
Findings of the Association for Computational Linguistics: EACL 2023, pages 2382–2398
May 2-6, 2023 ©2023 Association for Computational Linguistics

Transformers with Learnable Activation Functions
Haishuo Fang1 Ji-Ung Lee1 Nafise Sadat Moosavi1,2 Iryna Gurevych1

1Ubiquitous Knowledge Processing Lab (UKP Lab)
Department of Computer Science and Hessian Center for AI (hessian.AI)

Technical University of Darmstadt
www.ukp.tu-darmstadt.de

2Department of Computer Science, The University of Sheffield

Abstract
Activation functions can have a significant im-
pact on reducing the topological complexity of
input data and therefore, improving a model’s
performance. However, the choice of activa-
tion functions is seldom discussed or explored
in Transformer-based language models. As
a common practice, commonly used activa-
tion functions like Gaussian Error Linear Unit
(GELU) are chosen beforehand and then re-
main fixed from pre-training to fine-tuning. In
this paper, we investigate the impact of activa-
tion functions on Transformer-based models by
utilizing rational activation functions (RAFs).
In contrast to fixed activation functions (FAF),
RAFs are capable of learning the optimal ac-
tivation functions from data. Our experiments
show that the RAF-based Transformer model
(RAFT) achieves a better performance than its
FAF-based counterpart (FAFT). For instance,
we find that RAFT outperforms FAFT on the
GLUE benchmark by 5.71 points when using
only 100 training examples and by 2.05 points
on SQuAD with all available data. Analyzing
the shapes of the learned RAFs further unveils
that they vary across different layers and dif-
ferent tasks; opening a promising way to better
analyze and understand large, pre-trained lan-
guage models.1

1 Introduction

Activation functions introduce non-linearity and
increase neural networks’ representational capac-
ity, and therefore, play an essential role in design-
ing deep learning models (Nwankpa et al., 2018;
Sharma et al., 2020; Dubey et al., 2022). Naitzat
et al. (2020) explain the importance of activation
functions by proposing to consider data as a topol-
ogy with its own shape. They empirically show that
activation functions accelerate the data topology
transformation through different layers of a neu-
ral network to simplify its complexity and make

1Code, models, and datasplits are available on GitHub
https://github.com/UKPLab/2022-RAFT.

it linearly separable in the output space. Their ex-
periments show that choosing the right activation
function can have a significant impact on the over-
all performance.

While any activation function can be used with
Transformers (Vaswani et al., 2017), their choice
is made before pre-training and remains fixed af-
terwards. Hence, the inductive bias an activa-
tion function imposes on the model cannot be ad-
justed during pre-training or fine-tuning. As many
Transformer-based models are pre-trained on a
large amount of data, and changing the activation
function for or during fine-tuning may negatively
impact the performance2. Moreover, the simple
case of finding the optimal combination of k differ-
ent activation functions in n different feedforward
layers results in kn possible combinations and be-
comes intractable; e.g., 531,441 experiments for
a 12-layer BERT model and three different acti-
vation functions. As a result, most Transformer-
based pre-trained models adopt the GELU activa-
tion function that has been initially used for the
BERT model (Devlin et al., 2019).

To overcome the limitation of using a potentially
suboptimal activation function that remains fixed
during training, we propose to use a learnable ac-
tivation function, namely, the rational activation
function (RAF, Molina et al. 2020). The RAF is a
universal function approximator that can approxi-
mate any existing activation function. The advan-
tage of using RAFs over fixed activation functions
(FAF) such as ReLU or GELU, is that the model
can learn the optimal activation function from the
data during (pre)training without the need to con-
sider the choice of activation function as an addi-
tional dimension during hyperparameter tuning.3

2In our preliminary experiments, the performance of BERT
becomes worse on downstream tasks when the activation func-
tions are changed after pre-training.

3Liu et al. (2019a) consider different activation functions
during Neural Architecture Search (Zoph and Le, 2017), but
this becomes quickly infeasible for compute-intensive experi-

2382

www.ukp.tu-darmstadt.de
https://github.com/UKPLab/2022-RAFT

To evaluate the effectiveness of RAFs, we pre-train
two encoder-only Transformers using RAF and
GELU respectively, within an academic budget.
In our experiments, we find that:

• The RAF-based Transformer (RAFT) learns
different activation functions at different lay-
ers after pre-training with shapes that differ
from frequently used activation functions.

• During fine-tuning, RAFT outperforms its
fixed activation function counterpart (FAFT)
on the general language understanding bench-
mark (GLUE) and the SQuAD machine read-
ing comprehension dataset in various settings.

• After fine-tuning, the learned RAFs of the top
layers are more task-specific and change the
most, which are corresponding to layer be-
haviors of Transformers according to prior
work (Mosbach et al., 2020; Merchant et al.,
2020; Zhou and Srikumar, 2022). This pro-
vides new opportunities to analyze language
models with respect to their learned activation
functions at different layers for different tasks.

• RAFT boosts the performance when com-
bined with a parameter-efficient fine-tuning
approach, i.e., BitFit (Ben Zaken et al., 2022),
which improves the model performance by
3.08 points in full-data scenario.

2 Related Work

Activation functions. There exists various prede-
fined activation functions such as Sigmoid, Hyper-
bolic Tangent (Tanh), Rectified Linear Unit (ReLU,
Fukushima 1969), and Gaussian Error Linear Unit
(GELU, Hendrycks and Gimpel 2016). There are
also approaches that leverage automatic search to
obtain optimal combinations of several base acti-
vation functions in a predefined search space (Ra-
machandran et al., 2018; Manessi and Rozza, 2018;
Sütfeld et al., 2020; Bingham and Miikkulainen,
2022; Bingham et al., 2020). For instance, Ra-
machandran et al. (2018) discovered the Swish ac-
tivation function by using this method. Bingham
et al. (2020) show that further extending the search
space using evolutionary algorithms can also lead
to an improvement. Finally, several search-based
works investigate how to train a combination of a
set of activation functions to better adapt to spe-
cific tasks and architectures (Manessi and Rozza,

ments such as pre-training large language models.

2018; Sütfeld et al., 2020; Bingham and Miikku-
lainen, 2022). One substantial drawback of these
search-based methods is that they are computation-
ally expensive. Especially for pre-trained language
models where pre-training is costly, it is infeasible
to perform a hyperparameter search for selecting
the best activation function (even more so their
combination). In contrast, the flexibility of ratio-
nal activation functions (RAFs) allows them to be
trained along with the model parameters in an end-
to-end fashion (Molina et al., 2020). Therefore,
they can learn the optimized activation function
from data during training. RAFs have been suc-
cessfully used in deep reinforcement learning for
improving plasticity (Delfosse et al., 2021), cell
detection models in biology (Prangemeier et al.,
2020), and adapter architectures (Moosavi et al.,
2022).

