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Abstract

Relation prediction on knowledge graphs
(KGs) attempts to infer the missing links be-
tween entities. Most previous studies are lim-
ited to the transductive setting where all entities
must be seen during the training, making them
unable to perform reasoning on emerging enti-
ties. Recently, the inductive setting is proposed
to handle the entities in the test phase to be un-
seen during training, However, it suffers from
the inefficient reasoning under the enclosing
subgraph extraction issue and the lack of effec-
tive entity-independent feature modeling. To
this end, we propose a novel Query Adaptive
Anchor Representation (QAAR) model for in-
ductive relation prediction. First, we extract
one opening subgraph and perform reasoning
by one time for all candidate triples, which
is more efficient when the number of candi-
date triples is large. Second, we define some
query adaptive anchors which are independent
on any specific entity. Based on these anchors,
we take advantage of the transferable entity-
independent features (relation-aware, structure-
aware and distance features) that can be used
to produce entity embeddings for emerging
unseen entities. Such entity-independent fea-
tures is modeled by a query-aware graph atten-
tion network on the opening subgraph. Exper-
imental results demonstrate that our proposed
QAAR outperforms state-of-the-art baselines
in inductive relation prediction task.

1 Introduction

Knowledge graphs (KGs) store a large amount of
facts regarding the real-world knowledge in the
form of (h, r, t), where h, t are head and tail en-
tities and r is the relation between h and t. They
have played important roles in various downstream
applications, including but not limited to question
answering (Yasunaga et al., 2021; Li and Xiong,
2022), semantic search (Xiong et al., 2017a; Zhang
et al., 2021) and many more. Nowadays many
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large-scale KGs such as Freebase (Bollacker et al.,
2008), Dbpedia (Lehmann et al., 2015), Yago (Hof-
fart et al., 2013; Mahdisoltani et al., 2015) and
Wikidata (Vrandecic and Krötzsch, 2014) have
been constructed, but they still suffer from an in-
completeness problem. To make up such limitation,
relation prediction or knowledge graph embedding
(KGE) has been proposed to infer the missing links
in KGs.

The conventional relation prediction models,
such as TransE (Bordes et al., 2013), DistMult
(Yang et al., 2015), RotatE (Sun et al., 2019),
TuckER (Balazevic et al., 2019), CompGCN
(Vashishth et al., 2020), KBGAT (Nathani et al.,
2019), ReInceptionE (Xie et al., 2020), Dis-
enKGAT (Wu et al., 2021), PairRE (Chao et al.,
2021), FFTAttH (Xiao et al., 2022), KGTuner
(Zhang et al., 2022) have successively achieved sat-
isfactory performance on relation prediction. They
all follow a general strategy to represent the enti-
ties in the low-dimension vector space by using the
KG structure and neighborhood information in the
transductive setting, where all entities must be
seen in the training phase. However, many KGs are
evolving and new entities are emerging every day
in the real world. These conventional relation pre-
diction models in the transductive setings cannot
effectively learn the embeddings for the new enti-
ties unless re-training the whole KGs from scrath.
Recently, researchers have focused on relation pre-
diction in the inductive setting, where new entities
are emerging while testing. Compared to relation
prediction in the transductive setting, the inductive
setting is more challenging since the missing links
can be inferred in KGs with unseen entities.

Currently, models on relation predictions in the
inductive setting can be divided into two categories
(Mai et al., 2021; Lin et al., 2022): rule-based meth-
ods and GCN-based methods. Rule-based meth-
ods (e.g., NeuralLP (Yang et al., 2017), DRUM
(Sadeghian et al., 2019), RuleN (Meilicke et al.,
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Figure 1: An example of node labeling of previous inductive relation prediction methods, such as GraIL (Teru et al.,
2020), CoMPILE (Mai et al., 2021), TACT (Chen et al., 2021), ConGLR (Lin et al., 2022). The subfigure (a) is a
subgraph surrounding entity Barack Obama and the query is (Barack Obama, Nationality, ?). The subfigures (b), (c)
and (d) are extracted enclosing subgraphs for candidate triples (Barack Obama, Nationality, U.S.), (Barack Obama,
Nationality, Chicago) and (Barack Obama, Nationality, Kenya). And the nodes in (b), (c), (d) are labeled by using
the distances between each node and head (tail) node in corresponding candidate triple, which is widely used in
previous works.

