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Abstract

Recent works on tokenizer-free multilingual
pretrained models show promising results in
improving cross-lingual transfer and reducing
engineering overhead compared to subword-
based alternatives. However, previous work
mainly focuses on reporting accuracy on a lim-
ited set of tasks and data settings, placing less
emphasis on other important factors when tun-
ing and deploying the models in practice, such
as memory usage, inference speed, and fine-
tuning data efficiency. We attempt to fill this
gap by performing a comprehensive empirical
comparison of multilingual tokenizer-free and
subword-based models considering the various
dimensions. Surprisingly, we find that subword-
based models might still be the most practical
choice in many settings, achieving better perfor-
mance for lower inference latency and memory
usage. Based on these results, we encourage fu-
ture work in tokenizer-free methods to consider
these factors when designing and evaluating
new models.1

1 Introduction

Several recent results (Clark et al., 2022; Xue
et al., 2022) have excited the research commu-
nity with the possibility of “tokenizer-free” models,
character-level and byte-level models, as an alter-
native to more traditional subword-based models.
Tokenizer-free models are especially appealing to
practitioners as they can eschew the two-step pro-
cessing pipeline of subword segmentation and re-
duce the corresponding difficulties in cross-lingual
transfer (Hu et al., 2020; Maronikolakis et al., 2021;
Rust et al., 2021; Wang et al., 2021) or domain
adaptation (Sato et al., 2020; Liu et al., 2021) due
to inconsistent subword units.

However, upon several attempts to apply
tokenizer-free methods, our analysis reveals sev-
eral practical difficulties in applying these methods.

1We will release code to train and evaluate models upon
de-anonymization.

This paper is a chronicle of some of the concerns
we uncovered; we highlight some challenges with
applying these models and propose best practices
for future results reporting in this area.

Specifically, we perform experiments finetuning
pretrained multilingual models, evaluating them
with respect to finetuning data efficiency, inference
time, and memory consumption. Based on these
multiple dimensions, we come to the somewhat
surprising conclusion that subword-based models,
in particular mBERT (Devlin et al., 2019), might
still be the most practical choice in most settings,
as they perform best while maintaining a relatively
low inference cost.

2 Tokenizer-free Multilingual Models

While multilingual pretrained models (Devlin et al.,
2019; Lample and Conneau, 2019; Liu et al., 2020;
Xue et al., 2021) have led to impressive perfor-
mance improvements for low-resource languages
through cross-lingual transfer, the standard word
representation method in these models relies on
subword segmentation (Sennrich et al., 2016; Kudo,
2018). In multilingual settings, subword tokeniza-
tion can be sub-optimal as supporting hundreds
of languages with various scripts and vocabularies
causes segmentation mismatch between languages
and over-segmentation in the lower-resourced lan-
guages (Wang et al., 2020).

To alleviate this problem, recent works pro-
pose removing the subword segmentation step by
using characters or bytes as lexical units (Clark
et al., 2022; Xue et al., 2022). In particular, these
“tokenizer-free” methods have been applied to both
encoder-only and encoder-decoder models. Tab. 1
presents an overview of the different tokenizer-
free multilingual models with comparable sub-
word models. Next, we briefly describe the two
tokenizer-free models we consider in this work.

CANINE (Clark et al., 2022) is a character-level

1725



Model Params Vocab (%) Non-vocab Architecture Enc. Dec. Tokenization ↓sample? Corpus Langs

mBERT 178M 92M (52%) 86M Enc-only 12 - Subword ✗ Wikipedia 104
CANINE 132M 25M (19%) 107M Enc-only 12 - Character ✓ Wikipedia 104

mT5 (Small) 300M 256M (85%) 44M Enc-dec 8 8 Subword ✗ mC4 101
ByT5 (Small) 300M 1.1M (0.3%) 298.5M Enc-dec 12 4 UTF-8 bytes ✗ mC4 101

