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Abstract

Researchers are witnessing knowledge-inspired
natural language processing shifts the focus
from entity-level to event-level, whereas event
coreference resolution is one of the core chal-
lenges. This paper proposes a novel model for
within-document event coreference resolution.
On the basis of event but not entity as before,
our model learns and integrates multiple rep-
resentations from both event alone and event
pair. For the former, we introduce multiple
linguistics-motivated event alone features for
more discriminative event representations. For
the latter, we consider multiple similarity mea-
sures to capture the distinctions of event pairs.
Our proposed model achieves new state-of-the-
art on the ACE 2005 benchmark, demonstrating
the effectiveness of our proposed framework.

1 Introduction

Knowledge-inspired natural language processing
(NLP) may be generally conducted on the basis of
entities. However, researchers are realizing that it
is the form of "event" that can more comprehen-
sively depict the knowledge clues in NLP tasks
(Lee et al., 2012), among which coreference res-
olution is a fundamental task for either entity or
event. Within-document event coreference resolu-
tion aims at finding all event mentions that refer to
the same real-world event in a document (Lu and
Ng, 2018).

Figure 1 shows an example of event coreference
resolution from ACE 2005 (Walker et al., 2006)
dataset. In the event coreference resolution, the
trigger of an event mention usually refers to the
word or phrase that describes the event with the
most clarity and the event mention is typically the
sentence containing the given trigger. As shown
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… attend his daughter ‘ s wedding{event1} ceremony …
… to be taken{event2} home later in the afternoon 
to marry{event1} his eldest daughter …
Event Type Polarity Modality Genericity Tense
event1 Life:Marry Positive Asserted Specific Future
event2 Movement:

Transport
Positive Other Specific Future

Figure 1: An event coreference resolution example from
ACE 2005 dataset.

in the given example of Figure 1, the word taken
triggers the Transport event. The words wedding
and marry trigger the Marry event and these event
mentions are coreferent because they both refer to
the same real-world Marry event.

Compared with entity-level coreference resolu-
tion, event coreference resolution is more challeng-
ing despite their similarity (Lu and Ng, 2018). The
main reasons are: (1) an event contains more com-
plex syntactic information than an entity; (2) event
coreference resolution suffers from error propaga-
tion since it has more upstream tasks; (3) there are
far less triggers than entities in a document. There-
fore, simply applying entity coreference resolution
to event coreference resolution is unsatisfactory.

Many works utilize event linguistic features to
address above challenges. In most cases, as shown
in the above example, events that are coreferent
have the same event features, such as type, polar-
ity, and modality. Therefore, many studies (Lu
and Ng, 2017b; Yu et al., 2020a; Lai et al., 2021;
Lu et al., 2022) have suggested that incorporating
event features into event coreference resolution is
effective.

Despite of the developing trend of utilizing event
features, the semantic similarity measures for event
coreference resolution are less studied. Most of
the works simply used element-wise multiplication
to measure the similarity between two spans (Lee
et al., 2017; Li et al., 2018, 2021) for entity-level
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NLP tasks. However, incorporating multiple simi-
larity measures interestingly shows helpful in many
NLP tasks other than our concerned coreference
resolution. For instance, He and Lin (2016) pro-
posed a deep pairwise word interaction model to
measure semantic textual similarity between two
text pieces, which directly utilized multiple simi-
larity measures for answer selection task and se-
mantic textual similarity measuring task. Liu et al.
(2020) designed a U-shaped rewritten network to
incorporate multiple similarity measures for con-
text rewriting task.

Compared to entity-level coreference resolution,
event-level coreference resolution focuses more on
the cross-sentence semantic relationships, which
are more complex and flexible. Therefore, to bet-
ter address the event coreference resolution prob-
lem, we need to measure the relationships between
events in more diverse and comprehensive ways.
Inspired by this, in this paper, we propose a novel
model for within-document event coreference res-
olution which integrates multiple measures from
both event alone and event pair representations.