2018) etc.) are able to handle the relation predic-
tion with new/unseen entities since the rules are
independent of any specific entities, their perfor-
mance is usually insufficient due to the limitation
of the flexible issue. GCN-based methods, such as
GraIL (Teru et al., 2020), CoMPILE (Mai et al.,
2021), Meta-iKG (Zheng et al., 2021), TACT (Chen
et al., 2021), ConGLR (Lin et al., 2022), require
to extract a k-hop enclosing subgraph1 for every
candidate triple (h, r, t) and then perform reason-
ing on all these candidate subgraphs. However,
these methods suffer from the inefficient issue since
the number of candidate triples is usually large.
Figure 1 shows an example of the query (Barack
Obama, Nationality, ?). The subfigures (b), (c) and
(d) are enclosing subgraphs extracted from graph
(a) for three different candidate triples. Though
the subgraphs (b) and (c) have the same structure,
these previous methods have to perform reasoning
two times, which will spend more reasoning time.
Moreover, previous methods only use the distance
as features and ignore rich local structure infor-
mation in subgraphs, which leads to sub-optimal
performance. As shown in Figure 1, the entity Hon-
olulu in subfigure (b) is labeled as "(1,1)", which
is the same with the entity Malik Obama in subfig-
ure (d). This leads to similar node labeling for the
nodes in (b) and (d), although these two subgraphs
are totally different. Using these weak node fea-
tures will result in poor performance since it is hard
for the model to distinguish different subgraphs.

1Following (Teru et al., 2020), a k-hop enclosing subgraph
between nodes h and t contains all nodes that appear on the
graph from h to t with the maximum k-hop distance.

Based on the above analysis, we are motivated
to address two research issues: (1) How to develop
a model to perform inductive reasoning for all can-
didate triples with only one subgraph and one-time
node labeling and reasoning. (2) How to extract
adequate transferable entity-independent anchor2

knowledge to produce more expressive entity em-
beddings for emerging entities.

To address these issues, we propose a novel
query adaptive anchor representation (QAAR)
model. Specifically, for a given query (h, r, ?)
where ? denotes a missing entity to be inferred, in-
stead of extracting an enclosing subgraph for every
candidate triple, we first extract a k-hop opening
subgraph3 surrounding the query entity h for all
candidates. This enables our model to perform rea-
soning by one time to rank all candidates, which
is more efficient when the number of candidates is
large. Then, we propose a dynamic anchor-based
node labeling method to label each node with rich
entity-independent information. Specifically, we
construct three kinds of anchors for each query
(h, r, ?), including relation types, the center node of
the subgraph and the one-hop neighbors of the cen-
ter node which is adaptively selected according to
the query entity h. Based on these anchors, we can
label each node in the subgraph with three kinds
of features, namely relation-aware, structure-aware
and distance features. These rich node features en-

2The anchors in this paper denote the transferable meta
knowledge, which is independent of any specific entities and
can be transferred to new graphs with unseen entities.

3Unlike the enclosing subgraph, the k-hop opening sub-
graph of entity h contains all neighboring nodes with the
maximum k-hop distance.
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Figure 2: The overview of the proposed QAAR model.

able our model to learn expressive representation
for subgraphs. Finally, a query-aware graph atten-
tion neural network is proposed to perform reason-
ing on subgraphs by gathering query-related neigh-
borhood features. Experimental results on three
benchmark datasets demonstrate that our proposed
QAAR significantly outperforms previous meth-
ods, and achieves the new state-of-the-art (SOTA)
performance for inductive relation prediction.

