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Abstract

Natural language understanding (NLU) stud-
ies often exaggerate or underestimate the capa-
bilities of systems, thereby limiting the repro-
ducibility of their findings. These erroneous
evaluations can be attributed to the difficulty of
defining and testing NLU adequately. In this
position paper, we reconsider this challenge by
identifying two types of researcher degrees of
freedom. We revisit Turing’s original interpre-
tation of the Turing test and indicate that an
NLU test does not provide an operational def-
inition; it merely provides inductive evidence
that the test subject understands the language
sufficiently well to meet stakeholder objectives.
In other words, stakeholders are free to arbi-
trarily define NLU through their objectives. To
use the test results as inductive evidence, stake-
holders must carefully assess if the interpre-
tation of test scores is valid or not. However,
designing and using NLU tests involve other
degrees of freedom, such as specifying target
skills and defining evaluation metrics. As a
result, achieving consensus among stakehold-
ers becomes difficult. To resolve this issue, we
propose a validity argument, which is a frame-
work comprising a series of validation criteria
across test components. By demonstrating that
current practices in NLU studies can be asso-
ciated with those criteria and organizing them
into a comprehensive checklist, we prove that
the validity argument can serve as a coherent
guideline for designing credible test sets and
facilitating scientific communication.

1 Introduction

Large-scale pretrained language models, also
known as foundation models (Bommasani et al.,
2021), have advanced significantly, leading to sys-
tems that are performing increasingly well at var-
ious natural language understanding (NLU) tasks
and offering real-world applications (Devlin et al.,
2019; Brown et al., 2020; Ouyang et al., 2022).
However, these systems are often erroneously

claimed to have human-level understanding (Ben-
der and Koller, 2020). In other cases, their fail-
ures in specific situations are presented as systemic
inadequacy, while ignoring their excellent perfor-
mances in certain tasks (Jia and Liang, 2017; Bow-
man, 2022).

Such exaggerations may stem from unjustified
assumptions about the capability of NLU systems.
Accordingly, researchers have attempted to im-
prove the benchmarking of NLU through discus-
sions to define language understanding (Bender and
Koller, 2020; Bisk et al., 2020; Merrill et al., 2021)
and practices, such as using auxiliary tasks for san-
ity check (Ribeiro et al., 2020), decision boundary
evaluation (Gardner et al., 2020), and dataset sourc-
ing (Bowman and Dahl, 2021; Kiela et al., 2021).
Such efforts have motivated researchers to recon-
sider and revise the concept and scientific study
of NLU (Lakatos, 1976). Nevertheless, we need a
more comprehensive guideline for better scientific
communication.

In this study, we rethink this challenge in terms
of researcher degrees of freedom, aiming to re-
frame the definition and evaluation of NLU and
provide a pathway to better benchmarking. We be-
gin by revisiting a recent discussion by Bender and
Koller (2020), who define language understanding
as the link between linguistic form (i.e., symbolic
information) and the communicative intent of the
speaker. They support their argument by present-
ing a thought experiment called the Octopus test,
which is designed to resemble the Turing test. In
the Octopus test, an intelligent deep-sea octopus
that can only use symbolic information (an analogy
of language models trained only on textual corpora)
tries to mimic a person in conversations. The objec-
tive of the test is to ascertain whether the octopus
can deceive the other person even when that per-
son is defending themselves against an angry bear.
Bender and Koller (2020) argue that the octopus
cannot achieve language understanding because it
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cannot pass the test in that situation (as a proof
of existence). However, we find that the Octopus
test may not be a valid thought experiment ow-
ing to initial concerns about the Turing test itself
(e.g., even humans may sometimes fail the test).
Although we agree that symbol grounding plays an
important role, several other features contribute to
language understanding, which takes various forms
(Sahlgren and Carlsson, 2021).

Here, we see that the degrees of freedom in
defining NLU are characterized by the response-
dependent interpretation of the Turing test (Proud-
foot, 2020). Thus, interpreting the subject’s be-
havior depends on how it appears to a counterpart
interrogator in the test, i.e., we cannot use success
in the test as a definite criterion of language under-
standing, which makes it challenging to construct
an NLU test with an operational definition. Instead,
using a test merely enables us to obtain inductive
evidence to achieve consensus among stakehold-
ers. We elaborate on this observation by revisiting
the Turing and Octopus tests in Sections 2 and 3,
respectively. Then, we restate the testing of NLU
in Section 4 considering that its definition is in-
evitably arbitrary to observers. In short, a test has
to assess distinguishable behaviors in a specific do-
main rather than general NLU to make it easier
for stakeholders to arrive at a consensus about the
interpretation of the test results.

Although we can decide what capability we as-
sess in a test, other degrees of freedom are present
while designing the test and interpreting its results.
This problem can be understood in terms of psycho-
logical studies, in which choices arbitrarily taken
by researchers heighten the chances of false posi-
tive results (Simmons et al., 2011; Wicherts et al.,
2016). Several previously proposed NLU prac-
tices facilitate detailed evaluation to lessen unjus-
tified claims about NLU systems. However, they
are not sufficiently well-organized to be deployed
on a universal framework. Therefore, we often
choose convenient practices depending on specific
situations. Consequently, the degrees of freedom
that researchers have in evaluating NLU increase,
thereby sacrificing the reproducibility of research
(Munafò et al., 2017). In Section 5, we introduce
the validity argument, which is a framework used
in psychological and educational tests (Kane, 2006;
Chapelle et al., 2008; Cook et al., 2015), to set out
a guideline for designing, conducting, and using
NLU tests. We demonstrate that current practices

are associated with inference steps in the validity
argument and show that it may serve as a com-
prehensive, coherent guideline for developing or
identifying actionable and beneficial practices to
construct a better NLU test and use it properly.

Our major contributions are two-fold:

• Using the response-dependent interpretation
of the Turing Test, we rethink the NLU eval-
uation. In our revised formulation, a test
does not provide a concrete definition of NLU
but presents inductive evidence, using which
stakeholders can concur with the interpreta-
tion of the target behavior.

• As a tool for designing and using NLU tests,
we introduce the validity argument with a
checklist of 16 questions, which helps stake-
holders to collect and interpret validity evi-
dence coherently, thereby encouraging more
reproducible research.

2 Turing Test Revisited

2.1 Imitation Game
Turing (1950) proposes a game known as the Imi-
tation Game, which is a conversational test to ex-
amine a machine’s intelligent behavior:

A human questioner speaks in natural
language to one machine with another
human for a certain period. These par-
ticipants are isolated and can commu-
nicate only in text through the display.
The topics of conversation and length of
questions are unrestricted. The human
and machine respond to the interroga-
tor’s questions in a way that makes them
appear human. The interrogator wins if
he identifies the machine as a machine
and the human as a human.

According to the Turing test, if a machine wins the
Imitation Game more or less reliably, it passes the
test, indicating that the machine can be considered
intelligent.

