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Abstract
A promising approach to estimate the causal
effects of peer review policies is to analyze data
from publication venues that shift policies from
single-blind to double-blind from one year to
the next. However, in these settings the content
of the manuscript is a confounding variable—
each year has a different distribution of scien-
tific content which may naturally affect the dis-
tribution of reviewer scores. To address this tex-
tual confounding, we extend variable ratio near-
est neighbor matching to incorporate text em-
beddings. We compare this matching method
to a widely-used causal method of stratified
propensity score matching and a baseline of
randomly selected matches. For our case study
of the ICLR conference shifting from single-
to double-blind review from 2017 to 2018, we
find human judges prefer manuscript matches
from our method in 70% of cases. While the un-
adjusted estimate of the average causal effect of
reviewers’ scores is -0.25, our method shifts the
estimate to -0.17, a slightly smaller difference
between the outcomes of single- and double-
blind policies. We hope this case study enables
exploration of additional text-based causal esti-
mation methods and domains in the future.

1 Introduction

For over two hundred years, peer review has been
the key means of evaluating scholarly work and
establishing scientific legitimacy (Birukou et al.,
2011). Although many claim double-blind peer
review reduces evaluation biases due to known au-
thor identities (Tvina et al., 2019; Sun et al., 2022;
Kern-Goldberger et al., 2022), others claim there
is little statistical evidence for a preference over
single-blind (Haffar et al., 2019).

In this work, we argue that studying the impact
of peer review anonymization policies is inherently
a causal question. If we intervene and assign a
manuscript to double-blind review, what is result-
ing effect on the manuscript’s review score com-
pared to what the score would have been under

Figure 1: Causal diagram for our case study that esti-
mates the causal effects of single- versus double-blind
peer review policies.

single-blind review? The gold standard for these
types of causal estimation questions is randomized
controlled trials (RCTs) which produce unbiased
effect estimates (Holland, 1986; Pearl, 2009). How-
ever, in the case of peer review, an RCT is uneth-
ical because applying different review policies to
different manuscripts could potentially harm the
dissemination of scientific findings and researchers’
careers.

In the absence of an RCT, one can use obser-
vational (non-randomized) data from publication
venues before and after a policy change to estimate
causal effects. However, a major obstacle to unbi-
ased effect estimation for observational data is ac-
counting for confounding variables that affect both
treatment and outcome. In the case of peer review,
we represent our domain assumptions via the causal
diagram in Figure 1. The content of a manuscript
affects peer review scores—popular scientific con-
tent might naturally have higher reviewer scores—
and is correlated with review policy—the distri-
bution of content in submitted manuscripts might
be different in years with single- versus double-
blind review.1 Many methods have been proposed

1The diagram in Figure 1 is an Acyclic Directed Mixed
Graph (ADMG) (Richardson, 2003) which contains both di-
rected edges—denoting direct causal dependence—and bi-
directed edges. Manuscript content and review policy have a
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to statistically adjust for confounding variables in
general (Rosenbaum and Rubin, 1983; Pearl, 2009;
Morgan and Winship, 2015). We follow the frame-
work presented by Keith et al. (2020) who review
settings for which text data is a proxy for confound-
ing variables.

From this prior work, we distill three impor-
tant criteria for choosing text-based confounding
adjustment method for case studies like ours: the
method should (1) allow for empirical checks of
causal overlap, (2) incorporate modern text rep-
resentations, and (3) enable human validation of
intermediate steps. Causal overlap—a necessary
condition for an estimate to be causal—requires
any unit to have a non-zero probability of assign-
ment to each treatment condition for all possible
values of confounders (Morgan and Winship, 2015).
If causal overlap is not satisfied, one has to either
abandon the project or shift the target causal esti-
mand2. Second, text data contains many layers of
linguistic granularity and there are challenges to
operationalizing a variable like “manuscript con-
tent”. General-purpose language representations
have greatly improved performance of predictive
natural language processing (NLP) tasks, e.g. Pe-
ters et al. (2018); Devlin et al. (2019); Cohan et al.
(2020), and we hypothesize we could use them to
help find semantically similar treated and untreated
documents. Finally, human validation is important
because unlike prediction settings, causal settings
have no ground-truth (Holland, 1986). In our case
study, we do not have access to counterfactual out-
comes for the same manuscript under both treat-
ment settings. Thus, we are essentially combining
the “black box” of causal estimation with another
“black box” of NLP techniques, so it is crucial that
we are able to evaluate intermediate steps of the
causal estimation pipeline in order to lend validity
to our results.