2 Our Approach

Figure 2 illustrates the overview of the proposed
QAAR, which consists of four modules: (1) open-
ing subgraph extraction; (2) query adaptive anchor
construction; (3) anchor-based node labeling; and
(4) query-aware reasoning. Next, we will describe
each module in details.

2.1 Opening Subgraph Extraction

Multi-hop subgraphs can provide rich evidence
to infer missing links due to the implicit corre-
lation between different relations. For example,
the relation (A, farther,B) can be inferred ac-
cording to the two-hop facts (A,mother, C) and
(C, husband,B). Thus, we first extract a multi-
hop subgraph for inductive relation prediction. Dif-
ferent from GraIL (Teru et al., 2020) and its exten-
sions (e.g., TACT (Chen et al., 2021), CoMPILE
(Mai et al., 2021) and ConGLR (Lin et al., 2022)),
which extract a specific enclosing subgraph for ev-
ery candidate triple (h, r, t), we attempt to extract
one opening subgraph for all candidate entities so
that we can score all candidates with one-time rea-
soning on the subgraph. For a given query (h, r, ?),
we first construct a k-hop opening subgraph for the
query entity h by extracting the neighboring nodes
surrounding h with maximum k-hop distance. We

denote the k-hop opening subgraph of h as Gk(h).

2.2 Query Adaptive Anchor Construction

To learn transferable entity-independent node fea-
tures in a given subgraph, we first design some an-
chors which can be shared by different subgraphs.
Ideally, the anchors should be independent of any
specific entities and have the ability to express lo-
cal structure information of the given subgraph. To
this end, we introduce the following three kinds of
anchors:

Relation types. Intuitively, the relation types are
common information for subgraphs with different
entities. Even on a new KG with unseen entities,
the same set of relation types can be used to express
the relations among entities. The set of relation
types are denoted as R = {r1, r2, · · · , r|R|}, where
ri is a relation in the relation set and |R| is the
number of relations.

Center node. In our paper, each subgraph is ex-
tracted surrounding the given query entity h which
can be considered as the center node of the sub-
graph and each opening subgraph has a unique
center node. We use the center node as an anchor
and denote it as node04. With the center node, the
model can be aware of where is the start node to
perform reasoning.

One-hop neighbors of center node. Besides,
we also define the one-hop neighbors of the center
node as anchors to better learn the local structure
of subgraphs. For inductive relation prediction, we
cannot directly use entity-specific embeddings to
represent these one-hop neighbors. To address this
problem, we leverage relationship between each

4Note that h denotes a specific query entity in KG, while
node0 is a special symbol to represent the center node of a
subgraph, which is transferable to any subgraph.
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neighboring node and the center node to denote
the neighbors. Specifically, for a neighboring en-
tity t which is connected to the center node h with
a triple (h, ri, t), the neighboring entity t can be
denoted as rci which means a node connected to
the center node with relation ri. Take the triple
(Barack Obama, PlaceOfBirth, Honolulu) as an ex-
ample, the entity Honolulu can be denoted as "the
PlaceofBirth of Barack Obama". Thus, all neigh-
boring nodes of the center node can be represented
by combining the relation and center node, which
can yield a set of one-hop neighborhood anchors
D = {rci |(h, ri, t) ∈ Tk(h)}, where Tk(h) denotes
the set of triples in Gk(h).

According to the above definition, we can ob-
tain a set of anchor relations R and a set of anchor
nodes Anc = {node0} ∪ D. These anchor rela-
tions and the nodes are independent on any specific
entity, which can be acted as the transferred meta-
knowledge to bridge the gap between the training
KG and the test KG.

2.3 Anchor-based Node Labeling

In this subsection, we describe how to label each
node in the opening subgraph using the anchors R
and Anc.

