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Abstract
The integration of multimodality in natural lan-
guage processing (NLP) tasks seeks to exploit
the complementary information contained in
two or more modalities, such as text, audio and
video. This paper investigates the integration of
often under-researched audio features with text,
using the task of argumentation mining (AM)
as a case study. We take a previously reported
dataset and present an audio-enhanced version
(the Multimodal USElecDeb60To16 dataset).
We report the performance of two text models
based on BERT and GloVe embeddings, one
audio model (based on CNN and Bi-LSTM)
and multimodal combinations, on a dataset of
28,850 utterances. The results show that mul-
timodal models do not outperform text-based
models when using the full dataset. However,
we show that audio features add value in fully
supervised scenarios with limited data. We find
that when data is scarce (e.g. with 10% of
the original dataset) multimodal models yield
improved performance, whereas text models
based on BERT considerably decrease perfor-
mance. Finally, we conduct a study with arti-
ficially generated voices and an ablation study
to investigate the importance of different audio
features in the audio models.

1 Introduction

In recent years, there has been an increasing in-
terest in multimodal classification, which refers
to the task of automatically classifying an input
based on multiple modalities or sources of informa-
tion, such as text, images and audio (Baltrušaitis
et al., 2018). Multimodal approaches are benefi-
cial as they can reduce the subjectivity of classi-
fication with a single modality and improve the
accuracy of the overall classification. However,
finding the best representations (especially those
that work well with other modalities), aligning and
fusing them, and getting the models to co-learn
are difficult challenges to overcome (Morency and
Baltrušaitis, 2017). A large body of literature has

focused on the combination of image and text for
applications like emotion recognition (Illendula
and Sheth, 2019), fake news detection (Nakamura
et al., 2020), image classification (Guillaumin et al.,
2010), or document image classification (Jain and
Wigington, 2019). Much less attention has been
paid to combining audio with text.

Audio can convey a variety of information about
the pitch or intonation of the speaker that can in-
dicate variance in emotional state as well as better
identify modes of communication like sarcasm that
have been difficult for models to detect. The inte-
gration of audio has successfully improved classifi-
cation tasks like multimodal sentiment analysis and
emotion recognition when compared with classic
NLP models (Yao et al., 2020; Ho et al., 2020). In
this paper, we focus on a less explored NLP area
in terms of multimodality: argumentation mining
(AM). AM is the computational study of arguments
to develop models that can automatically identify,
extract, and represent arguments in text or other
forms of digital communication such as audio or
video. AM has traditionally focused on textual data
such as news articles, blog posts, and online com-
ments, but the advantages of using audio to detect
arguments have not been extensively explored.

In this work, we expand on an existing AM
dataset of US political debates (USElecDeb60To16
by Haddadan et al. 2019) by including audio. We
test the performance of several multimodal AM
models in different variations of the same dataset,
e.g., after balancing the labels and with fractional
datasets. Our contribution is three-fold: i) a new
fully aligned audio dataset, expanding on an ex-
isting AM dataset (Section 3), adding balanced
and fractional subsets for researchers to experiment
with; ii) original multimodal benchmarking results
for this dataset highlighting where audio feature
embeddings add most value compared to text-only
models (Section 4); iii) analysis of audio features
importance, including performance comparison of
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human and computerized voices (Section 5) and an
ablation study (Section 6).

2 Related work

Multimodal approaches including audio have been
mostly used for sentiment analysis or emotion
recognition (Yang et al., 2022; Cai et al., 2019), of-
ten using the IEMOCAP dataset, one of the oldest
datasets that contains 12 hours of dialogue record-
ings with emotion labels in text, audio and video
format (Busso et al., 2008). In recent years newer
datasets have been released, such as the SAVEE
(Jackson and Haq, 2014) and RAVDESS databases
(Livingstone and Russo, 2018), the MELD dataset
(Poria et al., 2018), and the CNU-MOSEI dataset
(Zadeh et al., 2016). Generally, audio-textual multi-
modal approaches contain separate pipelines for au-
dio and text features, sometimes connected through
attention layers. For instance, Cai et al. (2019)
combined GloVe embeddings in a bidirectional
long-short term memory (Bi-LSTM) array for text
with a combination of a convolutional neural net-
work (CNN) and a Bi-LSTM array for the audio.
Likewise, Yoon et al. (2018) used GloVe embed-
dings and recurrent neural networks (RNN) for
both audio and text, reaching accuracies of 71.8
% with the IEMOCAP dataset. Atmaja and Akagi
(2020) used either LSTM or CNN (not at the same
time) for the acoustic pipeline and LSTM with Fast-
Text and GloVe embeddings. Ho et al. (2020) used
a multi-level multi-head fusion attention using bidi-
rectional encoder representations (BERT) for the
text representations, achieving improved accura-
cies in three different datasets.

Audio features in this domain have been gen-
erally embedded using low level descriptors
(LLDs), such as mel-frequency cepstral coefficients
(MFCCs) (Atmaja and Akagi, 2020; Ho et al.,
2020). MFCCs are computed from the mel spec-
trogram of the audio signal by performing a dis-
crete cosine transform (DCT) of its log to reduce
its dimensionality in a way that is highly related
to the raw signal, but approximating the human
auditory system and often yielding higher classifi-
cation performance (Singh et al., 2021). As LLDs
do not contain global information about the utter-
ance, high-level statistical functions (HSFs), such
as mean, kurtosis and quadratic error, among many
others, can also be used. Yao et al. (2020) com-
pared the performance in speech emotion recog-
nition of a HSF classifier based on a deep neural

network (DNN), a LLS classifier based on a re-
current neural network (RNN) and a raw-signal
mel-spectrogram classifier based on a CNN, find-
ing similar performance between the HSF and LLD
models, and a slightly lower performance for the
model using the raw signal, showing the benefits of
the low level representations. The use of RNN with
LLDs has been shown to offer benefits by consid-
ering the temporal dimension of an utterance (Xie
et al., 2019), but several researchers have started
to use both CNNs and RNNs in combination to
learn both temporal and local features in the fre-
quency domain (Zhao et al., 2019; Singh et al.,
2021; Yao et al., 2020). Whereas MFCCs are the
feature of choice for the great majority of appli-
cations, the list of remaining LDDs are virtually
endless, including the zero crossing rate, chroma
vector, entropy of energy, Hammarberg index, spec-
tral slope, harmonic difference, among many oth-
ers (Atmaja and Akagi, 2020). While some efforts
have been made towards standardization of audio
features (Eyben et al., 2016), the choice is generally
pragmatic and depends on the package used by the
researcher, with openSMILE toolkit (Eyben et al.,
2013), Librosa (McFee et al., 2015) and PyAudio-
Analysis (Giannakopoulos, 2015) being those most
commonly chosen ones.

On the other hand, AM research has focused on
a diverse set of applications using the text modality
alone, from online interactions (Ghosh et al., 2014)
and tweets (Alsinet et al., 2019) to argumentative
essays (Stab and Gurevych, 2014) and political
debates (Lawrence and Reed, 2017; Visser et al.,
2021). Regarding multimodal AM, Lippi and Tor-
roni (2016) presented a first step towards the use
of audio features from speech to improve argument
detection. In this paper, they used raw input signals,
which were passed through a speech recognition
API to obtain the text. Then they used bag of words
and bi-grams together with discrete HSF features
from MFCCs, namely minimum, maximum, aver-
age and standard deviation, to train a support vector
machine in an argument classification task. The
results were positive towards the addition of audio,
although the performance was modest due to the
small size of the dataset and the limitations of the
text and audio representations. The only other work
that considered multimodal aspects used the M-arg
dataset (Mestre et al., 2021). There, the authors an-
alyzed argumentative relations in the 2016 US pres-
idential debates using text and audio, building an
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argumentation mining pipeline based on BERT em-
beddings for text and a combination of a Bi-LSTM
and a CNN for the audio. Although the dataset,
annotated for "support" and "attack" between sen-
tences, was rather small and heavily unbalanced
towards the "neither" class, the authors reported a
slight improvement when considering audio and
text together in a multimodal model. Surprisingly,
audio features alone showed a better performance
than the text-only model based on BERT encod-
ings, suggesting that in small datasets, when the
performance of BERT-based models suffers, au-
dio features might provide a handy supplement to
classify arguments. The effect of specific audio
features on performance was not assessed.

