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Abstract

Pre-training masked language models (MLMs)
with artificial data has been proven beneficial
for several natural language processing tasks
such as natural language understanding and
summarization; however, it has been less ex-
plored for neural machine translation (NMT).
A previous study revealed the benefit of trans-
fer learning for NMT in a limited setup, which
differs from MLM. In this study, we prepared
two kinds of artificial data and compared the
translation performance of NMT when pre-
trained with MLM. In addition to the random
sequences, we created artificial data mimick-
ing token frequency information from the real
world. Our results showed that pre-training the
models with artificial data by MLM improves
translation performance in low-resource situa-
tions. Additionally, we found that pre-training
on artificial data created considering token fre-
quency information facilitates improved perfor-
mance.

1 Introduction

Transfer learning is an effective method for improv-
ing the performance of various natural language
processing tasks (Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2019). This has been proven for
neural machine translation (NMT) in low-resource
situations (Zoph et al., 2016; Dabre et al., 2017;
Qi et al., 2018). General explanations attribute the
performance improvements in various downstream
tasks to the transfer of linguistic traits (e.g., fre-
quency, co-occurrence, and structure of words) in
pre-training data (Lin et al., 2019; Tenney et al.,
2019; Manning et al., 2020). Meanwhile, some
studies have focused on identifying the specific
traits in pre-training data that improve downstream
task performance by employing artificial data for
pre-training (Krishna et al., 2021; Chiang and Lee,
2022; Ri and Tsuruoka, 2022).

With regard to NMT, Aji et al. (2020) showed
that pre-training a Transformer model on random

Transformer

45 190 4 21_ _ _ _

50 304 85 6

45 190 4 2150 304 85 6

Artificial data

masking

Transformer

Transfer 
the parameters

How do you explain this progression ?

Wie erklären Sie diesen Fortschritt ?

Source data

Target data
Fine-tuning on parallel dataMASS pre-training with artificial data

Figure 1: Experimental flow. We pre-train a Trans-
former model on the artificial dataset with the MASS
objective, initialize the weights of the NMT model with
the pre-trained one, and fine-tune it on parallel data.

sequences (see §2.2) brings better translation per-
formance in low-resource situations. Their pre-
training tasks included 1) autoencoding: translat-
ing one token into the same, and 2) substitution:
translating one token into another; however, their
solutions were uncommon for pre-training NMT
models. Thus, the improvement of the translation
performance when performing pre-training through
the masked sequence-to-sequence model (Song
et al., 2019; Lewis et al., 2020; Raffel et al., 2020)
with artificial data was not addressed.

In this work, we use masked language model-
ing for an encoder–decoder model called MAsked
Sequence-to-Sequence pre-training (MASS; Song
et al., 2019) as the pre-training task and inves-
tigate the translation performance of the NMT
model pre-trained on artificial data in simulated
(English→German) and genuine (English→Irish)
low-resource situations (Figure 1). Additionally,
other than random sequences, we create artificial
data containing token frequency information from
the real world and examine whether injecting this
information into pre-training data affects transla-
tion performance. We compare the performance
when pre-trained on each dataset with the MASS
objective. Furthermore, we perform ablation stud-
ies to investigate how each part of the network af-
fects the translation performance when pre-trained
on artificial data by transferring or freezing some
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parameters of the pre-trained model.
Our findings can be summarized as follows:

• Both in simulated and genuine low-resource
situations, MASS pre-training with artificial
data improves translation performance com-
pared to the model without pre-training.

• Injecting token frequency information into ar-
tificial data further improves translation per-
formance.

• Embeddings pre-trained on the artificial
dataset mimicking token frequency informa-
tion obtain useful representations for transla-
tion performance.

2 Pre-training Data

2.1 Real-world data

In this study, real-world data includes natural lan-
guage data and natural language data undergoing
some operations (e.g., token shuffling). The sen-
tence examples for each pre-training dataset are in
the Appendix (Table 3).