In summary, we contribute the following:

• We combine causal matching approaches with
the NLP embedding literature and implement
variable ratio nearest neighbor matching with re-
placement and a caliper on cosine distance of

bi-directed edge because manuscript content does not directly
cause the review policy but unmeasured common causes af-
fect both variables. Conditioning on manuscript content still
blocks the “backdoor path” between treatment and outcome,
so we call it a confounding variable in the remainder of this
work.

2Typically, one has to shift to only the subset of the popu-
lation with “common support” in the sample; see Morgan and
Winship (2015) Section 4.6.1.

document embeddings, Variable Ratio Match-
ing with Embeddings (VRM-E)3. We demonstrate
that this method satisfies our three criteria above.

• We apply VRM-E to a case study of peer review
data, consisting of ratings from 1400 manuscripts
from the International Conference on Learning
Representations (ICLR) in 2017 (single-blind
peer review) and 2018 (double-blind).

• For our case study, we find human domain-
experts prefer matches between treated and un-
treated manuscripts from VRM-E over 70% of
the time compared to a baseline of stratified
propensity score matching (Rosenbaum and Ru-
bin, 1983) and randomly selected matches.

• While the baseline unadjusted estimate of the
average treatment effect on the control (ATC)
of aggregated reviewers’ scores (on a 10-point
scale) is -0.25 with 95% confidence interval of
[-0.39, -0.11], VRM-E shifts the ATC to -0.17
[-0.29, -0.05], a slightly smaller difference be-
tween the outcomes of single- and double-blind
policies.

2 Related Work

Methods for text-based confounding adjustment.
We describe gaps in existing work based on our
three criteria of overlap (O), incorporating modern
NLP representations (R), and human validation (V).
The text adjustment method proposed by Roberts
et al. (2020) uses human judgements experiments
for validation (V+) but relies on topic modeling
(R-). While Veitch et al. (2020) make use of state-
of-the-art NLP in the form of BERT (Devlin et al.,
2019) to jointly estimate treatment and counter-
factual outcomes (R+), one cannot validate inter-
mediate representations (I-) or empirically check
for overlap (O-). Wood-Doughty et al. (2018) use
classifiers to adjust for textual confounding vari-
ables; however, many settings, including ours, do
not have gold-standard labels of low-dimensional
confounders necessary for these classifiers. Mozer
et al. (2020) propose a framework for human judge-
ment of text matches (V+), but their empirical re-
sults are domain-dependent and do not generalize
to our case study. Many other applications of text
in causal inference use stratified propensity score
matching (SPSM) (Rosenbaum and Rubin, 1983),
e.g. De Choudhury et al. (2016); De Choudhury

3Code for VRM-E and other experiments from this paper
can be found at https://github.com/raymondEDS/VRM-E/
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and Kiciman (2017); Olteanu et al. (2017); Kici-
man et al. (2018); Saha et al. (2019). Because
SPSM is widely-used and satisfies our three cri-
teria, we empirically compare to this method in
Section 3.4.

Peer review studies. Some argue double-blind
review reduces bias associated with reputation,
race, gender, and institution (Tvina et al., 2019).
Experiments show that single-blind reviewers bid
(Tomkins et al., 2017) and recommend acceptance
(Okike et al., 2016) at higher rates for famous au-
thors from top institutions. In a non-causal study
using the same ICLR dataset, Sun et al. (2022)
show changing from single- to double-blind re-
view results in decreased scores for prestigious
authors. Manzoor and Shah (2021) also use the
ICLR dataset but focus on text as a causal outcome
rather than as a confounding variable.