Relation-aware features. Given a node n in the
subgraph Gk(h), we extract the node’s neighboring
relations denoted as R(n). We can capture some
important type information about the node from
these neighboring relations. For example, the tail
entities of relation PlaceOfBirth are entities with
a place type. Therefore, we use these relations to
learn embedding for node n:

vr
n =

∑

r∈R(n)

r (1)

where r is the embedding for the relation r.
Structure-aware features. Only using the re-

lation information cannot adequately express the
structure of a given subgraph. In this paper, we
propose a structure-aware labeling method to en-
rich the node features with local structure infor-
mation. In a given subgraph, the center node and
its one-hop neighboring nodes are viewed as an-
chor nodes Anc as defined in Section 2.2. Thus,
we can leverage neighboring relationship between
each node with these anchor nodes to learn local
structure of each node in the subgraph. Formally,
let Aj(n) = {ai|ai ∈ Nj(n)

⋂
Anc} be the j-th

hop neighboring anchor nodes of node n, where

Nj(n) denotes the j-th hop neighbors of node n.
The j-th hop structure feature of node n can be
denoted as:

vj
n =

∑

ai∈Aj(n)

ai (2)

where ai is the embedding of anchor node ai. Note
that by gathering neighboring anchor nodes from
different hops, we can obtain multi-hop structure-
aware features {v0

n,v
1
n, · · · ,vJ

n}, where J is the
maximum hop of the structure-aware features5.

Distance features. The distance can reveal the
degree of correlation between each node and the
center node. Therefore, we also leverage distance
features to enrich the representation of each node.
Specifically, we visit the neighboring nodes from
different hops of the center node and obtain the
shortest distance between each node and the center
node. Let dn denote the distance between node
n and the center node, the embedding of distance
feature is denoted as vd

n.
Finally, the relation-aware, structure-aware and

distance features are combined to learn the initial
embedding of each node n:

e0n = vr
n + v0

n + · · ·+ vJ
n + vd

n (3)

2.4 Query-aware Reasoning
In the above sections, we have described how to
label the nodes for a extracted opening subgraph
with relation-aware, structure-aware and distance
features. Then, we can perform reasoning on the
opening subgraph. In this paper, we use a query-
aware graph attention neural network (GAT) to
propagate neighborhood information in the open-
ing subgraph. . Given a query (h, r, ?) and a k-hop
subgraph Gk(h), we can aggregate the neighbor-
hood features for each node n in subgraph Gk(h):

e′n =
∑

(r,p)∈N (n)

αl
p[e

l
p||rp]Wl + bl (4)

where N (n) = {(rp, p)|(n, rp, p) ∈ Tk(h)} is the
set of neighbors of node n, Tk(h) is the set of
triples in Gk(h). Wl and bl are trainable parame-
ters in the l-th GAT layer, αl

p is the attention weight
for the neighbor (rp, p) which is computed as:

αl
p = σ(rTa ([e

l
n||rp||elp]Wl

a + bl
a)) (5)

5Note that k in Gk(h) denotes the maximum hop of the
opening subgraph surrounding the center node h, while J
denotes the maximum hop of structure-aware neighboring
anchors for each node n in the subgraph Gk(h).
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WN18RR FB15k-237 NELL-995
#Rel #Ent #Tri #Rel #Ent #Tri #R #Ent #Tri

V1
train 9 2746 6678 183 2000 5226 14 10915 5540
test 9 922 1991 146 1500 2404 14 225 1034

V2
train 10 6954 18968 203 3000 12085 88 2564 10109
test 10 2923 4863 176 2000 5092 79 4937 5521

V3
train 11 12078 32150 218 4000 22394 142 4647 20117
test 11 5084 7470 187 3000 9137 122 4921 9668

V3
train 9 3861 9842 222 5000 33916 77 2092 9289
test 9 7208 15157 204 3500 14554 61 3294 8520

Table 1: Statistics of the inductive datasets. "#Rel" denotes the number of relations, "#Ent" denotes the number of
entities,"#Tri" denotes the number of triples.

where Wl
a and bl

a are the trainable parameters, ra
is the attention embedding of the query relation r,
σ is the sigmoid activation function.

To alleviate the vanishing gradient problem, we
use a gated layer to integrate the node features as
well as its neighborhood features.

el+1
n = g × eln + (1− g)× e′n (6)

where g is the gate to control the weight between
the l-th layer node feature eln and the neighborhood
feature e′n, which is defined as:

g = σ([eln||e′n]Wl
g + bl

g) (7)

where Wl
g and bl

g are learnable parameters of the
gate mechanism.

