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Abstract

Dynamic early exit has demonstrated great po-
tential in coping with the sharply increasing
number of pre-trained language model param-
eters, which can achieve a good trade-off be-
tween performance and efficiency. The existing
early exit paradigm relies on training paramet-
rical internal classifiers at each intermediate
layer to complete specific tasks. Based on the
predictions of these internal classifiers, differ-
ent methods are designed to decide when to
exit. Under this circumstance, each intermedi-
ate layer takes on both generic language repre-
sentation learning and task-specific feature ex-
traction, which makes each intermediate layer
struggle to balance two types of backward loss
signals during training. To break this dilemma,
we propose an adapter method to decouple the
two distinct types of representation and further
introduce a non-parametric simplex equiangu-
lar tight frame classifier (ETF) for improve-
ment. Extensive experiments on monolingual
and multilingual tasks demonstrate that our
method gains significant improvements over
strong PLM backbones and early exit methods.

1 Introduction

In recent years, fundamental models that rely on
the scaling effect have penetrated different NLP
scenarios (Radford et al., 2018; Devlin et al., 2019;
Liu et al., 2019; Lan et al., 2019; Clark et al.,
2020; Lewis et al., 2020; Raffel et al., 2020; Brown
et al., 2020; He et al., 2021a; OpenAI, 2022). How-
ever, with the increasing number of the pre-trained
model parameters, the expensive inference cost hin-
ders their usage in practical applications. Besides,
Overthinking problem (Kaya et al., 2019) also re-
stricts the ability of PLMs. Specifically, since
PLMs are overparameterized, they can give correct
answers according to the shallow representations at
earlier layers, while the high-level representation
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Figure 1: Comparison of our method with previous
methods. Previous early exit methods allows the repre-
sentation of the internal layer to extract generic linguis-
tic and task-specific representation simultaneously. Our
method uses an additional adapter module to undertake
the learning of task-specific representation.

may instead contain too much over-complicated or
irrelevant information to make the accurate predic-
tion (Xin et al., 2020b; Liu et al., 2020).

To achieve a good trade-off between infer-
ence cost and performance, the early exit mech-
anism (Xin et al., 2020a; Zhou et al., 2020; Li et al.,
2021b; He et al., 2021c; Xin et al., 2021; Banino
et al., 2021; Balagansky and Gavrilov, 2022; Sun
et al., 2022), a kind of adaptive inference strategy,
has been proposed. These methods insert an in-
ternal classifier after each layer of the PLMs to
predict the label of a given instance. In the infer-
ence stage, if the prediction is confident enough
earlier, the sample will end the inference without
going through the entire PLM. Nevertheless, how
to train a competitive early exit PLM is not a triv-
ial problem. Since each classifier tries to be op-
timized, different optimization procedures from
different classifiers may conflict and interfere with
each other (Phuong and Lampert, 2019). Exist-
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ing methods can be divided into two categories: (1)
jointly training all classifiers and using heuristics or
learnable methods to weight loss functions (Zhou
et al., 2020; Li et al., 2021b; Zhu, 2021; Liao et al.,
2021); (2) training classifiers in different stages
and freezing the Transformer layer when training
internal classifiers.

However, in the early exit mechanism, each
Transformer layer plays two roles: providing clas-
sifiable representation for the corresponding inter-
nal classifier and semantic features for subsequent
Transformer layers. The former class of methods
is obsessed with improving the classification abil-
ity of the middle layer of PLMs while ignoring
its ability to capture other linguistic features. The
latter class focuses on maintaining the ability to
extract semantic representations while constraining
the performance of internal classifiers. Although
some work (Xin et al., 2021) has attempted to bal-
ance the two roles of the Transformer layer by al-
ternate training, they have not explicitly decoupled
the two distinct types of representation.