English We use the WMT News Crawl dataset of
2007, and its first 1M sentences for pre-training1.
English is the source language in both low-resource
situations.

English shuf We shuffle subwords from the “En-
glish” dataset throughout the corpus,2 preserving
sentence lengths. The generated sentences do
not contain information about the structure or co-
occurrence of tokens in a sentence. However, at
the corpus level, the frequency information of the
tokens is preserved.

German To examine the performance when pre-
trained on the target language, we employ the Ger-
man dataset, which is the target language in a simu-
lated low-resource situation.3 As with the “English”
dataset, we use the WMT News Crawl dataset of
2007, and its first 1M sentences for pre-training.

1https://www.statmt.org/wmt14/
translation-task.html

2Although we shuffled the tokens after subword segmen-
tation in this work, we leave shuffling before subword segmen-
tation, which preserves the order of subwords in the word unit,
for future work.

3As pre-training on the target language was less effective
in translation performance than on the source language in a
simulated low-resource situation, we excluded the experiments
when pre-trained on Irish, which is the target language in a
genuine low-resource situation.

2.2 Artificial data

All of the artificial data used in this study con-
sists of integer tokens. No preprocesses, such
as subword segmentation, are applied to artifi-
cial data. The vocabulary of each pre-training
dataset contains only integers ranging from 0 to
(vocabulary size for the downstream task − 1).
The number of sentences is 1M, and sentence
lengths are the same as in the “English” dataset.

Random Integers are sampled independently
from a uniform distribution to form sentences. This
dataset contains no linguistic traits.4

Zipf Each integer is sampled independently from
the Zipfian distribution5:

f(k; s,N) =
1/ks

∑N
n=1(1/n

s)
(1)

where N is the vocabulary size, k is the frequency
rank of the token, and s is the exponent value that
characterizes the distribution. Here, we set s as 1.0,
approximately consistent with the rank–frequency
distribution in human-generated languages (Zipf,
1949). Unlike the “Random” dataset, this dataset
contains token frequency information (linguistic
trait), but no other traits.

3 Experimental Setup

Simulated low-resource situation We use 30k
and 100k paired sentences randomly sampled
from WMT14 English→German1 (Europarl v7,
Common Crawl, and News Commentary; ap-
proximately 4.5M sentences in total) to compare
how pre-training with artificial data affects trans-
lation performance on different sizes. We use
newstest2013 of WMT as the validation set and
newstest2016 as the test set. We calculate case-
sensitive BLEU using SacreBLEU6,7 (Post, 2018)
for evaluation.

Genuine low-resource situation We use
English→Irish data in the COVID-19 domain
from LoResMT21 (Ortega et al., 2021). The
numbers of examples in the training/validation/test
sets are 8,112/502/500, respectively. We report

4Sentence length may be considered a linguistic trait;
however, we discarded it in this work.

5A smaller integer is assigned a larger probability.
6https://github.com/mjpost/sacrebleu
7Signature: BLEU+case.mixed+lang.en-de+numrefs.1

+smooth.exp+test.{wmt13,wmt16}+tok.13a+version.1.5.1
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En→De En→Ga
Data size = 30k Data size = 100k

Pre-training data valid test valid test valid test

N/A (baseline) 4.4± 0.65 4.2± 0.95 16.3± 0.31 20.1± 0.51 4.4± 0.32 8.4± 0.60

Real-world data
English 11.4 ± 0.12 14.2 ± 0.15 17.0 ± 0.10 21.6 ± 0.17 8.5 ± 0.83 14.1 ± 0.72
German 11.1± 0.40 13.3± 0.68 16.6± 0.23 20.8± 0.21 N/A N/A
English shuf 11.1± 0.00 13.5± 0.12 15.7± 0.15 19.6± 0.23 4.7± 0.80 11.5± 0.64

Artificial data
Random 10.6± 0.10 13.0± 0.10 16.0± 0.00 19.9± 0.17 6.5± 0.64 10.6± 1.00
Zipf 10.7± 0.15 13.5± 0.10 15.7± 0.15 19.6± 0.21 8.0± 0.53 12.8± 0.40

Table 1: BLEU scores of English→German (En→De) and English→Irish (En→Ga) translation models for each
pre-training dataset. We report the mean and standard deviation of three runs.

case-insensitive BLEU8 for evaluation.

