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Abstract

Pretraining large language models has resulted
in tremendous performance improvement for
many natural language processing (NLP) tasks.
While for non-domain specific tasks, such mod-
els can be used directly, a common strategy
to achieve better performance for specific do-
mains involves pretraining these language mod-
els over domain specific data using objectives
like Masked Language Modelling (MLM), Au-
toregressive Language Modelling, etc. While
such pretraining addresses the change in vocab-
ulary and style of language for the domain, it is
otherwise a domain agnostic approach. In this
work, we investigate the effect of incorporating
pretraining objectives that explicitly tries to ex-
ploit the domain specific language characteris-
tics in addition to such MLM based pretraining.
Particularly, we examine two distinct charac-
teristics associated with the legal domain and
propose pretraining objectives modelling these
characteristics. The proposed objectives target
improvement of token-level feature represen-
tation, as well as aim to incorporate sentence
level semantics. We demonstrate superiority
in the performance of the models pretrained
using our objectives against those trained using
domain-agnostic objectives over several legal
downstream tasks.

1 Introduction

Pre-trained language models exhibit superior per-
formance in several NLP tasks. Most of the promi-
nent language models optimized over Masked lan-
guage modelling with BERT-like (Devlin et al.,
2019; Liu et al., 2019b; He et al., 2020) archi-
tecture using large unlabelled corpus to achieve
state of the art results across many NLP tasks.
While the sentence-level tasks like paraphrase de-
tection (El Desouki and Gomaa, 2019) and senti-
ment analysis (Zhang et al., 2018) benchmarks the
capability of the model in effectively modeling the
holistic representation of the sentence(s), the token-
level tasks like named entity recognition (Li et al.,

2020) attempted to assess the quality of contex-
tualized token embeddings furnished by the mod-
els. However, direct application of these models
to domain-specific downstream tasks yields sub-
optimal performance (Lee et al., 2020), perhaps
due to change in vocabulary and style of language.

To overcome this limitation, most commonly
used approach involves pre-training a language
model over domain specific corpora. For instance,
PubMedBERT (Gu et al., 2021) and LEGAL-
BERT (Chalkidis et al., 2020) achieved state-of-
the-art results for the biomedical and legal domain
specific tasks respectively by pre-training over do-
main specific corpus using a domain agnostic objec-
tive. In this paper, we argue that the performance
of these models can be further improved by em-
ploying pre-training objectives that exploit the lan-
guage characteristics of the domain. We examine
two distinct language characteristics of the legal
domain, propose pre-training objectives and finally
demonstrate superior performance over domain-
specific NLP tasks. Legal domain departs from
the generic corpora in terms of specialized vocab-
ulary, particularly formal syntax, domain-specific
knowledge semantics, etc. to the extent that it can
be classified as a distinct "sub-language" (Tiersma,
1999; Williams, 2007), which may be addressed by
MLM based pretraining. In this paper, we study
the following additional domain characteristics and
formulate closely aligned objectives in addition to
domain agnostic objectives like MLM:

1. Templatized language: Legal documents
consist of clauses that are often derived from
reusable text fragments with placeholders.
The placeholders are substituted with appro-
priate replacements for specific documents.
We include a pre-training objective for this
characteristic by optimizing the model to dis-
tinguish the substitutions from the rest of the
text. Since, there is no labelled dataset that
provides such information, we also outline the
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process to approximately label the data-points
with placeholder spans.

2. Availability of Soft Labels: Contracts and
legally enforceable documents can be seg-
mented into clauses which are sections defin-
ing terms and conditions and important pro-
visions. Clauses can be categorized into dis-
tinct types based on the aspect they address,
which (the categorization) may sometimes be
available as a heading/title associated with the
clauses. This categorization enables us to de-
fine semantic relations between clauses. For
instance, clauses having same type are closer
in meaning as compared to different typed
clauses. This fact is instrumental in formulat-
ing an objective to obtain semantically aware
holistic representation.

We leverage these two characteristics to design a
pre-training strategy, and experimentally show that
a language model pretrained using our strategy out-
performs domain-specific language model which is
trained only on domain-agnostic objectives, such
as Masked Language Modelling.

