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Abstract

Ontonotes has served as the most important
benchmark for coreference resolution. How-
ever, for ease of annotation, long documents
in Ontonotes were split into smaller parts. In
this work, we build a corpus of coreference-
annotated documents of significantly longer
length than what is currently available. We
do so by providing an accurate, manually-
curated, merging of annotations from docu-
ments that were split into multiple parts in the
original Ontonotes annotation process (Prad-
han et al., 2013). The resulting corpus, which
we call LongtoNotes contains documents in
multiple genres of the English language with
varying lengths, the longest of which are up
to 8x the length of documents in Ontonotes,
and 2x those in Litbank. We evaluate state-
of-the-art neural coreference systems on this
new corpus, analyze the relationships between
model architectures/hyperparameters and doc-
ument length on performance and efficiency
of the models, and demonstrate areas of im-
provement in long-document coreference mod-
elling revealed by our new corpus. Our data
and code is available at: https://github.
com/kumar-shridhar/LongtoNotes.

1 Introduction

Coreference resolution is an important problem in
discourse with applications in knowledge-base con-
struction (Luan et al., 2018), question-answering
(Reddy et al., 2019) and reading assistants (Azab
et al., 2013; Head et al., 2021). In many such set-
tings, the documents of interest, are significantly
longer and/or on wider varieties of domains than
the currently available corpora with coreference
annotation (Pradhan et al., 2013; Bamman et al.,
2019; Mohan and Li, 2019; Cohen et al., 2017).

The Ontonotes corpus (Pradhan et al., 2013) is
perhaps the most widely used benchmark for coref-
erence (Lee et al., 2013a; Durrett and Klein, 2013;
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Figure 1: Comparing Average Document Length.
Long documents in genres such as broadcast conversa-
tions (bc) were split into smaller parts in Ontonotes. Our
proposed dataset, LongtoNotes, restores documents
to their original form, revealing dramatic increases in
length in certain genres.

Sachan et al., 2015; Wiseman et al., 2016; Lee et al.,
2017; Joshi et al., 2020; Toshniwal et al., 2020b;
Thirukovalluru et al., 2021; Kirstain et al., 2021).
The construction process for Ontonotes, however,
resulted in documents with an artificially reduced
length. For ease of annotation, longer documents
were split into smaller parts and each part was an-
notated separately and treated as an independent
document (Pradhan et al., 2013). The result is a
corpus in which certain genres, such as broadcast
conversation (bc), have greatly reduced length com-
pared to their original form (Figure 1). As a result,
the long, bursty spread of coreference chains in
these documents is missing from the evaluation
benchmark.

In this work, we present an extension to
the Ontonotes corpus, called LongtoNotes.
LongtoNotes combines coreference annota-
tions in various parts of the same document, lead-
ing to a full document coreference annotation. A
carefully trained annotation team merged corefer-
ence annotation following the annotation guide-
lines laid out in the original Ontonotes corpus (§3).
The resulting LongtoNotes dataset has an aver-
age document length that is over 40% longer than
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the standard OntoNotes benchmark. Furthermore,
LongtoNotes sees a 25% increase in the average
size of coreference chains. While other datasets
such as Litbank (Bamman et al., 2019) and CRAFT
(Cohen et al., 2017) focus on long documents in
specialized domains, LongtoNotes comprises
of documents in multiple genres (Table 2).

To illustrate the usefulness of LongtoNotes,
we evaluate state-of-the-art coreference resolution
models (Kirstain et al., 2021; Toshniwal et al.,
2020b; Joshi et al., 2020) on the corpus and analyze
the performance in terms of document length (§4.2).
We illustrate how model architecture decisions and
hyperparameters that support long-range dependen-
cies have the greatest impact on coreference perfor-
mance and importantly, these differences are only
illustrated using LongtoNotes and are not seen
in Ontonotes (§4.3). LongtoNotes also presents
a challenge in scaling coreference models as pre-
diction time and memory requirement increase sub-
stantially on the long documents (§4.4).

2 Our Contribution: LongtoNotes

We present LongtoNotes, a corpus that ex-
tends the English coreference annotation in the
OntoNotes Release 5.0 corpus1 (Pradhan et al.,
2013) to provide annotations for longer documents.
In the original English OntoNotes corpus, the gen-
res such as broadcast conversations (bc) and tele-
phone conversation (tc) contain long documents
that were divided into smaller parts to facilitate
easier annotation. LongtoNotes is constructed
by collecting annotations to combine within-part
coreference chains into coreference chains over the
entire long document. The annotation procedure,
in which annotators merge coreference chains, is
described and analyzed in Section 3.

The divided parts of a long document in
Ontonotes are all assigned to the same partition
(train/dev/test). This allows LongtoNotes to
maintain the same train/dev/test partition, at the
document level, as Ontonotes (Table 1). While
the content of each partition remains the same, the
number of documents changes because the divided
parts are merged into a single annotated text in
LongtoNotes. We refer to LongtoNotess as
the subset of LongtoNotes comprising only the
merged documents (i.e. documents merged by the
annotators).

1The Arabic and Chinese parts of the Ontonotes dataset
are not considered in our study. See Appendix A.3
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Figure 2: Document and Coref Chain Length. The
number of coreference chains increases with the in-
crease in token length in LongtoNotes.

Dataset Train Dev Test

OntoNotes 2802 343 348
LongtoNotes 1959 234 222

Table 1: Comparison of the train-test-dev split of docu-
ments between OntoNotes and LongtoNotes

2.1 Length of Documents in LongtoNotes

The average number of tokens per document
(rounded to the nearest integer) in LongtoNotes
is 674, ~44% higher than in Ontonotes (466). Ta-
ble 2 shows the changes in document length by
genre. We observe that the genre with the longest
documents is broadcast conversation with 4071 to-
kens per document, which is a dramatic increase
from the length of the divided parts in Ontonotes
which had 511 tokens per document in the same
genre. The number of coreference chains and
the number of mentions per chain grows as well.
The long documents that were split into multiple
parts during the original OntoNotes annotation are
not evenly distributed among the genres of text
present in the corpus. In particular, text categories
broadcast news (bn) and newswire (nw) consist
exclusively of short non-split documents, which
were not affected by the LongtoNotes merging
process. A list of which documents are merged
in LongtoNotes is provided in Table 10 (Ap-
pendix).

