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Abstract

Demographic factors (e.g., gender or age)
shape our language. Previous work showed
that incorporating demographic factors can
consistently improve performance for various
NLP tasks with traditional NLP models. In
this work, we investigate whether these pre-
vious findings still hold with state-of-the-art
pretrained Transformer-based language mod-
els (PLMs). We use three common specializa-
tion methods proven effective for incorporat-
ing external knowledge into pretrained Trans-
formers (e.g., domain-specific or geographic
knowledge). We adapt the language representa-
tions for the demographic dimensions of gender
and age, using continuous language modeling
and dynamic multi-task learning for adaptation,
where we couple language modeling objectives
with the prediction of demographic classes.
Our results, when employing a multilingual
PLM, show substantial gains in task perfor-
mance across four languages (English, German,
French, and Danish), which is consistent with
the results of previous work. However, con-
trolling for confounding factors – primarily do-
main and language proficiency of Transformer-
based PLMs – shows that downstream perfor-
mance gains from our demographic adaptation
do not actually stem from demographic knowl-
edge. Our results indicate that demographic
specialization of PLMs, while holding promise
for positive societal impact, still represents an
unsolved problem for (modern) NLP.

1 Introduction

Demographic factors like social class, education,
income, age, or gender, categorize people into spe-
cific groups or populations. At the same time,
demographic factors both shape and are reflected
in our language (e.g., Trudgill, 2000; Eckert and
McConnell-Ginet, 2013). A large body of work
focused on modeling demographic language vari-

ation, especially the correlations between words
and demographic factors (Bamman et al., 2014;
Garimella et al., 2017; Welch et al., 2020, inter
alia). In a similar vein, Volkova et al. (2013) and
Hovy (2015) demonstrated that explicitly incorpo-
rating demographic information in language repre-
sentations improves performance on downstream
NLP tasks, e.g., topic classification or sentiment
analysis. However, these observations rely on ap-
proaches that leverage gender-specific lexica to spe-
cialize word embeddings and text encoders (e.g., re-
current networks) that have not been pretrained for
(general purpose) language understanding. To date,
the benefits of demographic specialization have not
been tested with Transformer-based (Vaswani et al.,
2017) pretrained language models (PLMs), which
have been shown to excel on the vast majority of
NLP tasks and even surpass human performance in
some cases (Wang et al., 2018).

More recent studies focus mainly on monolin-
gual English datasets and introduce demographic
features in task-specific fine-tuning (Voigt et al.,
2018; Buechel et al., 2018), which limits the bene-
fits of demographic knowledge to tasks at hand. In
this work, we investigate the (task-agnostic) demo-
graphic specialization of PLMs, aiming to impart
the associations between demographic categories
and linguistic phenomena into the PLMs parame-
ters. If successful, such specialization could benefit
any downstream NLP task in which demographic
factors (i.e., demographically conditioned language
phenomena) matter. For this, we adopt intermedi-
ate training paradigms that have been proven effec-
tive for the specialization of PLMs for other types
of knowledge, e.g., in domain, language, and geo-
graphic adaptation (Glavaš et al., 2020; Hung et al.,
2022a; Hofmann et al., 2022). To this effect, we
perform (i) continued language modeling on text
corpora produced by a demographic group and (ii)
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dynamic multi-task learning (Kendall et al., 2018),
wherein we combine language modeling with the
prediction of demographic categories.

We evaluate the effectiveness of the demo-
graphic PLM specialization on both intrinsic (de-
mographic category prediction) and extrinsic (sen-
timent classification and topic detection) evalua-
tion tasks across four languages: English, German,
French, and Danish, using a multilingual corpus
of reviews (Hovy et al., 2015) annotated with de-
mographic information. In line with earlier find-
ings (Hovy, 2015), our initial experiments based
on a multilingual PLM (mBERT; Devlin et al.,
2019), render demographic specialization effec-
tive: we observe gains in most tasks and settings.
Through a set of controlled experiments, where
we (1) adapt with in-domain language modeling
alone, without leveraging demographic informa-
tion, (2) demographically specialize monolingual
PLMs of evaluation languages, (3) carry out a meta-
regression analysis over dimensions that drive the
performance, and (4) analyze the topology of the
representation spaces of demographically special-
ized PLMs, we show, however, that most of the
original gains can be attributed to confounding ef-
fects of language and/or domain specialization.

Our findings indicate that specialization ap-
proaches, proven effective for other types of knowl-
edge, fail to adequately instill demographic knowl-
edge into PLMs, making demographic specializa-
tion of NLP models an open problem in the age
of large pretrained Transformers. Our research
code is publicly available at: https://github.
com/umanlp/SocioAdapt.

2 Demographic Adaptation

Our goal is to inject demographic knowledge
through intermediate PLM training in a task-
agnostic manner. To achieve this goal, we
train the PLM in a dynamic multi-task learning
setup (Kendall et al., 2018), in which we couple
masked language modeling (MLM-ing) with pre-
dicting the demographic category – gender or age
group of the text author. Such multi-task learning
setup is designed to force the PLM to learn associ-
ations between the language constructs and demo-
graphic groups, if these associations are salient in
the training corpora.

Masked Language Modeling (MLM). Follow-
ing successful work on pretraining via language
modeling for domain-adaptation (Gururangan et al.,

2020; Hung et al., 2022a), we investigate the effect
of running standard MLM-ing on the text corpora
of a specific demographic dimension (e.g., gender-
related corpora). We compute the MLM loss Lmlm

in the common way, as negative log-likelihood of
the true token probability.

Demographic Category Prediction. In the
multi-task learning setup, the representation of the
input text, as output by the Transformer, is addition-
ally fed into a classification head that predicts the
corresponding demographic category: age (below
35 and above 451), and gender (female and male).
The demographic prediction loss Ldem is computed
as the standard binary cross-entropy loss.

We experiment with two different ways of
predicting the demographic category of the text:
(i) from the transformed representation of the se-
quence start token ([CLS]) and (ii) from the contex-
tualized representations of each masked token. We
hypothesized that the former variant, in which we
predict the demographic class from the [CLS] to-
ken representation, would establish links between
more complex demographically condition linguis-
tic phenomena (e.g., syntactic patterns or patterns
of compositional semantics that a demographic
group might exhibit), whereas the latter – pre-
dicting demographic class from representations of
masked tokens – is more likely to establish simpler
lexical links, i.e., capture the vocabulary differ-
ences between the demographic groups.