Model Act. Funct.

BERT (Devlin et al., 2019) GELU
GPT-1 (Radford et al., 2018) GELU
RoBERTa (Liu et al., 2019b) GELU
XLNet (Yang et al., 2019) GELU
ALBERT (Lan et al., 2020) GELU
GPT-2∗ (Radford et al., 2019) GELU
Megatron-LM (Shoeybi et al., 2019) GELU
ELECTRA+ (Clark et al., 2020) GELU
T5 (Raffel et al., 2020) ReLU
T5v1.1 (Raffel et al., 2020) GeGLU
DeBERTa+ (He et al., 2021) GELU
BART (Lewis et al., 2020) GELU
GPT-3∗ (Brown et al., 2020) GELU
Jurassic∗ (Lieber et al., 2021) GELU
Gopher∗ (Rae et al., 2021) GELU
Megatron-Turing NLG∗ (Smith et al., 2022) GELU
Chinchilla∗ (Hoffmann et al., 2022) GELU
CANINE+ (Clark et al., 2022) GELU
LaMBDA (Thoppilan et al., 2022) GeGLU
OPT (Zhang et al., 2022) ReLU

Table 1: Activation functions in different NLP Trans-
former models. Models marked by ∗ do not explic-
itly state the activation function but refer to GPT-1 as
the base architecture (+ refers to BERT respectively).
GeGLU is a variant that combines GELU and GLU.

Frequently used activation functions in NLP.
Table 1 shows a list of 20 different language models
that have been introduced after BERT. As we see,
the vast majority of the works (80%) use the GELU
activation function. Moreover, many works even
do not explicitly state the used activation function
(45%). There are only a few works that investigate
the impact of activation functions on pre-trained
Transformer models. So et al. (2021) leverage au-
tomatic search methods to identify more efficient
Transformer architectures. They find that a combi-

2383

nation of squared ReLU used in the feedforward
network (FFN) layer and a convolution layer added
in self-attention can lead to a substantial boost in
performance. Shazeer (2020) replace the FFN in
the Transformer with a gated linear unit (GLU,
Dauphin et al. 2017) combined with different acti-
vation functions and find a higher performance dur-
ing pre-training as well as on downstream tasks. In
our work, we do not change the structure of FFNs
and only replace activation functions in them.

Closest to our work is the work by Moosavi
et al. (2022) who investigate the use of RAF in
adapters (Houlsby et al., 2019); i.e., lightweight
layers that are added on top of pre-trained Trans-
former layers. They propose adaptable adapters
that consist of RAFs and learnable switches to se-
lect a subset of adapter layers during training. They
show that using both RAFs and a fewer number of
adapter layers results in considerable performance
gains, especially in low-data settings. However,
only using RAF instead of ReLU does not result in
a considerable gain in their experiments. Further-
more, adapter layers are only added and updated
during fine-tuning, as a result using RAF in adapter
layers has a limited impact compared to already
applying them for pre-training.

In this work, we show that using RAF in Trans-
former layers brings additional flexibility to the
model to learn the optimized activation function
for each of its layers during training, and that this
additional flexibility benefits both pre-training and
fine-tuning steps.

3 RAFT: RAF-based Transformers

We adopt the BERT architecture (Devlin et al.,
2019) where all activation functions in feed-
forward layers Activation(W1X)W2 are replaced
with rational activation functions (illustrated in Ap-
pendix A). The equation of rational activation func-
tion F (x) is as below:

F (x) =
P (x)

Q(x)
=

∑m
j=0 ajx

j

1 + |∑n
k=0 bkx

k| (1)

Where a and b are learnable parameters, and m
and n are degrees of F (x), which decide the com-
plexity and fitting ability of rational functions. Fol-
lowing Molina et al. (2020), we use the safe PAU
formulation that further stabilizes training.

Selecting m and n. Similar to Taylor series, the
higher the degrees m and n are, the more precise

is the approximation of rational functions. How-
ever, indefinitely increasing the degrees also means
adding more complexity and increasing training
time. The challenge is to find suitable degrees
that leads to rational functions with a strong fitting
ability while keeping their complexity as low as
possible. As this is still an open question, we set
the search space of m and n to {4, 5}, and evaluate
their ability to approximate the GELU function in
the range of [-3,3]. Our results show that using
m = 5 and n = 4 perfectly fits the GELU function
with a low complexity and thus, are adopted in this
work (cf. Figure 5, Appendix B). This matches
the findings in previous work (Telgarsky, 2017;
Molina et al., 2020; Delfosse et al., 2021) as well.
So overall, each rational activation function adds
nine parameters, resulting in a total of 108 addi-
tional parameters in a 12-layer Transformer model
(less than 0.000098% of its original parameters).
The weights of F (x) can further be initialized to
approximate any existing activation functions. In
our experiments, we initialize it with weights that
approximate GELU.

4 Pre-training

To evaluate the viability of RAFT, we pre-train
two comparable Transformer models from scratch—
one using the common fixed GELU activation func-
tion (FAFT), and another one using RAFs (RAFT).

Model architecture. For our experiments, we
use a frequently considered model configuration
and train 12 Transformer encoder layers with a
hidden size of 768 and 12 attention heads (Devlin
et al., 2019; Liu et al., 2019b; Rae et al., 2021;
Zhang et al., 2022). The only difference between
RAFT and FAFT is the use of RAFs instead of
GELUs as activation functions.

Data. We use English Wikipedia as our pre-
training data.4 The dataset consists of 3.8 × 109

tokens from which we select 50k sentences con-
taining 6.4× 106 tokens as the validation data.

Pre-training objective. Following RoBERTa
(Liu et al., 2019b), we use dynamic masked lan-
guage modeling (MLM) as our learning task and
randomly mask tokens in the input sentences at
each step before feeding them into the model. We
use the same masking probabilities and mask 15%
of the tokens with an 80% chance of replacing them

4https://dumps.wikimedia.org

2384

https://dumps.wikimedia.org

Model Validation loss Validation PPL

FAFT 1.645 5.18
RAFT 1.611 5.00

Table 2: Performance of the models on the validation
set after pre-training.

with the [MASK] token, a 10% chance of replacing
them with a randomly selected different token, and
a 10% chance of not replacing them at all.