Machines may fail the Turing test owing to fac-
tors irrelevant to intelligence. For example, a hu-
man participant may perform poorly in pretending
to be a machine. Similarly, machines may exhibit
a process that can be described as thinking but dif-
fers significantly from the process performed by
humans. To circumvent these problems, the Turing
test focuses solely on a sufficient condition for in-
telligence (Turing, 1950, Copeland 2004, p. 442).
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2.2 Response-Dependent Interpretation
To evaluate the Turing test, we must clarify the in-
terpretation of intelligence that argues that thinking
is performed intelligently if the Imitation Game
is played well. However, Turing’s interpretation
of intelligence is controversial. In the following
section, we discuss two interpretations: the stan-
dard behaviorist interpretation and the more recent
response-dependent interpretation.

According to the standard interpretation, the Tur-
ing test is a behaviorist test of intelligent thinking.
In general, if a machine behaves as though it is in-
telligent, it is intelligent (Block, 1981). The Turing
test is reminiscent of behaviorism, as it requires
evidence for intelligent thinking to be a publicly
observable behavior. However, at least two reasons
exist to contradict the standard interpretation. First,
Turing does not suggest that the mental vocabu-
lary of “intelligence” or “thinking intelligently” is
definable based on observable or behavioral terms
(Davidson, 1990). Second, and more importantly,
the game tests the interrogator’s response and not
the machine’s behavior. In other words, the Turing
test does not examine whether a machine can per-
form a specific cognitive task but how effectively
the interrogator is fooled (Proudfoot, 2020).

Proudfoot (2020) provides an alternative inter-
pretation of Turing’s view of intelligence, which
is considered more promising than the standard
behaviorist interpretation. Proudfoot’s exegesis be-
gins with the observation that the first version of
the Imitation Game appeared in the final section,
“Intelligence as an emotional concept” of Turing
(1948). In this text, Turing states: The extent to
which we regard something as behaving in an in-
telligent manner is determined as much by our
own state of mind and training as by the prop-
erties of the object under consideration (Turing,
1948, Copeland 2004, p. 431). Using the phrase
“intelligence as an emotional concept,” Proudfoot
asserts that intelligence is a response-dependent
property using current philosophical terminology.
Response-dependent properties are those that de-
pend on human responses under certain specified
conditions. Secondary qualities, such as color, and
values, such as beauty, are examples of response-
dependent properties.

A simple response-dependence theory of color
may be stated as follows:

x is red if and only if, in normal condi-
tions, x looks red to normal subjects.

Applying this formulation to intelligence leads to a
simple response-dependence theory of intelligence:

x is intelligent if and only if, in normal
conditions, x appears intelligent to nor-
mal subjects.

Identifying the “normal” conditions is a typical
problem faced by response-dependent theories.
However, the setting of the Imitation Game ap-
pears to naturally reflect the normal conditions as-
sociated with intelligence. Selecting a “normal” in-
terrogator is also challenging from the perspective
of response-dependent theories. Therefore, Turing
chose average citizens to play the role of inter-
rogator. Thus, Proudfoot suggests that a response-
dependent approach that is suited to the Turing test
appears as follows:

Formulation 2.1. x is intelligent if, in an unre-
stricted computer-imitates-human game, x appears
intelligent to an average interrogator.

We assume that Formulation 2.1 captures the view
of intelligence that underlies the Turing test.

2.3 Crucial Problems with the Turing Test
We are inclined to consider intelligence as a
response-dependent property, as suggested by Tur-
ing and Proudfoot. However, whether an unre-
stricted computer-imitates-human game is an ap-
propriate means for testing intelligence remains
debatable. Hayes and Ford (1995) point out several
problems with the Turing test.

First, the test design is flawed because it is inde-
terminate what is being tested. Even if a machine
could reliably pass the test, we would not be able to
ascertain whether the machine was truly intelligent,
or the interrogator was not sufficiently clever to
ask informative questions. In short, the object of
testing is unclear (Issue 1).

Second, the Turing test indirectly identifies in-
telligence by distinguishing the participant as a
human or machine. This design forces machines
to hide their inhuman abilities to impersonate hu-
mans. Thus, the test focuses on identifying intelli-
gent behavior that successfully deceives the inter-
rogator. Examples of this type of behavior were
observed in the Loebner competition, where the
winner sometimes deliberately mistyped a word
and subsequently backspaced it to correct it at a hu-
man typing speed purely to deceive its interrogator.
Therefore, even if a machine could reliably pass
the test, it might not be intelligent (Issue 2).

13627



Finally, even humans cannot pass the Turing test
under certain conditions. Heuristics that are used
to distinguish the behavior of machines from that
of humans sometimes misguide interrogators. For
instance, judges in the Loebner competition identi-
fied a human as a machine because they produced
extended, well-written paragraphs of informative
text, which tends to be associated with inhuman
skills in certain parts of our culture (Issue 3).

In summary, we agree with Hayes and Ford
(1995), who argue that passing the Turing test
should not be the goal of AI research. Moreover,
passing the test is not a necessary condition for
using it as a real-world technology for humans or
psychologically investigating human intelligence.

3 Rethinking the Octopus Test

3.1 Octopus Test

Similar to the difficulty of defining intelligence in
the Turing Test, the definition of language under-
standing has also been difficult in the fields of phi-
losophy and linguistics. Bender and Koller (2020)
indicate that current hypes relating to natural lan-
guage processing (NLP) systems are partly because
of this confusing and challenging concept of lan-
guage understanding. They define meaning M as
M ⊆ E × I , where E is a set of possible forms
and I is a set of possible communicative intents,
pragmatically constructed in addition to the con-
ventional meaning.

According to this definition, understanding the
forms is inevitably accompanied by associating
them with their communicative intents; therefore,
Bender and Koller (2020) propose that systems
that deal with the forms alone do not understand
meaning by definition. They present a thought
experiment known as the Octopus test to explain
this argument:

Suppose speakers A and B drift ashore
on two separate uninhabited islands.
There is a communication device on each
island connected by a submarine cable
that enables A and B to communicate. At
the bottom of the sea, there is an octo-
pus. Although this octopus does not un-
derstand their language, by intercepting
the cable communication, it finds statisti-
cal patterns from their conversation and
learns to predict how B would answer
A accurately after a certain period. At

some point, the octopus cuts the cable
and tries to respond to A while pretend-
ing to be B. Will the octopus be able to
continue to respond to A without raising
suspicions?

In this test, Bender and Koller (2020) use the deep-
sea octopus as an analogy for pretrained language
models that are trained only on textual corpora.
The octopus does not have access to sensory data
associated with the speaker’s communicative in-
tents, which are essential in the authors’ definition
of meaning (i.e., the link between forms and com-
municative intents).

Bender and Koller (2020) argue that, in certain
situations, the octopus might be incapable of re-
sponding to A without arousing suspicion. For
example, if A asks how one can build a coconut
catapult or what to do if a bear appears, the octopus
can offer a convincing answer only if it accurately
understands A’s situation. However, because the
octopus does not have the means to deal with novel
information and unforeseen events beyond text, it
cannot provide a sufficient answer to questions be-
yond the scope of what it has learned. Hence, A
possibly determines that B is not human.1

However, should we use the Octopus test as a test
of language understanding in a similar capacity to
the original Turing test? Although the Octopus test
does not place specific conditions on the speakers
A and B, we attempt to reframe the definition of
language understanding implied by Bender and
Koller (2020), according to Formulation 2.1:

Formulation 3.1. x understands language if, in
an unrestricted imitation game, x appears to under-
stand language to an average interrogator.