Multi-Task Learning. Since both losses can
be computed from the same input instances, we
opt for joint multi-task learning (MTL) and re-
sort to dynamic MTL based on the homoscedastic
uncertainty of the losses, wherein the loss vari-
ances are used to balance the contributions of the
tasks (Kendall et al., 2018). The intuition is that
more effective MTL occurs if we dynamically as-
sign less importance to more uncertain tasks, as
opposed to assigning uniform task weights through-
out the whole training. Homoscedastic uncertainty
weighting in MTL has been effective in different
NLP settings (Lauscher et al., 2018; Hofmann et al.,
2022). In our scenario, Lmlm and Ldem are mea-
sured on different scales in which the model would
favor (i.e., be more confident for) one objective
than the other. The confidence level of the model
prediction for each task would change throughout

1As suggested by Hovy (2015) the split for the age ranges
result in roughly equally-sized data sets for each sub-group
and is non-contiguous, avoiding fuzzy boundaries.
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the training progress: this makes dynamic weight-
ing desirable. We dynamically prioritize the tasks
via homoscedastic uncertainties σt:

L̃t =
1

2σ2
t

Lt + log σt , (1)

where σ2
t is the variance of the task-specific loss

over training instances for quantifying the uncer-
tainty of the task t ∈ {mlm, dem}. In practice,
we train the network to predict the log variance,
ηt := log σ2

t , since it is more numerically stable
than regressing the variance σ2

t , as the log avoids
divisions by zero. The adjusted losses are then
computed as:

L̃t =
1

2
(e−ηtLt + ηt) . (2)

The final loss we minimize is the sum of the two
uncertainty-adjusted losses: L̃mlm + L̃dem.

3 Experimental Setup

Here we describe evaluation tasks and provide de-
tails on the data used for demographic specializa-
tion and downstream evaluation.

Evaluation Tasks. We follow Hovy (2015) and
measure the effects of demographic specialization
of PLMs on three text-classification tasks, coupling
intrinsic demographic attribute classification (AC)
with two extrinsic text classification tasks: senti-
ment analysis (SA) and topic detection (TD). As
an intrinsic evaluation task, AC directly tests if the
intermediate demographic specialization results in
a PLM that can be more effectively fine-tuned to
predict the same demographic classes used in the
intermediate specialization: PLMs (vanilla PLM
and our demographically specialized counterpart)
– are fine-tuned in a supervised fashion to predict
the demographic class (gender or age) of the text
author. SA is a ternary classification task in which
the reviews with ratings of 1, 3, and 5 stars rep-
resent instances of negative, neutral, and positive
class, respectively. TD classifies texts into 5 differ-
ent topic categories. We report the F1-measure for
each task following Hovy (2015).

Data. We carry out our core experimentation on
the multilingual demographically labeled dataset
of reviews (Hovy et al., 2015), created from the
internationally popular user review website Trust-
pilot.2 For comparison and consistency, we work
with exactly the same data portions as Hovy (2015):

2https://www.trustpilot.com/

collections that cover (1) two most prominent de-
mographic dimensions – gender and age, with two
categories in each (gender: male or female; age:
below 35 or above 453) and (2) five countries (four
languages): United States (US), Denmark, Ger-
many, France, and United Kingdom (UK).

To avoid any information leakage, we ensure –
for each country-demographic dimension collec-
tion (e.g., US, gender) – that there is zero overlap
between the portions we select for intermediate
demographic specialization and portions used for
downstream fine-tuning and evaluation (for AC,
SA, and TD). For TD, we aim to eliminate the con-
founding effect of demographically-conditioned
label distributions (e.g., female authors wrote re-
views for clothing store more frequently than male
authors; vice-versa for electronics & technology).
To this effect, we select, for each country, reviews
from the five most frequent topics and sample the
same number of reviews in each topic for both de-
mographic groups (i.e., male and female for gender;
below 35 and above 45 for age). For the intrinsic
AC task (i.e., fine-tuning to predict either gender or
age category), we report the results for two differ-
ent review collections: the first is the set of reviews
that have, besides the demographic classes, been
annotated with sentiment labels (we refer to this as
AC-SA) and the second are the reviews that have
topic labels (i.e., product/service category; we refer
to this portion as AC-TD). For these fine-tuning
and evaluation datasets, we make sure that the two
demographic classes (male and female for gender
under 35 and above 45 for age) are equally repre-
sented in each dataset portion (train, development,
and test). Table 1 displays the numbers of reviews
for each country, demographic aspect, and dataset
portion (specialization vs. fine-tuning).

For intermediate specialization of the multilin-
gual model, we randomly sample 100K instances
per demographic group from the gender specializa-
tion portion and 50K instances each from the texts
reserved for age specialization concatenated across
all 5 countries. For the specialization of monolin-
gual PLMs, we randomly sample the same number
of instances but from the specialization portions
of a single country. Following the established pro-
cedure (e.g., Devlin et al., 2019; Liu et al., 2019),
we dynamically mask 15% of the tokens in the
demographic specialization portions for MLM.

3As suggested by Hovy (2015), the split for the age ranges
results in roughly equally-sized data sets for each sub-group
and is non-contiguous, avoiding fuzzy boundaries.
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gender age

Country Language Specialization SA, AC-SA TD, AC-TD Specialization SA, AC-SA TD, AC-TD

F M F / M <35 >45 <35 / >45

Denmark Danish 1,596,816 2,022,349 250,485 120,805 833,657 494,905 75,300 44,815
France French 489,778 614,495 67,305 55,570 40,448 36,182 6,570 6,120
Germany German 210,718 284,399 28,920 30,580 66,342 47,308 5,865 8,040
UK English 1,665,167 1,632,894 156,630 183,995 231,905 274,528 26,325 22,095
US English 575,951 778,877 72,270 61,585 124,924 70,015 6,495 12,090

Table 1: Number of instances in different portions of the Trustpilot dataset (Hovy et al., 2015) used in our
experiments. For each country (Denmark, France, Germany, UK, and US), we report the size of the specialization
and fine-tuning portions, the latter for each of the two extrinsic tasks: Sentiment Analysis (SA) and Topic Detection
(TD). Note that we use the same SA and TD reviews for the intrinsic AC tasks of predicting the demographic
categories (denoted AC-SA and AC-TD, respectively). Numbers are shown separately for the two demographic
dimensions: gender and age. For fine-tuning datasets (for SA/AC-SA, and for TD/AC-TD), we indicate the number
of instances in each category (which is the same for both categories: F and M for gender, <35 and >45 for age). We
split the fine-tuning datasets randomly into train, validation, and test portions in the 60/20/20 ratio.

Pre-trained language models. Given that we
experiment with Trustpilot data in four different
languages, in our core experiments, we resorted
to multilingual BERT (mBERT)4 (Devlin et al.,
2019) as the starting PLM. This allows us to merge
the (fairly large) specialization portions of Trust-
pilot in different languages (see Table 1) and run
a single multilingual demographic specialization
procedure on the combined multilingual review
corpus. We then fine-tune the demographically-
specialized mBERT and evaluate downstream task
performance separately for each of the five coun-
tries (using train, development, and test portions
of the respective country). We report the results
for two different variants of our dynamic multi-
task demographic specialization (DS): (1) when
the demographic category is predicted from rep-
resentations of masked tokens (DS-Tok) and (2)
when we predict the demographic category from
the encoding of the whole sequence (i.e., review;
this version is denoted with DS-Seq). We com-
pare these demographic-specialized PLM variants
against two baselines: vanilla PLM and PLM spe-
cialized on the same review corpora as our MTL
variants but only via MLM-ing (i.e., without pro-
viding the demographic signal).