Table 1: Configuration of the pretrained models used. From left to right: number of parameters, number and ratio
of vocabulary-related parameters, number of non-vocabulary parameters, architecture, encoder / decoder depth,
tokenization scheme, whether downsampling was used, pretrained corpus, number of pretrained languages.

encoder suggested as an alternative to mBERT (De-
vlin et al., 2019). CANINE operates on raw char-
acters and is pretrained using the masked language
modeling objective. To compensate for the compu-
tational efficiency loss due to increased sequence
length, CANINE uses convolutions to downsample
the sequence before passing the representations to
the transformer layers. The two weight variants
of CANINE (CANINE-S, CANINE-C) have the
same architecture but slightly different pretraining
objectives using either subwords or characters at
the last layer. As both variants performed similarly
in our experiments and Clark et al. (2022), we
only include CANINE-S for the main discussion,
leaving CANINE-C results in § B.3.

ByT5 (Xue et al., 2022) is an encoder-decoder
transformer model similar to the mT5 (Xue et al.,
2021) model. ByT5 operates on the raw UTF-8
bytes of the input without any downsampling, lead-
ing to a longer sequence length while having a
much smaller vocabulary size than mT5. Both
ByT5 and mT5 are pretrained on the mC4 corpus2

using the span reconstruction objective proposed
by Raffel et al. (2020).

To keep the parameter count fixed between mT5
and ByT5, ByT5 allocates the parameters saved
from the embedding layer to additional encoder
layers. Although adding more depth to the encoder
is a reasonable design choice, our results in § 4
show that ByT5 suffers from a much higher in-
ference cost due to the deeper encoder, especially
when input/output sequence lengths are longer.

3 Experimental settings

We conduct a multi-dimensional evaluation fo-
cusing on two aspects: finetuning data efficiency
(§ 4.1) and inference cost (§ 4.2) to provide a bet-
ter understanding of the practical applicability of
tokenizer-free models. We finetune and evaluate

2
https://www.tensorflow.org/datasets/catalog/

c4#c4multilingual

two subword-based models (mBERT, mT5) and
two tokenizer-free models (CANINE, ByT5), as
mBERT-CANINE and mT5-ByT5 are directly com-
parable counterparts in terms of their pretraining
corpus as shown in Tab. 1. For the T5 models, we
consider only the small models of both mT5 and
ByT5 as the focus of our work is in the practical im-
plication of using multilingual pretrained models
at relatively resource-constrained settings.

Specifically, we finetune the models on three
multilingual natural language understanding tasks
adopted from the XTREME benchmark (Hu et al.,
2020). The three tasks we choose cover various
input, output formats – sequence-level classifica-
tion (XNLI), token-level classification (NER), and
extractive question answering (TyDi QA-GoldP).

3.1 Tasks

XNLI The Cross-lingual Natural Language Infer-
ence (Conneau et al., 2018) is a sequence classifica-
tion task in which the model predicts whether the
hypothesis sentence is an entailment, contradiction,
or neutral given the premise sentence. The task is
provided in 15 languages.

NER Named Entity Recognition (NER) is a struc-
tured prediction task, where the model predicts a
tag (location, person, organization) in IOB2 format
for each token in the input sentence. We use the
WikiAnn dataset (Pan et al., 2017) and select 20 out
of 282 languages for multilingual training based on
linguistic diversity and the language availability in
the other two tasks we consider.

TyDi QA-GoldP The Typologically Diverse
Question Answering (Clark et al., 2020) dataset
is an extractive QA benchmark in 11 languages.
While the original dataset includes two “primary”
tasks (SelectP, MinSpan), the secondary GoldP
task is the most widely adopted as it is compat-
ible with other SQuAD-style QA tasks (Rajpurkar
et al., 2016; Artetxe et al., 2020). For this reason,
we mainly compare models on TyDi QA-GoldP

1726

https://www.tensorflow.org/datasets/catalog/c4#c4multilingual
https://www.tensorflow.org/datasets/catalog/c4#c4multilingual


102 103 104 Single Multi
30

40

50

60

70

A
cc

u
ra

cy
XNLI

mBERT CANINE-S mT5 ByT5

102 103 Single Multi

50

60

70

80

90

F
1

NER

102 103 Single Multi

40

60

80

F
1

TyDi QA

Figure 1: Average XNLI, NER, TyDi performance when each pretrained model is finetuned with varying numbers
of in-language finetuning data (102, 103, 104), all in-language samples (Single), or the entire multilingual dataset
(Multi). The exact numbers can be found in the Appendix (Tab. 2).

and discuss primary task results briefly through our
replication experiment of Clark et al. (2022).