Nevertheless, even if the Octopus test conforms to
this formulation, it has severe drawbacks similar to
those of the original Turing test.

3.2 Issues in Octopus Test

The Octopus test checks whether it understands the
language, but Issues 1 to 3 of the Turing test in Sec-
tion 2.3 also apply to the Octopus test. First, the
ability of this test form to evaluate intelligent behav-
ior is questionable, as the inability to converse does
not mean that the subject is not intelligent or that
the subject cannot understand language. This ar-
gument aligns with the singleton fallacy (Sahlgren

1See also Appendix A for our brief discussion on symbol
grounding.
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and Carlsson, 2021): the ability to understand lan-
guage takes various forms. Pretrained language
models may be able to exhibit behavior that can
be regarded as language understanding by average
interrogators, and no clear evidence for denying
such an interpretation is available (Issue 1).

Second, both tests in our formulation define the
ability to deceive the average interrogator as a suffi-
cient condition for being intelligent or understand-
ing language; however, no necessary condition has
been formulated. Hence, by simply observing that
the subject fails in the imitation of humans, we can-
not conclude that it does not exhibit NLU because
a subject may understand the language even if it
does not pass the Octopus test (Issue 2).

Finally, we cannot prove that a situation exists
where the octopus fails to impersonate human B.
As Sahlgren and Carlsson (2021) argue, in the sit-
uation with a bear, the pretrained language model
can possibly learn web traffic and generate a mean-
ingful answer to the question of how to use a stick
to protect oneself from the bear. Similarly, the oc-
topus may be able to meaningfully communicate
with A in any situation. Even if we accept the pos-
sibility of the octopus’s failure, we cannot use this
test owing to Issue 3 in Section 2.3, that is, even
humans may fail the test.

4 Reframing the Response-Dependent
Interpretation of NLU Tests

In this section, we investigate how NLU should
be practically tested under the response-dependent
interpretation of the Turing test. Considering the
three issues outlined in Section 3.2, our goal is to
formulate a necessary and sufficient condition of
language understanding that does not contradict the
actions performed in an NLU study.

First, to achieve our objective, we summarize
the corresponding requirements of the formulation:

1. Specify what type of language understanding
behavior is to be tested. This specification
may include target tasks, skills, domains, and
data format (for Issue 1).

2. Impose behavioral tests as a means to evaluate
NLU, which provides evaluation metrics that
are objective to the observers (for Issue 2).

3. Consider the response-dependent interpreta-
tion of the behavioral test to avoid directly
defining specific linguistic behavior as lan-
guage understanding (for Issue 3).

Based on these requirements, we reformulate and
elucidate the response-dependent interpretation of
language understanding:

Formulation 4.1. x understands language under
the condition c if and only if the subjective prob-
ability of an average observer for the hypothesis,
x understands language under c, is higher than a
threshold, where the hypothesis is supported by
evidence obtained by the performance of x on a
test under c.

According to the three requirements, we elaborate
on this formulation as follows.

1. Specifying Target Linguistic Behavior Raji
et al. (2021) suggest that tests evaluating general
language understanding might be impractical ow-
ing to their propensity to make false claims. Hu-
mans generally identify language understanding
in the various behaviors of others, and the suc-
cess of that behavior is determined depending on
stakeholder objectives. Owing to this broad scope,
designing a practical, versatile test may be unre-
alistic. Therefore, we argue that NLU should be
decomposed into distinguishable capabilities by
specifying a target condition c, including skills,
tasks, data sources, input and output format, and
potential applications.

2. Using Behavioral Tests To address the issues
of the Turing test, Levesque (2014) argues that a
behavioral test should be used to test the common-
sense reasoning of machines. Similarly, we can use
a behavioral test to evaluate NLU because it pro-
vides objective measures (i.e., evidence obtained
by the performance of x on a test). However, we do
not deny the possibility of using a test that inspects
a machine’s internal properties to effectively eval-
uate NLU (e.g., using interpretation methods for
deep learning models), although such a test would
have to define objective criteria for target internal
properties to ensure stakeholder consensus.

3. Response-Dependent Interpretation This in-
terpretation does not provide an explicit definition
of the expected target behavior but requires an av-
erage observer to observe the subject’s output in a
test. The statement the subjective probability of an
average observer [...] is higher than a threshold
indicates that stakeholders or their representative
experts agree on their interpretation of test results
(i.e., the observed behavior is successful). In other
words, (the approximation of) the average speaker
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obtains certain information regarding the subject’s
behavior x and calibrates the subjective probability
for the hypothesis. In this formulation, a linguistic
test for language understanding does not provide
an operational definition; instead, it provides in-
ductive evidence that the speaker can use for their
calibration (Moor, 1976, 2001).

Our formulation may be seen as a meta-
definition of NLU in the sense that the stakeholders
are required to determine their own definition of
language understanding in line with their objectives.
In other words, it provides an epistemological view
of language understanding and avoids making a
commitment to what language understanding is.2

This flexibility in interpretation is possible because
the stakeholders can define their own characteri-
zations of language understanding and instantiate
intended behavior into target tasks based on their
objectives.3 However, this formulation permits sev-
eral degrees of freedom in how stakeholders define
what language understanding is, which can make
our communication about NLU obscure. Therefore,
the designers and users of NLU tests have to pre-
cisely specify what behavior is evaluated in their
tests, including the conditions c, and accordingly
interpret the test results. This effort improves the
validity of resulting claims and thus contributes to
avoiding over- and under-claiming.

5 Validity Argument for Testing NLU

In Formulation 4.1, the stakeholders employ certain
measures to evaluate the behavior of a test subject
and interpret those measures to arrive at a decision.
To support the interpretation of the measures (i.e.,
improve the stakeholders’ confidence in the sub-
ject’s target linguistic behavior), the test has to be
well-designed to provide sufficient evidence from
various perspectives.

Despite significant progress, NLU benchmarks
often lack the ability to provide substantial evi-
dence (Bowman and Dahl, 2021; Raji et al., 2021;
Dehghani et al., 2021). To date, useful practices

2We follow the terminology of Bommasani et al. (2021,
Section 2.6.3). Epistemology is related to how we know that
an agent has achieved the relevant type of language under-
standing, while metaphysics concerns what it would mean for
an agent to achieve language understanding.

3For example, if stakeholders adopt internalism, their test
requires the subject to have consistent internal representations
for intended tasks. See also Bommasani et al. (2021, Section
2.6.3) for an overview of their metaphysical characterizations
of language understanding that may fit the development and
deployment of foundation models.

have been proposed to better connect observed
scores and intended NLU behavior (e.g., McCoy
et al., 2019; Gardner et al., 2020). However, with-
out guidelines on design and using a test, these
practices cannot be organized coherently. As a
result, researchers can arbitrarily select practices
most suited to their purpose while, intentionally or
not, ignoring others. This freedom of choice allows
interpretations of test results that are not justified by
reliable evidence. Such unjustified interpretations
are reminiscent of a problem in psychology known
as researcher degrees of freedom (Simmons et al.,
2011; Wicherts et al., 2016). We need to tackle this
challenge by developing a unified, comprehensive
framework to overview necessary practices that
validate the interpretation of test results.