The rest of the paper is organized as follows.
In Section 2, we discuss some prominent frame-
works that provisions domain specific pre-trained
models and survey important works in the legal
AI. In Section 3, we elucidate the details for the
aforementioned legal domain characteristics and
describe the objective formulation and dataset cura-
tion strategy. In Section 4 discusses the training. In
Section 5, we briefly describe the baseline models
used to compare the performance with our pre-
trained model for several legal domain tasks, and
discuss the results. Finally, in Section 6, we con-
clude by explaining the implications of our work
and discuss its natural extensions.

2 Related Works

2.1 Prominent domain adaptation pretraining
approaches:

Pretrained language models trained over non-
domain specific data such as transformers (Vaswani
et al., 2017), BERT (Devlin et al., 2019) and its
variants (Liu et al., 2019b; He et al., 2020) has
resulted in state-of-the-arts results for several non-
domain specific natural language processing down-
stream tasks. Owing to their success, a prominent
approach to achieve superior results in domain-
specific NLP tasks involves training these models

over domain-specific corpora. For instance, to im-
prove the performance of the models in biomedical
downstream tasks, BIOBERT (Lee et al., 2020),
Clinical BERT (Alsentzer et al., 2019), Clinical
BIOBERT (Alsentzer et al., 2019) and PubMed-
BERT (Gu et al., 2021) were pretrained over spe-
ciality corpora closely associated with the biomed-
ical domain using the MLM objective. Recently,
(Chalkidis et al., 2020) proposed LEGAL-BERT,
a language model pretrained using MLM over do-
main specific corpora, to achieve state-of-the-art
performance for several legal downstream tasks.
Most of these methods focus on choosing appropri-
ate corpora for MLM pretraining and the selection
of optimal hyperparameters in contrast to the ap-
proach taken in this work. Here, we propose a
new direction to adapt a pretrained language model
by utilizing language characteristics. In particu-
lar, by studying the language characteristics of the
legal domain, we propose pretraining objectives
that explicitly tries to learn these characteristics.
While there are other approaches that adapts the
language model to domain-specific tasks (Rietzler
et al., 2020; Han and Eisenstein, 2019; Gururan-
gan et al., 2020), our work mainly tries to address
the problem of pretraining a language model for a
particular domain.

2.2 Legal Artificial Intelligence (AI)

Legal AI refers to the application of AI/NLP
techniques to solve several tasks in the legal do-
main (Zhong et al., 2020). Due to the distinct lan-
guage characteristics of the legal domain, many le-
gal domain-specific tasks requires the expertise of
legal practitioners for solving them. Furthermore,
the complexity of the associated tasks requires a
significant time commitment even for experienced
legal professionals. Thus, this motivated the devel-
opment of legal AI to reduce the tedium in under-
standing and solving these legal tasks.

In the legal AI, task-specific methods and
datasets were proposed for the following tasks:
Legal Judgement Prediction (Aletras et al.,
2016), Legal Entity Recognition and Classifica-
tion (Cardellino et al., 2017), Legal Question An-
swering (Kim and Goebel, 2017), Automated Legal
Review (Hendrycks et al., 2021), Legal Text Classi-
fication (Chalkidis et al., 2021), etc. Instead on im-
proving task-specific solution approaches, our ob-
jective is to make improvements for several down-
stream tasks. The objective of this work in very
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similar to that of (Chalkidis et al., 2020), however,
our solution approach is very different.

3 Domain Specific Objectives

We now describe the legal domain characteristics
which we will use for formulating the objectives.
For each of the two objectives, we also describe the
associated dataset used for training. We get differ-
ent pretrained language model variants by incorpo-
rating various subsets of the following objectives
while pretraining.

The process of coming up with the right set of
domain specific language characteristics requires
significant exposure to the domain. The authors
have been investigating several legal domain nat-
ural language processing tasks, and have been in-
terviewing several practitioners for an extended
period of time. The insights are a result of reading
many legal domain documents and the interactions
with domain experts. For one to extend our ideas in
other domains, we expect them to require similar
long exposure to the domain in question and op-
portunities to interact with domain experts. While
we believe that the two characteristics identified in
this work are not unique only to the legal domain,
one will need to carefully evaluate whether the
same characteristics apply to their chosen domain
as well.