As far as we know, we are the first to introduce
more comprehensive and distinguishing measures
for event-level coreference resolution. Concretely,
we introduce multiple linguistics-motivated event
alone features for event alone representation and
multiple similarity measures to capture the distinc-
tion of event pair. By conducting experiments on
ACE-2005 benchmark, our proposed model shows
a significant improvement and achieves a new state-
of-the-art F1 score of 61.71% in end-to-end settings
and 92.32% in all gold settings. Results demon-
strate that our model can effectively models the
event along features and event pair features, thus
surpassing our baseline model and previous state-
of-the-art models by large margins.

2 Related Work

Entities serve as the fundamental basis for conduct-
ing various knowledge-inspired natural language
processing (NLP) tasks (Li et al., 2019, 2022; Yang
et al., 2022; Stylianou and Vlahavas, 2021). Event
coreference resolution, as an integral sub-task of
natural language understanding, has gained increas-
ing attention and finds applications in various do-
mains. Most recent works of event coreference
resolution can be categorized into two types: (1)
joint models; (2) pipeline models.

In 2012, Lee et al. (2012) presented a joint model

for cross-document coreference resolution. The
model employed linear regression to build entity
and event clusters and jointly solved events and en-
tities references by handling both nominal and ver-
bal mentions. Araki and Mitamura (2015) jointly
formulated the event trigger extraction and event
coreference as a problem of structured prediction to
solve the error propagation problem. The authors
utilized segment-based decoding with the multiple-
beam search for event trigger identification and
combined it with the best-first clustering for within-
document event coreference resolution. Lu and Ng
(2017a) proposed a joint model of trigger detection,
event coreference resolution, and event anaphoric-
ity determination. The model employed a struc-
tured conditional random field with two types of
factors: (1) unary factors; (2) binary and ternary
factors. Yu et al. (2020a) presented a Pairwise Rep-
resentation Learning scheme for cross-document
and within-document event coreference problems.
The scheme jointly encoded text snippets pair by
forwarding concatenated sentences into a trans-
former encoder and employed structured argument
features to argument the pairwise representation.

Different from these works, in this paper, we
adopt a more straightforward pipeline model con-
forming to the general idea of the task. Pipeline
models mainly have two stages: event detection
and event coreference resolution. Traditionally,
pipeline models first detect event triggers, argu-
ments, and event features and then apply corefer-
ence resolution to the predicted event mentions.
Liu et al. (2016) first used bidirectional GRU to de-
tect events and a logistic regression model to clas-
sify event features (i.e., realis). The model then em-
ployed the latent antecedent tree method to conduct
coreference resolution. Choubey and Huang (2017)
proposed a novel iterative approach for within-
document and cross-document event coreference
resolution. The method constructs event clusters
gradually by exploiting inter-dependencies among
event mentions in two stages. (Lai et al., 2021)
employed OneIE (Lin et al., 2020) to extract event
triggers and types. For other event features, the
authors trained a simple classification model based
on SpanBERT (Joshi et al., 2020). The model then
used a context-dependent gated module (CDGM)
to incorporate event features for event coreference
resolution and a noisy training method to tackle
the error propagation problem. Our work is closely
related to (Lai et al., 2021). However, the method-
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ologies are different. In our model, we found that
a simple FFNN achieves a better result than the
gating mechanism which questions the necessity
for the CDGM gating method in event coreference
resolution. We also innovatively introduce multiple
similarity measures for event pair representation.
With different ablation experiments and training
settings, we verified that our proposed multiple
measures learning model is effective and we hope
our results can offer a new insight into not only
event coreference resolution but also other funda-
mental tasks in NLP.

3 Method

3.1 Formalization

Our model focuses on within-document event coref-
erence resolution. The input of our model is a
document D containing n tokens. We then use a
pre-tained language model to obtain the contextual
embeddings of all the tokens in document D. Let
X = (x1, ..., xn) denote the token embeddings.
For every word Hi, we use Si

token and Ei
token to

denote its subword tokens’ start and end indices.
Similarly, for the event ei, Si

trigger and Ei
trigger

denote its event trigger’s start and end indices.

3.2 Model Overview

Based on our formalization, we present a model
flow for event coreference resolution. Our model
first uses OneIE (Lin et al., 2020) to detect event
triggers following the practice of previous work
in a given document and classify its event type.
Then a novel prompt-based event features predic-
tion model generates every event alone features.