In this paper, we stack query-aware GAT with L
layers to propagate multi-hop neighborhood fea-
tures and obtain the final node embeddings by
concatenating representations of all layers, namely
en = [e0n||e1n|| · · · ||eLn ]. Then, an average-pooling
layer is applied to obtain the representation of the
subgraph Gk(h):

eG =
1

|Ek|
∑

n∈Ek
en (8)

Sequentially, we can compute the embedding for
the given query (h, r, ?) by taking into account the
subgraph embedding eG , the query entity embed-
ding eh and the query relation embedding r:

equery = [eG ||eh||r]Wq + bq (9)

where Wq and bq are the trainable parameters of
the query embedding layer.

Finally, the score for a candidate answer entity
t can be obtained using the inner product of the

query embedding equery and the candidate answer
entity embedding et:

f(h, r, t) = σ(eTqueryet) (10)

Note that all the candidate answer entities are
in the same subgraph Gk(h), Therefore, we can
compute the scores for all candidates by perform-
ing reasoning on the subgraph Gk(h) by one time.
This is different from previous methods which need
extract and process a specific subgraph for every
candidate triple.

Following (Teru et al., 2020), we randomly sam-
ple a negative answer entity t′ for each query
(h, r, ?) and correct answer t. The goal is to predict
a higher score for each positive answer entity and
lower score for the negative answer entity. Thus,
we use the following cross entropy loss function to
train the model:

L =
∑

(h,r,t)∈G(h)
log(f(h, r, t′))− log(f(h, r, t))

(11)
For the query (?, r, t), which needs to predict
the missing head entity, we use a inverse form
(t, r−1, ?) to convert it into a query with a miss-
ing tail entity.

3 Experiments

3.1 Datasets and Evaluate Metrics
To evaluate the inductive relation prediction perfor-
mance of our QAAR, we conduct extensive experi-
ments on three widely used datasets which are pro-
posed in GraIL (Teru et al., 2020). These inductive
datasets are extracted from WN18RR (Dettmers
et al., 2018), FB15k-237(Toutanova et al., 2015)
and NELL-995 (Xiong et al., 2017b). Each induc-
tive dataset consists of train and test KGs and these
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Models WN18RR FB15k-237
v1 v2 v3 v4 Avg. v1 v2 v3 v4 Avg.

Neural-LP† 74.37 68.93 46.18 67.13 64.15 52.92 58.94 52.90 55.88 55.16
DRUM† 74.37 68.93 46.18 67.13 64.15 52.92 58.73 52.90 55.88 55.10
RuleN† 80.85 78.23 53.39 71.59 71.01 49.76 77.82 87.69 85.60 75.21

Meta-iKG - - - - - 66.96 74.08 71.89 72.28 71.30
MorsE 84.14 81.50 70.92 79.61 79.04 83.17 95.67 95.69 95.89 92.61
GraIL† 82.45 78.68 58.43 73.41 73.24 64.15 81.80 82.83 89.29 79.51

CoMPILE† 83.60 79.82 60.69 75.49 74.90 67.64 82.98 84.67 87.44 80.68
TACT† 84.04 81.63 67.97 76.56 77.55 65.76 83.56 85.20 88.69 80.80

ConGLR† 85.64 92.93 70.74 92.90 85.55 68.29 85.98 88.61 89.31 82.93
NodePiece 83.00 88.60 78.50 80.70 82.70 87.30 93.90 94.40 94.90 92.35

QAAR 88.82 86.87 88.18 89.15 88.25 90.48 95.81 95.87 96.21 94.59

Table 2: Hits@10 results on the inductive benchmark datasets extracted from WN18RR and FB15k-237. † means
the results are taken from (Lin et al., 2022). Other results are taken from their original papers. “Avg.” denotes the
average values of the four versions. The best results are in bold while the second best scores are in underline.