3 Methods and empirical pipeline

3.1 Case study data
We use titles, abstracts, and review ratings for
ICLR 2017 and 2018 submissions, scraped from
OpenReview by Zhang et al. (2022). In both years,
each submission was rated by multiple reviewers
on a 10-point scale; we use the mean rating as
the causal outcome. ICLR 2017 used single-blind
reviewing, and had 490 submissions; ICLR 2018
used double-blind reviewing and received 910 sub-
missions.

3.2 Set-up for causal estimation
To estimate causal effects, ideally we would have
counterfactual outcomes for each unit i—in our
case study, a unit is a single manuscript—for both
treatment settings, T = 0 and T = 1. Using
the potential outcomes framework (Rubin, 1974,
2005), we denote these counterfactual outcomes as
Yi(Ti = 0) and Yi(Ti = 1). The average treatment
effect (ATE) for population of n units is

τ =
1

n

∑

i

(
Yi(Ti = 1)− Yi(Ti = 0)

)
(1)

However, the fundamental problem of causal
inference is that we do not have access to both
counterfactual outcomes for a single unit (Holland,
1986). Instead, a naive approach estimates the ATE
as a difference in means between the treated and
untreated groups

τ̂naive =
1

n1

∑

i:Ti=1

Yi −
1

n0

∑

i:Ti=0

Yi (2)

with n1 and n0 being the number of units in the
treated and untreated groups respectively. This
naive estimate can be biased in the presence of con-
founding variables, C. To address this confound-
ing, one can use the backdoor adjustment formula
(Pearl, 2009) to statistically adjust for C

τ̂BDA =
∑

c

(
E[Y |T = 1, C = c] (3)

− E[Y |T = 0, C = c]

)
P (C = c)

Eq. 3 is an unbiased estimate of the ATE under
certain necessary causal identification assumptions
such as no unmeasured confounding and causal
overlap: ∀c, 0 < P (T = 1|C = c) < 1. In-
tuitively, if causal overlap is satisfied, then the
terms in Eq. 3 can be estimated from data because
then there are at least one treated and untreated
unit for each c. However, D’Amour et al. (2021)
show that overlap becomes increasingly difficult
to satisfy as the dimensionality of C grows. Thus,
for text-based confounding settings, practitioners
face tradeoffs between the linguistic granularity for
which they operationalize C and satisfying causal
overlap.4

3.3 VRM-E
To satisfy the three criteria described in Section 1,
we combine previous work from the NLP represen-
tation learning literature (Le and Mikolov, 2014;
Wu et al., 2018; Zamani et al., 2018) with the
causal literature on variable ratio matching (Ming
and Rosenbaum, 2001; Stuart, 2010). As Stuart
(2010) notes, causal matching has the advantage
that one can empirically check regions for over-
lap, whereas alternatives, like regression, would
rely on extrapolation for those same regions. Our
method, Variable Ratio Matching with Embeddings
(VRM-E), operationalizes C as many clusters of se-
mantically similar documents where each cluster
has at least one treated and non-treated manuscript,
thus explicitly satisfying overlap. Note, like all
causal estimation approaches, the validity of our

4To illustrate this tradeoff, consider the following hypo-
thetical scenario: the size of the vocabulary is 10 and C is
operationalized as vector of word indicators for each docu-
ment. This gives 210 = 1024 possibilities for c and there must
be least one T = 0 and T = 1 document for each c to satisfy
overlap (2048 total documents). This minimum number of
documents needed is more than the total documents we have
in this case study and grows exponentially with the size of
the vocabulary. Thus, practitioners must choose a different
operationalization of text or abandon the project.
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method is contingent on the assumptions we stated
previously; see Limitations section for more dis-
cussion. We subsequently describe the five steps of
VRM-E and provide suggestions to navigate bias-
variance trade-offs and trade-offs between causal
overlap and the granularity of textual semantic sim-
ilarity between treated and untreated groups.