After obtaining the predicted event triggers and
event alone features, we use a multiple measures
learning model for event coreference resolution.
The model overview is shown in Figure 2. Our
model consists of two parts: single mention encod-
ing and multiple measures pair encoding. Firstly,
the single mention encoding is employed to con-
struct event-level representation for the given docu-
ment D. Secondly, the multiple measures pair en-
coding aims at building event pair representations
combined with multi-similarity and event alone fea-
tures. Finally, we use a scoring layer to calculate
the antecedent scores for every event pair.

4 Trigger Detection and Event Alone
Feature Classification

Our model uses OneIE (Lin et al., 2020) to detect
event triggers and their types and designs a model
to predict other event alone features. The overview
of event alone features prediction model can be
seen in Figure 3. Specifically, we first insert spe-
cial tokens <t> and </t> around the event trigger
to highlight the target event. By doing so, we can
transfer the original event feature prediction prob-
lem into a traditional text classification problem.
To be more specific, we first use BERT-large-cased
(Devlin et al., 2019) to build contextualized repre-
sentations hr for the input sentence X , which can
be defined as:

hr = Encoder(X)

We then utilize MLP to classify each sentence. The
probability distribution of event feature labels is
calculated by:

M r = Pooler(hr))

P (y|X) = softmax(MLP(M r))

where y ∈ Y and Y denotes a set of pre-defined
event linguistic feature labels. We choose the label
with the highest probability score among all the
event feature labels.

4.1 Event-aware Representation Learning
Our model integrates multiple linguistics-
motivated and attention-based feature learning for
event alone representations and multiple similarity
measures to capture the distinction of event pair.

4.1.1 Event Alone Representation
Event alone representation includes linguistic-
aware properties integration and linguistic-agnostic
attention-based feature for an event. For linguistic-
aware properties in our consideration for this work,
type, polarity, modality, genericity and tense, which
can be seen in Figure 1, are included. Their prop-
erties are used as linguistic-aware event alone fea-
tures in our model. For feature encoding, we em-
ployed the same embedding method used in Lai
et al. (2021). Given event ei feature k, our model
use a simple embedding layer to obtain its feature
representation F k

i .
Besides, considering data-driven feature learn-

ing, we introduce a linguistic-agnostic attention-
based feature extraction module. Inspired by Do-
brovolskii (2021), we proposed an attention based
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Figure 2: Overview of multiple measures learning model for event coreference resolution

method to encode event mentions. We calculate
event representations as weighted sum of their trig-
gers’ token embeddings, instead of simply averag-
ing them (Lai et al., 2021). To be more specific, for
a given word Hi , its word-level representation hi
is calculated as where Wj is a learnable weight:

hi =

Ei
token∑

j=Si
token

Wj · xj

We then use the same attention strategy to com-
pute event representation ei where W ′

j is a learn-
able weight :

ei =

Ei
trigger∑

j=Si
trigger

W ′
j · hj

By using this attention based encoder, our model
can generate more accurate event representations
with a better focus on important tokens.

4.1.2 Event Pair Representation
After obtaining event alone representations, we de-
sign a novel multiple similarity measures for mea-
suring the coreference relationship. Given event
representation ei and ej , we use the following sim-
ilarity measures to calculate their event pair fea-
tures:

Linear Similarity The linear similarity between ei
and ej is defined as:

Sim
(ij)
lin = W T

lin[ei; ej ] + b

where Wlin is a vector of trainable weights, b is
a bias parameter, and [;] is vector concatenation
operation.
Cosine Similarity The cosine similarity between
ei and ej is calculated by:

Sim(ij)
cos =

ei · ej
‖ei‖2 · ‖ej‖2

where ‖·‖2 denotes L2 norm.
Element-wise Similarity The element-wise simi-
larity between ei and ej is calculated by:

Sim
(ij)
ele = ei � ej

where � denotes element-wise multiplication.
Then, we concatenate all three measures men-

tioned with event representation to build event pair
representation eij which is calculated by:

eij = [ei; ej ;Sim
(ij)
lin ;Sim(ij)

cos ;Sim
(ij)
ele ]

