
Findings of the Association for Computational Linguistics: ACL 2023, pages 1399–1418
July 9-14, 2023 ©2023 Association for Computational Linguistics

Grammar-based Decoding for Improved Compositional Generalization in
Semantic Parsing

Jing Zheng and Jyh-Herng Chow and Zhongnan Shen and Peng Xu
Ant Technologies U.S., Inc

{jing.zheng, jyhherngchow, zhongnan.shen, peng.x}@antgroup.com

Abstract
Sequence-to-sequence (seq2seq) models have
achieved great success in semantic parsing tasks,
but they tend to struggle on out-of-distribution
(OOD) data. Despite recent progress, robust se-
mantic parsing on large-scale tasks that combine
challenges from both compositional generaliza-
tion and natural language variations remains an
unsolved issue. To encourage research in this area,
this work introduces CUDON, a large-scale dia-
logue dataset in the Chinese language, specifically
created to evaluate the compositional generaliza-
tion of semantic parsing. The dataset contains
about ten thousand multi-turn complex queries,
and provides multiple splits with different de-
grees of train-test distribution divergence. We
have investigated improving compositional gener-
alization through grammar-based decoding on this
dataset. With specially designed grammars that
leverage program schema, we are able to signifi-
cantly improve the accuracy of seq2seq semantic
parsers on OOD splits: a LSTM-based parser us-
ing a Context-free Grammar (CFG) achieves over
25% higher accuracy than a standard seq2seq base-
line; a parser using Tree-Substitution Grammar
(TSG) improves parsing speed by five to seven
times over the CFG parser with only a small accu-
racy loss. The grammar-based LSTM parsers also
outperforms BART- and T5-based seq2seq parsers
on the OOD splits, despite having less than one
tenth of the parameters and no pretraining. We
also validated our approach on the SMCalflow-CS
dataset, specifically on the zero-shot learning task.

1 Introduction

The task of semantic parsing is to translate a nat-
ural language utterance into an executable pro-
gram in certain meaning representation (MR). In
recent years, sequence-to-sequence (seq2seq) mod-
els have become the dominant approach for this
task (Jia and Liang, 2016; Dong and Lapata, 2016),
mainly due to their excellent ability to handle natu-
ral language variations. However, evaluations on
synthetic datasets such as SCAN (Lake and Ba-
roni, 2018) have shown that seq2seq models do

not reliably generalize to those out-of-distribution
(OOD) utterances with element combinations not
seen in the training data. The ability to generalize
to novel element combinations is commonly known
as compositional generalization.

To improve compositional generalization, many
recent studies propose specially-designed model ar-
chitectures targeting SCAN-like synthetic datasets,
and some have achieved perfect accuracy on some
of these datasets (Li et al., 2019; Russin et al., 2019;
Gordon et al., 2020; Lake, 2019; Liu et al., 2020a;
Nye et al., 2020; Chen et al., 2020). However,
most of these approaches have only been tested on
synthetic datasets, which are constructed for a spe-
cific purpose and cannot represent the full range of
challenges that a real-world semantic parser must
address.

This motivates us to study the compositional
generalization problem in a more realistic setting,
specifically, in the context of task-oriented dia-
logue systems, where semantic parsers must han-
dle greater task complexity and navigate through
a wider range of natural language variations and
ambiguities. The contributions of this work are
two-fold: first, on the dataset front, we have cre-
ated CUDON1, a Chinese dialogUe Dataset for
compOsitional geNeralization research. This is
a new large-scale task-oriented dialogue dataset,
which contains complex multi-turn cross-domain
dialogues, created in a semi-synthetic manner,
and specially tailored for studying the composi-
tional generalization problem. It also provides 8
train/dev/test splits with different level of distri-
bution divergence. To the best of our knowledge,
this is the first large-scale Chinese dataset designed
for this purpose. And the dataset being in Chi-
nese makes it even more valuable since the similar
resources are scarce.

Second, on the modeling front, we find that by

1https://github.com/ant-research/dialog-dataset-for-
compositional-semantic-parsing

1399

exploiting schema of the target program, includ-
ing the syntax and function argument lists, in the
paradigm of grammar based decoding (Krishna-
murthy et al., 2017; Yin and Neubig, 2017; Scholak
et al., 2021), we can substantially improve compo-
sitional generalization of semantic parsers in the
seq2seq framework. Both the parser using a con-
text free grammar (CFG) and the one using a tree-
substitution grammar (TSG) (Cohn et al., 2010)
exceed a standard seq2seq baseline using Pointer
Generator Network (See et al., 2017), by over 20
percent on the OOD splits, with the latter being 5-7
times as fast as the former. And they even com-
pare favorably with parsers using large pretrained
language models with more than 10 times of param-
eters. This level of improvement was not reported
before in similar works. We also verified that the
proposed approach also works in the SMCalflow-
CS (Yin et al., 2021) dataset without much tuning,
achieving significant improvement in the zero-shot
setting over the baseline, and exceeds previously
reported results with pretrained language models
in low-resource settings. In addition, we have not
seen the TSG formalism used in grammar-based
decoding before, although we adopt a model archi-
tecture similar to Platanios et al. (2021).

2 Dataset

We have constructed a large-scale multi-turn cross-
domain task-oriented dialogue dataset in the finan-
cial assistant scenario over seven domains and 52
intents. There is also a common domain for in-
tents such as goodbye and thankyou, which can
occur in all dialogues. The raw material of entities
and properties, such as stock prices and gains, or
the experience and best return of fund managers,
was crawled from various websites. Throughout
the course of dialogue generation, the system may
carry out the user-requested tasks by consulting
this data to produce realistic and coherent results.

The MR we use is called function expressions,
which allows arbitrarily nesting of function invoca-
tions. There are two types of functions: one with
only named arguments, each associated with an
intent in the dialogue system, and its arguments
associated with the slots of the intent; the other
can have both positional and named arguments,
and perform non-interactive operations like data
manipulation.

Overall, the dataset has 9996 dialogues, with an
average of 41 turns per dialogue and about 44%

Figure 1: Example of a multi-turn dialogue. User turns
are annotated with function expression (FE).

of the turns involve multiple domains. There are
3876 different delexicalized patterns of the target
function expressions with highly unbalanced fre-
quencies. We use the function refer to reference
slots filled in previous turns, aided with constraint
functions to limit search matching. This idea, bor-
rowed from Andreas et al. (2020a), makes utter-
ances seemingly independent to each other in a
multi-turn dialogue. Figure 1 shows an example of
a multi-turn dialogue.

do(
hotel/reserve_hotel(

hotel_name = user_select(
hotel/find_hotel(location = ’West Lake’)),

occupancy = ’2’,
date = ’Sunday’),

restaurant/find_restaurant(
type = ’fastfood’,
location = hotel/find_hotel/address))

Figure 2: A function expression example

1400

2.1 Function Expression as the Goal

A common approach to task-oriented multi-turn
dialogue generation is to use an agenda-based user
simulator (Schatzmann et al., 2007). This approach,
using a flat-structured goal representation defined
by multiple tuples of intent, act, and slot-value
pairs, is incapable of describing dataflows across
multiple intents in a single dialogue turn.