In psychological measurements, Kane (2006,
2013) proposes the validity argument, which is
a theoretical framework that guides the collection
of evidence to validate the interpretation and use
of test scores (Figure 1). It decomposes the de-
sign, conduct, and use of a test into the seven com-
ponents where transitions between them are per-
formed as inferences supported by a warrant and
its backing that follow Toulmin’s formulation of
arguments (Toulmin, 2003). The six inferences
constitute the process of collecting and interpreting
evidence that the test designers and users follow.
The validity argument has been employed in vari-
ous fields, including linguistic tests (Chapelle et al.,
2008) and clinical exams (Cook et al., 2015), but
not in NLU. See Appendix B for its background
and terminology.

In the following section, we apply the validity ar-
gument to the evaluation of NLU. We associate cur-
rent important practices with the inferences of the
validity argument, show that the argument serves
as a useful guideline to design and use NLU tests,
and provide relevant checklist questions Here, we
take SQuAD (Rajpurkar et al., 2016), a question an-
swering (QA) dataset consisting of crowdsourced
questions written for Wikipedia articles to instan-
tiate a validity argument and identify missing as-
pects. Appendix C elaborates on the checklist and
relevant practices.

1. Domain Definition This inference requires
performance observation in the test to reveal rel-
evant knowledge and skills in the target domain,
which contributes to providing a means to clarify
the achievements and weaknesses of the test sub-
jects at a theoretical level (Doshi-Velez and Kim,
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Target
Domain

Observation

Observed
Score

Expected
Score

Construct

Target
Score

Domain 
Definition

Evaluation

Test Use

Warrant: Observations of the test performance reveal important and 
representative knowledge, skills, and abilities in the target domain.
Backing: The tasks in the test require important knowledge and skills 
that are representative of the abilities in the target domain.

Warrant: Observations of the test performance are evaluated to provide 
observed scores reflective of the target abilities.
Backing: Rubrics provide evidence of the target abilities, and the statis-
tical characteristics of examples are appropriate for intended test use.

Inference Warrant and BackingComponent Checklist Questions
1. Does the test set describe the target tasks and domains 

in detail?
2. Are the test items annotated with requisite knowledge 

and skills?
3. Are the test items reviewed by domain experts?
4. Does the test set have structured metrics for its 

subtasks?
5. Are the test items sufficiently difficult and discrimi-

native to compare systems?
6. Does the test set describe the data collection process 

and baseline systems for reproducibility?
7. Do the test items address annotation disagreement?
8. Does the test set produce a statistically significant 

result?
9. Is the test set designed to mitigate shortcut solutions?

10. If the training set is provided,  does the test set 
contain out-of-distribution examples?

11. Is there any control over the difficulty of examples?

12. Does the test set encourage performance comparison 
using related tasks and datasets?

13. Does the test include basic tasks for sanity check?

14. Does the test set support the utility enhancement of 
systems?

15. Does the test set include disincentive for embedding 
harmful social biases?

16. Does the test set promote the mitigation of the system 
vulnerability against adversarial attacks?

Generalization

Explanation

Extrapolation

Utilization

Warrant: Observed scores are estimates of expected scores over the 
relevant parallel versions of tasks and test forms.
Backing: The task is well defined such that parallel tasks are created, 
and the test includes a sufficient number of examples for reliability.

Warrant: Expected scores are attributed to a construct of the targeted 
abilities in language understanding. 
Backing: The types and difficulty of abilities required to complete the 
task vary in keeping with theoretical expectations.

Warrant: The construct of the targeted abilities accounts for the qua-
lity of relevant language understanding tasks in the target domain. 
Backing: Performance on the test correlates with other criteria of lan-
guage understanding in the target domain.

Warrant: Estimates of the quality of performance are useful for making 
decisions about the language understanding systems.
Backing: The meaning of test scores is clearly interpretable by stake-
holders and the test has a positive influence on society.

Figure 1: Overview of a validity argument for NLU, including inferences with its warrant and backing.

2017; Rogers et al., 2023). In SQuAD, the authors
take 100 questions to annotate necessary reason-
ing types, including lexical and world knowledge,
syntactic variation, and multiple-sentence reason-
ing. However, given that reading comprehension
involves other types of reasoning, such as temporal
and causal (Dunietz et al., 2020), this annotation
may reveal that SQuAD can evaluate only a limited
number of abilities in reading comprehension. This
observation implies that, ideally, the test examples
need to be reviewed by domain experts (i.e., re-
searchers of human reading comprehension) who
may be able to indicate relevant knowledge and
reasoning types that are missing from the dataset.

2. Evaluation This inference is related to the de-
sign of scores and characteristics of test examples.
SQuAD provides evaluation metrics that calculate
word overlap between predicted and gold text spans.
However, it only enables a one-dimensional inter-
pretation of the system performance. Ideally, the
task provides multiple metrics that correspond to
target abilities or decomposed subtasks identified
in the domain definition (e.g., Wolfson et al., 2020).
This inference also requires the statistical character-
istics of the test examples to be monitored. The test
developers have to ensure that collected examples
are discriminative and their differences are relevant
to the target abilities. Otherwise, stakeholders can-
not associate the system performance difference

with the target abilities. A promising way to meet
this requirement is to use the item response theory,
which models the difficulty and discriminability
of examples using the responses of test subjects
(Rodriguez et al., 2021; Vania et al., 2021).

3. Generalization This inference concerns the
generalizability of the observed scores, which is
characterized by their reproducibility and reliability.
For reproducibility, the task specifications must be
well-described to ensure that others can construct
similar tasks for the same target. Reporting specifi-
cations using a template (Gebru et al., 2021) would
suffice to cover necessary facets such as the compo-
nents, collection, and preprocessing of the dataset.
For reliability, reporting statistical significance is
also an important practice (Benjamin et al., 2018;
Dror et al., 2018). The reliability of test scores also
has to be supported by reliable annotation of gold
labels. In addition, the annotation design should
consider inherent disagreements among humans
(Pavlick and Kwiatkowski, 2019). SQuAD reports
its data collection process and makes the scripts of
score calculations publicly available to replicate the
baseline systems and reported results. Miller et al.
(2020) similarly collect examples for different text
sources, such as newspaper articles and product
reviews. They find that the average performance
largely drops in those text sources compared to the
original SQuAD across a broad range of systems.
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This finding would help stakeholders assess the
generalizability of the observed test scores if the
systems need to be tested in terms of general read-
ing comprehension beyond that for Wikipedia arti-
cles. Furthermore, the study on SQuAD reported
human performance using gold answers by three
annotators to ensure reliability of the test scores,
but its statistical variation is not calculated.