Similarity Fusion Layer After obtaining the pair
representation, our model then employed a simi-
larity fusion layer to construct the multi-similarity
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Figure 3: Overview of event alone features prediction
model

based event pair representation sij , which is de-
fined as:

sij = FFNNe(eij)

where FFNNe is a feed forward neural network
mapping from R3×d1+2 → Rl. By fusing event
mentions and similarity measures all together, we
are able to generate the event representation which
is cleaner and contains richer information.
Feature Filtering Layer Similar to event pair en-
coding, for each event linguistic feature k, we too
construct multi-similarity based feature pair repre-
sentation f̂k

ij by:

F k
ij = [F k

i ;F
k
j ;Sim

(ij)
lin ;Sim(ij)

cos ;Sim
(ij)
ele ]

f̂k
ij = FFNNf (F

k
ij)

where FFNNf is a feed forward neural network
mapping from R3×d2+2 → Rl

Whereas predicted features can be noisy and
hence cause the error propagation problem. To
address this problem, we propose a feature filtering
layer to clean the noisy features and focus on more
important event alone features. For each feature

k, we employed a feed forward neural network to
filter the features.

fk
ij = FFNNk

c (f̂
k
ij)

By doing this, we are able to obtain clean event
pair feature representations.

4.1.3 Coreference Scoring Layer
We then concatenate feature pair representations
and event pair representation to get the multi-
similarity based event-feature pair representation
Sij .

Sij = [sij ; f
1
ij ; f

2
ij ; ...; f

m
ij ]

Next, we employ a coreference scoring layer to
obtain antecedent scores between event i and event
j where FFNNs maps from R(m+1)×l → R

A = FFNNs(Sij)

5 Experiments

5.1 Dataset

Train Dev Test
#Docs 529 30 40
#Sent 19204 901 676
#Event 3342 327 293

Table 1: ACE 2005 dataset statistics (# denotes num-
bers)

We evaluate our model on ACE 2005 English
dataset (Walker et al., 2006). ACE 2005 dataset
adopts a strict notion of event coreference (Song
et al., 2015). Specifically, two event mentions are
coreferential if and only if “they had the same
agent(s), patient(s), time, and location. We adopt
the same split as Chen et al. (2015) and the detailed
dataset statistics are shown in Table 1.

5.2 Model Setup
In order to have a fair comparison with Lai et al.
(2021), we too use SpanBERT-base-cased (Joshi

Parameters Value
Epochs 150
Batch size 16
Task learning rate 0.0001
Transformer learning rate 5e-5
Hidden size 500

Table 2: Training parameters for ACE 2005
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Event Alone Features (k) Noisy Probability (pk)
Type 0.00
Polarity 0.00
Modality 0.15
Genericity 0.15
Tense 0.25

Table 3: noisy training probability for different features

et al., 2020) as the base Transformer encoder. We
use AVG and CoNLL as our evaluation metrics.
The AVG is the average F-score of four metrics (Lu
and Ng, 2018): MUC, B3, CEAFe and BLANC.
The CoNLL score is the average of first three met-
rics. All models are trained for 150 epochs. The
detailed training parameters can be seen in Table 2

According to Lai et al. (2021), simply training
the model using predicted event alone features may
hurt the performance since the prediction of test
set contains more errors than that of the train set.
Inspired by Lai et al. (2021), we too introduce the
noisy training method. Specifically, for every pre-
dicted event alone features k, we randomly assign
a new label with a probability of pk. According to
Lai et al. (2021), the probability pk varies inversely
with the discrepancy between the train and test ac-
curacies. Our noisy training probability for differ-
ent features can be seen in Table 3. The probability
value is positively correlated with the accuracy of
the feature prediction. The main idea behind this is
that for event feature that is more prone to predic-
tion errors, we need a higher replacement probabil-
ity to eliminate the noise propagation problem. By
using the noisy training method, our model can be
more sensitive to noisy features and hence mitigate
the error propagation problem.

5.3 Results and Discussion

To probe deeper into the effect of different stages
in our pipeline model. We employ our model in
three settings: end-to-end, gold triggers, and all
gold. In end-to-end, we use predicted triggers and
predicted features. In gold trigger setting, given
gold triggers we predict event features and then
apply event coreference. In all gold setting, we
utilize gold triggers and gold features to have a
better understanding on coreference stage.