Here, we build upon a previous dataset (US-
ElecDeb60To16) presented by Haddadan et al.
(2019), which contained English transcripts of the
US presidential debates from 1960 to 2016 labelled
with more than 29k annotations of argument com-
ponents and their boundaries. We used the original
videos from the debates to obtain aligned times-
tamps at the sentence level following the work of
Mestre et al. (2021), thus enabling the task of mul-
timodal AM with a total of 28,850 aligned and an-
notated sentences. Concurrently to the submission
of our work, Mancini et al. (2022) also presented
and released a multimodal dataset, using the same
videos and alignment process, with 26,791 sen-
tences. Both datasets are complementary, although
our dataset is slightly larger as we did not drop any
of the debate videos (see next section). Mancini
et al. (2022) compare datasets and architectures
from the two previously mentioned works by Lippi
and Torroni (2016) and Mestre et al. (2021), as
well as their new dataset, finding generally positive
results to the addition of audio. In our work, we re-
port an audio feature analysis, as well as the impact
of using computerized voices, and we investigate
the benefit of multimodal models on both balanced
and fractional small data subsets.

3 Methodology

3.1 Dataset construction

In their USElecDeb60To16 dataset, Haddadan
et al. (2019) reported the performance of several
models for argument classification, with the high-
est weighted F-score of 0.673 for the argumenta-
tive component classification (ACC) of premise,
claim and other. They also collapsed all the
premise/claim annotations into one single label,

"argument", and attempted argumentative sentence
detection (ASD), with a weighted F-score of 0.843
using an LSTM array. We used this dataset in its
collapsed version (argument/other) for ASD to as-
sess whether the addition of audio could improve
the reported performance (F-score of 0.843) and
to simplify the task using only 2 classes as a first
step to studying the potential of multimodal AM.
For this, we needed to add the audio of the debates
with sentence-level timestamps.

Videos from each debate were downloaded from
the YouTube channel of the Commission for Presi-
dential Debates.1 Before starting the audio align-
ment process, we fixed a small number of incon-
sistencies in the dataset resulting from errors in
the original transcripts. Some were simple, like
sentences lacking a space between periods, which
made sentence tokenization algorithms fail. In a
couple of debates, full paragraphs were missing
from the transcript, possibly due to an error in the
original web scraping algorithm by Haddadan et al.
(2019). Older debates also had serious transcription
issues in the original source, such as full sentences
or paragraphs missing or speeches being repeated
twice in the transcript. Regarding videos, older
ones also had issues, such as debate 5 (the first
Carter-Ford Debate in 1976), in which the audio
was lost during live transmission, and commenta-
tors, not presidential candidates, spoke for almost
half an hour. This was not reflected in the tran-
script, and we had to manually edit the video to
match the transcript. For two debates (the first and
second Clinton-Bush-Perot debates of 1992), the
Commission decided to split the transcript into two
parts, even though the debates occurred uninter-
rupted. Therefore, we split the videos in two to
match the transcript. Others had cuts or repeated
segments that lasted from a few seconds to several
minutes, and we were forced to adapt the original
dataset to reflect these changes. Whereas preceding
researchers Mancini et al. (2022) were forced to
remove full or part of the debates from their multi-
modal dataset to account for these issues, we rig-
orously edited the USElecDeb60To16 dataset and
videos to reduce unsystematic data loss error, such
that we could provide an enhanced comprehensive
dataset to researchers for further investigation. We
want to highlight that this error reduction does not
cast any doubt on the quality and substantive find-

1https://www.debates.org/voter-education/debate-
transcripts/
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Figure 1: Model architectures used in this paper. a-c) Generic architectures of the text and audio modules. d)
Multimodal model that combines text and audio modules.

ings of that preceding work, as it mostly relates to
sentence omission.

We aligned the transcripts with the audio using
the Aeneas Forced Alignment (v. 1.7.3) tool as
proposed by Mestre et al. (2021). Two researchers
manually checked every debate for major misalign-
ment (and fixed them) until we obtained an almost
perfectly aligned text. After alignment, our dataset
contained 28,850 labelled sentences (76.15% of
them arguments), with timestamps indicating start
and ending times in the audio file. We present
the extended dataset we call Multimodal USE-
lecDeb60To16, with the collapsed original anno-
tations, alongside timestamps to match the audio,
instructions for obtaining the videos and scripts to
extract the audio features, in our GitHub repository
page (Mestre et al., 2023).2

3.2 Model architectures

We used the architectures proposed by Mestre et al.
(2021), which showed the potential of multimodal
argumentation mining in our dataset (Figure 1).
We considered two text modules based on GloVe
and BERT (Devlin et al., 2018). The former used
Wikipedia-trained 200-dimensional GloVe embed-
dings, whose maximum length was given by its
99th percentile to eliminate very long sentences.
They were passed through a Bi-LSTM, followed
by a dropout layer, a dense layer and an output
layer with softmax activation. The latter module
consisted of a BERT pre-processor3 and a BERT
encoder with L=12 hidden layers, a size of H=768
and A=12 attention heads.4 Its pooled output was
also followed by a dropout layer and a dense layer.

2https://github.com/rafamestre/
Multimodal-USElecDeb60To16.

3bert_en_uncased_preprocess v.3
4bert_en_uncased_L-12_H-768_A-12 v.4

The audio module was inspired by Cai et al.
(2019). For each utterance in audio form, the
Python library Librosa was used for audio fea-
ture extraction (McFee et al., 2015). We ex-
tracted the following LLD features: MFCCs (Kla-
puri and Davy, 2006), spectral centroids (Klapuri
and Davy, 2006), spectral bandwidth (Klapuri and
Davy, 2006), spectral roll-off (McFee et al., 2015),
spectral contrast (Jiang et al., 2002a), and a 12-bit
chroma vector (McFee et al., 2015). Motivation
for selection of features and evaluation is further
described in Section 6. For each sentence, the fea-
tures were concatenated to form a tensor of (45, T ),
where T is the duration of the utterance. All utter-
ances were padded with zeros to have the same
length Tmax, which was defined by the 99th per-
centile duration of all utterances. Each utterance
was passed in parallel through a CNN and a Bi-
LSTM to find both local and temporal features.
The CNN consisted of two convolutional layers,
two maxpool layers and batch normalization layers.
Outputs from both modules were flattened, con-
catenated and passed through dropout and dense
layers.

The multimodal model was a combination of the
text and audio modules in which the inputs were
the text string and its corresponding audio, each
passed in parallel. We considered two multimodal
models: one with a BERT text module and another
one with a Bi-LSTM text module.

3.3 Hyperparameter tuning

We developed a robust methodological framework
to tune the hyperparameters for each model. Model
training was performed in a High Performance
Computing (HPC) cluster in dedicated GPUs (with
either nodes of 4 GTX1080 Ti GPUs or nodes of
2 Nvidia Volta V100 GPUs). The hyperparame-
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Model Class Original dataset (N = 28, 850) Balanced dataset (N = 13, 758)
Precision Recall F1 Precision Recall F1

Text
Bi-LSTM

Argument 0.844 ± 0.005 0.950 ± 0.011 0.893 ± 0.004 0.707 ± 0.011 0.789 ± 0.037 0.745 ± 0.012
Other 0.727 ± 0.028 0.429 ± 0.034 0.539 ± 0.023 0.761 ± 0.020 0.669 ± 0.039 0.711 ± 0.017

Wt. average 0.816 ± 0.006 0.827 ± 0.005 0.810 ± 0.006 0.734 ± 0.007 0.730 ± 0.007 0.729 ± 0.007
Macro av. 0.785 ± 0.013 0.690 ± 0.013 0.716 ± 0.012 0.734 ± 0.007 0.729 ± 0.007 0.728 ± 0.007

Text BERT

Argument 0.854 ± 0.004 0.951 ± 0.006 0.900 ± 0.002 0.714 ± 0.013 0.839 ± 0.025 0.771 ± 0.011
Other 0.758 ± 0.018 0.487 ± 0.018 0.593 ± 0.012 0.813 ± 0.017 0.674 ± 0.024 0.737 ± 0.010

Wt. average 0.831 ± 0.004 0.839 ± 0.003 0.826 ± 0.004 0.764 ± 0.007 0.755 ± 0.006 0.754 ± 0.006
Macro av. 0.806 ± 0.008 0.719 ± 0.007 0.746 ± 0.006 0.763 ± 0.007 0.757 ± 0.005 0.754 ± 0.006