3.1 Legal Domain as a Templating Language

Contracts include clauses which often use a stan-
dardized language with some placeholders which
are substituted with appropriate values (e.g., names,
dates, amounts, locations, etc) for specific contracts
(Figure 1). These standardized fragments with
placeholders are referred to as templates (Niemeyer
and Knudsen, 2005) in software engineering par-
lance. We refer to the tokens in the template-
generated clauses that remain common across con-
tract documents as static tokens and the values
filled into the placeholders as dynamic tokens.

We propose a pre-training objective that aims
to detect the dynamic tokens/spans from text frag-
ments in the legal documents. Using this objective,
the language model can generate holistic represen-
tation for a text-fragment cognizant of the tokens
forming the dynamic part and the tokens forming
the static part. This can also result in better contex-
tualized token representation for the task of named-
entity recognition or other entity level tasks.

In these Terms the following words shall have the following 
meanings:
"Goods" means those goods, products and/or services to be 
supplied and delivered by Vendor to Purchaser as described in the 
relevant Order.
"Purchaser" The person, company, firm, partnership or such other 
legal entity that places an order for Goods with Vendor and 
includes Purchaser's divisions, subsidiaries and affiliates.
"Vendor" means Russel Metals Inc. and its divisions, subsidiaries 
and affiliates.

In these Terms the following words shall have the following 
meanings:
"Goods" means those goods, products and/or services to be 
supplied and delivered by Vendor to Purchaser as described in the 
relevant Order.
"Purchaser" The person, company, firm, partnership or such other 
legal entity that places an order for Goods with Vendor and 
includes Purchaser's divisions, subsidiaries and affiliates.
"Vendor" means AJ Forsyth and its divisions, subsidiaries and 
affiliates.

Figure 1: Clauses generated from same template: The
above example is believed to be generated from a stan-
dardized clause template with a placeholder in place of
the text in yellow highlight. Moreover the substituted
text is observed to have close correspondence with or-
ganization named-entity.

3.1.1 Dataset
One of the challenges in utilizing this characteris-
tic in the pre-training objective is the lack of any
labelled dataset with such kind of information. To
overcome this limitation, we propose a dataset cura-
tion strategy that provides data points with dynamic
spans. The corpus to be labelled was formed by
collecting all the clauses present in the LEDGAR
dataset (Tuggener et al., 2020), which consists of
over 700,000 provisions in contracts.

The data curation strategy mainly consists of
two steps: a) Grouping clauses that have very
high lexical similarity which are believed to be
generated from a single underlying template, b)
Contrasting data points in a pairwise fashion for
every group to differentiate the dynamic part from
the static using google-diff-match-patch1. Figure
3 illustrates the pipeline employed for annotating
the dataset. Note that, while the contrasting tokens
belong to the dynamic part of the underlying text
(if the grouping was correct), there is inconclusive
evidence for the rest of the tokens for considering
them as static (For instance, Fig 2). This is due
to the fact that some values can coincidentally be
same for different instances of same clause, e.g.,

1https://github.com/google/
diff-match-patch

2518

https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch


This Employment Agreement (the “Agreement”) is made as of ${data.date}, by 
and between

${data.organization} (the “Company”), and ${data.person} (“Executive”),
subject to the terms and conditions defined in this Agreement.

This Employment Agreement (the 
“Agreement”) is made as of March 7, 

2018, by and between
Rockwell Medical, Inc. (the “Company”), 

and Robert L. Chioini (“Executive”),
subject to the terms and conditions 

defined in this Agreement.

This Employment Agreement (the 
“Agreement”) is made as of July 31, 

2018, by and between
Rockwell Medical, Inc. (the “Company”), 

and Stuart Paul (“Executive”),
subject to the terms and conditions 

defined in this Agreement.

Assumed Template

Contrasting two text fragments to determine dynamic parts

Figure 2: Limitation of the contrasting step: The two
text fragments below belong to the same cluster and are
believed to be generated from the template shown in the
left. However, the process of contrasting annotates only
some of the dynamic parts (highlighted in yellow) and
misses out some (highlighted in red). Thus, the rest of
the text should not be regarded as static in its entirety.

hiring date for two individuals can be the same, and
therefore would not be marked as dynamic token
by this strategy.