The preprocessing and training settings for both
situations are in the Appendix.

Vocabulary assignment The parallel data con-
sists of natural language tokens, whereas the ar-
tificial data contains only integer tokens. Conse-
quently, the vocabularies learned from artificial
and parallel data exhibit no overlap, which is a bot-
tleneck in transferring the embedding layers. To
solve this issue, we adopt frequency assignment
(Aji et al., 2020), which sorts integer tokens and
natural language tokens based on their frequency in
each training dataset, respectively, and assigns the
integer token to the natural language token having
the same frequency rank. For the vocabulary used
in pre-training with real-world data, we use the one
created from parallel data.

4 Results

4.1 Simulated low-resource situation
Table 1 shows the English→German translation
performance for the 30k and 100k parallel dataset
sizes. For the sake of simplicity, we refer to the
model without pre-training as the baseline, and the
group comprising “English shuf”, “Random” and
“Zipf” datasets as non-natural language.

Data size: 30k All pre-trained models outper-
form the baseline. However, the models pre-trained
with the “German” dataset and non-natural lan-
guages are inferior to the “English” model. Al-
though the “German” model is pre-trained on a nat-
ural language, it performs as well as the “English
shuf” model. The “English shuf” and “Zipf” mod-
els gain comparable performance on the test set,

8Signature: BLEU+case.lc+lang.en-ga+numrefs.1
+smooth.exp+tok.13a+version.1.5.1

and both outperform the “Random” model. This
indicates that token frequency information in pre-
training data contributes to improved performance.
Translation examples are in the Appendix (Table
5).

Data size: 100k “English” and “German” mod-
els outperform the baseline; the other models de-
grade from the baseline performance. In contrast to
the case of the 30k-sized dataset, where token fre-
quency information contributes to the performance
gain, the scores of the models pre-trained on the
non-natural languages are all comparable.

4.2 Genuine low-resource situation

From Table 1, all pre-trained models outperform
the baseline, and the “English” model achieves
the highest score. As both the “English shuf” and
“Zipf” models outperform the “Random” model on
the test set, we conclude that token frequency infor-
mation in pre-training data is advantageous when
the parallel data size is quite small, considering
the results with a data size of 30k in the simulated
low-resource situation.

5 Analysis

We investigate which parts of the NMT model pre-
trained on artificial data contribute to improved
performance and verify whether the effect of each
part on translation performance differs from the
case where pre-trained on real-world data.

Specifically, we divide the model parameters into
four components: embeddings (emb), encoders
(enc), cross-attentions (x-attn), and decoders ex-
cept for cross-attentions (dec), and perform two
ablation studies. Firstly, we transfer a part of the
components from a pre-trained model and fine-
tune the model (Table 2a). This is done to iden-
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Components Pre-training data

Row emb enc x-attn dec English English shuf Random Zipf

1 4.2± 0.95 4.2± 0.95 4.2± 0.95 4.2± 0.95
2 ✓ 6.2± 0.64 5.6± 0.20 4.9± 0.26 5.8± 0.15
3 ✓ ✓ ✓ 11.5± 0.25 12.7± 0.12 12.7± 0.23 12.7± 0.17
4 ✓ ✓ ✓ ✓ 14.2± 0.15 13.5± 0.12 13.0± 0.10 13.5± 0.10

(a) When transferring only some components from each pre-trained model. “✓” denotes that the corresponding component is
transferred. The full version is in the Appendix (Table 6).