Training parameters. As our primary goal is to
validate the effectiveness of RAFs in Transformers
rather than releasing a RoBERTa-like model, we
focus on training two comparable models within a
limited training budget. Both models are optimized
using AdamW (Loshchilov and Hutter, 2019) with
β1 = 0.9, β2 = 0.98 and a weight decay of 0.01.
The learning rate lrθ is set to 7E-4 for both mod-
els while the learning rate lrRAF for the RAF co-
efficients is set to 5E-3. Both learning rates are
warmed up over the first 1% steps, then lrθ decays
linearly while lrRAF remains constant.5 The batch
size is set to 4096. Tuning hyperparameters during
pre-training is expensive, to conduct hyperparame-
ters tuning of both models with limited resources,
we follow up 24hour BERT (Izsak et al., 2021) to
pre-train the model for 23k steps equipped with
various methods to accelerate training, including
mixed-precision, sparse output prediction, fused
linear layer, and tied embeddings (Press and Wolf,
2017). Detailed parameters and results of hyperpa-
rameter tuning are provided in Appendix C. It takes
∼16 hours for RAFT and ∼12 hours for FAFT us-
ing four A100 GPUs.

Results. Table 2 shows the MLM validation
losses and validation perplexity of the best per-
forming hyperparameter configuration for RAFT
and FAFT. We observe that RAFT achieves a bit
lower perplexity than FAFT during pre-training.
The learned RAFs vary across different layers af-
ter pre-training (cf. Figure 6, Appendix E). More
analysis is conducted in Section 6.

5 Fine-tuning

We conduct experiments on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019) and SQuAD (Rajpurkar

5We find in our preliminary experiments that a constant
rational learning rate with warm up leads to better results.

et al., 2016) to see how well pre-trained RAFs can
adapt to downstream tasks. Dataset descriptions
are provided in Appendix D. We further investigate
the flexibility of the pre-trained RAFs by consid-
ering different training data sizes especially in a
low-data regime. We fine-tune RAFT in two differ-
ent settings:

• RAFTfull: We fine-tune the whole model, i.e.,
all model parameters including the RAFs.

• RAFTfixed: We fix the pre-trained RAFs and
only tune the rest of the parameters.

5.1 Evaluation on the GLUE Benchmark

We evaluate pre-trained models on GLUE bench-
mark in different data settings: (a) the full-data
scenario, and (b) two low-data scenarios when only
100 or 300 labelled examples are available.

Experimental Setup. We split 75% of the train-
ing dataset as the training set and use the remaining
25% as the development set in the full-data sce-
nario. Following previous works, we use the pro-
vided development set as the test dataset. For our
low-data scenarios, we randomly sample 100 or
300 examples with ten different random seeds and
report the average and standard deviation across
all runs. For the full-data scenario, we report the
average and standard deviation of the results across
six runs with different random seeds. We use the
same evaluation metrics as proposed in the GLUE
benchmark; more specifically, for MRPC, QQP,
and STSB, we use the average of the two corre-
sponding metrics as the final score.6

Results. Table 3 shows the performance of RAFT
and FAFT on the GLUE benchmark. We observe
that on average, RAFT achieves consistent im-
provements in all data settings. We further find that
especially in the low-data scenarios, the flexible
activation functions of RAFT substantially outper-
form their static GLUE counterparts of the FAFT
model. For 100 examples, RAFT achieves better
results in seven out of eight tasks, outperforming
FAFT by 5.31 points (RAFTfull) and 5.71 points
(RAFTfixed) on average, respectively. While the
performance gap becomes smaller as the number
of examples increases, the tendency remains the
same with an average performance gain of 0.98

6Note that the full-data scenario is computationally more
expensive to run, but also more stable as the training instances
experience less variability.

2385

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.
low-data 100 examples1

FAFT 1.88±2.27 71.02±5.61 74.88±0.23 55.19±5.96 57.57±8.32 32.86±1.50/32.92±1.46 53.34±3.24 53.14±1.67 48.07
RAFTfull 4.38±3.2 73.28±3.95 75.89±1.39 62.65±2.86 70.30±3.44 38.31±1.87/39.06±2.35 63.58±3.74 53.0±1.91 53.38

RAFTfixed 7.25±4.77 72.04±5.04 75.76±0.65 62.15±4.09 71.39±3.56 39.3±1.60/40.4±1.73 63.13±3.05 52.6±2.99 53.78
low-data 300 examples1

FAFT 13.12±5.29 77.67±3.07 79.37±1.56 66.63±1.35 76.70±1.89 43.74±2.20/45.33,2.29 69.17±2.25 55.45±2.66 58.58
RAFTfull 12.36±5.07 78.22±2.10 77.84±1.09 68.25±1.01 79.77±2.34 45.70±1.69/47.27±1.86 71.92±1.10 54.70±2.26 59.56

RAFTfixed 17.34±3.23 78.95±2.33 76.97±0.96 68.20±0.76 80.32±0.1 45.35±1.62/46.53±1.63 72.07±1.56 55.78±2.72 60.17
Full data2

FAFT 43.18±1.52 89.2±0.63 86.42±1.37 88.08±0.08 87.08±0.21 80.92±0.21/81.78±0.22 89.42±0.38 62.22±1.35 78.70
RAFTfull 45.84±1.47 89.85±0.45 87.21±0.54 88.27±0.10 86.96±0.29 80.88±0.22/81.85±0.23 89.32±0.20 64.44±2.49 79.40

RAFTfixed 45.66±1.55 90.06±0.70 86.36±1.03 88.21±0.06 86.64±0.24 81.10±0.22/82.06±0.21 89.36±0.34 63.90±2.85 79.28
1 Results are averaged over ten random seeds: 5309, 202206, 20220602, 2259, 49, 2022, 1046, 622, 320, 53
2 Results are averaged over six random seeds: 5309, 202206, 20220602, 2259, 49, 2022

Table 3: The performance of RAFT and FAFT on the GLUE benchmark across different data sizes. RAFTfull

fine-tunes all model parameters including RAFs. RAFTfixed instead fixes the RAFs pre-training.

points (RAFTfull) and 1.59 points (RAFTfixed) for
300 examples. In the full data scenario, RAFT
still outperforms FAFT by 0.7 (RAFTfull) and 0.58
(RAFTfixed) points on average.

Our experiments indicate that fixing the RAFs
is a better choice for the GLUE benchmark in the
low-data scenarios. We conjecture that one reason
for this may be that the number of instances to tune
all parameters of the model are insufficient. On
the contrary, we find that in the full-data scenario
tuning RAFs can lead to better results. The increas-
ing number of instances especially benefit RAFs
as they can better adapt to different downstream
tasks and learn better features. We provide further
analysis in Section 6.

5.2 Evaluation on SQuAD

Similar to GLUE, we evaluate models on SQuAD
v1.1 in different data settings: (a) the full-data sce-
nario, and (b) four low-data scenarios with 100,
300, 500, and 1000 training examples.

