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Abstract
As language models increase in size by the
day, methods for efficient inference are criti-
cal to leveraging their capabilities for various
applications. Prior work has investigated tech-
niques like model pruning, knowledge distilla-
tion, and data multiplexing to increase model
throughput without sacrificing accuracy. In this
paper, we combine two such methods – struc-
tured pruning and data multiplexing – to com-
pound the speedup gains obtained by either
method. Our approach, PruMUX, obtains up to
7.5-29.5X throughput improvement over BERT-
base model with accuracy threshold from 80%
to 74%. We further study various combinations
of parameters (such as sparsity and multiplex-
ing factor) in the two techniques to provide
a comprehensive analysis of the tradeoff be-
tween accuracy and throughput in the result-
ing models. We then propose Auto-PruMUX,
a meta-level model that can predict the high-
performance parameters for pruning and mul-
tiplexing given a desired accuracy loss budget,
providing a practical method to leverage the
combination effectively.1

1 Introduction

Large language models (LLMs) have achieved
state-of-the-art performance across various NLP
tasks and resulted in impressive user-facing demon-
strations such as ChatGPT.2 However, their large
size necessitates the use of enormous amounts of
compute and memory at inference time, which lim-
its their widespread use.

Two types of techniques have been explored to
reduce the cost of model inference. The first is
model compression including network pruning (Le-
Cun et al., 1989; Han et al., 2015b; Frankle and
Carbin, 2019), quantization (Han et al., 2016),
knowledge distillation (Hinton et al., 2015), combi-
nations of multiple methods (Xia et al., 2022). The

1Our code is available at https://github.com/
yushansu/PruMUX

2https://chat.openai.com/

Figure 1: Throughput improvements (×) of CoFi, Data-
MUX, and PruMUX over the BERT-base model (Devlin
et al., 2018) on the MNLI task (Williams et al., 2017).
The sparsity for a CoFi’s data point is labeled as s. The
width of multiplexing for a DataMUX’s data point is
labeled as N . The parameter pair for a PruMUX’s data
point is labeled as (N , s).

second is recently proposed data multiplexing (Mu-
rahari et al., 2023), which multiplexes multiple
inputs into a single input for model inference.

While both types of methods leverage the over-
parameterization effect (Allen-Zhu et al., 2019;
Radhakrishnan et al., 2020) in modern deep neural
networks to improve the throughput-to-compute
cost ratio, the manner in which they do so is dif-
ferent. Model compression aims at reducing the
number of parameters in the model, hence reducing
the overall compute cost (denominator) to improve
the ratio. Data multiplexing, on the other hand,
compresses multiple inputs into one to improve
throughput (numerator) while keeping the model
size fixed. This observation naturally leads us to
hypothesize that the two types of methods could be
complementary and can be combined for maximal
gain in the throughput-to-compute cost ratio.

There are two challenges to this hypothesis. The
first is that both model compression and data multi-
plexing aim at trading a small accuracy loss for
large throughput improvement. Intuitively, the
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combination may incur an accuracy loss larger than
either method and it is not clear how they interact
with each other when combining them together.
A research question is how to combine the two
methods such that the combination achieves better
throughput than each type of method individually,
given any accuracy loss budget or accuracy thresh-
old.

The second challenge is to efficiently find the
best parameters pair (N, s) where N is the width
of the data multiplexing and s is the sparsity of
the model compression method. Training and test-
ing with each parameter combination is costly and
time-consuming. A research question is how to au-
tomatically predict and find top parameters based
on the model’s performance on one set of parame-
ters.

To address the first research question, we present
PruMUX, a combination of model compression
and data multiplexing. Our method is simple and
consists of three phases – multiplexed model pre-
training, task-specific fine-tuning and task-specific
model compression. In our implementation, we
make use of CoFi (Xia et al., 2022), a state-of-
the-art model compression method that includes
intermediate knowledge distillation steps that help
minimize accuracy hits, and DataMUX (Murahari
et al., 2023), which performs vector-based input
multiplexing over instances.