Audio

Argument 0.785 ± 0.011 0.973 ± 0.028 0.869 ± 0.005 0.628 ± 0.032 0.517 ± 0.279 0.521 ± 0.204
Other 0.654 ± 0.081 0.135 ± 0.080 0.211 ± 0.089 0.603 ± 0.063 0.670 ± 0.211 0.612 ± 0.064

Wt. average 0.754 ± 0.011 0.775 ± 0.003 0.714 ± 0.017 0.615 ± 0.017 0.595 ± 0.036 0.567 ± 0.078
Macro av. 0.720 ± 0.035 0.554 ± 0.026 0.540 ± 0.042 0.615 ± 0.016 0.593 ± 0.034 0.566 ± 0.080

Multimodal
(Bi-LSTM
+Audio)

Argument 0.879 ± 0.031 0.672 ± 0.255 0.733 ± 0.184 0.765 ± 0.054 0.548 ± 0.259 0.593 ± 0.230
Other 0.451 ± 0.127 0.681 ± 0.173 0.515 ± 0.053 0.661 ± 0.087 0.812 ± 0.104 0.719 ± 0.021

Wt. average 0.776 ± 0.016 0.674 ± 0.153 0.680 ± 0.152 0.713 ± 0.019 0.679 ± 0.079 0.656 ± 0.126
Macro av. 0.665 ± 0.051 0.677 ± 0.046 0.624 ± 0.117 0.713 ± 0.019 0.680 ± 0.078 0.656 ± 0.126

Multimodal
(BERT

+Audio)

Argument 0.851 ± 0.007 0.940 ± 0.006 0.893 ± 0.006 0.730 ± 0.031 0.773 ± 0.057 0.749 ± 0.014
Other 0.723 ± 0.016 0.487 ± 0.020 0.581 ± 0.016 0.762 ± 0.033 0.712 ± 0.059 0.734 ± 0.017

Wt. average 0.820 ± 0.009 0.830 ± 0.008 0.818 ± 0.009 0.746 ± 0.004 0.742 ± 0.005 0.741 ± 0.005
Macro av. 0.787 ± 0.011 0.713 ± 0.010 0.737 ± 0.010 0.746 ± 0.005 0.743 ± 0.004 0.741 ± 0.005

Table 1: Models’ performance for original and balanced datasets. Errors indicate standard deviation after 5
replicates.

ter training was assisted by the Python package
Ray[tune] (Liaw et al., 2018), which allows dis-
tributed parallel hyperparameter tuning with dif-
ferent search strategies and schedulers. We de-
fined our hyperparameter search as shown in the
appendix (Table A1), including training parame-
ters like the learning rate and batch size, and also
architecture-dependent parameters like the kernel
size of the CNN or whether the text embeddings
should be retrained or not. To search over the
defined hyperparameter space, we used the Tree-
structured Parzen Estimator algorithm (Bergstra
et al., 2011), which considers the performance of
previous iterations of the search to choose the next
hyperparameters to test, implemented in the Hy-
perOpt library for parallel optimization (Bergstra
et al., 2013). The training was implemented in
TensorFlow and we included Keras callbacks after
each epoch of training to update the hyperparam-
eter search algorithm. We implemented an early
stopping scheduler algorithm that monitored val-
idation loss at each epoch, stopping the training
before overfitting, with a minimum change of 1e-4
and a patience of 3 epochs. We considered imple-
menting other schedulers like Asynchronous Suc-
cessive Halving Algorithm (ASHA), which stops
unpromising trials if their performance is worse
than that of previous trials (Li et al., 2018), but we
discovered in our experiments that this algorithm
tends to penalize slow learning models, which
sometimes ended up giving the best results. We
sampled 50 times the search space, with validation

split of 20% and test split of 20%, and the best
hyperparameters, used in the remaining sections,
are reported in the appendix (Table A1), as well as
average runtimes and number of parameters. With
our dataset, we provide full details of the training
results, with confusion matrices, training history,
validation metrics plots, etc.

4 Models’ performance

4.1 Full original dataset

Table 1 shows the performance of each one of
the models after training with the original dataset
(N = 28, 850) and optimized parameters. The text-
only models, particularly the BERT model, perform
best in terms of both macro and weighted F-scores,
reaching a weighted average of 0.826 (macro av-
erage of 0.746), comparable to the weighted aver-
age reported by Haddadan et al. (2019) of 0.843
(or macro average of 0.730) using a LSTM net-
work. As in that paper, the precision and recall
of the "other" class is low, but classification of
the "argument" class performs much better, with a
high recall in both the BERT and Bi-LSTM mod-
els. The audio-only model yields a rather low
macro averaged F-score of 0.540, as it relies on
over-classifying the argument class. The BERT-
based multimodal model performs significantly bet-
ter than the audio-only model and similarly to the
text models, with a macro average of 0.737. The
Bi-LSTM-based multimodal model performs bet-
ter than the audio-only model in terms of macro
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Model Class 10% original dataset (N = 2, 885) 10% balanced dataset (N = 1, 376)
Precision Recall F1 Precision Recall F1

Text
Bi-LSTM

Argument 0.816 ± 0.027 0.946 ± 0.022 0.876 ± 0.015 0.686 ± 0.045 0.749 ± 0.025 0.715 ± 0.031
Other 0.669 ± 0.067 0.332 ± 0.092 0.436 ± 0.083 0.723 ± 0.027 0.656 ± 0.061 0.687 ± 0.044

Wt. average 0.781 ± 0.029 0.797 ± 0.024 0.769 ± 0.034 0.705 ± 0.033 0.702 ± 0.035 0.701 ± 0.036
Macro av. 0.743 ± 0.037 0.639 ± 0.039 0.656 ± 0.046 0.704 ± 0.033 0.702 ± 0.035 0.701 ± 0.036

Text BERT

Argument 0.784 ± 0.042 0.985 ± 0.016 0.873 ± 0.020 0.571 ± 0.117 0.712 ± 0.231 0.610 ± 0.101
Other 0.391 ± 0.395 0.148 ± 0.192 0.206 ± 0.262 0.535 ± 0.204 0.441 ± 0.352 0.438 ± 0.317

Wt. average 0.687 ± 0.133 0.782 ± 0.040 0.710 ± 0.082 0.552 ± 0.155 0.570 ± 0.117 0.520 ± 0.174
Macro av. 0.588 ± 0.218 0.567 ± 0.089 0.539 ± 0.140 0.553 ± 0.152 0.577 ± 0.109 0.524 ± 0.168

Audio

Argument 0.806 ± 0.045 0.782 ± 0.419 0.708 ± 0.360 0.614 ± 0.043 0.658 ± 0.256 0.607 ± 0.131
Other 0.477 ± 0.380 0.310 ± 0.400 0.237 ± 0.182 0.670 ± 0.112 0.549 ± 0.238 0.563 ± 0.130

Wt. average 0.731 ± 0.079 0.671 ± 0.232 0.597 ± 0.258 0.639 ± 0.048 0.613 ± 0.023 0.590 ± 0.036
Macro av. 0.642 ± 0.183 0.546 ± 0.050 0.472 ± 0.160 0.642 ± 0.051 0.604 ± 0.027 0.585 ± 0.041

Multimodal
(Bi-LSTM
+Audio)

Argument 0.684 ± 0.382 0.635 ± 0.360 0.657 ± 0.369 0.755 ± 0.140 0.386 ± 0.260 0.445 ± 0.258
Other 0.412 ± 0.103 0.641 ± 0.213 0.472 ± 0.054 0.612 ± 0.059 0.834 ± 0.131 0.697 ± 0.027

Wt. average 0.620 ± 0.316 0.637 ± 0.227 0.614 ± 0.294 0.679 ± 0.044 0.625 ± 0.052 0.581 ± 0.113
Macro av. 0.548 ± 0.241 0.638 ± 0.078 0.565 ± 0.210 0.684 ± 0.052 0.610 ± 0.066 0.571 ± 0.124

Multimodal
(BERT

+Audio)

Argument 0.833 ± 0.030 0.936 ± 0.023 0.881 ± 0.009 0.722 ± 0.017 0.789 ± 0.033 0.753 ± 0.012
Other 0.710 ± 0.060 0.445 ± 0.095 0.538 ± 0.056 0.771 ± 0.021 0.699 ± 0.037 0.732 ± 0.017

Wt. average 0.803 ± 0.012 0.810 ± 0.014 0.793 ± 0.024 0.747 ± 0.009 0.743 ± 0.009 0.743 ± 0.010
Macro av. 0.771 ± 0.017 0.690 ± 0.034 0.709 ± 0.030 0.746 ± 0.009 0.744 ± 0.009 0.743 ± 0.010

Table 2: Models’ performance for 10% of the datasets. Errors indicate standard deviation after 5 replicates.

averaged F-score, with 0.624. Our models perform
slightly better than those of Mancini et al. (2022),
who used the same architecture (although with their
own hyperparameter optimization) and dataset (al-
though slightly smaller). But, like us, they find that
the multimodal models do not significantly (if at
all) outperform the text-only models, with macro
F-scores of 0.674 in both. Their audio-only model
was not better than the random baseline at 0.505.