Training and Optimization. In demographic
specialization training, we fix the maximum se-
quence length to 128 subword tokens. We train for
30 epochs in batches of 32 instances and search
for the optimal learning rate among the follow-
ing values: {5 · 10−5, 1 · 10−5, 1 · 10−6}. We ap-
ply early stopping based on the development set
performance: we stop if the joint MTL loss does

4We load the bert-base-multilingual-cased weights
from HuggingFace Transformers.

not improve for 3 epochs). For downstream fine-
tuning and evaluation, we train for maximum 20
epochs in batches of 32. We search for the op-
timal learning rate between the following values:
{5·10−5, 1·10−5, 5·10−6, 1·10−6} and apply early
stopping based on the validation set performance
(patience: 5 epochs). We use AdamW (Loshchilov
and Hutter, 2019) as the optimization algorithm.

4 Results and Discussion

We first discuss the results of multilingual demo-
graphic specialization with mBERT as the PLM
(§4.1). We then provide a series of control experi-
ments in which we isolate the effects that contribute
to performance gains of demographically special-
ized PLMs (§4.2).

4.1 Multilingual Specialization Results

Table 2 shows the results of gender- and age-
specialized mBERT variants – DS-Seq and DS-
Tok – on gender and age classification (AC-SA and
AC-TD) as intrinsic tasks together with sentiment
analysis (SA) and topic detection (TD) as extrinsic
evaluation tasks, for each of the five countries en-
compassed by the Trustpilot datasets (Hovy et al.,
2015). The performance of DS-Seq and DS-Tok is
compared against the PLM baselines that have not
been exposed to demographic information: vanilla
mBERT and mBERT with additional MLM-ing
on the same Trustpilot data on which DS-Seq and
DS-Tok were trained.

Our demographically specialized models gen-
erally outperform the vanilla mBERT across the
board, both on intrinsic and extrinsic tasks, un-
surprisingly with much more prominent gains on
the former. The comparison against the domain-
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Demographic: gender Demographic: age

Gender class. SA TD Age class. SA TD

Country Model AC-SA AC-TD F M X F M X AC-SA AC-TD <35 >45 X <35 >45 X

Denmark

mBERT 64.0 61.8 69.2 64.8 67.2 59.3 58.3 59.0 57.2 64.5 62.7 62.7 62.9 56.1 52.2 53.4
MLM 65.2 63.4 69.5 65.8 67.8 59.7 58.8 59.4 65.5 65.1 63.3 62.1 63.0 57.1 52.6 54.1

DS-Seq 64.9 63.5 69.9 65.7 67.7 59.7 57.8 59.1 65.2 65.2 63.1 62.9 63.0 56.9 53.3 54.5
DS-Tok 65.0 63.5 69.1 65.6 68.0 59.9 58.9 59.0 65.3 64.6 64.2 63.3 63.2 56.2 53.2 54.3

Germany

mBERT 59.5 57.9 66.1 63.2 64.5 67.8 65.6 65.8 58.0 56.9 52.6 55.0 55.0 60.1 55.3 57.1
MLM 61.2 60.1 67.7 65.3 66.1 68.6 67.0 67.1 61.1 58.9 53.6 55.5 56.7 61.5 56.5 58.7

DS-Seq 60.1 60.3 66.7 64.0 65.7 67.6 65.7 66.4 56.4 58.2 53.8 55.3 55.5 60.8 57.6 59.3
DS-Tok 62.9 58.3 66.8 64.3 66.8 68.3 67.0 66.7 56.6 57.4 53.0 56.5 56.7 59.3 56.5 59.3

US

mBERT 62.6 58.1 66.3 64.4 66.0 71.2 68.4 70.2 62.9 60.7 57.7 57.9 57.8 68.0 64.3 64.3
MLM 63.3 59.6 67.3 66.2 66.9 72.1 69.4 70.3 63.6 61.9 59.4 57.8 58.2 69.0 64.2 65.2

DS-Seq 63.8 59.2 67.2 66.3 67.0 72.3 69.2 70.4 60.7 61.5 59.3 57.9 58.0 69.8 64.4 65.8
DS-Tok 62.2 58.8 68.0 66.4 67.3 72.8 69.5 70.5 59.7 61.2 59.9 58.6 57.8 69.2 65.4 64.9

UK

mBERT 61.9 63.1 71.0 69.0 69.7 70.4 67.9 68.9 65.1 65.2 63.8 63.9 63.7 64.7 67.1 66.3
MLM 63.0 65.3 72.0 70.4 71.0 70.6 67.9 69.8 65.4 65.6 62.8 62.0 63.0 65.1 67.3 67.3

DS-Seq 63.4 64.9 72.9 70.9 71.7 70.6 68.2 69.8 65.3 62.8 63.8 64.9 64.9 66.0 68.1 66.5
DS-Tok 63.5 65.6 73.0 71.0 71.9 70.8 68.2 69.9 64.0 62.8 64.6 65.2 65.1 66.4 67.3 67.6

France

mBERT 63.9 61.2 69.3 67.0 67.8 44.6 42.4 43.1 55.7 56.6 59.6 57.4 61.5 52.0 47.1 49.0
MLM 64.6 62.1 69.9 67.1 68.4 45.8 43.3 44.3 56.8 57.2 59.9 59.5 61.6 52.5 47.2 50.3

DS-Seq 64.1 63.1 70.6 67.3 68.4 46.0 43.4 44.2 55.1 55.5 60.4 60.3 62.8 51.1 47.3 50.3
DS-Tok 65.0 62.9 70.1 67.5 68.8 45.5 43.9 44.4 54.4 55.9 60.9 59.8 59.7 50.2 48.0 50.8

Average

mBERT 62.4 60.4 68.4 65.7 67.0 62.7 60.5 61.4 59.8 60.8 59.3 59.4 60.2 60.2 57.2 58.0
MLM 63.5 62.1 69.3 67.0 68.0 63.4 61.3 62.2 62.5 61.7 59.8 59.4 60.5 61.0 57.6 59.1

DS-Seq 63.3 62.2 69.5 66.8 68.1 63.2 60.9 62.0 60.5 60.6 60.1 60.3 60.8 60.9 58.1 59.3
DS-Tok 63.7 61.8 69.4 67.0 68.6 63.5 61.5 62.1 60.0 60.4 60.5 60.7 60.5 60.3 58.1 59.4

Table 2: Results of gender-specialized (age-specialized) multilingual BERT (DS-Seq and DS-Tok) on gender (age)
classification (AC-SA and AC-TD) as intrinsic task and sentiment analysis (SA) and topic detection (TD) as extrinsic
evaluation tasks. Comparisons against the vanilla mBERT and mBERT additionally trained on the same review
corpora but without demographic information, only with masked language modeling (MLM). For SA and TD, we
separately report the performance on the test sets consisting of only one demographic class (gender: F and M, age:
<35 and >45) as well as on the mixed test sets containing reviews from both demographic classes (X for both gender
and age). Bold numbers indicate the best-performing model (between mBERT, MLM, DS-Seq and DS-Tok) for
each country-task combination.