2.2 Number of Coreference Chains

As a consequence of the increase in document
length, LongtoNotes presents a higher number
of coreference chains per document (16), compared
to OntoNotes (12). Figure 2 shows the length and
number of coreference chains for each document in
the two corpora. As expected, the number of chains
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Figure 3: Number of Chains per Document. A his-
togram log plot reveals the long tailed distribution of the
number of coreference chains present per document in
LongtoNotes. Ontonotes contains more documents
with fewer chains.

in a document tends to get larger as the document
size increases. For genres with longer average doc-
ument lengths like broadcast conversation (bc),
the increase in the number of chains is as high as
85%, while this increase is only 25% for pivot (pt)
genre when the document length is comparatively
shorter. It is worth noting that the majority of doc-
uments had a number of chains in the range of 20
to 50 and only about 20 documents out of 3493 in
the OntoNotes dataset had >50 chains per docu-
ment. For LongtoNotes the number increases
to 96 documents. A comparison of the number
of chains per document between OntoNotes and
LongtoNotes is shown in Figure 3.

2.3 Number of Mentions per Chain

The number of mentions per coreference chain
in LongtoNotes is over 30% larger than in
OntoNotes. This is primarily because of longer
documents and an increase in the number of coref-
erence chains per document. Mentions per chain
increase with the increase in document length. For
the broadcast conversation (bc) genre, the increase
in the mentions per chain is highest with 87%,
while for the pivot (pt) (Old Testament and New
Testament text) genre it is only 30% as it has shorter
documents.

2.4 Distances to the Antecedents

For each coreference chain, we analyzed the dis-
tance between the mentions and their antecedents.
The largest distance for a mention to its antecedent
grew 3x for LongtoNotes when compared to
OntoNotes from 4,885 to 11,473 tokens. Figure
4 shows a detailed breakdown of the mention to

antecedent distance. There are no mentions that are
more than 5K tokens distant from its antecedent
in OntoNotes. There are 178 such mentions in
LongtoNotes.
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Figure 4: Distance to Antecedent. Histogram (log-
scale) shows that the largest distance of mention to
their antecedents per chain increases in LongtoNotes
compared to OntoNotes.

2.5 Comparison with other Datasets

The literature contains multiple works proposing
datasets for coreference resolution: Wiki coref
(Ghaddar and Langlais, 2016), LitBank (Bamman
et al., 2019), PreCo (Chen et al., 2018), Quiz Bowl
Questions (Rodriguez et al., 2019; Guha et al.,
2015), ACE corpus (Walker et al., 2006), MUC
(Chinchor and Sundheim, 1995), MedMentions
(Mohan and Li, 2019), inter alia. We compare
LongtoNotes to these datasets in terms of num-
ber of documents, total number of tokens, and doc-
ument length (Table 3).

Litbank is a popular long document coreference
dataset, presenting a high tokens/document ratio.
However, the dataset consists of only 100 docu-
ments, rendering model development challenges.
Moreover, it focuses only on the literary domain.
Other datasets containing long documents (e.g.,
WikiCoref) are also very small in size. On the
other hand, datasets consisting of a larger number
of texts tend to contain shorter documents (e.g.,
PreCo). Thus, by building LongtoNotes , we
address the scarcity of a multi-genre corpus with
a collection of long documents containing long-
range coreference dependencies.

In concurrent work, Gupta et al. (2023) present
a generalised annotation platform for coreference
with simplified guidelines to users. In the future,
such a tool could be used to more easily annotate
documents of increased length.
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Categories # Docs Tokens/Doc # Chains Ment./Chains
Ont. Long. Ont. Long. Ont. Long. Ont. Long.

broadcast conversation (bc) 397 50 511 4071 14 85 65 519
broadcast news (bn) 947 947 237 237 8 8 29 29
magazine (mz) 494 78 398 2531 8 41 32 208
newswire (nw) 922 922 529 529 12 12 47 47
pivot (pt) 369 261 657 930 20 27 131 186
telephone conversation (tc) 142 48 728 2157 17 44 108 319
web data (wb) 222 109 763 1555 17 31 73 149

Overall 3493 2415 466 674 12 16 55 80

Table 2: Genre Comparison. Comparison of document and coreference chain statistics per genre in OntoNotes 5.0
and our proposed dataset, LongtoNotes.

Dataset # Docs Total Size Tokens/Doc

WikiCoref 30 60K 2000
ACE-2007 599 300K 500
MUC-6 60 30K 500
MUC-7 50 25K 500
QuizBowl 400 50K 125
PreCo 37.6K 12.4M 330
LitBank 100 200K 2105
MedMentions 4392 1.1M 267
OntoNotes 3493 1.6M 466

LongtoNotes 2415 1.6M 674
LongtoNotess 283 740K 2615

Table 3: Coreference Datasets. A comparison
of various coref datasets with our proposed dataset
LongtoNotes.

3 Annotation Procedure & Quality

In this section, we describe and assess the annota-
tion procedure used to build LongtoNotes.

3.1 Annotation Task

The annotators merge the coreference annotation
in a sequential fashion. That is, they combine anno-
tations from the second split part of an Ontonotes
document into the first part, then the third part into
the combined first two parts, and so on. Precisely,
to build LongtoNotes, annotators successively
merge chains in the current part i+ 1 of the docu-
ment with one of the chains in the previous parts
1, . . . , i. We reformulate this annotation process as
a question answering task where we ask annotators
a series of questions (rather the same coreference
determining question for different mentions) using
our own annotation tool designed for this task (Fig-
ure 5). We display parts 1, . . . , i with color-coded
mention spans. We then show a highlighted con-
cept (a coreference chain in part i+ 1) and ask the
question: The highlighted concept below refers to
which concept in the above paragraphs? The anno-

tators select one of the colour-coded chains from
parts 1, . . . , i from a list of answers or the annota-
tors can specify that the highlighted concept in part
i+1 does not refer to any concept in parts 1, . . . , i,
(i.e., a new chain emerging in part i+ 1). The list
of answers here are the merged chains formed in
the previous iterations.