Components Pre-training data

Row emb enc x-attn dec English English shuf Random Zipf

1 14.2± 0.15 13.5± 0.12 13.0± 0.10 13.5± 0.10
2 × 10.7± 0.15 11.7± 0.30 12.2± 0.06 11.6± 0.10
3 × 12.5± 0.32 11.2± 0.35 10.7± 0.47 11.5± 0.10

(b) When freezing each component of the fully transferred model. “×” denotes that the corresponding component is frozen. The
full version is in the Appendix (Table 7).

Table 2: BLEU scores on the test set of English→German translation models in two ablation studies.

(a) English (b) English shuf (c) Random (d) Zipf

Figure 2: Rank–frequency distribution of token n-grams (n = 1, 2, 3, 4) in each pre-training dataset.

tify whether the information from each component
obtained in pre-training encourages better train-
ing in the fine-tuning step. Secondly, we trans-
fer all components and freeze one specific compo-
nent during fine-tuning (Table 2b). This is done
to identify whether each component’s information
obtained in pre-training is sufficient to perform the
translation task. We conducted experiments on
English→German pair with a parallel data size of
30k. For the pre-training datasets, we employed
those except for the “German” dataset, as the per-
formance achieved when pre-trained on this dataset
was inferior to that when pre-trained on the “En-
glish” dataset.

Token frequency information imparts embed-
dings with beneficial information for transla-
tion From Table 2a, it can be seen that when
pre-training with the “English” dataset, transfer-
ring emb improves performance (row 2). Similarly,
even when pre-training with the “English shuf” and
“Zipf” datasets, we observe that transferring emb
contributes to improved performance, although to-
kens in these datasets are independent of each other.

On the other hand, when pre-training with the “Ran-
dom” dataset, the performance gains by transfer-
ring emb are negligible (rows 3 and 4).

Both “English shuf” and “Zipf” datasets contain
token frequency information from the real world;
that is, the distribution of token frequency follows
Zipf’s law. This brings about multiple occurrences
of the same n-gram to a certain extent, even when
the tokens in pre-training data are shuffled (Tanaka-
Ishii, 2021). Figure 2 shows the rank–frequency
distribution of n-grams (n = 1, 2, 3, 4) in each pre-
training dataset.9 Even though tokens are sampled
independently to form a sequence for the “English
shuf” and “Zipf” datasets, we can observe a power
trend in the frequency of n-grams at n = 2, 3, 4.
Therefore, we consider that the presence of multi-
ple instances of the same n-gram, which results in
the emergence of local contexts within a sentence,
and embeddings pre-trained on this dataset obtain
beneficial information for translation performance.

9After subword segmentation, we drew the rank–
frequency distribution of the “English” dataset. The sharp
decline in the curve at n = 1 (Figure 2a) is due to the subword
segmentation, where the number of merge operations is 8,000.
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Encoders pre-trained on artificial data obtain
enhanced representations to understand the in-
puts From Table 2b, we can observe that the su-
periority tendency in scores among the pre-training
dataset is reversed between the cases in freezing
enc (row 2) and dec (row 3). The score tendency
when freezing enc is “Random” > “English shuf”
≈ “Zipf” > “English”, while for when freezing dec,
we observe “English” > “English shuf” ≈ “Zipf”
> “Random”.

We attribute this tendency to the mechanism of
the MASS pre-training depending on data prop-
erty. When pre-training with the “English” dataset,
the dec predicts a masked span of an English text
that contains linguistic traits like structure, which
makes the dec’s prediction easier. Therefore, the
dec can make predictions without requiring much
information from the enc, which makes the enc
understand the input sequence moderately. This ex-
plains why the best score is achieved when freezing
dec and the worst score is achieved when freezing
enc compared to other datasets. However, when
pre-training with other datasets in which the tokens
in a sequence are independent of each other, it is
challenging for the dec to predict a masked span au-
toregressively. This incentivizes the dec to extract
beneficial information for predictions from the enc;
that is, the dec relies more on enc’s information.
This encourages the enc to understand the input se-
quence more, and transferring enc enhanced to cap-
ture the input meaning results in higher translation
performance. This consideration is consistent with
the assertion of Sánchez-Cartagena et al. (2021).

