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Abstract

Explanation prompts ask language models to
not only assign a label to a given input, such
as entailment or contradiction in natural lan-
guage inference (NLI) tasks, but also to gener-
ate a free-text explanation that supports this la-
bel. While explanation prompts originally intro-
duced aiming to improve model interpretabil-
ity, here we show that they also improve ro-
bustness to superficial cues. Compared to
prompting for labels only, explanation prompt-
ing shows stronger performance on adversarial
NLI benchmarks, outperforming the state of
the art on ANLI, Counterfactually-Augmented
NLI, and SNLI-Hard datasets. Analysis sug-
gests that the increase in robustness is due
to a reduction in the association strength be-
tween single tokens and labels, i.e., explana-
tion prompting weakens superficial cues. More
specifically, we find that single tokens that are
highly predictive of the correct answer in the
label-only setting become uninformative when
the model also has to generate explanations.

1 Introduction

Explanation prompting requires language models
to not only assign a particular label to a given in-
put (henceforth: label-only prompting), but also
to generate an explanation that supports this label.
For example, given the natural language inference
(NLI; Bowman et al., 2015) premise “A soccer
game with multiple males playing” and the hypoth-
esis “Some men are playing a sport”, in label-only
prompting the model only has to generate a label
such as entailment. With explanation prompting,
the model has to generate not only the label but
also an explanation that supports this label, such
as “It is true because playing soccer is playing a
sport”.

While explanation prompting was originally pro-
posed for improving model interpretability (Narang
et al., 2020), here we explore a different advantage:
improved model performance on adversarial bench-

"Neutral"

Is this true and why?

entails

INPUT

OUTPUT:

INPUT

"No it is neutral because the person is not necessarily 
training his horse."

OUTPUT:

high PPMI

Label- only: potential superficial cues

Explanation prompting: neutralizes superficial cues

Figure 1: When models only have to predict class labels
(top), some words in the input can become superficial
cues, as indicated by high pointwise mutual information
(shown in red) between words and class labels. With
explanation prompting (bottom) the added requirement
of generating explanations renders such shortcuts inef-
fective.

marks. Created in response to the discovery of su-
perficial cues in many common datasets, adversar-
ial benchmarks are designed to give a more realistic
estimate of model performance. Non-adversarial
benchmarks such as SNLI (Bowman et al., 2015)
can contain superficial cues, i.e., single tokens that
are predictive of the correct label and hence allow
models to achieve high scores by taking “shortcuts”
instead of acquiring and employing the capabili-
ties intended by the task designers (Gururangan
et al., 2018a; McCoy et al., 2019; Poliak et al.,
2018; Niven and Kao, 2019; Sugawara et al., 2018;
Schuster et al., 2019a; Kavumba et al., 2019). In
contrast, adversarial benchmarks are created in a
way that reduces or completely eliminates superfi-
cial cues, thus forcing models to solve tasks in the
intended and generally more difficult manner.
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In this work, we investigate the benefits of ex-
planation prompting through the lens of adver-
sarial benchmarks. Concretely, we finetune pre-
trained language models on natural language in-
ference datasets with explanation prompting and
compare performance to label-only prompting. We
find that explanation prompting improves perfor-
mance across four adversarial NLI datasets and
two non-adversarial NLI datasets (§5). Improve-
ments are consistent across model architectures,
model sizes, and prompt variations. Further anal-
ysis reveals that both the specific verbalization
of the label (“Yes, it is {label} because...") and
the relation between explanation and label are
important for model performance (§6). Finally,
we verify that explanation prompting models do
not rely on the kind of superficial cue that al-
lows taking shortcuts in the label-only setting
(§6). Source code is available at github.com/
pkavumba/explanation-prompting.

2 Background and Related Work

2.1 Superficial Cues

In the original natural language inference setting,
as exemplified by SNLI (Bowman et al., 2015),
models are trained to assign a label, such as en-
tailment or contradiction, to a given input. While
models quickly achieved high evaluation scores,
a line of research starting with Gururangan et al.
(2018a) found that SNLI and other datasets contain
superficial cues that models can exploit instead of
learning the task as intended (Poliak et al., 2018;
McCoy et al., 2019; Niven and Kao, 2019; Schus-
ter et al., 2019a; Kavumba et al., 2019; Wang and
Culotta, 2021; Srivastava et al., 2020; Wang et al.,
2019b,c). For example, in SNLI, negations such
as “not” are strongly associated with the contradic-
tion label (Gururangan et al., 2018a). A model that
predicts contradiction when the input contains the
token “not” will achieve a high evaluation score
without acquiring any capability to perform actual
natural language inference. Having learned to rely
on such shortcuts (Geirhos et al., 2020), models
will be “right for the wrong reasons” (McCoy et al.,
2019) on data that contains superficial cues, but
will perform worse on data that does not.