The annotation tool proceeds with a question for
each coreference chain ordered (sorted by the first
token offset of the first mention in the chain). The
annotation of all parts of a document comprises an
annotation task. That is, a single annotator is tasked
with answering the multiple-choice question for
each coreference chain in each part of a document.
At the end of each part, annotators are shown a
summary page that allows them to review, modify,
and confirm the decisions made in the considered
part. A screenshot of the summary page is provided
in the Figure 9 in the Appendix.

From Annotations to Coreference Labels The
annotations collected in this way are then converted
into coreference labels for the merged parts of a
document. The answers to the questions tell us the
antecedent link between two coreference chains.
These links are used to relabel all mentions in the
two chains with the same coreference label, result-
ing in the LongtoNotes dataset.

Singletons Existing OntoNotes coreference an-
notation does not include singletons. Considering
all parts of a document together might allow men-
tions that were considered to be singletons in a spe-
cific part to be assigned to a coreference chain. To
understand the frequency of singletons in a single
part of a document that has coreferent mentions
in other parts, we manually analysed 500 men-
tions spread across 10 parts over three randomly
selected long documents. We found only 17 in-
stances (~0.03%) where singletons can be merged
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Figure 5: Annotation Tool Interface. The upper box represents all the previous paragraphs while the box on the
bottom left is the current paragraph. The mentions of the current chain to be merged are shown in yellow. On the
right side, the answers are presented which are chains from previous paragraphs and the annotator can select one of
them or choose the None of the below option which creates a new chain.

with coreference chains in different parts of the
same document. Given that such singletons would
constitute only such a small percentage of men-
tions, we decided it was appropriate to obit them
from the annotation process to reduce the complex-
ity of annotation. To merge this small number of
singleton mentions, our annotators would have had
to label over 50% more mentions per document.
We further discuss this in Appendix A.4.

3.2 Annotators and Training

We hired and trained a team of three annotators
for the aforementioned task. The annotators were
university-level English majors from India and
were closely supervised by an expert with experi-
ence in similar annotation projects. The annotation
team was paid a fair wage of approximately 15
USD per hour for the work. We had several hour-
long training sessions outlining the annotation task,
setup of the problem, and Ontonotes annotation
guidelines. We reviewed example cases of difficult
annotation decisions and collaboratively worked
through example annotations. We then ran a pilot
annotation study with a small number of documents
(approx 5% of the total documents). For these doc-
uments, we also provided annotations to ensure the
training of the annotators and eventual annotation
quality. We calculated the inter-annotators’ agree-
ment between the annotators and us. After a few
rounds of training, we were able to achieve an inter-

annotator agreement score (strict match, defined in
the next subsection) of over 95% and we decided to
go ahead with the annotation task. This confirmed
the annotators’ understanding of the task.

After the satisfactory pilot annotation study, the
tasks were assigned to the annotators in five batches
of 60 documents each. For 10% of the tasks, we
had all three annotators provide annotations. For
the remaining 90%, a single annotator was used.
For the documents with multiple annotators, we
used majority voting to settle disagreements. If all
annotators disagreed on a specific case, we selected
Annotator 1’s decision over the others (analysis in
the Appendix B).

3.3 Measuring Quality of Annotation
We would like to ensure that LongtoNotes
maintains the high-quality standards of OntoNotes.
Thus, we compute various metrics of agreement
between a pair of annotators. We consider (1) the
question-answering agreement (i.e., how similar
are the annotations made using the annotation tool),
and (2) the coreference label agreement (i.e., at the
level of the resulting coreference annotation).

Assume that annotator j receives a set of chains
C

(j)
1 , C

(j)
2 , ..., C

(j)
N . For each chain C

(j)
i , the anno-

tator links it to a New chain or a chain from their
(annotator specific) set of available chains. Let us
call D(j)

i the linking decision of the jth annotator,
which consists of a pair (C(j)

i , A
(j)
i ), where A

(j)
i
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is the selected antecedent chain. We consider the
following question answering metrics:
(i) Strict Decision Matching: When two annota-
tors agreed on merging two chains and there is an
exact match between the merged chains. Calcu-
lated as 1

N

∑
i I[D

(1)
i = D

(2)
i ].

(ii) Jaccard Decision Match: Jaccard decision cal-
culates the Jaccard similarity between the merged

chain: 1
N

∑
i
|A(1)

i ∩A(2)
i |

|A(1)
i ∪A(2)

i |
.

(iii) New Chain Agreement: Number of times
both annotators select a new chain divided by the
number of times at least one selects new chain.
(iv) Not New Chain Agreement: Number of times
two annotators agreed on not a New chain choice di-
vided by the number of times at least one annotator
labels not a New chain.
(v) Krippendorff’s alpha: Krippendorff’s alpha
(Krippendorff, 2011) is the reliability coefficient
measuring inter annotator agreement. We compute
Krippendorff’s alpha using a strict decision match
as the coding for agreement.

Table 4 presents the results for these metrics. We
observed that on average annotators agreed with
each other on over 90% of their decisions except
when the No New chains were considered. Remov-
ing New chains reduces the total decisions to be
made significantly, and hence a lower score on No
New chains agreement. We found that Annotator 1
agreed most with the experts and hence Annotator
1’s decisions were preferred over the others in case
of disagreement between all three annotators.

Where are disagreements found in annotation?
We would like to understand what kinds of men-
tions lead to the disagreement between annotators.
We measure the part of speech of all the disagreed
chain assignments between the annotators. We
found that the 8% of the mentions within the dis-
agreed chain assignments were pronouns, 8% were
verbs, and 9% were common nouns. The number
of proper nouns disagreements was lower with just
5%. When considering different genres, it was
observed that genres with longer documents like
broadcast conversation (bc) had more mentions
that were pronouns when compared with genres
with shorter documents pivot (pt). As expected, the
number of disagreements in general increased with
the size of the documents. However, we found that
the number of disagreements was small even for
long document genres such as broadcast conversa-
tion (bc). See Appendix B.