Instead of the flat-structured goal, we propose
specifying a goal as a function expression, that can
explicitly express the composition of intents and
complex dataflow in a dialogue. For example, the
goal "find a hotel near West Lake, reserve a room
for two people for Sunday, and check if there is a
fast food restaurant nearby", can be expressed as
shown in Figure 2, where the user_select func-
tion triggers the system to ask the user to select one
result from the find_hotel intent.

Similar to Wang et al. (2015); Rastogi et al.
(2020), we take a two-step approach. A goal is
first generated from a set of production rules to
create the function expression and its correspond-
ing canonical utterance simultaneously. However,
instead of simply paraphrasing this canonical ut-
terance, we use the goal to drive a user simulator
to generate a multi-turn dialogue where each user
turn has its own function expression and canonical
utterance. In the second step, we paraphrase the
user utterances in this multi-turn dialogue to make
them more natural and fluent.

Appendix A describes the production rules used
for goal generation in more detail. Appendix B
describes how function expressions are used to gen-
erate multi-turn dialogues, and shows the goal that
generates the dialogue shown in Figure 1.

2.2 Paraphrasing user turns

The generated canonical utterances are then para-
phrased by crowd workers and a fine-tuned mBART
model (Liu et al., 2020b). Our work focuses on
the user-side modeling, so we only paraphrase the
user utterances. We instruct the crowd workers to
paraphrase every user turn of 500 dialogues, and
paraphrase only three longest user turns of a dia-
logue for the remaining. We ask them to rewrite the
utterances in accordance with the context and en-
courage them to express the same meaning but with
different sentence structures. A dialogue is para-
phrased by a worker, cross checked and possibly
revised by a different worker, and finally verified
and possibly modified by a third person.

Then we collect all the human paraphrased data
(a total of 38895 samples) to train an mBART-
based paraphrasing model, which is then used to
paraphrase all remaining data. Inspired by recent
prompt-based approaches (e.g., Liu et al. (2021)),
during training we utilize the first word of each
training sample as the prompt to initiate the para-
phrase 90% of the time, while randomly selecting
a word from anywhere in the sentence for the re-
maining 10%. This methodology ensures that the
model is likely to begin the generated sentence with
the prompt word, while still allowing for flexibility
to use the prompt word in other positions when
necessary. This approach improves the diversity
and robustness of the model by generating a wider
range of paraphrased outputs. During inference,
for each utterance we provide the model with three
different prompts based on the pattern of its func-
tion expression. We then filter out those results that
have modified entity values. In the end, using the
mBART model, we are able to paraphrase 94.8%
of the remaining data.

2.3 Train/Test splits

The primary goal of this dataset is to help research
of compositional generalization, so we want to split
the data into train and test in multiple ways for ex-
perimentation. To facilitate data splitting, we pair
each utterance with its context to form a data sam-
ple to make them mutually independent, allowing
arbitrary way of splitting. In this work we use
the user utterance from the previous round as con-
text. Though this may not be the optimal setting
for training the most accurate model, we think it is
a reasonable compromise between flexibility and
quality. For each split, we reserve a portion of ran-
domly selected test samples as the validation data
for checkpoint selection, and the rest for evaluation,
on which we report results in the experiments. It is
important to note that the validation data must not
be used for model training, as it shares similarity
with the evaluation data.
IID Split We provide a standard random split
of data samples, where train and test set have sim-
ilar data distribution. We dedupe each set to get
unique context-utterance pairs. We also remove
samples from validation and evaluation data if they
appear in the training set.
TMCD Splits Shaw et al. (2021) proposes
Target Maximum Compound Divergence (TMCD)
for data splitting. Each target expression is repre-

1401

sented as a sequence of atoms, where a compound
describes the composition of the atoms. Thus, com-
pound divergence measures the difference in the
composition between the train and test sets.

In this study, we define atoms as the tokens in
function expressions and compounds as the parent-
child relationship in function invocations. The
compounds of a concrete example can be found
in Appendix C.

To study compositional generalization, follow-
ing the MCD principle (Keysers et al., 2020), we
aim to generate splits that have low atom diver-
gence between the train and test sets, while hav-
ing a significant difference in the representation of
compounds in the train and test sets. To experiment
with TMCD splits, we fix atom divergence at 0.1,
and run 200 different splits to get their compound
divergence, and then select six splits with varying
compound divergence for model experiments.
Length Split Length split is also often used
in evaluating compositional generalization (e.g., in
SCAN). Here we define the length of a function ex-
pression to be the max number of arguments among
all the functions in the expression. The training set
contains all the samples whose expression length is
smaller than or equal to two. Those samples with
expression length larger than two are divided into
validation and test set.

Appendix C describes these splits in more detail
and contains plots that show the atom and com-
pound distributions in the train/test set.

3 Approach

To improve compositional generalization, we ex-
ploit the program schema to enhance seq2seq mod-
els in a grammar-based decoding framework. The
model takes in the user utterance and the context
as input, and outputs a sequence of rules and as-
sociated values, which can be used to construct
the program. Intuitively, if the parser is aware of
the argument list of each function, it can avoid
predicting arguments not belonging to this func-
tion. And grammar can also help avoid generating
ill-structured outputs.

3.1 Context Free Grammar (CFG)

We design a context free grammar that defines all
valid function expressions. Figure 3 shows an ex-
ample derivation tree for the below function expres-
sion: f1(a1=f2(b1="abc"), a2=123), where
f1 and f2 are function names; a1, a2, and b1 are

Figure 3: Derivation tree for function expression
f1(a1=f2(b1="abc"), a2=123). Nonterminal sym-
bols start with $, and terminal symbol values are single
quoted. Function f2 has an optional argument b2. Each
solid line represents a CFG rule; each box represents an
elementary tree in TSG.

argument names; “abc” is a string literal copied
from the input utterance, and 123 is a constant. As-
suming that based on schema function f2 has an
optional argument b2 that is not included in this ex-
pression. We use specific nonterminals to represent
function argument lists and each of the arguments.
The output rule sequence for this example can be
found in Appendix D. The grammar induction pro-
cess is described in and Appendix E.

Some of the grammar design choices are made
for greater generalizability. First, we introduce
the nonterminal $VALUE to represent all types of
argument values. An argument nonterminal must
first rewrite as $VALUE, then as more specific value
types. This ensures at grammar level every argu-
ment can be assigned to any value type even if it
does not exist in the training data.

Second, we always use a function’s full named
argument list in the rules, but allow each argu-
ment to have argument specific null values, e.g.,
f2_b2/_null_ in Figure 3. This way, the gram-
mar is immune to novel combinations of function
arguments in test data. However, this requires gen-
eration of uninvolved arguments and can negatively
impact inference speed.

Model Architecture
As shown in Figure 4, we design an encoder-
decoder model with span-copying mechanism for
the CFG-based semantic parsers. The decoder
takes rule id as input, and uses model output to
cross attend to the encoder output, and pass the re-
sult to an output layer, which uses a softmax func-
tion to produce rule id distributions, from which

1402

Figure 4: CFG parser model architecture

the tracker decides the best next rule or span ids.
Appendix D explains in detail how rules and spans
are indexed into integer ids.

The output vocabulary includes all rule ids plus a
special id (i.e. copy id) representing span copying,
whose probability P_copy is used as a multiplier
for span probabilities to ensure proper distribution.
The decoder output and the projected encoder out-
put are fed into a pointer network (Vinyals et al.,
2015), which produces distribution for all input
spans with an attention layer. Note, each input
span can be viewed as a dynamic rule that rewrites
$SPAN as the actual content, therefore span ids are
used for represent these rules.