Experimental Setup. We split the official train-
ing data into separate training (75%) and develop-
ment sets (25%)7 and use the official development
set as the test data. We evaluate the results by com-
puting the F1 score over the word overlap of the
predicted answer and the gold answer. The hyper-
parameters search space is provided in Appendix C.

Results. Table 4 shows our results of RAFT
and FAFT. Compared to GLUE, that consists of
sentence-level text matching tasks, SQuAD is a
more complex task in which the model needs to
comprehend a longer text sequence to predict an
answer span. The increased task difficulty is es-
pecially reflected in the low-data scenarios, as the

7Again, we use the development set to identify the best
performing model across all epochs.

100 examples1 300 examples1 500 examples1 1000 examples1 full data2

FAFT 12.72±1.54 22.11±2.46 26.46±1.42 34.58±1.68 72.33±0.23
RAFTfull 11.81±0.95 19.49±2.01 26.68±1.91 36.69±1.56 74.45±0.47
RAFTfixed 12.19±1.08 19.00±2.68 26.27±1.39 35.98±1.81 74.38±0.25

1 Results are averaged over ten random seeds: 5309, 202206, 20220602, 2259, 49, 2022, 1046, 622, 320, 53
2 Results are averaged over six random seeds: 5309, 202206, 20220602, 2259, 49, 2022

Table 4: Results of RAFTs and FAFT on SQuAD.

Validation Loss Validation PPL.

Identity Divergent Divergent
RELU 1.626 5.08
GELU 1.611 5.00

Table 5: Different initializations of RAF.

performances of both models are below 25 points
when only 100 or 300 annotated examples are avail-
able. As a result, when there are not enough an-
notated examples available to learn the task, the
use of RAFs instead of GELU is not beneficial for
the Transformer model. However, we again see
that RAFT outperforms the FAFT model as enough
training examples become available.

In addition, we observe that tuning RAFs during
fine-tuning (RAFTfull) is more beneficial compared
to fixing RAFs (RAFTfixed) when the task is more
complex. Considering our findings on the GLUE
benchmark, we conjecture that the task difficulty
may play an additional role besides the amount
of available training data for the performance of
RAFTfull vs. RAFTfixed; however, this remains to
be investigated in future work.

6 Analysis

Impact of RAF initialization. To investigate
how initialization affects the performance of RAFT,
we train RAFT models initialized with GELU,
RELU, and the identity function. Other hyperpa-
rameters are the same as those in section 4. Table 5
shows the performance of different initialization

2386

SNLI
Trivia QA

verified-web verified-wiki

FAFT 74.22±0.19 24.62±1.48 21.01±0.75
RAFTfull 74.80±0.29 25.40±1.84 21.50±0.76

RAFTfixed 74.76±0.25 25.40±1.25 21.78±0.87

Table 6: Zero-shot performance of FAFT and RAFT.
Models evaluated on SNLI are trained on MNLI. Results
on TriviaQA are based on models trained on SQuAD.

(a) Pre-training (b) Fine-tuned on SQuAD

(c) Fine-tuned on MNLI (d) Fine-tuned on SST2

Figure 1: Rational activation functions of RAFTfull

among different layers after pre-training and fine-tuning.

methods during pre-training. As we can see, choos-
ing common activation functions such as ReLU
or GELU leads to a similar performance while us-
ing the identity function for initialization leads to
divergence.

Zero-shot generalization. To investigate if the
higher performances of RAFT vs FAFT come from
overfitting on the in-domain data, we conduct cross-
domain zero-shot experiments. We use the models
that have been fine-tuned on MNLI and SQuAD
in the full-data scenario and evaluate them on the
same tasks but for different data, namely, SNLI
(Bowman et al., 2015) and TriviaQA (Joshi et al.,
2017), respectively. MNLI and SNLI are both
datasets that aim to evaluate natural language in-
ference while SQuAD and TriviaQA contain ex-
amples for evaluating reading comprehension in
different domains. Table 6 shows the results of our
zero-shot evaluation. We observe that the increased
flexibility and adaptivity of RAFT does not nega-
tively impact its generalization capabilities. In fact,
both variants of RAFT consistently achieve better
performance than the corresponding FAFT model.

Visualizing learned RAFs. Next, we analyze
how the shapes of RAFs change after pre-training
and fine-tuning. First, we analyze the learned RAFs
in different layers of RAFT after pre-training. As
shown in Figure 1a, rational functions have differ-
ent shapes across different layers, none of which
are similar to GELU, or other commonly used ac-
tivation functions in Transformers (cf. Table 1).
This indicates that different layers may need dif-
ferent activation functions to achieve the optimal
performance. Moreover, we see that some features
like monotonicity that often are deemed to be good
for predefined activation functions are not neces-
sary, which is in line with the findings of the Swish
activation function (Ramachandran et al., 2018).

Second, we analyze how the learned RAFs
during pre-training change after fine-tuning in
RAFTfull. Figures 1b–1d show learned RAFs after
fine-tuning RAFTfull on SQuAD, MNLI and SST2
datasets. We observe that some of the learned RAFs
trained on these three tasks differ from each other
and the RAFs after pre-training. We further see
that several RAFs between both tasks have similar
shapes but different slopes across many layers.

To better understand the behavior of learned
RAFs after fine-tuning in different layers on various
tasks, we plot RAFs from the same layer together
across all tasks. Figure 2 shows the learned RAFs
in layer 1 (the bottom layer), layer 6, and layer 12
(the top layer) after pre-training and fine-tuning on
different tasks. We observe that after fine-tuning,
the RAFs in the top layer are more task-specific
and change the most, compared to those in bot-
tom layers. This is in line with prior work that
analyzed the behavior of BERT layers during fine-
tuning, which showed that higher layers exhibit
more changes compared to lower layers (Mosbach
et al., 2020; Merchant et al., 2020; Zhou and Sriku-
mar, 2022). Our results confirm this finding from
the perspective of learned activation functions. It
also demonstrates that RAFs can self-adapt to dif-
ferent layers and tasks during fine-tuning. In addi-
tion, an interesting observation is that the output
ranges of the RAFs of MNLI and QQP in the top
layer are very close to zero. The output of the FFN
layer Layernorm(FFN(x) + x) consists of two
parts: the feedforward branch FFN(x) and the skip
connection branch x. The very small output of acti-
vation functions may indicate that the FFN branch
of the top layer does not contribute much to the
final model performance on MNLI and QQP and

2387

Figure 2: Learned rational activation functions of RAFTfull in layers 1 (bottom), 6, and 12 (top) among different
tasks.