3.1.2 Objective Formulation
After applying the labelling strategy explained in
the previous section, we obtain a token-wise la-
belled dataset L = {(Xi, Yi)}Mi=1. A datapoint
in L is a tuple (Xi, Yi), where Xi represents a
text-fragment as a sequence of tokens it contains
(Xi = [xik]

|Xi|
k=1) and Yi is the corresponding se-

quence of binary labels assigned to each token
in Xi in the same order (Yi = [yik]

|Yi|
k=1 where

yik ∈ {0, 1}), i.e. yik = 1 implies that xik be-
longs to the dynamic part and yik = 0 implies that
the corresponding token can belong to any part.

Given such labelled dataset, we wish to train
the language model M such that Mdyn(Xi, xik)
provides us with the likelihood of xik being dy-
namic. The subscript ‘dyn’ denotes the addition
of task-specific overhead architecture for detecting
dynamic spans. We cannot directly apply binary
cross entropy objective over the token-level predic-
tions as the negative labels in our case does not
imply that the corresponding tokens are static. To
overcome this obstacle, we use the framework of
positive-unlabelled (PU) (Peng et al., 2019) learn-
ing where all the tokens associated with a positive
label are regarded as dynamic and rest, associated
with a negative label, are regarded as unlabelled.
Under this framework, all the positively labelled
tokens are collected with their parent text-fragment
to form the set Xp = {(Xi, xi)}np

i=1 where xi rep-
resents a positively labelled token present in the
text fragment Xi. This is also repeated for the neg-

atively labelled datapoints to form the unlabelled
set Xu = {(Xi, xi)}nu

i=1. PU learning optimizes
the model parameters for the detection of dynamic
parts by minimizing the following objective:

LPU (Mdyn,Xp,Xu) =
1

nu

∑

(Xu,xu)∈Xu

l(Mdyn(Xu, xu), 0)

+
πp

np

∑

(Xp,xp)∈Xp

(l(Mdyn(Xp, xp), 1) − l(Mdyn(Xp, xp), 0))

(1)

where l is a positive-valued loss function that
penalizes the distance between its arguments and
πp ∈ [0, 1] is a hyperparameter. The above objec-
tive is derived from the following two terms: a term
that incentivizes positively labeled instances to be
classified as dynamic and a term that penalizes the
unlabeled instances based on the assumption that
the probability of being dynamic is equal to πp
Peng et al.. This implicitly assumes that the posi-
tive and unlabeled datapoints are sampled from the
same distribution and the probability of a positive
datapoint being labeled is independent of its input
features. In contrast to the binary cross entropy
objective, PU learning accounts for the possibility
that some of the elements of Xu can be dynamic.

3.2 Soft Semantic Labels for Clauses
The legal essence of many contractual documents
and agreements is formed by concatenating clauses
which are crucial for defining terms and conditions
and important provisions. These clauses can of-
ten be categorized which can be used to optimize
the model to provide semantic-aware representa-
tion scheme, and sometimes, such categorization
is available as a label/title with the clause text.
Formally, we want to train the language model
to learn a representation scheme that maps same
category clauses from the data manifold onto metri-
cally closer points in the mapped space. We believe
that by infusing the ability to generate semantic-
aware representation within model, the language
model may offer better performance on sentence-
level tasks.

3.2.1 Dataset
We used the LEDGAR Corpus (Tuggener et al.,
2020) which is a collection of labelled legal clauses
and provisions. This corpus was crawled from the
contracts present in the website of U.S. Securi-
ties and Exchange Commission (SEC)2. While this
dataset contains many clause instances with multi-
ple labels, we retain only those clauses from this

2https://www.sec.gov/
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Legal Corpus
Documents 
segmented 
into text 
fragments

Similarity 
established 
between fragments 
using Minhash-LSH

Clustering them 
by finding 
connected 
components

Pairwise contrasting 
to get the dynamic
part

Figure 3: Pipeline for dataset creation for dynamic part identification: The clauses extracted from the LEDGAR
corpus were originally obtained by segmenting legal documents into fragments. As clauses having fairly repetitive
lexical structure are believed to be generated from the same template, the fragments are clustered using Minhash-
LSH (Broder, 1997; Indyk et al., 1997), followed by finding the connected components. Finally, each pair in a
cluster is contrasted to annotate what is dynamic among them.

corpus which are associated with a single label
(roughly 83% of the dataset).