In both the original work of Mestre et al. (2021)
and the replication by Mancini et al. (2022), the au-
thors show a beneficial impact of audio embeddings
in argument classification. However, that dataset
was significantly smaller (N = 4, 104) and heavily
imbalanced towards one of the classes. Our dataset
is also slightly imbalanced towards the "argument"
class (76.15% arguments) and the text-only models
seem to be reaching saturation, as per the previous
paragraph. Moreover, the low precision and recall
of the "other" class leads us to believe that the mod-
els overly rely on classifying many instances as
"argument". Therefore, we asked ourselves what
would happen: 1) when the dataset is small and the
performance of the text-only model might suffer; 2)
when the dataset is balanced and the models cannot
rely on over-classifying the "argument" class. Does
the addition of audio improve the performance met-
rics in those cases?

4.2 Fractional and balanced datasets

The right-hand side of Table 1 shows the results
with the same models for a balanced dataset. To
obtain a balanced dataset, a random number of "ar-

gument" classes were dropped from the original
dataset, until we obtained an equal number of both
classes, therefore reducing the total size to 13,758
sentences. This table shows how the overall perfor-
mance of the BERT and Bi-LSTM models has been
reduced, reaching macro averaged F-score values
of 0.754 for the BERT model and 0.728 for the Bi-
LSTM model. Moreover, the precision and recall
of both classes are more balanced: whereas in the
original dataset the recall of the "argument" and
"other" classes of the BERT model were 0.951 and
0.487, respectively, they are now 0.839 and 0.674.
The multimodal model continues to perform signif-
icantly better than the audio-only model, but still
not better than the BERT model, to which it still
achieves similar F-score values. It seems, therefore,
that a multimodal model does not provide better
results than text-only models when the datasets are
balanced, at least as long as the number of anno-
tations continues to be large (N = 13, 758). The
text-only models still seem to reach saturation of
what can be accomplished with the dataset.

Table 2 shows the results for a fractional dataset
composed of only 10% of the original and bal-
anced data. We hypothesize that the performance
of the text-only models will start to suffer with
small amounts of training data and the audio fea-
tures from the multimodal models will be able to
partially recover previous performance. Indeed, it
has been shown in some work that BERT models
tend to decline in performance with small datasets
and can be outperformed by simpler models like Bi-
LSTM (Ezen-Can, 2020). Likewise, not only does
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the overall performance suffer, but also the stability
of the model as discussed by Dodge et al. (2020). In
our case, we see that the BERT model shows a large
drop in macro average F-score, down to 0.539, and
high instability, as can be observed from the large
standard error of the "other" class. In this case, the
Bi-LSTM model outperforms the BERT model at
0.656, suggesting that the BERT model is more
sensitive to smaller datasets. The BERT-based mul-
timodal model also outperforms the BERT model,
with a macro average F-score of 0.709, very close
to the best scenario with the original dataset at
0.746. Surprisingly, the Bi-LSTM-based multi-
modal model does not outperform the Bi-LSTM
model, but worsens its performance. On 10% of
the balanced dataset, results are similiar, with the
BERT model suffering and the BERT-based mul-
timodal model outperforming all with F-scores of
0.743, close to the original balanced case.

For intermediate sizes, such as 50% and 20% (re-
ported in Section C) the change seems to be gradual.
For both 50% and 20% of the original dataset, the
performance of the only-text BERT model and the
BERT-based multimodal model is practically iden-
tical. However, for balanced datasets of 20% (with
only N = 2, 751), the performance of the BERT
model starts to decrease and is overcome by the
multimodal model. All these results suggest that
there is a point at around N = 3, 000 or below
where audio features provide an important added
value in the performance of the models. Full details
of all the replicates, including the model history
with validation losses and accuracy, confusion ma-
trices and a full breakdown of the performance met-
rics can be found in the repository of the project5

and its official release (Mestre et al., 2023).

5 Artificial voices

It is not clear what the audio models are specif-
ically looking at when they undergo training, as
the features extracted are not always easy to in-
terpret. One hypothesis is that they learn from the
words being uttered, their pronunciation and associ-
ations thereof in a similar way to text-based models.
However, it is also likely that these audio models
are picking up intonation or pitch features that are
possibly different when one person is making an
argument.

As a first step in investigating what the audio-

5https://github.com/rafamestre/
Multimodal-USElecDeb60To16.

based models are paying attention to, we ran our
models using artificial voices, instead of the orig-
inal voices from the presidential candidates. For
this, we used the computer generated voices from
the Microsoft Window’s Text to Speech (TTS) sys-
tem. Then, we used the text-to-speech conversion
library pyttsx3 (v 2.9) for Python to run each sen-
tence through the Microsoft TTS system and gen-
erate utterances spoken by the so-called Microsoft
Mark and Microsoft Zira, the male and female ver-
sion of US voices. We set the speaking rate at
200 words per minute, but it could be interesting
for future studies to observe the accuracy of the
models when the speech rate is changed. Likewise,
each country package in Microsoft Windows has
its own set of unique voices, even if they speak the
same language, e.g., UK, India, South Africa, and
so on, so it could be interesting to check potential
differences in accuracy with different accents.

We then ran our audio-only models as described
before and the performance metrics are displayed
in Table 3. We only report the F-scores, and not
precision and recall, for simplicity.6 We can see in
this table that, generally, there are no differences in
F-score by gender of the artificial voices, although
there seems to be a bias towards the female Zira
voice. When compared to the audio model run with
original voices, it is interesting to see that whereas
using artificial voices results in a similar score with
the full dataset, with the balanced dataset the re-
sults are improved, going from 0.566 as reported
in 1 to 0.626 using the Zira voice. This improve-
ment is also found with the 10% dataset, which
reported 0.536 and 0.594 for the original and bal-
anced datasets, whereas Table 2 reported 0.572 and
0.585, respectively. In the balanced case, these val-
ues are even better than the BERT model at 0.524.
A potential explanation is that the artificial audio
models lack noise coming from the recording, or
remove variation coming from different people hav-
ing different baseline pitches that might confuse the
model. There might be a trade-off between taking
advantage of pitch or intonation during arguments
(which we were not able to prove produces any ef-
fect) and benefiting from the noise-reduced nature
of artificial audio. In any case, it seems that audio-
only models based on artificial voices can learn
features and classify arguments with an accuracy
comparable to text-only models, and sometimes

6Full information, all the computerized utterances and
scripts to reproduce our results can be found in our repository
(Mestre et al., 2023).
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Voice Class F1

Original dataset Balanced dataset 10% original 10% balanced

Female

Argument 0.874 ± 0.002 0.596 ± 0.141 0.865 ± 0.012 0.555 ± 0.055
Other 0.235 ± 0.029 0.656 ± 0.017 0.207 ± 0.115 0.633 ± 0.051

Wt. average 0.722 ± 0.006 0.626 ± 0.064 0.706 ± 0.024 0.593 ± 0.025
Macro av. 0.555 ± 0.014 0.626 ± 0.063 0.536 ± 0.054 0.594 ± 0.022

Male

Argument 0.871 ± 0.003 0.582 ± 0.126 0.875 ± 0.007 0.496 ± 0.173
Other 0.199 ± 0.043 0.654 ± 0.167 0.191 ± 0.121 0.595 ± 0.127

Wt. average 0.711 ± 0.010 0.618 ± 0.060 0.720 ± 0.032 0.548 ± 0.057
Macro av. 0.535 ± 0.021 0.618 ± 0.059 0.533 ± 0.062 0.545 ± 0.059

Table 3: Audio-only models’ performance with artificial voices. Errors indicate standard deviation after 5 replicates.

even better than those when data is scarce. Models
based on the original voices often struggle, and this
might be due to the inherent noise of the recordings
or differences at the speaker level.