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low data 100 examples1

BitF itFAFT 1.44±2.85 63.33±9.63 68.82±1.74 55.49±3.94 46.04±24.69 32.92±1.33/32.95±1.24 51.95±3.50 52.20±2.82 45.02
BitF itfull 4.39±3.41 76.49±1.90 74.11±1.04 61.53±3.09 50.41±20.20 33.75±1.38/33.81±1.30 57.22±6.15 50.83±2.74 49.17
BitF itfixed 6.25±3.68 75.96±1.24 74.71±0.34 61.35±3.42 49.91±26.88 33.73±1.40/34.04±1.71 53.19±4.02 51.63±2.26 48.97

Full data1

BitF itFAFT 37.75±1.26 87.80±0.67 82.94±1.20 81.35±0.13 59.29±33.04 71.94±0.38/73.57±0.38 85.38±1.07 55.89±1.70 70.66
BitF itfull 38.46±1.37 88.19±0.16 86.73±1.00 81.03±0.12 85.28±0.33 70.23±0.41/72.53±0.33 80.51±10.75 60.72±1.88 73.74
BitF itfixed 39.96±1.95 88.46±0.28 84.91±5.10 81.02±0.14 85.55±0.44 71.25±0.19/73.26±0.36 77.23±14.23 60.15±0.90 73.53

1 Results are averaged over five random seeds: 5309, 202206, 20220602, 2259, 49

Table 7: Comparison between RAFT and FAFT combined with BitFit.

thus could be pruned. We leave this as future work.

RAFTfixed vs. RAFTfull. In our experiments on
GLUE and SQuAD (Tables 3 and 4), we observe
that fixing the RAFs after fine-tuning (RAFTfixed)
often achieves the best or second best performance
compared to the full-tuning model (RAFTfull) and
FAFT. Fine-tuning RAFs results in higher perfor-
mances when (a) more data is available, i.e., the
full-data scenario in GLUE, or (b) the input task is
more complex such as in SQuAD. We hypothesize
that training RAFs during fine-tuning will be more
effective when evaluated on more complex tasks
and datasets than the ones used this work.

Efficiency comparison between RAFT and
FAFT. In RAFT, RAFs are polynomial ratios and
their coefficients are learned during training, which
adds extra computation overhead. We use RAFs
library with CUDA extension to accelerate. As
shown in Table 8, RAFT is slower than FAFT dur-
ing training since RAFs need to be updated (36.8%
slower at pre-training, 14.8% slower at fine-tuning).
However, RAFT is faster when doing inference due
to the CUDA implementation (13.8% faster at pre-
training, 3.9% faster at fine-tuning).

Parameter-efficient fine-tuning with RAFTs.
In contrast to fine-tuning all parameters in a
pre-trained language model, parameter-efficient
tuning techniques that freeze the majority of

steps/second Pre-training Fine-tuning

Train Inference Train Inference
RAFT 0.38 3.3 12.54 71.05
FAFT 0.52 2.9 14.4 68.38

Table 8: Number of steps per second for training and
inference for RAFT and FAFT.

pre-trained parameters and only fine-tune a small
set can be promising alternatives (Ding et al.,
2022). One such method is BitFit (Ben Zaken
et al., 2022) which only updates the bias terms
in the Transformer model. To investigate the
effectiveness of RAFT in a parameter-efficient
fine-tuning paradigm, we fine-tune the FAFT and
RAFT models with BitFit on the GLUE bench-
mark. We use the same settings as in our previous
experiments and test RAFT and FAFT in three
configurations in the low-data 100 and full-data
scenario: (a) BitF itFAFT uses BitFit with FAFT,
(b) BitF itfull uses BitFit with RAFTfull, and (c)
BitF itfixed uses BitFit with RAFTfixed. As shown
in Table 7, RAFT-based BitFit achieves higher
performance than the FAFT on average in both
data settings: BitF itfixed achieves 3.95 points
improvements and BitF itfull gets 4.15 points
improvements in the low-data scenario while
BitF itfixed performs better with a 2.87 points
boost and BitF itfull performs better with a 3.08

2388

0.000106% 0.09%
Number of tuned parameters

40

45

50

55

60

65

70

75

80
Av

er
ag

e
m

et
ric

 o
n

G
LU

E
be

nc
hm

ar
k

Full Fine-Tuning

RAFRAFT

BitFitsub
RAFT

BitFitsub
FAFT

BitFitfull
BitFitfixed
BitFitFAFT
RAFTfull

RAFTfixed

FAFT

(a) Comparison performance in low-data 100 scenario

0.000106% 0.09%
Number of tuned parameters

40

45

50

55

60

65

70

75

80

Av
er

ag
e

m
et

ric
 o

n
G

LU
E

be
nc

hm
ar

k

Full Fine-Tuning

RAFRAFT

BitFitsub
RAFT

BitFitsub
FAFT

BitFitfull
BitFitfixed
BitFitFAFT
RAFTfull

RAFTfixed

FAFT

(b) Comparison performance in full-data scenario

Figure 3: The number of parameters vs. the perfor-
mance for fine-tuning of RAFT and FAFT.

points boost in the full-data scenario. It is worth
noting that in some tasks, the reported results have
a very large standard deviation (e.g., 33.04 for
BitF itFAFT on STSB) due to several random seed
runs not converging. In our experiments, BitFit is
not as stable as fine-tuning the whole model.

How much can we achieve by only fine-tuning
RAFs? To see to what extent the model can
learn from different tasks by only updating RAFs,
we conduct experiments to only tune RAFs on
the GLUE benchmark in low- and full-data set-
tings. We call this setup where only 1178 param-
eters of the RAFs are updated during fine-tuning,
RAFRAFT.

For comparison, we tune our models with the
BitFit setting using the same amount of parameters,

8Including RAF in the pooling layer for classification

i.e., 117.9 BitF itsubFAFT represents tuning the sub-
set of BitFit of FAFT, and BitF itsubRAFT represents
tuning the subset of BitFit of RAFT. The result is
presented in Appendix F (Table 13). To compare it
from a broader view, we plot Figure 3 based on Ta-
ble 3, Table 7 and Table 13. We observe that if only
a few annotated examples are available (100 ex-
amples), BitF itfixed and BitF itfull can achieve
better performance than full fine-tuning of FAFT.
Only fine-tuning 117 parameters (BitF itsubFAFT,
BitF itsubRAFT and RAFRAFT) —i.e., a negligible
number of parameters compared to 110M parame-
ters in FAFT—results in a comparable performance
as fine-tuning all the parameters with only a drop
of 4.21–6.68 percentage points. In the full-data
scenario, the performance of BitFit (BitF itfull,
BitF itfixed and BitF itFAFT) lags behind full
fine-tuning of both models. Only tuning RAFs
or a subset of BitFit cannot achieve comparable re-
sults as well. However, RAFRAFT outperforms
BitF itsubFAFT by 7.8% and performs better than
BitF itsubRAFT by 2.94% in this setting.