adaptation in which mBERT was intermediately
trained only MLM-ed on Trustpilot reviews, but
without demographic category prediction, however,
reveals that much of the gains that DS-Seq and DS-
Tok have over vanilla mBERT stem from domain
adaptation: somewhat surprisingly, DS models fall
behind MLM-based domain adaptation on the in-
trinsic tasks of gender/age classification (e.g., for
age group classification on AC-SA, the DS variants
fall short of MLM by 2 F1 points), while exhibit-
ing small but fairly consistent gains over MLM for
extrinsic SA and TD tasks, both in gender and age
intermediate specialization. Although the gains are
not particularly convincing, the SA and TD still
seem to favor intermediate demographic special-
ization, which is in line with findings from Hovy
(2015), who also reported small but (mostly) con-
sistent gains for these two tasks.

4.2 Control Experiments

To more precisely measure the contributions of de-
mographic information that DS-* variants incorpo-
rate, we design further experiments that control for
two key side-effects of demographic specialization:
(i) language specialization and (ii) domain adapta-
tion. We then carry out the meta-regression analy-
sis to tease out the individual contributions of lan-
guage, domain, and demographic knowledge on the
performance difference between vanilla mBERT
and respective intermediately specialized models
(mBERT or monolingual BERT specialized on the
data of the same or different domain with or with-
out demographic signal). Finally, we compare the
representations spaces of the PLMs – before and
after demographic specialization – along the demo-
graphic dimension.

Controlling for Language Proficiency. Mas-
sively multilingual Transformers (MMTs) like
mBERT or XLM-R (Conneau et al., 2020) suffer
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from the curse of multilinguality (Conneau et al.,
2020; Lauscher et al., 2020b; Pfeiffer et al., 2020):
given a fixed capacity of the Transformer, the repre-
sentations from an MMT for any individual (high-
resource) language will be of lower quality than
those of the monolingual PLM, as MMTs share
their limited capacity over many languages. It is
thus possible that demographic specialization of
mBERT on Trustpilot data in our four languages
leads to substantial gains over vanilla mBERT (pre-
trained on 104 languages) primarily because of
mBERT’s acquisition of additional language com-
petencies for these four languages.

To test this, we additionally execute demo-
graphic specialization individually for each lan-
guage (i.e., as opposed to a single multilingual
specialization), starting from a monolingual PLM
of that language5. Monolingual PLMs produce
higher quality representations for their respective
language than mBERT. Because of this, we hypoth-
esize that subjecting them to demographic special-
ization on Trustpilot is unlikely to improve their
“command” of the language substantially. Conse-
quently, should we still see (downstream) gains
from demographic specialization for monolingual
PLMs, we can be more confident that they stem
from the injected demographic information.

Table 3 shows the effects of demographic special-
ization on monolingual PLMs of the four languages.
For brevity (full results in the Appendix), we aver-
age the demographic attribute classification (AC)
results from two different test portions from Table
2 (having labels for different downstream tasks,
AC-SA and AC-TD); for extrinsic tasks, SA and
TD, we report only the score on demographically
balanced test sets (denoted “X” in Table 2). The
results show that, when we control for language
proficiency (as monolingual PLMs are more pro-
ficient in their respective language than mBERT),
the downstream gains of demographic specializa-
tion (on SA and TD) vanish. The DS-Seq and
DS-Tok still retain marginal numeric (statistically
insignificant) gains over MLM in gender-based spe-
cialization, but they lag behind in age-based spe-
cialization. Also, both DS-* variants and MLM
display only marginal gains with respect to vanilla
monolingual BERT models of the four languages:
e.g., in gender-specialization and for SA, DS-Tok

5We use the following monolingual PLMs from Hugging-
Face: bert-base-cased, bert-base-german-cased,
dbmdz/bert-base-french-europeana-cased and
Maltehb/danish-bert-botxo.

Gender Age

Country Model AC SA TD AC SA TD

Denmark

BERT 65.0 70.4 59.9 66.5 66.0 56.3
MLM 65.1 70.3 60.6 67.4 67.6 57.6

DS-Seq 65.2 70.6 60.0 67.1 67.1 56.5
DS-Tok 65.1 70.6 60.8 67.2 67.2 56.7

Germany

BERT 59.4 64.3 67.8 58.8 57.1 58.3
MLM 60.9 65.4 67.7 60.1 58.1 59.9

DS-Seq 60.1 66.2 67.8 59.8 55.8 59.1
DS-Tok 60.6 66.0 67.9 58.9 54.0 59.2

US

BERT 61.5 67.1 71.0 64.1 57.2 67.2
MLM 61.7 67.8 71.3 64.1 60.4 66.7

DS-Seq 61.6 68.0 71.6 65.2 59.4 67.1
DS-Tok 62.1 67.9 71.6 64.3 59.4 66.7

UK

BERT 64.1 72.3 70.1 65.8 65.5 68.0
MLM 64.3 72.6 70.0 66.5 66.9 70.0

DS-Seq 64.2 72.4 70.2 65.9 67.6 69.4
DS-Tok 64.1 72.2 70.3 66.0 67.1 69.2

France

BERT 63.6 68.6 45.1 56.5 60.3 49.6
MLM 64.1 67.6 45.5 56.4 61.6 50.2

DS-Seq 63.7 69.3 45.3 56.1 62.0 50.2
DS-Tok 63.7 69.5 45.6 56.3 61.5 50.3

Average

BERT 62.7 68.5 62.8 62.3 61.2 59.9
MLM 63.2 68.7 63.0 62.9 62.9 60.9

DS-Seq 62.9 69.3 63.0 62.8 62.4 60.5
DS-Tok 63.1 69.2 63.2 62.5 61.8 60.4

Table 3: Results of gender/age-specialized monolin-
gual PLMs – DS-Seq and DS-Tok – on demographic
attribute classification (AC), sentiment analysis (SA)
and topic detection (TD). Bold numbers indicate the
best-performing model (between BERT, MLM, DS-Seq
and DS-Tok) for each country-task combination.

has an average advantage of 0.7 F1 over the non-
specialized vanilla monolingual BERTs; compare
this to a gain of 1.6 F1 points that mBERT-based
DS-Tok has over vanilla mBERT (Table 2). These
results question the downstream usefulness of de-
mographic specialization – suggested by findings
from prior work (Hovy, 2015) and our results for
multilingual PLMs (Table 2) – if one starts from
the most proficient PLM for the concrete language
at hand, i.e., a monolingual PLM.