Our results over four datasets (MNLI, QNLI,
QQP and SST-2) demonstrate that PruMUX
achieves significantly higher throughput over CoFi
and DataMUX individually for a large range of ac-
curacy thresholds. As an example, Figure 1 shows
the throughput improvements over the BERT-base
model on task MNLI, providing a more optimal
Pareto frontier in the tradeoff between accuracy
and throughput.

To address the second research question, we pro-
pose Auto-PruMUX, a meta-model to automati-
cally predict and find the high-performance parame-
ter combinations for a desired accuracy loss budget
on a task based on the model’s performance on one
set of parameters without running additional experi-
ments. We use interpolation and estimation models
over a set of data points to predict the accuracy and
throughput of a PruMUX model based on sparsity
and multiplexing factor. We show promise in mod-
eling the tradeoffs accurately and Auto-PruMUX
can find high-performance combinations of known
parameters as well as unknown parameters, pro-

viding a practical method for choosing a high-
performance PruMUX model for a downstream
task.

Our key insight for why PruMUX can achieve
better throughput than model compression and data
multiplexing individually is that they improve the
throughput of a model in two different dimensions:
reducing the latency of an inference and compress-
ing multiple inferences. In addition, both meth-
ods lead to non-linear drops in model accuracy at
some points. PruMUX can achieve high throughput
while avoiding each method’s limitations.

2 Background

2.1 CoFi Pruning

CoFi is a state-of-the-art model compression
method (Xia et al., 2022) that uses distillation and
structured pruning to jointly prune a Transformer
network (Devlin et al., 2018). Its key idea is to
distill the knowledge from the base model into the
pruned model during training. A layer-wise distil-
lation approach is used to guide the pruning from
the teacher model, i.e., dense model, to the student
model, i.e., pruned model, with a loss defined as:

Llayer =
∑

i∈τ
MSE(WlayerHm(i)

s ,Hi
t)

where Hm(i)
s and Hi

t are hidden representations
of the m(i)th feed-forward layer of the student
model and ith feed-forward layer of the teacher
model. i is the teacher model’s closest layer to
the layer m(i) of the student model. Wlayer is
a linear transformation matrix, initialized as an
identity matrix.

CoFi prunes both coarse-grained and fine-
grained units of the distilled network. The coarse-
grained units include multi-head attention layers,
fully-connected layers, and attention heads. The
fine-grained units include hidden dimensions and
intermediate dimensions of the Transformer model.
Different masks are used for different pruning units
and are learned via ℓ0 regularization during train-
ing. The units with mask variables smaller than a
threshold are pruned away before inference.

2.2 DataMUX

Data multiplexing (DataMUX) is a recently pro-
posed method (Murahari et al., 2022, 2023) to com-
press multiple inputs into a single “mixed” repre-
sentation of the same size as a single input to a
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network, in order to improve inference through-
put. DataMUX introduces multiplexing layers,
which multiplex different sequences into a sin-
gle sequence of representations, i.e., multiplexed
representations, and demultiplexing layers, which
demultiplex/decompress the multiplexed represen-
tations. The multiplexed layer first compresses
multiple input sequences into a single sequence
of representations. These representations are then
processed by a Transformer model and the result-
ing representations are then disentangled into inde-
pendent representations by the demultiplexer layer.
These representations are then used to make predic-
tions. DataMUX, therefore, leads to a many-fold
increase in inference throughput as just a single
pass through the large Transformer model.

The multiplexing layer is defined as

x1:N = Φ(x1, ...xN ) =
1

N

N∑

i=1

ϕi(xi)

where x is the input sequence, ϕi, i ∈ [1, ...N ], is
the Hadamard product with a fixed Gaussian ran-
dom vector andN is the number of input sequences
that get multiplexed. The multiplexed representa-
tions, x1:N , are then processed by the Transformer
model to generate hidden multiplexed representa-
tions, h1:N .