3.2 Details of Hardware and Measurements

We use a single Tesla V100 (32GB) GPU for all ex-
periments regarding inference cost measurements.
To obtain the peak GPU memory and inference la-
tency, we randomly select 100 samples from the
English test set for each task and measure the aver-
age cost of predicting one example at a time.

4 A Multi-dimensional Evaluation

4.1 Finetuning data efficiency

Most work presenting multilingual pretrained mod-
els evaluates downstream task performance under
multilingual finetuning or zero-shot scenarios. In
practice, however, downstream task datasets are
often available in the language of interest. Thus, in
addition to multilingual training, we compare mod-
els tuned on different data sizes within a single lan-
guage to evaluate their finetuning data efficiency.

Specifically, we finetune the four pretrained
models with varying numbers of task examples
– 10

2
, 10

3
, 10

4 (when available), all target language
samples (Single), and multilingual training (Multi)
to incorporate situations where the task dataset is
available in multiple languages. We experiment
with four downstream task languages – English,
Arabic, Russian, and Swahili – chosen based on
both linguistic diversity and various pretraining
resource conditions.3 While the controlled experi-
ments are done on a subset of languages, we report
the task performance in all languages for zero-shot
evaluation, single language training, and multilin-

3The pretraining corpus sizes are noted in § B.4 (Tab. 8).

gual training in § B.3 for comprehensiveness.4

In Fig. 1, we report the models’ task performance
averaged over languages under different finetuning
settings. Notably, we find that mBERT achieves the
highest score for most settings. The only exception
is on XNLI Single and Multi, where ByT5 slightly
outperforms mBERT. As the dataset size decreases,
it becomes more evident that mBERT is the most
sample efficient, especially in the most data-scarce
scenarios where only 100 finetuning examples are
available. The fact that mBERT outperforms mT5
and ByT5 on smaller datasets is quite surprising,
as one might expect T5 models to generalize better
in low-resource settings given their much larger
pretraining corpus.

Interestingly, we find that CANINE performs
poorly compared to mBERT in all three tasks, and
the performance gap increases as fewer finetuning
data are available. To explain this phenomenon,
we hypothesize that character-level models have
the additional burden of learning to compose char-
acters into semantically meaningful units and thus
require more data to learn task-specific higher-level
semantics. These results align with the NER results
on the CoNLL and MasakhaNER dataset in Clark
et al. (2022), where mBERT outperformed CA-
NINE in all languages except Amharic, a language
not covered by mBERT’s vocabulary.

However, mBERT’s stronger performance in
TyDi QA-GoldP was unexpected as CANINE per-
formed better at the TyDi QA primary tasks in
Clark et al. (2022). Through replication experi-
ments to reconcile the contradictory findings, we
found that mBERT outperforms CANINE also in
the primary tasks when finetuned for more epochs
with our codebase, suggesting that the previous

4Hyperparameters for all experiments are in Appendix A.
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Figure 2: The inference cost of the four models (■: mBERT, ▲: CANINE, ●: mT5, ◆: ByT5) in each task. The
x-axis denotes the average inference time while the y-axis shows the peak GPU memory consumption. Thus, models
located near the bottom left corner are more cost efficient. The colors represent the model’s best task performance
(XNLI: Accuracy, NER: F1, TyDi QA: F1). The numbers used to generate the plot can be found in § B.2 (Tab. 3).