6 Ablation study

Finally, to further understand how the different
LLD audio features might play a role in argument
detection, we perform an ablation study with the
audio model in which we eliminate one of the six
features at a time and assess how the performance
of the model changes. The results are in Table
4 for the full and balanced datasets (we only re-
port F-score for simplicity). The first column in-
dicates the feature that was eliminated from the
feature tensor, which originally had dimensions of
(45, Tmax), whereas the second column displays
the dimensions of the tensor after elimination. In
general, none of the cases deviate much from the
full-feature model with macro F-scores of 0.540
and 0.566 for the original and balanced datasets
(Table 1). The first four features are spectral fea-
tures, meaning that they are features extracted from
the spectrogram of the sound wave. In particular,
the spectral centroid and bandwidth characterize
the center of mass of the spectrum (where most
of the energy is located) and its weighted standard
deviation, respectively (Sandhya et al., 2020). The
spectral rolloff also characterizes the energy spec-
trum by identifying the frequency below which a
certain percentage (in our case, 85%) of the energy
is located, and can be used to differentiate voices
from noise (Syed et al., 2021). These three features
are 1-dimensional and only reduce the feature space
to (44, T ). The spectral contrast feature, however,
is 7-dimensional and works by dividing the spec-
trogram into 6 sub-bands, for which the difference
between their peaks and valleys are computed, and
is commonly used in music identification (Jiang
et al., 2002b). The chromagram, or chroma feature,

is a feature that aggregates all information of a
waveform into the 12 different pitch classes, which
are separated by an octave. This feature is mostly
used for music synchronization and singing voice
separation (Yuan et al., 2022). Finally, MFCCs
are a variable set of features (in our case, we use
12) which describe the shape of the spectral signal.
They are based on human auditive perceptions and
are widely used in the literature to capture pho-
netically relevant features (Mansour and Lachiri,
2017).

From the ablation study, we see that skipping
features does not have a strong influence on the
performance with the original full dataset. With
the balanced dataset, the elimination of the spectral
roll-off feature seems to have a strong effect, as
it decreases its macro F-score to 0.402. A special
mention to the MFCCs is deserved. These are the
most common LDDs in the literature. Eliminat-
ing this feature but keeping the rest does not affect
the performance (F-score of 0.544) in the original
dataset, and improves it in the balanced case to
0.612. As MFCCs (and many of the other features)
are commonly used to distinguish between voices
based on their frequency and pitch, they could bias
the model by considering information about the
speaker, which is not necessarily relevant to the ar-
gument. This would also explain why the artificial
voices performed better than the original dataset
and why some of the simplest features, like spectral
roll-off, have a big influence on performance.

7 Conclusion

In this paper, we explored the possibilities of using
audio to detect arguments with multimodal ma-
chine learning models in a dataset of US presiden-
tial debates that was annotated for arguments. We
found that, generally, BERT-based text-only mod-
els outperformed all models in the original dataset,
but multimodal models can improve performance
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Feature
skipped

Feature
space Class F1

Original dataset Balanced dataset

Spectral
centroids

(44,T)

Argument 0.858 ± 0.010 0.511 ± 0.185
Other 0.225 ± 0.156 0.613 ± 0.005

Wt. average 0.706 ± 0.035 0.561 ± 0.070
Macro av. 0.542 ± 0.075 0.562 ± 0.069

Spectral
bandwidth

(44,T)

Argument 0.869 ± 0.001 0.360 ± 0.270
Other 0.198 ± 0.018 0.653 ± 0.039

Wt. average 0.709 ± 0.001 0.508 ± 0.122
Macro av. 0.534 ± 0.009 0.507 ± 0.122

Spectral
roll-off

(44,T)

Argument 0.777 ± 0.109 0.127 ± 0.118
Other 0.320 ± 0.192 0.677 ± 0.007

Wt. average 0.668 ± 0.065 0.408 ± 0.058
Macro av. 0.548 ± 0.075 0.402 ± 0.059

Spectral
contrast

(38,T)

Argument 0.866 ± 0.002 0.429 ± 0.278
Other 0.201 ± 0.110 0.645 ± 0.025

Wt. average 0.706 ± 0.028 0.537 ± 0.127
Macro av. 0.533 ± 0.055 0.537 ± 0.128

Chroma (33,T)

Argument 0.870 ± 0.003 0.408 ± 0.316
Other 0.196 ± 0.038 0.611 ± 0.061

Wt. average 0.710 ± 0.012 0.509 ± 0.133
Macro av. 0.533 ± 0.020 0.509 ± 0.132

MFCCs (22,T)

Argument 0.869 ± 0.003 0.619 ± 0.032
Other 0.220 ± 0.018 0.605 ± 0.058

Wt. average 0.714 ± 0.011 0.611 ± 0.022
Macro av. 0.544 ± 0.011 0.612 ± 0.021

Table 4: Results from ablation study. The complete
feature space has a dimensions of (45, Tmax), where
Tmax is the 99% percentile length of the utterances.

when the datasets are small and BERT encodings
start performing poorly, in both balanced and un-
balanced versions of the data. Multimodal models
are therefore an alternative that could be used to
improve classifications of arguments when data is
scarce. To further investigate the reasons for these
improvements, we ran audio-only models using
artificially generated voices of male and female
genders. Although we did not find a significant dif-
ference in the performance with the artificial voices
(only a slight preference toward female), we find
that in the most difficult scenarios (balanced and
small datasets), the models with artificial voices
outperform those with the original audio from the
debates. Moreover, we perform an ablation study
and we find that removing certain features like
MFCCs can improve the performance of the mod-
els. We recognize that these features are commonly
used to distinguish between speakers, so irrelevant
characteristics of speakers might be influencing
the capacity of the models to accurately classify
arguments. However, all these features are highly
correlated with one another, so further work should
investigate which features are more independent
of the speakers themselves or if they can be nor-
malized before being fed into the network. These
results should be compared with artificially gener-
ated voices, which could have different accents or
speech rates to understand how those features can
influence the classification of arguments.

Limitations

This paper assesses the benefits of audio features
in the task of argumentation mining. Although the
dataset presented has a large number of annotations
(N = 28, 850) further research should be aimed at
studying its cross-domain adaptability in different
scenarios and datasets. The model architectures
used in this paper are fairly standard in the litera-
ture and thus represent benchmarking results for
further research in the field, as the application of
multimodal sources of data in argumentation min-
ing is still largely unexplored. Newer architectures,
for instance those based on cross-attention mecha-
nisms between the different modalities, should be
explored next to check whether these results could
be improved. It is still not fully clear what informa-
tion from the audio embeddings are being picked
up by the models. Our study on computerized
voices offers an interesting avenue of research, but
it should be further expanded to include a larger ar-
ray of voices, different speech rates and embedding
in fully multimodal models to assess their perfor-
mance. The potential biases of models that use
audio, especially how different voice’s characteris-
tics (such as pitch frequency, which is correlated
to gender) affect the classification, are not fully
studied here, but briefly touched upon in the com-
puterized voice study. This is rather important but
unexplored territory and normalization strategies
should be investigated to solve these issues. Fi-
nally, there are a large number of audio features
that could be explored in this domain. Those used
in this work are just some of the most common
ones, but, as mentioned before, the choice is gen-
erally based on the extraction package used by the
researcher. There is a need for standardization of
these features in the community, so different work
can be better compared.

Ethics Statement

We acknowledge that the use of audio features for
automatic classification can cause potential privacy
issues, as the real voice, and not only the speech,
is used for classification. At this stage, we do
not foresee any outstanding ethical issues from
this research, as we use public domain data that
was televised in public national television and is
widely availabe on the web. Ethics approval for
this research was received from the University of
Southampton’s Faculty of Social Science Ethics
and Research Governance committee, Ref: 66226,

282



Date 16/03/2022. The audio-enhanced dataset of
this work along with the codes to reproduce our re-
sults are made available under license CC0: Public
Domain in the project’s GitHub and is also assigned
a DOI to ensure reliable access to this work’s sup-
plementary data (Mestre et al., 2023).