There are several approaches to mitigate super-
ficial cues. A direct countermeasure is to remove
them from existing datasets and to take care not
to introduce superficial cues when creating new
datasets. The two dominant methods to do so are

removal of easy samples via adversarial filtering
(Zellers et al., 2018, 2019; Sakaguchi et al., 2020;
Bras et al., 2020; Nie et al., 2020) and augmenta-
tion with counterfactual examples that neutralize
the association between existing superficial cues
and labels (Kavumba et al., 2019; Schuster et al.,
2019b; Kaushik et al., 2020). A complementary
line of work aims to prevent models from rely-
ing on superficial cues, for example via adversar-
ial training (Belinkov et al., 2019; Stacey et al.,
2020, 2021) and adversarial attacks (Wang et al.,
2019a; Liu et al., 2020; Zhu et al., 2020; Wang
et al., 2021). Adversarial approaches suffer from
drawbacks such as a more complex training scheme
and higher computational costs. Another approach
is multi-task training. Camburu et al. (2018) pro-
pose a “predict-and-explain” multi-task setup in
which one model first predicts a label and a sec-
ond model generates a free-form explanation for
this label However, this setup turns out to slightly
degrade performance.

In this work, we study explanation prompting
as a method for reducing the impact of superfi-
cial cues. While this form of prompting was orig-
inally introduced to enhance model interpretabil-
ity (Narang et al., 2020), our work is most closely
related to Chen et al. (2022), who studied the ro-
bustness of rationale models (Lei et al., 2016; Bast-
ings et al., 2019; DeYoung et al., 2020) to adversar-
ial attacks. Rationale models operate in a two-step
“rationalize-then-predict” manner, where the model
first selects a pertinent subset of the input, called
a rationale, and then predicts a label given this
rationale. Stacey et al. (2021) investigates using hu-
man annotated rationales for supervising attention
mechanism. Their goal is to increase the attention
given to annotated rationales.

2.2 Explanation Prompting

Explanation prompting requires models not only
to predict a class label but also to provide an ex-
planation of why that label is the correct answer.
Previous work has explored explanation prompt-
ing as a way to improve model interpretability.
Wiegreffe et al. (2021) analyzed the faithfulness of
explanations obtained via explanation prompting.
Since high-quality explanation are expensive to
create and not available in large quantities, Maraso-
vic et al. (2022) compare methods for generating
high-quality explanations in limited data regimes,
whereas Wiegreffe et al. (2022) investigate the fea-
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sibility of using large language models such as
GPT-3 (Brown et al., 2020) to automatically gen-
erate large amounts of explanations. In contrast to
this strand of research, we use free-text explana-
tions not to improve model interpretability, but to
improve model robustness in adversarial settings.

3 Explanation Prompting for Adversarial
NLI

In the original natural language inference setting,
one trains a classifier to label the relationship be-
tween a premise and a hypothesis as entailment,
neutral, or contradiction. When using a gener-
ative language model to generate a label and an
explanation supporting the label, the task turns
from classification into what we refer to as explana-
tion prompting. Turning the original NLI instances
into input-output pairs suitable for a generative lan-
guage model necessitates choosing a verbalizer1

that converts premise, hypothesis, label, and an-
swer into an input prompt an target output, e.g.:

• Input: Is this true and why? {premise} im-
plies {hypothesis}

• Output: {Yes or No} it is {label} because
{explanation}

Note that the label prediction process is further
broken down into two steps: first, the model must
provide a binary answer to the question (in this
case, whether the statements are entailed), then
give the exact label. That is, the output starts with

“Yes it is ...” for Entailment, or “No it is ...” for
Neutral and Contradiction. We refer to this as
multi-step verbalizing. This is a deviation from
previous work that utilized single-step or single-
word verbalizers. For example, entailment is of-
ten verbalized as yes, while contradiction and
neutral are verbalized as no and maybe, respec-
tively (Schick and Schütze, 2021a,b). Finally, the
output is completed with a free-text explanation
supporting the label.

4 Experimental Setup

4.1 Datasets
We compare label-only and explanation prompting
on six NLI datasets.

e-SNLI (Camburu et al., 2018) extends
SNLI (Bowman et al., 2015) with crowdsourced
free-form explanations and annotated salient spans.

1Verbalizer details are given in Appendix A.

Adversarial NLI (ANLI) (Nie et al., 2020) was
created in an iterative, adversarial process where, in
each iteration, human annotators create examples
that a given model does not label correctly, which
are then used to train a stronger model.

SNLI Hard (Gururangan et al., 2018a) is a fil-
tered version of the SNLI test set and contains only
instances that could not be labeled correctly by a
model given only the hypothesis as input.

NLI Diagnostic (Wang et al., 2018) was care-
fully constructed to evaluate capabilities related
to commonsense knowledge, logical reasoning,
predicate-argument structures, and lexical seman-
tics.

Heuristic Analysis for NLI Systems (HANS)
(McCoy et al., 2019) was created to analyze and
prevent several kinds of shortcuts found in prior
NLI datasets, such as lexical overlap between
premise and hypothesis.

Counterfactually-Augmented NLI (Counter-
NLI) (Kaushik et al., 2020) augments a subset
of SNLI with counterfactual instances, which were
obtained by editing either the premise or hypothe-
sis so that a counterfactual, i.e., different than the
original, label becomes true. Models relying on
superficial cues will perform well on original SNLI
instances, but poorly on counterfactual ones.