The rule distribution (excluding the copy id) and
the scaled span distribution are fed to the tracker,
which generates the target program and ensure its
validity. At each step, the tracker creates a mask
based on its internal state to filter out illegal rules,
picks the most probable legal rule id to update
the internal state, and feeds the next rule id to the
decoder to continue the loop, until a special end
id is predicted. Note if a span id is selected at a
certain step, the copy id is sent to the decoder, so
that the decoder is agnostic of the content being
copied. The prediction is performed in the order
of top-down pre-order traversal, resulting in the
leftmost derivation.

To train the model, in addition to the encoder
input, the trainer needs the sequence of rule ids
and span ids as labels, which are obtained during
grammar induction. We train the model using the
negative log likelihood (NLL) loss in the extended
vocabulary space with both rule ids and span ids,
and use the exact match metric to pick the check-
point. More details about the model can be found
in Appendix F.

Our approach is similar to Yin and Neubig
(2017), but we use very different grammar design,

Figure 5: TSG parser model architecture

which targets greater compositional generalization.
We also use span-level copy, like in Platanios et al.
(2021), instead of token-level copy. We also don’t
use an abstract syntax tree, but a domain-specific
grammar induced from the training data.

3.2 Tree-Substitution Grammar (TSG)

For a typical seq2seq model, inference time is
closely related to the number of steps to produce
a complete output. An obvious approach to boost-
ing speed is to reduce necessary output steps, i.e.,
the total number of rules required to construct the
whole derivation tree in our case. This motivates
us to explore TSGs, where each production rule
rewrites a frontier nonterminal as an entire elemen-
tary tree, and therefore requires significantly fewer
generation steps.

In fact, we can convert the aforementioned CFG
into a TSG in a straightforward manner by packing
rules responsible for generating a tree fragment into
an elementary tree, as illustrated by the boxes in
Figure 3. This way, we can create a TSG out of the
original CFG, with much fewer generation steps
required in the entire derivation. More details and
examples can be found in G, which also describes
the grammar induction process.

Model Architecture

At each generation step the model first predicts the
rewrite rules for all the frontiers of the last pre-
dicted tree in parallel, and then the next elementary
tree id. Note, predicting a frontier rewrite rule is
equivalent to finding the right-hand-side elemen-
tary tree. Because of the parallel nature of frontier
prediction, this approach greatly improves parsing
speed over the CFG parser, especially for trees with
many null-valued frontiers. Predicting frontiers in-
dependently may have advantage in compositional
generalization as well, though it could also lead to
errors caused by conflicting argument predictions.

1403

The model architecture is illustrated in Figure 5.
Similar to the CFG parser, the TSG parser also uses
an encoder-decoder model to predict tree ids, where
the decoder takes input from the encoder and the
past tree ids. We mix each tree’s embedding with
the max pooling of related frontier embeddings
before feeding to the decoder. This leads to a small
improvement over using embedding purely based
tree ids.

Frontier prediction is performed separately, by
matching the frontier encoding vector against value
encoding vectors from three different sources: pre-
vious tree instances, constants, and input text spans.
Details can be found in Appendix H.

The tracker then finds the best match for each
frontier, and the next tree id, which is fed back
to the decoder for the next prediction. It accumu-
lates logits of frontier values and tree ids to find
the derivation hypothesis with the highest com-
bined score from both frontier and tree predic-
tions. The tracker also checks potential conflicts
between frontier values, and penalizes the violat-
ing hypotheses. This provides a slight accuracy
improvement in beam search settings. Different
from the CFG parser, the TSG parser makes pre-
diction in a bottom-up post-order manner, so that
the are trees predicted at a later step can attend to
tree encoding vectors produced at earlier steps.

Model training requires target labels as a se-
quence of elementary tree instances, each includes
the tree id, frontier kind and value id information.
We combine the negative log-likelihood (NLL) loss
from tree id prediction and cross entropy (CE) loss
from frontier value prediction for optimization. At
inference time, the tracker assembles prediction
outputs into the tree instances, from which the pro-
gram is constructed. More details about the model
can be found in Appendix H.

4 Experiments

In this section we compare parsing accuracy and
speed performance of all parsers. We use ex-
act match accuracy as the metric, with minor
normalization to filter out non-significant varia-
tions and to sort named arguments (order insen-
sitive). Table 1 summarizes the sample sizes of
train/validation/evaluation data of all the splits,
along with compound divergence values.
Baseline We train and evaluate baseline
parsers using the OpenNMT-py toolkit (version
1.2.0). The baseline model is configured as a

train valid eval div
IID 132800 32402 41329 9e-5
Tmcd1 154586 21045 31662 0.1008
Tmcd2 150437 22808 34048 0.1360
Tmcd3 154840 20846 31607 0.2055
Tmcd4 151011 22767 33515 0.2350
Tmcd5 153169 21690 32434 0.3422
Tmcd6 155732 20771 30790 0.3792
Length 196397 1074 9822 0.5021

Table 1: Statistics of sample sizes and compound diver-
gence values.

source-to-target text translator, using a pointer gen-
erator network with two layers of bidirectional
LSTMs as encoder and two layers of LSTMs as
decoder. We found a small gain by using 300-
dimension pretrained embeddings from FastText2

for initialization. Since we observe large accuracy
variations between models trained with different
random seeds, to have a clear picture of the degree
of variations, we run training 55 times with differ-
ent seeds to collect the medians and other statistics.
We find on TMCD splits, the standard deviation
of accuracies range from 6.4 to 11.3 percent. For
this reason we want to use large evaluation sets to
reduce random effects. More details can be found
in Appendix I.
Grammar-based Parsers To ensure mean-
ingful comparison against the baseline, grammar-
based parsers also use bi-directional LSTM
(Hochreiter and Schmidhuber, 1997) as the encoder,
unidirectional LSTM as the decoder, and the same
pretrained word embeddings for initialization. We
make sure that grammar-based models have similar
parameter sizes as the baseline (around 11M).
Pretrained Models Since LSTM is not to-
day’s state of the art (SOTA) in modeling, to ver-
ify if our approach is still competitive compared
against stronger models, we also train two addi-
tional parsers using T5 (Raffel et al., 2020) and
BART (Lewis et al., 2019) models. Both were pre-
trained on a subset of the CLUE corpus (Xu et al.,
2020) using UER-py (Zhao et al., 2019). The pa-
rameter sizes for the T5 3 model is 214M, and the
BART 4 model 117M. We fine tune these models
on our data as text-to-text translators. Consider-
ing the differences in training data and parameter

2https://fasttext.cc/docs/en/crawl-vectors.html
3https://huggingface.co/uer/t5-small-chinese-

cluecorpussmall
4https://huggingface.co/uer/bart-base-chinese-

cluecorpussmall

1404

ONMT BART T5 CFG TSG
96.9 97.7 98.3 97.6 97.2

Table 2: Accuracy (%) on the IID split.