In this work, we propose a novel early exit
method that enables the PLM’s intermediate rep-
resentation to consider both the classification abil-
ity and the ability to capture semantic informa-
tion. Specifically, our approach hands off the task-
specific representation of the intermediate trans-
former layer to an adapter module (Houlsby et al.,
2019; He et al., 2022) with a small number of pa-
rameters, thus disentangling the task-specific and
universal representation (see Figure 1). In addition,
due to the limited expressive power of the adapter,
we use a simplex equiangular tight frame classifier
(ETF) (Yang et al., 2022) to enhance the classifica-
tion ability of the internal classifiers. Experimental
results demonstrate that our proposed early exit
method significantly improves the performance of
monolingual and multilingual tasks over existing
strong early exit methods.

Overall, our contributions are shown below:

• We empirically study the ability to extract generic
linguistic representation in the internal layers of
early exit models. The study reveals that the
internal layers have difficulty taking on both
generic language representation learning and
task-specific feature extraction.

• We propose an early exit method which use
adapter modules to disentangle the two conflict-
ing representations and utilize equiangular tight
frame classifiers to improve representations for

(a) BERT-POS

(b) BERT-Chunking

Figure 2: Layer-wise probing performance on POS and
Chunking with BERT-base as the backbone.

classification.
• Experimental results and analysis on monolin-

gual and multilingual tasks demonstrate that
our proposed early exit method performs better
than previous methods. Our code is available at
https://github.com/Jikai0Wang/DREE.

2 Preliminary Study

It is controversial whether the last classifier and the
internal classifiers should be trained jointly in early
exit. Some studies (Xin et al., 2020b, 2021; Liu
et al., 2020) divide the training into two stages to
train the last classifier and the internal classifiers,
respectively, to preserve the best model ability for
the final layer. While others (Zhou et al., 2020;
Balagansky and Gavrilov, 2022) train the whole
model simultaneously. In this section, we study the
question:“Can the same representation serve both
the classifier and subsequent layers?”

Following Durrani et al. (2021), we train layer-
wise probes to check how much linguistic knowl-
edge is preserved in each layer after finetuning. We
evaluate the model on two linguistic tasks: POS
tagging using the Universal Dependencies v2.5 En-
glish dataset from XTREME (Hu et al., 2020) and
syntactic chunking using CoNLL 2000 shared task
dataset (Tjong Kim Sang and Buchholz, 2000).

We conduct experiments on PABEE (Zhou et al.,
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2020), which jointly trains the last and internal clas-
sifiers. As shown in Figure 2, the red lines refer
to the performance of BERT without any finetun-
ing. The orange and blue lines represent the perfor-
mance of BERT finetuned on SST-2 with and with-
out PABEE. The model preserves the information
of the downstream tasks in the higher layers with
a corresponding loss of the linguistic knowledge
learned in the pre-training after finetuning. More-
over, the gaps between the blue and orange lines are
apparent, indicating that the training with PABEE
further disturbs linguistic knowledge. On the other
hand, a representation trained only to serve the sub-
sequent layers often has a poor performance for
classification, especially in the lower layers. As a
result, to maintain the internal representations’ ca-
pability and improve the classification performance,
it is essential to train disentangled representations
in the intermediate layers.

3 Method

In this section, we introduce our method for early
exit, which first utilizes adapter modules to disen-
tangle generic and task-specific representation. To
further improve the classification representation,
we replace learnable classifiers with equiangular
tight frame (ETF) classifiers. Throughout this sec-
tion, we consider the case of multi-class classifi-
cation with samples {(xi, yi)}ni=1, where xi is a
token sequence and yi is its label.