4.2 Models and Training Details

The two main models selected for our compari-
son are T0 (Sanh et al., 2021) and T5-3B (Raffel
et al., 2020). We chose these two models based on
their good reported performance on NLI datasets
while involving comparably low computational
costs, which we further reduced by finetuning all
models only on a third of the available e-SNLI
and ANLI training data. Thus, test results on e-
SNLI, ANLI, and SNLI Hard can be considered in-
domain tests and results on the remaining datasets
out-of-domain tests. Further training details and
hyperparameter settings are given in Appendix B.

5 Results

Does explanation prompting improve robustness
to adversarial attacks? Yes.

For both T0 and T5-3B, training with explana-
tion prompting improved performance over label-
only prompting on nearly all datasets, surpassing
the reported state of the art on e-SNLI, SNLI-Hard,
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Dataset Subset Current SOTA
T5-3B T0 (11B)

Label-only Explanation prompting Label-only Explanation prompting

e-SNLI - 92.3 91.7 95.1 91.0 91.9
SNLI Hard Hard 80.2 84.0 89.7 83.0 84.5

ANLI
R1 75.5 74.9 81.8 69.6 75.6
R2 51.4 58.9 72.5 53.7 60.6
R3 49.8 57.9 74.8 55.0 59.9

HANS
Lex 94.1 94.2 94.2 97.9 95.9
Sub 46.3 46.3 30.3 20.5 37.9
Cons 38.5 38.6 17.1 24.3 53.9

Counter-NLI
RP 54.3 69.6 83.0 66.5 69.2
RH 74.3 88.9 93.5 87.9 87.4
RP&RH 64.3 79.3 88.3 77.2 78.3

NLI Diagnostic

Know 53.9 58.8 76.4 58.8 59.9
Logic 58.7 63.7 73.9 60.7 64.5
LS 66.5 69.6 79.3 63.0 70.4
PAS 69.9 73.1 80.9 70.8 72.4

Table 1: Results by T5-3B and T0 (11B) models trained with label-only prompting and Explanation prompting. Current
state-of-the-art results on each dataset are reported from: WT5 (Narang et al., 2020), BERT-Sup-ATT (Stacey et al., 2021),
InfoBERT (Wang et al., 2021), RoBERTa-AFLITE (Bras et al., 2020), BERT (Kaushik et al., 2020), and RoBERTa-AFLITE (Bras
et al., 2020), respectively. Note that T5-3B and T0 are trained with different batch sizes and sequence lengths, so the results are
not comparable (§ 5).

ANLI, and Counterfactually-Augmented NLI (Ta-
ble 1). For example, on the three ANLI subsets
T5-3B achieves accuracies of 81.8%, 72.5%, and
74.8% with explanation prompting, compared to
much lower accuracies of 74.9%, 58.9% and 57.9%
with label-only prompting. Furthermore, since e-
SNLI does not contain any adversarially chosen
“hard” instances, strong results on this dataset show
that explanation prompting does not necessarily
hurt performance on datasets with superficial cues.
Overall T5-3B achieves higher performance de-
spite its smaller size, but this is due to T0 using
a quarter of the batch size and sequence length of
that used for T5 due to memory limitations.

The HANS dataset remains the most challenging
dataset, indicating that the models may still be sus-
ceptible to such adversarial attacks. Surprisingly,
the use of explanation prompting actually leads to
degraded performance for certain subsets, such as
the lexical overlap for T0, and subsequences and
constituents for T5-3B. This discrepancy warrants
further investigation, which we leave for future
work.

On all other datasets, explanation prompting
models show clear improvements over label-only
models in both in-domain and adversarial out-
of-domain settings. This demonstrates that us-

Full H-only ∆

Label-only prompting 87.2 63.7 -23.5
Explanation prompting 90.9 33.1 -57.8

Random baseline 33.3 33.3 -

Table 2: The average prediction accuracy of T0 models
on e-SNLI when trained with the full input compared
to the hypothesis-only setting (H-only), which allows
the models to solely rely on superficial cues to make ac-
curate predictions. The explanation prompting-trained
model’s performance degraded to random performance,
implying that it did not learn to make use of superficial
cues.

ing explanation prompting generally enhances the
model’s robustness to adversarial attacks and im-
proves the overall NLI prediction performance.

6 Discussion

In this section we vary experimental settings and
conduct ablations in order to provide a more de-
tailed analysis of how explanation prompting im-
pacts NLI performance. Unless stated otherwise,
reported results are obtained by finetuning T0 on
20K randomly-sampled instances from e-SNLI and
averaging prediction accuracies from three runs
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Explanation Accuracy BLEU

None 88.4 -
Random characters 21.00 0.02
Random words 0.00 0.90
Low-sim. sentences 0.04 0.03
High-sim. sentences 59.1 1.73
Original (e-SNLI) 91.6 36.1

Table 3: Impact of explanation content. Accuracies are
shown for the e-SNLI dev set, averaged over three T0
models finetuned with different random seeds. Ran-
dom characters and words or unrelated explanations
significantly reduce performance, indicating that the
models did not rely on superficial cues. Original ex-
planations outperform extracted sentences with high
similarity, demonstrating the benefit of related explana-
tions. We also report BLEU scores with respect to the
original explanations.

with different random seeds. Training details are
given in Appendix B.