6 Conclusion

In this work, we chose MASS for the pre-
training task and explored the effects on transla-
tion performance in low-resource situations when
pre-training the NMT model on artificial data.
Both in simulated (English→German) and gen-
uine (English→Irish) low-resource situations, pre-
training with artificial data improved the perfor-
mance, and further improvements could be ob-
tained by injecting token frequency information
when the parallel data size was very small. Through
ablation studies, we found that token frequency in-
formation generates contexts within a dataset, and
pre-training on such datasets enables embeddings
to obtain beneficial information for translation per-
formance. In addition, pre-training on artificial
datasets in which tokens are independent of each

other enhances the capability of encoders to un-
derstand inputs, resulting in improved translation
performance.

Limitations

Natural language The languages we used for
parallel data (English, German, and Irish) are alpha-
betical. This aspect affects the learning behavior of
a translation model, because we jointly learn BPE
on both the source and target languages and share
all the embedding parameters during pre-training
and fine-tuning. Therefore, it is unclear whether the
MASS pre-training with artificial data contributes
to the gains in translation performance when us-
ing non-alphabetic languages such as Japanese and
Chinese as the source or target languages.

Artificial data The tokens in artificial data
we used in this study are independent of each
other; they do not possess linguistic traits like co-
occurrence and structure. Ri and Tsuruoka (2022)
showed that a Transformer-based causal language
model trained on artificial data containing informa-
tion of co-occurrence and structure between tokens
results in lower perplexity than the model trained
on artificial data without such information. The
model pre-trained on artificial data that contains
linguistic information, such as co-occurrence and
structure, may behave similarly to that pre-trained
on the “English” dataset.

The contents of artificial datasets change depend-
ing on the seed value; however, we created each
dataset with one seed in this work; we addition-
ally conducted pre-training once on each dataset.
Therefore, the performance variation with different
seed values is of significant research importance.
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A Appendix

A.1 Detailed experimental setup
Preprocessing settings In a simulated low-
resource situation, we normalized punctuations
and tokenized the text with Moses10 (Koehn et al.,
2007) scripts, and subworded the output with BPE
(Sennrich et al., 2016) jointly learned on parallel
data. The vocabulary size of BPE was 8,000 for
both 30k and 100k sizes.

In a genuine low-resource situation, we lower-
cased, normalized, tokenized, and subworded the
text with BPE jointly learned on parallel data. The
vocabulary size of BPE was 8,000.

Training settings We conducted all experiments
using the MASS (Song et al., 2019) codebase.11

For the training procedure, we pre-trained the
model with the MASS objective, initialized the
NMT model with the weights of the pre-trained
model, and fine-tuned it on parallel data (Figure
1). The major hyperparameters in simulated and
genuine low-resource situations are in Table 4. The
number of pre-training updates was 100k. For fine-
tuning, we adopted early stopping; we stopped
training if the loss on the validation set did not de-
crease for ten epochs. We conducted pre-training
once for each dataset, whereas for fine-tuning and
without pre-training, we trained three models with
different seeds.

A.2 Evaluation with other metrics
We evaluated translation performance with chrF
(Popović, 2015) and COMET (Rei et al., 2020). For
chrF, we used SacreBLEU to calculate scores.12

For COMET, we selected wmt22-comet-da as an
evaluation model to measure scores.13 In a genuine
low-resource situation, we performed evaluations
on lowercased texts with both metrics. Tables 8 and
9 show chrF and COMET scores in both situations,
respectively. Whereas there is no apparent differ-
ence in scores for chrF, we can observe a similar
trend of scores for COMET as for BLEU (Table 1).