Models NELL-995
v1 v2 v3 v4 Avg.

Neural-LP† 40.78 78.73 82.71 80.58 70.70
DRUM† 19.42 78.55 82.71 80.58 65.31
RuleN† 53.50 81.75 77.26 61.35 68.46
Meta-iKG 64.20 77.91 77.41 73.12 73.16
MorsE 65.20 80.70 87.67 53.44 71.75
GraIL† 59.50 93.25 91.41 73.19 79.33
CoMPILE† 58.38 93.87 92.77 75.19 80.05
TACT∗ 79.80 88.91 94.02 73.78 84.12
ConGLR∗ 81.07 94.92 94.36 81.61 87.99
NodePiece 89.00 90.10 93.60 89.30 90.50
QAAR 89.50 96.32 94.56 91.15 92.88

Table 3: Hits@10 results on the inductive benchmark
datasets extracted from NELL-995. The best results are
in bold while the second best scores are in underline.

two KGs have no overlapping entities. And there
are four versions with different sizes for each in-
ductive dataset. The details of these datasets are
shown in Table 1.

Following the prior work (Teru et al., 2020; Lin
et al., 2022), we use hits@10 as the evaluation
metric and compute hits@10 by ranking each test
triple against 50 negative triples and check whether
the positive triple is ranked in top 10. We run each
experiment five times and report the mean results.

3.2 Implementation Details

We implement our model using Pytorch. We
optimize our model using Adam (Kingma and
Ba, 2015). We choose the optimal hyper-
parameters via grid search. We select the batch
size from {4,8,16,32}, the learning rate from
{0.0005,0.001,0.002}, weight decay from {1e-2,1e-
3,1e-4}, dropout rate from {0.1,0.2,0.3}, the num-
ber of GAT layers from {1,2,3}, the subgraph size k
from {2,3,4,5}, the maximum depth J of structure-

aware features from {1,2,3}, the dimension size
of output entity embedding from {30,50,80}. The
best hyper-parameters are selected according to the
hits@10 on validation set. Finally, the learning
rate is set to 0.001, the batch size is set to 16, the
weight decay is set to 1e-3, the dropout rate is set
to 0.1, the number of GAT layers is set to 2, and
the subgraph size k is set to 4, the maximum depth
of structure features is set to J = 2, the dimension
size of output entity embedding is set to 80.

3.3 Baselines

We compare our QAAR with the following rule-
based models: Neural-LP (Yang et al., 2017),
DRUM (Sadeghian et al., 2019), RuleN (Meilicke
et al., 2018), and GCN-based models: Meta-iKG
(Zheng et al., 2021), MorsE (Chen et al., 2022),
GraIL (Teru et al., 2020), CoMPILE (Mai et al.,
2021), TACT (Chen et al., 2021), ConGLR (Lin
et al., 2022) and NodePiece (Galkin et al., 2022).

3.4 Experimental Results

Table 2 and Table 3 show the experimental re-
sults on the four versions from WN18RR, FB15k-
237 and NELL-995 under the evaluation metric
of hits@10. From Table 2 and Table 3, we can
have two interesting findings: (1) The GCN-based
methods, which leverage GCNs to aggregate and
propagate neighborhood information, performs bet-
ter than rule-based methods. This indicates that
rule-based methods are insufficient to obtain good
performance for inductive relation prediction due
to the brittleness of logical rules. Instead, GCN-
based methods are more robust to capture complex
structure patterns in KGs. (2) Our QAAR achieves
better performance than most of SOTA GCN-based
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Models WN18RR FB15k-237
v1 v2 v3 v4 Avg. v1 v2 v3 v4 Avg.