ONMT BART T5 CFG TSG
Tmcd1 51.8 71.7 73.4 52.3 49.1
Tmcd2 51.0 60.5 48.9 77.5 77.1
Tmcd3 31.5 52.8 41.3 47.9 49.1
Tmcd4 28.8 52.3 37.6 48.7 54.4
Tmcd5 24.9 41.9 42.1 57.1 54.4
Tmcd6 27.3 35.8 32.0 55.8 61.0
Length 0 0 0 55.9 39.9
Average 30.8 45.0 39.3 56.4 54.3
Tmcds 35.9 52.5 45.9 56.5 56.7

Table 3: Accuracy (%) on all the OOD splits. Average
refers to equal-weight accuracy average on all splits;
Tmcds to the average accuracy on TMCD splits only.

sizes, the comparison is not strictly fair, but can
help evaluate the competitiveness of our approach.

We observe that besides the baseline, other
parsers also have accuracy variations, but in much
lighter degrees. For these parsers, we run model
training five times with different random seeds, and
report median accuracy, which appears reasonably
stable in multiple experiments.

4.1 Results on IID Split

We first evaluate the models on the in-distribution
data. As Table 2 shows, T5 has slightly higher ac-
curacy than other parsers, which is expected given
it has the largest parameter size and is pretrained on
extra data. The rest are in the same ballpark, show-
ing that the grammar-based parsers are competitive
on the IID split.

4.2 Results on OOD Splits

Results of all the parsers on the OOD data are
summarized in Table 3, from which we have the
following observations: First, both CFG and TSG
beat the baseline by very large margins: 25.6% for
CFG and 23.5% for TSG. They also outperform
BART and T5, especially clear on the Length split,
where ONMT, BART and T5 all have zero accu-
racy. CFG and TSG parsers have about the same
accuracy on the TMCD splits, but the former has
a 16% lead on the Length split, probably because
the CFG parser detects null-valued arguments more
reliably with serial argument prediction.

T5 and BART lead the ONMT baseline almost
everywhere, confirming the advantages of large
pretrained models over LSTM. They are also the
leaders on Tmcd1, which has the smallest diver-

IID TMCDs Length OOD Avg.
CFG-f 97.6 39.9 2.5 39.9
CFG 97.6 56.5 55.9 56.4

Table 4: Comparison between CFG-f (no schema) and
CFG (with schema).

Batch ONMT BART T5 CFG TSG
1 93.9 462.3 1179.8 96.5 19.5
32 17.0 29.9 65.8 22.2 3.2

Table 5: Average parsing time in millisecond per utter-
ance on Tesla P100 GPU.

gence among all the OOD splits. However, on
splits with higher divergence, they tend to perform
much worse, especially for the T5 parser. This
indicates large pretrained language models do not
necessarily have sufficient compositional general-
izabilites.

4.3 Importance of Schema

To examine the importance of schema informa-
tion, we experimented with a different CFG de-
sign, which uses a right-recursion rule to gener-
ate arbitrary argument sequence, until the underly-
ing model predicts the ‘end-of-argument-list’ rule.
This is similar to the strategy used in Yin and Neu-
big (2018). This grammar, denoted CFG-f, still
guarantees valid target syntax, but does not have
knowledge of function schema. Table 4 shows that
without using schema, CFG-f still matches CFG
on the IID split, but falls far behind on all OOD
splits, especially on the ‘length’ split. We believe
that using the schema info is the key for achieving
large gain on OOD data, and this is one of the main
differences between our approach and many prior
works.

4.4 Parsing Speed

We test parsing speed of all the parsers on the first
4000 examples of the IID test set on a Tesla-P100
GPU. For fair comparison all parsers use greedy
search inference mode, whose accuracy is very
close to beam search on this dataset. As shown
in the Table 5, the TSG parser is the clear winner
in parsing speed: in both single and batch infer-
ence mode, it is five to seven times as fast as the
CFG parser, five times as ONMT. BART and T5
models are much slower because of much larger
parameter sizes, especially in the single inference
mode, where GPU computation power cannot be
fully utilized.

1405

Task 0 8 16 32
ONMT 30.6 38.2 42.3 45.0
TSG 37.2 39.1 39.6 45.7
T5 - 34.7 44.7 59.0
BERT2SEQ - - 33.6 53.5

Table 6: Few-shot learning result on SMCalFlow-CS.
The first row lists number of shots.

4.5 Few-Shot Learning

SMCalFlow (Andreas et al., 2020b) is a large-scale
English dialogue dataset tailored for semantic pars-
ing research. SMCalflow-CS is a subset of SM-
Calflow containing only single-turn utterances that
cover two skills, calendar events and org chart. The
training set mostly contains single-skill utterances,
plus a limited number of composite samples in-
volving both skills. The test set has composite
samples only. Multiple few-shot learning tasks are
created based on the number of composite samples
(or shots) in the training set. The zero-shot task is
the most challenging one to evaluate a model’s gen-
eralizability, and we did not find results reported
from prior works.

For this experiment, we compare the TSG parser
against the ONMT baseline, and two other parsers
using pretrained models, whose results are cited
from previous work. In order to use our current
implementation on this dataset, we convert the pro-
grams in SMCalflow-CS to our MR in a lossless
manner. We use exactly the same model configura-
tions and parser setup from experiments mentioned
earlier. As Table 6 shows, on the zero-shot task,
the TSG parser outperforms the ONMT baseline
significantly, and even beats the 8-shot T5 (Qiu
et al., 2021) and the 16-shot BERT2SEQ result
(Yin et al., 2021) despite using much smaller mod-
els without pretraining. When the number of shots
increases, the gap between ONMT and TSG di-
minishes, similar to what we observe on our own
dataset when the divergence decreases. T5 and
BERT2SEQ become significantly better, motivat-
ing us to investigate more sophisticated models to
catch up on higher-shot tasks.

4.6 Error Analysis

We performed error analysis and find that the ma-
jority of errors are related to argument prediction er-
rors, as shown in Table 7. The two parsers have sim-
ilar overall accuracies on the TMCD splits, though
the TSG parser tends to miss more arguments,
which explains the large accuracy gap between the
two on the Length split, where errors overwhelm-

ingly come from argument missing. Currently we
use a simple argument-specific vector to model
null-valued arguments, which has large room for
improvement.

Looking more closely into details, we found
some individual errors, e.g., confusing one specific
function with another, can occur very frequently
on some splits, accounting for a significant portion
of the total errors. This is most likely caused by a
highly frequent pattern in the test data but rare in
training, resulting large numbers of errors.

We notice some errors can be fixed by leverag-
ing additional schema information. For example,
sometimes arguments expecting numeric values
are assigned non-numeric strings. By incorporat-
ing type checking, like in Platanios et al. (2021)
and Krishnamurthy et al. (2017), this problem can
be effectively addressed. Also, boundary errors of
copied entities can be largely resolved by applying
fuzzy match against a dictionary, for many entities
with known categorical values.

Error Type CFG TSG
Function prediction 16.9 19.5
Argument missing 4.0 9.6
Argument insertion 8.0 4.8
Argument confusion 9.4 5.5
Argument value 9.3 10.8
Overall 44.0 45.6

Table 7: Average percentages of utterances with each
error type on the TMCD splits. Overall refers to the
average utterance error rate. Since a single utterance
can have multiple types of errors, the sum of error rates
of all categories is larger than the over error rate.