Controlling for Domain Knowledge. Both sim-
ple additional MLM-ing on Trustpilot data, as
well as multi-task demographic specialization train-
ing (DS-* variants), inject knowledge about the
domain-specific language of reviews into the PLM.
As shown by previous work (Glavaš et al., 2020;
Diao et al., 2021; Hung et al., 2022a), domain
adaptation generally leads to better downstream
performance on in-domain data for any task. We
next investigate to which extent the domain special-
ization is responsible for performance gains. To
this end, we perform demographic specialization
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Figure 1: Evaluation results on Trustpilot for Sentiment Analysis (SA) and Topic Detection (TD) when running the
intermediate specialization on out-of-domain data (RtGender (Voigt et al., 2018) for gender and BAC (Schler et al.,
2006) for age). We report the delta in F1-score in comparison to the specialization on Trustpilot in-domain data.

Task Selected features all -D -M -S -C -A

gender

AC-SA US (1.0); Denmark (0.9);
MLM (0.9); DS-Tok (0.9); 0.51 - 0.56 - 0.63 0.62

AC-TD MLM (1.0); Monoling (1.0)
DS-Tok (0.9); 0.51 - 0.73 - 0.54 0.66

SA
France (1.0); DS-Tok (1.0);
Denmark (0.8); MLM (0.8);
In-domain (0.6)

0.92 0.94 0.95 0.94 0.97 0.98

TD DS-TOK (0.6); MLM (0.5);
In-domain (0.5) 0.33 0.36 0.35 0.34 0.35 0.40

age

AC-SA Denmark (3.0);
MLM (1.5); Monoling (0.9) 1.93 - 1.98 - 2.31 2.02

AC-TD UK (2.1); France (1.4);
MLM (0.9); 0.68 - 0.69 - 1.02 0.82

SA In-domain (1.3);
DS-Tok (1.0); MLM (0.9); 0.96 1.03 0.97 0.97 0.98 1.03

TD Denmark (1.6); <35 (0.7);
DS-Seq (0.6); DS-Tok (0.6) 1.52 1.53 1.53 1.55 1.61 1.54

Table 4: Results of meta-regression analysis. We report
the goodness-of-fit (RMSE) results for predicting deltas
in downstream performance between specialized mod-
els and their respective vanilla PLM. Results reported
for three tasks – intrinsic demographic attribute classifi-
cation (AC; on datasets AC-SA and AC-TD), Sentiment
Analysis (SA), and Topic Detection (TD) with both de-
mographic factors, gender and age. We compare the
results across different feature sets – for all features (all),
and excluding individual features: domain (-D), mono-
vs. multilingual (-M), fine-tuning demographic setting
(e.g., F vs. M vs. X for gender; -S), country (-C), and
the adaptation approach (i.e., MLM vs. DS-Tok vs. DS-
Seq; -A). For each task, when including all features
(column: in), we list the most important features, those
with weights > 0.5 (selected features).

on (demographically labeled) training data from
a different domain: for gender specialization, we
use the RtGender (Voigt et al., 2018) consisting of
social media posts collected from diverse sources,
whereas for age specialization we resort to the Blog
Authorship Corpus (BAC; Schler et al., 2006) con-
taining blogposts from blogger.com.

Figure 1 displays the effects of out-of-domain
specialization of mBERT on downstream SA and

TD performance (i.e., performance differences
w.r.t. corresponding in-domain specialized mod-
els). Since RtGender and BAC are English-only
datasets, we report the results only for US and UK
(for brevity, we report the performance only on the
demographically balanced test sets, i.e., setups in-
dicated with “X” in Table 2; both DS-* variants ex-
hibit very similar behavior, so for brevity, we only
display results for DS-Tok; complete results are
in the Appendix). Expectedly, the out-of-domain
specialization deteriorates the downstream perfor-
mance for both MLM and DS-Tok. Interestingly,
MLM, which is not exposed explicitly to the demo-
graphic signal in specialization, tends to suffer less
from out-of-domain specialization than the gender-
informed DS-Tok. In contrast, age-informed DS-
Tok seems to exhibit similar losses as MLM due to
out-of-domain specialization. These results further
question the hypothesis that demographic informa-
tion guides downstream gains, suggested by prior
work (Hovy, 2015) and our in-domain specializa-
tion results (with mBERT) from Table 2.

Meta-regression Analysis. Next, we aim to
quantify, via a meta-regression analysis, the contri-
butions of individual factors (country, in-domain
vs. out-of-domain specialization, language, spe-
cialization approach, test set structure) on the
task performance (AC-SA, AC-TD, SA, TD). We
use the difference in performance between the
specialized model and its corresponding vanilla
PLM (mBERT or monolingual PLM) as the la-
bel (i.e., output, dependent) variable for the re-
gression. We use the following input features (all
one-hot encoded) as prediction variables: (i) coun-
try/language of fine-tuning/evaluation data, (ii) spe-
cialization method (MLM vs. DS-Tok vs. DS-Seq),
(iii) in-domain vs. out-of-domain specialization,
(iv) whether the starting/vanilla PLM is monolin-
gual (e.g., French BERT) or multilingual (mBERT),
(v) and the demographic group from which the fine-
tuning/evaluation data comes from (F vs. M vs. X
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Figure 2: Results of our multilingual and monolingual qualitative analysis for gender. For multilingual case as
plotted in (a), we show a tSNE visualization of review texts embedded with a non-specialized (mBERT) and
specialized (DS-Tok) model. Colors indicate the demographic subgroup (upper figures) and countries (lower
figures), respectively. For monolingual case as illustrated in (b) and (c) for Denmark and Germany, we show a
tSNE visualization of texts embedded with non-specialized (danishBERT, germanBERT) and specialized (DS-Tok)
monolingual PLMs. Each subfigure is plotted with 2K instances.

for gender and <35 vs. >45 vs. X for age). We then
fit a linear regressor on all data points, using either
the full set of features or, in ablations, excluding
certain subsets; we report the goodness of fit as
average root mean square error (RMSE).

We summarize the results of our meta-regression
analysis in Table 4. For each task, we list the
selected features (weights for in in parenthesis)
paired with the RMSE scores. When we fit regres-
sion using all features (all), the country of origin of
fine-tuning data (i.e., features Denmark, France,
UK, etc.) tends to overall explain the variance
of specialization effect on model performance as
good as or even better than the specialization ap-
proach (demographically-informed DS-* variants
and demographically-uninformed MLM). The spe-
cialization approach features (MLM, DS-Tok, and
DS-Seq), however, do appear among the most im-
portant features in most settings, suggesting that
knowing the specialization approach does help
predict the performance of the specialized model.
Note, however, that in terms of assessing whether
demographic information generally improves spe-
cialization, this needs to be combined with actual
task performance results from Tables 2 and 3. For
example, feature DS-Tok is among the most im-
portant features for SA performance after gender
specialization: looking at the results for DS-Tok in
both Tables 2 and 3, we see that it achieves, in most
cases, scores above MLM – this, in turn, suggests

that demographically-informed gender specializa-
tion does (regardless of other factors) improve the
downstream SA performance. The ablation results
offer a complementary view into the importance
of individual features: the larger the increase in
RMSE when excluding a feature (compared to us-
ing all features), the more important the feature
is. The regressions in which we exclude the infor-
mation on the specialization approach (-A) result
in the highest RMSE for gender specialization on
both extrinsic tasks (SA and TD). In all other se-
tups (AC for both gender and age specialization, as
well as SA and TD for age), there is another type of
information, the removal of which results in a less
predictable specialization effect: for instance, AC
after age specialization, the -C setting increases the
RMSE the most, representing that features indicat-
ing the demographic composition of the fine-tuning
dataset – <35, >45 or balanced (X) – jointly have
the largest effect on performance.