3.2.2 Objective Formulation
Given a language model M, Mrep denotes task
specific adaptation of the original language model
to generate representation for a given sentence.
We formulate our requirement as a task of met-
ric learning where the goal is to learn a function
Mrep(.) : X → Rd that maps semantically closer
input datapoints onto metrically closer points in
Rd. Here, X denotes the domain of input clauses
/ provisions. Under the triplet-loss formulation,
every instance in the training dataset is a triplet
(xa, xp, xn) where the model tries to make the dis-
tance between the representations of xa (anchor)
and xp (positive) smaller than that between xa and
xn (negative) by atleast a margin m. Mathemati-
cally, the loss function ltri is defined as follows:

ltri(xa, xp, xn) = [m+D(Mrep(xa),Mrep(xp))

−D(Mrep(xa),Mrep(xn))]+ (2)

In the above equation, D(., .) : Rd × Rd → R
denotes a metric function measuring distances in
the mapped space.

4 Training Details

We tune the parameters of our model using the algo-
rithm employed for multi-task learning (Liu et al.,
2019a). This framework optimizes the language
model over multiple tasks. The language model is

shared across different tasks by employing same
encoder with shared parameters for all the task-
specific overhead architectures. In each iteration of
mini-batch gradient descent optimization, a task is
randomly selected and corresponding task-specific
mini-batch of data is sampled to apply single step
of gradient descent using the task-specific objec-
tive. We curated the dataset for MLM pretraining
by extracting text fragments from the SEC corpus
as curated by Chalkidis et al., utilizing newline
character (\n) as the delimiter. In our ablation stud-
ies to understand the impact of various terms in the
pretraining objective on downstream performance,
we utilized a randomly selected subset of 40, 000
text fragments to quickly assess the importance of
each of the terms. Thereafter, we also evaluate
the performance of our model when a significantly
larger corpora is provided for MLM.

In this paper, the parameters of the shared lan-
guage model are initialized using the weights of
LEGAL-BERT (12-layer, 768-hidden, 12-heads,
110M parameters)3, a domain-specific language
model pre-trained using MLM. Thereafter, we in-
vestigate the performance of the model variants
listed in Table 1 by comparing against LEGAL-
BERT. We do not assess the performance of non-
domain specific models such as BERT (Devlin
et al., 2019) as the superiority of LEGAL-BERT
over BERT was demonstrated in (Chalkidis et al.,
2020) for some of the legal downstream tasks.

3Distributed under CC BY-SA 4.0

2520



Table 1: Model variants to be assessed in various legal downstream tasks (on top of LEGAL-BERT). Legal Corpus
for MLM was collected by randomly sampling 40, 000 text fragments from the SEC corpus.

Model name Description of Additional Pre-training

LB-PU Dynamic span recognition using PU
LB-BC Binary classification to identify dynamic tokens
LB-MLM MLM over legal corpus
LB-PU-MLM Multi-task training for PU and MLM over legal corpus
LB-TRI Representation learning task using triplet margin loss
LB-TRI-MLM Multi-task training for triplet margin loss and MLM over legal corpus
LB-PU-TRI Multi-task training for PU and triplet margin loss
LB-PU-TRI-MLM Multi-task training for PU, triplet margin loss and MLM over legal corpus

Table 2: Comparison between PU learning and Bi-
nary Classification for token-level tasks in terms of
F1-Scores (DPI: Dynamic Part Identification)

Model name CUAD-NER DPI

LEGAL-BERT 0.7040 0.7107
LB-PU 0.7355 0.7507
LB-BC 0.7221 0.6835

We used a 8 GPU A10G instance for training the
models. While it took 32 hours to pretrain the
model with best hyperparameter settings when
only 40,000 datapoints for MLM is used, the
model instance pretrained over the total SEC cor-
pus (Chalkidis et al., 2020) consumed 800 hours.
HuggingFace Transformers (Wolf et al., 2020) was
used for both pretraining and experimental analy-
sis.

5 Results and Discussion

We begin this section by validating the choice of
using PU learning for dynamic part detection in-
stead of binary token classification objective. In
the subsequent subsection, we describe various le-
gal downstream tasks and their associated data to
be used in comparing the performance of the mod-
els in Table 1. As our models are derived from
LEGAL-BERT, it is used as a baseline in our empir-
ical analysis and we demonstrate the improvement
of our model over it for several downstream tasks.