mBERT baseline was potentially undertrained.5

For mT5 and ByT5, we find that the two models
perform comparably in smaller datasets, while on
larger sets, ByT5 consistently outperforms mT5
on all tasks. We note that the mT5-Small model
could have been penalized in terms of capacity as
85% of the parameters are allocated to embeddings
as shown in Tab. 1, leaving only 44M parameters
for the non-vocabulary layers. This is even less
than that of mBERT (86M), and drastically smaller
compared to ByT5-Small, which assigns 298.5M
parameters to the non-vocabulary layers. Also,
given that the tasks concerned are not generation-
heavy, the extra depth on the encoder (12 for ByT5
vs. 8 for mT5) might have favored ByT5 over mT5.

4.2 Inference cost

Another key concern in utilizing pretrained mod-
els for downstream applications is the inference
cost, such as memory consumption and latency. In
Fig. 2, we plot each model’s inference latency and
peak memory consumption, color-coding their task
performance to provide a comprehensive view of
the trade-offs of deploying each model in practice.

In general, the encoder-only models, mBERT
and CANINE, require much less memory and in-
ference latency than mT5 and ByT5. Considering
performance alongside inference cost, we find that
mBERT is still the most practical choice among the
four models, achieving the best performance while
maintaining a relatively low inference cost.

While producing longer sequences than mBERT,
CANINE does not necessarily incur higher mem-
ory or latency costs, as it has fewer parameters
than mBERT. This helps CANINE, especially in
sentence-level tasks (XNLI, NER) where inputs are

5We include the finetuning code in our released codebase.

relatively shorter. However, for tasks with much
longer inputs (TyDi QA), the computational over-
head from the sequence length dominates the pa-
rameter reduction, leading to higher memory usage
and slower inference for CANINE.

For mT5 and ByT5, inference costs vary accord-
ing to the task’s input and output length. For tasks
with shorter inputs and outputs like XNLI, ByT5
yields better performance than mT5 while retaining
similar costs. However, for token-level prediction
tasks like NER, ByT5 needs to generate tags autore-
gressively at the byte level, which drastically slows
down the inference time. However, the additional
cost is negligible in terms of memory consumption
as the inputs are still relatively short. For TyDi QA,
we observe an opposite pattern. As the input is a
long passage, the extended input sequence signifi-
cantly increases the memory consumption of ByT5,
requiring more effort in tuning the batch size to fit
into the GPU memory.

5 Related work

Large-scale NLP models have achieved remarkable
performance in various natural language tasks, with
the recent ChatGPT demonstrating near human-
level language understanding capabilities. While
achieving impressive results in standard bench-
mark settings, the applicability of these models
have remained limited mainly due to practical
considerations including their high energy con-
sumption and environmental impact (Strubell et al.,
2019). Both the NLP and computer vision com-
munities have proposed evaluating models based
on practical metrics, such as training/inference effi-
ciency (Canziani et al., 2016; Dehghani et al., 2021;
Zhou et al., 2021), energy usage (Henderson et al.,
2020), robustness (Ribeiro et al., 2020; Kiela et al.,
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2021; Koh et al., 2021), and expected performance
(Dodge et al., 2019). Similarly, a recent study by
Liang et al. (2022) suggests a comprehensive eval-
uation suite for generative NLP models, including
measures of robustness, fairness, and efficiency.
Our multi-dimensional evaluation is an attempt to
expand these evaluation protocols to multilingual
settings and examine the trade-offs of various tok-
enization schemes.

6 Conclusion

In this paper, we present a multi-dimensional
evaluation of tokenizer-free multilingual models
focusing on their efficiency against finetuning
dataset size and inference cost. Based on our
experiments, we find that mBERT might still be
the most cost-effective choice for many tasks, and
show that the efficiency trade-offs of model design
choices (tokenization, decoder availability) depend
heavily on the task’s length statistics. Despite
our findings, tokenizer-free models still have a
significant advantage in reducing engineering
effort and potentially increasing robustness to
noisy data. We believe more work should be done
in developing efficient tokenizer-free models, and
encourage the community to consider these criteria
of practical applicability when developing and
evaluating tokenizer-free pretrained models.