Does explanation prompting prevent models
from exploiting superficial cues? Yes.
To see if models still exploit superficial cues, we
employ the hypothesis-only setting of Gururangan
et al. (2018b). Since the missing premise makes
the task impossible, any performance above ran-
dom chance can be ascribed to models picking
up on superficial cues. After training one model
with label-only prompting and one with explana-
tion prompting(Table 2), we observe that the label-
only model considerably exceeds random chance
(63.7% compared to 33.3%). In contrast, the expla-
nation prompting model does not exceed random
chance, indicating that explanation prompting is
not conducive to shortcut learning.

Do the explanations need to be related to the
input? Yes.
To check if the content of the target explanation
matters we replace it with unrelated text rang-
ing from completely random characters to similar
but unrelated sentences and find that explanation
prompting with the original explanations still per-
forms best (Table 3). Specifically, we choose the
following target “explanations”: (i) random char-
acters, (ii) random words, (iii) sentences extracted
from the BookCorpus (Zhu et al., 2015) with low
similarity with the input, and (iv) sentences ex-
tracted from the BookCorpus with high similar-

ity.2 All similarities are computed with Sentence-
BERT (Reimers and Gurevych, 2019). We also
compare to label-only prompting (None row in Ta-
ble 3). Table 3 shows the mean prediction accuracy
scores on the development set of e-SNLI over three
random seeds. Performance degrades with random
explanations or sentences extracted from BookCor-
pus, confirming that training the model to predict
explanations improves adversarial robustness.

Does Multi-step verbalizing have an effect on the
model performance? Yes.
A binary decision step may seem like a small
change in prompt format, however, we found that
this added step has partial merit to the improvement
in performance. To verify this, we train label-only
and explanation prompting models using single-
step-verbalized prompts ({label} because...”) and
ones using multi-step-verbalized prompts (“Yes it is
{label} because...”), both with an explanation (+Ex-
plain column in Table 5) and without added expla-
nations (Label-only column in Table 5). The results
show the prediction accuracy averaged over three
random seeds. In both label-only and explained
settings, adding a multi-step verbalizer brings an
improvement over the single-step version.

Are the models sensitive to prompt wording in
the input? No.
Previous work has demonstrated that language
models can be very sensitive to the prompts (Schick
and Schütze, 2021a,b; Brown et al., 2020). To ex-
amine this, we conduct experiments on five diverse
crowdsourced prompts obtained from the Prompt
Source project (Bach et al., 2022). For each model,
we run three separate experiments using three dif-
ferent random seeds. We report the average accu-
racy across all five prompts on the development
set of e-SNLI and Counterfactually-Augmented
NLI. Due to resource constraints, we use T5-3B, a
smaller model than T0, for these experiments. Fur-
thermore, we limit the number of instances used
from e-SNLI to twenty thousand randomly selected
examples.

The results presented in Table 4 demonstrate
that models trained with explanation prompting
outperform those trained with label-only prompt-
ing across all five prompts in terms of accuracy
(see Table 8 in Appendix C for results with differ-
ent models). For instance, the explanation prompt-

2We use the BookCorpus instead of sampling random ex-
planations to avoid accidentally sampling valid explanations.
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Prompt ID

Dataset 1 2 3 4 5 Mean(stddev)

e-SNLI 91.5 / 94.4 91.6 / 94.7 91.8 / 94.6 91.6 / 94.5 91.8 / 94.4 91.7(0.1) / 94.5(0.1)
CNLI (RP) 70.8 / 82.5 73.0 / 83.8 71.5 / 83.0 72.1 / 83.0 70.1 / 82.8 71.5(1.1) / 83.0(0.5)
CNLI (RH) 82.0 / 92.3 82.8 / 93.0 81.9 / 92.8 82.0 / 92.2 83.1 / 92.5 82.4(0.6) / 92.6(0.3)
CNLI (RP&RH) 76.4 / 87.4 77.9 / 88.4 76.7 / 87.9 77.0 / 87.6 76.6 / 87.7 76.9(0.6) / 87.8(0.4)

Table 4: Prompt sensitivity on the development set of e-SNLI and Counterfactually-Augmented NLI (CNLI). Values
are accuracy of label-only/explanation prompting-trained T5-3B models averaged over three random seeds. Besides
the consistently higher performance of the explanation prompting setting, the lower standard deviation indicates
greater stability w.r.t. prompt format.