4. Explanation This inference determines if ex-
pected scores in the test can be associated with a
construct (a conceptual tool used to facilitate under-
standing of human behavior in psychology) of the
target abilities. For instance, systems that exhibit
intended behavior despite varying input enable
stakeholders to validate the association between
their behavior and the target abilities. For this pur-
pose, the test must have examples that can validate
various behaviors to cover the range of abilities
that the test is intended to assess. References in-
cluding challenge sets (McCoy et al., 2019), stress
tests (Naik et al., 2018), and contrast sets (Gardner
et al., 2020) aim to investigate the decision bound-
ary of the systems. Avoiding dataset biases and
shortcut solutions is also important for testing in-
tended abilities (Gururangan et al., 2018; Geirhos
et al., 2020; Malaviya et al., 2022). For SQuAD,
Jia and Liang (2017) find that injecting a manu-
ally crafted distracting sentence into the passage
causes the systems to predict incorrectly. Such un-
intended behaviors show that examples in SQuAD
may be insufficient to cover a range of inputs nec-
essary for performing the explanation inference. In
most NLU tasks, examples are assumed to be easily
solvable by humans. This assumption ensures the
quality of examples but lacks any control over their
difficulty. However, simply collecting examples
that are difficult for systems, as in adversarial data
collection (Kiela et al., 2021) or dataset cartogra-
phy (Liu et al., 2022), may be misleading because
we need to control how the difficulty contributes to
the target abilities in the test (Bowman and Dahl,
2021).

5. Extrapolation This inference checks if the
system performance on the test successfully corre-
lates with other criteria in related tasks and datasets.
For example, when we have a successful system
in SQuAD, the system should ideally be able to
perform well in a similar dataset such as Natu-
ral Questions (Kwiatkowski et al., 2019). Talmor
and Berant (2019) and Khashabi et al. (2020) ana-

lyze the generalization and transfer of performance
across multiple QA datasets. A compilation of
tasks provided in the same format or platform is
also helpful for users to compare the performance
of systems on different tasks (Wang et al., 2019;
Srivastava et al., 2022; Liang et al., 2022). A suc-
cessful system in machine reading comprehension
is also expected to pass relevant basic tasks such
as semantic role labeling and named entity recog-
nition. Moreover, testing the system on such auxil-
iary tasks contributes to its sanity checks (Ribeiro
et al., 2020). These auxiliary-task practices are
optional compared to other inferences because a
single test set cannot realistically provide a set of
different tasks as well. Nevertheless, referring to
existing datasets and aligning the task format with
that of those datasets is beneficial.

6. Utilization This inference focuses on the util-
ity of the test results and potential social influence
of the test. The current convention in machine
learning is to train and test models on static datasets.
However, this approach does not ensure that the
models are properly and fairly deployable in differ-
ent configurations or real-world applications. For
example, Ethayarajh and Jurafsky (2020) and Ma
et al. (2021) advocate the reporting of model statis-
tics, such as the size, energy efficiency, and in-
ference latency, on leaderboards to enable more
informative comparison of models in terms of util-
ity. Regarding social influence, the test should
not motivate the development of systems that have
harmful social biases, such as stereotypes (Blodgett
et al., 2021) and gender biases (Sun et al., 2019). In
addition, depending on the potential applications,
we have to monitor the vulnerability of systems
towards adversarial attacks (Wallace et al., 2019b).
Several methods have been proposed to improve
the robustness of systems against adversarial inputs,
such as training with diverse data (Tu et al., 2020)
and self-debiasing framework (Utama et al., 2020).
Although SQuAD does not address these problems,
subsequent studies have addressed social biases in
QA (Parrish et al., 2022) and the applicability of
adversarial examples (Wallace et al., 2019a).

To summarize, our checklist questions help users
find useful practices to collect evidence that vali-
dates the test interpretations. Although ensuring
that a single test set conforms to all criteria may
be impractical (e.g., there may be trade-offs be-
tween the coverage and diversity of test examples
with their reliability and discriminability), knowing
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what evidence is missing is helpful to assess the
validity of the intended interpretations and develop
necessary practices.

6 Related Work

The definition of language understanding has been
discussed in various NLP tasks, including symbol
grounding (Merrill et al., 2021) and reading com-
prehension (Dunietz et al., 2020). Our work is
similar to Bommasani et al. (2021) in that we do
not provide concrete definitions and highlight an
epistemological perspective.

Messick (1995) introduce six aspects to improve
the validity of interpreting results in psychological
measurements. Although Sugawara et al. (2021)
associate these aspects with the requirements of
designing NLU datasets, actionable practices are
not proposed for these aspects. Similarly, Raji et al.
(2021) discuss the construct validity in benchmark-
ing AI but do not aim to improve evaluation meth-
ods. Our validity argument provides a step-by-step
guideline for test developers to follow.

The concept of researcher degrees of freedom is
originally introduced in psychology as a pertinent
factor in severe issues such as HARKing (hypothe-
sizing after the results are known) and publication
bias (Munafò et al., 2017). In terms of resolving
this problem in NLP, preregistration is a potentially
promising direction for research (van Miltenburg
et al., 2021). However, it is not suited to all areas
of NLU research because certain explanatory and
analytic studies do not begin with a clear hypoth-
esis. Nonetheless, clearly stating a research goal,
problem definition, data collection method, system
statistics, intended use, and potential risks could
be the first step towards making credible claims on
the capabilities of NLU systems.

7 Conclusions

The prevalence of exaggerated claims about the
achievements of foundation models motivates us to
reconsider how we define and evaluate NLU. Our
formulation of NLU using the response-dependent
interpretation mitigates the issues of the Turing and
Octopus tests; it stipulates that observers and target
conditions, including tasks and abilities, must be
specified. However, current practices for creating
NLU datasets are yet to be aligned, which provides
researchers with the freedom to choose convenient
strategies. To organize essential practices using
a standard guideline, we introduce the validity ar-

gument, which guides stakeholders to collect and
interpret evidence for validating that the test sub-
ject executes its intended behavior. Our proposed
checklist helps researchers find relevant practices
for benchmarking NLU, but we continually revise
it by investigating potential refutation to promote
more credible NLU studies.

Limitations

Although our discussion should be applicable to
all NLP tasks, it is mainly pertinent to intellectual
linguistic tasks (e.g., natural language inference,
reading comprehension, and commonsense reason-
ing) that may involve language understanding in
some sense. The main reason for this limited ap-
plicability is that such intellectual tasks are rela-
tively more response-dependent than basic tasks
(e.g., syntactic parsing and semantic role labeling)
and necessitate well-designed datasets and better
evaluation methods.

Our formulation of testing language understand-
ing in Section 4 may be theoretically incomplete
and require further discussion with reference to all
related fields, including philosophy, psychology,
cognitive science, and artificial intelligence. In
particular, our formulation only provides an epis-
temological viewpoint and thus does not provide a
concrete definition of language understanding for
avoiding confusion, which the community needs to
discuss further.

In Section 5, we introduce a framework that
deals with current and future practices for better
NLU studies. However, the proposed static check-
list should be continually revised and improved by
incorporating future findings that reveal potential
flaws in our methodology to construct an effective
set of checklist questions. Furthermore, although
our ultimate aim is to create a language-agnostic
formulation and checklist that do not depend on
specific languages, we have mainly focused on stud-
ies that deal with English texts.