5.3.1 Event Feature Prediction
The feature prediction model formulates the event
feature prediction problem as a traditional text clas-
sification problem by using special tokens to high-

light event triggers. The details can be seen in
the appendix. Compared with the joint classifi-
cation model proposed used by Lai et al. (2021),
our model achieves obvious improvement on most
event features. According to Lin et al. (2020), the
event detection type-F1 score of OneIE on ACE
2005 test set is 74.7. Table 4 shows the accuracy of
different event features.

From Table 4, we can see that comparing to
CDGM (Lai et al., 2021), our model has a signifi-
cant advantage on most of the features. We specu-
late that by introducing special tokens, we are able
to maintain more semantic information than simply
using the average of the trigger’s token embeddings
as the classification input.

5.3.2 End-to-end
The end-to-end event coreference result can be seen
in Table 5. We use OneIE (Lin et al., 2020) to
extract event triggers and their types. We then
formulate the event feature classification problem
as a traditional text classification problem.

From the Table 5, we can see that our model
achieves the state of the art on ACE 2005 dataset.
Although Peng et al. (2016) used cross-validation
to utilize more training data, our model still shows
a great improvement. Also, as a direct comparison,
our model outperforms the CDGM (Lai et al., 2021)
by more than 2 points on AVG, which shows the
effectiveness of our proposed pipeline model.

5.3.3 Gold Triggers and Predicted Features
In order to have a thorough comparison with the
CDGM model, we also perform our model on
ground-truth triggers and predicted event alone
features. The results are shown in Table 6. We
achieve an AVG score of 86.63 which significantly
improve the CDGM performance by more than 2.5
points. The result sufficiently proves the advantage
of our proposed event alone feature classification
and multi-similarity coreference model.

5.3.4 All Gold
To have a better focus on the event coreference
stage of our model, we conduct our experiments
on all gold setting in which we use ground-truth
triggers and ground-truth features. Table 7 shows
the overall result. In all gold setting, we use two
training strategy: noisy training and clean training.
In clean training strategy, all event features are not
randomly replaced. We can see that by using orig-
inal clean features, we improve the noisy training
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Models
Event Features

Type Polarity Modality Genericity Tense

CDGM(2021)
train 99.9 99.9 99.9 99.9 98.4
test 95.3 98.8 88.4 87.2 76.3

Ours train 99.9 99.9 99.4 99.9 99.7
test 95.3 98.6 89.2 90.3 77.6

Table 4: Results of event feature prediction on ACE-2005

Models CoNLL AVG
cross-validation

SSED(2016)
+Supervised 55.23 52.50
+MSEP 53.80 51.40

test data

CDGM(2021)
+Simple 57.55 54.79

(all features)
+CDGM 58.99 56.32
+Simple +Noise 60.43 57.85
+CDGM +Noise 62.07 59.76

Ours
+Noise 64.56 62.11

(all features)

Table 5: End-to-end results on ACE 2005

Models CoNLL AVG
PAIREDRL(2020b) 84.65 -
MSEP(2016) 80.37 82.90
CDGM(2021) +Simple 75.32 74.94
(all features) +CDGM +Noise 84.76 83.95
Ours

+Noise 86.78 86.63
(all features)

Table 6: Gold triggers results on ACE 2005

strategy by near 5.5 points. As a direct comparison,
our model outperforms the CDGM without noisy
training method and reaches the state-of-the-art of
92.32. Such significant improvements demonstrate
the effectiveness of incorporating multiple similar-
ity measures and attention based encoding.

Models CoNLL AVG
CDGM(2021) +Simple 85.75 85.40
(all features) +CDGM 87.90 88.30

+CDGM +Noise 85.40 85.38
Ours +Noise 87.10 86.83
(all features) - 91.97 92.32

Table 7: All gold results on ACE 2005

6 Further Exploration

6.1 Gated or Not?

According to Lai et al. (2021), they propose Con-
text Dependent Gated Module (CDGM) to ob-
tain the event features. CDGM selectively dis-
till input event features using a gating mecha-

nism. Therefore, to have a thorough comparison
between CDGM and our proposed feature filter-
ing layer, we introduce the CDGM method into
our model. More specifically, after calculating the
multi-similarity based feature pair representations,
we employ CDGM instead of feature filtering layer
to clean the event feature pair. We conduct experi-
ments on all three settings and Table 8 shows the
comparison result.