A.3 Comparison to other pre-training
methods

Following Aji et al.’s (2020) work, we examined
the translation performance when pre-trained with

10https://github.com/moses-smt/mosesdecoder
11https://github.com/microsoft/MASS
12Signature: chrF2+lang.en-de+numchars.6+space.false

+test.{wmt13,wmt16}+version.1.5.1
13https://github.com/Unbabel/COMET

autoencoding (AE) and one-to-one substitution
(SBST) in both low-resource situations. Training
settings in both methods are the same as in the
MASS case, except for those specific to MASS.
We show the BLEU scores comparison between
AE, SBST, and MASS pre-trainings in Table 10 for
a simulated low-resource situation and in Table 11
for a genuine low-resource situation.
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Pre-training data Sentence

Real-world data
English In that time he had not thought once about new vision .
German Ich weiß nicht , wie gut er einmal werden kann .
English shuf name the p@@ from N@@ ding ia &apos; w@@ and ordin@@ Ad@@
Artificial data
Random 8246 1658 3000 1199 7351 8414 2680 3917 7361 4130 2285 1561
Zipf 5 415 31 66 6 237 330 5 258 27 186 71

Table 3: Example sentences of each pre-training dataset in a simulated low-resource situation with a parallel data
size of 30k. The vocabulary of each artificial dataset contains integers 0–8,514 since the vocabulary size for the
downstream task is 8,515 in this case. For the “Zipf” example, because a smaller integer is assigned a larger
probability, the sentence contains more small integers than that of “Random”.

Simulated low-resource Genuine low-resource

Parameter w/o PT PT FT w/o PT PT FT

encoder layers 6 4
decoder layers 6 4
hidden size 512 256
feed-forward size 2,048 2,048
attention heads 8 8
learning rate 5e-4 1e-4 1e-4 1e-4 1e-4 1e-4
dropout 0.3 0.1 0.3 0.3 0.1 0.3
word mask N/A 0.5 N/A N/A 0.5 N/A
warmup steps 4,000 2,000 4,000 2,000
batch size 4,096 × 8 tokens 4,096 × 8 tokens
beam size 4 4

Table 4: Hyperparameters used in simulated (English→German) and real (English→Irish) low-resource situations.
“word mask” is the ratio that controls the masking length of an input sequence in MASS pre-training. “PT” denotes
pre-training and “FT” denotes fine-tuning.

Example 1
Source But it’s a different story among the American public overall.
Reference Aber es ist eine andere Geschichte in der amerikanischen Öffentlichkeit insgesamt.
Pre-training data
N/A Aber es handelt sich um eine andere Seite der amerikanischen Öffentlichkeit.
English Aber es ist eine andere Geschichte unter der amerikanischen Öffentlichkeit.
German Aber es handelt sich um eine andere Story zwischen der amerikanischen Öffentlichkeit.
English shuf Aber es ist eine andere Geschichte der amerikanischen Öffentlichkeit.
Random Aber es handelt sich um eine andere Geschichte der amerikanischen Öffentlichkeit.
Zipf Aber es ist eine andere Geschichte unter der amerikanischen Öffentlichkeit.

Example 2
Source Here are the different ways to send in your contributions:
Reference Hier sind die verschiedenen Möglichkeiten, Ihre Beiträge zu senden:
Pre-training data
N/A Hier finden Sie verschiedene Beiträge in Ihren Beiträge.
English Hier sind die unterschiedlichen Möglichkeiten, Ihre Beiträge zu stellen:
German Hier gibt es die unterschiedlichen Möglichkeiten, in Ihren Beiträge hinzuzufügen:
English shuf Hier sind die verschiedenen Möglichkeiten, Ihre Beiträge zu senden:
Random Hier finden Sie die verschiedenen Möglichkeiten, sich in Ihrem Beiträge zu senden:
Zipf Hier sind die unterschiedlichen Möglichkeiten, um Ihre Beiträge zu senden:

Table 5: English→German translation examples on the test set for each pre-training dataset with the parallel data
size of 30k.
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Components Pre-training data

Row emb enc x-attn dec English English shuf Random Zipf

1 4.2± 0.95 4.2± 0.95 4.2± 0.95 4.2± 0.95
2 ✓ 8.0± 0.49 8.3± 0.49 9.9± 0.21 8.7± 0.21
3 ✓ 0.8± 0.00 5.8± 0.36 5.7± 0.26 5.3± 0.31
4 ✓ 3.8± 0.00 5.9± 0.12 5.8± 0.06 5.5± 0.21
5 ✓ ✓ 10.3± 0.31 10.6± 0.25 11.8± 0.26 11.3± 0.15
6 ✓ ✓ 8.3± 0.31 10.6± 0.35 11.1± 0.30 10.3± 0.30
7 ✓ ✓ 5.5± 1.42 8.5± 0.20 8.0± 0.36 8.5± 0.42
8 ✓ ✓ ✓ 11.5± 0.25 12.7± 0.12 12.7± 0.23 12.7± 0.17
9 ✓ 6.2± 0.64 5.6± 0.20 4.9± 0.26 5.8± 0.15

10 ✓ ✓ 12.2± 0.15 10.6± 0.10 9.8± 0.10 10.8± 0.06
11 ✓ ✓ 7.7± 1.70 7.5± 0.06 7.1± 0.17 7.9± 0.20
12 ✓ ✓ 5.4± 0.57 7.6± 0.20 6.4± 0.17 8.6± 0.32
13 ✓ ✓ ✓ 14.0± 0.15 12.2± 0.10 12.4± 0.31 12.2± 0.42
14 ✓ ✓ ✓ 11.7± 0.26 11.9± 0.45 11.3± 0.35 11.8± 0.26
15 ✓ ✓ ✓ 9.2± 0.32 10.0± 0.40 8.9± 0.12 11.3± 0.12
16 ✓ ✓ ✓ ✓ 14.2± 0.15 13.5± 0.12 13.0± 0.10 13.5± 0.10

Table 6: BLEU scores of English→German translation models when transferring only some components from each
pre-trained model. The parallel data size is 30k, and the evaluation was performed on the test set. We report the
mean and standard deviation of three runs. “✓” denotes that the corresponding component is transferred.

Components Pre-training data

Row emb enc x-attn dec English English shuf Random Zipf

1 14.2± 0.15 13.5± 0.12 13.0± 0.10 13.5± 0.10
2 × 5.5± 0.06 10.3± 0.17 10.7± 0.10 10.8± 0.47
3 × 10.7± 0.15 11.7± 0.30 12.2± 0.06 11.6± 0.10
4 × 12.8± 0.23 12.5± 0.15 12.1± 0.10 12.7± 0.25
5 × 12.5± 0.32 11.2± 0.35 10.7± 0.47 11.5± 0.10

Table 7: BLEU scores of English→German translation models when freezing each component of the fully transferred
model. The parallel data size is 30k, and we performed the evaluation on the test set. We report the mean and
standard deviation of three runs. “×” denotes that the corresponding component is frozen.

En→De En→Ga
Data size = 30k Data size = 100k

Pre-training data valid test valid test valid test

N/A (baseline) 0.29± 0.02 0.28± 0.02 0.45± 0.01 0.49± 0.01 0.28± 0.01 0.33± 0.01

Real-world data
English 0.40 ± 0.00 0.43 ± 0.00 0.46 ± 0.00 0.50 ± 0.00 0.36± 0.02 0.39 ± 0.02
German 0.39± 0.01 0.41± 0.01 0.46 ± 0.01 0.49± 0.00 N/A N/A
English shuf 0.40 ± 0.00 0.43 ± 0.00 0.45± 0.00 0.49± 0.00 0.31± 0.02 0.37± 0.01