The demultiplexer layer, in order to disentan-
gle the hidden multiplexed representation, h1:N ,
into independent representations, learns N param-
eterized demultiplexing functions, ψi. The inde-
pendent representations, hi, are then used to make
predictions.

hi = ψi(h1:N ) ∀i ∈ 1, 2, ...N

2.3 Observations
Both model compression and data multiplexing aim
at trading small accuracy losses for large inference
throughput improvements. When CoFi prunes a
Transformer at relatively low sparsities, its accu-
racy loss is minimal and throughput improvement
is significant, but at 95% sparsity, its accuracy loss
becomes relatively significant (Xia et al., 2022).
DataMUX also shares this nonlinear property, as
shown in Figure 1. In other words, the trade-off of
each method is good only up to a certain point.

The two methods improve the throughput of a
model in two dimensions. CoFi reduces the latency
of an inference, whereas DataMUX compresses
multiple inferences into one. A natural question is

whether combining the two methods can achieve
higher throughput with a smaller accuracy loss than
each method individually.

3 PruMUX

Figure 2: Illustration of PruMUX showing a multi-
plexer, sparse Transformer, and a demultiplexer, with
multiplexing width of 10, where 10 input sequences are
mixed into 1 input sequence. The multiplexed Trans-
former model is pruned to reduce inference time. The
training for PruMUX consists of three steps including re-
trieval warm-up, multiplexed model training, and Trans-
former pruning.

Our key motivational question is the following:
given an accuracy loss budget, can the combina-
tion of model compression and data multiplexing
achieve better throughput than each method indi-
vidually? In this section, we first present PruMUX,
a method to combine the two methods, and then
show that PruMUX achieves substantially better
throughput than each method alone for various ac-
curacy thresholds in our experimental results.

3.1 Method
PruMUX is a method to convert any Transformer
into a high throughput model, capable of compress-
ing multiple inference inputs into a single input and
executing it at a low latency.

For multiplexing, PruMUX uses the recently pro-
posed DataMUX (Murahari et al., 2023), which ap-
pends a multiplexer and demultiplexer as described
in Sec 2.2. With width N , the inference throughput
of the Transformer can be improved by a factor of
up to N , as each multiplexed input takes the same
amount of computing resources as performing in-
ference over a single input.
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For model compression, PruMUX can use any
method such as network pruning, distillation, or a
combination of the two (such as CoFi). The goal
is to substantially reduce the latency of processing
an inference. For our experiments, PruMUX uses
CoFi as the model compression method.

Training a model with PruMUX consists of three
phases as shown in Figure 2:

Phase 1: Priming the multiplexed model with
the token retrieval objective We first prime the
multiplexed transformer model with a token re-
trieval task. Murahari et al. (2022) introduced
this "retrieval warm-up" self-supervised objective
(shown below) and found it to be critical to improve
the performance of multiplexed models. L is the
length of each input sentence. I is the index of the
randomly selected sentence from the input batch.

Lretrieval(x1:N ) =

L∑

j=1

− logP (wI
j |hI

j )

Phase 2: Pre-training and fine-tuning multi-
plexed models The multiplexed models from the
previous stage are then pre-trained on large-scale
text corpora with the masked language modeling
(MLM) objective. The pre-trained multiplexed
models are then fine-tuned on downstream tasks to
yield task-specific multiplexed models.

Phase 3: Model compression Finally, we use
CoFi to jointly prune coarse-grained and fine-
grained units in the multiplexed Transformer model.
The coarse-grained units include entire attention
heads, attention layers, and fully connected layers.
The fine-grained units include hidden dimensions
and intermediate dimensions of the Transformer
model. The demultiplexer’s input dimension is
pruned in order to match the pruned hidden di-
mension of the Transformer model. During the
pruning process, CoFi uses knowledge distillation
to transfer knowledge from the teacher model, i.e.,
the task-specific multiplexed model, to the pruned
model.