7 Limitations

This paper mainly covers three NLP tasks, focusing
on smaller-sized multilingual pretrained models. In
future work, it would be interesting to run the multi-
dimensional evaluation we suggest on a broader set
of tasks and models. Although our results show
that subword models are a more practical choice in
some tasks, we note that other tasks or datasets may
exist where tokenizer-free methods achieve better
relative performance. For instance, tokenizer-free
models have been reported to excel in word-level
tasks, and noisy environments (Xue et al., 2022),
and the conclusions we reached may be different
in such settings. Moreover, we did not explore
more complicated generation tasks like translation
or summarization, where the difficulty in decoding
and longer decode horizons could paint a different
picture in a multi-dimensional evaluation.

Ethics Statement

We hope our results encourage the community to
consider the practical concerns of running large lan-

guage models (LLMs) and designing tokenizer-free
pretrained models. As the state-of-the-art LLMs
are becoming more computationally extensive, it
has become increasingly difficult for researchers
and practitioners with less resources to utilize these
models for downstream applications. We hope our
multi-dimensional analysis can help researchers
and practitioners with less computational resources
decide which model to use in practice.
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A Tasks

For all tasks and models, we refer to the original
papers’ codebase for hyperparameters.678

XNLI For encoder-only models, the first token
([CLS]) is used to map the sentence representation
to the label distribution. For encoder-decoder mod-
els, we generate the index of the label (e.g., ‘0’)
directly.

NER For encoder-decoder models, we follow the
input-output format (e.g., input: ‘tag: rick and
morty are cool .’, output: ‘PER: rick $$
PER: morty’) specified in the mT5 model’s origi-
nal codebase.

B Tables

B.1 Finetuning data efficiency
Tab. 2

B.2 Inference cost
Tab. 3

B.3 Experimental results for all languages
(Zero-shot, Single language (full),
Multilingual)

XNLI: Tab. 4, NER: Tab. 5, TyDi QA-GoldP:
Tab. 6, Tydi QA Primary: Tab. 7

B.4 Pretraining corpus size
Tab. 8

6
https://github.com/google-research/language/

tree/master/language/canine
7
https://github.com/google-research/

multilingual-t5
8
https://github.com/google-research/byt5
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XNLI (Accuracy) NER (F1) TYDI QA (F1)
Finetuning setting 10

2
10

3
10

4 Single Multi 10
2

10
3 Single Multi 10

2
10

3 Single Multi

Arabic
mBERT 36.6 51.0 59.5 70.6 73.2 67.3 80.2 89.6 89.6 44.8 70.9 81.0 81.5
CANINE-S 32.8 36.6 53.3 65.8 69.7 46.2 71.2 84.9 88.0 38.4 59.8 79.2 80.5
CANINE-C 34.1 45.3 50.5 66.2 68.5 51.7 71.3 85.1 87.8 34.8 57.8 77.8 80.7
mT5 33.1 44.2 55.0 65.5 70.3 57.3 75.5 86.5 86.8 33.7 62.6 73.1 75.3
ByT5 23.7 42.0 55.2 72.9 73.3 60.6 77.5 85.4 87.7 33.4 67.3 75.8 75.9

English
mBERT 38.8 58.6 71.2 82.0 83.5 65.1 78.1 84.2 85.4 32.4 67.6 73.6 76.0
CANINE-S 33.6 37.5 59.5 77.7 79.1 49.7 70.3 80.4 84.1 29.2 49.4 64.0 71.6
CANINE-C 34.1 50.7 61.2 77.1 78.0 52.8 70.6 81.1 84.1 27.5 47.8 57.3 71.6
mT5 33.3 50.9 66.4 79.0 79.9 40.1 63.1 71.9 72.5 25.0 52.8 59.4 64.4
ByT5 35.2 39.6 66.2 80.9 81.0 44.1 65.0 73.8 73.5 16.5 63.1 64.6 69.4