Metric Score

Strict Match 0.90
Jaccard Match 0.95
New Chain 0.88
Not New Chain 0.87
Krippendorff’s alpha 0.90

Table 4: Annotation Quality Assessment. We report
the average of each metric over all pairs of annotators.

3.4 Time Taken per Annotation

We also recorded the time taken for each annota-
tion. Time taken per annotation increases with the
increase in the document length (Appendix Fig.
10). This is expected as more chains create more
options to be chosen from and longer document
length demands more reading and attention. In
total, our annotation process took 400 hours.

3.5 Pitfalls of Automatically Merging Chains

To show the importance of our human-based an-
notation process, we investigate whether the anno-
tators’ decisions could have been replicated using
off-the-shelf automatic tools. We performed two
experiments: (i) a simple greedy rule-based string
matching system (described in the Appendix A.5)
and (ii) Stanford rule-based coreference system
to merge chains across various parts. We use the
merged chains to calculate the CoNLL F1 score
with the annotations produced by our annotators.
We found that our string-matching system achieved
a CoNLL F1 score of only 61%, while the Stanford
coreference system reached a score of only 69%.
The low scores compared to the annotators’ agree-
ment (which is over 90%) underline the complexity
of the task and the need for a human-annotations.

4 Empirical Analysis with
LongtoNotes

We hope to show that LongtoNotes can facil-
itate the empirical analysis of coreference mod-
els in ways that were not possible with the orig-
inal OntoNotes. We are interested in the fol-
lowing empirical questions using the datasets–
Ontonotes (Pradhan et al., 2013), and our proposed
LongtoNotes and LongtoNotess:

• How does the length of documents play a role
in the empirical performance of models?
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• Does the empirical accuracy of models
depend on different hyperparameters in
LongtoNotes and Ontonotes?

• Does LongtoNotes reveal properties about
the efficiency/scalability of models not present
in Ontonotes?

4.1 Models

Much of the recent work on coreference can be
organized into three categories: span based rep-
resentations (Lee et al., 2017; Joshi et al., 2020),
token-wise representations (Thirukovalluru et al.,
2021; Kirstain et al., 2021) and memory networks
/ incremental models (Toshniwal et al., 2020b,a).
We consider one approach from all three categories.

Span-based representation We used the Joshi
et al. (2020) implementation of the higher-order
coref resolution model (Lee et al., 2018) with Span-
BERT. Here, the documents were divided into a
non-overlapping segment length of 384 tokens. We
used SpanBERT Base as our model due to mem-
ory constraints. The number of training sentences
was set to 3. We set the maximum top antecedents,
K = 50. We used Adam (Kingma and Ba, 2014)
as our optimiser with a learning rate of 2e−4.

Token-wise representation We used the Long-
Former Large (Beltagy et al., 2020) version of
Kirstain et al. (2021) work, as this approach is
less memory demanding and it is possible to fit this
model in our memory. The max sequence length
was set to 384 or 4096. Adam was used as an
optimiser with a learning rate of 1e−5. A dropout
(Srivastava et al., 2014) probability of 0.3 was used.

Memory networks We used SpanBERT Large
with a sequence length of 512 tokens. Following
Toshniwal et al. (2020b), an endpoint-based men-
tion detector was trained first and then was used
for coreference resolution. The number of training
sentences was set to 5, 10, and 20. The number
of memory cells was selected from 20 or 40. All
experiments were performed with AutoMemory
models with learned memory type.

4.2 Length of Documents & Performance

Impact of Training Corpus We first investigate
whether or not training on the longer documents
in LongtoNotes are needed to achieve state-of-
the-art results on the dataset. We compare the
performance of models trained on Ontonotes to

# Tokens Training CoNLL F1

≤ 2K Ontonotes 78.85
LongtoNotes 78.25

> 2K Ontonotes 65.11
LongtoNotes 66.20

Table 5: Performance and Document Length for
Span-based Models. F1 score across different doc-
ument length for SpanBERT Base trained model on
OntoNotes and LongtoNotes dataset.

those trained on LongtoNotes. We find that
by training on LongtoNotes, we can achieve
higher CoNLL F1 measures on LongtoNotes
than training with Ontonotes for each model ar-
chitecture (Table 6). This suggests that the longer
dependencies formed by merging annotations in
various parts of documents in OntoNotes are diffi-
cult to model when training on short documents.

We find that to achieve accuracy with hyperpa-
rameters such as learning rate/warmup size, we
need to maintain a number of steps per epoch
consistent with Ontonotes when training with
LongtoNotes. A detailed analysis is presented
in the Appendix Section C.

Length Analysis - Number of Tokens We break
down the performance of the span-based model by
the number of tokens in each document. We com-
pare the performance of the model depending on
the training set. Figure 2 shows that the majority of
the documents in the OntoNotes dataset falls within
a token length of 2000 per document. We create
two splits of LongtoNotess, one having a token
length greater than 2000 tokens, the other having a
number of tokens smaller than 2000. Table 5 shows
that for smaller document length (less than 2000 to-
kens), the SpanBERT model trained on OntoNotes
performed better but the trend reverses for longer
documents (more than 2000 tokens), on which the
model trained on LongtoNotes outperformed
the model trained on OntoNotes by +1%.