5 Related Work

Dataset Compositional generalization re-
search used to focus on fully synthetic datasets
such as SCAN (Lake and Baroni, 2018), COGS
(Kim and Linzen, 2020), NACS (Bastings et al.,
2018), CFQ (Keysers et al., 2020), and so on. Re-
cently researchers have also conducted experiments
on non-synthetic datasets, such as GeoQuery (Zelle
and Mooney, 1996), and SPIDER (Yu et al., 2018),
trying to attack both compositional generalization
and natural language variation challenge together.
The most similar dataset to ours is SMCalFlow-
CS(Yin et al., 2021), which is extracted from SM-
Calflow(Andreas et al., 2020b), a large scale dia-
logue data set, for the purpose of compositional

1406

generalization research. However, our dataset has
many more domains, multi-turn dialogues, more
complex conversations, and different ways of split-
ting data. More importantly, our dataset is in Chi-
nese with few similar resources.

Modeling For small-scale synthetic data,
many specialized model architectures proved to
be effective on SCAN like tasks (Li et al., 2019;
Russin et al., 2019; Gordon et al., 2020; Lake, 2019;
Liu et al., 2020a; Nye et al., 2020; Chen et al.,
2020). To also address natural language variations
in non-synthetic tasks, some recent works exploit
structure of the source input and its relation to the
target side (Herzig and Berant, 2021; Shaw et al.,
2021; Weißenhorn et al., 2022), and employ source-
side parsing that can be computationally demand-
ing for long sentences, and may have coverage chal-
lenge and not available in all languages; while we
try to exploit target-side structure only for higher
efficiency. Some other works leverage source-side
structure for data augmentation to overcome distri-
bution divergence (Yang et al., 2022b; Qiu et al.,
2022), which can clearly help but is not the fo-
cus of this paper. Grammar-based decoding has
shown to help semantic parsing on in-distribution
data (Krishnamurthy et al., 2017; Yin and Neubig,
2017). Oren et al. (2020) also look into composi-
tional generalization, and find the accuracy gain
from grammar-based decoding is small and incon-
sistent across all datasets. We think one of the main
reasons for our improvement lies in different gram-
mar design, which can leverage program schema to
counter distribution divergence. Yang et al. (2022a)
decompose a text-to-sql task into a sequence of sub-
tasks, each to fill slots of a subclause by prompting
preptrained language model. This in spirit is re-
motely similar to our approach, which predicts one
function and its argument at each step, but with
very different model architectures and on very dif-
ferent domains. The model architectures used in
this paper bear resemblance to some of prior works.
The model of the CFG parser is similar to Yin and
Neubig (2017, 2018), except that we use span-level
copying instead of token-by-token copying, and
different grammar. And the span copying approach
is previously used by Platanios et al. (2021), which
also inspired us on the design of the TSG parser.
Lastly, although LSTMs are not viewed state of the
art, they can perform surprisingly well in some se-
mantic parsing tasks comparing to large pretrained
models, for example in Yang et al. (2021).

6 Conclusions

Compositional generalization remains an unsolved
problem for real-world semantic parsers. We pro-
pose a semi-synthetic large-scale task-oriented di-
alogue dataset intended to promote research in
this area. We find that by designing appropriate
grammars, leveraging schema information, and
choosing right model architecture we can substan-
tially improve both compositional generalization
and parsing efficiency. We will investigate apply-
ing grammar-based decoding approach to large pre-
trained language models on more challenging tasks.

Limitations

The schema information and grammar design are
domain specific. We have tested our approach
mainly on our own dataset, though we believe the
similar approach can be applied to other tasks, as
long as the meaning representation involves func-
tions and arguments. Also, we have not explored
all approaches to obtain the highest possible accu-
racy on this dataset, because our main goal is to
show the effectiveness of the proposed approach,
which we believe is clearly demonstrated by the
current result. At this stage, the difference between
in-distribution and out-of-distribution accuracies
remain very large, and there is a large room for
further improvements. We hope by releasing this
dataset we can help promote research in related
areas.

Ethics Statement

This work proposes to release a new dataset to
research community for improving compositional
generalization in semantic parsing. The goal of
the research topic is to make model work better
on underrepresented language without relying on
large training data and therefore long training time.
The models proposed in this paper are very small
in today’s standard and do not require large com-
puting resources for training and evaluation. We
particularly pay attention to efficiency of models to
save computing resource after deployment.

Acknowledgments

We want to thank Kuan Xu, Zujie Wen and
Yongliang Wang for their supports in dataset gener-
ation, and Yi Su for helpful discussions.

1407

References
Jacob Andreas, John Bufe, David Burkett, Charles

Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020a.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Jacob Andreas, John Bufe, David Burkett, Charles Chen,
Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, et al. 2020b.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Jasmijn Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump
to better conclusions: SCAN both left and right. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 47–55, Brussels, Belgium. As-
sociation for Computational Linguistics.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song,
and Denny Zhou. 2020. Compositional generaliza-
tion via neural-symbolic stack machines. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1690–1701. Curran Associates,
Inc.

Jianpeng Cheng, Devang Agrawal, Héctor
Martínez Alonso, Shruti Bhargava, Joris Driesen,
Federico Flego, Dain Kaplan, Dimitri Kartsaklis,
Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid Ó Séaghdha, and Anders
Johannsen. 2020. Conversational semantic parsing
for dialog state tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8107–8117,
Online. Association for Computational Linguistics.

Trevor Cohn, Phil Blunsom, and Sharon Goldwater.
2010. Inducing tree-substitution grammars. Jour-
nal of Machine Learning Research, 11:3053–3096.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber.
2021. The devil is in the detail: Simple tricks im-
prove systematic generalization of transformers. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 619–
634, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the

54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and
Diane Bouchacourt. 2020. Permutation equivariant
models for compositional generalization in language.
In International Conference on Learning Representa-
tions.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Mihir Kale and Abhinav Rastogi. 2020. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520, Online. Association for Computa-
tional Linguistics.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1516–1526, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills

1408

https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.18653/v1/W18-5407
https://doi.org/10.18653/v1/W18-5407
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160

of sequence-to-sequence recurrent networks. In In-
ternational conference on machine learning, pages
2873–2882. PMLR.

Brenden M. Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pages 9788–9798.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hest-
ness. 2019. Compositional generalization for primi-
tive substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4293–4302, Hong Kong, China. Association
for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, and
Dongmei Zhang. 2020a. Compositional generaliza-
tion by learning analytical expressions. Advances in
Neural Information Processing Systems, 33:11416–
11427.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020b. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Maxwell Nye, Armando Solar-Lezama, Josh Tenen-
baum, and Brenden M Lake. 2020. Learning compo-
sitional rules via neural program synthesis. Advances
in Neural Information Processing Systems, 33:10832–
10842.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. arXiv
preprint arXiv:2010.05647.