Russian
mBERT 35.7 45.5 52.9 66.3 68.1 81.3 89.9 90.0 90.9 42.9 74.3 79.8 82.4
CANINE-S 33.1 35.9 48.6 61.5 65.0 63.2 86.9 87.7 89.6 29.1 54.0 71.3 77.4
CANINE-C 33.1 42.9 45.4 60.8 64.4 70.0 86.5 86.5 90.0 32.3 58.9 71.4 79.7
mT5 33.0 44.9 58.0 63.2 68.1 54.3 70.6 71.0 72.3 29.0 65.8 71.5 76.6
ByT5 34.3 41.2 56.4 67.5 71.3 68.6 83.5 84.5 84.3 32.5 73.5 78.8 80.3

Swahili
mBERT 38.9 51.1 63.0 74.8 76.4 66.7 82.4 89.4 89.2 34.3 61.8 72.5 74.4
CANINE-S 33.7 39.2 54.2 69.7 73.0 54.5 75.6 86.5 88.8 27.4 46.6 67.2 71.8
CANINE-C 35.0 46.5 54.1 68.6 71.7 55.4 76.0 87.3 88.9 20.0 46.9 66.5 72.7
mT5 32.6 34.2 55.1 70.3 73.7 35.8 56.4 64.0 64.8 21.6 51.0 66.1 67.9
ByT5 32.0 42.0 53.4 73.4 75.6 31.4 57.0 62.6 66.3 26.9 61.6 71.1 73.0

Table 2: Task performance with varying finetuning data conditions (102, 103, 104 (for XNLI), full target language
dataset, multilingual dataset)

XNLI NER TYDI QA
Latency Memory Accuracy Latency Memory F1 Latency Memory F1

mBERT 15.24 713.33 74.7 15.30 710.97 88.4 16.10 748.34 78.13
CANINE-S 21.04 573.48 70.5 20.96 574.57 86.1 26.89 1006.74 74.13
mT5 40.94 1204.19 72.7 171.99 1207.76 80.7 281.52 1253.13 72.05
ByT5 36.49 1221.54 74.7 333.72 1224.40 83.0 286.76 1948.30 74.48

Table 3: Inference latency (ms), peak GPU memory (mb), best average performance of each model in the three tasks
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Model en ar bg de el es fr hi ru sw th tr ur vi zh avg

Zero-shot (en)
mBERT 82.0 64.1 67.5 70.4 65.5 73.7 72.8 59.3 67.4 50.2 53.2 60.2 57.5 68.7 68.1 65.4
CANINE-S 77.7 50.1 60.1 62.4 53.7 67.6 66.0 43.7 60.7 40.4 39.6 47.9 41.1 53.1 43.2 53.8
CANINE-C 77.1 53.1 61.4 63.5 58.3 68.5 66.4 47.7 63.3 41.0 39.2 48.8 44.4 53.4 39.1 55.0
mT5-Small 79.0 61.3 66.0 64.4 67.4 65.9 62.4 59.7 66.6 52.2 64.1 57.9 56.4 57.3 63.9 63.0
ByT5-Small 80.9 65.9 70.2 71.2 67.7 76.5 75.0 58.6 67.9 62.4 58.4 63.6 55.6 69.5 64.9 67.2

Single-language
mBERT 82.0 70.6 76.2 76.6 75.1 77.7 77.4 67.0 74.8 66.3 65.7 72.5 62.9 75.9 76.4 73.1
CANINE-S 77.7 65.8 70.6 72.4 68.6 73.8 73.4 61.2 69.7 61.5 59.9 66.6 58.0 67.4 57.2 66.9
CANINE-C 77.1 66.2 71.1 72.0 69.8 72.8 72.6 62.3 68.6 60.8 57.1 65.7 58.2 67.3 60.0 66.8
mT5-Small 79.0 65.4 69.9 72.0 73.6 73.1 74.8 65.2 70.3 63.2 69.7 67.6 58.9 69.2 71.0 69.5
ByT5-Small 80.9 72.9 75.4 75.8 75.1 77.7 76.4 68.3 73.4 67.5 70.0 72.6 63.0 72.7 72.5 73.0