3.1 Disentangled Internal Representations

Existing early exit methods utilize the intermediate
layers to learn both task-specific representation for
task prediction and extract generic linguistic rep-
resentation for the subsequent layers, making the
model struggle to balance the two learning objec-
tives. To address such a dilemma, we investigate
how to improve task-specific representations of in-
ternal Transformer layers without hindering the
learning of the generic representation. Inspired by
the recent emergence of efficient tuning that freez-
ing most of the parameters of PLMs and training
with a small number of parameters can achieve
comparable performance to full-parameter fine-
tuning, we propose to fix the internal Transformer
layers to consistently extract linguistic representa-
tion and utilize additional adapter modules to learn
task-specific representation. For a given sample
pair (x, y), each Transformer layer Li outputs a
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Figure 3: The structure of the intermediate transformer
layer with the adapter module for early exit. N is the
number of transformer layers.

hidden state hi as the input to Li+1:

si = LN(FFN(SA(hi−1)) + hi−1)

s′i = FFN(FFN(si)) + si

hi = LN(s′i)

(1)

where SA is a self-attention sub-layer, FFN is a
feed-forward sub-layer, and LN means Layernorm.
At the same time, the adapter module outputs an-
other hidden state h′ for classification:

h′
i = LN(Adapter(si) + s′i) (2)

Following Houlsby et al. (2019), the adapter mod-
ule includes a stack of down- and up-scale fully
connected neural network:

Adapter(si) = fup(ReLU(fdown(si))) (3)

where fdown ∈ Rd×m, fup ∈ Rm×d are the down
and up projection layers. d is the dimension of the
PLM, and m is the hidden size of the adapter. We
pass h into the next transformer layer and use h′

for classification. Unlike the standard adapter, to
reduce the inference time overhead caused by the
adapter module, we use the parallel adapter (He
et al., 2022) and only add an adapter module to the
feed-forward sub-layer, as shown in Figure 3. We
have experimented with the sequential adapter, but
its performance is inferior to the parallel adapter.
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Figure 4: An illustration of the simplex equiangular
tight frame (ETF) in the three-dimension space.

3.2 Improving Classifiable Representation

A recent study (Zhu et al., 2021; Ji et al., 2021;
Tirer and Bruna, 2022; Yang et al., 2022) has
shown a phenomenon called neural collapse that
the within-class means of features and the classi-
fier vectors converge to the vertices of a simplex
equiangular tight frame (ETF) at the terminal phase
of training (Figure 4 shows a simple example of
the three-class classification). Galanti et al. (2021)
demonstrate that this phenomenon shows better
generalization. Now that the distribution of opti-
mal classification representation is known theoreti-
cally, Yang et al. (2022) propose the ETF classifier,
which is randomly initialized as an equiangular
tight frame and free from training.

Definition 1 (ETF classifier). A simplex equiangu-
lar tight frame is a collection of vectors wi ∈ Rd,
i = 1, 2, ...,K, d ≥ K − 1, it satisfies:

W ETF =

√
K

K − 1
U

(
IK − 1

K
1K1TK

)
, (4)

where W ETF = [w1,w2, ...,wK ] ∈ Rd×K , IK ∈
RK×K is the identity matrix, 1K ∈ RK is a vector
of all ones and U ∈ RK×K is orthonormal.

Due to the limited generalization of the adapter
compared to full-parameter fine-tuning, we utilize
the ETF classifier to induce better classifiable rep-
resentation. For the hidden state h′

i from the Trans-
former layer Li, the ETF classifier output the prob-
ability pi(y|x):

pi(y|x) = Softmax(W ETFh
′
i) (5)

During the training phase, ETF classifiers are
frozen, and we fine-tune the adapter parameters to
align classification features with ETF classifiers,
aiming to achieve neural collapse phenomenon
with better generalization.