Emmanouil Antonios Platanios, Adam Pauls, Subhro
Roy, Yuchen Zhang, Alexander Kyte, Alan Guo, Sam
Thomson, Jayant Krishnamurthy, Jason Wolfe, Jacob
Andreas, and Dan Klein. 2021. Value-agnostic con-
versational semantic parsing. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3666–3681, Online. As-
sociation for Computational Linguistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina Toutanova.
2022. Improving compositional generalization with
latent structure and data augmentation. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4341–4362, Seattle, United States. Association for
Computational Linguistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat,
Paweł Krzysztof Nowak, Tal Linzen, Fei Sha,
and Kristina Toutanova. 2021. Improving composi-
tional generalization with latent structure and data
augmentation. arXiv preprint arXiv:2112.07610.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689–8696.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua
Bengio. 2019. Compositional generalization in a
deep seq2seq model by separating syntax and seman-
tics. arXiv preprint arXiv:1904.09708.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a POMDP dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the
Association for Computational Linguistics; Compan-
ion Volume, Short Papers, pages 149–152, Rochester,
New York. Association for Computational Linguis-
tics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

1409

http://papers.nips.cc/paper/9172-compositional-generalization-through-meta-sequence-to-sequence-learning
http://papers.nips.cc/paper/9172-compositional-generalization-through-meta-sequence-to-sequence-learning
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.18653/v1/2021.acl-long.284
https://doi.org/10.18653/v1/2021.acl-long.284
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28. Curran
Associates, Inc.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332–1342, Beijing,
China. Association for Computational Linguistics.

Pia Weißenhorn, Lucia Donatelli, and Alexander Koller.
2022. Compositional generalization with a broad-
coverage semantic parser. In Proceedings of the 11th
Joint Conference on Lexical and Computational Se-
mantics, pages 44–54, Seattle, Washington. Associa-
tion for Computational Linguistics.

Liang Xu, Xuanwei Zhang, and Qianqian Dong.
2020. Cluecorpus2020: A large-scale chinese cor-
pus for pre-training language model. arXiv preprint
arXiv:2003.01355.

Jingfeng Yang, Federico Fancellu, Bonnie Webber, and
Diyi Yang. 2021. Frustratingly simple but surpris-
ingly strong: Using language-independent features
for zero-shot cross-lingual semantic parsing. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5848–
5856, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jingfeng Yang, Haoming Jiang, Qingyu Yin, Danqing
Zhang, Bing Yin, and Diyi Yang. 2022a. SEQZERO:
Few-shot compositional semantic parsing with se-
quential prompts and zero-shot models. In Findings
of the Association for Computational Linguistics:
NAACL 2022, pages 49–60, Seattle, United States.
Association for Computational Linguistics.

Jingfeng Yang, Le Zhang, and Diyi Yang. 2022b. SUBS:
Subtree substitution for compositional semantic pars-
ing. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 169–174, Seattle, United States. Associa-
tion for Computational Linguistics.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In Proceedings of the 2021

Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2810–2823, Online.
Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 7–12, Brussels, Belgium. Association
for Computational Linguistics.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050–1055.

Zhe Zhao, Hui Chen, Jinbin Zhang, Xin Zhao, Tao
Liu, Wei Lu, Xi Chen, Haotang Deng, Qi Ju, and
Xiaoyong Du. 2019. Uer: An open-source toolkit for
pre-training models. EMNLP-IJCNLP 2019, page
241.

Appendices

A Production Rules for Goal Generation

Figure 6 illustrates our production rules to gen-
erate a goal. The right hand side of a rule can
be associated with a [weight] and a [canonical

1410

https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.18653/v1/2022.starsem-1.4
https://doi.org/10.18653/v1/2022.starsem-1.4
https://doi.org/10.18653/v1/2021.emnlp-main.472
https://doi.org/10.18653/v1/2021.emnlp-main.472
https://doi.org/10.18653/v1/2021.emnlp-main.472
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.naacl-main.12
https://doi.org/10.18653/v1/2022.naacl-main.12
https://doi.org/10.18653/v1/2022.naacl-main.12
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

utterance]. The [weight] is used to influence
the sampling probability. This handy mechanism
allows the designer to focus differently on certain
generation. The [canonical utterance] is syn-
chronously generated as the rule expands, where
it can use #i to refer to the text generated by i-th
$rhs symbol.

The outermost production rule also allows the
&& connector for sequential composition, which
will be described below. To control the complex-
ity of generated expressions, we use a parameter
nested_rate to control the depth of nesting, and
rate_decay to indicate how fast the probability de-
cays when the generation goes deeper.

Composition of intents mainly come from the
following:

• dataflow through object property (slot):
for example, at Figure 6 line 6, $Fund-

CompanyName may come from a property
of a $FundManager (at line 15), which
could come from search_fund_manager for
fund_manager_name=’xxx’, resulting in this
expression: search_fund(fund_company_name

= get_property(search_fund_manager

(fund_manager_name = ’xxx’), ’cur-

rent_company’), i.e., "tell me some funds under
the company where fund manager ’xxx’ works
for".

• through the && operator: the production rule S1

&& S2 denotes the sequential composition of S1
and S2. S2 and S1 are not necessarily indepen-
dent, as S2 can refer to the result of S1 (as in the
Figure 2 find_restaurant example).

B Function Expression to Dialog

We have described how goals and their canonical
utterances are generated. Although a goal itself can
be a valid single-turn user request to the system,
and the system is expected to execute the whole
function expression, but a single turn with such
complexity is very unlikely to happen in reality.

Similar to the agenda-based simulator, we use
this goal to drive multi-turn dialogues. In our work,
a goal is divided into subgoals, and the dialogue
generation proceeds with each subgoal one-by-one,
respecting their dependency. For this dataset, we
choose to let each subgoal comprise one intent
function, so that given a subgoal, multi-turns can
be generated with an existing traditional agenda-
based approach. This does not mean the resulting

turns in the dialogue will become simply slot filling,
as they can still contain nested simple functions,
and multi-intent interactions occur through direct
slot references, the refer function, or sequential
composition

To generate canonical utterance for each turn
during dialogue generation, we use a templated
approach similar to the T2G2 approach (Kale and
Rastogi, 2020).

User turns are annotated with function expres-
sions. As an example, for the goal in Figure 7,
which means "find some funds with at least 4-star
rating and medium-to-high risk level, and I want to
know how their heavy holdings perform", the tool
generates the dialogue in Figure 1. Notice that the
search_fund has 3 arguments, but in the dialogue
the user may not inform all 3 slots in a single turn.
In this example, the user informs the em_rating

first and the system does a search_fund on rating.
Then the user later informs the fund_risk_type;
note that even though the function expression of
this turn contains only the fund_risk_type argu-
ment, the system does a search_fund with not only
fund_risk_type but also the slots known already
from the context (to be more precisely, when these
slots are not dependent of each other). Also notice
that to create more realistic dialogues, the tool auto-
matically create turns where the user may randomly
request further information about the system’s re-
sults to obtain the request type of dialogue acts.

C Atom and Compound Distribution

Keysers et al. (2020) defines the similarity of two
weighted distributions P and Q, using the Chernoff
coefficient as

Cα(P ||Q) =
∑

k

pαk q
1−α
k ∈ [0, 1]

and the divergence of the two sets is 1 minus this
similarity. They use α=0.5 for atom divergence and
α=0.1 for compound divergence.