Combining results from Tables 2 and 3 with find-
ings from the meta-regression analysis leads to the
overall conclusion that gender-based language spe-
cialization of PLMs generally leads to downstream
gains, whereas age-based specialization does not.

Qualitative Analysis. Finally, we analyze the
topology of the PLMs representation space before
and after demographic specialization. We encode
the reviews from both demographic dimensions –
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(i) with the vanilla PLM (mBERT or monolingual
BERT) and its DS-Tok specialized counterpart –
and then compress those representations into two
dimensions with t-distributed stochastic neighbor
embedding (tSNE; van der Maaten and Hinton,
2008). Figure 2 depicts these representation spaces
after gender-specialization (the age-specialization
effects lead to similar conclusions; for brevity, we
leave them for the Appendix). The tSNE plots do
not show any salient gender specialization effect.
In the case of mBERT, gender-specialization (cor-
responding DS-Tok plot) leads to the separation of
representation areas according to review language
and not gender of its author.6 In the monolingual
cases (illustrated for Danish and German BERT),
the space of the gender-specialized encoder visu-
ally largely resembles that of the vanilla one, in-
dicating that the demographic specialization pro-
cedure (DS-Tok) does not impart dimensions that
allow for easy separation of representation space
along the specialization dimension (here: gender).

5 Related Work

Intermediate Training (Adaptation). Interme-
diate language modeling on texts from the same
or similar distribution as the downstream data has
been shown to lead to improvements on various
NLP tasks (e.g., Gururangan et al., 2020). During
this process, the goal is to inject additional informa-
tion into the PLM and thus specialize the model for
a particular domain (e.g., Aharoni and Goldberg,
2020; Hung et al., 2022a; Bombieri et al., 2023)
or language (e.g., Glavaš et al., 2020) or to encode
other types of knowledge such as common sense
knowledge (e.g., Lauscher et al., 2020a), argumen-
tation knowledge (e.g., Holtermann et al., 2022), or
geographic knowledge (e.g., Hofmann et al., 2022).

For instance, Hung et al. (2022a) propose a
computationally efficient approach by employing
domain-specific adapter modules. They show that
their domain adaptation approach leads to improve-
ments in task-oriented dialog. Glavaš et al. (2020)
and Hung et al. (2022b) perform language adapta-
tion through intermediate MLM in the target lan-
guages with filtered text corpora, demonstrating
substantial gains in downstream zero-shot cross-
lingual transfer for abusive language detection and
dialog tasks, respectively. These specialization ap-
proaches mainly rely on a single objective (e.g.,

6Note that the green and blue regions, indicating US and
UK overlap due to shared language.

masked language modeling on “plain” text data).
Instead, Hofmann et al. (2022) conduct geoadap-
tation by coupling MLM with a token-level geolo-
cation prediction in a dynamic multi-task learning
setup. In this work, we adopt a similar approach
and perform continued language modeling on the
text corpora of a specific demographic dimension.

Demographic Specialization. Language prefer-
ences vary with user demographics (Loveys et al.,
2018). Accordingly, several studies have lever-
aged demographic information (e.g., gender, age,
education) to investigate the effect of encoded
sociodemographic knowledge in the representa-
tions of PLMs (Lauscher et al., 2022a) or obtain
better language representations for various NLP
tasks (Volkova et al., 2013; Garimella et al., 2017).
Recent research studies on demographic adapta-
tion mainly focus on (1) learning demographic-
aware word embeddings and do not work with large
PLMs (Hovy, 2015) or (2) leveraging demographic
information with special PLM architectures specif-
ically designed for certain downstream tasks (e.g.,
empathy prediction (Guda et al., 2021)). The latter,
however, do not consider a task-agnostic approach
to injecting demographic knowledge into language
models, and also focus on a monolingual setup
only. Further, what roles the different factors (i.e.,
domain, language, demographic aspect) in the spe-
cialization really play remains unexplored.

6 Conclusion

In this work, we thoroughly examined the effects
of demographic specialization of Transformers via
straightforward injection methods that have been
proven effective for other types of knowledge. Ini-
tial results on intrinsic and extrinsic evaluation
tasks using a multilingual PLM indicated the use-
fulness of our approach. However, running a series
of additional experiments in which we controlled
for potentially confounding factors (language and
domain) and a meta-analysis indicated that the de-
mographic aspects only have a negligible impact on
the downstream performance. This observation is
supported by additional qualitative analysis. Over-
all, our findings point to the difficulty of injecting
demographic knowledge into Transformers: we
hope that our in-depth analysis and findings cat-
alyze future research on the topic of truly human-
centered NLP, especially in multilingual settings.
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Limitations

In this paper, we concentrated on the demographic
adaptation of PLMs for a few key demographic as-
pects (i.e., gender and age). There are other known
factors, like ethnicity and education, that we can-
not explore here. However, there are likely further
effects, as well as intersectional effects. We con-
ducted our experiments using only five Western
countries and four Indo-European languages (Hovy
et al., 2015), ignoring other world regions and lan-
guage families. However, due to the scarcity of
data, we can only hypothesize that the limited ef-
fects of demographic specialization also apply to
resource-lean languages (i.e., the language special-
ization effects are likely to outweigh the ones of the
demographic specialization). Another limitation
is the use of pretrained language models, which
are all pre-trained on general-purpose data and are
freely available. We acknowledge that results may
differ for models with greater capacity that have
been pretrained on data from other, more specific
domains. We primarily concentrate on BERT-like
models, which are only a subset of language mod-
els, and we leave language model variants for future
research.

Ethics Statement

Our work deals with demographic adaptation from
reviews that should be considered sensitive infor-
mation. We acknowledge that the limitations in
data resources and annotations (Schler et al., 2006;

Hovy et al., 2015; Voigt et al., 2018) give rise to
potential risks of overgeneralizing our findings and
applying our methods. These risks are due to: (1)
partial language coverage, where languages are
from Indo-European subfamilies that do not rep-
resent typologically diverse languages; (2) limited
cultural coverage (Joshi et al., 2020), where the
countries, although speaking different languages,
still belong a culturally relatively homogeneous
part of the world, i.e., the West; (3) simplified gen-
der identities (Dev et al., 2021), where gender is
modeled as a binary variable, which does not re-
flect the wide variety of possible identities along
the gender spectrum and beyond (Lauscher et al.,
2022b); (4) unfair stereotypical biases (Blodgett
et al., 2020), namely potential harms that might
arise from unfair stereotypical biases in the data
(despite our efforts to balance the sample across
demographic groups) or pre-encoded in the model
(Lauscher et al., 2021). Further, the sensitive user
profile data might bias the model towards addi-
tional demographic characteristics and lead to po-
tentially harmful predictions and applications.