Multilingual
mBERT 83.5 73.2 77.7 77.5 75.7 79.8 78.6 70.1 76.4 68.1 67.2 73.8 64.4 76.5 77.9 74.7
CANINE-S 79.1 69.7 75.0 74.9 72.5 76.3 75.3 65.2 73.0 65.0 62.3 68.9 64.1 71.3 65.6 70.5
CANINE-C 78.0 68.5 73.7 74.1 72.9 75.7 74.9 63.8 71.7 64.4 57.7 67.9 62.6 69.7 58.7 69.0
mT5-Small 79.9 70.3 74.7 74.9 74.4 76.5 75.5 67.7 73.7 68.1 71.2 71.9 65.4 72.4 73.2 72.7
ByT5-Small 81.0 73.3 77.8 76.5 76.5 78.5 77.2 70.0 75.6 71.3 71.4 73.6 68.3 75.7 74.1 74.7

Table 4: XNLI Performance (Accuracy)

Model en ar bn de el es fi fr hi id ja ko ru sw ta te th tr ur zh avg

Zero-shot (en)
mBERT 84.2 41.7 68.2 78.2 71.4 71.8 77.3 78.0 64.5 51.6 29.2 59.7 65.6 71.4 51.0 50.4 0.4 73.9 33.3 43.1 58.2
CANINE-S 80.8 29.6 49.6 70.7 63.5 66.4 66.7 74.1 41.1 47.3 0.5 29.3 57.7 59.8 28.4 19.7 0.1 55.8 22.0 5.4 43.4
CANINE-C 81.1 38.3 56.9 70.9 66.4 64.8 68.0 73.5 43.4 46.6 1.8 28.7 61.7 58.9 36.9 21.6 0.2 58.9 29.8 8.1 45.8
mT5-Small 71.9 32.9 56.6 67.1 42.3 70.0 65.1 75.3 56.2 45.3 25.5 23.9 36.9 49.0 38.0 35.9 3.6 58.7 58.7 31.3 47.2
ByT5-Small 73.8 45.9 61.5 70.7 67.7 79.4 67.1 77.4 57.1 46.2 31.3 26.2 46.7 60.2 31.9 27.9 9.6 23.3 1.3 32.8 46.9

Single-language
mBERT 84.2 89.6 96.1 90.3 91.4 92.5 92.2 91.2 91.2 93.6 74.4 88.8 89.4 90.0 86.5 80.4 76.2 93.2 95.7 83.1 88.5
CANINE-S 80.8 84.9 92.9 88.0 88.6 89.7 89.1 88.9 84.9 90.9 63.3 81.6 86.5 87.7 81.0 49.9 70.5 90.9 91.0 73.2 82.7
CANINE-C 81.1 85.1 93.5 87.5 89.1 89.8 88.4 88.4 84.3 90.6 60.2 79.5 87.3 86.5 79.6 43.0 74.0 90.6 92.4 68.9 82.0
mT5-Small 71.9 86.5 86.6 83.7 83.8 88.0 87.8 86.7 85.5 85.3 65.9 80.2 64.0 71.0 82.6 74.5 64.6 86.3 93.0 75.1 80.1
ByT5-Small 73.8 85.3 88.3 82.4 87.6 86.6 86.4 84.7 83.0 84.5 69.9 83.2 62.6 84.5 80.3 69.1 74.5 83.4 90.5 73.2 80.7