3.3 Training and Inference
Training. Following Xin et al. (2020b), we divide
the training into two stages. The first stage trains
the last classifier, i.e., without launching early exit,
and the second stage trains internal classifiers. In
the first stage, we fine-tune the whole parameters
of the PLM and the last classifier with labeled data
from downstream tasks without training the adapter
modules and the internal classifiers. We use the
cross-entropy loss for classification:

Lstage1 = CE(logits, y). (6)

We use the mean squared error for regression tasks:

Lstage1 = (y − ŷ)2. (7)

In the second stage, we freeze all parameters fine-
tuned in the first stage and then train adapter mod-
ules and internal classifiers to enable the PLM early
exit. The loss of an internal classifier is also calcu-
lated with cross-entropy for classification:

Li = CE(logitsi, y). (8)

For regression, we also use the mean squared error:

Li = (y − ŷi)
2. (9)

The total loss Lstage2 uses a weighted average:

Lstage2 =

∑n
j=1(n− j) · Lj∑n

j=1(n− j)
, (10)

where n represents the number of hidden layers.
Note that we give the early internal classifiers a
bigger weight since they need more transformation
to fit representations for classification.
Inference. Following Zhou et al. (2020), we adopt
a patience-based strategy to decide which layer to
exit. Specifically, we set the patience to t. Given a
sample x, the early-exit model predicts from bot-
tom to top. If the predictions of t consecutive inter-
mediate classifiers remain “unchanged”, the model
exits at that layer and outputs the corresponding
prediction. While for regression, we consider the
prediction as “unchanged” by:

unchanged =

{
True if |yi − yi−1| < δ

False if |yi − yi−1| ≥ δ
(11)

where yi represents the prediction of the current
layer and δ is a pre-defined threshold.
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4 Experiments

4.1 Datasets

We evaluate our proposed approach on monolin-
gual tasks and multilingual tasks. For monolin-
gual tasks, our experiments are conducted on the
GLUE benchmark (Wang et al., 2018), including
MRPC, QQP, SST-2, MNLI(matched/mismatched),
QNLI, RTE, CoLA, and STS-B. Following Zhou
et al. (2020), if a dataset has more than one met-
ric, we report the arithmetic mean of the metrics.
For multilingual tasks, we conduct experiments
on paraphrase identification task (PAWS-X; Yang
et al., 2019) and natural language inference (XNLI;
Conneau et al., 2018). We show details of all the
datasets in the Appendix.

4.2 Baselines

We compare our methods with the following com-
petitive models:
Backbone models. We use BERT-base and
ALBERT-base for monolingual tasks, which are
widely used in studies of early exit. For multilin-
gual tasks, we use multilingual BERT. All these
pre-trained language models are released by Hug-
gingFace1.
PABEE. PABEE is a patience-based early exit
method proposed by Zhou et al. (2020).
PonderNet. PonderNet is proposed by Banino et al.
(2021), which treats the exit layer’s index as a latent
variable.
PBERT/PALBERT. Balagansky and Gavrilov
(2022) proposed a deterministic Q-exit criterion
to improve the performance PonderNet. We apply
the Q-exit criterion to BERT and ALBERT, and we
denote them as PBERT and PALBERT.

4.3 Experimental Setup

Training. For all experiments, we set the batch size
for training to 32. We search for the best learning
rate in {1e-5, 2e-5, 3e-5, 5e-5} for all baselines
and the first training stage of our method. The
range of learning of the second training stage of
our method is in {1e-3, 2e-3, 3e-3, 5e-3, 8e-3, 9e-
3}. The downsample sizes of adapters are searched
in {32, 64, 128, 256}. Since the effect of using
the last layer for classification remains the same
during the second training stage, we choose the best
checkpoint on the development set with patience
set to 6. To avoid the propensity of the model to use

1https://huggingface.co/

later layers for classification, which results in poor
acceleration, we filter checkpoints whose average
Flops (M) on the development set are greater than
τ on the verification set. τ is chosen in {8000,
9000, 10000}. We conduct the experiments on one
NVIDIA GTX3090 GPU.
Inference. We set the batch size for inference to
1. Patience is set to 6 for patience-based methods
following Zhou et al. (2020), accelerating the infer-
ence while maintaining a satisfactory effect. For
PonderNet, PBERT, and PALBERT, the threshold
for early exit is set to 0.5 following Balagansky and
Gavrilov (2022). For STS-B, we set the threshold δ
to 0.5. We use Flops to calculate the speedup ratio.