Step 1: Obtain embeddings for each unit of text.
Step 2: Set the “anchor” group as the treated or

untreated group with the fewest number of units.
This will ensure each unit in the smaller group
is matched with at least one unit in larger group,
satisfying causal overlap.5

Step 3: Run agglomerative clustering on the
cosine distance6 of the embeddings for all anchor
units, with a maximum distance threshold a. This
step ensures extremely similar units in the anchor
group are matched with the same non-anchor units
and reduces the runtime of Step 4.

Step 4: For each cluster centroid from Step
3, find the k-nearest neighbors in the non-anchor
group by embedding cosine distance, limiting to
a maximum distance of b. Our b variable is anal-
ogous to a caliper in other causal matching litera-
ture; see Rosenbaum and Rubin (1985a,b); Stuart
(2010).

Step 5: Use a matching estimator (see Ap-
pendix A) to estimate the causal effect.

Setting hyperparameters. An advantage of our
method is that it is agnostic to the choice of text
embedding and domain experts should choose the
embedding that is best-suited for their domain. Ad-
ditionally, our method only has three free hyperpa-
rameters: k, a, and b. As Gelman and Loken (2013)
discuss, limiting the number of free parameters can
help mitigate “garden of forking paths” issues in
data analysis. We make several recommendations
on navigating the tradeoffs for these hyperparam-
eters. Choices of k correspond to bias-variance
trade-offs; a higher k may result in increased bias
while decreasing variance (Stuart, 2010). The a
threshold is meant to be arbitrarily small to create
tight clusters in the anchor group. Setting b to a
small value increases the chance of textual seman-

5While this satisfies overlap, it can change the estimand to
the average treatment effect on the control (ATC) or average
treatment effect on the treated (ATT). This is still preferred to
shifting the estimate to only the subsample of the population
with “common support” (Morgan and Winship, 2015).

6This is equivalent to one minus the cosine similarity.
This metric has become standard for embedding similarity
in NLP (Chandrasekaran and Mago, 2021; Mohammad and
Hirst, 2012)

tic similarity between units, but could result in a
violation of causal overlap for anchor units that
have no matches; thus, we recommend selecting
the minimum value of b that still satisfies overlap.

Case study hyperparameters. For our case
study, we use SPECTER (Cohan et al., 2020), a
pre-trained language model which generates em-
beddings for scientific manuscripts using their titles
and abstracts, and outperforms alternative models
on benchmark scientific tasks. After qualitative
inspection of initial results, we set k = 10 and
a = 0.1; see Appendix D.3 for robustness to these
choices. We set b = 0.23 since this is the lowest
value such that all manuscripts in our anchor group
(T = 0; 2017 manuscripts) have at least one match
in the non-anchor group; see Appendix B.2. In Step
4, we allow for matching with replacement and fur-
ther investigate this decision in Appendix C.1.1.

3.4 SPSM

We compare VRM-E to stratified propensity score
matching (SPSM). To do so, we train a logis-
tic regression model for the propensity scores,
P (T = 1|X). For our case study, we operational-
ize X as the same SPECTER embeddings used
in VRM-E to compare the two methods fairly. We
use cross-fitting (Hansen, 2000; Newey and Robins,
2018) with cross validation within the training folds
to ensure the models are not overfitting. Using the
trained models, we infer propensity scores for each
unit in the corresponding inference folds and then
we stratify the scores into the standard five buck-
ets (Neuhäuser et al., 2018). See Appendix D.1
for more details. Empirically, we find SPSM is
limited when incorporating text embeddings. First,
although SPSM satisfies overlap, approximately
95% of the data is distributed in stratum 3 (be-
tween scores 0.4 and 0.6); see Figure 4 and Table 7.
Additionally, the model only has 62% accuracy on
the training folds. This shows propensity score
modeling’s limitation—it collapses rich text data
into a single score whereas VRM-E maintains more
fine-grained matches.