7 Conclusion and Future Work

In this work, we propose to utilize rational activa-
tion functions (RAF) in Transformers to directly
learn optimal activation functions from data dur-
ing pre-training and fine-tuning. To evaluate the
effectiveness of rational activation functions, we
pre-trained a Transformer-based language model,
namely, RAFT. RAFT achieves a lower validation
perplexity than FAFT during pre-training. Our ex-
perimental results show that RAFT performs better
than FAFT in general language understanding tasks
and reading comprehension tasks across different
data size scenarios. We further visualize and ana-
lyze rational activation functions across different
layers and tasks after pre-training and fine-tuning
and find that they can substantially vary across dif-
ferent layers and tasks. This provides us a new
way to analyze and better understand Transformer-
based language models. For instance, we can inves-
tigate whether layers with similar rational activa-
tion functions encode similar linguistic properties.
We further find that some layers exhibit a close to
zero throughput of the rational activation function
which indicates that the corresponding feedforward
layer does not contribute too much to a model’s
prediction. We consider these as our future work.

9Note that we also update the classification head in all
models and experiments.

2389

Limitations

Limited training resources. This work evaluates
the effectiveness of rational activation Transform-
ers using limited GPU resources. To provide a
fair comparison, we train and release RAF- and
GELU-based models for a reduced GPU budget;
hence, they are not comparable to publicly avail-
able large pre-trained models such as RoBERTa-
base etc. Still, a fully pre-trained RAFT could be
released once more GPU resources are available.
We furthermore note that we use GELU activation
functions and the original FFN architecture as our
baseline as it is dominantly used in existing models.

Societal impact. The main focus of this work
is the evaluation of trainable activation functions.
While our visualization of the learned activation
functions show that they exhibit substantial differ-
ences depending on the downstream task, further
analysis is necessary to better understand and in-
terpret the shapes. Moreover, it is unclear if the
additional flexibility of the models may increase
their susceptibility towards capturing biases in the
data. At the same time, we conjecture that espe-
cially susceptible models could also be used as
good indicators to detect such biases.

Acknowledgements

We thank Quentin Delfosse for his continued sup-
port and valuable advice regarding the existing im-
plementation of rational activation functions. We
further thank our anonymous reviewers and Stella
Biderman, Fengyu Cai, Nils Dycke, Haau-Sing Li,
Andreas Rücklé, Martin Tutek, Kexin Wang, and
Neha Warikoo for their fruitful discussions and
helpful feedback. This work has been funded by
the German Research Foundation (DFG) as part
of the UKP-SQuARE project (grant GU 798/29-
1), the German Federal Ministry of Education and
Research and the Hessian Ministry of Higher Ed-
ucation, Research, Science and the Arts within
their joint support of the National Research Cen-
ter for Applied Cybersecurity ATHENE and the
hessian.AI Service Center.

References
Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.

2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:

Short Papers), pages 1–9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Garrett Bingham, William Macke, and Risto Miikku-
lainen. 2020. Evolutionary optimization of deep
learning activation functions. In Proceedings of the
2020 Genetic and Evolutionary Computation Confer-
ence, GECCO ’20, page 289–296, New York, NY,
USA. Association for Computing Machinery.

Garrett Bingham and Risto Miikkulainen. 2022. Dis-
covering parametric activation functions. Neural Net-
works, 148:48–65.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 632–642. The Association for Computa-
tional Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges, Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication and Recognizing Textual Entailment, First

2390

https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.1145/3377930.3389841
https://doi.org/10.1145/3377930.3389841
https://doi.org/https://doi.org/10.1016/j.neunet.2022.01.001
https://doi.org/https://doi.org/10.1016/j.neunet.2022.01.001
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9

PASCAL Machine Learning Challenges Workshop,
MLCW 2005, Southampton, UK, April 11-13, 2005,
Revised Selected Papers, volume 3944 of Lecture
Notes in Computer Science, pages 177–190. Springer.

Yann N. Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 933–941. PMLR.

Quentin Delfosse, Patrick Schramowski, Alejandro
Molina, and Kristian Kersting. 2021. Recurrent ra-
tional networks. CoRR, abs/2102.09407.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models. CoRR, abs/2203.06904.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing, IWP@IJCNLP 2005, Jeju Island,
Korea, October 2005, 2005. Asian Federation of Nat-
ural Language Processing.

Shiv Ram Dubey, Satish Kumar Singh, and
Bidyut Baran Chaudhuri. 2022. Activation
functions in deep learning: A comprehensive survey
and benchmark. Neurocomputing, 503:92–108.

Kunihiko Fukushima. 1969. Visual feature extraction by
a multilayered network of analog threshold elements.
IEEE Trans. Syst. Sci. Cybern., 5(4):322–333.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging non-
linearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,

Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. CoRR,
abs/2203.15556.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021.
How to train BERT with an academic budget. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10644–
10652, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Principles of Knowledge Representation and Rea-
soning: Proceedings of the Thirteenth International
Conference, KR 2012, Rome, Italy, June 10-14, 2012.
AAAI Press.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
2021. Jurassic-1: Technical details and evaluation.
White Paper. AI21 Labs.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2019a. DARTS: differentiable architecture search.
In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

2391

http://proceedings.mlr.press/v70/dauphin17a.html
http://proceedings.mlr.press/v70/dauphin17a.html
http://arxiv.org/abs/2102.09407
http://arxiv.org/abs/2102.09407
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.48550/arXiv.2203.06904
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1109/TSSC.1969.300225
https://doi.org/10.1109/TSSC.1969.300225
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2021.emnlp-main.831
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4492
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://openreview.net/forum?id=S1eYHoC5FX

Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Franco Manessi and Alessandro Rozza. 2018. Learning
combinations of activation functions. In 24th Inter-
national Conference on Pattern Recognition, ICPR
2018, Beijing, China, August 20-24, 2018, pages 61–
66. IEEE Computer Society.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and
Ian Tenney. 2020. What happens to BERT embed-
dings during fine-tuning? In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 33–44,
Online. Association for Computational Linguistics.

Alejandro Molina, Patrick Schramowski, and Kristian
Kersting. 2020. Padé activation units: End-to-end
learning of flexible activation functions in deep net-
works. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Nafise Moosavi, Quentin Delfosse, Kristian Kersting,
and Iryna Gurevych. 2022. Adaptable adapters. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3742–3753, Seattle, United States. Association
for Computational Linguistics.