Acknowledgements

This work has been funded by UK Research
and Innovation (UKRI) funding (grant ref
MR/S032711/1) and by the Web Science Insti-
tute of the University of Southampton (project
PP-2020-Mestre). This work was also supported
by the Natural Environment Research Council
(NE/S015604/1) and Economic and Social Re-
search Council (ES/V011278/1). The authors ac-
knowledge the use of the IRIDIS High Performance
Computing Facility, and associated support ser-
vices at the University of Southampton, in the com-
pletion of this work.

References
Teresa Alsinet, Josep Argelich, Ramón Béjar, and Joel

Cemeli. 2019. A distributed argumentation algorithm
for mining consistent opinions in weighted twitter
discussions. Soft Computing, 23:2147–2166.

Bagus Tris Atmaja and Masato Akagi. 2020. Dimen-
sional speech emotion recognition from speech fea-
tures and word embeddings by using multitask learn-
ing. APSIPA Transactions on Signal and Information
Processing, 9.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe
Morency. 2018. Multimodal machine learning: A
survey and taxonomy. IEEE transactions on pattern
analysis and machine intelligence, 41(2):423–443.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. Advances in neural information pro-
cessing systems, 24.

James Bergstra, Daniel Yamins, and David Cox. 2013.
Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision ar-
chitectures. In International conference on machine
learning, pages 115–123. PMLR.

C. Busso, M. Bulut, C. C. Lee, A. Kazemzadeh,
E. Mower, S. Kim, J. N. Chang, S. Lee, and S. S.
Narayanan. 2008. IEMOCAP: Interactive emotional
dyadic motion capture database. Language Re-
sources and Evaluation, 42(4):335–359.

Linqin Cai, Yaxin Hu, Jiangong Dong, and Sitong Zhou.
2019. Audio-textual emotion recognition based on
improved neural networks. Mathematical Problems
in Engineering, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Florian Eyben, Klaus R. Scherer, Bjorn W. Schuller,
Johan Sundberg, Elisabeth Andre, Carlos Busso,
Laurence Y. Devillers, Julien Epps, Petri Laukka,
Shrikanth S. Narayanan, and Khiet P. Truong. 2016.
The geneva minimalistic acoustic parameter set
(gemaps) for voice research and affective computing.
IEEE Transactions on Affective Computing, 7:190–
202.

Florian Eyben, Felix Weninger, Florian Gross, and
Björn Schuller. 2013. Recent developments in opens-
mile, the munich open-source multimedia feature
extractor. pages 835–838.

Aysu Ezen-Can. 2020. A comparison of lstm and bert
for small corpus. arXiv preprint arXiv:2009.05451.

Debanjan Ghosh, Smaranda Muresan, Nina Wacholder,
Mark Aakhus, and Matthew Mitsui. 2014. Analyzing
argumentative discourse units in online interactions.
In Proceedings of the first workshop on argumenta-
tion mining, pages 39–48.

Theodoros Giannakopoulos. 2015. Pyaudioanalysis:
An open-source python library for audio signal anal-
ysis. PLoS ONE, 10.

Matthieu Guillaumin, Jakob Verbeek, and Cordelia
Schmid. 2010. Multimodal semi-supervised learning
for image classification. pages 902–909.

Shohreh Haddadan, Elena Cabrio, and Serena Villata.
2019. Yes, we can! mining arguments in 50 years of
us presidential campaign debates. In ACL 2019-57th
Annual Meeting of the Association for Computational
Linguistics, pages 4684–4690.

Ngoc Huynh Ho, Hyung Jeong Yang, Soo Hyung Kim,
and Gueesang Lee. 2020. Multimodal approach of
speech emotion recognition using multi-level multi-
head fusion attention-based recurrent neural network.
IEEE Access, 8:61672–61686.

Anurag Illendula and Amit Sheth. 2019. Multimodal
emotion classification.

Philip Jackson and SJUoSG Haq. 2014. Surrey audio-
visual expressed emotion (savee) database. Univer-
sity of Surrey: Guildford, UK.

Rajiv Jain and Curtis Wigington. 2019. Multimodal
document image classification. pages 71–77. IEEE
Computer Society.

283

https://github.com/rafamestre/Multimodal-USElecDeb60To16
https://doi.org/10.1007/s00500-018-3380-x
https://doi.org/10.1007/s00500-018-3380-x
https://doi.org/10.1007/s00500-018-3380-x
https://doi.org/10.1017/ATSIP.2020.14
https://doi.org/10.1017/ATSIP.2020.14
https://doi.org/10.1017/ATSIP.2020.14
https://doi.org/10.1017/ATSIP.2020.14
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1145/2502081.2502224
https://doi.org/10.1145/2502081.2502224
https://doi.org/10.1145/2502081.2502224
https://doi.org/10.1371/journal.pone.0144610
https://doi.org/10.1371/journal.pone.0144610
https://doi.org/10.1371/journal.pone.0144610
https://doi.org/10.1109/CVPR.2010.5540120
https://doi.org/10.1109/CVPR.2010.5540120
https://doi.org/10.1109/ACCESS.2020.2984368
https://doi.org/10.1109/ACCESS.2020.2984368
https://doi.org/10.1109/ACCESS.2020.2984368
https://doi.org/10.1145/3308560.3316549
https://doi.org/10.1145/3308560.3316549
https://doi.org/10.1109/ICDAR.2019.00021
https://doi.org/10.1109/ICDAR.2019.00021


D. N. Jiang, L. Lu, H. J. Zhang, J. H. Tao, and L. H. Cai.
2002a. Music type classification by spectral contrast
feature. Proc. IEEE Int. Conf. on Multimedia and
Expo, pages 113–116.

Dan-Ning Jiang, Lie Lu, Hong-Jiang Zhang, Jian-Hua
Tao, and Lian-Hong Cai. 2002b. Music type classi-
fication by spectral contrast feature. In Proceedings.
IEEE International Conference on Multimedia and
Expo, volume 1, pages 113–116. IEEE.

A. Klapuri and M. Davy. 2006. Signal processing meth-
ods for music transcription. In Signal Processing
Methods for Music Transcription, chapter 5. Springer
Science & Business Media.

John Lawrence and Chris Reed. 2017. Using complex
argumentative interactions to reconstruct the argu-
mentative structure of large-scale debates. In Pro-
ceedings of the 4th Workshop on Argument Mining,
pages 108–117.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Eka-
terina Gonina, Moritz Hardt, Ben Recht, and Ameet
Talwalkar. 2018. Massively parallel hyperparameter
tuning.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E Gonzalez, and Ion Stoica.
2018. Tune: A research platform for distributed
model selection and training. arXiv preprint
arXiv:1807.05118.

Marco Lippi and Paolo Torroni. 2016. Argument min-
ing from speech: Detecting claims in political de-
bates. 30th AAAI Conference on Artificial Intelli-
gence, AAAI 2016, pages 2979–2985.

Steven R Livingstone and Frank A Russo. 2018. The
ryerson audio-visual database of emotional speech
and song (ravdess): A dynamic, multimodal set of fa-
cial and vocal expressions in north american english.
PloS one, 13(5):e0196391.

Eleonora Mancini, Federico Ruggeri, Andrea Galassi,
and Paolo Torroni. 2022. Multimodal argument min-
ing: A case study in political debates. pages 158–
170.

Asma Mansour and Zied Lachiri. 2017. Svm based
emotional speaker recognition using mfcc-sdc fea-
tures. International Journal of Advanced Computer
Science and Applications, 8(4).

Brian McFee, Colin Raffel, Dawen Liang, Daniel P
Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
2015. librosa: Audio and music signal analysis in
python. In Proceedings of the 14th python in science
conference, volume 8, pages 18–25.

Rafael Mestre, Stuart E. Middleton, Matt Ryan, Masood
Gheasi, Timothy J. Norman, and Jiatong Zhu. 2023.
rafamestre/multimodal-uselecdeb60to16: v1.0.0.

Rafael Mestre, Razvan Milicin, Stuart Middleton, Matt
Ryan, Jiatong Zhu, and Timothy J Norman. 2021.
M-arg: Multimodal argument mining dataset for po-
litical debates with audio and transcripts. In Proceed-
ings of the 8th Workshop on Argument Mining, pages
78–88.