In this work, however, we are interested in ad-
vancing NLP research to understand better this fine-
grained aspect of the intertwined relationship be-
tween demographic adaptation and large pretrained
language models in both monolingual and multilin-
gual scenarios. While limited data resources may
hinder our ability to fully consider language cover-
age, cultural coverage, gender identities, and stereo-
typical biases, it is our obligation to be transparent
about these limitations and ethical concerns and to
continually work towards improving data collection
and methodologies to better serve the needs and
perspectives of all users. We believe these insights
will lead us toward fairer and more inclusive lan-
guage technologies. We hope that future research
builds on top of our findings and explores other
demographic factors, other groups within these fac-
tors, and also other languages and countries.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Valentin Hofmann, Goran Glavaš, Nikola Ljubešić,
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A Additional Experiments

Gender class. SA TD

AC-SA AC-TD F M X F M X F M X F M X

Country Model Mono Multi Mono Multi Mono Multi Mono Multi

Denmark

BERT 66.1 64.0 63.8 61.8 72.3 67.9 70.4 69.2 64.8 67.2 60.7 59.8 59.9 59.3 58.3 59.0
MLM 66.0 65.2 64.2 63.4 72.5 68.3 70.3 69.5 65.8 67.8 60.6 60.6 60.6 59.7 58.8 59.4

DS-Seq 66.2 64.9 64.1 63.5 72.6 68.6 70.6 69.9 65.7 67.7 61.3 60.5 60.0 59.7 57.8 59.1
DS-Tok 66.0 65.0 64.1 63.5 72.4 68.4 70.6 69.1 65.6 68.0 61.1 60.2 60.8 59.9 58.9 59.0

Germany

BERT 59.8 59.5 58.9 57.9 66.5 63.7 64.3 66.1 63.2 64.5 67.9 66.1 67.8 67.8 65.6 65.8
MLM 62.0 61.2 59.7 60.1 68.1 65.8 65.4 67.7 65.3 66.1 68.5 66.7 67.7 68.6 67.0 67.1

DS-Seq 61.1 60.1 59.0 60.3 68.8 64.4 66.2 66.7 64.0 65.7 68.9 66.4 67.8 67.6 65.7 66.4
DS-Tok 60.9 62.9 60.3 58.3 67.9 65.6 66.0 66.8 64.3 66.8 68.6 66.8 67.9 68.3 67.0 66.7

US

BERT 64.3 62.6 58.7 58.1 68.6 67.0 67.1 66.3 64.4 66.0 72.5 69.7 71.0 71.2 68.4 70.2
MLM 64.6 63.3 58.7 59.6 68.4 67.6 67.8 67.3 66.2 66.9 73.1 70.1 71.3 72.1 69.4 70.3

DS-Seq 64.3 63.8 58.8 59.2 68.6 68.0 68.0 67.2 66.3 67.0 73.1 70.3 71.6 72.3 69.2 70.4
DS-Tok 64.7 62.2 59.4 58.8 68.9 67.5 67.9 68.0 66.4 67.3 73.3 69.9 71.6 72.8 69.5 70.5

UK

BERT 63.2 61.9 65.0 63.1 73.4 71.0 72.3 71.0 69.0 69.7 71.2 69.1 70.1 70.4 67.9 68.9
MLM 63.7 63.0 64.8 65.3 73.9 71.0 72.6 72.0 70.4 71.0 71.2 69.4 70.0 70.6 67.9 69.8

DS-Seq 63.2 63.4 65.2 64.9 73.6 72.2 72.4 72.9 70.9 71.7 71.5 69.3 70.2 70.6 68.2 69.8
DS-Tok 63.3 63.5 64.8 65.6 73.7 72.0 72.2 73.0 71.0 71.9 71.4 69.1 70.3 70.8 68.2 69.9

France

BERT 64.1 63.9 63.1 61.2 70.5 67.3 68.6 69.3 67.0 67.8 46.0 44.5 45.1 44.6 42.4 43.1
MLM 64.9 64.6 63.2 62.1 71.0 67.7 67.6 69.9 67.1 68.4 46.2 44.3 45.5 45.8 43.3 44.3

DS-Seq 64.2 64.1 63.1 63.1 70.5 67.5 69.3 70.6 67.3 68.4 47.1 44.2 45.3 46.0 43.4 44.2
DS-Tok 64.4 65.0 62.9 62.9 71.7 68.3 69.5 70.1 67.5 68.8 46.9 44.3 45.6 45.5 43.9 44.4

Average

BERT 63.5 62.4 61.9 60.4 70.3 67.4 68.5 68.4 65.7 67.0 63.7 61.8 62.8 62.7 60.5 61.4
MLM 64.2 63.5 62.1 62.1 70.8 68.1 68.7 69.3 67.0 68.0 63.9 62.2 63.0 63.4 61.3 62.2

DS-Seq 63.8 63.3 62.0 62.2 70.8 68.1 69.3 69.5 66.8 68.1 64.4 62.1 63.0 63.2 60.9 62.0
DS-Tok 63.9 63.7 62.3 61.8 70.9 68.4 69.2 69.4 67.0 68.6 64.3 62.1 63.2 63.5 61.5 62.1

Table 5: Evaluation results compared with monolingual BERT and multilingual BERT (mBERT) on five countries
with gender data for intrinsic attribute classification tasks (AC-SA, AC-TD) and extrinsic evaluation tasks: sentiment
analysis (SA) and topic detection (TD).
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Age class. SA TD

AC-SA AC-TD <35 >45 X <35 >45 X <35 >45 X <35 >45 X

Country Model Mono Multi Mono Multi Mono Multi Mono Multi

Denmark

BERT 67.7 57.2 65.3 64.5 67.3 66.2 66.0 62.7 62.7 62.9 58.4 54.4 56.3 56.1 52.2 53.4
MLM 67.4 65.5 67.4 65.1 67.7 67.3 67.6 63.3 62.1 63.0 59.3 55.3 57.6 57.1 52.6 54.1

DS-Seq 67.4 65.2 66.8 65.2 67.4 66.2 67.1 63.1 62.9 63.0 58.7 55.0 56.5 56.9 53.3 54.5
DS-Tok 67.8 65.3 66.6 64.6 67.6 66.1 67.2 64.2 63.3 63.2 59.0 55.4 56.7 56.2 53.2 54.3

Germany

BERT 57.9 58.0 59.6 56.9 53.6 57.9 57.1 52.6 55.0 55.0 61.6 57.4 58.3 60.1 55.3 57.1
MLM 58.1 61.1 62.0 58.9 58.1 58.2 58.1 53.6 55.5 56.7 62.2 57.6 59.9 61.5 56.5 58.7