To compute atom and compound divergence,
we first delexicalize the expression, i.e., mask all
quoted constants with placeholders; then follow-
ing TMCD (Shaw et al., 2021), we define atoms
to be the tokens in the function expressions, and
compounds are the parent-child relation in function
calls. For the example in Figure 7, it consists of the
following compounds:

fund/search_fund(fund_risk_type, - , -)
fund/search_fund(- , em_rating , -)
fund/search_fund(- , - , op)

1411

1 FundIntents = [5] $Funds [#1]
2 | $GetFundPrediction [#1]
3 | ...
4 ;
5 Funds = ...
6 | search_fund(fund_company_name=$FundCompanyName) [【#1】旗下的基金] # funds under【#1】
7 ;
8 GetFundPrediction = fund_prediction(fund_name=$FundName) [【#1】的走势预测] # trend prediction for【#1】
9 | ... ;
10 Fund = user_select($Funds) 【#1】
11 | ... ;
12 FundCompanyName = @Dictionary(fund_company_names_both.txt)
13 | [5] get_property($Fund, ’fund_company_name’) [【#1】的公司] # the fund company of【#1】
14 | [5] get_property($FundCompany, ’fund_company_name’) [【#1】的公司] # the fund company name of【#1】
15 | [5] get_property($FundManager, ’current_company’) [【#1】的公司] # the fund company【#1】works at
16 ;

Figure 6: Examples of production rules for goal generation

stock/evaluate_stock(
stock_name = get_property(
user_select(fund/search_fund(
fund_risk_type = ’中高风险’,
em_rating = ’4’,
op = ’>=’)),

’heavy_holdings’))

Figure 7: An example goal as function expression

user_select(fund/search_fund)
get_property(select , -)
get_property(- , ENTITY)
stock/evaluate_stock(stock_name)

In Figure 8, we plot the atom and compound
distribution in train (purple) and test (green) set for
these splits.

For IID split, as shown in Figure 8(a), both atom
distribution (top) and compound distribution (bot-
tom) show nearly identical distribution in the train
set and the test set. X-axis are the atoms (or com-
pounds), sorted by their frequency in the set and
y-axis is the log(frequency), where atom diver-
gence is 0.00003932, and compound divergence
is 0.00008713.

For TMCD splits, Figure 8(b) shows that atoms
in the test set are all in the training set; on the other
hand, Figure 8(c) shows some compounds in the
test set are not in the training set.

For the Length split, as shown in Figure 8(d),
the atom and compound divergence are quite high:
atom divergence is 0.2470, and compound diver-
gence is 0.5021. The distribution shows that while
all the atoms in the test set do appear in the training
set, many compounds in the test set do not appear
in the training set.

D CFG used by Semantic Parser

The CFG grammar used for semantic parsing in this
paper is particularly designed for function expres-
sions. In a derivation process, the start nonterminal

(NT) symbol $S first rewrites $FUNCTION represent-
ing generic function type, which further rewrites
as a function name followed by a NT represent-
ing the invocation argument list. This NT then
rewrites as a list of NTs representing all related
arguments. As explained in the paper, we elect to
include all named arguments declared in the func-
tion’s schema, no matter whether they are actually
used in the invocation. Then all the argument NTs
will first rewrite as a generic NT $VALUE. If the
argument was not used in the invocation, $VALUE
will rewrite as a specific terminal symbol repre-
senting a “null” value, which will be filtered out in
postprocessing; otherwise, $VALUE will rewrite as
one of four value types: 1) $CONSTANT, which next
rewrites as a terminal symbol for a unique string
literal; 2) $SPAN, next as span of text in the input;
3) $FUNCTION, next as a corresponding function
name and argument list NT as described above;
4) $SLOT_REF, next as reference to a slot, which
can be either a leaf reference, represented by a
terminal symbol with content in the form of <do-
main>/<intent>/<slot>; or a recursive reference,
including a $FUNCTION followed by a terminal sym-
bol with content /<slot>.

Taking the example in Figure 3, the sequence of
the rules used in the derivation are as follows:
1. $S -> $FUNCTION # start rule
2. $FUNCTION-> ’f1’ $f1_ARGS
3. $f1_ARGS -> ‘(‘ $f1_a1 $f2_a2 ‘)’
4. $f1_a1 -> ‘a1=‘ $VALUE ‘,’
5. $VALUE -> $FUNCTION
6. $FUNCTION -> ‘f2’ $f2_ARGS
7. $f2_ARGS -> ‘(‘ $f2_b1 $f2_b2 ‘)’
8. $f2_b1 -> ‘b1=‘ $VALUE ‘,’
9. $VALUE -> ‘”’ $SPAN ‘”’
10. $SPAN -> ‘abc’ # copied from input
11. $f2_b2 -> ‘b2=‘ $VALUE ‘,’
12. $VALUE -> $CONSTANT
13. $CONSTANT -> ‘f2_b2/_null_’ # null val
14. $VALUE -> $CONSTANT
15. $f2_a2 -> ‘a2=‘ $VALUE
16. $VALUE -> $CONSTANT

1412

(a) Atom and compound distribution on IID.

(b) Atom distribution on TMCD splits (c) Compound distribution on TMCD splits

(d) Atom and compound distribution on Length.

Figure 8: Atom & compound distributions on all data splits: train set in purple and test set in green

1413

17. $CONSTANT -> ‘123’ # constant

As can be easily seen the yield of the derivation is
f1(a1=f2(b1=“xyz”, b2=f2_b2/_null_), a2=123”,)

which can be transformed to the correct form with
a regex in the post processing stage. During infer-
ence, given input text, the model needs to predict
the above derivation rules, which yield the program.
In order to manage these rules, we assign each of
them an integer id, ranging from 0 to V − 1, where
V is the number of rules excluding the copy rule.
We also assign each span an index starting from
V, in the order of the span’s end position and then
start position. Assuming the input utterance has U
tokens, there are N = (U + 1) ∗ U/2 total spans.
The decoder predicts a sequence of above index
ids, which are used by the tracker to retrieve rules
and spans, and generate the program as yield.

E CFG Induction

In order to obtain a CFG for semantic parsing, we
need to perform grammar induction from the train-
ing data. The process is straightforward: First we
implement a parser given the syntax of function ex-
pression language. Then we parse all the function
expressions in the training data, extract the rules
based on the parse, and save them in a grammar
file. For string literals in the function expressions,
if they appear in the utterance, we use span copy
rule, otherwise, we add a constant rule. If the string
literal appears multiple times in the source data,
we always use the left most one, and masked span
out to prevent duplicated copies from the same text.
This simple strategy may encounter occasional bad
cases, but overall, it is working as expected. During
grammar induction, we also process the data and
generate additional information needed by trainer,
basically the rule id sequences, plus the span in-
dexes. For each derivation, we always start from
the rule $S -> $FUNCTION with a fixed id, and al-
ways append a special id marking the end of se-
quence, which the parsing model is trained to pre-
dict.