3.2 Implementation Details
We use the pre-trained multiplexed BERT-base
models (Murahari et al., 2023) with the standard
BERT pre-training recipe with the masked lan-
guage modeling objective for N = 2, 5, 10 on
Wikipedia (Foundation) and BooksCorpus (Zhu
et al., 2015) datasets. We prime the multi-
plexed model before pre-training with the token-

retrieval task in Section 2.2 on the Wikipedia and
BooksCorpus datasets. We then train the pre-
trained multiplexed models on the four largest
GLUE Tasks (Wang et al., 2018) – MNLI (Williams
et al., 2018), QNLI (Wang et al., 2018), QQP (qqp),
and SST-2 (Socher et al., 2013). We then use the
CoFi structured pruning objective to get pruned
multiplexed model on each task dataset. The hy-
perparameters we use for the training process are
shown in Appendix A.1. We perform a single run
to train the model for each setting, i.e., task, mul-
tiplexer width N , model sparsity s, following the
training process.

3.3 Experiments

Setup We would like to answer the question that
given an accuracy threshold, whether PruMUX
method can achieve a higher throughput than either
CoFi or DataMUX alone.

We compare PruMUXed BERT-base model to
three baselines:

• BERT-base: BERT-base model trained without
data multiplexing and model compression.

• CoFi: BERT-base model pruned by CoFi (Xia
et al., 2022) with sparsity3 s = 0.50, 0.60, 0.70,
0.80, 0.90, and 0.95.

• DataMUX: BERT-base model pre-trained by
DataMUX (Murahari et al., 2023) with the multi-
plexer width N = 2, 5, and 10.

We have applied PruMUX to the BERT-base
model with all combinations of (N, s) for all 4
tasks. We follow the procedure in Xia et al.
(2022) to calculate throughput improvements for
PruMUXed Transformers and all three baselines,
i.e. BERT-base, DataMUX, and CoFi. The evalu-
ation batch size is 128*N , where N is the multi-
plexer width.

Results Figure 3 shows the throughput improve-
ments and accuracies of PruMUXed, DataMUXed,
and CoFi-Pruned Transformers over the Trans-
former base model on the MNLI, QNLI, QQP, and
SST-2 tasks with all available parameters.

The main takeaway is that PruMUX achieves
higher throughput than either CoFi or DataMUX
individually in all cases starting at various accuracy
thresholds:

3Sparsity of 0.95 means 95% of the Transformer model
weights are set to zero.
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(a) MNLI (b) QNLI

(c) QQP (d) SST-2

Figure 3: Throughput Improvement (×) of PruMUX (ours), DataMUX (Murahari et al., 2023), and CoFi prun-
ing (Xia et al., 2022) over the BERT-base model for the MNLI, QNLI, QQP, and SST-2 tasks. The x-axis is the
Transformer accuracy, which is inverted to better show throughput improvements of each method for different
accuracy loss budgets.

• For MNLI, with the accuracy thresholds from
80% to 74%, PruMUX achieves 7.5-29.5X
throughput improvement over the BERT-base
model, whereas CoFi improves by 4.0-10.6X
and DataMUX by 2.0-4.9X.

• For QNLI, with the accuracy thresholds from
87% to 82%, PruMUX achieves 4.1-26.6X
improvement, whereas CoFi improves by 3.8-
11.2X and DataMUX by 2.0-9.6X.

• For QQP, with the accuracy thresholds from
89% to 86%, PruMUX achieves throughput
improvement over BERT-base by 7.6-29.7X,
whereas CoFi improves by 10.6X and Data-
MUX by 2.0-9.8X.

• For SST-2, with the accuracy thresholds
from 86.5% to 83%, PruMUX improves the
throughput by 10.1-27.8X, whereas CoFi im-
proves by 10.6X and DataMUX by 4.8-9.7X.