4.4 Main Results

We report our experimental results with BERT
and ALBERT backbone for monolingual tasks on
GLUE in Table 1. Our method outperforms all
compared approaches from the perspective of the
macro score while maintaining the average speed-
up ratio between 1.25 and 1.27 on both the devel-
opment and test sets. Our approach works well on
small datasets such as CoLA, RTE, MRPC, and
STS-B, on which the previous approaches of early
exit often have poor performance.

We also conduct experiments on multilingual
tasks to examine the generality of our approach.
Table 2 shows a comparison of our approach with
baseline and PABEE. In addition to accelerating
inference, our approach outperforms mBERT and
PABEE on both PAWSX and XNLI.

Since our approach introduces an adapter in
each intermediate layer, a small amount of com-
putational overhead is added. In order to make a
fairer and more comprehensive evaluation of our
approach, we adjust the patience to obtain the ef-
fect at different speed-up ratios. We compare our
approach with PABEE, as we both adopt a patience-
based early exit mechanism, making it convenient
to adjust the speed-up ratio. As shown in Figure
5, we experiment on 3 GLUE datasets with AL-
BERT backbone. The ability to capture semantic
information is trained in the first training stage and
maintained by freezing transformer layer param-
eters during the second training stage, improving
performance when using the whole model for infer-
ence. Moreover, during training, the disentangled
representations avoid conflicts between two dif-
ferent loss signals in the transformer layer. This
division of functions makes the model represen-
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Method Speed-up CoLA RTE MRPC QQP SST-2 QNLI MNLI STS-B Macro.

Dev Set

BERT-base ×1.00 60.2 70.5 87.9 89.7 93.1 91.4 84.6 89.1 83.3

PABEE ×1.39 50.3 65.3 84.8 89.3 91.2 89.7 83.4 88.6 80.3
PonderNet ×1.43 46.5 62.8 82.0 87.1 90.3 85.6 79.9 83.5 77.2
PBERT ×1.48 54.8 61.7 83.1 89.1 91.6 89.4 83.5 87.7 80.1
Ours ×1.25 55.7 69.7 87.5 88.9 92.3 89.1 83.5 88.9 82.0

ALBERT-base ×1.00 57.5 76.7 90.1 89.0 92.4 91.7 84.8 90.9 84.1

PABEE ×1.43 54.1 73.9 86.9 89.2 92.3 91.4 84.4 90.0 82.8
PonderNet ×1.34 51.1 72.2 86.9 87.6 91.0 88.8 81.8 88.3 81.0
PALBERT ×1.23 55.1 75.8 88.4 88.8 92.3 91.2 83.7 89.7 83.1
Ours ×1.27 58.0 78.0 90.2 88.8 92.8 91.2 83.9 90.2 84.1

Test Set

BERT-base ×1.00 52.4 67.2 85.6 80.1 93.4 90.4 84.0 83.7 79.6

PABEE ×1.40 45.8 64.8 82.5 79.7 92.3 89.3 83.7 83.7 77.7
PBERT ×1.48 46.9 64.3 80.7 79.3 91.8 89.1 83.0 82.4 77.2
Ours ×1.25 51.7 66.8 83.8 79.4 92.9 88.5 83.0 84.0 78.8

ALBERT-base ×1.00 52.2 71.4 86.8 79.5 92.8 91.5 84.6 87.9 80.8

PABEE ×1.45 48.7 69.5 85.7 79.7 91.8 91.0 84.1 86.5 79.6
PALBERT ×1.21 47.1 71.9 86.1 79.1 91.4 90.9 83.2 85.1 79.4
Ours ×1.26 50.1 71.4 86.7 79.3 92.2 91.0 83.5 86.7 80.1

Table 1: Experimental results with BERT and ALBERT backbone on the development set and the test set of GLUE.
We report the average result of five runs. The Macro score shows the average results across the eight tasks. Note
that we apply learnable classifiers instead of ETF classifiers to our approach on STS-B since ETF classifiers do not
support regression.