Label-only +Explain (e-SNLI)

Single-step 87.2 90.9
Multi-step 88.4 91.6

Table 5: Comparing the effects of single-step (“[label]
because ...") and multi-step (“Yes/no, it is [label] be-
cause ...") verbalizing on T0 prediction accuracy, both
with an explanation (+Explain) and without an explana-
tion (Label-only) in the model output. Multi-step ver-
balizing improved the accuracy in both cases, with and
without explanation, and the added task of providing an
explanation (+Explain) further enhanced performance.

ing model achieves an overall average accuracy of
94.5% on e-SNLI compared to 91.7% for the label-
only model. Additionally, the explanation prompt-
ing model exhibits better accuracy on all the indi-
vidual prompts on the adversarial Counterfactually-
Augmented NLI with an overall average accuracy
of 83.0% on the revised premise (RP), 92.6% on
the revised hypothesis (RH), and 87.8 on RP&RH,
compared to 71.5%, 82.4%, and 76.9% respectively
for the label-only model. The lower standard de-
viations for explanation prompting also indicate
higher stability across all prompts.

Are the results dependent on the architec-
ture/size of the model employed? Yes.
To study the impact of model size on performance,
we repeat the experiments using six models ranging
from 60 million to 11 billion parameters. These
models comprise two versions of BART (Lewis
et al., 2020) with 125M and 400M parameters, as
well as three variants of T5 (Raffel et al., 2020) with
60M, 770M, and 3B parameters, and T0 with 11B
parameters. The results, as depicted in Figure 3 for
ANLI, indicate a clear correlation between model
size and performance, with larger models demon-
strating improved results. It is worth noting that
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Figure 2: Positive Pointwise Mutual Information
(PPMI) statistics for hypothesis words and labels with
and without explanation prompting. Words in the hy-
pothesis are strongly associated with the predict-only
labels. With explanation prompting, the association be-
tween the hypothesis words and the labels drops to a
zero. For example, while the negative word frowning is
strongly associated with contradiction label, the associa-
tion is eliminated with explanation prompts. The figure
only shows the hypothesis because superficial cues are
from the hypothesis, not the premise.

the highest achieved performance by T5-3B, ex-
ceeds that of the larger T0 model. This is due to
the fact that T0 is trained using only a quarter of
the batch size and the sequence length used for
all other models, resulting in reduced performance.
Comprehensive results for all models and datasets
are presented in Table 6. For more information on
the training details, see Appendix B.

Does explanation prompting weaken the asso-
ciation between word-level superficial cues and
labels? Yes.
To investigate the impact of explanation prompting
on the association between input words and their
corresponding output labels in the training set, we
compare the positive pointwise mutual informa-
tion (PPMI) between them in both label-only and
explanation prompting settings:
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Current
SOTA

T5-Small (60M) BART-Base (125M) BART-Large (400M) T5-Large (770M) T5-3B (3B) T0* (11B)

LP EP LP EP LP EP LP EP LP EP LP EP

e-SNLI 92.3 82.4 88.8 88.7 92.1 90.4 93.8 90.9 94.4 91.7 95.1 91.0 91.9
SNLI Hard 80.2 68.5 82.2 78.1 84.3 81.5 84.9 82.1 88.7 84.0 89.7 83.0 84.5

ANLI
R1 75.5 46.5 52.5 56.8 53.0 64.9 65.9 66.1 77.2 74.9 81.8 69.6 75.6
R2 51.4 37.6 56.4 41.5 50.3 44.4 57.1 49.2 67.8 58.9 72.5 53.7 60.6
R3 49.8 40.4 59.1 40.9 54.0 46.5 59.6 49.4 68.0 57.9 74.8 55.0 59.9

HANS
Lex 94.1 2.6 0.0 71.2 69.6 85.0 90.2 82.9 81.3 94.2 94.2 97.9 95.9
Sub 46.3 2.2 0.0 43.2 54.1 27.3 63.7 35.6 27.6 46.3 30.3 20.5 37.9

Cons 38.5 2.5 0.0 34.7 51.9 22.4 63.8 19.6 9.9 38.6 17.1 24.3 53.9

Counter-NLI
RP 54.3 54.1 75.6 59.8 74.9 66.1 77.3 67.8 82.3 69.6 83.0 66.5 69.2
RH 74.3 78.4 86.5 82.9 87.8 85.3 87.4 86.5 92.4 88.9 93.5 87.9 87.4

RP&RH 64.3 66.3 81.1 71.3 81.3 75.7 82.3 77.1 87.3 79.3 88.3 77.2 78.3

NLI Diagnostic

Know 53.9 34.5 58.8 41.2 60.2 57.4 70.4 54.9 65.8 58.8 76.4 58.8 59.9
Logic 58.7 45.3 59.6 45.6 67.0 54.9 67.0 57.4 70.3 63.7 73.9 60.7 64.5

LS 66.5 49.5 63.3 49.2 62.2 62.2 69.6 63.9 76.1 69.6 79.3 63.0 70.4
PAS 69.9 58.0 69.3 55.7 65.3 67.9 66.7 71.0 76.4 73.1 80.9 70.8 72.4

Table 6: Average prediction accuracy over three random seeds by models of increasing size trained with label-
only (LP) and explanation prompting (EP). Current state-of-the-art results on each dataset are reported from:
WT5 (Narang et al., 2020), BERT-Sup-ATT (Stacey et al., 2021), InfoBERT (Wang et al., 2021), RoBERTa-
AFLITE (Bras et al., 2020), BERT (Kaushik et al., 2020), and RoBERTa-AFLITE (Bras et al., 2020), respectively.
*Note that the T0 models were trained using only a quarter of the batch size and half the sequence length used for
all other models due to computational limitations. This may be the cause for weaker performance compared to the
smaller T5-3B models.