Settings
AVG

Δ
CDGM Ours

End-to-end 61.38 62.11 +0.73
Gold triggers 85.72 86.63 +0.91
All gold 92.05 92.32 +0.27

Table 8: Results of using gated strategy and simple
strategy with different settings on ACE 2005

From Table 8, we can see that feature filtering
layer outperforms the CDGM in all three settings.
The largest improvement is made in gold trigger
setting which reaches 0.91 points. Whereas, in all
gold scenario, CDGM reaches a similar result to
our model with a relatively small margin of 0.27
points. We speculate that in all gold setting, the
ground-truth event features are already clean and
hence filtering features exerts limited influence on
the overall performance. When using ground truth
triggers, all event features are predicted and there-
fore containing errors. In this case, using feature
filtering layer can evolve our model to its great-
est potential. In conclusion, the result shows that,
compared to CDGM, simply using a feed forward
neural network can reserve more information and
hence achieves obvious improvement.

6.2 Attention or Not?

To have a better analysis on our proposed attention
based encoder, we conduct ablation experiments.
In the experiments, all models simply concatenate
noisy feature pair representation together without
any filtering operation (e.g., CDGM; feature filter-
ing layer). We denote this concatenate strategy as
simple. To be more specific, We treat the CDGM
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model (Lai et al., 2021) without using cleaned fea-
tures as the baseline which treats event representa-
tions as the average of their triggers’ token embed-
ding. To have a fair comparison, we also use noisy
feature representations by stripping the feature fil-
tering layer and multi-similarity measures off our
model and simply keep the attention based encoder.
The overall results are shown in Table 9.

Models AVG
baseline
CDGM(2021) + Average

85.40
+ Simple

Ours + Attention 90.45
+ Simple

Table 9: Results of using attention based encoder with
all gold settings on ACE 2005

All models use the same event linguistic features.
From Table 9, we can conclude that our model
yields an absolute improvement of 5.05 points in
AVG score. The great performance sufficiently
proves the superiority of our attention based en-
coder. By introducing learnable weights to calcu-
late the word-level and event-level representations,
we believe that it can help our model focus on more
critical tokens instead of simply averaging them.
In a nutshell, our model acquires the ability to grab
the core information for the given event through us-
ing an attention based encoder and hence achieves
a better result.

6.3 Multi-similarity or Not?

We also conduct ablation experiments for the pur-
pose of understanding the impact of different simi-
larity measures. In the experiment, we deprive our
model of multiple similarity measures pair encoder
and similarity fusion layer and return to the original
method which simply uses element-wise similarity
to capture the relevance between two events. We
treat the deprived model as the baseline. We then
introducing the similarity fusion layer to generate
more similarity-aware event pair representations.
On the basis of fusion layer, we respectively add
cosine similarity and linear similarity to better anal-
yse the different influence they exert on the overall
results. Finally ,we train our full model on multiple
similarity measures. The detailed results can be
seen in Table 10.

We can see clearly that our model outperforms
the baseline model significantly by 1.82 points on

Models AVG Δ

-wo fusion layer
Baseline(element-wise similarity) 90.50 -
-w fusion layer
Element-wise similarity 90.92 +0.42
Cosine Similarity 89.20 -1.30
Linear Similarity 90.72 +0.22
Element-wise + Cosine Similarity 91.07 +0.57
Element-wise + Linear Similarity 91.73 +1.23
Multi-similarity 92.32 +1.82

Table 10: Results of using different similarity measures
with all gold setting on ACE 2005

the AVG score. When combined with element-wise
similarity, cosine similarity achieves a relatively
small improvement compared to linear similarity
and even suffers a minor decrease when used alone.
We speculate that the main reason is that cosine sim-
ilarity is more sensitive to the angle between two
vectors instead of their lengths. Whereas, with the
help of trainable weights, linear similarity can bet-
ter capture the relevance between events by learn-
ing different perspectives of vectors. Nevertheless,
our model still shows a great improvement when
using all three similarity measures indicating that
different similarity measures specialist in different
aspects. As a result, we believe that using multiple
similarity measures can help the model better cap-
ture the similarity between two events from more
diverse and comprehensive aspects.