4 Results for Peer Review Case Study

Because there is no ground-truth in causal infer-
ence, we first manually evaluate matches to assess
validity, and then estimate the causal effects. In our
Limitations section, we discuss potential threats to
validity.
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Method Raw prefs. Pref. %

VRM-E 212 70%
Random matches 38 13%
SPSM 53 17%

Table 1: Domain-expert human preferences (pref.) for
the treated-untreated manuscripts matches from the
three methods. VRM-E is statistically different from
both random matches and SPSM with p < 0.01 (two-
sided T-test; see Appendix D.2).

4.1 Human judgements on matches

Causal matching aims to find units that “look sim-
ilar” but receive different treatments, allowing re-
searchers to approximate counterfactuals. Both
VRM-E and SPSM allow for human evaluation
of matches, satisfying one of our three criteria in
Section 1.7 To empirically analyze the differences
between these matching methods, three authors
compared 100 randomly sampled manuscript titles
from ICLR 2017 to their matched titles from ICLR
2018.8 For the same ICLR 2017 manuscript, three
2018 manuscript matches were judged: one ran-
domly sampled match, one match from VRM-E,
and one match from SPSM. These matches were
permuted (and method names masked) and the
judges were instructed to select the most similar
of the three matches; ties were allowed. See Ap-
pendix B.1 for additional details. To obtain each
method’s preference percentage, we add together
the preferences across all three judges and then
divided by the total number of preferences. Ta-
ble 1 shows judges prefer our method 70% of the
time. The agreement rate between judges is 0.56
for Fleiss’ Kappa (Davies and Fleiss, 1982), a low
value but not unreasonable given the difficultly of
the task. The high preference for VRM-E lends
validity to our final causal estimates from this ap-
proach.

4.2 Causal effect estimates

In Table 2, we compare the average treatment on
the control (ATC) from VRM-E to the ATC from

7Some prior work on text-based causal adjustment uses
structured metadata to evaluate adjustment, e.g., Roberts et al.
(2020); Sridhar et al. (2018). However, many studies do not
have access to this type of structured data, or, as in our case,
are not able to use it as ground truth (see Appendix C.2).

8Although SPECTER embeddings encode both the title
and abstract, our human judges only evaluate the title for
consistency and speed. Future work could investigate human
judgements with the abstract.

Method ATC 95% CI
VRM-E -0.17 [-0.29, -0.05]
Naive (unadjusted) -0.25 [-0.39, -0.11]
SPSM -0.26 [-0.38, -0.14]

Table 2: For ICLR 2017 and 2018 data, estimates of the
average treatment effect on the control (ATC) and 95%
confidence interval (CI). ATC for VRM-E is statistically
different from other methods with p < 0.01 (paired
bootstrap; see Appendix D.2).

the unadjusted estimate and estimate from SPSM.
We calculate the 95% confidence interval (CI)
given the percentile bootstrap method (Hahn, 1995)
resampling the 2017 papers; see Appendix D.2.
All three methods estimate an ATC with a nega-
tive sign. This result suggests that for the same
manuscript, shifting from single-blind to double-
blind would decrease the average reviewer score.
However, while the unadjusted estimate of the ATC
is -0.25 with 95% CI [-0.39, -0.11], our method
shifts the ATC to -0.17 [-0.29, -0.05], a slightly
smaller difference between the outcomes of single-
and double-blind policies.

5 Conclusion and future work

In this work, we implement VRM-E, a method
for text-based causal confounding adjustment that
satisfies our three criteria of empirically checking
causal overlap, incorporating modern NLP embed-
dings, and human validation of intermediate steps.
For our case study, we find domain-experts pre-
fer VRM-E matches 70% of the time compared
to random matches and stratified propensity score
matches. While the sign of the causal effect—
negative—of switching from single blind to dou-
ble blind reviewing on average reviewer scores is
consistent across all methods, VRM-E estimates a
slightly less negative effect.