5.1 PU learning Versus Binary classification

5.1.1 Impact on downstream performance
In this subsection, we compare the performance
of the model additional pretrained using PU learn-
ing (LB-PU) and binary classification (LB-BC) for
named entity recognition (NER) and dynamic part
identification (DPI).

We use the NER adaptation of the Contract Un-

derstanding Atticus Dataset (CUAD) (Hendrycks
et al., 2021). CUAD labels the contracting-party
associated with each contract. This is used for
constructing a NER dataset with contracting-party
span annotations for each datapoint. This dataset
consists of 16,636 training, 2,000 validation and a
10,000 testing samples.

As the dataset curated for pretraining the lan-
guage model for dynamic part identification was
approximately labeled, we manually annotated few
text fragments by specifying the dynamic spans
using the definition in section 3.1. This manual
annotation furnished 132 training instances, 32 de-
velopment instances and 50 testing instances. The
performance was reported by computing the F1-
Score between the inferred spans and the ground
truth dynamic spans.

The results shown in Table 2 justifies the uti-
lization of PU learning objective. Our hypothesis
that training the model to identify dynamic spans
will improve its ability in recognizing named en-
tities has been validated by the improvement in
NER performance achieved through the use of the
PU learning objective. This is further validated in
the subsequent section through an examination of
the feature representations generated by the model
trained with/without PU learning. For the subse-
quent analysis, we disregard any models trained
using binary classification objective owing to the
results shown in the table. The decrease in the per-
formance from LEGAL-BERT to LB-BC for NER
and DPI stems from the fact that a subset of nega-
tively labelled tokens in some instances are labelled
as dynamic for other instances. This confuses the
model in learning correct characteristics associated
with these tokens, resulting in poor token-level rep-
resentation.
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Table 3: Performance for various legal domain task given in terms of F1-Scores for CUAD-NER and DPI tasks,
mean of F1-Scores for MULTI-EURLEX tasks for Level 1, 2 and 3, and soft F1-Score for Contract-Discovery task
(Averaged for 5 runs).

Model name
CUAD-NER DPI MULTI- Contract-

EURLEX Discovery

LEGAL-BERT 0.7040 0.7107 0.7535 0.4591
LB-MLM 0.7344 0.7098 0.7525 0.4367

LB-PU 0.7355 0.7507 0.7488 0.0394
LB-PU-MLM 0.7427 0.7509 0.7451 0.1701

LB-TRI 0.7325 0.7380 0.7566 0.4979
LB-TRI-MLM 0.7462 0.7091 0.7567 0.5051

LB-PU-TRI 0.7320 0.7454 0.7513 0.5032
LB-PU-TRI-MLM 0.7479 0.7628 0.7574 0.5119

(a) LEGAL-BERT (NMI: 0.1837) (b) LB-BC (NMI: 0.0021) (c) LB-PU (NMI: 0.3812)

Figure 4: t-SNE projections of the contextualized embeddings obtained from different representation schemes.
LB-PU visually performs the best in terms of segregating the named entities from the rest of the tokens.

5.1.2 Better feature representation for
extracting named entities

We provide a qualitative justification for PU learn-
ing leading to better representation for extracting
named entities in this subsection. In this assess-
ment, we extract 30 text sentences from the CUAD-
NER dataset that contain at least one named en-
tity within it and compute the contextualized em-
beddings for the tokens in it using LEGAL-BERT,
LB-BC and LB-PU. Thereafter, these embeddings
are mapped to two dimensional manifold using t-
SNE (Van der Maaten and Hinton, 2008) algorithm.
Note that, we compute the embeddings using dif-
ferent representation schemes without fine-tuning
on CUAD-NER to understand the impact of our
token-level objective for distinguishing named en-
tities from the rest of the tokens.

From Figure 4, we observe that the embeddings
of the named entities and other tokens are not very
well separated for LEGAL-BERT and LB-BC. On
the other hand, LB-PU leads to much better segre-

gation despite not being explicitly trained for the
task of named entity recognition. This can be at-
tributed to the observation that the dynamic part
of a legal text fragment corresponds to a named
entity most of the times. Since, LB-PU is explicitly
pretrained for the task of dynamic part detection,
it furnishes suitable representation scheme for seg-
regating named entities. While LB-BC is trained
for this task, it yields suboptimal representation
scheme as it does not consider the possibility that
some of the unlabelled tokens may be dynamic.