Marius Mosbach, Anna Khokhlova, Michael A. Hed-
derich, and Dietrich Klakow. 2020. On the interplay
between fine-tuning and sentence-level probing for
linguistic knowledge in pre-trained transformers. In
Proceedings of the Third BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP,
pages 68–82, Online. Association for Computational
Linguistics.

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim.
2020. Topology of deep neural networks. J. Mach.
Learn. Res., 21:184:1–184:40.

Chigozie Nwankpa, Winifred Ijomah, Anthony Gacha-
gan, and Stephen Marshall. 2018. Activation func-
tions: Comparison of trends in practice and research
for deep learning. CoRR, abs/1811.03378.

Tim Prangemeier, Christoph Reich, and Heinz Koeppl.
2020. Attention-based transformers for instance
segmentation of cells in microstructures. In IEEE
International Conference on Bioinformatics and
Biomedicine, BIBM 2020, Virtual Event, South Korea,
December 16-19, 2020, pages 700–707. IEEE.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of

the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pages 157–163, Valencia, Spain.
Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
CoRR, abs/2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.
2018. Searching for activation functions. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Workshop Track Proceedings. OpenRe-
view.net.

Siddharth Sharma, Simone Sharma, and Anidhya
Athaiya. 2020. Activation functions in neural net-
works. International Journal of Engineering Applied
Sciences and Technology, 04:310–316.

Noam Shazeer. 2020. GLU variants improve trans-
former. CoRR, abs/2002.05202.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR, abs/1909.08053.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, Elton Zheng, Rewon
Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia
Song, Mohammad Shoeybi, Yuxiong He, Michael
Houston, Saurabh Tiwary, and Bryan Catanzaro.
2022. Using deepspeed and megatron to train
megatron-turing NLG 530b, A large-scale genera-
tive language model. CoRR, abs/2201.11990.

2392

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/ICPR.2018.8545362
https://doi.org/10.1109/ICPR.2018.8545362
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://openreview.net/forum?id=BJlBSkHtDS
https://openreview.net/forum?id=BJlBSkHtDS
https://openreview.net/forum?id=BJlBSkHtDS
https://doi.org/10.18653/v1/2022.naacl-main.274
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
http://jmlr.org/papers/v21/20-345.html
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
https://doi.org/10.1109/BIBM49941.2020.9313305
https://doi.org/10.1109/BIBM49941.2020.9313305
https://aclanthology.org/E17-2025
https://aclanthology.org/E17-2025
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://openreview.net/forum?id=Hkuq2EkPf
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://doi.org/10.33564/IJEAST.2020.v04i12.054
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990

David R. So, Wojciech Manke, Hanxiao Liu, Zihang
Dai, Noam Shazeer, and Quoc V. Le. 2021. Search-
ing for efficient transformers for language modeling.
In Advances in Neural Information Processing Sys-
tems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 6010–6022.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1631–1642. ACL.

Leon René Sütfeld, Flemming Brieger, Holger Finger,
Sonja Füllhase, and Gordon Pipa. 2020. Adaptive
blending units: Trainable activation functions for
deep neural networks. In Intelligent Computing - Pro-
ceedings of the 2020 Computing Conference, Volume
3, volume 1230 of Advances in Intelligent Systems
and Computing, pages 37–50. Springer.

Matus Telgarsky. 2017. Neural networks and rational
functions. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages
3387–3393. PMLR.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. CoRR, abs/2201.08239.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Dongdong Zhang, and Furu Wei. 2022. Deep-
net: Scaling transformers to 1, 000 layers. CoRR,
abs/2203.00555.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 5754–5764.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
CoRR, abs/2205.01068.

Yichu Zhou and Vivek Srikumar. 2022. A closer look
at how fine-tuning changes BERT. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1046–1061, Dublin, Ireland. Association for
Computational Linguistics.

Barret Zoph and Quoc V. Le. 2017. Neural architecture
search with reinforcement learning. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

A Model Architecture

Figure 4 shows the difference part of RAFT and
FAFT.

Figure 4: Rational activation function in the feed-
forward layer (left) and the vanilla GELU counterpart
(right).

2393

https://proceedings.neurips.cc/paper/2021/hash/2f3c6a4cd8af177f6456e7e51a916ff3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2f3c6a4cd8af177f6456e7e51a916ff3-Abstract.html
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.1007/978-3-030-52243-8_4
https://doi.org/10.1007/978-3-030-52243-8_4
https://doi.org/10.1007/978-3-030-52243-8_4
http://proceedings.mlr.press/v70/telgarsky17a.html
http://proceedings.mlr.press/v70/telgarsky17a.html
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.48550/arXiv.2203.00555
https://doi.org/10.48550/arXiv.2203.00555
https://doi.org/10.1162/tacl_a_00290
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.18653/v1/2022.acl-long.75
https://doi.org/10.18653/v1/2022.acl-long.75
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

B Fitting abilities of different degrees of
Rational Functions

Figure 5 show the approximate functions of GELU
using rational functions with different degrees. As
we can see, when m = 5 and n = 4 or n = 5,
rational function fit GELU very well in the same
shape. Finally, it is important to note that rational
functions are an universal approximator in a lim-
ited range, e.g., [-5,5]. Especially for out-of-bound
inputs (i.e., values that are not guaranteed by ra-
tional functions), the output of rational functions
may result in values very different from the approx-
imated function (e.g., GELU). While pre-training a
model from scratch with RAFs does not lead to any
problem, directly replacing activation functions in
pre-trained models with RAFs only for fine-tuning
may lead to divergence due to out-of-bound inputs.

C Hyperparameters Tuning

C.1 Pre-training
In our preliminary experiments that some hyperpa-
rameter configurations can lead to instability dur-
ing training due to diverging model updates (e.g.,
for lrθ =7E-4 and batch size of 2048). To stabi-
lize the training without having to rely on a larger
warmup phase (e.g., 6% of the training steps), we
instead adopt the DeepNorm (Wang et al., 2022)
to initialize both models. DeepNorm stabilizes
training by bounding the updates and further scal-
ing the residual branches in Transformers. Using
DeepNorm makes both models, FAFT and RAFT,
achieve lower validation loss and leads to a more
stable training.

We tune the learning rate lrθ for model parame-
ters and lrRAF for RAFs, batch size, warmup steps,
and learning rate scheduler as hyperparameters for
both models separately. The hyperparameter search
space for pre-training stage is as follows:

• Learning rate lrθ for model parameters: 1E-4,
4E-4, 7E-4, 1E-3

• Learning rate lrRAF for RAFs: 1E-3, 5E-3,
1E-2

• Batch size: 2048, 4096

• Warmup ratio: 0%, 1%, 6%

Some results of hyperparameters tuning are pro-
vided in Table 9.