Our checklist is designed for NLU and not for
other NLP tasks, but it can be modified and ex-
tended to other tasks such as machine transla-
tion, language grounding, and natural language
generation while referring to comprehensive meta-
analysis and survey studies (e.g., Marie et al., 2021;
Chandu et al., 2021; Clark et al., 2021).
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A Brief Note on Symbol Grounding

According to the observations in Section 3.2, the
Octopus test argument cannot support the claim
that a system that learns the form alone cannot un-
derstand language (i.e., it cannot pass the Octopus
test). However, the test remains pertinent because
it continues to stimulate the intuition that language
models are not symbol-grounded and are therefore
unlikely to understand language.

The crucial question is whether this intuition
is true; we have two reasons to doubt it. First, we
may argue that the corpora used for training current
NLU systems do not comprise mere forms. A cor-
pus comprises linguistic expressions that are pro-
duced by social interactions among humans who
understand the language. Thus, the linguistic ex-
pressions in a corpus cannot be regarded as mere
physical objects that lack meaning because they
have already been assigned meaning. Second, the
meaning defined by Bender and Koller (2020) may
not agree with our understanding of the language.
For example, a layperson has only vague ideas
about the satisfaction conditions of words such as
“bacteria” or “nicotine” (cf. Evans, 1973). This is
the case for many other general terms. Neverthe-
less, people manage to use these words in their
lives, and it is narrow-minded to conclude that they
do not actually understand the meanings of these
words.

B Design and Terminology of Validity
Argument

Regarding the definition of inferences, Kane (2006,
2013) originally define four inferences (scoring,
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generalization, extrapolation, and implication).
However, we adopt the extended definition of
Chapelle et al. (2008) with six inferences to iden-
tify clear and detailed evidence that we consider
adequate for testing NLU. We refer readers to Cook
et al. (2015) for a concise practical introduction of
the validity argument and to Chapelle et al. (2008)
for an application example of human language test-
ing.

We briefly mention the terminology. As the va-
lidity argument is initially proposed for psycholog-
ical and educational measurements, several terms
have different meanings from those in NLP and
machine learning. For example, inference is per-
formed by stakeholders (e.g., researchers, model
developers, test creators, and users) involved in the
test, whereas it is usually performed by a model
to make a prediction in NLP. Domain in the valid-
ity argument includes any condition that specifies
target behavior and experimental settings. In con-
trast, it only indicates data sources or text genres
in NLP. Generalization in the validity argument is
concerned with how the experimental results are
generalized to other experimental settings, similar
to the reproducibility of findings. Conversely, it
mainly refers to the property of machine learning
models in NLP, which is related to the explanation
inference in the validity argument (i.e., can one
explain whether a model shows capabilities that are
sufficiently generalizable to the target construct?).

C Checklist and Relevant Practices for
Validity Argument

Table 1 summarizes the checklist for collecting
evidence in the validity argument and recent rele-
vant practices that have been proposed in the NLU
study. We elaborate on the checklist questions and
practices as follows:

C.1 Domain Definition

Does the test set clearly describe the target tasks
and domains in detail? This question requires
the test description for specifying what task a test
aims to evaluate in what domain, rather than aim-
ing for general language understanding (Raji et al.,
2021). The test description includes a general goal
of the test, test format, intended task, data source,
and potential application. To describe target knowl-
edge and skills, test developers can develop their
own taxonomy or use existing taxonomies such as
for linguistic phenomena (Warstadt et al., 2020),

commonsense types (LoBue and Yates, 2011; Sap
et al., 2019), science questions (Boratko et al.,
2018), reading comprehension (Sugawara et al.,
2017; Dunietz et al., 2020), and QA in general
(Rogers et al., 2023).

Are the test items annotated using requisite
knowledge and skills? The detailed annotation
of required knowledge and skills with test items
helps stakeholders interpret the strengths and weak-
nesses of the models tested and to associate them
with relevant tasks (Doshi-Velez and Kim, 2017;
Schlangen, 2021). Annotation can be performed
in two main ways: create diagnostic examples
with constraints such as keywords and templates
(Rogers et al., 2020; Warstadt et al., 2020) or anno-
tate labels after collecting examples with no con-
straints (Schlegel et al., 2020, inter alia). Nonethe-
less, the appropriate granularity of the annotation
has to be decided depending on how much detail
the stakeholders require to analyze the model be-
havior. This consideration is essential because an-
notating detailed knowledge and skills unambigu-
ously is difficult, even for experts.

Are the test items reviewed by domain experts?
Ideally, the appropriateness of test items, given
the target task, should be reviewed by experts who
are familiar with the task. Parrish et al. (2021)
show that involving experts during data collection
improves the quality of crowdsourced data by iden-
tifying artifacts. This expert-in-the-loop design for
collecting examples may be a promising direction
to target intended linguistic phenomena. Neverthe-
less, we must ensure that the distribution of data is
not unintentionally biased towards a limited variety
of linguistic phenomena (Bowman and Dahl, 2021).
Gardner et al. (2020) asked experts who created
the source dataset of a target task to modify task
examples to ensure that the difference between the
original and contrastive examples produced differ-
ent gold labels. Although hiring experts to craft
test examples from scratch is expensive, at least
reviewing (and annotating) some of the collected
examples by the test developers (as experts) con-
tributes to sourcing test examples that require their
target task correctly.

C.2 Evaluation
Does the test set have structured metrics for its
subtasks? Because of the possibility of shortcut
solutions (Geirhos et al., 2020) that circumvent in-
tended solutions, merely observing the final output
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Inference Checklist Relevant Practices

Domain
Definition

□ Does the test set describe the tar-
get tasks and domains in detail?

Taxonomy of knowledge and skills (LoBue
and Yates, 2011; Rogers et al., 2023)

□ Are the test items annotated with
requisite knowledge and skills?

Diagnostic dataset (Warstadt et al., 2020),
qualitative annotation (Schlegel et al., 2020)

□ Are the test items reviewed by
domain experts?

Data collection with experts (Parrish et al.,
2021), contrast sets (Gardner et al., 2020)

Evaluation □ Does the test set have structured
metrics for its subtasks?

Sub-questions as semi-structured explanation
(Wolfson et al., 2020; Geva et al., 2021)

□ Are the test items difficult and
sufficiently discriminative to com-
pare systems?

Item response theory (Rodriguez et al., 2021;
Vania et al., 2021), dataset cartography
(Swayamdipta et al., 2020), crowdsourcing
protocol design (Nangia et al., 2021)

Generalization □ Does the test set describe the data
collection process and baseline sys-
tems for reproducibility?

Templates of dataset specification (Bender and
Friedman, 2018; Gebru et al., 2021), repro-
ducibility checklist (Pineau et al., 2021)

□ Do the test items address annota-
tion disagreement?

Taxonomy of disagreement (Jiang and Marn-
effe, 2022), modeling annotation distribution
(Chen et al., 2020; Nie et al., 2020b)

□ Does the test set produce a statis-
tically significant result?

Statistical test (Dror et al., 2018; Sadeqi Azer
et al., 2020), statistical power (Card et al.,
2020), instability analysis (Zhou et al., 2020)

Explanation □ Is the test set designed to mitigate
shortcut solutions?