6.4 Noisy or Not?

To better analyze the usefulness of the noisy train-
ing method under different circumstances, we com-
pare the noisy trained models and clean trained
models under all three settings. The overall results
are shown in Table 11.

Settings
AVG

Δ
Clean Noisy

End-to-end 57.00 62.11 +5.11
Gold triggers 78.87 86.63 +7.76
All gold 92.32 86.83 -5.49

Table 11: Results of using noisy features and clean
features with different settings on ACE 2005

We denote the models which replace the event
feature labels randomly as noisy and clean for mod-
els which do not. Compared to the end-to-end
setting, the model under the gold trigger setting
achieves a much more apparent improvement when
using the noisy training method. We presume the
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main reason is that since the event trigger detec-
tion is far from perfect, the predicted event features
would be more accurate when given the ground-
truth triggers. With fewer error propagation prob-
lems, our model is able to uncover the deeper con-
nections between event features. Similar to Lai
et al. (2021), when using the all gold setting, how-
ever, our model suffers a decline of 5.49 points on
the AVG score. Since all event features are clean
in the all gold setting, our model do not need noisy
training to tackle error event features and on the
contrary, simply using clean features can already
boost the performance to the most degree.

6.5 Performance on Different Length
By introducing attention based encoder and multi-
ple measures pair encoder, we believe that we can
accredit the great improvement of our model to
better performances in long documents. Compared
to CDGM, our attention based encoder can better
construct word-level representation which can be
less influenced by the distance and multiple simi-
larity measures pair encoder further addresses the
long-document problem.

Ours(all gold); CDGM(all gold);

Ours(end-to-end); CDGM(end-to-end)

0 200 400 600 800 1,000 1,200

40

60

80

100

Figure 4: Performance of different document length in
ACE 2005 test set with end-to-end and all gold settings.

To verify our hypothesis, we evaluate our model
and the CDGM model respectively on the ACE
2005 test set for different document length ranges
and the results are shown in Figure 4. According to
the curves in the figure, in the all gold setting, it is
obvious that our model do not suffer a significant
decline as the document lengths grow. Although
the CDGM model achieves a similar result with
our model when the document lengths range be-

tween 1050 and 1199, our model still shows a great
advantage over most document length ranges. Es-
pecially, when document length range grows from
300 to 900, the CDGM suffers a drastic decline
while our model’s performance remains at a high
level. In the end-to-end setting, our model shows
a more obvious advantage in the long documents
over the CDGM model indicating that our method
can effectively cope with the long documents in
different settings.

7 Conclusion

In this work, we propose a multiple measures learn-
ing model for event coreference resolution for the
first time, as far as we know. By incorporating mul-
tiple event features and similarity measures, we are
capable of calculating antecedent scores more com-
prehensively from different aspects. We unleash
the potential of employing multiple similarity mea-
sures and filtering event features through various
ablation experiments and proved that our method
can effectively address the long sentence depen-
dency problem. Our model achieves an evident and
significant improvement on the ACE 2005 bench-
mark compared to current state-of-the-art models.
In the future work, we aim at exploring the poten-
tial of incorporating multiple similarity metrics into
different tasks.

8 Limitation

The findings of this study have to be seen in light of
some limitations. Compared to CDGM (Lai et al.,
2021), introducing multiple metrics to capture flex-
ible cross-sentence event relationships would cause
extra computation cost and slightly slow our train-
ing. The training parameters of different models
can be seen in Table 12. We deprive our model of
multiple similarity metrics and denote it as the base-
line model. We can see that our model increases
7% parameters compared to CDGM and 0.009%
compared to the baseline model.

Models #Training Parameters
Baseline 110.51M
CDGM(2021) 108.57M
Ours 110.52M

Table 12: The number of training parameters of different
models (# denotes numbers)
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A Appendix

A.1 Full Experiment Results
We report the all four metrics of our experiment
results in Table 13.

A.2 Ablation Study
In order to show that adding extra feature filtering
FFNN layer is indeed effective instead of simply
using additional parameters to help the model fit,
we deprive our model of the feature filtering layer
and increase the number of training parameters to
the same size as before (110.52M parameters). We
found that the final AVG score is 90.05 which is
2.05 lower than the model with the feature filtering
layer. The result shows that adding extra FFNN is
necessary for alleviating the errors. In fact, clean-
ing the features means distilling reliable signals
from noisy features by mapping and activation, and
the noisy training method is used to handle the er-
ror propagation problem. We believe that by using
individual FFNN for each feature, our model can
filter reliable signals from noisy features and hence
generate more accurate feature representations.

