefore, we tried
Longformer (Beltagy et al., 2020) which
accept longer input. The performance be-
comes better, but this methods uses more
parameters.

• dEFEND (Shu et al., 2019a): dEFEND is
one of the representative fake news detection
methods. It is based on co-attention model to
increase explainability.4

Table 2 reports the hyperparameters used in the
proposed Dual-CAN. In the ablation study, we re-
move the original data of entity description E or
user comments C, and replace them with padding
token <PAD>. Therefore, the model architecture
remains the same as Section 3 stated. We have sub-
mitted the code for review, and it will be released
on GitHub.

C Case Study of Interpretability

We analyzed individual sentences and words which
have higher attention weight, in order to figure out
the explanability of the attention weight.

For sentence-level analysis, entity descriptions
that define an entity would have higher attention
weights. Here are two example entity descriptions
that have higher attention weights:

1. {Dataset: GossipCop, id: 587, attention
weight: 0.036 >average 0.01}: “IMDb (an
abbreviation of Internet Movie Database) is
an online database of information related to
films, television series, home videos,. . . ”

4Because Shu et al. (2019a) did not release the informa-
tion for dataset separation, we use the same hyperparameter
reported in their work to reproduce the results. We will release
the datasets for reproduction.
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Model (Input) (# of Parameters)
GossipCop

Accuracy F1 Precision Recall

BERT (N+C+E) (110M) 0.643 0.587 0.645 0.599
RoBERTa (N+C+E) (125M) 0.698 0.631 0.774 0.646
LinkBERT (N+C+E) (110M) 0.702 0.694 0.694 0.693
Longformer (N+C+E) (148M) 0.752 0.742 0.758 0.723

Table 4: Method 2 experiment results of GossipCop dataset. N, C, and E denote news content, user comments, and
entity description, respectively.

2. {Dataset: CoAID, id: 48, attention weight:
0.182 >average 0.05}: “The Centers for Dis-
ease Control and Prevention (CDC) is the
national public health agency of the United
States.”

3. {Dataset: CoAID, id: 1304, attention
weight: 0.119 > average 0.05}: “Getty Im-
ages, Inc. is a British-American visual media
company and is a supplier of stock images, ed-
itorial photography, video and music for busi-
ness and consumers, with a library of over
477 million assets.”

Moreover, we can see some correlation between
highlighted entity descriptions and news content
that contain them. For example, the news sentence
which contains entity (2,3), both have higher atten-
tion weight than average.

1. {Dataset: CoAID, id: 48, attention weight:
0.33 >average 0.25}: “enters for disease con-
trol and prevention, cdc twenty four seven,
saving lives protecting people centers for dis-
ease control and prevention”

2. {Dataset: CoAID, id: 1304, attention
weight: 0.33 > average 0.25}: “getty images
the antimalarial drug hydroxychloroquine is
being widely promoted as a cure for covid-19
but we still lack good data on its true benefits.”

Case studies indicate that our model performs
like it is doing “fact-checking”, which is an use-
ful and important strategy for fake news detection.
Meanwhile, entity descriptions are essential for
fact-checking. Therefore, with the good usage of
entity descriptions, fake news detection can achieve
better performance, same as the ablation studies in
Section 4.2 shown.

For word-level analysis, we discovered similar
results as (Lu and Li, 2020) did. Some fake news
contains emotional words or words that catch peo-
ple’s attention like “Breaking”or “warn”.
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