Input ablation (Gururangan et al., 2018), com-
petency problems (Gardner et al., 2021), ad-
versarial filtering (Zellers et al., 2019)

□ If the training set is provided,
does the test set contain out-of-
distribution examples?

Diagnosis of heuristics (McCoy et al., 2019),
stress tests (Naik et al., 2018; Saha et al.,
2020), contrast sets (Gardner et al., 2020)

□ Is there any control over the diffi-
culty of examples?

Simplified auxiliary questions (Sutcliffe et al.,
2013), human–machine collaboration (Bar-
tolo et al., 2022; Liu et al., 2022)

Extrapolation □ Does the test set encourage per-
formance comparison using related
tasks and datasets?

Cross-dataset generalization analysis (Tal-
mor and Berant, 2019), compilation of tasks
(Wang et al., 2019; Srivastava et al., 2022)

□ Does the test include basic tasks
for sanity check?

Checklist of basic tests for task-relevant lin-
guistic capabilities (Ribeiro et al., 2020)

Utilization □ Does the test set support the util-
ity enhancement of systems?

Reporting practical statistics (Ethayarajh and
Jurafsky, 2020; Ma et al., 2021)

□ Does the test set include disincen-
tive for embedding harmful social
biases?

Underspecified questions (Li et al., 2020),
quantifying representational harms (Mehrabi
et al., 2021), bias types (Blodgett et al., 2020)

□ Does the test set promote the mit-
igation of the system vulnerability
against adversarial attacks?

Universal adversarial triggers (Wallace et al.,
2019a), data augmentation (Min et al., 2020),
self-debiasing framework (Utama et al., 2020)

Table 1: Overview of validity inferences, checklist questions, and relevant practices for NLU.
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does not necessarily guarantee that the test subject
performs the task precisely. Given that a generated
explanation about the answering process cannot
be evaluated straightforwardly (Clark et al., 2021),
asking about a (semi-)structured reasoning path
may be a useful approach. For example, several
benchmarks require the completion of reasoning
process in addition to the main QA task (Bhagavat-
ula et al., 2020; Inoue et al., 2020; Wolfson et al.,
2020; Geva et al., 2021; Saha et al., 2021).

Are the test items sufficiently difficult and dis-
criminative to compare systems? Item response
theory is a standard way to characterize the diffi-
culty and discriminability of test examples while
modeling the ability of test subjects (Lalor et al.,
2016; Rodriguez et al., 2021; Vania et al., 2021;
Byrd and Srivastava, 2022). In the benchmarking
of NLU models, a test needs to enable meaningful
comparisons between models including the base-
line. If all test examples are exceedingly easy or
difficult, or if there are many ambiguous examples,
no significant difference in evaluation measures
can be observed. Item response theory helps test
developers analyze test examples and control the
distribution of difficulty and discriminability.

C.3 Generalization

Does the test set describe the data collection
process and baseline systems for reproducibil-
ity? This requirement includes critical aspects
to ensure the reproducibility of the study, such as
data sources, how the annotators are employed,
annotation procedure, annotation instructions, plat-
form or software used for collection, quality con-
trol, experimental design, and baseline systems. It
is also beneficial to identify potential biases unin-
tentionally embedded by annotators (Geva et al.,
2019), although the annotation instructions and ex-
amples need to be carefully presented to mitigate
such biases (Parmar et al., 2023). To describe the
data collection process, using templates of dataset
specifications, such as data statements (Bender and
Friedman, 2018) and datasheet (Gebru et al., 2021)
(especially their data collection part), is helpful. If
crowdsourcing is used in the data collection, report-
ing payment methods is also encouraged to guaran-
tee ethical fairness (Kummerfeld, 2021; Shmueli
et al., 2021). If a paper proposing a new dataset
includes baseline machine learning systems, ensur-
ing the reproducibility of baseline systems is also
important (Pineau et al., 2021).

Do the test items address annotation disagree-
ment? The dataset needs to address ambiguous
test items to produce reliable results. However,
ambiguity may not be noise in annotation but an
inherent property of examples (Zhang et al., 2017;
Pavlick and Kwiatkowski, 2019). Therefore, in ad-
dition to designing a careful procedure to take care
of ambiguous and under-specified examples (e.g.,
Boyd-Graber and Börschinger, 2020), modeling
the ambiguity itself can also be a meaningful task
in NLU. For example, several studies tackle the
task of modeling the distribution of human votes
for the labels in the natural language inference task
(Chen et al., 2020; Nie et al., 2020b; Meissner et al.,
2021; Zhang and de Marneffe, 2021; Zhou et al.,
2022). A taxonomy of disagreement (Jiang and
Marneffe, 2022) is also a useful reference in the
qualitative analysis of ambiguous cases.

Does the test set produce a statistically signifi-
cant result? When comparing the performance
between systems, choosing an appropriate statisti-
cal test is critical to prove that the observed perfor-
mance difference is statistically significant (Dror
et al., 2018; Sadeqi Azer et al., 2020). In testing, a
sufficient number of examples is necessary to de-
tect a true effect of the performance improvement.
Card et al. (2020) suggest that statistical power
should be analyzed before performing evaluation.
Similarly, Zhou et al. (2020) analyze the perfor-
mance instability in popular benchmarks, suggest-
ing the reporting of decomposed variance measures
and use of diverse analysis datasets.

C.4 Explanation

Is the test set designed to mitigate shortcut solu-
tions? In the current standard of machine learn-
ing, most NLU datasets are based on the training,
validation, and test split. Although this study fo-
cuses on contributing to the methodological im-
provement of the test phase, the distribution be-
tween training and test split may affect the test re-
sults; machine learning models are generally good
at exploiting superficial patterns from training ex-
amples. Identifying these patterns helps the mod-
els make accurate predictions for test examples;
however, this approach does not work well for out-
of-distribution (OOD) examples (D’Amour et al.,
2020; Geirhos et al., 2020). For example, analysis
of spurious correlations between gold labels and
tokens reveals potential shortcut solutions (Guru-
rangan et al., 2018; Gardner et al., 2021). However,
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Schwartz and Stanovsky (2022) note that control-
ling balancing methods is difficult for spurious cor-
relations, such as data augmentation (Sharma et al.,
2018) and adversarial filtering (Zellers et al., 2019;
Bras et al., 2020), because these methods may di-
minish meaningful signals. Therefore, they suggest
alternative methods such as adding rich contexts
and stopping large-scale fine-tuning. Analysis of
input ablation may also be a useful practice to filter
out easy examples, such as by hiding the premise
in natural language inference (Gururangan et al.,
2018) and removing question tokens in machine
reading comprehension (Feng et al., 2018; Kaushik
and Lipton, 2018; Yu et al., 2020). Malaviya et al.
(2022) find that monitoring heuristic annotation
strategies among crowdworkers may improve the
quality of collected QA examples.