Secondly, to prove that calculating the similarity
for the event-only representation and event feature
representation separately is more effective than con-
catenating the original event-only representation
with its feature representation and have a single
similarity measures encoding step. We conduct an
experiment where the representations are simply
concatenated and go through a single similarity
measurement. The results showed that the model
will suffer a performance drop of 2.03 which suf-
ficiently verified the importance of calculating the
similarity measures separately.

A.3 Case Study
To facilitate a more illustrative comparison between
our model and CDGM, a case study for the ACE
2005 dataset can be seen in Figure 5. We can see
that compared to our model, CDGM additionally
clusters "appointed" and "took office" into an event
cluster. However, despite these two events having
the same event type, they refer to two different per-
sons being appointed as different ministers, and
hence they are two different event. By incorporat-
ing different similarity measures and event features,
we are able to analyse the coreference relation from
different aspects, leading to a more accurate result.
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Settings Models MUC B3 CEAFe BLANC CoNLL AVG

End-to-end
SSED + Supervised(2016) 47.10 59.90 58.70 44.40 55.23 52.53
CDGM(2021) - - - - 62.07 59.76
Ours 59.83 68.17 65.67 54.76 64.56 62.11

Gold Triggers

MSEP(2016) 68.00 92.90 87.40 83.20 82.77 82.88
PAIREDRL(2020b) 76.10 90.70 87.20 - 84.65 -
CDGM(2021) - - - - 84.76 83.95
Ours 79.18 92.37 88.79 86.18 86.78 86.63

All Gold CDGM(2021) - - - - 85.40 85.38
Ours 87.44 95.48 92.99 93.38 91.97 92.32

Table 13: Full experiment results with all four metrics

Ours

EV1(Type Contact:Meet) : … process during talks with his Qatari counterpart …
EV2(Type Contact:Meet) : … for peace . " We discussed the Middle East peace …
EV3(Type Contact:Meet) : … Over an hour of talks , we asserted the will of …
EV4(Type Contact:Meet) : … The meeting was Shalom ' s first encounter with …

CDGM’s

PARIS , May 14 ( AFP ) Israeli Foreign Minister Silvan Shalom on Wednesday stressed Qatar ' s role in the Middle East peace process
during talks with his Qatari counterpart Sheikh Hamad bin Jassem bin Jabr al - Thani in Paris . Shalom told a joint press conference
that the tiny Gulf state ' s strong relationship with the recently appointed Palestinian prime minister , Mahmud Abbas , could be a boost
for peace . " We discussed the Middle East peace process . Over an hour of talks , we asserted the will of both parties ( Israel and the
Arab world ) to do everything to return to the negotiating table ," Shalom said . " Qatar is a very important country on this issue . I
know the special relationship that the Qatari foreign minister has with Abu Mazen ," he said , using Abbas ' s alternative name .
The meeting was Shalom ' s first encounter with an Arab counterpart since he took office as Israel ' s foreign minister on February 27 .
Qatar has economic links with Israel without maintaining diplomatic relations , in the face of criticism from other Arab countries .
Afterwards Shalom was to fly on to London for talks with British Prime Minister Tony Blair and Foreign Secretary Jack Straw .

Input Document

EV1(Type Personnel:Start-Position) : … with the recently appointed Palestinian prime minister …
EV2(Type Personnel:Start-Position) : … Arab counterpart since he took office as Israel ' s foreign minister …

Cluster 1

EV1(Type Contact:Meet) : … process during talks with his Qatari counterpart …
EV2(Type Contact:Meet) : … for peace . " We discussed the Middle East peace …
EV3(Type Contact:Meet) : … Over an hour of talks , we asserted the will of …
EV4(Type Contact:Meet) : … The meeting was Shalom ' s first encounter with …

Cluster 1

Cluster 2

Figure 5: Case study for ACE 2005 dataset (The event triggers for input document are highlighted in yellow)
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