F Modeling Details of CFG Parser

The entire model architecture is illustrated in Fig-
ure 4. Below we describe the implementation de-
tails of each of the boxes.
Encoder For encoder input, for convenience
to use BERT model, we pack tokens of the context
and the utterance together in the following way,
which also works for other type of encoders:

[CLS] <context tokens> [SEP] <utt tokens> [SEP]

After encoding, we pass the vectors to both the
decoder and the pointer, but with different masks.
For the decoder input, we allow both context and
utterance vectors being passed, but for the pointer
input, we mask out the context part, only allow the
utterance vectors to be used to avoid copying from
context. This way we can apply different types of
encoders, such as LSTMs and transformers, in a
unified manner.
Decoder The decoder can have multiple lay-
ers, each layer applies the decoder model layer to
the decoder input, and then cross-attends to the en-
coder output vectors using a multihead attention
layer:

hm = model(hi)

ho = hm +MHA(hm,henc,henc)

where model can be RNN, transformers etc.,
MHA stands for multi-head attention, hi is the
input to the decoder layer, can be either the output
vector from the last decoder layer, or for the first
decoder layer, the embedding vector of the current
rule id.
Pointer We use span copying instead of token
copying. Each span is encoded as the concatenation
of the encoding vector of the begin and end position
of the span. The logit of a span [b, e] is computed
as:

logitb,e = v⊺tanh(Ws[h
b
enc;h

e
enc] +Wthdec)

where b and e are the span’s begin and end po-
sitions; hb

enc and he
enc are the corresponding en-

coding vectors from the encoder; ";" means vector
concatenation; hdec is the decoder output; Matrix
Ws and Wt and vector v are trainable parameters.
Applying a softmax to the logits gives us the span
distributions.
Tracker The tracker searches the derivation
with the highest probability, whose yield is the tar-
get program, i.e., function expression. In order to
ensure validity of derivation, the tracker maintains
a stack, containing unprocessed rule’s right-hand-
side elements. At the top of the stack is always
a NT, which must match the predicted rule’s left-
hand-side NT at next step, so that the rule can be
applied. To ensure the predicted rules are valid, the
tracker applies a pre-computed mask, according to
the stack-top NT, on the prediction logits, so that
invalid predictions are filtered out.

1414

At each step, after receiving a valid rule id, the
tracker pops out the NT at the top of the stack, and
pushes in the right-hand-side symbols of the rule
in the reverse order. Then it pops out all terminal
symbols (including the copied span) one by one to
generate the target output, until the top symbol is
an NT or the stack is empty. Should it be the latter
case, the tracker will only accept the special end
symbol at the next step, and then stop the derivation
and return the result; Otherwise the tracker will
feed the decoder with predicted rule id, or the copy
id if a span id is predicted.

G Converting CFG to TSG

In the example in Appendix D, we can pack the
rule 2, 3, 4, 15 together into a TSG rule:

$FUNCTION -> ‘f1’ $f1_ARGS (‘(‘
($f1_a1 (‘a1=’ $VALUE ‘,’)
$f2_a2 (‘a2=’ $VALUE ‘,’)

) ‘)’
)

and pack rule 6, 7, 8, 13 into another TSG rule:
$FUNCTION -> ‘f2’ $f2_ARGS (‘(‘
($f2_b1 (‘b1=’ $VALUE ‘,’)
$f2_b2 (‘b2=’ $VALUE ‘,’)

) ‘)’
)

These two rules each have two leaf NTs, $VALUE,
which are called frontier NTs, or simply frontiers.
In addition, the rule 9, 13, 17 can be viewed as
degenerated TSG rules with height 1. To save the
extra derivation step to rewrite $VALUE as $FUNC-

TION, we combine it with the rules above to create
new rules so that $VALUE can directly rewrite as the
same right hand side elementary tree, thus can save
one step of derivation. This way, we convert a CFG
to a TSG, and at the same time convert the CFG
parser training data to TSG parser training data,
as sequences of tree instances. Each tree instance
contains both tree ids and associated frontier kind
and value ids.

During inference, the TSG parser sequentially
predicts the sequence of tree indices - in the above
example, two instances - plus an end symbol termi-
nating the inference process. The tracker then uses
these tree instances to construct the entire deriva-
tion tree, and its yield as the output program.

H Modeling Details of TSG Parser

In Figure 5, the encoder and decoder in the TSG
parser are the same as in the CFG parser shown
in Figure 4. The frontier encoder computes the
frontier encoding vectors from the tree encoding

from the decoder, and the embeddings retrieved
from the tracker with frontier ids:

hfrontier = htree ⊙ tanh(efrontier)

where htree is the tree encoding vector, efrontier
is the frontier embedding vector, and ⊙ is element-
wise multiplication operator. Inside the decoder,
we mix the tree embedding with max pooling of the
embedings of the tree’s frontiers, and use the mixed
embedding to compute tree encoding vectors:

êtree = etree + max
tree′sfrontiers

{efrontier}

where etree is the input tree embedding, êtree is
the output mixed embedding used to compute the
tree encoding vector in the decoder.

Then the pointer networks match the frontier
encoding vector against frontier value vectors ob-
tained from three kinds of sources: 1) previous tree
instances, whose encodings are stored in a memory;
2) constants, with id-based embedding vectors; 3)
text spans of input, with encoding from projected
encoder output. Each of these corresponds to a
“Pointer Networks” box in Figure 5:

• Span pointer matches the frontier encoding
vector from decoder output against spans in
the input, and is similar to the pointer in the
CFG parser, except that we use a multiplica-
tive attention layer and use a bias term:

logitb,e = [hb
enc;h

e
enc]

⊺Wspanhfrontier

+bspan

where matrix Wspan and scalar bspan are
trainable parameters.

• Constant pointer matches the frontier en-
coding against precomputed constant embed-
dings:

logitc = e⊺cWconsthfrontier + bconst

where c is the constant index, matrix Wconst

and scalar bconst are trainable parameters.

• Past tree pointer matches the frontier encod-
ing against past tree encodings stored in a
memory:

logitt = h⊺
tWtreehfrontier + btree

where t is the time step, matrix Wtree and
scalar btree are trainable parameters.

1415

The tracker performs search of the derivation
hypothesis with highest combined tree and frontier
probabilities:

π∗ = argmax
π

∏

t∈T (π)

p(t)
∏

f∈F (t)

max
v

p(v|f)

where π is a derivation hypothesis; T (π) is the
set of right-hand-side trees in π’s rules; F (t)is the
frontier set of tree t; v is a value of frontier f .

In addition to ensuring validity of derivation,
the matcher can perform other checks to alleviate
the problems caused by parallel frontier predic-
tion. As mentioned earlier, checking overlapped
text copying does provide small improvement in
beam search. Should there be a typing system, the
tracker could also apply type check to make sure
each frontier has appropriate value by penalizing
type violations.

I Accuracy Variations of Baseline Parser

We find the baseline parser’s accuracy varies
greatly with different random seeds. This phe-
nomenon is also observed by Csordás et al. (2021).
To study the degree of variation, we run training 55
times with different random seeds on all the splits.
Table 8 and Figure 9 summarize the result.

As we can see, the accuracy variations among
different runs are very large for those TMCD splits,
ranging from 6.4 to 11.3, probably because the
model is sensitive to randomness in initialization.
This also shows the importance of using large test
splits, and reporting results from multiple runs.
From the plot we also notice quite a few outlier
points that are far from clusters, therefore we pre-
fer median over mean when reporting results.

Figure 9: Baseline accuracies from 55 training runs on
all splits.

median% mean% stddev%
IID 96.9 96.2 2.6
Tmcd1 51.8 52.0 9.0
Tmcd2 51.0 49.0 11.3
Tmcd3 31.5 31.7 9.2
Tmcd4 28.8 29.3 11.9
Tmcd5 24.9 26.0 6.9
Tmcd6 27.3 28.8 6.4
Length 0 0.1 0.3

Table 8: Baseline accuracy median, mean, standard
deviation on all splits.

1416

ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1417

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

1418