Future work could investigate the causal mech-
anisms behind the negative causal effect and ex-
plore heterogeneous treatment effects due to au-
thor identity. Additional directions could examine
different causal outcomes on the text of peer re-
views such as discourse-level sentence labels (Ken-
nard et al., 2022) or politeness (Danescu-Niculescu-
Mizil et al., 2013). We hope this case study enables
exploration of additional text-based causal estima-
tion methods and domains in the future.
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Limitations

Our work is limited in several ways. We use human
judgements on our case study data to demonstrate
a preference of VRM-E versus SPSM. However,
additional case studies in other domains such as
education, healthcare, legal studies etc. are nec-
essary in order to gather empirical evidence that
preference for VRM-E generalizes.

Threats to validity. There are several threats
to interpreting our case study estimates as causal.
Like any causal study with observational data, our
case study relies on untestable causal identification
assumptions such as no unmeasured confounding.
Other unmeasured confounding likely does exist.
For example, our document embeddings do not nec-
essarily measure the “quality” of the manuscripts
or the “novelty” of the ideas, both of which could
affect reviewers’ scores. Regarding estimation,
by allowing for matching with replacement, Ap-
pendix C.1.1 shows that several manuscripts are
reused with high frequency. This will introduce
bias within our model as noted in Stuart (2010).
Additionally, our choice of b satisfies overlap but
at the expense of very similar semantic matches be-
tween manuscripts. This could explain why there
was only a moderate amount of agreement between
the human judges as many matches are less seman-
tically similar than we would prefer.

Ethics Statement

Data. Our case study data comes from Zhang et al.
(2022) who aggregated data from OpenReview and
other venues. Our work falls in line with the in-
tention of Zhang et al. (2022): to investigate peer
review. While individuals and research groups may
not have intended for their work to be studied in the
manner of our case study, we believe that the risk
is minimal because researchers have agreed to pub-
lish their work via the OpenReview platform. The
original intent of OpenReview was to create more
transparency within the peer review process and
allow for the analysis of various policies (Soergel
et al., 2013). Risks are further minimized since we
do not analyze individual manuscripts but rather
focus on aggregate policy implications.

Peer review. A second ethical implication of our
work concerns acting on our substantive findings
about peer review. Our work primarily focuses
on comparing text-based causal matching meth-
ods, so we do not focus on a sophisticated quasi-
experimental design for the case study, and we do

not analyze additional confounders other than the
title and abstract of manuscripts. As mentioned in
Sections 1 and 2, peer review is a complicated topic
with conflicting analyses based on context. There
are many different perspectives on what makes a
peer review process “good”. We hope our work is a
step towards an improved peer review process, but
we caution against using the results of this study in
isolation as a basis for setting or changing any peer
review policies.
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A Causal estimators for ATC

In this section, we describe the estimator for average treatment effect on the control (ATC). Let T0 be the
set of units for which we observe T = 0 and T1 be the set of units that we observe T = 1; let NT0 and
NT1 be the number of units in those two sets respectively. Then the theoretical ATC (with counterfactual
terms) is

τATC =
1

NT0

∑

i∈T0

(
Yi(Ti = 1)− Yi(Ti = 0)

)
(4)

The naive estimator assumes that the mean outcome over all units in T1 suffices as the approximate
counterfactual for every unit in T0

τ̂ATC
naive =

1

NT0

∑

i∈T0

(
(

1

NT1

∑

j∈T1

Yj)− Yi

)
(5)

Following Stuart (2010); Morgan and Winship (2015), we use the following ATC matching estimator
for VRM-E and SPSM. For each control unit, i ∈ T0 and its corresponding matches Mi—matches are
treated units in the same cluster for VRM-E and treated units in the same strata for SPSM—the estimator
creates a “counterfactual” outcome from the mean of the matches

Ŷi(1) =
1

|Mi|
∑

j∈Mi

Yj (6)

which is substituted into

τ̂ATC
match =

1

NT0

∑

i∈T0

(
Ŷi(1)− Yi

)
(7)

Intuitively, this estimator weights the P (C = c) term Eq. 3 as the number of T0 manuscripts in each
cluster in VRM-E and each strata in SPSM.