The results also confirm the intuition that Pru-
MUX with (N, s) incurs an accuracy loss, loosely
speaking, close to the sum of the accuracy loss of

DataMUX with N and that of CoFi with s. In gen-
eral, PruMUX can achieve substantial throughput
improvement when there is a decent accuracy loss
budget.

3.4 Discussion
The results above find top PruMUX performance
with all parameter pairs (N, s), where N = 2, 5,
10 and s = 0.60, 0.70, 0.80, 0.90, and 0.95, for
each accuracy loss budget. Searching for top Pru-
MUX parameters at a finer parameter granularity
will require training and testing on all additional
parameter pairs.

Exhaustive tests are impractical. First, for each
N , pre-training a DataMUX model with multiplex-
ing width N is time-consuming. Second, given
each pre-trained model with multiplexer width N ,
different sparsities s provide different throughput
and accuracy trade-offs. In order to find the spar-
sity swith the highest throughput given an accuracy
budget, one has to train the model for all possible
sparsities. The total training time for the sparsities
from 0.60 to 0.95 at the granularity of 0.05 for each
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N takes over six thousand GPU hours on commod-
ity GPUs, for a small original BERT-base model.
A key question is whether one can automatically
find a high-throughput (N, s) with a small number
of PruMUX experiments.

4 Auto-PruMUX

To address the question above, we propose Auto-
PruMUX, a method to search for top (N, s) param-
eters, to help practitioners balance the performance
vs throughput trade-off.

Our research question is: Suppose we have some
experimental data of PruMUX and the experimen-
tal data of DataMUX and CoFi, how can we find
and predict the top parameters (N, s) given an
accuracy loss budget?

Our approach is to develop performance models
for the accuracy and throughput of PruMUX. We
first train PruMUX models for a set of (N, s) com-
binations and measure both the accuracy and the
throughput improvement. We then use this data to
fit a throughput model and an accuracy model to
predict throughput and accuracy respectively given
(N, s) parameters.

We first discuss how we fit the accuracy and
throughput models with a set of sparse data points.
Given that we are working with a limited set of data
points, we opt to use a simple class of interpolation
models for modeling PruMUX accuracy and use
an estimation model for modeling throughput. We
then outline how we leverage these models to pre-
dict top (N, s) parameters, given an accuracy loss
budget. We then demonstrate the effectiveness of
the Auto-PruMUX in predicting the top parameters
across a wide range of accuracy loss budgets.

4.1 Task Accuracy Model

We use linear interpolation for our task accuarcy
model.

fA(N, s) =



A1,1(N, s) N0 ≤ N ≤ N1, s0 ≤ s ≤ s1,
...

Ai,j(N, s) Ni−1 ≤ N ≤ Ni, sj−1 ≤ s ≤ sj ,
...

Ap,q(N, s) Np−1 ≤ N ≤ Np, sq−1 ≤ s ≤ sq

Each term is a linear combination of data multi-
plexer width and model sparsity.

Ai,j(N, s) =
1∑

a=0

1∑

b=0

k
(i,j)
ab Nasb

The model is fitted on the gathered data of model
task accuracy at different multiplexer width and
sparsity.

Ai,j(Ni, sj) = Acc(Ni, sj)
i = 1, ..., p, j = 1, ..., q

where N and s are the range ofN and s values used
to fit the model.

4.2 Throughput Model
We collect the throughput values for all N and s
on one task (task0) and use the throughput values
as the throughput estimations for all tasks.

fT (N, s) = Throutask0(N, s)

4.3 Predicting (N, s)

We use our models, fA(N, s) and fT (N, s), to
model the accuracy and the throughput of Pru-
MUX with N > 1 and s > 0%. Acc(1, s)
and Throu(1, s) are the measured accuracy and
throughput of CoFi-pruned models. Acc(N, 0)
and Throu(N, 0) are the measured accuracy and
throughput of DataMUX models. Acc(1, 0) and
Throu(1, 0) are the performance of BERT-base
model. We search for (N, s) parameters that maxi-
mize ζf defined below.