Length Analysis - Number of Clusters Table 7
displays the change in F1 score with the increase
in the number of clusters per document. The Span-
BERT Base model trained on LongtoNotes out-
performs the same model trained on OntoNotes
(+0.6%) when the number of clusters is more than
40. Note that, 40 is selected based on the cluster
distribution shown in Table 2 with the majority
documents in LongtoNotes lying in this range.
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OntoNotes LongtoNotess LongtoNotes
Training P R F1 P R F1 P R F1

Stanford Coref (Lee et al., 2013b) - 58.6 58.8 58.6 48.5 58.2 52.7 53.6 57.3 55.2

Span-based
(Joshi et al., 2020)

OntoNotes 76.5 77.6 77.4 72.7 69.1 70.8 74.4 73.0 73.7
LongtoNotes 75.9 77.7 76.8 72.4 70.7 71.5 73.9 74.1 74.0

Token-Level
(Kirstain et al., 2021)

Ontonotes 81.2 79.5 80.4 79.6 80.0 79.8 79.7 77.2 78.5
LongtoNotes 80.0 78.2 79.1 80.3 80.3 80.3 80.2 78.0 79.1

Memory-Model
(Toshniwal et al., 2020b)

OntoNotes 73.5 79.3 76.4 63.4 73.8 68.2 67.9 76.6 72.0
LongtoNotes 73.8 79.4 76.6 66.3 74.6 70.2 69.3 77.0 72.9

Table 6: Performance Variation by Training Set. Comparison of F1 scores on various datasets using different
models. All experiments have been performed atleast 2 times and a variance of only ± 0.1 was observed.

# Chains Training SpanBERT Token Memory

≤ 40
Onto 73.60 79.80 72.80
Longto 72.86 78.80 71.94

> 40
Onto 68.44 75.60 67.72
Longto 69.09 76.42 68.60

Table 7: Performance and Number of Chains for
different models. CoNLL F1 score across differ-
ent document length for SpanBERT Base, Token-
Level and Memory-Model trained on OntoNotes and
LongtoNotes dataset.

4.3 Hyperparameters & Document Length

Each model has a set of hyperparameters that
would seemingly lead to variation in performance
with respect to document length. We consider the
performance of the models on LongtoNotes as
a function of these hyperparameters.

Span-based model hyperparameters We con-
sider two hyperparameters: the number of an-
tecedents to use, K and the max number of sen-
tences used in each training example. We found
that upon varying K: 10, 25, and 50, there was
only a small difference observed in the results
for both the models trained on OntoNotes and
LongtoNotes (increasing K led to only minor
increases). The result is summarized in Table 8. We
could not go beyond K = 50 due to our GPU mem-
ory limitations. However, going beyond 50 might
further help for longer documents. Furthermore,
we found that the number of sentences parameter
used to create training batches does not play a sig-
nificant role in performance either (Figure 8).

Token-wise model hyperparameters Reducing
the sequence length when testing from 4096 to 384
leads to a drop in F1 as seen in Figure 6. We ob-
served that longer sequence length (4096) helps

K OntoNotes LongtoNotes LongtoNotess

10 77.05 73.44 70.37
25 76.93 73.99 71.61
50 77.60 74.01 71.58

Table 8: Number of Antecedents vs. Performance
SpanBERT Base model trained on LongtoNotes
dataset with varying K value.
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Figure 6: Sequence Length vs. Performance. Long-
Former is significantly better on LongtoNotes with
4096 sequence length compared to 384. Two sequence
lengths perform similarly on Ontonotes.

more for LongtoNotess as there are longer se-
quences than for OntoNotes, which is evident in
Figure 6. Furthermore, we analyzed performance
on two genres: magazine (mz) having 6x longer
sequences in LongtoNotes than OntoNotes vs
pivot (pt) having just 1.4x longer documents. As
observed in Figure 7 (and Appendix Table 15),
when the document is long as in magazine (mz),
there is a significant increase in performance with
a longer sequence but the effect is negligible for
pivot (pt) where the size of the document is almost
the same.
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Figure 7: Sequence Length vs. Performance by Genre
Comparing the effect of sequence length on F1 for
two genres: magazine (mz), where LongtoNotes
contains 6x longer documents, and pivot (pt), where
LongtoNotes has 1.4x longer documents.

Memory model hyperparameters We consider
two hyperparameters - the memory size which de-
notes the maximum active antecedents that can
be considered and the max number of sentences
used in training. We show that doubling the size
of the memory leads to an increase of 0.8 points
of CoNLL F1 for LongtoNotes dataset. (Ap-
pendix Table 14). Figure 8 demonstrates that there
is no significant improvement in the performance
of the model with the increase in the number of
training sentences.

4.4 Model Efficiency

We compare the prediction time for the span-based
model on the longest length and average length
documents in LongtoNotes and Ontonotes in
Table 9. We observe that there is a significant jump
in running time and memory required to scale the
model to long documents on LongtoNotes; this
jump is much smaller on Ontonotes. This suggests
that our proposed dataset is better suited for assess-
ing the scaling properties of coreference methods.

5 Conclusion

In this paper, we introduced LongtoNotes, a
dataset that merges the coreference annotation of
documents that in the original OntoNotes dataset
were split into multiple independently-annotated
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Figure 8: Max Sentence Length. Increasing max sen-
tences from 3 to 20 has a small effect on the performance
of the SpanBERT large model. On the other hand, the
increase is linear with the increase in the memory size
alongside the increase in max training sentences.

Dataset Type Pred. Time Pred. Mem

Ontonotes Average 0.11 sec 1.50 GB
LongtoNotes Average 0.47 sec 6.50 GB
Ontonotes Longest 0.37 sec 5.84 GB
LongtoNotes Longest 2.35 sec 42.68 GB

Table 9: Model Efficiency of Span-based Models.
We find that LongtoNotes documents have extended
length leading to greater variation of prediction time
and prediction memory.

parts. LongtoNotes has longer documents and
coreference chains than the original OntoNotes
dataset. Using LongtoNotes, we demonstrate
that scaling current approaches to long documents
has significant challenges both in terms of achiev-
ing better performance as well as scalability. We
demonstrate the merits of using LongtoNotes as
an evaluation benchmark for coreference resolution
and encourage future work to do so.
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Limitations

Our dataset is comprised solely of English texts,
and our analysis, therefore, applies uniquely to the
English language. OntoNotes, however, consists
of the Arabic and the Chinese annotations too and
those languages were not considered in our study
due to the limited expertise of the annotators.