Multilingual
mBERT 85.4 89.6 95.9 89.8 91.3 92.9 92.0 91.2 89.3 93.4 74.9 88.1 89.2 90.9 86.0 80.6 76.5 93.1 95.5 82.3 88.4
CANINE-S 84.1 88.0 94.7 89.3 90.7 92.1 91.1 90.9 85.8 92.8 69.3 83.8 88.8 89.6 81.7 71.3 76.2 92.4 94.0 75.7 86.1
CANINE-C 84.1 87.8 95.6 89.2 91.1 92.5 90.7 90.9 88.2 92.6 67.9 81.5 88.9 90.0 81.6 69.5 77.7 92.0 93.7 72.1 85.9
mT5-Small 72.5 86.8 84.5 84.8 83.4 88.7 88.3 87.7 83.6 87.2 70.1 83.1 64.8 72.3 82.3 69.8 67.8 86.9 92.4 76.5 80.7
ByT5-Small 73.5 87.7 88.4 86.1 88.7 90.3 89.9 89.3 84.7 87.3 70.3 83.8 66.3 84.3 81.8 78.0 72.6 88.6 92.6 76.5 83.0

Table 5: NER Performance (F1)
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Model en ar bn fi id ko ru sw te avg

Zero-shot (en)
mBERT 73.64 60.11 45.1 57.63 63.78 52.16 57.52 56.51 42.15 56.51
CANINE-S 64.78 44.85 20.13 39.73 43.78 13.67 44.49 30.64 31.59 37.07
CANINE-C 63.96 42.19 22.05 43.13 36.87 17.44 42.02 33.3 30.51 36.83
mT5-Small 59.39 43.25 22.51 44.27 48.7 22.05 44.85 33.08 28.77 38.54
ByT5-Small 64.58 56.4 15.86 51.91 55.85 22.21 54.11 35.44 31.43 43.09

Single-language
mBERT 73.64 79.86 70.78 76.08 79.93 62.76 72.48 79.81 81.21 75.17
CANINE-S 64.78 79.2 55.81 70.13 70.0 49.53 67.15 71.26 81.75 67.73
CANINE-C 63.96 77.79 50.92 67.28 66.26 49.84 66.49 71.39 82.78 66.3
mT5-Small 59.39 73.07 67.92 65.33 73.65 54.93 66.13 71.49 80.93 68.09
ByT5-Small 64.58 75.82 69.91 71.98 80.55 58.65 71.09 78.81 85.39 72.97

Multilingual
mBERT 76.02 81.49 72.86 80.41 84.87 67.09 74.45 82.42 83.52 78.13
CANINE-S 71.55 80.53 67.24 75.42 78.44 61.25 71.75 77.43 83.53 74.13
CANINE-C 71.56 80.74 62.6 74.21 76.28 65.79 72.66 79.71 84.43 74.22
mT5-Small 64.39 75.34 76.89 70.01 76.73 59.24 67.86 76.62 81.35 72.05
ByT5-Small 69.42 75.86 70.9 74.52 79.78 60.62 73.01 80.32 85.93 74.48

Table 6: TyDi QA-GoldP Performance (F1)

Model en ar bn fi id ja sw ko ru te th avg

MINSPAN

mBERT 65.1 83.1 66.7 69.0 65.8 53.0 71.7 62.8 66.4 87.1 64.5 69.0
CANINE-S 61.4 83.2 64.7 66.6 63.9 49.5 67.8 56.7 63.0 82.5 61.0 65.9
CANINE-C 58.8 82.6 58.7 64.7 64.3 50.8 65.1 56.2 64.4 83.9 61.5 65.2

SELECTP
mBERT 51.1 73.6 56.6 59.0 56.8 43.6 64.7 48.2 50.8 83.1 53.4 59.0
CANINE-S 49.2 71.5 56.4 58.3 54.6 41.5 60.1 40.5 49.3 77.2 50.7 56.0
CANINE-C 47.4 71.0 46.5 53.8 54.4 40.2 56.0 34.0 48.8 78.0 49.1 53.2

Table 7: TyDi QA Primary Task Performance (F1)

Language Wikipedia (Number of docs) mC4 (Number of examples)

English 2.5M 3B
Russian 319K 756M
Arabic 77K 53M
Swahili 7K 985K

Table 8: Pretraining corpus sizes for languages used in § 4.1 experiments. The number of Wikipedia documents per
language can be found here: https://en.wikipedia.org/wiki/Wikipedia:Multilingual_statistics
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