5.2 Results in various downstream tasks

Apart from CUAD-NER and DPI introduced in
sec 5.1.1, we consider following additional tasks to
compare the performance of different models:

1. MULTI-EURLEX (Chalkidis et al., 2021):
This dataset is meant to assess the perfor-
mance in the task of Large-Scale Multi-Label
Text Classification (LSMTC). The datapoints
in this dataset are curated from European leg-
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islative documents (EUR-LEX) and the labels
a derived from EUROVOC, a set of 4.3K Euro-
pean vocabulary labels. This dataset includes
a total of 65K datapoints with the train-test-
validation split of 55K-5K-5K respectively
and involves fine-grained categorization of the
label-set into 8 levels based on their hierarchy.
We compute the performance of the model
variants for ’level 1’ (21 labels), ’level 2’ (127
labels) and ’level 3’ (567) (but report only the
mean of these due to space constraint) as the
other levels are not publicly available.

2. Contract-Discovery (Borchmann et al.,
2020): This dataset is used to measure the
performance of a model in semantic retrieval,
where the task is to retrieve a span from a tar-
get document given a few examples (1 to 5)
of similar clauses. The dataset uses about 600
target documents and is divided into 2 splits:
development and test. Each of these splits con-
sists of 5000 datapoints. The performance is
evaluated by computing soft F1 metric (Gral-
iński et al., 2019) on the character-level in-
ferred spans, which rewards proportionally to
the extent of overlap between predicted and
ground truth character spans. To solve this
problem, we use the unsupervised method pro-
posed by the authors of this task (Borchmann
et al., 2020).

We can see from the Table 3 that the model pre-
trained using domain specific objectives achieves
better performance than LEGAL-BERT for all
the tasks. The models pretrained using only PU
(LB-PU and LB-PU-MLM) only improves the per-
formance for token-level tasks like CUAD-NER
and DPI and achieves poor performance for other
tasks. As these models only involve objectives
at the token level, they offer inferior representa-
tions at the level of sentences / text-fragments as
compared to other models which explains the poor
performance in tasks like MULTI-EURLEX and
Contract-Discovery. A similar effect is also ob-
served for LB-MLM, where the model exhibits
superior performance for some of the token-level
tasks but exhibits poor performance for sentence
level objective when compared against LEGAL-
BERT as it does not involve any objective at the
level of sentences. The models trained using
triplet objective only (LB-TRI and LB-TRI-MLM)
achieves better performance than LEGAL-BERT
for all the tasks. This justifies the inclusion of the

objective for learning semantic-aware representa-
tion scheme. We also observe that, inclusion of
MLM for the model variants almost always im-
proves the downstream performance. This indi-
cates the usefulness of having domain-agnostic ob-
jective like MLM in the overall objective. The
model pretrained using all the objectives (LB-
PU-TRI-MLM) achieves best / competitive perfor-
mance for most of the tasks. It is noteworthy that
even though the objective of PU learning has no
direct relation to tasks such as Contract-discovery
and MULTI-EURLEX, the inclusion of PU learn-
ing in combination with Triplet loss and MLM
leads to further improvement in the model’s effec-
tiveness in those tasks.

These results also emphasize the importance of
MLM apart from the domain-specific objectives.
Here, the pretraining over MLM was performed
over a dataset with about 40, 000 text fragments.
We believe that the performance of these models
can be significantly improved by including a suffi-
ciently larger dataset for MLM pretraining which
is validated in the next subsection.

5.3 Performance when the size of MLM
corpora is varied

In this section, we assess the performance of our
model trained using the three objectives (PU + TRI
+ MLM) when the number of datapoints in the
MLM corpus is varied. While the experiment per-
formed in the previous subsection comprised of
only 40,000 text fragments, this analysis assesses
the model performance when the number of text
fragments is varied from 1% to 100% of the total
SEC corpus (Chalkidis et al., 2020).

The results shown in Table 4 clearly demonstrate
that the downstream performance improves with
the number of datapoints in the MLM corpus. Note
that, the pretraining corpus for LEGAL-BERT
already comprises of the SEC corpus used in our
analysis. This fact also confirms the importance of
involving the two objectives along with MLM for
getting improved performance.