B Hyperparameter choice and robustness

B.1 Human judgements on matches

Figure 2: Spreadsheet used for human judging of similarity of matches. Each judge was given a sheet with 300 rows
of titles to rate based on our procedure described in Section 4.1. The same 2017 title is compared to three 2018
titles from three different methods and method names are masked in this spreadsheet. On average the three judges
took 48 minutes (50, 44, and 50 minutes dis-aggregated) for the task.

B.2 Choosing b hyperparameter for VRM-E
In Figure 3, we show a visualization of our choice of b in VRM-E for our case study data. We select b
such that it is the minimal value (minimizing bias in the estimates) while satisfying overlap (a necessary
condition for causal estimation).
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Figure 3: Plot for the choice of b for VRM-E. X-axis is the choice of b, the maximum cosine distance in Step 4
of VRM-E. Y-axis is the number of manuscripts in the anchor group (2017 manuscripts; T = 0) that have at least
one match in the non-anchor group. Above the threshold of b = 0.2343, every manuscript in the anchor group is
matched with at least one manuscript in the non-anchor group and thus overlap is satisfied.

C Qualitative evaluation and examples

C.1 VRM-E example

2017 title: Machine Comprehension Using Match-LSTM and Answer Pointer Cosine Distance

2018 title: QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension 0.104
2018 title: Multi-Mention Learning for Reading Comprehension with Neural Cascades 0.11
2018 title: LEARNING TO ORGANIZE KNOWLEDGE WITH N-GRAM MACHINES 0.129
2018 title: FAST READING COMPREHENSION WITH CONVNETS 0.131
2018 title: ElimiNet: A Model for Eliminating Options for Reading Comprehension with Multiple Choice Questions 0.133
2018 title: FusionNet: Fusing via Fully-aware Attention with Application to Machine Comprehension 0.133
2018 title: Dynamic Integration of Background Knowledge in Neural NLU Systems 0.139
2018 title: Neural Compositional Denotational Semantics for Question Answering 0.142
2018 title: Phase Conductor on Multi-layered Attentions for Machine Comprehension 0.144
2018 title: Adaptive Memory Networks 0.149

Table 3: Example of 2017 manuscript matched with ten 2018 manuscripts. The right-most column is the cosine
distances between embeddings of the respective manuscripts.

C.1.1 Repeated matches example

Title of 2018 Manuscript Repeat Count

Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural Networks 55
LSH Softmax: Sub-Linear Learning and Inference of the Softmax Layer in Deep Architectures 34
Revisiting Bayes by Backprop 32
Latent Space Oddity: on the Curvature of Deep Generative Models 32
A Bayesian Perspective on Generalization and Stochastic Gradient Descent 31

Table 4: Examples of the top 5 repeated manuscripts in VRM-E for our case study data. The right-most column is
the number of times the 2018 manuscript has been matched to a different 2017 manuscript.

C.2 Structured keywords

In both 2017 and 2018, submissions to ICLR were accompanied by a list of keywords selected by the
authors. Initially, we attempted to use these keywords as ground-truth by which we could evaluate
VRM-E by comparing the Standard Difference in Means (SDM) (Stuart, 2010) for each keyword.

However, we found that this was not a valid approach for this ICLR dataset as the semantic function of
keywords changed between 2017 and 2018. In 2017, all submissions selected from a set of 15 general
keywords, e.g., deep_learning or natural_language_processing. In contrast, submissions in 2018
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used a more varied set of keywords with finer granularity. The 1748 keywords used in 2018 included
specific topics such as attention or word_embeddings.