Louis-Philippe Morency and Tadas Baltrušaitis. 2017.
Multimodal machine learning: integrating language,
vision and speech. In Proceedings of the 55th an-
nual meeting of the association for computational
linguistics: Tutorial abstracts, pages 3–5.

Kai Nakamura, Sharon Levy, and William Yang Wang.
2020. r/fakeddit: A new multimodal benchmark
dataset for fine-grained fake news detection. pages
11–16.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, Gautam Naik, Erik Cambria, and Rada Mi-
halcea. 2018. Meld: A multimodal multi-party
dataset for emotion recognition in conversations.
arXiv preprint arXiv:1810.02508.

P Sandhya, V Spoorthy, Shashidhar G Koolagudi, and
NV Sobhana. 2020. Spectral features for emotional
speaker recognition. In 2020 Third International
Conference on Advances in Electronics, Computers
and Communications (ICAECC), pages 1–6. IEEE.

Prabhav Singh, Ridam Srivastava, K. P.S. Rana, and
Vineet Kumar. 2021. A multimodal hierarchical ap-
proach to speech emotion recognition from audio and
text[formula presented]. Knowledge-Based Systems,
229.

C. Stab and I. Gurevych. 2014. Annotating argument
components and relations in persuasive essays. In
Proc. 25th Int. Conf. on Computational Linguistics,
pages 1501–1510.

S Syed, Munaf Rashid, Samreen Hussain, Anoshia Im-
tiaz, Hamnah Abid, and Hira Zahid. 2021. Inter clas-
sifier comparison to detect voice pathologies. Math-
ematical Biosciences and Engineering, 18(3):2258–
2273.

Jacky Visser, John Lawrence, Chris Reed, Jean Wage-
mans, and Douglas Walton. 2021. Annotating Argu-
ment Schemes, volume 35.

Yue Xie, Ruiyu Liang, Zhenlin Liang, Chengwei Huang,
Cairong Zou, and Bjorn Schuller. 2019. Speech
emotion classification using attention-based lstm.
IEEE/ACM Transactions on Audio Speech and Lan-
guage Processing, 27:1675–1685.

Bo Yang, Bo Shao, Lijun Wu, and Xiaola Lin. 2022.
Multimodal sentiment analysis with unidirectional
modality translation. Neurocomputing, 467:130–
137.

Zengwei Yao, Zihao Wang, Weihuang Liu, Yaqian Liu,
and Jiahui Pan. 2020. Speech emotion recognition
using fusion of three multi-task learning-based clas-
sifiers: Hsf-dnn, ms-cnn and lld-rnn. Speech Com-
munication, 120:11–19.

284

https://doi.org/10.1109/ICME.2002.1035731
https://doi.org/10.1109/ICME.2002.1035731
https://doi.org/10.1007/0-387-32845-9
https://doi.org/10.1007/0-387-32845-9
https://aclanthology.org/2022.argmining-1.15/
https://aclanthology.org/2022.argmining-1.15/
https://doi.org/https://doi.org/10.5281/zenodo.7628464
https://www.journalism.org/2019/06/05/many-americans-
https://www.journalism.org/2019/06/05/many-americans-
https://doi.org/10.1016/j.knosys.2021.107316
https://doi.org/10.1016/j.knosys.2021.107316
https://doi.org/10.1016/j.knosys.2021.107316
http://www.ukp.tu-darmstadt.de
http://www.ukp.tu-darmstadt.de
https://doi.org/10.1007/s10503-020-09519-x
https://doi.org/10.1007/s10503-020-09519-x
https://doi.org/10.1109/TASLP.2019.2925934
https://doi.org/10.1109/TASLP.2019.2925934
https://doi.org/10.1016/j.specom.2020.03.005
https://doi.org/10.1016/j.specom.2020.03.005
https://doi.org/10.1016/j.specom.2020.03.005


Seunghyun Yoon, Seokhyun Byun, and Kyomin Jung.
2018. Multimodal speech emotion recognition using
audio and text. In 2018 IEEE Spoken Language
Technology Workshop (SLT), pages 112–118. IEEE.

Siyuan Yuan, Zhepei Wang, Umut Isik, Ritwik Giri,
Jean-Marc Valin, Michael M Goodwin, and Arvindh
Krishnaswamy. 2022. Improved singing voice sepa-
ration with chromagram-based pitch-aware remixing.
In ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 111–115. IEEE.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016. Multimodal sentiment in-
tensity analysis in videos: Facial gestures and verbal
messages. IEEE Intelligent Systems, 31(6):82–88.

Jianfeng Zhao, Xia Mao, and Lijiang Chen. 2019.
Speech emotion recognition using deep 1d 2d cnn
lstm networks. Biomedical Signal Processing and
Control, 47:312–323.

285

https://doi.org/10.1016/j.bspc.2018.08.035
https://doi.org/10.1016/j.bspc.2018.08.035


A Hyperparameter tuning

Table A1 shows the hyperparameter bounds, as
well as the final values selected for each model.
After hyperparameter tuning, BERT-based text-
models took approximately 45 minutes to train,
whereas Bi-LSTM-based text-models took only 2
minutes (on the full dataset). Audio-only mod-
els took 25 min to train (as they would converge
very slowly taking more than 50 training epochs),
BERT-based multimodal models took an average
of 3 hours and Bi-LSTM-based multimodal models
took 8 minutes.

B Notes on alignment

As mentioned in the main text, we used the Ae-
neas package, which is a Python package that uses
“forced alignment” to match the text and audio from
utterances. Briefly, each sentence is provided as
text and the tool uses the espeak Windows speech
synthesizer to generate a computerized voice ut-
tering that sentence. Then, amplitude waves are
contrasted from the real and computer-generated
sentences, and they are aligned to extract the times-
tamps. Two researchers manually checked every
debate for major misalignment (and fixed them)
until we obtained an almost perfectly aligned text.

We indicated omissions to be ignored during
alignment: text between brackets that indicates
transcription tags like "applause", or the interjec-
tion "uh", that appeared (too much) in some of the
transcripts and never in others. This tool comes
with a handy HTML output that allows the user to
click on different parts of the transcript and check
the alignment. Two people manually checked ev-
ery debate for major misalignment (and fixed those
cases as described above) until we obtained an al-
most perfectly aligned text.

Together with the dataset and codes to reproduce
the results, we present our code to reproduce the
alignment process, as well as an exhaustive list
of the problems we encountered during alignment
and how we solved them (e.g., modifications to
the original transcripts, splitting videos, etc.). We
share a folder with all the results from training our
models with original and balanced datasets, as well
as fractional subsets of 50%, 20% and 10%. We
also include the training with artificial voices and
from the ablation study. Each subfolder contains
the parameters used by the model, confusion ma-
trices of each run (5 runs per model), loss value vs
epoch plots, training history with validation met-

rics, and precision/recall/F-score metrics for each
run, as well as the average values.

C Results for 50% and 20% datasets

Tables A2 and A3 show the results for all models
with 50% and 20% fractional datasets.
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Hyper-
parameter Range Bi-LSTM BERT Audio

Multimodal
(Bi-LSTM
+Audio)

Multimodal
(BERT
+Audio)

Learning rate
[0.01,

0.000001]
6.68e−4 2.37e−6 1.89e−5 7.73e−5 2.81e−6

Batch size {16, 32, 64} 16 32 64 16 16
Hidden

activation
{ReLU,Sigm.,

Tanh}
Tanh ReLU Sigm. ReLU ReLU

Trainable {True, False} False True True True
Dropout text [0, 0.9] 0.6 0.8 0.5 0.7

Dropout audio [0, 0.9] 0.6 0.6 0.1
Dropout final [0, 0.9] 0 0.5

# neurons
dense layer

{16, 32, 64,
128, 256}

32 256 32 16 16

# neurons
Bi-LSTM text

{16, 32, 64,
128, 256}

64 64

# neurons
Bi-LSTM audio

{16, 32, 64,
128, 256}

16 32 256

# filters
conv. layer 1

{4, 8, 16,
32, 64}

4 4 8

# filters
conv. layer 2

{4, 8, 16,
32, 64}

4 8 4

Kernel size
conv. layer 1

{1, 3,
5, 7}

3 3 3

Kernel size
conv. layer 2

{1, 3,
5, 7}

5 7 3

Size pooling
layer 1

{2, 4} 2 2 2

Size pooling
layer 2

{2, 4} 2 2 4

Number of
parameters

2,802,074 109,679,619 5,362,110 7,928,618 119,978,775

Table A1: List of hyperparameters, their search range and their optimal value for each model. The range in "learning
rate" (in squared brackets) was given as a log uniform distribution, in the dropout layers a uniform distribution in
multiples of 0.1, whereas in the remaining cases (represented with curly brackets) the choices were from the discrete
set of values shown.
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Model Class 50% original dataset (N = 14, 425) 50% balanced dataset (N = 6, 879)
Precision Recall F1 Precision Recall F1