Num. parameters

A
vg

. a
cc

ur
ac

y

0.0

25.0

50.0

75.0

100.
0

60M 125M 400M 770M 3B

Predict-only Causal prompting

Figure 3: Average accuracy on ANLI depending on
model size with label-only and explanation prompt train-
ing, respectively. See Appendix B for a comprehensive
overview of performance, including on other datasets.

PPMI(w, l) = max(log
p(w, l)

p(w, )p(, l)
, 0)

Where w represents the input word and l repre-
sents the output label. The PPMI analysis enables
us to determine which words have a strong asso-
ciation with specific output labels, and how the
use of explanation prompts modifies these associ-
ations. Following Gururangan et al. (2018b), we
use add-100 smoothing in our PPMI calculations to
highlight the input words that exhibit the strongest
associations with the output labels.
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Figure 4: Crowd-sourced comparison of human-written
explanations and those generated by a model. Overall,
the crowd workers found that the model-generated ex-
planations were either comparable to or better than the
human-written ones.

The results, as presented in Figure 2, show that
explanation prompts weaken the association be-
tween the input words and the output labels. For
instance, in the absence of explanation prompting,
the negative word frowning had a strong associa-
tion with the label contradiction. However, when
explanation prompting is used, this association is
diminished from 0.1 to around 0. It’s worth men-
tioning that only the hypothesis words are shown in
Figure 2 as the superficial cues are mainly present
in the hypothesis, not the premise. These findings
align with the results obtained from the hypothesis-
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only model, as presented in Table 2.

Are the explanations generated by explanation
prompting models plausible? Yes.

While interpretability is not the primary objec-
tive of this study, we conduct a human evalua-
tion of the model’s generated explanations to as-
sess its performance within the intended frame-
work. We use Amazon Mechanical Turk to gather
assessments from 100 randomly selected T0 in-
stances. To make the task easier for the crowd
workers, we simplify it to only include two labels:
Entailment and non-entailment. Instances la-
beled as Neutral or Contradiction are consid-
ered as non-entailment. We present the crowd
workers with the gold label and request an evalua-
tion of the quality of the explanation using a five-
point Likert scale, ranging from “very bad” to “ex-
tremely good”. We gather three ratings per instance.
Each Human Intelligence Task (HIT) features three
explanations: the gold explanation authored by
a human, the model-generated explanation, and
an “attention check” explanation with a known ex-
pected annotation. The “attention check” explana-
tion is included to ensure the quality of the annota-
tions provided. This “attention check” explanation
is randomly selected and unrelated to the premise
and hypothesis, and therefore is expected to receive
a lower score compared to the human-authored
explanations that have already been validated by
other crowd workers in previous work (Camburu
et al., 2018). If the “attention check” explanation
receives a high score or an equal score to a human-
authored explanation, the HIT is flagged for review.
Additionally, to prevent the use of simple heuris-
tics, such as assuming that the last explanation is
always the low-scoring one, the order in which the
explanations are presented to the annotator is ran-
domly shuffled during each HIT. An example of an
NLI instance with an “attention check” explanation
is shown below:3

• Premise: A man stands by an animal rights
sign at an outdoor event.

• Hypothesis: A man is standing inside of his
house

• Human: an outdoor event is not in his house
• Generated: The man cannot be standing in-

side of his house and at an outdoor event at
the same time.

3The crowdsourcing study form can be found in the ap-
pendix D.

• Attention Check: It cannot be inferred that
the young woman is an artist or that she is be
finished soon.

The results of this evaluation are shown in fig-
ure 4. On the whole, crowd workers found model-
generated explanations to be comparable to or bet-
ter than human-written ones.4

This result suggests that the crowd workers
found the generated reasons to be of similar quality
to the human-authored reasons. This indicates that
the model learns important features of the input
data and is able to use them effectively to generate
reasonable explanations.

7 Conclusions

In this study, we examined the influence of causal
prompting on the adversarial robustness of natu-
ral language processing models. Our results in-
dicate that using causal prompts can improve a
model’s robustness to adversarial attacks. We also
explored the performance of our models under var-
ious modified and ablated settings and found that
explanation prompting-trained models (i) no longer
rely on superficial cues, (ii) benefit most from both
causally related explanations and multi-step ver-
balization, and (iii) are robust to differences in the
input prompts. In addition, we observed that perfor-
mance increases with model size and that the use
of the explanation prompting format reduces the
association between input words and output labels.
Finally, human evaluation showed that the models
generated plausible explanations.