Figure 5: Speed-accuracy curves of PABEE and our approach with ALBERT backbone on CoLA, MRPC, and
SST-2. The dashed lines mark the performance of ALBERT-base for reference.

tation cleaner and more meaningful. As a result,
the performance penalty caused by accelerated in-
ference reduces significantly at a speed-up ratio
between 1 and 1.5. It is worth noting that there is
an upward trend in the curves of our approach at
a low speed-up ratio, indicating that our approach
helps to solve the overthinking problem.

5 Analysis and Discussion

5.1 Ablation Study
We conduct an ablation study with BERT backbone
on MNLI, SST-2, and MRPC. Three experiments

are performed based on our method:

• w/o ETF: We remove ETF classifiers and re-
place them with original trainable classifiers.

• w/o adapters: We remove all adapter modules
and directly use the output of the layernorm
after two feed-forward layers as the classifier’s
input for each intermediate layer.

• w/o two-stage: We train the transformer layers
and the adapter modules simultaneously in-
stead of adopting the two-stage training strat-
egy.
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Method Speed-up PAWSX XNLI

mBERT ×1.00 83.1 65.4

PABEE ×1.20 82.9 66.0
Ours ×1.08 83.3 66.5

Table 2: Test results for multilingual tasks with five dif-
ferent random seeds. We train the model on the English
training set and test it on the test set of all languages.
We report the average result of five runs.

Method Speed-up MNLI SST-2 MRPC

Ours ×1.24 83.5 92.3 87.5
w/o ETF ×1.24 83.6 92.2 86.8
w/o adapters ×1.12 81.3 90.1 85.0
w/o 2-stage ×1.32 51.3 89.9 82.6

Table 3: The ablation study of our method. We report
the results of BERT based model on the development
set of MNLI, SST-2 and MRPC.

The results of the ablation study are shown in
Table 3. As bridges between hidden states and clas-
sifiers, the adapters undertake to learn task-specific
representations and convert intermediate layer rep-
resentations into representations for classification.
Note that the additional computation caused by
the adapter modules is about 2% on BERT and
3% on ALBERT, which is acceptable consider-
ing the benefits it brings. Acceleration and per-
formance are both degraded without using adapter
modules. Moreover, the performance and stability
of the model drop significantly and without using
the two-stage training strategy, which indicates that
the gradients returned by the higher layers mixed
with the gradients returned by the classifiers con-
fuse the model’s representation and mislead the
optimization. ETF classifiers generally outperform
learnable classifiers in performance and efficiency
especially for low-resource datasets. They further
improve the model’s performance by enhancing
the intermediate layers’ classification ability while
reducing the number of learnable parameters.

5.2 Impact of Adapter Hidden Size

The hidden size of adapters m affect many aspects
of our approach. Experiments are conducted to
study the impact of m. We choose ALBERT as
the backbone because it has a bigger hidden size.
Figure 6 shows that the hidden size of adapters
has little effect on the accuracy while it makes a
difference in the speed-up ratio. The accuracy rate
reaches the top with a good speed-up ratio when
m is set to 32. And a large size leads to a decrease

Figure 6: Influence of downsample size of adapters on
accuracy and speed-up ratio with ALBERT-base back-
bone on SST-2. The orange and blue lines represent the
speed-up ratio and accuracy.