ζf (N, s) = Throu(N, s) · g(Acc(N, s)) (1)

g(x) =

{
1 x ≥ ξ

0 x < ξ

Intuitively, ζf tries to tradeoff task performance
and throughput, given an accuracy loss budget ξ
with the goal of maximizing the throughput. g(x)
provides a mechanism for a strict accuracy thresh-
old - i.e. a model that does not meet the minimum
required accuracy will have ζf = 0.

4.4 Experimental Results
Experimental setting In this section, we show
Auto-PruMUX’s prediction results by fitting the
performance models using a set of parameter space
and predicting top parameters on a larger set of
parameter space.

We define the set of (N, s) parameter space (test
set) as follows.
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• BERT-base model - (N, s) N = 1, s = 0.00

• CoFi models - (N, s)N = 1, ∀s ∈ 0.60, 0.70,
0.80, 0.90, 0.95

• DataMUX models - (N, s) ∀N ∈ 2,5,10, s =
0.00

• PruMUX models - (N, s) ∀N ∈ 2,5,10, ∀s ∈
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.954

We fit the accuracy model with the model ac-
curacies on (N, s) ∀N ∈ 2,5,10, ∀s ∈ 0.60, 0.70,
0.80, 0.90, 0.95 (training set). We fit the through-
put model with the throughput of one task on all
parameter pairs.

Our goal is to evaluate the task accuracy model,
the throughput model, and parameter prediction
performance.

Performance Model Accuracy To evaluate the
accuracy of the task performance models on
the training set, we perform leave-one-out cross-
validation for each task. We show the fraction MA

of accuracy predictions with error falling within
∆ξ = 1.5% from real accuracy in Table 1. To eval-
uate the accuracy of the throughput model on the
training set, we fit the model using PruMUX’s per-
formance of the QQP task. We show the fraction
MT of throughput predictions with error within
20% of real throughput improvement in Table 1.
Across different tasks, our accuracy and throughput
models are accurate across a broad set of parameter
combinations.

Task MA MT Task MA MT

MNLI 92.3% 92.3% QQP 100% 100%
QNLI 100% 91.7% SST-2 100% 100%

Table 1: Accuracy of the task accuracy model (MA) and
accuracy of the throughput model (MT ) for PruMUX.

Top Parameter Prediction We show Auto-
PruMUX’s prediction results by fitting the accuracy
model on the training set and fitting the through-
put model using the throughput of the QQP task,
and predicting top parameters on the test set. We
show Auto-PruMUX’s top parameter predictions
for accuracy loss budget 3% in Table 2. Auto-
PruMUX predicts the actual best parameter pairs
within its top 3 predictions. In Table 3, we use

4High sparsity doesn’t work for some Ns and some tasks,
i.e., (5, 0.95), (10, 0.90), (10, 0.95) for QNLI, (10, 0.85), (10,
0.90), (10, 0.95) for SST-2. We exclude these points from our
training and test set.

Task Auto-PruMUX Actual Best
(N, s), Throu. (×) (N, s), Throu. (×)

MNLI
Top 1: (2, 0.65), 4.5×

(2, 0.65), 4.7×Top 2: (2, 0.60), 4.2×
Top 3: (1, 0.80), 4.0×

QNLI
Top 1: (2, 0.70), 5.0×

(2, 0.65), 4.5×Top 2: (2, 0.65), 4.2×
Top 3: (2, 0.60), 3.9×

QQP
Top 1: (2, 0.90), 12.4×

(2, 0.90), 12.4×Top 2: (5, 0.65), 10.6×
Top 3: (1, 0.95), 10.6×

SST-2
Top 1: (1, 0.95), 10.6×

(1, 0.95), 10.6×Top 2: (1, 0.90), 6.2×
Top 3: (2, 0.70), 5.0×

Table 2: Auto-PruMUX top 3 (N, s) predictions for dif-
ferent tasks with accuracy loss budgets of 3% along with
their predicted throughput improvements. The actual
best parameters (N, s) and their throughput improve-
ments are shown in the last column.