Limitations

Explanation prompting requires datasets annotated
with explanations, which may not always be avail-
able and it can be costly to collect explanations in
a quantity suitable for model training or finetuning.
Therefore, applying this method to datasets without
explanations may be difficult.

Additionally, our analysis and evaluation are lim-
ited to English language benchmarks. Although we
anticipate the method to be transferable to other
languages, this requires further investigation.

Finally, experiments showed that training with
explanation prompting did not improve the perfor-
mance of T5 variants on the "Subsequence" and
"Constituent" subsets of the HANS dataset. It is

4Refer to Appendix E for some example explanations.
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currently unclear why all variants of BART per-
formed better than random baselines, while T5
variants did not. Possible explanations include dif-
ferences in training data, model architecture, and
optimization goal, but this discrepancy requires
further investigation.
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all participants involved in the study. As a result,
all crowd workers received fair compensation for
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Appendix

A Prompt templates

Inspired by Unified Prompts (Sanh et al., 2021) and
Prompt Source project (Bach et al., 2022), we ex-
press all explanation prompting input-output pairs
in the jinj2 template language.5 This choice al-
lows us to take advantage of the many features and
benefits offered by jinja2.

A.1 Explanation prompting template
Input:
Is this true and why?

{{premise}} implies {{hypothesis}}

Output:
{% if label == 'entailment' %} Yes {%else%} No
{%endif%} it is {{label}} because
{{explanation}}

A.2 Alternative template for training samples
lacking explanations

Input:
Is this true?

{{premise}} implies {{hypothesis}}

Output:
{% if label == 'entailment' %} Yes {%else%} No
{%endif%} it is {{label}}

Note that ANLI provides explanations for only
some of the questions; where missing, the prompt
template was modified to accommodate this.

B Training details

We fine-tuned the models on an Nvidia A100 node
with 8 x 40GB GPUs. We used the DeepSpeed
library6 that implements ZeRo (Rajbhandari et al.,
2020) and ZeRo-Offload (Ren et al., 2021); and
the Huggingface transformers library (Wolf et al.,
2019). We used an Adam optimizer (Kingma and
Ba, 2015) with a learning rate of {1e-4, 5e-5}, with
a per device batch size of {8, 16, 32, 64}, warm-up
ratio of 0.08, max source length of 1024 except for
T0 which uses 512 tokens with dynamic padding
based on the longest sequence in the batch. We fine-
tuned for a maximum of three epochs and selected
the best checkpoint based on performance on the e-
SNLI development set. Table 7 shows an overview
of all used hyperparameters.

5https://https://jinja.palletsprojects.com/
6https://github.com/microsoft/DeepSpeed

Models

Warmup Ratio 0.08
Per Device Batch Size {2, 4, 8, 16, 32, 64}
Learning Rate {1e-3, 1e-4*, 1e-5, 5e-5*}
Adam ϵ 1.00e− 08
Adam β1 0.9
Adam β2 0.999
Gradient Norm 1
Max Source Len {512, 1024}
Max Target Len 256
weight_decay 0
fp16 yes
DeepSpeed

fp16
enabled yes
loss_scale 0
loss_scale_window 1,000
initial_scale_power 16
hysteresis 2
min_loss_scale 1

zero_optimization
sub_group_size 1.00e9
stage3_max_live_parameters 1.00e9
stage3_max_reuse_distance 1.00e9

Table 7: Hyperparameter settings. Where multiple val-
ues were tried the final values used is shown with an
asterisk. The batch size of 8 is only used for the 11Bil-
lion parameter model.

C Prompt Sensitivity Results

We present extended results on prompt sensitivity
with a range of model sizes, with all values being
averages over three random seeds. Table 8 shows
the results on each prompt. The aim of the experi-
ment is to examine the sensitivity of various mod-
els to prompt wording. To do this, we evaluated
the models on five diverse crowdsourced prompts
obtained from the Prompt Source project (Bach
et al., 2022). We conducted three separate experi-
ments for each model, using three different random
seeds, and report the average accuracy across all
five prompts on the development sets of e-SNLI and
Counterfactually-Augmented NLI. We limited the
number of instances used from e-SNLI to twenty
thousand randomly selected examples. The results
demonstrate that models trained with explanation
prompting outperform those trained with label-only
across all five prompts in terms of accuracy.

D Crowd sourcing Forms

In this section, we present the crowdsourcing form
utilized for the human evaluation of explanation
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Dataset Prompt_ID
T5-Small T5-Large T5-3B BART-B BART-L

LO EP LO EP LO EP LO EP LO EP

e-SNLI

1 71.1 67.3 89.2 93.3 91.5 94.4 84.5 90.1 88.6 93.0
2 66.7 69.3 89.6 93.3 91.6 94.7 84.3 90.3 59.1 93.4
3 72.3 67.7 89.5 93.2 91.8 94.6 84.0 90.5 88.2 93.3
4 69.0 66.4 89.6 93.6 91.6 94.5 84.1 90.5 72.3 93.4
5 69.2 67.4 89.5 93.4 91.8 94.4 84.7 90.3 85.8 93.3

CNLI (RP)