D Additional empirical settings and results

D.1 Training logistic regression model for SPSM

In Section 3.4, we train a logistic regression model using the scikit-learn Python package (Pedregosa
et al., 2011). We conduct a grid search, resulting in the best parameters listed in Table 5. This model was
used to estimate the propensity scores of the manuscripts. The performance metrics from training are
listed in Table 6. Figure 4 and Table 7 give the distribution of the propensity scores at inference time.

Parameter Input

Model LogisticRegression
l1_ratio 0.1
solver saga
max_iter 20000
tol 0.001
penalty elasticnet
dual False
class_weight balanced
random_state 42
model__C 0.01
run time 19.3 seconds

Table 5: Best Parameters for logistic regression

Metric Score

Accuracy 0.62
Average Precision Score 0.54
Calibration RSME 0.19
F1 0.54
Mean Prediction Binary 0.47
Mean Prediction Decimal 0.49
Mean Prediction 0.35
ROC AUC 0.68

Table 6: Logistic regression performance metrics for the
training folds.

Figure 4: Propensity score distribution on the inference folds. Visualization is created using a kernel density
estimate.

Strata P (T = 1) range NT0 (2017 manuscripts) NT1 (2018 manuscripts)

1 [0.0, 0.2] 0 0
2 [0.2, 0.4] 9 45
3 [0.4, 0.6] 472 851
4 [0.6, 0.8] 9 14
5 [0.8, 1.0] 0 0

Table 7: Distribution of manuscripts within each strata for SPSM.

D.2 Statistical significance

Table 1. For the human judgement results presented in Table 1, we conduct a two-sided T-test on the
distributions of preferences for pairs of methods. Comparing VRM-E to random matches and SPSM,
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we obtain T-statistic of 10.8 and 8.7 respectively. Both have a p-value of less than 0.01 (far below the
threshold of rejection).

Table 2. To obtain confidence intervals and test for statistical significance in Table 2, we use bootstrap-
ping. Since we evaluate the average treatment effect on the control, we sample with replacement the 2017
manuscripts 5000 times. For each bootstrap sample, we then calculate the ATC estimates for VRM-E,
SPSM, and the naive (unadjusted) approaches. We calculate the 95% confidence interval (CI) given the
percentile bootstrap method (Hahn, 1995). We use the 97.5 percentile and 2.5 percentile of the bootstrap
samples to determine the confidence interval.

To determine if there is a statistically significant difference between pairs of method, we use a paired
bootstrap approach (Tibshirani and Efron, 1993). Specifically, we follow the algorithm from Berg-
Kirkpatrick et al. (2012)’s Figure 1. When comparing the difference between the ATC for VRM-E and
Naive and VRM-E and SPSM, both obtain a p-value of less than 0.01 (far below the threshold of reject).

D.3 Robustness to hyperparameter selection

Figure 5: We re-run VRM-E for different choices of k, maximum number of nearest neighbors (x-axis) for different
values of a (colors). Left. The y-axis is the ATC. The dashed red horizonal line is the unadjusted (baseline) ATC.
Right. The y-axis is the number of agglomerative clusters (Step 3 in VRM-E) given the choice of a.

In Figure 5, we compare the ATC and number of agglomerative clusters given different hyperparameter
choices. We do not use these plots to select hyperparameters (since there is no ground-truth in causal
estimation) but rather to inspect our results’ robustness to these choices post-hoc. As expected, increasing
a—the hyperparameter which specifies the cosine distance threshold for which we count anchor units to
be similar—decreases the number of agglomerative clusters (Step 3 in VRM-E) but also changes the ATC
to be slightly more negative. As shown in the left plot of Figure 5, the estimates of the ATC for all our
choices of hyperparameters are still less negative than the baseline unadjusted ATC.
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