DS-Seq 58.2 56.4 61.3 58.2 56.3 57.3 55.8 53.8 55.3 55.5 63.5 57.9 59.1 60.8 57.6 59.3
DS-Tok 57.2 56.6 60.6 57.4 57.9 58.1 54.0 53.0 56.5 56.7 63.5 58.2 59.2 59.3 56.5 59.3

US

BERT 65.2 62.9 63.0 60.7 60.5 58.7 57.2 57.7 57.9 57.8 68.8 64.9 67.2 68.0 64.3 64.3
MLM 65.3 63.6 62.9 61.9 59.8 59.5 60.4 59.4 57.8 58.2 71.2 65.7 66.7 69.0 64.2 65.2

DS-Seq 66.2 60.7 64.1 61.5 61.6 58.3 59.4 59.3 57.9 58.0 72.5 65.5 67.1 69.8 64.4 65.8
DS-Tok 65.7 59.7 62.9 61.2 61.1 58.7 59.4 59.9 58.6 57.8 69.4 65.7 66.7 69.2 65.4 64.9

UK

BERT 65.7 65.1 65.8 65.2 65.2 66.3 65.5 63.8 63.9 63.7 68.1 68.1 68.0 64.7 67.1 66.3
MLM 66.9 65.4 66.1 65.6 68.2 67.2 66.9 62.8 62.0 63.0 68.8 70.1 70.0 65.1 67.3 67.3

DS-Seq 67.0 65.3 64.7 62.8 67.8 66.4 67.6 63.8 64.9 64.9 67.8 68.9 69.4 66.0 68.1 66.5
DS-Tok 66.8 64.0 65.2 62.8 67.6 66.5 67.1 64.6 65.2 65.1 68.2 69.6 69.2 66.4 67.3 67.6

France

BERT 56.0 55.7 57.0 56.6 59.7 57.5 60.3 59.6 57.4 61.5 51.9 49.1 49.6 52.0 47.1 49.0
MLM 55.9 56.8 56.9 57.2 60.7 59.4 61.6 59.9 59.5 61.6 53.8 48.5 50.2 52.5 47.2 50.3

DS-Seq 55.5 55.1 56.7 55.5 61.3 58.7 62.0 60.4 60.3 62.8 53.8 49.0 50.2 51.1 47.3 50.3
DS-Tok 55.8 54.4 56.7 55.9 60.2 60.7 61.5 60.9 59.8 59.7 54.6 51.4 50.3 50.2 48.0 50.8

Average

BERT 62.5 59.8 62.1 60.8 61.3 61.3 61.2 59.3 59.4 60.2 61.8 58.8 59.9 60.2 57.2 58.0
MLM 62.7 62.5 63.1 61.7 62.9 62.3 62.9 59.8 59.4 60.5 63.1 59.4 60.9 61.0 57.6 59.1

DS-Seq 62.9 60.5 62.7 60.6 62.9 61.4 62.4 60.1 60.3 60.8 63.3 59.3 60.5 60.9 58.1 59.3
DS-Tok 62.7 60.0 62.4 60.4 62.9 62.0 61.8 60.5 60.7 60.5 62.9 60.1 60.4 60.3 58.1 59.4

Table 6: Evaluation results compared with monolingual BERT and multilingual BERT (mBERT) on five countries
with age data for intrinsic attribute classification tasks (AC-SA, AC-TD) and extrinsic evaluation tasks: sentiment
analysis (SA) and topic detection (TD).

SA TD

gender F M X F M X F M X F M X

Country Model RtGender Trustpilot RtGender Trustpilot

US
MLM 68.3 67.3 66.9 68.4 67.6 67.8 72.7 69.9 71.1 73.1 70.1 71.3

DS-Seq 68.1 67.4 66.9 68.6 68.0 68.0 72.7 69.3 71.2 73.1 70.3 71.6
DS-Tok 68.6 67.2 66.4 68.9 67.5 67.9 72.4 69.6 71.2 73.3 69.9 71.6

UK
MLM 73.3 71.0 71.7 73.9 71.0 72.6 71.1 69.3 69.8 71.2 69.4 70.0

DS-Seq 73.3 71.1 71.9 73.6 72.2 72.4 71.2 69.0 69.5 71.5 69.3 70.2
DS-Tok 73.4 71.1 71.6 73.7 72.0 72.2 71.3 69.2 69.6 71.4 69.1 70.3

Average
MLM 70.8 69.2 69.3 71.2 69.3 70.2 71.9 69.6 70.5 72.2 69.8 70.7

DS-Seq 70.7 69.3 69.4 71.1 70.1 70.2 72.0 69.2 70.4 72.3 69.8 70.9
DS-Tok 71.0 69.2 69.0 71.3 69.8 70.1 71.9 69.4 70.4 72.4 69.5 71.0

SA TD

age <35 >45 X <35 >45 X <35 >45 X <35 >45 X

Country Model BAC Trustpilot BAC Trustpilot

US
MLM 59.4 58.4 58.9 59.8 59.5 60.4 68.4 64.6 66.9 71.2 65.7 66.7

DS-Seq 58.4 57.3 58.0 61.6 58.3 59.4 68.6 64.5 67.3 72.5 65.5 67.1
DS-Tok 58.6 58.5 58.9 61.1 58.7 59.4 69.3 65.0 67.1 69.4 65.7 66.7

UK
MLM 66.2 66.7 66.4 68.2 67.2 66.9 67.8 68.7 68.9 68.8 70.1 70.0

DS-Seq 66.1 66.6 66.8 67.8 66.4 67.6 67.8 68.7 68.6 67.8 68.9 69.4
DS-Tok 66.6 66.0 66.3 67.6 66.5 67.1 68.0 68.8 69.2 68.2 69.6 69.2

Average
MLM 62.8 62.6 62.7 64.0 63.4 63.7 68.1 66.7 67.9 70.0 67.9 68.4

DS-Seq 62.3 62.0 62.4 64.7 62.4 63.5 68.2 66.6 68.0 70.2 67.2 68.3
DS-Tok 62.6 62.3 62.6 64.4 62.6 63.3 68.7 66.9 68.2 68.8 67.7 68.0

Table 7: Evaluation results on Trustpilot classification tasks (SA, TD) compared by specializing on out-domain data
(RtGender (Voigt et al., 2018) for gender and BAC (Schler et al., 2006) for age) and in-domain data (Trustpilot).
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Figure 3: Results of our multilingual and monolingual qualitative analysis for age. For multilingual case as plotted in
(a), we show a tSNE visualization of review texts embedded with a non-specialized (mBERT) and specialized (DS-
Tok) model. Colors indicate the demographic subgroup (upper figures) and countries (lower figures), respectively.
For monolingual case as illustrated in (b) and (c) for Denmark and Germany, we show a tSNE visualization of texts
embedded with non-specialized (danishBERT, germanBERT) and specialized (DS-Tok) monolingual PLMs. Each
subfigure is plotted with 2K instances.
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