Figure 7: Distribution of early exit layers with ALBERT-
base backbone on SST-2 with different downsample
sizes of adapters. We set patience to 6 in this experi-
ment.

both in performance and acceleration.
As shown in Figure 7, a bigger hidden size of

adapters encourages the samples to exit at a lower
layer. Based on this observation, we assume that a
small size restricts the ability of adapters to express
so that the intermediate classifiers have difficulties
in giving a unified prediction. While a large size
makes the lower layers too confident to wait for
a high-level representation from the higher layers,
resulting in a wrong decision about when to exit
in some cases. This finding demonstrates that a
proper hidden size of adapters gives the success to
stop inference at a proper layer.

5.3 Error Analysis

In order to further explore the performance-
boosting aspects of our method, we conduct an
error analysis between PABEE and our approach.
Suppose a model has a stable performance improve-
ment compared to the baseline. In that case, the
model should predict as correctly as possible for
the samples that the baseline predicts correctly
and that the model can give correct predictions
for the instances that the baseline fails. Thus, we
divide the samples in the development sets into two

14134



Figure 8: Error analysis with ALBERT backbone on
MRPC, RTE, and SST-2. The dark blue and dark red
bars indicate the number of correct and wrong samples
predicted by PABEE on the dataset, part of which is
covered by light color bars. And we call them PABEE
(Correct) and PABEE (Wrong), respectively. The light
blue bars represent the number of correct samples pre-
dicted by our approach on PABEE (Correct). The light
red bars represent the number of correct samples pre-
dicted by our approach on PABEE (Wrong).

classes PABEE (Correct) and PABEE (Wrong), ac-
cording to the prediction results of PABEE. Then
we test our approach on the two classes to ob-
serve the change in the distribution of correctly
predicted samples. As shown in Figure 8, our
method correctly predicts the vast majority of sam-
ples in PABEE (Correct) and about half in PABEE
(Wrong). There can be two reasons for the predic-
tion error: (1) The model stops inference too early;
(2) Biased representations fail to make a correct
understanding of the samples. So the experimen-
tal results indicate that our approach improves the
representation accuracy and gives better answers
to when to exit.

6 Related Work

Early exit Early exit focuses on enabling input-
adaptive inference to reduce the computational cost,
which has been proven effective on various NLP
tasks (Elbayad et al., 2019; Xin et al., 2020a; Li
et al., 2021b; He et al., 2021c; Xin et al., 2021; Sun
et al., 2022; Schuster et al., 2022). Because the
model needs to decide whether stop inference at a
specific layer when using early exit, so there are
two main problems: ‘How to decide whether stop
inference at each layer?’ and ‘How to induce a
better internal classifier for each layer?’.

To the former problem, Xin et al. (2020b);
Schwartz et al. (2020); Xie et al. (2021) use
confidence-based criterion; Zhou et al. (2020) pro-
pose a novel and effective patience mechanism;

Sun et al. (2021) propose a voting-based strategy.
In addition, Banino et al. (2021); Balagansky and
Gavrilov (2022) utilize a latent variable to predict
the exit layer’s index. For the latter one, Liu et al.
(2020); Geng et al. (2021) use self-distillation to
induce better internal classifiers; Zhu (2021) extent
self-distillation to mutual distillation and use learn-
able weights to balance off different internal classi-
fiers’ objectives; Liao et al. (2021) use global past
and future information with imitation learning to
train internal classifiers; Sun et al. (2021) maximize
the mutual information of internal classifiers to en-
hance the diversity of classifiers, making it suitable
for voting-based strategy. Besides, Li et al. (2021a)
dynamically cascade proper-sized and complete
models, enabling shallow layers with high-level
semantic information. Liu et al. (2022) propose a
novel pre-training method that encourages the in-
termediate layers of the pre-trained model to learn
high-level semantics, making the pre-trained model
more suitable for the early exiting mechanism.