If the training set is provided, does the test set
contain OOD examples? Similar to the previous
question, to properly associate the target behav-
ior with the intended skill, we have to ensure the
generalizability and robustness of the models to-
wards diverse examples in the target task. Given
the possibility of shortcut solutions, the test set has
to contain OOD examples, that is, ones collected in
a different manner to those used for the training ex-
amples (Ettinger et al., 2017; Linzen, 2020). This
line of research includes adversarial examples (Jia
and Liang, 2017; Glockner et al., 2018), diagnosis
sets for syntactic heuristics (McCoy et al., 2019),
stress test evaluation (Naik et al., 2018; Saha et al.,
2020), and contrast sets for probing decision bound-
aries of the models (Gardner et al., 2020), among
others. Adversarial data collection (Bartolo et al.,
2020; Nie et al., 2020a; Kiela et al., 2021) can be
an effective method of perturbing and expanding
the distribution of collected items, but users should
take extra care in collected items such that they are
properly aligned to the target skills (Bowman and
Dahl, 2021; Kaushik et al., 2021). Wallace et al.
(2022) find that iterating rounds of adversarial data
collection improves the quality of collected data.

Is there any control over the difficulty of items?
Taking control over the item difficulty is vital to
evaluating the proficiency of target skills. How-
ever, it appears to be overlooked to capture the
degree of skill proficiency in current NLU research.
This gap in evaluation can be attributed to the diffi-
culty of instantiating the degree of proficiency of
a target skill as examples with different difficul-

ties. In existing datasets, the number of reasoning
steps in multi-hop QA may play this role (Yang
et al., 2018; Wolfson et al., 2020). Sutcliffe et al.
(2013) provide auxiliary questions that are sim-
plified variants of the main questions and require
fewer reasoning steps than the main questions. Bar-
tolo et al. (2022) and Liu et al. (2022) have pro-
posed a human–machine collaboration approach,
that is, using a generator-in-the-loop data collec-
tion method for effectively helping annotators to
enhance their creativity. Although it is exceedingly
coarse for skill-wise analysis, several datasets pro-
vide subsets of the test set with different difficulties
(Clark et al., 2018; Lai et al., 2017; Yu et al., 2020;
Berzak et al., 2020). Item response theory also
contributes to characterizing the item difficulty (re-
fer to the second question in Appendix C.2), but
the test creators have to use human responses for
attributing the test scores to the target construct.

C.5 Extrapolation

Does the test set encourage performance com-
parison using related tasks and datasets? The
study of model development in NLU usually uses
multiple datasets to report the performance of pro-
posed models. However, stakeholders can choose
datasets on which the proposed models perform
well and refrain from reporting relatively lower
scores on other datasets. To prevent this unfair prac-
tice, the test set needs to indicate similar datasets
for reference and suggest that the test users evalu-
ate their models on those datasets. Beyond a single
task, using a collection of tasks in a single plat-
form to facilitate the comparison of system perfor-
mance across different tasks is informative (Wang
et al., 2019; Hendrycks et al., 2021; Srivastava et al.,
2022; Liang et al., 2022). Given that the language
understanding capabilities may not depend on what
language humans speak, cross-lingual applications
are worth pursuing (Conneau et al., 2018; Artetxe
et al., 2020).

Does the test set include relevant basic tasks
for sanity check? The previous requirement is
also applicable to basic tasks that are expected to
be involved in the target NLU task. Ribeiro et al.
(2020) have proposed a checklist approach that uses
three types of auxiliary tasks: minimal functional
test, invariance test, and directional expectation test.
Depending on the primary target task, composing
subtasks into a checklist enables the system de-
velopers to probe their system in detail and detect
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unintended errors. This approach is helpful if we
can create test cases for requisite knowledge and
skills that are presumed in the domain definition.

C.6 Utilization
Does the test encourage the reporting of sys-
tem statistics for utility? Static leaderboards of
benchmark datasets usually tell us which system
is better than others in terms of simple evaluation
metrics such as accuracy. However, they do not
tell us about which system is most useful under
conditions such as computational budget and in-
ference time. Therefore, Ethayarajh and Jurafsky
(2020) and Ma et al. (2021) advocate the report-
ing of model statistics, such as the size, energy
efficiency, and inference latency. In a similar at-
tempt, Min et al. (2021) propose a shared task for
efficient open-domain QA models, comparing the
QA performance under limited memory budgets.
Bender et al. (2021) discuss the financial and en-
vironmental risks of using large-scale pretrained
language models. De Vries et al. (2020) review the
ecological validity of language user interfaces.

Does the test set include disincentive for embed-
ding harmful social biases? Language models
and word embeddings are often found to contain
harmful social biases, such as stereotypes (Sun
et al., 2019; Blodgett et al., 2020, 2021). To date,
studies on social biases in NLU datasets have been
limited (e.g., Rudinger et al., 2017). However, Li
et al. (2020) find that underspecified questions with
ambiguity in their answer candidates reveal various
stereotypes. Mehrabi et al. (2021) propose quan-
tifying representational harms in commonsense
knowledge bases. Although it might not be harm-
ful, falsehood should also be mitigated in founda-
tion models (Lin et al., 2022).

Does the test set encourage the mitigation of
the system vulnerability against adversarial
attacks? Improving the robustness of systems
against OOD input is one of the main concerns
in the current NLP community. As Wallace et al.
(2019a) demonstrate, NLU system predictions are
easily changed by adversarial inputs, calling for
improvements in the robustness against OOD data
including malicious attacks. For this purpose, vari-
ous methods applicable to NLU systems have been
proposed, such as training with diverse data (Tu
et al., 2020), systematic data augmentation (Min
et al., 2020; Wu et al., 2021), and self-debiasing
framework (Utama et al., 2020). Wang et al. (2022)

provide a broad survey of datasets and methods for
measuring and improving the robustness of NLP
models.

D Potential Arguments and Discussions

In this section, we discuss potential arguments on
how we need to deal with our proposed framework.

“Who should use the proposed framework and
for what purpose?” The framework is related to
the entire experimental design including the con-
struction of a dataset and its use for evaluating sys-
tems. Thus it should be mainly used by researchers
who release datasets and propose their evaluation
procedure, but dataset users (i.e., system developers
in most cases) can also use this framework to see
if the proposed procedure is well-designed, revise
it if necessary, and validate their interpretations of
system behavior.

“Should we address all checklist questions to
construct the validity argument? It may not
be always possible to create such an argument
owing to several constraints such as cost and
data.” Addressing all questions in the checklist
may not be practical. Despite the difficulty in creat-
ing thorough frameworks, the checklist contributes
to clarifying the potential limitations of a study. Re-
searchers and developers are encouraged to make
justified accurate claims about their achievements.
In addition, as the community grows and new prac-
tices are introduced, including all necessary prac-
tices in a single study is expected to become in-
feasible. Nonetheless, our framework provides a
comprehensive reference to collect the necessary
evidence for validating NLU evaluation.

“Why is the discussion of the Octopus test, as
well as the response-dependent formulation of
language understanding, prerequisite for cre-
ating the validity argument?” Our response-
dependent formulation highlights the difficulty of
developing a concise definition for NLU. The defi-
nition of NLU depends on the goal of stakeholders
who use the test results as evidence. We suspect
that exaggeration and underestimation in NLP can
be attributed to the confusion about this response-
dependent property of NLU; therefore, we discuss
the problems of the Octopus test while referring to
those of the original Turing test. Our focus is lan-
guage understanding; hence, discussing the Turing
test alone is not sufficient.
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