QAAR 88.82 86.87 88.18 89.15 88.25 90.48 95.81 95.87 96.21 94.59
QAAR w/o D 87.23 81.74 86.44 86.91 85.58 85.85 90.79 93.29 94.18 91.03

∆ -1.59 -5.13 -1.74 -2.24 -2.67 -4.63 -5.02 -2.58 -2.03 -3.56
QAAR w/o R 86.17 86.16 86.77 89.43 87.13 84.63 92.46 93.64 95.64 91.59

∆ -2.65 -0.71 -1.41 +0.28 -1.12 -5.85 -3.35 -2.23 -0.57 -3.00
QAAR w/o S 85.63 79.59 86.61 88.17 85.00 87.31 94.35 94.21 95.29 92.79

∆ -3.19 -7.28 -1.57 -0.98 -3.25 -3.17 -1.46 -1.66 -0.92 -1.80
QAAR w/o A 86.96 81.51 87.76 88.38 86.15 84.39 94.97 94.91 95.36 92.41

∆ -1.86 -5.36 -0.42 -0.77 -2.10 -6.09 -0.84 -0.96 -0.85 -2.18

Table 4: Ablation study on the inductive benchmark datasets extracted from WN18RR and FB15k-237. ∆ denotes
the differences between each ablation model and the original QAAR model. ∆ denotes the differences between
each ablation model and the original QAAR model.

Models NELL-995
v1 v2 v3 v4 Avg.

QAAR 89.50 96.32 94.56 91.15 92.88
QAAR w/o D 87.00 90.33 90.61 4.81 88.19
∆ -2.50 -5.99 -3.95 -6.34 -4.69
QAAR w/o R 85.50 93.27 92.83 89.19 90.20
∆ -4.00 -3.05 -1.73 -1.96 -2.68
QAAR w/o S 82.50 92.85 92.58 90.28 88.55
∆ -7.00 -3.47 -1.98 -0.87 -3.33
QAAR w/o A 86.00 91.38 92.09 90.15 89.91
∆ -3.50 -4.94 -2.47 -1.00 -2.97

Table 5: Ablation study on the inductive benchmark
datasets extracted from NELL-995.

methods in term of hits@10 (e.g., our model
achieves the best performance on 10 out of 12 ver-
sions of the inductive datasets). On the average
hits@10 metrics of these three datasets, our QAAR
outperforms other SOTA models. Compared to
previous SOTA method ConGLR, our QAAR can
achieve 2.7%, 11.63% and 4.89% improvements on
the average hits@10 metrics of WN18RR, FB15k-
237 and NELL-995 datasets respectively. And
compared to the SOTA method NodePiece, our
QAAR outperforms NodePiece by 5.55%, 2.24%
and 2.38% margins on these three datasets. Com-
pared with previous SOTA GCN-based methods,
such as GraIL, TACT, CoMPILE, ConGLR and
NodePiece, the proposed QAAR is able to cap-
ture richer transferable entity-independent features
(e.g., relation-aware, structure-aware and distance
features) to learn the inductive embedddings for
the nodes in a subgraph. The experimental results
demonstrate that our QAAR is superior to current
SOTA models.

3.5 Ablation Study

In this subsection, we perform an ablation study
to investigate how each module in QAAR affects
the performance. Specifically, for the node label-

ing, we use relation-aware, structure-aware and
distance features to label each node. To study the
contributions of these labeling strategies, we con-
struct three variant models: "QAAR w/o R" de-
notes the model removing relation-aware features
from QAAR model, "QAAR w/o S" denotes the
model without using structure-aware features, and
"QAAR w/o D" denotes the model without using
distance features. Moreover, we also investigate
the effect of query-aware graph attention layers by
replacing it with GCN layers and obtain a variant
model "QAAR w/o A".

Table 4 and Table 5 show the experimental re-
sults of ablation study on the inductive datasets
regarding the evaluation metric of hits@10. From
the results, we can see that the performances of
all variant models have decreased to some extent.
This demonstrates all modules in QAAR play im-
portant roles for the performance improvement.
Concretely, different components in QAAR have
different effect on these inductive datasets. For
WN18RR dataset, the structure-aware and distance
features have more positive impact on the perfor-
mance, while the relation-aware features have less
positive impact and even slightly hurt the perfor-
mance on v4 of WN18RR. This is because the
relations in WN18RR express little entity type in-
formation. Take the most frequent relation "hy-
pernym" in WN18RR as an example, we cannot
infer the entity type for it. Instead, for FB15k-237
and NELL-995 datasets, the relations express more
useful entity type information, which can help to
improve the performance. Take the relation "Place-
OfBirth" in FB15k-237 as an example, we can infer
that the head entity of this relation is a person and
the tail entity is a place. On average, all three types
of features can contribute to the improvements of
the performance. Moreover, the query-aware graph
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#Neg. WN18RR FB15k-237 NELL-995
GraIL QAAR GraIL QAAR GraIL QAAR