Auto-PruMUX to predict parameters for accuracy
loss budgets in 0%, 0.5%, ..., 10% and show the
percentage of accuracy loss budgets which Auto-
PruMUX predicts the actual best parameter in its
top 3 predictions. Auto-PruMUX is able to predict
top parameters in most cases.

Task Accuracy Task Accuracy

MNLI 81.0% QQP 100%
QNLI 90.5% SST-2 90.5%

Table 3: Percentage of accuracy loss budgets in 0%,
0.5%, ..., 9.5%, 10% which Auto-PruMUX predicts the
actual best (N, s) parameter in its top 3 predictions.

5 Related Work

Model Compression
Model compression reduces the number of model
parameters with minimal loss in task performance.
A well-studied method is network pruning, which
removes unimportant connections from a network
with minimal or no accuracy loss (LeCun et al.,
1989; Hanson and Pratt, 1989; Hassibi et al., 1993).

Unstructured pruning (Han et al., 2015b,a; Zhu
and Gupta, 2017; Frankle and Carbin, 2019; Chen
et al., 2020a; Huang et al., 2021; Sanh et al., 2020)
does not impose any constraints on the locations
of non-zero weights. The resulting network can
achieve high sparsity but may not run efficiently on
common hardware such as GPUs.

Structured pruning produces structured sparse
matrices that can take better advantage of the paral-
lelism in existing hardware, but its sparsity is rela-
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tively lower than the unstructured pruning method
for the same accuracy loss budget (Yu et al., 2017;
Narang et al., 2017; Wen et al., 2017; Mao et al.,
2017; Wang et al., 2019; McDanel et al., 2022).
Structured pruning has been applied to transform-
ers to improve inference throughput (Fan et al.,
2019; Sajjad et al., 2023; Voita et al., 2019; Michel
et al., 2019; Prasanna et al., 2020; Chen et al.,
2020b; McCarley et al., 2019; Hou et al., 2020;
Yao et al., 2021).

Distillation compresses a model by transferring
knowledge from a large teacher model to a small
student model (Hinton et al., 2015). General distil-
lation for Transformer models learn from unlabeled
corpus (Sanh et al., 2019; Sun et al., 2020; Wang
et al., 2020; Turc et al., 2019; Jiao et al., 2019).
Task-specific distillation for Transformer models
learns on task-specific data (Sun et al., 2019). (Jiao
et al., 2019) combines the two distillation methods
to improve performance.

Pruning with distillation objective have been ex-
plored (Sanh et al., 2020; Lagunas et al., 2021).
(Xia et al., 2022) proposes structured pruning with
distillation objective to reduce the Transformer
parameters by up to 95% and achieve over 10x
speedups with small accuracy drops.

Multi-input Multi-output Models
Multi-input Multi-output models concurrently pro-
cess multiple inputs within one neural network to
reduce network over-parameterization. (Havasi
et al., 2021) and (Ramé et al., 2021) train inde-
pendent sub-networks and ensemble them into a
multi-input multi-output model to obtain better ac-
curacy and uncertainty estimation with inference
cost similar to a single network. (Murahari et al.,
2022) proposes data multiplexing technique to mul-
tiplex multiple input sequences into one input se-
quence to Transformer model, which leads to up
to 18x inference speedup. (Murahari et al., 2023)
develops pre-trained multiplexed language models
to improve model throughput.