1 44.8 60.3 64.4 79.6 70.8 82.5 50.1 72.3 60.1 77.9
2 42.8 68.5 65.4 79.2 73.0 83.8 49.3 71.8 41.9 77.2
3 47.5 68.4 65.9 79.0 71.5 83.0 49.3 72.0 59.9 76.6
4 43.3 68.3 66.2 79.3 72.1 83.0 49.0 71.8 49.0 79.0
5 43.4 68.8 65.9 79.7 70.1 82.8 48.8 71.6 58.3 77.2

CNLI (RH)

1 65.6 62.7 80.6 91.1 82.0 92.3 73.0 86.5 79.3 90.8
2 54.8 70.6 81.1 91.8 82.8 93.0 72.2 86.2 54.1 90.5
3 67.5 69.4 81.3 91.3 81.9 92.8 73.3 85.7 79.4 91.0
4 63.2 68.8 81.6 91.4 82.0 92.2 73.0 87.3 65.6 90.8
5 60.7 68.7 82.3 91.1 83.1 92.5 71.8 85.3 77.0 90.9

CNLI (RP&RH)

1 55.2 61.5 72.5 85.3 76.4 87.4 61.5 79.4 69.7 84.3
2 48.8 69.5 73.3 85.5 77.9 88.4 60.7 79.0 48.0 83.8
3 57.5 68.9 73.6 85.1 76.7 87.9 61.3 78.8 69.7 83.8
4 53.3 68.5 73.9 85.3 77.0 87.6 61.0 79.5 57.3 84.9
5 52.0 68.8 74.1 85.4 76.6 87.7 60.3 78.4 67.7 84.0

Table 8: Prompt-sensitivity results on the development set of e-SNLI and Counterfactually-Augmented NLI (CNLI).
The values represent mean accuracy over three random seeds. The table compares the accuracy of a label-only
prompting model (represented by the LO column) and the explanation prompting model (represented by the EP
column). Explanation prompting models outperform the label-onlymodel on almost all the prompts.

quality. To ensure unbiased assessments, the ex-
planations were initially concealed from the crowd
workers while they read the question and answer
(as depicted in Fig.5a). Once the workers answered
the first question, the explanations were then re-
vealed (as shown in Fig.5b).

E Qualitative Results

Table 9 shows some qualitative examples of the ex-
planations generated by the explanation prompting
T0 model.
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(a) The figure depicts the process of evaluating the quality of the explanations in the crowd-sourcing task. The
first stage requires the user to carefully read both the premise and hypothesis presented. After familiarizing
themselves with the information, the user is then tasked with answering the corresponding question. At this stage,
the explanations for the question are initially hidden.

(b) The figure illustrates the stage of the crowdsourcing process where the explanations are reviewed after the first
question has been answered (figure a). Hovering over the rating stars reveals the meaning of the star such as “Very
bad” for 1 star and “Bad” for 2 stars. Upon choosing a star rating, the form displays its corresponding description,
such as “Very bad” for 1 star, “Bad” for 2 stars, “Good” for 3 stars, “Very good” for 4 stars, and “Extremely good”
for 5 stars.
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# Input Reason Target

1

P: Two women are embracing while hold-
ing to go packages.
H: The sisters are hugging goodbye while
holding to go packages after just eating
lunch.

Model: Two women are not necessarily
sisters.
Human: The to go packages may not be
from lunch.

N (o)

2
P: Two women are embracing while hold-
ing to go packages.
H: Two woman are holding packages.

Model: Two women are holding packages
is the same as two women are holding
packages.
Human: Saying the two women are hold-
ing packages is a way to paraphrase that
the packages they are holding are to go
packages.

E (o)

3
P: Two women are embracing while hold-
ing to go packages.
H: The men are fighting outside a deli.

Model: Women are not men.
Human: In the first sentence there is an
action of affection between women while
on the second sentence there is a fight be-
tween men.

C (o)

4

P: Two young children in blue jerseys, one
with the number 9 and one with the num-
ber 2 are standing on wooden steps in a
bathroom and washing their hands in a
sink.
H: Two kids at a ballgame wash their
hands.

Model: Bathroom and ballgame are differ-
ent.
Human: Two kids in jerseys watching
their hands are not necessarily at a ball-
game.

N (x)

5

P: A woman is doing a cartwheel while
wearing a bikini in the sand next to the
beach.
H: A woman is doing a cartwheel and falls
on her head.

Model: Just because a woman is doing a
cartwheel doesn’t mean she falls on her
head.
Human: A woman doing a cartwheel as
opposed to a woman falling while doing a
cartwheel.

C (x)

6

P: At an outdoor event in an Asian-themed
area, a crowd congregates as one person
in a yellow Chinese dragon costume con-
fronts the camera.
H: A single man is next to a camera

Model: A single man is a person.
Human: The crowd can’t be single man.

C (x)

Table 9: Examples explanations generated by our models on the development set of e-SNLI, which consists of three
labels: entailment (E), contradiction (C) and neutral (N). We show the first three correct and incorrect instances.
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