Since our models are not tuned for any specific
real-world application, the methods should not be
used directly in highly sensitive contexts such as
legal or health-care settings, and any work building
on our methods must undertake extensive quality-
assurance and robustness testing before using them.

Ethical Considerations

The annotation was performed with a data anno-
tation service which ensured that the annotators
were paid a fair compensation of 15 USD per hour.
The annotation process did not solicit any sensitive
information from the annotators.

Replicability We have released the model check-
points and data at: https://github.com/
kumar-shridhar/LongtoNotes.
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Appendix

A Dataset and Annotation Details

A.1 Annotation tool
Fig. 9 shows our tool’s summary page.

A.2 Comparison with OntoNotes
A detailed genre-wise comparison of the docu-
ments from OntoNotes dataset which were merged
in LongtoNotes is presented in Table 10. It can
be seen that categories like bn and nw are com-
pletely missing in LongtoNotes , while pt is
partially missing.

Documents in Corpus comparison
Category Onto Longto
bc/cctv ✓ ✓
bc/cnn ✓ ✓
bc/msnbc ✓ ✓
bc/phoenix ✓ ✓
bn/abc ✓ ✗

bn/cnn ✓ ✗

bn/mnb ✓ ✗

bn/nbc ✓ ✗

bn/pri ✓ ✗

bn/voa ✓ ✗

mz/sinorama ✓ ✓
nw/wsj ✓ ✗

nw/xinhua ✓ ✗

pt/nt ✓ ✓
pt/ot ✓ ✗

tc/ch ✓ ✓
wb/a2e ✓ ✓
wb/c2e ✓ ✓
wb/eng ✓ ✓

Table 10: Comparison of documents from various
sub-categories that exists in OntoNotes 5.0 and our
proposed dataset LongtoNotes

A.3 Dataset selection decision
Due to budget constraints and the expertise of our
team and annotators in English only (and some
training of annotators is required to ensure data
quality), we only considered the English parts of
the OntoNotes dataset in our work. We think that
the dataset can be extended to Arabic and Chinese
too, but we leave it for future work.

A.4 Annotating singletons
While manually annotating all singletons, we ob-
served that almost all NPs can be thought of as

mentions and all those NPs that are not part of any
chain can be thought of as a singleton. Our analy-
sis suggests that there are over 50% mentions that
are not annotated by OntoNotes and can qualify
for singletons. To annotate all the singletons, the
annotator needs to go through all of them, discard
the ones that do not abide by the OntoNotes rules
and then make a decision whether to merge each
singleton to some chain or other singleton. In our
analysis, the number of such singletons is very low
and all the efforts were not worth it for the small
improvement over the current annotations. So we
decide to ignore all the singletons in our study.

A.5 Greedy rule-based matching system

We use a greedy string matching system where we
take all the mentions in a chain of the current para
i+ 1 and analyse its part of speech provided in the
OntoNotes dataset. We take the first Noun (NN or
NP) present in each chain and look for the mentions
overlap in all other previous paras 1, . . . , i chains.
We merged two chains if there is a strict overlap
with any of the mentions in a given chain. If there
are no strict overlaps, we move to the next noun in
the given chain and repeat the process. If we find
no strict overlap with any mentions in any other
para chains, we keep the chain independent (same
as assigning None of the below in our annotation
tool). We repeat the process with all chains in a
given document and constantly update the chain
after every para.

B Annotation Disagreement Analysis

B.1 Genre wise disagreement analysis

Table 11 presents the genre-wise disagreement anal-
ysis for strict decision matching. Genres with
longer documents like bc, mz have more dis-
agreements compared to genres with smaller docu-
ment lengths like tc, pt.

The trend is very similar for new chain assign-
ments where genres with larger documents have
more disagreements over new chain assignments.
The numbers are presented in Table 13.

B.2 Annotators disagreements analysis

Figure 11 shows the cases (in black) when the an-
notators disagreed for each part of the speech cate-
gories (shown in big coloured bubbles). The size of
the bubbles is representative of their occurrence in
the dataset, suggesting there are more pronominal
mentions in the dataset than nouns or proper nouns.
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Figure 9: The summary page of our annotation tool that is shown after all the chains decisions in a paragraph is
made. The annotators can look and verify all the decisions and confirm answers and proceed to the next para or can
change their answers if they want.
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Figure 10: Annotation Time and Document Length.
Annotation time (cumulative) increases exponentially
with the increase in the number of decisions to choose
from. A comparison is shown between the longest docu-
ment in LongtoNotes vs an average document. The
dotted lines represent the increase in annotation time if
the growth was linear.

B.2.1 Genre wise disagreement analysis
In general, annotators disagree more on pronouns
than proper nouns and the trend is consistent for
various genres as shown in Table 12.

C Results

C.1 MUC, B3 and CEAFE scores

Tables 16, 17 and 18 present the MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998) and

Figure 11: Plot showing the part of speech distribution
for the disagreed clusters between annotators.

CEAFE (Luo, 2005) scores for SpanBERT Base
(Lee et al., 2017) and LongDocCoref Models (Tosh-
niwal et al., 2020b). On all three metrics, both mod-
els trained on LongtoNotes dataset outperforms
the models trained on OntoNotes dataset. For Span-
BERT base model, we compare three version of the
LongtoNotes dataset: LongtoNotess and
LongtoNotes dataset as mentioned in the pa-
per and LongtoNoteseq where LongtoNotes
dataset is reweighted to create the total number of
documents equal to the number of documents in
OntoNotes dataset. For LongDocCoref model, n
represents the maximum number of training sen-
tences, while m refers to the memory used.