Performance Modeling
Various methods have been proposed to estimate
the performance of machine learning models. (Jus-
tus et al., 2018) proposes a method to predict CNN
execution time for training. They decompose CNN
training into several components, estimate the time
for each component, and predict the model execu-
tion time as the combination of different compo-
nents. (Qi et al., 2017; Cai et al., 2017) predict the

performance of deep neural networks based on the
neural network models’ architecture. (Stamoulis
et al., 2018) proposes predictive models for the
power and memory of neural networks executing
on GPUs. Machine-learning-based cost models
(Chen et al., 2018; Bouzidi et al., 2020) have been
explored to predict program running time.

Interpolation (Davis, 1975) is widely used in en-
gineering and science (Oliver and Webster, 1990;
Keys, 1981; Lehmann et al., 1999), where function
values at discrete data points are collected in ex-
periments and the function values at the intervals
between discrete data points are estimated using
interpolation methods.

6 Conclusion

We propose PruMUX, a method to combine model
compression and data multiplexing to build high
throughput transformers. Our implementation of
PruMUX makes use of CoFi and DataMUX and
we show that it achieves substantial throughput
improvement over either CoFi or DataMUX for a
large range of accuracy thresholds.

We conclude that the reason that PruMUX per-
forms well in certain range of accuracy loss budgets
is that CoFi and DataMUX improve the throughput
of a model in two different dimensions: reducing
the latency of an inference and compressing mul-
tiple inferences. When the accuracy loss budget
is large, both methods lead to non-linear drops in
model accuracy, PruMUX can achieve much better
performance than either approach because it uses
more conservative parameters for CoFi and Data-
MUX before each reaches its bad trade-off point.

We also present Auto-PruMUX, a meta-model to
automatically predict high-performance parameter
combinations for a desired accuracy on a task. We
show it is promising in predicting parameters with-
out individual data points and additional training.

7 Limitations

Our experiments are limited to 3 DataMUXed pre-
trained models (N = 2, 5, and 10) due to compute
constraints. More pre-trained models with different
N ’s would provide PruMUX with more options to
improve throughput and would allow us to conduct
a more detailed evaluation of Auto-PruMUX.

PruMUX uses CoFi as its model compression
method. Experiments with other methods could
improve our understanding of the interactions be-
tween model compression and data multiplexing.
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A Appendix

A.1 Hyperparameters for Model Training

Table 4 and Table 5 show the hyperparameters used
in CoFi training and PruMUX training correspond-
ingly. The hyperparameters are from CoFi’s open-
sourced code. 5

Hyperparamter CoFi

distill layer loss alpha 0.9, 0.7, 0.5
distill ce loss alpha 0.1, 0.3, 0.5
layer distill version 3, 4, 6

sparsity epsilon 0.01
max seq length 128

pruning batch size 32
finetune batch size 64

training epoch 20
finetune epoch 20

distill temp 2
scheduler type linear

prepruning finetune epoch 1
lagrangian warmup epoch 2

pruning learning rate 2e-5
finetune learning rate 1e-5, 2e-5, 3e-5

Table 4: Hyperparameters in CoFi training

Hyperparamter PruMUX

distill layer loss alpha 0.9, 0.7, 0.5
distill ce loss alpha 0.1, 0.3, 0.5
layer distill version 3, 4, 6

sparsity epsilon 0.01
max seq length 128

pruning batch size 32*N
finetune batch size 64

training epoch 40
finetune epoch 40

distill temp 2
scheduler type linear

prepruning finetune epoch 0
lagrangian warmup epoch 2

pruning learning rate 5e-5

finetune learning rate
1e-5, 2e-5
3e-5, 5e-5

Table 5: Hyperparameters in PruMUX training

5github.com/princeton-nlp/CoFiPruning
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A.2 Dataset Statistics
Table 6 shows the sizes and metrics of the datasets
in our experiments.

Task Train Size Metric

MNLI 393k accuracy
QNLI 105k accuracy
QQP 364k accuracy
SST-2 67k accuracy

Table 6: Data statistics of GLUE datasets

A.3 Potential Risks
Multiplexing with model compression may lead
to information leakage between different instances,
which can potentially raise privacy concerns if used
in a public API serving these models.
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