Artificial data
Random 0.40 ± 0.00 0.43 ± 0.00 0.45± 0.01 0.49± 0.01 0.32± 0.02 0.35± 0.02
Zipf 0.40 ± 0.00 0.43 ± 0.00 0.45± 0.00 0.49± 0.00 0.37 ± 0.02 0.39 ± 0.01

Table 8: chrF scores of English→German (En→De) and English→Irish (En→Ga) translation models for each
pre-training dataset. For En→Ga, evaluation is conducted on lowercased texts. We report the mean and standard
deviation of three runs.
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En→De En→Ga
Data size = 30k Data size = 100k

Pre-training data valid test valid test valid test

N/A (baseline) −1.31± 0.07 −1.39± 0.07 −0.23± 0.02 −0.25± 0.03 −1.03± 0.03 −0.76± 0.06

Real-world data
English −0.71 ± 0.01 −0.73 ± 0.02 −0.18 ± 0.01 −0.18 ± 0.01 −0.75 ± 0.04 −0.44 ± 0.06
German −0.73± 0.02 −0.74± 0.03 −0.23± 0.02 −0.24± 0.02 N/A N/A
English shuf −0.77± 0.01 −0.80± 0.01 −0.29± 0.03 −0.31± 0.03 −0.97± 0.04 −0.67± 0.05

Artificial data
Random −0.81± 0.01 −0.84± 0.01 −0.29± 0.01 −0.32± 0.02 −1.02± 0.06 −0.81± 0.06
Zipf −0.77± 0.00 −0.81± 0.00 −0.29± 0.02 −0.31± 0.02 −0.86± 0.05 −0.61± 0.06

Table 9: COMET scores of English→German (En→De) and English→Irish (En→Ga) translation models for each
pre-training dataset. For En→Ga, evaluation is conducted on lowercased texts. We report the mean and standard
deviation of three runs.

En→De
Data size = 30k Data size = 100k

Pre-training data AE SBST MASS AE SBST MASS

N/A (baseline) 4.2± 0.95 4.2± 0.95 4.2± 0.95 20.1 ± 0.51 20.1 ± 0.51 20.1± 0.51

Real-world data
English 13.7 ± 0.15 13.3 ± 0.06 14.2 ± 0.15 19.6± 0.21 19.0± 0.17 21.6 ± 0.17
German 13.6± 0.00 12.8± 0.06 13.3± 0.68 19.1± 0.21 18.8± 0.06 20.8± 0.21
English shuf 13.6± 0.12 12.8± 0.26 13.5± 0.12 19.4± 0.12 19.0± 0.29 19.6± 0.23

Artificial data
Random 13.2± 0.20 10.7± 0.31 13.0± 0.10 19.0± 0.12 19.6± 0.10 19.9± 0.17
Zipf 13.3± 0.10 10.3± 0.26 13.5± 0.10 19.1± 0.17 18.4± 0.06 19.6± 0.21

Table 10: Comparison of BLEU scores for English→German (En→De) translation models by pre-training objectives.
“AE” denotes autoencoding, and “SBST” denotes one-to-one substitution. We report the mean and standard deviation
of three runs on the test set.

En→Ga

Pre-training data AE SBST MASS

N/A (baseline) 8.4± 0.60 8.4± 0.60 8.4± 0.60

Real-world data
English 10.0 ± 0.01 8.4± 0.91 14.1 ± 0.72
English shuf 8.8± 1.25 7.8± 0.42 11.5± 0.64

Artificial data
Random 6.9± 1.08 7.1± 0.81 10.6± 1.00
Zipf 8.7± 1.40 9.0 ± 0.32 12.8± 0.40

Table 11: Comparison of BLEU scores for English→Irish (En→Ga) translation models by pre-training objectives.
“AE” denotes autoencoding, and “SBST” denotes one-to-one substitution. We report the mean and standard deviation
of three runs on the test set.
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