C.2 Genre wise F1 scores vs sequence length

Table 15 shows that LongFormer Large model with
larger sequence length (4096) outperforms the one

1440



bc
Ann1 Ann2 Ann3

Ann1 1.0 0.91 0.87
Ann2 0.91 1.0 0.88
Ann3 0.87 0.88 1.0

mz
Ann1 Ann2 Ann3

Ann1 1.0 0.91 0.94
Ann2 0.91 1.0 0.93
Ann3 0.94 0.93 1.0

pt
Ann1 Ann2 Ann3

Ann1 1.0 0.97 0.98
Ann2 0.97 1.0 0.96
Ann3 0.98 0.96 1.0

tc
Ann1 Ann2 Ann3

Ann1 1.0 0.99 0.98
Ann2 0.99 1.0 0.98
Ann3 0.98 0.98 1.0

wb
Ann1 Ann2 Ann3

Ann1 1.0 0.93 0.90
Ann2 0.93 1.0 0.92
Ann3 0.90 0.92 1.0

Table 11: Genre wise strict decision based disagreement
analysis between the annotators.

PoS type bc pt
Pronouns 3.6 0.04
Nouns 3.2 0.05
Proper Nouns 1.9 0.03
Verbs 3.5 1.0

Table 12: Genre wise part of speech comparison for two
genres: bc and pt. The numbers are normalized and
presented in percentage.

with shorter sequence length (384) for all models.
The difference is higher when the documents are
longer (as seen in mz genre) than when the docu-
ments are shorter (as seen in pt).

bc
Ann1 Ann2 Ann3

Ann1 1.0 0.91 0.85
Ann2 0.91 1.0 0.86
Ann3 0.85 0.86 1.0

mz
Ann1 Ann2 Ann3

Ann1 1.0 0.89 0.91
Ann2 0.89 1.0 0.90
Ann3 0.91 0.90 1.0

pt
Ann1 Ann2 Ann3

Ann1 1.0 0.94 0.95
Ann2 0.94 1.0 0.91
Ann3 0.95 0.91 1.0

tc
Ann1 Ann2 Ann3

Ann1 1.0 0.98 0.98
Ann2 0.98 1.0 0.98
Ann3 0.98 0.98 1.0

wb
Ann1 Ann2 Ann3

Ann1 1.0 0.92 0.90
Ann2 0.92 1.0 0.91
Ann3 0.90 0.91 1.0

Table 13: Genre wise disagreement analysis between
the annotators for new chain assignment.

Memory Size
Dataset 20 40

OntoNotes 76.6 77.0
LongtoNotes 72.9 73.7
LongtoNotess 70.2 70.7

Table 14: Memory Size vs. Performance. We compare
two settings of the memory size parameter in memory
model (Toshniwal et al., 2020b) and find that the larger
memory version achieves better results on each dataset.
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OntoNotes LongtoNotess LongtoNotes
Mention Coref Mention Coref Mention Coref

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

LongFormer Large (mz)
+ OntoNotes (384) 88.0 87.9 88.0 82.4 82.4 82.4 84.3 86.1 85.2 73.8 75.0 74.2 84.3 86.1 85.2 73.8 75.0 74.2
+ OntoNotes (4096) 87.9 88.3 88.1 82.4 82.9 82.6 84.4 86.7 85.5 74.1 75.9 74.9 84.4 86.7 85.5 74.1 75.9 74.9
+ LongtoNotes (384) 87.0 88.4 87.7 81.4 83.0 82.2 84.4 86.9 85.6 72.4 73.6 72.9 84.4 86.9 85.6 72.4 73.6 72.9
+ LongtoNotes (4096) 86.9 87.8 87.4 80.9 82.0 81.5 85.0 86.7 85.8 74.1 74.8 74.4 85.0 86.7 85.8 74.1 74.8 74.4

LongFormer Large (pt)
+ OntoNotes (384) 95.5 94.4 95.0 88.6 87.4 88.0 94.3 95.3 94.8 84.6 86.9 85.7 94.9 94.4 94.7 85.5 85.8 85.6
+ OntoNotes (4096) 95.6 94.2 94.9 88.9 86.9 87.9 94.4 94.8 94.6 84.8 86.8 85.8 94.9 94.0 94.5 85.5 85.2 85.5
+ LongtoNotes (384) 95.1 94.3 94.7 89.2 88.3 88.8 94.2 95.1 94.6 86.0 88.0 87.0 94.6 94.2 94.4 86.5 86.7 86.6
+ LongtoNotes (4096) 95.3 94.2 94.8 89.7 88.2 89.0 94.5 94.5 94.5 86.4 87.4 86.9 94.8 93.7 94.3 87.0 86.4 86.7

Table 15: Comparison of F1 scores for mz and pt genres.

OntoNotes LongtoNotess LongtoNotes
Mention Coref Mention Coref Mention Coref

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

SpanBERT Base (Lee et al., 2017)
+ OntoNotes 86.6 87.5 87.0 83.1 83.6 83.4 88.4 85.0 86.7 84.2 80.8 82.4 86.7 85.4 86.1 83.0 81.3 82.1
+ LongtoNotess 73.3 91.0 81.2 70.0 85.7 77.1 78.3 90.5 84.0 73.8 85.5 79.2 73.2 90.4 80.9 69.4 85.1 76.5
+ LongtoNotes 86.6 87.1 86.8 83.0 82.9 86.8 88.1 84.6 86.3 83.3 80.1 81.7 86.6 85.5 86.0 82.4 81.0 81.7
+ LongtoNoteseq 86.1 87.8 87.0 82.8 83.5 83.2 87.7 86.2 87.0 83.4 81.9 82.6 86.1 86.3 86.2 82.3 81.9 82.1