Adapter With the increase in the number of pa-
rameters of PLMs, full-parameter fine-tuning faces
difficulties in computing resources and is prone to
the over-fitting problem (Phang et al., 2018; Dodge
et al., 2020; Zhang et al., 2021). Therefore, re-
search on efficient fine-tuning (Houlsby et al., 2019;
Zaken et al., 2022; Hu et al., 2021; Li and Liang,
2021) is developing rapidly. Adapter is a promising
efficient fine-tuning method. Adapter-based meth-
ods inject small-scale adapters to the Transformer
layers and only tune these adapters. Many studies
(Pfeiffer et al., 2020a,b; Guo et al., 2020; Rücklé
et al., 2021; He et al., 2021b; Han et al., 2021) have
shown that adapter-based methods can achieve
comparable performance to the full-parameter fine-
tuning. To further reduce the parameter amount of
the adapter module, Karimi Mahabadi et al. (2021)
propose Compacter, a more lightweight adapter
that utilizes a combination of hypercomplex multi-
plication and parameter sharing. Due to the mod-
ularity of the adapter, adapter-based tuning is suit-
able for multi-task learning (Stickland and Mur-
ray, 2019; Mahabadi et al., 2021) and can provide
different task-specific representations for various
tasks. Adapterfusion Pfeiffer et al. (2021) proposes
a fusion method named AdapterFusion that fuses
adapter representations of different tasks and makes
full use of cross-task knowledge.

14135



7 Conclusion

In this paper, we investigate the internal represen-
tation of early exit models and observe that the in-
ternal layers have difficulty providing good generic
linguistic representations for subsequent layers and
good task-specific representations for internal clas-
sifiers. We propose an adapter-based method to dis-
entangle the two conflicting representations and uti-
lize equiangular tight frame classifiers to improve
representations for classification. Experiments on
the GLUE benchmark and two cross-lingual trans-
fer tasks demonstrate that our proposed method
performs better than existing methods. For future
work, we would like to explore: (1) strengthening
the information interaction between layers to make
full use of the previous layers’ predictions, thus
optimizing the representation for the internal clas-
sifiers; (2) optimizing the early exiting mechanism
to further improve performance and accelerate in-
ference; (3) applying our method to more advanced
pre-trained models such as DeBERTa (He et al.,
2020, 2021a), ElasticBERT (Liu et al., 2022), etc.

Limitations

Even though our work improves early exit perfor-
mance effectively, some limitations are still listed
below:

• Our approach focuses on making the intermedi-
ate representations of early exit models capable
of general linguistic representation learning and
task-specific representation extraction. There-
fore, we did not fully use the model’s high-level
representation and fuse representations of previ-
ous layers, which may restrict the performance
of our method. For future work, we would like to
strengthen the information interaction between
layers to make full use of the previous layers’
predictions, thus optimizing the representation
for the internal classifiers.

• Although our early exit method has achieved
better performance, we have lost some infer-
ence speed due to the introduction of additional
adapter modules. In the future, we will try more
efficient adapter-based tuning.

• In recent years, the parameter size of genera-
tive pre-trained models has been continuously
increasing, leading to remarkable performance
on various NLP tasks. There is an urgent need to
develop inference acceleration methods for gen-
erative pre-trained models. Unfortunately, our

method is limited to discriminative pre-trained
models. Our future work will investigate early
exit strategies for generative pre-trained models.
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A Details of Datasets

We show details of datasets for monolingual tasks
in Table 4 and multilingual tasks in Table 5.

Dataset Task Metrics

CoLA Acceptability Matthews Corr.
SST-2 Sentiment Acc.
MRPC Paraphrase Acc./F1
STS-B Sentence Similarity Pearson/Spearman Corr.
QQP Paraphrase Acc./F1

MNLI NLI Matched Acc./Mismatched Acc.
QNLI QA/NLI Acc.
RTE NLI Acc.

Table 4: Detailed description and statistics of datasets
for monolingual tasks.

Dataset Task |Languages| Metrics

XNLI NLI 15 Acc.
PAWS-X Paraphrase Adversaries 7 Acc.

Table 5: Detailed description and statistics of datasets
for multilingual tasks.
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