6 Conclusion

In this paper, we demonstrated a novel approach to
enhance the performance of domain-specific lan-
guage model across several specialty downstream
tasks by exploiting the language characteristics.
The objectives presented in this paper may not be
applicable to all domains, which is a limitation
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Table 4: Performance for various legal domain task given in terms of F1-Scores for CUAD-NER and DPI tasks,
mean of F1-Scores for MULTI-EURLEX tasks for Level 1, 2 and 3, and soft F1-Score for Contract-Discovery task
when the number of datapoints in the MLM corpus is varied.

Number of training Fraction of the CUAD-NER DPI MULTI- Contract-
datapoints for MLM overall SEC corpus EURLEX Discovery

40,000 5.56× 10−4 0.7479 0.7628 0.7574 0.5119
720,000 0.01 0.7483 0.7651 0.7546 0.5210

7,200,000 0.10 0.7518 0.7662 0.7547 0.5145
18,000,000 0.25 0.7457 0.7636 0.7471 0.5158
72,000,000 1.00 0.7523 0.7721 0.7577 0.5216

of our work, but the idea of formulating objec-
tives for learning domain-specific characteristics
can be applied to other specialty domains (biomed-
ical, programming languages, etc.). Future work
might involve studying other characteristics of the
legal domain and understanding their impact in
downstream performance. We justified the positive
impact of such pretraining across several down-
stream tasks by conducting extensive quantitative
analysis.

We conclude this section by enumerating the
natural extensions of this work for future:

1. In this work, we emphasized on two charac-
teristics in the legal domain. However, the
legal domain consists of several other domain-
specific characteristics. For instance, the con-
tent in a legal agreement can be structured
into different parts (preamble, recitals, list of
clauses, etc) and the impact of involving a pre-
training objective to infer the structure of a
legal document on several tasks is yet to be
understood. Thus, one line of future work may
involve exhaustive study of language charac-
teristics and understanding their influence in
downstream tasks.

2. In the future, we plan to study the applicability
of the introduced characteristics in other do-
mains, such as programming languages where
text fragments can be classified into categories
like function blocks, variable declaration, etc.
and contain both static and dynamic elements
that can be templatized. This study may
provide a thorough evaluation of the cross-
domain applicability of these characteristics,
including the assessment of their impact on
downstream performance and the ease of cu-
rating relevant data. We would like to also

motivate the researchers in applying the prin-
ciple introduced in this paper for other do-
mains (biomedical, finance, etc.). This neces-
sitates careful investigation in order to extract
domain-specific characteristics, as well as a
mechanism for training the language model to
understand these characteristics.

7 Limitations

We now discuss the limitations of our work. The
first limitation (or requirement) is need for sig-
nificant computational power. As we showed in
Section 5.3 of our paper, when the corpus size
for MLM training is increased from 0.0556% to
100% of the SEC corpus, while the performance
improved by about 1% on multiple tasks, the com-
putational requirement went up from 32 hours (on
a 8 GPU A10G instance) to 800 hours.

Secondly, we had built our model on top of a do-
main specific pre-trained language model (which
had used only MLM objective on a domain specific
corpus). In theory, since we do include MLM as
one of the objectives, we should be able to get com-
parable performance with or without domain spe-
cific pretrained language model. However, due to
significant cost involved, we did not train a model
starting from general domain language model (e.g.,
BERT or RoBERTa) to compare its performance
against model built on top of domain specific pre-
trained language model. Therefore, we cannot
make a claim if our proposed method would re-
sult in comparable performance improvement for
the domains where such pre-trained models are not
available.

Third, our method relies on identifying the do-
main specific characteristics and building objec-
tive functions suitable to exploit them. This re-
quires building domain expertise and/or collaborat-
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ing with domain experts. Since this process cannot
be automated, it requires additional cost and human
effort. Also, good automated data curation strate-
gies may or may not be feasible for other domain
specific characteristics, limiting using usefulness
for training large language models.

Finally, we have only experimented with English
language corpus. While the data curation strategy
we used should be applicable in most other lan-
guages also for legal domain, the static/dynamic to-
ken classification task particularly may depend on
grammatical rules for sentence construction, which
may not be similar in all languages.

However, we believe that despite these limita-
tions, our work points to possibility of improved
performance of language models by using domain
specific characteristics (beyond MLM based pre-
training), which should open doors for more such
explorations and significant advances in the state
of art.
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