20 35.82 5.78 147.66 11.63 63.87 15.85
50 52.38 5.92 244.78 12.08 79.19 15.98
80 66.67 5.98 324.33 12.28 91.55 16.21
120 81.52 6.23 427.29 12.46 107.02 16.73
150 93.07 6.25 498.32 12.53 136.73 16.85

Table 6: Reasoning time for different number of candi-
date triples on the version v1 of inductive test datasets
extracted from WN18RR, FB15k-237 and NELL-995.
"#Neg." denotes the number of negative candidates to be
ranked. The reasoning times are measured in seconds.

attention reasoning is also beneficial to relation
prediction (QAAR vs. "QAAR w/o A"), which in-
dicates that the query-aware graph attention layers
can aggregate more relevant neighborhood infor-
mation during reasoning.

3.6 Efficiency Analysis

In this section, we investigate the reasoning effi-
ciency regarding the enclosing subgraph extrac-
tion vs. the opening subgraph extraction. We
note that most previous inductive relation predic-
tion models, such as CoMPILE (Mai et al., 2021),
Meta-iKG (Zheng et al., 2021), TACT (Chen et al.,
2021), ConGLR (Lin et al., 2022), are all based on
the enclosing subgraph extraction on the basis of
GraIL (Teru et al., 2020), and take more time to
perform reasoning since they consider more addi-
tional mechanisms. Therefore, we choose GraIL
as the representative baseline. Table 6 shows the
reasoning time for different number of candidate
triples on the version v1 of inductive test datasets
extracted from WN18RR, FB15k-237 and NELL-
995. It can be seen that our QAAR can spend less
reasoning time than the GraIL model on these three
datasets. Specifically, when the number of negative
candidates is 50, the reasoning time of QAAR is
about 9x faster than GraIL on WN18RR, 20x faster
on FB15k-237, 5x faster on NELL-995. We can
also find that the reasoning time of GraIL will dra-
matically increases when the number of negative
candidates increases. Different from GraIL, the rea-
soning time of our QAAR remains at a stable level
for different number of candidates. The reason is
that our QAAR is able to rank all candidates in one
opening subgraph with one-time reasoning, while
GraIL will extract a specific enclosing subgraph
for every candidate and perform multiple reason-
ing on all these subgraphs. These empirical results
verify the claim that our QAAR can perform more
efficient reasoning than previous methods.

4 Conclusion

In this paper, we propose a novel query adap-
tive anchor representation (QAAR) model for in-
ductive relation prediction. First, we develop a
model to rank all candidate triples in one open-
ing subgraph. Second, we design three types of
query adaptive anchors for subgraphs and extract
three kinds of entity-independent features includ-
ing relation-aware, structure-aware and distance
features, which are useful for inductive relation pre-
diction. Finally, we use a query-aware graph atten-
tion model to perform inductive reasoning on sub-
graphs. The experimental results on 12 versions of
inductive relation prediction datasets demonstrate
the effectiveness and efficiency of our proposed
QAAR model.

Limitations

Although our QAAR achieves better performance
on inductive relation prediction, it still suffers from
some limitations. First, for a give query we ex-
tract a k-hop subgraph without using any sampling
method, which will require large GPU memory
when the extracted subgraph is large. Second, our
QAAR does not leverage logical rules to enhance
the performance which has shown useful in previ-
ous methods (Lin et al., 2022). We believe that our
method can be further improved by incorporating
logical rules. We will leave these opening issues in
the future work.
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