LongDocCoref (Toshniwal et al., 2020b)
+ OntoNotes 95.3 85.6 86.4 81.2 85.4 83.2 95.3 85.6 86.4 77.8 86.2 81.8 95.3 85.6 86.4 78.2 85.2 81.6
+ LongtoNotess 95.3 85.6 86.4 22.3 66.9 33.5 95.3 85.6 86.4 17.5 65.7 27.6 95.3 85.6 86.4 21.7 66.9 32.8
+ LongtoNotes 95.3 85.6 86.4 81.4 85.0 83.2 95.3 85.6 86.4 79.3 85.8 82.4 95.3 85.6 86.4 79.1 85.0 81.9
+ LongtoNoteseq (n=3) 95.3 85.6 86.4 81.6 85.2 83.4 95.3 85.6 86.4 79.7 86.2 82.8 95.3 85.6 86.4 79.3 85.2 82.2
+ LongtoNoteseq (n=5) 95.3 85.6 86.4 81.4 85.3 83.3 95.3 85.6 86.4 79.7 86.2 82.8 95.3 85.6 86.4 79.2 85.3 82.1
+ LongtoNoteseq (n=10) 95.3 85.6 86.4 81.5 85.1 83.3 95.3 85.6 86.4 79.7 86.2 82.8 95.3 85.6 86.4 79.6 84.8 82.1
+ LongtoNoteseq (n=10, m=40) 95.3 85.6 86.4 81.6 85.6 83.6 95.3 85.6 86.4 79.8 85.9 82.7 95.3 85.6 86.4 79.5 85.2 82.3

Table 16: Comparison of MUC scores

OntoNotes LongtoNotess LongtoNotes
Mention Coref Mention Coref Mention Coref

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

SpanBERT Base (Lee et al., 2017)
+ OntoNotes 86.6 87.5 87.0 75.0 75.5 75.3 88.4 85.0 86.7 70.7 65.1 67.8 86.7 85.4 86.1 72.3 69.5 70.9
+ LongtoNotess 73.3 91.0 81.2 57.0 76.8 65.4 78.3 90.5 84 54.8 69.7 61.3 73.2 90.4 80.9 53.3 72.8 61.5
+ LongtoNotes 86.6 87.1 86.8 74.6 74.0 74.3 88.1 84.6 86.3 67.5 62.7 65.0 86.6 85.5 86.0 70.6 68.2 69.4
+ LongtoNoteseq 86.1 87.8 87.0 74.9 75.2 75.0 87.7 86.2 87.0 69.7 67.0 68.3 86.1 86.3 86.2 71.7 70.6 71.2

LongDocCoref (Toshniwal et al., 2020b)
+ OntoNotes 95.3 85.6 86.4 72.2 77.9 74.9 95.3 85.6 86.4 57.9 71.7 64.0 95.3 85.6 86.4 63.9 74.7 68.9
+ LongtoNotess 95.3 85.6 86.4 18.3 61.7 28.2 95.3 85.6 86.4 10.7 53.6 17.9 95.3 85.6 86.4 16.1 58.7 25.2
+ LongtoNotes 95.3 85.6 86.4 73.3 76.7 75.0 95.3 85.6 86.4 61.0 70.1 65.2 95.3 85.6 86.4 65.5 73.7 69.4
+LongtoNoteseq (n=3) 95.3 85.6 86.4 73.7 76.9 75.2 95.3 85.6 86.4 64.4 70.4 67.3 95.3 85.6 86.4 67.5 73.7 70.5
+ LongtoNoteseq (n=5) 95.3 85.6 86.4 73.4 77.3 75.3 95.3 85.6 86.4 64.5 70.9 67.6 95.3 85.6 86.4 67.5 74.2 70.7
+ LongtoNoteseq (n=10) 95.3 85.6 86.4 73.6 77.0 75.3 95.3 85.6 86.4 64.5 70.9 67.6 95.3 85.6 86.4 68.3 73.5 70.8
+ LongtoNoteseq (n=10, m=40) 95.3 85.6 86.4 73.5 78.1 75.7 95.3 85.6 86.4 65.0 70.5 67.6 95.3 85.6 86.4 67.9 74.4 71.0

Table 17: Comparison of BCUB scores

OntoNotes LongtoNotess LongtoNotes
Mention Coref Mention Coref Mention Coref

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

SpanBERT Base (Lee et al., 2017)
+ OntoNotes 86.6 87.5 87.0 71.5 73.7 72.1 88.4 85.0 86.7 63.3 61.6 62.4 86.7 85.4 86.1 68.1 68.4 68.2
+ LongtoNotess 73.3 91.0 81.2 53.2 69.5 60.3 78.3 90.5 84.0 51.5 59.2 55.1 73.2 90.4 80.9 50.4 64.2 56.5
+ LongtoNotes 86.6 87.1 86.8 70.8 73.1 71.9 88.1 84.6 86.3 63.4 60.5 61.9 86.6 85.5 86.0 67.7 68.2 67.9
+LongtoNoteseq 86.1 87.8 87.0 70.2 74.2 72.1 87.7 86.2 87.0 64.0 63.1 63.5 86.1 86.3 86.2 67.5 69.6 68.5

LongDocCoref (Toshniwal et al., 2020b)
+ OntoNotes 95.3 85.6 86.4 67.0 74.5 70.5 95.3 85.6 86.4 54.5 63.4 58.6 95.3 85.6 86.4 61.6 69.8 65.4
+ LongtoNotess 95.3 85.6 86.4 25.7 60.0 35.9 95.3 85.6 86.4 16.8 47.8 24.8 95.3 85.6 86.4 23.5 57.2 33.3
+ LongtoNotes 95.3 85.6 86.4 65.8 75.3 70.2 95.3 85.6 86.4 53.7 65.9 59.2 95.3 85.6 86.4 60.5 71.7 65.6
+ LongtoNoteseq (n=3) 95.3 85.6 86.4 66.1 76.2 70.8 95.3 85.6 86.4 54.9 67.4 60.5 95.3 85.6 86.4 61.2 72.2 66.2
+ LongtoNoteseq (n=5) 95.3 85.6 86.4 66.7 76.0 71.1 95.3 85.6 86.4 56.0 66.6 60.9 95.3 85.6 86.4 61.9 71.8 66.5
+LongtoNoteseq (n=10) 95.3 85.6 86.4 66.2 75.9 70.7 95.3 85.6 86.4 56.0 66.6 60.9 95.3 85.6 86.4 61.7 72.2 66.6
+ LongtoNoteseq (n=10, m=40) 95.3 85.6 86.4 68.0 75.9 71.7 95.3 85.6 86.4 56.1 68.9 61.9 95.3 85.6 86.4 62.9 72.9 67.5

Table 18: Comparison of CEAFE scores
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