Text
Bi-LSTM

Argument 0.836 ± 0.014 0.944 ± 0.012 0.886 ± 0.005 0.704 ± 0.025 0.784 ± 0.027 0.741 ± 0.004
Other 0.705 ± 0.044 0.415 ± 0.033 0.521 ± 0.019 0.760 ± 0.020 0.673 ± 0.049 0.713 ± 0.026

Wt. average 0.805 ± 0.006 0.816 ± 0.007 0.798 ± 0.011 0.732 ± 0.008 0.728 ± 0.013 0.727 ± 0.014
Macro av. 0.770 ± 0.016 0.680 ± 0.011 0.704 ± 0.011 0.732 ± 0.008 0.728 ± 0.012 0.727 ± 0.014

Text BERT

Argument 0.841 ± 0.041 0.952 ± 0.028 0.892 ± 0.013 0.719 ± 0.010 0.803 ± 0.023 0.759 ± 0.009
Other 0.776 ± 0.127 0.402 ± 0.224 0.474 ± 0.262 0.773 ± 0.018 0.680 ± 0.027 0.723 ± 0.016

Wt. average 0.826 ± 0.004 0.822 ± 0.031 0.794 ± 0.071 0.746 ± 0.010 0.742 ± 0.010 0.741 ± 0.010
Macro av. 0.809 ± 0.043 0.677 ± 0.098 0.683 ± 0.137 0.746 ± 0.010 0.742 ± 0.010 0.741 ± 0.010

Audio

Argument 0.795 ± 0.032 0.897 ± 0.176 0.833 ± 0.079 0.630 ± 0.030 0.521 ± 0.211 0.547 ± 0.122
Other 0.398 ± 0.246 0.211 ± 0.253 0.216 ± 0.153 0.601 ± 0.067 0.681 ± 0.164 0.623 ± 0.050

Wt. average 0.703 ± 0.066 0.738 ± 0.078 0.690 ± 0.042 0.616 ± 0.022 0.599 ± 0.034 0.584 ± 0.050
Macro av. 0.597 ± 0.126 0.554 ± 0.042 0.524 ± 0.052 0.615 ± 0.023 0.601 ± 0.029 0.585 ± 0.048

Multimodal
(Bi-LSTM
+Audio)

Argument 0.870 ± 0.036 0.756 ± 0.190 0.794 ± 0.113 0.800 ± 0.096 0.330 ± 0.282 0.398 ± 0.271
Other 0.493 ± 0.119 0.622 ± 0.181 0.521 ± 0.049 0.582 ± 0.091 0.887 ± 0.117 0.692 ± 0.029

Wt. average 0.780 ± 0.013 0.722 ± 0.106 0.728 ± 0.092 0.694 ± 0.027 0.603 ± 0.091 0.542 ± 0.154
Macro av. 0.682 ± 0.044 0.689 ± 0.034 0.657 ± 0.073 0.691 ± 0.023 0.609 ± 0.084 0.545 ± 0.149

Multimodal
(BERT

+Audio)

Argument 0.842 ± 0.010 0.946 ± 0.011 0.891 ± 0.223 0.727 ± 0.025 0.778 ± 0.028 0.751 ± 0.020
Other 0.736 ± 0.037 0.457 ± 0.029 0.563 ± 0.014 0.756 ± 0.021 0.701 ± 0.022 0.727 ± 0.010

Wt. average 0.816 ± 0.002 0.825 ± 0.003 0.810 ± 0.005 0.742 ± 0.013 0.740 ± 0.014 0.739 ± 0.013
Macro av. 0.789 ± 0.014 0.701 ± 0.009 0.727 ± 0.006 0.741 ± 0.014 0.739 ± 0.013 0.739 ± 0.013

Table A2: Models’ performance for 50% of the datasets. Errors indicate standard deviation after 5 replicates.

Model Class 20% original dataset (N = 5, 770) 20% balanced dataset (N = 2, 751)
Precision Recall F1 Precision Recall F1

Text
Bi-LSTM

Argument 0.833 ± 0.012 0.941 ± 0.026 0.883 ± 0.012 0.699 ± 0.024 0.723 ± 0.064 0.709 ± 0.032
Other 0.679 ± 0.066 0.386 ± 0.043 0.488 ± 0.019 0.728 ± 0.038 0.701 ± 0.053 0.713 ± 0.028

Wt. average 0.797 ± 0.015 0.810 ± 0.015 0.790 ± 0.013 0.714 ± 0.023 0.712 ± 0.024 0.711 ± 0.024
Macro av. 0.756 ± 0.030 0.663 ± 0.010 0.686 ± 0.009 0.714 ± 0.023 0.712 ± 0.040 0.711 ± 0.024

Text BERT

Argument 0.844 ± 0.015 0.952 ± 0.015 0.895 ± 0.023 0.623 ± 0.112 0.691 ± 0.166 0.648 ± 0.128
Other 0.757 ± 0.047 0.453 ± 0.026 0.566 ± 0.021 0.648 ± 0.117 0.570 ± 0.184 0.598 ± 0.147

Wt. average 0.823 ± 0.019 0.831 ± 0.017 0.815 ± 0.018 0.635 ± 0.113 0.632 ± 0.116 0.624 ± 0.122
Macro av. 0.801 ± 0.026 0.703 ± 0.013 0.731 ± 0.016 0.635 ± 0.113 0.631 ± 0.115 0.623 ± 0.122

Audio

Argument 0.802 ± 0.024 0.770 ± 0.246 0.766 ± 0.131 0.410 ± 0.422 0.207 ± 0.422 0.155 ± 0.279
Other 0.453 ± 0.157 0.365 ± 0.289 0.304 ± 0.132 0.575 ± 0.127 0.817 ± 0.384 0.589 ± 0.205

Wt. average 0.718 ± 0.026 0.677 ± 0.121 0.657 ± 0.079 0.488 ± 0.237 0.519 ± 0.031 0.378 ± 0.051
Macro av. 0.628 ± 0.068 0.568 ± 0.028 0.535 ± 0.037 0.492 ± 0.240 0.512 ± 0.020 0.372 ± 0.048

Multimodal
(Bi-LSTM
+Audio)

Argument 0.873 ± 0.089 0.432 ± 0.398 0.423 ± 0.429 0.751 ± 0.045 0.457 ± 0.118 0.558 ± 0.099
Other 0.357 ± 0.107 0.792 ± 0.200 0.467 ± 0.070 0.610 ± 0.039 0.841 ± 0.068 0.705 ± 0.026

Wt. average 0.748 ± 0.073 0.522 ± 0.254 0.473 ± 0.342 0.681 ± 0.022 0.649 ± 0.037 0.631 ± 0.055
Macro av. 0.615 ± 0.067 0.612 ± 0.102 0.470 ± 0.248 0.680 ± 0.022 0.649 ± 0.035 0.631 ± 0.054

Multimodal
(BERT

+Audio)

Argument 0.843 ± 0.005 0.955 ± 0.011 0.896 ± 0.006 0.714 ± 0.014 0.793 ± 0.047 0.751 ± 0.019
Other 0.745 ± 0.055 0.422 ± 0.027 0.538 ± 0.031 0.761 ± 0.045 0.673 ± 0.288 0.713 ± 0.019

Wt. average 0.820 ± 0.014 0.830 ± 0.010 0.812 ± 0.010 0.738 ± 0.021 0.734 ± 0.017 0.732 ± 0.017
Macro av. 0.794 ± 0.028 0.689 ± 0.015 0.717 ± 0.017 0.738 ± 0.021 0.733 ± 0.018 0.732 ± 0.017

Table A3: Models’ performance for 20% of the datasets. Errors indicate standard deviation after 5 replicates.
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