Table 10 shows final hyperparameters we used
for pre-training RAFT and FAFT.

lrθ lrRAF Batch Size Validation Loss

RAFT 1E-4 0.005 2048 2.217
RAFT 4E-4 0.005 2048 1.808
RAFT 7E-4 0.005 4096 1.732
RAFT 7E-4 0.005 4096 1.611
RAFT 1E-3 0.005 4096 1.638

Table 9: Part of Hyperparameters Tuning Results of
RAFT

Hyperparameters FAFT RAFT

Peak lrθ 7E-4 7E-4
Peak lrRAF n/a 5E-3

Learning rate decay linear constant
Gradient clipping 0 0

Batch size 4096 4096
Sequence length 128 128

Adam_beta1 0.9 0.9
Adam_beta2 0.98 0.98

Attention dropout 0.1 0.1
Warmup ratio 1% 1%
Training steps 23k 23k

Table 10: Hyperparameters for pre-training RAFT and
FAFT

C.2 Fine-tuning

The hyperparameters search space for GLUE dur-
ing fine-tuning stage is as follows:

• lrθ: 2E-5, 5E-5

• lrRAF: 1E-4, 5E-4, 1E-3, 5E-3

• Batch size: 32

• Weight decay: 0.1

• Number of epochs: 3, 10, 20

We further tune the learning rates and number of
training epochs for RAFT and FAFT separately
on a single random seed. For our low-data experi-
ments we fix the number of training epochs to 20
and use early stopping with a patience of 10 epochs.
For our full-data experiments, we train the large
datasets (QQP, MNLI, and QNLI) for 3 epochs and
the others for 10 epochs.

The hyperparameters search space for SQuAD
during fine-tuning is as below:

• lrθ: 2E-5, 5E-5, 1E-4

2394

(a) Approximate function with degrees m = 4 and n = 4 (b) Approximate function with degrees m = 4 and n = 5

(c) Approximate function with degrees m = 5 and n = 4
Rational Function is overlapping with GELU

(d) Approximate function with degrees m = 5 and n = 5
Rational Function is overlapping with GELU

Figure 5: Approximate Functions of GELU using rational functions

• lrRAF: 1E-4, 5E-4, 1E-3, 5E-3

• Batch size: 32

• Weight decay: 0.1

• Number of epochs: 10, 20

For our experiments, we fine-tune both models with
their best performing lrθ =1E-4 for 10 epochs in
the full-data scenario and 20 epochs in the low-data
scenario.

The hyperparameters search space for BitFit is
as below:

• Learning rate lrθ for model parameters: 5E-5,
1E-3, 5E-3, 1E-2

• Learning rate lrRAF for RAFs: 1E-3, 5E-3,
1E-2

• Batch size: 32

• Training epochs: 3, 10, 20 epochs

We use 3 training epochs for large dataset(QQP,
MNLI, QNLI), 10 epochs for other datasets and 20
epochs for low-resource scenarios. Both models
can converge in the above settings.

D Data Statistics

GLUE is a collection of nine different language
understanding tasks: CoLA (Warstadt et al., 2019),
SST2 (Socher et al., 2013), MRPC (Dolan and
Brockett, 2005), QQP 10, STSB (Cer et al., 2017),
MNLI (Williams et al., 2018), RTE (Dagan et al.,
2005), and WNLI (Levesque et al., 2012). We
exclude WNLI due to the adversarial nature of its
development set and the still unbeaten majority
vote upper bound.11

Table 11 show data statistics of GLUE bench-
mark.

10https://quoradata.quora.com/First-Quo
ra-Dataset-Release-Question-Pairs

11Cf. (12) in https://gluebenchmark.com/faq

2395

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://gluebenchmark.com/faq

Task CoLA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE

|Train| 8,551 67,349 3,668 363,846 5,749 392,702 104,743 2,490
|Dev| 1,043 872 408 40,430 1,500 9,815/9,832 5,463 277
Metric Matthews corr. acc. acc./F1 acc./F1 Person/Spearman corr. acc. acc. acc.

Table 11: Dataset statistics of the GLUE benchmark

SQuAD is a reading comprehension task where
each example consists of a question, a context,
and the respective span from the context that an-
swers the question. Table 12 show data statistics of
SQuAD.

E Learned RAFs during pre-training and
after fine-tuning

Figure 6 and Figure 7 show learned RAFs in 12
layers after pre-training and fine-tuning on different
tasks, respectively.

F Results of only tuning RAFs

Table 13 shows comparison results between only
tuning RAFs and BitFit with the same parameters
with RAFT and FAFT.

2396

|Train| |Dev| |Test|
SQuAD v1.1 66,236 21,530 10,789

Table 12: Statistics of SQuAD: the official training dataset is split into training and development sets, and the official
development dataset is used as the test data.

Figure 6: Learned RAFs of different layers after pre-training

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low data 100 examples1

BitF itsubFAFT 1.49±1.87 62.82±7.56 74.80±0.00 52.57±3.83 14.71±7.21 32.73±1.41/32.76±1.30 49.77±0.40 50.83±1.86 41.39
BitF itsubRAFT 2.45±3.58 72.34±3.41 74.67±0.68 55.61±2.35 23.99±10.41 35.32±0.67/35.66±1.05 51.08±0.71 51.70±1.85 44.75
RAFRAFT 4.33±3.02 72.91±2.82 74.47±0.88 51.92±5.03 17.27±10.60 35.24±0.61/35.69±0.92 51.12±0.48 50.47±1.63 43.71

Full data1

BitF itsubFAFT 6.61±7.08 79.52±0.52 71.32±0.22 70.48±0.66 37.33±5.70 53.33±1.13/55.30±0.75 64.04±2.03 54.88±1.42 54.76
BitF itsubRAFT 8.78±5.54 82.02±0.57 71.76±0.77 70.88±1.17 71.40±0.52 51.57±0.54/53.27±1.20 69.87±1.20 57.04±1.19 59.62
RAFRAFT 9.71±12.04 81.70±0.12 74.81±3.09 73.57±0.48 80.79±0.60 57.34±0.19/60.69±0.51 67.89±8.64 56.53±1.83 62.56

1 Results are averaged over five random seeds: 5309, 202206, 20220602, 2259, 49

Table 13: Comparison between fine-tuning RAFs and a subset of 117 BitFit parameters with RAFT and FAFT.

2397

Figure 7: Learned RAFs in 12 layers across different tasks after fine-tuning

2398

